

UNIVERSITA' DI PISA

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Neurobiologia

Tesi di Laurea Specialistica

Screening of a genomic library of *Pseudoalteromonas tunicata* for the identification of genes involved in the production of bioactive compounds

Candidato Francesco Ballestriero *Relatori* Prof.ssa Sonia Senesi Prof. Marco Faimali

Anno Accademico 2006-2007

Index

Abstract	Ι
1 Introduction	1
1.1 Novel bioactive compounds	1
1.2 The species Pseudoalteromonas tunicata as	
source of bioactive compounds compounds	2
1.3 C. elegans as a model organism to screen for bioactive compound	s 6
1.4 Approach with metagenomic analysis for the identification	
of genes encoding for bioacitve compounds	8
1.5 Aim of this study	11
2 Materials and methods	12
2 Screening P. tunicata fosmid library for an anti-nematode assay	12
2.1 Strains and culture conditions	12
2.2 Anti-nematode assay	13
2.2.1 Fosmid library tested for the nematode grazing	13
2.3 Growth of the fosmid library on LB10 agar plates	14
2.4 Maintenance of Caenorhabditis elegans	14
2.4.1 C. elegans synchronization	15
2.5 C. elegans seeding on plates	17
2.6 Confirmation and characterization of putative positive clones	18
2.6.1 Test to confirm the positivity of the putative positive clones	18
2.6.2 Test to characterize the anti-nematode activity of the	
putative positive clones.	19

2.6.3 Test to confirm the anti-nematode activity of the positive clones		
2.6.3.1 Fosmid transfomation in E. coli EPI300-T1 ^R		
2.6.4. Test for the anti-nematode activity of the positive		
clones in presence and in absence of arabinose	21	
2.7 Fosmids characterisation	21	
2.7.1 Fosmid extraction	21	
2.7.2 Fosmid gel electrophoresis	22	
2.7.3 Fosmid sequencing and analysis	23	
2.8 Transposon mutagenesis	24	
2.8.1 Fosmid extraction and gel electrophoresis	24	
2.8.2 In vitro transposon mutagenesis	25	
2.8.3 Electroporation of TransforMax EPI 300		
electrocompetent E. coli.	25	
2.9 Transposon mutant library screening for activity		
against C. elegans	26	
2.9.1 Growth of the transposon mutant library on 96 well plates	26	
2.9.2 Transposon mutant library screening for activity		
against C. elegans	27	
2.9.3. Confirmation and characterization of the colonies that had lost the		
anti-nematode activity in the test for the anti-nematode activity	27	

3 Results	28
3 Screening the <i>P. tunicata</i> library for anti-nematode activity	28
3.1 Anti-nematode assay	28

3.2 Screening for anti-nematode activity	29
3.3 Confirmation and characterization of putative positive clones.	31
3.3.1 Confirmation of the putative positive clones.	31
3.3.2 Characterization of the anti-nematode activity of the	
putative positive clones	31
3.3.3 Confirmation of the anti-nematode activity of the positive clones	32
3.3.3.1 Transformation of <i>E. coli</i> EPI300-T1 ^R with the fosmids	33
3.3.3.2 Fosmid extraction and gel electrophoresis	33
3.3.3.3 <i>E. coli</i> EPI300-T1 ^R transformed with the fosmid from	
positive clones testing in the anti-nematode assay.	34
3.3.4 Test for the anti-nematode activity of the positive clones in	
presence and in absence of arabinose	34
3.5 Fosmid analisis of positive clones	35
3.6 Identification of anti-nematode genes	38
3.6.1 Test to Confirm and characterize the colonies that had lost the	
anti-nematode activity.	40
3.6.2 Dark gray clone (slow killing)	41
3.6.3 Yellow clone (slow killing).	42
3.6.4 Non-pigmented clone (fast killing)	43
4 Discussions	46
4.1 Experimental design	40 46
4.2 Screening for anti-nematode activity and positive clones	
characterization	48

5 Conclusions	51
6 References	52
7 Appendix I	61
8 Appendix II	64

Abstract

The genus *Pseudoalteromonas* contains numerous marine species which synthesize biologically active molecules. Many *Pseudoalteromaonas* species have been demostrated to produce an array of low and high molecular weight compounds with antimicrobial, anti-fouling, algicidal, neurotoxic and various pharmaceutically relevant activities.

P. tunicata is the most studied species within the genus, live associated with the surfaces of eukaryotic algae and tunicate, and is a known producer of several bioactive compounds with directed activity towards organisms including bacteria, fungi, invertebrate larvae, diatoms, algal spores and protozoa.

The aim of this study is the identification of gene(s) involved in the synthesis of bioactive compounds in the marine bacterium *P. tunicata*.

The nematode *Caenorhabditis elegans* was used in this study as an infections model organism for screening bioactive compounds produced by *P. tunicata*. This was achieved by the development of a genomic library screening allowing for the identification of genes encoding for compounds acting against the model organism *C. elegans*.

Three positive clones with anti-nematode activity were found out: the fosmid DNA was extracted and sequenced, matching with genes of the *P. tunicata* D2 genome, the genes for the anti-nematode activity were found out, a gene encoding for a unknown protein was also found out to be involved in the nematode killing.