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Chapter 1

Introduction

Since its accidental discovery by Penzias and Wilkinson in 1965, the Cosmo-

logical Microwave Background radiation (CMB) has been one of the funda-

mental observational pillars of the Big Bang cosmology, together with the

Hubble diagram and the prediction of light element abundances. It has

pitched the balance of opinion from the Steady State cosmology, proposed

by Fred Hoyle, Thomas Gold, Hermann Bondi and others (see for example

[1]) to the dynamical Big Bang view. The first measurements showed with

good approximation a blackbody spectrum that well suited the idea of a hot,

dense, opaque ball of expanding gas. During its first moments, the Universe

was thought to be in full thermal equilibrium, with photons being continu-

ally emitted and absorbed, giving the radiation a blackbody spectrum. As

the Universe expanded, it cooled to a temperature at which photons could

no longer be created or destroyed. The temperature was still high enough

for electrons and nuclei to remain unbound, however, and photons were ef-

ficiently scattered, keeping the early Universe opaque. The characteristic

transparency of the present Universe came later, when the temperature fell

to a few thousand Kelvin, so that electrons and nuclei began to recombine.

Since photons scatter infrequently from neutral atoms, radiation decoupled

from matter when nearly all the electrons had recombined, at the epoch of

last scattering (z ≃ 1100), about 300,000 years after the Big Bang. These

free streaming photons were subsequently redshifted by the expansion, which

preserved the form of the spectrum but caused its temperature to fall, mean-
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ing that the CMB photons now fall into the microwave region. The radiation

is thought to be observable at every point in the Universe and comes from

all directions with (almost) the same intensity. It was exactly the observed

isotropy of the CMB to open the way to the inflationary paradigm. The Hub-

ble horizon HLS
−1 at the last scattering was much smaller than the horizon

we would obtain tracing back the present one (H0
−1). Looking at angular

scales on the sky corresponding to HLS
−1 we find that all those regions look

like they were in thermal equilibrium at the last scattering. Yet, if we assume

a radiation or matter dominated Universe and we trace back those regions

we find that they were not even in causal contact. So the high isotropy of

the CMB prompted the first reflections about how non causally connected

regions could share the same properties. The Big Bang Universe needed a

way to expand faster, much faster. Inflation, first proposed by Guth in 1981

Figure 1.1: A graphical representation of the expansion of the Universe with

the inflationary epoch represented as the dramatic expansion the left [WMAP

press release, 2006]
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[2], was born.

In the first formulation Inflation involved a brief period of rapid exponential

expansion of the scale factor a, driven by the energy density of a scalar field,

the inflaton, trapped in a false minimum of its potential. In this scenario,

small localized regions would tunnel to the true vacuum and start growing.

For the Universe to move as a whole to the true vacuum though these bub-

bles would need to coalesce. Careful calculations showed that they would

not [3, 4]. To avoid the problem Linde, Albrecht and Steinard in 1982 [5, 6]

made use of a scalar field slowly rolling to its minimum. The energy density

of such a field is thought to be very close to constant and so it comes quickly

to dominate the energy balance and thus drive Inflation.

In 1992 the Cosmological Background Explorer (COBE) detected for the

first time CMB temperature anisotropies [7, 8] at a level of 1 part in 105.

These anisotropies are the sign of perturbations at the last scattering sur-

face. Inflation again provided an elegant explanation: microscopic quantum

fluctuations of the inflaton field were magnified to cosmological scales dur-

ing the inflationary era, generating cosmological curvature perturbations and

thus creating matter perturbations, the primordial seeds for the structures

that we observe today. As fluctuations wavelenghts were stretched by the ex-

ponential expansion, they eventually became larger than the horizon, which

grew slower than a. This phenomenon is referred to as horizon exit: while

outside the horizon the fluctuations freeze [5, 9], their amplitude remain-

ing constant since they are larger than the scale over which causal physics

can operate. After the end of Inflation, the frozen fluctuations gradually

reentered the horizon becoming thus observable. Thus, the larger scale per-

turbations that we observe now were the ones who exited the horizon earlier

during Inflation and therefore they are also the ones less likely to have been

modificated by causal under–horizon interactions.

The last confirmation of the inflationary paradigm has been recently pro-

vided by the data of the Wilkinson Microwave Anisotropy Probe (WMAP)

mission [10]. The WMAP collaboration has produced a full–sky map of the

angular variations of the CMB and a plot of the temperature anisotropies,

with unprecedented accuracy (respectively fig. 1.3 and 1.2). WMAP data

confirm the inflationary mechanism as responsible for the generation of cur-
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vature (adiabatic) superhorizon fluctuations [11].

Figure 1.2: The power spectrum of the cosmic microwave background ra-

diation temperature anisotropy in terms of the angular scale (or multipole

moment).The correlations observed in the gray–shaded area on the left side

of the first peak are the signature of the inflationary expansion. The data

shown come from the WMAP (2006).

Since the primordial cosmological perturbations are tiny, the generation and

evolution of fluctuations during Inflation havef been studied within linear

perturbation theory. Within this approach, the primordial density pertur-

bation is Gaussian; in other words, its Fourier components are uncorrelated

and have random phases. Despite the simplicity of the inflationary paradigm,

the mechanism by which cosmological adiabatic perturbations are generated

is not yet established. In the standard slow–roll scenario associated to one–

single field models of Inflation, the observed density perturbations are due

to fluctuations of the inflaton field itself when it slowly rolls down along its

potential. When Inflation ends, the inflaton φ oscillates about the minimum
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Figure 1.3: The detailed, all-sky picture of the infant Universe from three

years of WMAP data. The image reveals 13.7 billion year old temperature

fluctuations (shown as color differences) that correspond to the seeds that

grew to become the galaxies [WMAP press release].

of its potential V (φ) and decays, thereby reheating the Universe. As a result

of the fluctuations each region of the Universe goes through the same his-

tory but at slightly different times. The final temperature anisotropies are

caused by Inflation lasting for different amounts of time in different regions

of the Universe leading to adiabatic perturbations. Under this hypothesis,

the WMAP dataset already allows to extract the parameters relevant for

distinguishing among single–field Inflation models [11, 12].

However, what if the curvature perturbation is generated through the quan-

tum fluctuations of a scalar field other than the inflaton? Consider, for

instance, the curvaton scenario, where the final curvature perturbations are

produced from an initial perturbation associated with the quantum fluctua-

tions of the curvaton, a light scalar field, whose energy density is negligible

during Inflation and curvaton isocurvature perturbations are transformed

into adiabatic ones when the curvaton decays into radiation much after the

end of Inflation. It liberates the inflaton from the duty of generating the cos-

mological curvature perturbation and therefore avoid slow–roll conditions.

Their basic assumption is that the initial curvature perturbation due to the
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inflaton field is negligible. Other mechanisms for the generation of cosmolog-

ical perturbations have been proposed. A few examples are the inhomoge-

neous reheating scenario [13, 14, 15, 16], the ghost inflationary scenario [17]

and the D–cceleration scenario [18].

So how can we discriminate among them? Different models provide dif-

ferent constraints on gravitational waves produced during Inflation, for ex-

ample in the curvaton scenario the inflaton potential has to be small enough

so that its contribution to the primordial curvature perturbation in the ob-

served CMB anisotropy is negligible. Therefore the curvaton mechanisms

would produce gravitational waves with an amplitude too small to be de-

tectable [19]. A future detection would then favor slow-roll models while a

failed detection would not give any information about the generating mech-

anisms of perturbations. Another powerful tool to constrain inflationary

models is the spectral index nζ calculated from the spectrum of comoving

curvature perturbations: slow–roll models for example predict |nζ − 1| ≪ 1

[20, 21]. Remarkably, the eventual accuracy ∆nζ ∼ 0.01 offered by the fu-

ture Planck satellite [22] is just what one might have specified in order to

distinguish between various slow–roll models of Inflation. If cosmological

perturbations are due to the inflaton field, then in ten or fifteen years there

may be a consensus about the form of the inflationary potential, and at a

deeper level we may have learned something valuable about the nature of the

fundamental interactions beyond the Standard Model. However, we cannot

exclude the possibility that there are other mechanisms for the creation of the

cosmological perturbations, which generically predict a value of nR very close

to unity with a negligible scale dependence. Then, it implies that a precise

measurement of the spectral index will not allow us to efficiently discrimi-

nate among different scenarios. We should then turn to a third observable

which will prove fundamental in providing information about the mechanism

chosen by Nature to produce the structures we see today. It is the deviation

from a pure Gaussian statistics, i.e., the presence of higher–order connected

correlation functions of CMB anisotropies. The angular n–point correlation

function for temperature anisotropies

〈
δT

T
(n̂1)

δT

T
(n̂2) . . .

δT

T
(n̂n)

〉
, (1.1)
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is a simple statistic characterizing a clustering pattern of temperature fluctu-

ations on the sky, δT
T

(n̂), where the bracket denotes the ensemble average. If

the fluctuation is Gaussian, then the two–point correlation function specifies

all the statistical properties of δT
T

(n̂), for the two–point correlation func-

tion is the only parameter in a Gaussian distribution. If it is not Gaussian,

then we need higher–order correlation functions to determine the statisti-

cal properties: a non–vanishing connected three– or four–point correlation

function of scalar perturbations, or their Fourier transform, the bispectrum

and trispectrum, are indicators of a non–Gaussian feature in the cosmolog-

ical perturbations. The importance of the bi– and trispectrum comes from

the fact that they represent the lowest order statistics able to distinguish

non–Gaussian from Gaussian perturbations. Thus an accurate calculation

of the primordial spectra of cosmological perturbations has become an ex-

tremely important issue, as a number of present and future experiments, such

as WMAP and Planck, will allow to constrain or detect non–Gaussianity of

CMB anisotropy with high precision.

With the coming measurements and the possibility of non Gaussian fields,

it becomes important to know how loop corrections to the scalar field influ-

ence the correlation functions and whether they must be accounted for in

evaluating the non Gaussianity of the curvature perturbation. A number of

papers addressed this problem using toy model potential of the form φn (usu-

allu n = 3, 4) and showed that in these theories the first order corrections in

perturbation theory produce a logarithmic divergence in the correlation func-

tions evaluated at late times during Inflation [23, 24, 25, 26, 27, 28, 29, 30],

making the correlations useless for the prediction of non Gaussianity. Yet,

none of those papers investigated whether that divergence and the ones aris-

ing at higher orders could be cured by means of resummations.

The goal of this thesis is then to investigate whether the resummation is

possible. We will start with the free scalar field propagators in a Friedmann

Robertson Walker Universe during a de Sitter stage and use them to build

the higher order loop corrections for a λφ4 theory. We will then try to resum

a different diagram classes in order to see whether the divergences are reab-

sorbed and whether we find evidence that the full theory is not divergent in

the late time limit. We will then present an argument to justify our choice
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to neglect a large number of diagrams and to focus only on a small selection.

Finally we will use the resummed 2–point correlation functions to calculate

the 4–point correlation function and the observation of its behaviour for late

times will give us an estimate of the non Gaussianity produced by the self–

interacting scalar field.

In the next chapters we will slowly build up all the tools needed for this

calculation. The thesis is structured as follows:

• Chapter 2 contains a more detailed review of the Big Bang cosmology

and of the problems that led to the inflationary paradigm. We intro-

duce also the theory of quantum fluctuations for a generic scalar field

evolving in a fixed de Sitter background.

• Chapter 3 is about the curvature perturbation ζ that we already men-

tioned often. Section 3.21 utilizes the δN formalism to show how ζ

is conserved superhorizon for adiabatic perturbations. Section 3.2 on

the contrary briefly explains how can ζ evolve, also in case of adiabatic

fluids.

• Chapter 4 is devoted to the non Gaussianity of perturbations. Build-

ing on the previous chapter, we show explicitly how the level of non

Gaussianity can be parametrized in the two case of the inflaton and

curvaton scenarios. Then in section 4.2 we put forth the formalism

needed to calculate the 3– and 4–point ζ correlation functions and how

it relates to the φ correlation functions.

• Chapter 5 introduces the Closed Path Time formalism. We will have to

calculate expectation values of correlation functions on vacuum states,

but during Inflation it is difficult to define past and future asymptotic

states and thus the conventional in–out formalism fails. Therefore a

different formalism is needed. In particular in section 5.3 we calculate

the Feynman rules of the chosen self-interacting theory.

• Chapter 6 contains the actual calculations of higher order Feynman di-

agrams for the self–interacting scalar field. In section 6.1 we calculate

the corrections to the two–point propagators and search for a resum-

mation. Then, in section 6.2 we use the results to calculate the 4–point
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correlation function and discuss its meaning, while in section 6.3 we

justify the choice of neglecting certain diagrams.

• Chapter 7 summarizes the results and concludes the thesis.
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Chapter 2

Big Bang and Inflation: an

overview

2.1 Basics of the Big-Bang Model

The standard cosmology is based upon the maximally spatially symmetric

Friedmann-Robertson-Walker (FRW) line element

ds2 = −dt2 + a(t)2

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
; (2.1)

where a(t) is the cosmic-scale factor, Rcurv ≡ a(t)|k|−1/2 is the curvature

radius, and k = −1, 0, 1 is the curvature signature. All three models are

without boundary: the positively curved model is finite and “curves” back

on itself; the negatively curved and flat models are infinite in extent. The

Robertson-Walker metric embodies the observed isotropy and homogeneity

of the Universe. It is interesting to note that this form of the line element

was originally introduced for sake of mathematical simplicity; we now know

that it is well justified at early times or today on large scales (≫ 10 Mpc),

at least within our visible patch.

The coordinates, r, θ, and φ, are referred to as comoving coordinates: A

particle at rest in these coordinates remains at rest, i.e., constant r, θ, and

φ. A freely moving particle eventually comes to rest these coordinates, as its

momentum is red shifted by the expansion, p ∝ a−1. Motion with respect

to the comoving coordinates (or cosmic rest frame) is referred to as peculiar
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velocity. Physical separations between freely moving particles are simply

a(t) times the coordinate separation. The momenta of freely propagating

particles decrease, or “red shift,” as a(t)−1, and thus the wavelength of a

photon stretches as a(t), which is the origin of the cosmological red shift.

2.1.1 Friedmann Equations

The evolution of the scale factor a(t) is governed by Einstein equations

Rµν −
1

2
R gµν ≡ Gµν = 8πGTµν (2.2)

where Rµν (µ, ν = 0, · · · 3) is the Riemann tensor and R is the Ricci scalar

constructed via the metric (2.1) [31] and Tµν is the energy-momentum tensor.

Under the hypothesis of homogeneity and isotropy, we can always write the

energy-momentum tensor under the form Tµν = diag (ρ, P, P, P ) where ρ is

the energy density of the system and P its pressure. They are functions of

time. The evolution of the cosmic-scale factor is governed by the Friedmann

equation

H2 ≡
(

ȧ

a

)2

=
8πGρ

3
− k

a2
, (2.3)

where ρ is the total energy density of the Universe. Differentiating with re-

spect to time both members of eq. (2.3) and using the the mass conservation

equation

ρ̇ + 3H(ρ + P ) = 0, (2.4)

we find the equation for the acceleration of the scale-factor

ä

a
= −4πG

3
(ρ + 3P ). (2.5)

Combining Eqs. (2.3) and (2.5) we find

Ḣ = −4πG (ρ + P ) . (2.6)

The evolution of the energy density of the Universe is governed by

d(ρa3) = −Pd
(
a3

)
; (2.7)

which is the First Law of Thermodynamics for a fluid in the expanding

Universe.
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• For P = ρ/3, ultra-relativistic matter, ρ ∝ a−4 and a ∼ t
1

2 ;

• for P = 0, very nonrelativistic matter, ρ ∝ a−3 and a ∼ t
2
3 ;

• or P = −ρ, vacuum energy, ρ = const.

If the r.h.s. of the Friedmann equation is dominated by a fluid with equation

of state P = γρ, it follows that ρ ∝ a−3(1+γ) and a ∝ t2/3(1+γ).

Through the Friedmann equation one can relate the curvature of the

Universe to the energy density and expansion rate:

Ω − 1 =
k

a2H2
; Ω =

ρ

ρcrit

; (2.8)

and the critical density today ρcrit = 3H2/8πG = 1.88h2 g cm−3 ≃ 1.05 ×
104 eV cm−3. The correspondence between Ω and the spatial curvature of

the Universe is direct:

• positively curved, Ω0 > 1;

• negatively curved, Ω0 < 1;

• flat (Ω0 = 1).

Model universes with k ≤ 0 expand forever, while those with k > 0 necessar-

ily recollapse. The curvature radius of the Universe is related to the Hubble

radius and Ω by

Rcurv =
H−1

|Ω − 1|1/2
, (2.9)

and physically this sets the scale over which effects of curvature become im-

portant.

The energy content of the Universe consists of matter and radiation (today,

photons and neutrinos). Since the photon temperature is accurately known,

T0 = 2.73 ± 0.01 K, the fraction of critical density contributed by radiation

is also accurately known: ΩRh2 = 4.2 × 10−5, where h = 0.732+0.07
−0.03 is the

present Hubble rate in units of 100 km sec−1 Mpc−1. The rest is some other
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type of matter. Using WMAP data only, the best fit values for cosmological

parameters for the power-law flat ΛCDM model are [32, 33]

Ωmh2 = 0.127+0.007
−0.013,

Ωbh
2 = 0.0223+0.0007

−0.0009,

Ωch
2 = 0.1054+0.0078

−0.0077,

ΩΛ = 0.759 ± 0.0034

In a flat Universe, the combination of WMAP and the Supernova Legacy

Survey (SNLS) data yields a significant constraint on the equation of state

of the dark energy, w = 0.97+0.07
−0.09. If we assume w = 1, then the deviations

from the critical density, Ωk , are small: the combination of WMAP and the

SNLS data imply Ωk = 0.015+0.020
−0.016. The combination of WMAP three year

data plus the HST key project constraint on H0 implies Ωk = 0.010+0.016
−0.009

and ΩΛ = 0.720.04. So apparently, this Universe is born from a burst of

rapid expansion, Inflation, during which quantum noise was stretched to

astrophysical size seeding cosmic structure.

2.1.2 Early Universe Formalisms

We would like to introduce the concept of conformal time which will be useful

in the next sections. The conformal time τ is defined through the following

relation

dτ =
dt

a
. (2.10)

The metric (2.1) then becomes

ds2 = −a2(τ)

[
dτ 2 − dr2

1 − kr2
− r2(dθ2 + sin2 θ dφ2)

]
. (2.11)

The reason why τ is called conformal is manifest from Eq. (2.11): the cor-

responding FRW line element is conformal to the Minkowski line element

describing a static four dimensional hypersurface. Any function f(t) satisfies

the rule

ḟ(t) =
f ′(τ)

a(τ)
, (2.12)

f̈(t) =
f ′′(τ)

a2(τ)
− H f ′(τ)

a2(τ)
, (2.13)
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where a prime now indicates differentation with respect to the conformal

time τ and

H =
a′

a
. (2.14)

In particular we can set the following rules:

H =
ȧ

a
=

a′

a2
=

H
a

, (2.15)

ä =
a′′

a2
− H2

a
, (2.16)

Ḣ =
H′

a2
− H2

a2
, (2.17)

Finally, if the scale factor a(t) scales like a ∼ tn, solving the relation

(2.10) we find

a ∼ tn =⇒ a(τ) ∼ τ
n

1−n . (2.18)

We want to introduce now another important concept: the particle horizon.

Photons travel on null paths characterized by dr = dt/a(t); the physical

distance that a photon could have traveled since the bang until time t, the

distance to the particle horizon, is

RH(t) = a(t)

∫ t

0

dt′

a(t′)

=
t

(1 − n)
= n

H−1

(1 − n)
∼ H−1 for a(t) ∝ tn, n < 1.(2.19)

Using the conformal time, the particle horizon becomes

RH(t) = a(τ)

∫ τ

τ0

dτ, (2.20)

where τ0 indicates the conformal time corresponding to t = 0. Note, in the

standard cosmology the distance to the horizon is finite, and up to numerical

factors, equal to the age of the Universe or the Hubble radius, H−1. For this

reason, we will use horizon and Hubble radius interchangeably. Note also

that a physical length scale λ is within the horizon if λ < RH ∼ H−1. Since

we can identify the length scale λ with its wavenumber k, λ = 2πa/k, we

will have the following characterizations:
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k

aH
≪ 1 =⇒ SCALE λ OUTSIDE THE HORIZON

k

aH
≫ 1 =⇒ SCALE λ WITHIN THE HORIZON

Another important quantity is the entropy within a horizon volume:

SHOR ∼ H−3T 3; during the radiation-dominated epoch H ∼ T 2/mPl[34],

so that

SHOR ∼
(mPl

T

)3

. (2.21)

2.1.3 The Early Radiation-dominated Universe

In any case, at present, matter outweights radiation by a wide margin. How-

ever, since the energy density in matter decreases as a−3, and that in radiation

as a−4 (the extra factor due to the red shifting of the energy of relativistic

particles), at early times the Universe was radiation dominated—indeed the

calculations of primordial nucleosynthesis provide excellent evidence for this.

Denoting the epoch of matter-radiation equality by subscript ‘EQ,’ and using

T0 = 2.73 K, it follows that

aEQ = 4.18 × 10−5 (Ω0h
2)−1; TEQ = 5.62(Ω0h

2) eV; (2.22)

tEQ = 4.17 × 1010(Ω0h
2)−2 sec. (2.23)

At early times the expansion rate and age of the Universe were determined

by the temperature of the Universe and the number of relativistic degrees of

freedom:

ρrad = g∗(T )
π2T 4

30
; H ≃ 1.67g1/2

∗ T 2/mPl; (2.24)

⇒ a ∝ t1/2; t ≃ 2.42 × 10−6g−1/2
∗ (T/ GeV)−2 sec; (2.25)

where g∗(T ) counts the number of ultra-relativistic degrees of freedom (≈ the

sum of the internal degrees of freedom of particle species much less massive

than the temperature) and mPl ≡ G−1/2 = 1.22 × 1019 GeV is the Planck

mass. For example, at the epoch of nucleosynthesis, g∗ = 10.75 assuming

three, light (≪ MeV) neutrino species; taking into account all the species in

the standard model, g∗ = 106.75 at temperatures much greater than 300 GeV.
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A quantity of importance related to g∗ is the entropy density in relativistic

particles,

s =
ρ + P

T
=

2π2

45
g∗T

3,

and the entropy per comoving volume,

S ∝ a3s ∝ g∗a
3T 3.

By a wide margin most of the entropy in the Universe exists in the radi-

ation bath. The entropy density is proportional to the number density of

relativistic particles. At present, the relativistic particle species are the pho-

tons and neutrinos, and the entropy density is a factor of 7.04 times the

photon-number density: nγ = 413 cm−3 and s = 2905 cm−3.

In thermal equilibrium—which provides a good description of most of

the history of the Universe—the entropy per comoving volume S remains

constant. This fact is very useful. First, it implies that the temperature and

scale factor are related by

T ∝ g−1/3
∗ a−1, (2.26)

which for g∗ = const leads to the familiar T ∝ a−1.

Second, it provides a way of quantifying the net baryon number (or any

other particle number) per comoving volume:

NB ≡ R3nB =
nB

s
≃ (4 − 7) × 10−11. (2.27)

The baryon number of the Universe tells us two things: (1) the entropy per

particle in the Universe is extremely high, about 1010 or so compared to about

10−2 in the sun and a few in the core of a newly formed neutron star. (2) The

asymmetry between matter and antimatter is very small, about 10−10, since

at early times quarks and antiquarks were roughly as abundant as photons.

One of the great successes of particle cosmology is baryogenesis, the idea

that B, C, and CP violating interactions occurring out-of-equilibrium early

on allow the Universe to develop a net baryon number of this magnitude

[35, 36].

Finally, the constancy of the entropy per comoving volume allows us to

characterize the size of comoving volume corresponding to our present Hubble
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volume in a very physical way: by the entropy it contains,

SU =
4π

3
H−3

0 s ≃ 1090. (2.28)

The standard cosmology is tested back to times as early as about 0.01

sec; it is only natural to ask how far back one can sensibly extrapolate.

Since the fundamental particles of Nature are point-like quarks and leptons

whose interactions are perturbatively weak at energies much greater than

1 GeV, one can imagine extrapolating as far back as the epoch where general

relativity becomes suspect, i.e., where quantum gravitational effects are likely

to be important: the Planck epoch, t ∼ 10−43 sec and T ∼ 1019 GeV. Of

course, at present, our firm understanding of the elementary particles and

their interactions only extends to energies of the order of 100 GeV, which

corresponds to a time of the order of 10−11 sec or so. We can be relatively

certain that at a temperature of 100 MeV − 200 MeV (t ∼ 10−5 sec) there

was a transition (likely a second-order phase transition) from quark/gluon

plasma to very hot hadronic matter, and that some kind of phase transition

associated with the symmetry breakdown of the electroweak theory took

place at a temperature of the order of 300 GeV (t ∼ 10−11 sec).

2.2 The Problems of Big Bang Theory

The Big Bang cosmology presents three problems: the horizon or large-scale

smoothness problem; the small-scale inhomogeneity problem (origin of den-

sity perturbations); and the flatness or oldness problem. They are not incon-

sistencies of the model, yet they seem to require very special initial data for

the model to produce an Universe that is qualitatively similar to ours today.

2.2.1 The Flatness Problem

Let us assume that Einstein equations are valid until the Planck era (TPl ∼
mPl ∼ 1019 GeV). From eq. (2.8), we read that if the Universe is perfectly

flat, then (Ω = 1) at all times. On the other hand, if there is even a small

curvature term, the time dependence of (Ω − 1) is quite different.
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During a radiation-dominated period, we have that H2 ∝ ρR ∝ a−4 and

Ω − 1 ∝ 1

a2a−4
∝ a2. (2.29)

During Matter Domination, ρM ∝ a−3 and

Ω − 1 ∝ 1

a2a−3
∝ a. (2.30)

In both cases (Ω − 1) decreases going backwards with time. Since we know

that today (Ω0 − 1) is of order unity at present, we can deduce its value at

tPl (the time at which the temperature of the Universe is TPl ∼ 1019 GeV)

| Ω − 1 |T=TPl

| Ω − 1 |T=T0

≈
(

a2
Pl

a2
0

)
≈

(
T 2

0

T 2
Pl

)
≈ O(10−64). (2.31)

where 0 stands for the present epoch, and T0 ∼ 10−13 GeV is the present-

day temperature of the CMB radiation. In order to get the correct value

of (Ω0 − 1) ∼ 1 at present, the value of (Ω − 1) at early times have to be

fine-tuned to values amazingly close to zero, but without being exactly zero.

This is the reason why the flatness problem is also dubbed the ‘fine-tuning

problem’.

2.2.2 The Entropy Problem

Let us now see how the hypothesis of adiabatic expansion of the Universe is

connected with the flatness problem. From the Friedman equation (2.3) we

know that during a radiation-dominated period

H2 ≃ ρR ≃ T 4

mPl
2
, (2.32)

from which we deduce

Ω − 1 =
kmPl

2

a4T 4
=

kmPl
2

S
2
3 T 2

. (2.33)

Adiabatic expansions means that S is constant over the evolution of the

Universe. Hence:

|Ω − 1|t=tPl
=

mPl
2

T 2
Pl

1

S
2/3
U

=
1

S
2/3
U

≈ 10−60. (2.34)

21



We see that (Ω − 1) is so close to zero at early epochs because the total

entropy of our Universe is so incredibly large. The problem of understanding

why the (classical) initial conditions corresponded to a Universe that was

so ”fine-tuned”to spatial flatness is the flatness problem. Such a balance is

possible in principle but it feels weird to demand a precision of one over 1060

for the initial data. On the other hand, the flatness problem arises because

the entropy in a comoving volume is conserved. Therefore, if the expansion

was not adiabatic for some finite time intervals the flatness problem could

be solved.

2.2.3 The Horizon Problem

According to the standard cosmology, photons decoupled from the rest of

the components (electrons and baryons) at a temperature of the order of

0.3 eV. This corresponds to the so-called surface of ‘last-scattering’ at a red

shift of about 1100 and an age of about 180, 000 (Ω0h
2)−1/2 yrs. From the

epoch of last-scattering onwards, photons free-stream and reach us basically

untouched. Detecting primordial photons is therefore equivalent to take a

picture of the Universe when the latter was about 300,000 yrs old. The

spectrum of the cosmic background radiation (CBR) is consistent that of a

black body at temperature 2.726 ± 0.01 K over more than three decades in

wavelength (FIRAS instrument on the COBE[37]). The length correspond-

ing to our present Hubble radius (which is approximately the radius of our

observable Universe) at the time of last-scattering was

λH(tLS) = RH(t0)

(
aLS

a0

)
= RH(t0)

(
T0

TLS

)
.

During the matter-dominated period instead the Hubble length has decreased

with a different law

H2 ∝ ρM ∝ a−3 ∝ T 3.

So at last-scattering we get

H−1
LS = RH(t0)

(
TLS

T0

)−3/2

≪ RH(t0).
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The length corresponding to our present Hubble radius was much larger that

the horizon at that time. This can be shown comparing the volumes built

with these two scales

λ3
H(TLS)

H−3
LS

=

(
T0

TLS

)− 3

2

≈ 106. (2.35)

From the last equation we see that there were about 106 causally disconnected

regions within the volume that now corresponds to our horizon. Such an huge

number is difficult to explain with a process other than an early hot and dense

phase in the history of the Universe that would lead to a precise black body

[38] for a bath of photons which were causally disconnected the last time

they interacted with the surrounding plasma.

Suppose, that λ indicates the distance between two photons we detect

today. From Eq. (2.35) we discover that at the time of emission (last-

scattering) the two photons could not talk to each other. This highlights

another feature of the horizon problem which is related to the problem of

initial conditions for the cosmological perturbations. In fact we see that pho-

tons which were causally disconnected at the last-scattering surface have the

same small anisotropies! The existence of particle horizons in the standard

cosmology (non inflationary cosmology) precludes explaining the smoothness

as a result of microphysical events: the horizon at decoupling, the last time

one could imagine temperature fluctuations being smoothed by particle in-

teractions, corresponds to an angular scale on the sky of about 1◦, which

precludes temperature variations on larger scales from being erased [34].

To account for the small-scale lumpiness of the Universe today, density

perturbations with horizon-crossing amplitudes of 10−5 on scales of 1 Mpc to

104 Mpc or so are required. However, in the standard cosmology the physical

size of a perturbation, which grows as the scale factor, begins larger than the

horizon and relatively late in the history of the Universe crosses inside the

horizon. This precludes a causal microphysical explanation for the origin of

the required density perturbations.

Therefore to solve these problems of the Big Bang theory we need to

modify it assuming a non-adiabatic period (entropy and flatness problems)

and a primordial expansion period during which physical scales evolved faster
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than the horizon H−1.

In fact, if there is such a period, length scales λ which are within the

horizon today, λ < H−1 (such as the distance between two detected photons)

and were outside the horizon for some period, λ > H−1 (for istance at the

time of last-scattering when the two photons were emitted), had a chance to

be within the horizon at some earlier epoch, λ < H−1 again. If we find a

mechanism that produces these conditions, the homogeneity and the isotropy

of the CMB can be explained by saying that photons that we receive today

and were emitted from the last-scattering surface from causally disconnected

regions have the same temperature because they were in causal contact at

some primordial stage of the evolution of the Universe.

Then, the inflationary condition can be written in terms of the scale

factor: a given scale λ scales like λ ∼ a and H−1 = a/ȧ; we impose during

some period: (
λ

H−1

)·
= ä > 0.

Hence, an inflationary stage is a period of the Universe during which the

latter accelerates(ä > 0) [2].

2.3 The Inflationary Paradigm

Now that the problems of the standard Big Bang cosmology are clear, we

present the basics of the mechanism that solves them elegantly, Inflation 1.

As far as the dynamics of Inflation is concerned one can consider again a

homogeneous and isotropic Universe described by the Friedmann–Robertson–

Walker (FRW) metric (2.1). If -as we will always assume- the Universe is

filled with matter described by the energy–momentum tensor Tµν of a perfect

fluid with energy density ρ and pressure P , the Einstein equations

Gµν = 8πGN Tµν , (2.36)

with Gµν the Einstein tensor and GN the Newtonian gravitational constant

give the Friedmann equations [31]

H2 =
8πGN

3
ρ − K

a2
, (2.37)

1For more details we refer to some reviews on the subject [39, 40, 41].
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ä

a
= −4πGN

3
(ρ + 3P ) , (2.38)

where H = ȧ/a is the Hubble expansion parameter and dots denote differ-

entiation with respect to cosmic time t. Eq. (2.38) shows that a period of

Inflation is possible if the pressure P is negative with

P < −ρ

3
. (2.39)

In particular a period of the history of Universe during which P = −ρ is called

a de Sitter stage. From the energy continuity equation ρ̇ + 3H(ρ + P ) = 0

and eq. (2.37) (neglecting the curvature K which is redshifted away as a−2)

we see that in a de Sitter phase ρ = constant and

H = HI = constant . (2.40)

Solving Eq. (2.38) we also see the scale–factor grows exponentially

a(t) = ai e
HI(t−ti) , (2.41)

where ti is the time Inflation starts. The condition (2.39) can be satisfied by a

scalar field, the inflaton φ. So we consider the action for a minimally–coupled

scalar field φ, which is given by [23, 25]

S =

∫
d4x

√−gL =

∫
d4x

√−g

[
−1

2
gµν∂µφ∂νφ − V (φ)

]
, (2.42)

where g is the determinant of the metric tensor gµν , gµν is the contravariant

metric tensor, such that gµνg
νλ = δλ

µ; V (φ) specifies the scalar field potential.

One can vary the action with respect to φ and obtains the Klein–Gordon

equation

¤φ =
∂V

∂φ
, (2.43)

where ¤ is the covariant D’Alembert operator

¤φ =
1√−g

∂ν

(√−g gµν ∂µφ
)

. (2.44)

In a FRW Universe (2.1), the evolution equation for the scalar field φ becomes

φ̈ + 3Hφ̇ − ∇2φ

a2
+ V ′(φ) = 0 , (2.45)
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where V ′(φ) = (dV (φ)/dφ).

The friction term 3Hφ̇ is important since it means that a scalar field

rolling down its potential suffers a friction due to the expansion of the Uni-

verse. The energy–momentum tensor for a minimally–coupled scalar field φ

is given by [42]

Tµν = −2
∂L

∂gµν
+ gµνL = ∂µφ∂νφ + gµν

[
−1

2
gαβ∂αφ∂βφ − V (φ)

]
. (2.46)

We want now to study the perturbations of the scalar field. So we now

split the inflaton field as

φ(t,x) = φ0(t) + δφ(t,x),

where φ0 is the expectation value of the inflaton field on the initial isotropic

and homogeneous state, while δφ(t,x) represents the quantum fluctuations

around φ0, which are the feature we are interested in.

First we follow the evolution of the ”classical” part φ0. The evolution of

the quantum fluctuations will be treated later. The separation is possible

because quantum fluctuations are much smaller than the classical value and

therefore negligible when looking at the classical evolution. A homogeneous

scalar field φ(t) behaves like a perfect fluid with background energy density

and pressure given by

ρφ =
φ̇2

2
+ V (φ) (2.47)

Pφ =
φ̇2

2
− V (φ). (2.48)

Therefore assuming V (φ) ≫ φ̇2, we obtain the following condition Pφ ≃ −ρφ.

We find then that a scalar field whose energy is dominant in the Universe

and whose potential energy dominates over the kinetic term gives Inflation.

Hence, Inflation is driven by the vacuum energy of the inflaton field. Ordinary

matter fields, in the form of a radiation fluid, and the spatial curvature K are

usually neglected during Inflation because their contribution to the energy

density is redshifted away during the accelerated expansion.

Let us specify a little better now which are the conditions under which a
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scalar field can induce an inflationary period. The equation of motion of an

homogeneous scalar field is

φ̈ + 3Hφ̇ + V ′(φ) = 0 . (2.49)

We want to have a finite inflationary period, so we want the field to roll down

its potential to a minimum. To have this we require again φ̇2 ≪ V (φ), so

that one can neglect the kinetic contributions to the scalar field behaviour.

Such a slow-roll period can be achieved if the inflaton field φ is in a region

where the potential is sufficiently flat. Since the potential is very flat also

the second time derivative of the field will be small. We will assume that this

is true and we will quantify this condition soon. Assuming that the inflaton

field dominates the energy density of the Universe, the Friedmann equation

(2.37) becomes

H2 ≃ 8πGN

3
V (φ), (2.50)

and the new equation of motion becomes

3Hφ̇ = −V ′(φ) , (2.51)

which gives φ̇ as a function of V ′(φ). Using Eq. (2.51) the slow–roll conditions

then require

φ̇2 ≪ V (φ) =⇒ (V ′)2

V
≪ H2 (2.52)

and

φ̈ ≪ 3Hφ̇ =⇒ V ′′ ≪ H2. (2.53)

Equations. (2.52) and (2.53) represent the flatness conditions on the potential

which are conveniently parametrized in terms of the the slow–roll parameters,

built from V and its derivatives with respect to φ [21, 43, 44]. In particular,

we define the two usual slow–roll parameters [21]:

ǫ =
m2

P

2

(
V ′

V

)2

, η = m2
P

(
V ′′

V

)
(2.54)

Achieving a successful period of Inflation requires the slow–roll parameters to

be ǫ, |η| ≪ 1. For example, if we write the parameter ǫ as ǫ = −Ḣ/H2, thus
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quantifying how much the Hubble rate H changes with time during Inflation,

we notice that
ä

a
= Ḣ + H2 = (1 − ǫ) H2,

forces ǫ < 1 to obtain an inflationary period. As soon as this condition fails,

Inflation ends. At first–order in the slow–roll parameters ǫ and η can be

considered constant, since the potential is very flat. In fact it is easy to see

that that ǫ̇, η̇ = O (ǫ2, η2), where by that we indicate general combinations

of the slow–roll parameters of lowest order and next order respectively.

The number of inflationary models that have been proposed so far is

enormous, differing for the kind of potential and for the underlying particle

physics theory [21]. We just want to mention here that a useful classifi-

cation in connection with the observations may be the one in which the

single–field inflationary models are divided into three broad groups as “small

field”, “large field” (or chaotic) and “hybrid” type, according to the region

occupied in the (ǫ − η) space by a given inflationary potential [45]. Typi-

cal examples of the large–field models (0 < η < 2ǫ) are polynomial poten-

tials V (φ) = Λ4 (φ/µ)p, and exponential potentials, V (φ) = Λ4 exp (φ/µ).

The small–field potentials ( η < −ǫ ) are typically of the form V (φ) =

Λ4 [1 − (φ/µ)p], while generic hybrid potentials (0 < 2ǫ < η) are of the form

V (φ) = Λ4 [1 + (φ/µ)p]. In fact according to such a scheme, the WMAP

dataset already allows to extract the parameters relevant for distinguishing

among single–field Inflation models [11, 46, 12, 47].

The crucial quantity for the inflationary dynamics and for understanding

the generation of the primordial perturbations during Inflation is the Hubble

radius (also called the Hubble horizon size) RH = H−1, since it represents

the characteristic length scale beyond which causal processes cannot operate.

During Inflation the comoving Hubble horizon, (aH)−1, decreases in time as

the scale–factor, a, grows quasi–exponentially, and the Hubble radius remains

almost constant. Therefore, a given comoving length scale, L, will become

larger than the Hubble radius and leave the Hubble horizon. On the other

hand, the comoving Hubble radius increases as (aH)−1 ∝ a1/2 and a during

radiation and matter dominated era, respectively.

Inflation was born to solve the horizon and flatness problems. Therefore
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we do not need simply a period of accelerated expansion of the Universe, but a

period long enough to solve those problems. Long enough means that during

that period a small, smooth patch smaller the Hubble radius manages to grow

to encompass at least the observable Universe. A useful way to measure the

amount of Inflation is in terms of the number of e–foldings, defined as

NTOT =

∫ tf

ti

Hdt , (2.55)

where ti and tf are the time Inflation starts and ends respectively. The

smoothness of the observable Universe requires then that the largest scale we

observe today, the present horizon H−1
0 (∼ 4200 Mpc), was reduced during

Inflation to a value λH0
at ti, which is smaller than H−1

I during Inflation.

Hence, we must have NTOT > Nmin, where Nmin ≈ 60 is the number of e–

foldings before the end of Inflation when the present Hubble radius leaves

the horizon. Another useful quantity is the number of e–foldings from the

time when a given wavelength λ leaves the horizon during Inflation to the

end of Inflation,

Nλ =

∫ tf

t(λ)

Hdt = ln

(
af

aλ

)
, (2.56)

where t(λ) is the time when λ leaves the horizon during Inflation and aλ =

a(t(λ)). The cosmologically interesting scales probed by the CMB anisotropies

correspond to Nλ ≃ 40 – 60.

2.3.1 Inflation and Cosmological Perturbations

Let us proceed now to the important point, δφ(t,x). In the inflationary

paradigm associated with these vacuum fluctuations there are primordial en-

ergy density perturbations, which survive after Inflation and are the origin

of all the structures in the Universe. Our current understanding of the ori-

gin of structure in the Universe is that once the Universe became matter

dominated (z ∼ 3200) primeval density inhomogeneities (δρ/ρ ∼ 10−5) were

amplified by gravity and grew into the structure we see today [48, 49]. COBE

confirmed the existence of these CMB anisotropies. In this section we just

want to summarize in a qualitative way the process by which such “seed”
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perturbations are generated during Inflation, since the aim of this thesis is

exactly the study of those perturbations at nonlinear level.

First of all, in order for structure formation to occur via gravitational

instability, there must have been small preexisting fluctuations on relevant

physical length scales (say, a galaxy scale ∼ 1 Mpc) which left the Hubble ra-

dius in the radiation–dominated and matter–dominated eras. Unfortunately

in the standard Big–Bang model these small perturbations have to be put

in by hand, being impossible to produce fluctuations on any length scales

larger than the horizon size. Inflation elegantly solves this issue since it

generates both density perturbations and gravitational waves. As we men-

tioned in the previous section, a key ingredient of this mechanism is the fact

that during Inflation the comoving Hubble horizon (aH)−1 decreases with

time. Consequently, the wavelength of a quantum fluctuation in the scalar

field whose potential energy drives Inflation soon exceeds the Hubble radius.

The quantum fluctuations arise on scales which are much smaller than the

comoving Hubble radius (aH)−1, which is the scale beyond which causal

processes cannot operate. On such small scales one can use the usual flat

space–time quantum field theory to describe the scalar field vacuum fluctua-

tions. The inflationary expansion then stretches the wavelength of quantum

fluctuations to outside the horizon; thus, gravitational effects become more

and more important and amplify the quantum fluctuations, the result being

that a net number of scalar field particles are created by the changing cos-

mological background [4, 3]. On large scales the perturbations just follow a

classical evolution. Since microscopic physics does not affect the evolution

of fluctuations when its wavelength is outside the horizon, the amplitude of

fluctuations is “frozen-in” and fixed at some nonzero value δφ at the hori-

zon crossing, because of a large friction term 3Hφ̇ in the equation of motion

of the field φ. The amplitude of the fluctuations on super-horizon scales

then remains almost unchanged for a very long time, whereas its wavelength

grows exponentially. Therefore, the appearance of such frozen fluctuations is

equivalent to the appearance of a classical field δφ that does not vanish after

having averaged over some macroscopic interval of time.

The fluctuations of the scalar field produce primordial perturbations in

the energy density, ρφ, which are then inherited by the radiation and matter
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to which the inflaton field decays during reheating after Inflation. Once

Inflation has ended, however, the Hubble radius increases faster than the

scale–factor, so the fluctuations eventually reenter the Hubble radius during

the radiation or matter–dominated eras. The fluctuations that exit around

60 e-foldings or so before reheating reenter with physical wavelengths in the

range accessible to cosmological observations. These spectra are therefore

signatures of Inflation and give us a direct observational connection to physics

of Inflation. These inflationary fluctuations can be measured by a variety

different ways, including the analysis of CMB anisotropies. The WMAP

collaboration has produced a full–sky map of the angular variations of the

CMB, with unprecedented accuracy. The WMAP data confirm the detection

of adiabatic super-horizon fluctuations which are a distinctive signature of

an early epoch of acceleration [11].

Let us understand now how fluctuations are born and behave. Since grav-

ity acts on any component of the Universe, small fluctuations of the inflaton

field are intimately related to fluctuations of the space–time metric, giving

rise to perturbations of the curvature ζ, which may loosely considered as a

gravitational potential. The physical wavelengths λ of these perturbations

grow exponentially and leave the horizon when λ > H−1. On superhorizon

scales, curvature fluctuations are frozen in and considered as classical. Fi-

nally, when the wavelength of these fluctuations reenters the horizon, at some

radiation or matter–dominated epoch, the curvature (gravitational potential)

perturbations of the space–time give rise to matter (and temperature) per-

turbations δρ via the Poisson equation. These fluctuations will then start

growing, thus giving rise to the structures we observe today.

The mechanism by which the quantum fluctuations of the inflaton field

are produced during an inflationary epoch is not peculiar to the inflaton

field itself, rather it is generic to any scalar field evolving in an accelerated

background. As we shall see, the inflaton field is peculiar in that it domi-

nates the energy density of the Universe, thus possibly producing also metric

perturbations.

In the following, we shall describe in a quantitative way how the quantum

fluctuations of a generic scalar field evolve during an inflationary stage [39,

43, 41].
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2.3.2 Quantum Fluctuations of a Generic Scalar Field

during a de Sitter Stage

Let us first consider the case of a scalar field χ with an effective potential

V (χ) in a pure de Sitter stage, during which H is constant. Notice that χ is

a scalar field different from the inflaton – or the inflatons – that are driving

the accelerated expansion.

As above we split the scalar field χ(τ,x) as

χ(τ,x) = χ(τ) + δχ(τ,x) , (2.57)

where χ(τ) is the homogeneous classical value of the scalar field and δχ are

its fluctuations and τ is the conformal time, related to the cosmic time t

through dτ = dt/a(t). The scalar field χ is quantized by implementing the

standard technique of second quantization. To proceed we first make the

following field redefinition

δ̃χ = aδχ . (2.58)

Introducing the creation and annihilation operators ak and a†
k we promote

δ̃χ to an operator which can be decomposed as [25]

δ̃χ(τ,x) =

∫
d3k

(2π)3/2

[
uk(τ)ake

ik·x + u∗
k(τ)a†

ke
−ik·x

]
. (2.59)

The creation and annihilation operators for δ̃χ (not for δχ) satisfy the

usual commutation relations

[ak, ak′ ] = 0, [ak, a
†
k′ ] = δ(3)(k − k′) , (2.60)

and the modes uk(τ) are normalized so that they satisfy the condition

u∗
ku

′
k − uku

∗′
k = −i, (2.61)

deriving from the usual canonical commutation relations between the opera-

tors δ̃χ and its conjugate momentum Π = δ̃χ
′
. Here primes denote derivatives

with respect to the conformal time τ (not t).

The evolution equation for the scalar field χ(τ,x) is given by the Klein–

Gordon equation

¤χ =
∂V

∂χ
, (2.62)
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where ¤ is the D’Alembert operator defined in Eq. (2.44). The Klein–Gordon

equation gives in an unperturbed FRW Universe

χ′′ + 2 Hχ′ = −a2∂V

∂χ
, (2.63)

where H ≡ a′/a is the Hubble expansion rate in conformal time. Now, we

perturb the scalar field but neglect the metric perturbations in the Klein–

Gordon equation (2.62), the eigenfunctions uk(τ) obey the equation of motion

u′′
k +

(
k2 − a′′

a
+ m2

χa2

)
uk = 0 , (2.64)

where m2
χ = ∂2V/∂χ2 is the effective mass of the scalar field. The modes

uk(τ) at very short distances are not aware of the expansion, in that their

oscillations are much faster than the expansion, and thus they must reproduce

the form for the ordinary flat space–time quantum field theory. Thus, well

within the horizon, in the limit k/aH → ∞, the modes should approach

plane waves of the form

uk(τ) → 1√
2k

e−ikτ . (2.65)

Before recovering the exact solution of eq. (2.64), let us study the limiting

behaviour of Eq. (2.64) on sub-horizon and superhorizon scales. On sub-

horizon scales k2 ≫ a′′/a, the mass term is negligible so that Eq (2.64)

reduces to

u′′
k + k2uk = 0 , (2.66)

whose solution as expected is a plane wave

uk ∝ e−ikτ . (2.67)

Thus fluctuations with wavelength within the cosmological horizon oscillate

as in eq. (2.65). As mentioned above this is what we expect in the ultraviolet

limit, i.e. wavelengths much smaller than the horizon scales see the space–

time as flat. On the other hand, on superhorizon scales k2 ≪ a′′/a, eq. (2.64)

reduces to

u′′
k −

(
a′′

a
− m2

χa2

)
uk = 0 (2.68)
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We are interested in what happens in the case of a massless scalar field

(m2
χ = 0). There are two solutions of eq. (2.68), a growing and a decaying

mode:

uk = B+(k)a + B−(k)a−2 . (2.69)

We can fix the amplitude of the growing mode, B+, by matching the (absolute

value of the) solution (2.69) to the plane wave solution (2.65) when the

fluctuation with wavenumber k leaves the horizon (k = aH)

|B+(k)| =
1

a
√

2k
=

H√
2k3

, (2.70)

so that the quantum fluctuations of the original scalar field χ on superhorizon

scales are constant,

|δχk| =
|uk|
a

=
H√
2k3

. (2.71)

Exact Solution

We can now derive the exact solution without any matching tricks [25, 20].

The exact solution to eq. (2.64) introduces some corrections due to a non–

vanishing mass of the scalar field. In a de Sitter stage, as a = −(Hτ)−1

a′′

a
− m2

χa2 =
2

τ 2

(
1 − 1

2

m2
χ

H2

)
, (2.72)

so that eq. (2.64) can be rewritten as

u′′
k +

(
k2 − ν2

χ − 1
4

τ 2

)
uk = 0 , (2.73)

where

ν2
χ =

(
9

4
− m2

χ

H2

)
. (2.74)

When the mass m2
χ is constant in time, eq. (2.73) is a Bessel equation whose

general solution for real νχ reads

uk(τ) =
√
−τ

[
c1(k) H(1)

νχ
(−kτ) + c2(k) H(2)

νχ
(−kτ)

]
, (2.75)
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where H
(1)
νχ and H

(2)
νχ are the Hankel functions of first and second kind, re-

spectively. Imposing now that in the ultraviolet regime k ≫ aH (−kτ ≫ 1)

the solution matches the plane–wave solution e−ikτ/
√

2k and knowing that

H(1)
νχ

(x ≫ 1) ∼
√

2

πx
ei(x−π

2
νχ−π

4 ) , H(2)
νχ

(x ≫ 1) ∼
√

2

πx
e−i(x−π

2
νχ−π

4 ),

we set c2(k) = 0 and c1(k) =
√

π
2

ei(νχ+ 1

2)
π
2 , which also satisfy the normaliza-

tion condition (2.61). The exact solution becomes

uk(τ) =

√
π

2
ei(νχ+ 1

2)
π
2

√
−τ H(1)

νχ
(−kτ). (2.76)

We are particularly interested in the asymptotic behaviour of the solution

when the mode is well outside the horizon. On superhorizon scales, since

H
(1)
νχ (x ≪ 1) ∼

√
2/π e−i π

2 2νχ− 3

2 (Γ(νχ)/Γ(3/2)) x−νχ , the fluctuation (2.76)

becomes

uk(τ) = ei(νχ− 1

2)
π
2 2(νχ− 3

2) Γ(νχ)

Γ(3/2)

1√
2k

(−kτ)
1

2
−νχ . (2.77)

Thus we find that on superhorizon scales, the fluctuation of the scalar field

δχk ≡ uk/a with a non–vanishing mass is not exactly constant, but it acquires

a dependence upon time

|δχk| = 2(νχ−3/2) Γ(νχ)

Γ(3/2)

H√
2k3

(
k

aH

) 3

2
−νχ

(on superhorizon scales) (2.78)

Notice that the solution (2.78) is valid for values of the scalar field mass

mχ 6 3/2H. If the scalar field is very light, mχ ≪ 3/2H, we can introduce

the parameter ηχ = (m2
χ/3H2) in analogy with the slow–roll parameters ǫ and

η for the inflaton field, and make an expansion of the solution in eq. (2.78)

to lowest order in ηχ = (m2
χ/3H2) ≪ 1 to find

|δχk| =
H√
2k3

(
k

aH

) 3

2
−νχ

, (2.79)

with
3

2
− νχ ≃ ηχ . (2.80)

Eq. (2.79) is the fundamental result for the evolution of perturbations. In fact

when the scalar field χ is light(mχ ≪ 3/2H), its quantum fluctuations, first

generated on subhorizon scales, get gravitationally amplified and stretched

to superhorizon scales due to the accelerated expansion of the inflationary

Universe.
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Power Spectrum

We want to introduce here another useful method to characterize the per-

turbations, the power spectrum. It measures the amplitude of quantum

fluctuations at a given scale k. Since we are in flat space, we can expand in

Fourier space the random field f(t,x) by

f(t,x) =

∫
d3k

(2π)3/2
eik·x fk(t) , (2.81)

We define then the power spectrum Pf (k) as

〈fk1
f ∗
k2
〉 ≡ 2π2

k3
Pf (k) δ(3) (k1 − k2) , (2.82)

indeed from the definition (2.82) the mean square value of f(t,x) in real

space is

〈f 2(t,x)〉 =

∫
dk

k
Pf (k) . (2.83)

One may note then that the power–spectrum, Pf (k) is the contribution to

the variance per unit logarithmic interval in the wavenumber k.

In the case of a scalar field χ the power–spectrum Pδχ(k) can be evaluated

by combining equations. (2.58), (2.59) and (2.60) [25, 29]

〈δχk1
δχ∗

k2
〉 =

|uk|2
a2

δ(3)(k1 − k2) , (2.84)

yielding

Pδχ(k) =
k3

2π2
|δχk|2 , (2.85)

where, as usual, δχk ≡ uk/a.

The expression in eq. (2.85) is completely general. In the case of a de

Sitter phase and a very light scalar field χ, with mχ ≪ 3/2H we find from

eq. (2.79) that the power–spectrum on superhorizon scales is given by

Pδχ(k) =

(
H

2π

)2 (
k

aH

)3−2νχ

, (2.86)

where νχ is given by eq. (2.80). A useful expression to keep in mind is that

of a massless free scalar field in de Sitter space. In this case from eq. (2.76)

with νχ = 3/2 one obtains

δχk = (−Hτ)

(
1 − i

kτ

)
e−ikτ

√
2k

. (2.87)
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The corresponding two–point correlation function for the Fourier modes is

〈δχ(k1)δ
∗χ(k2)〉 = δ(3)(k1 − k2)

H2τ 2

2k1

(
1 +

1

k2τ 2

)
(2.88)

≈ δ(3)(k1 − k2)
H2

2k3
1

(for k1τ ≪ 1) , (2.89)

with a power–spectrum which, on superhorizon scales, is given by

Pδχ(k) =

(
H

2π

)2

, (2.90)

which is exactly scale invariant. We stress that fluctuations of the scalar field

can be generated on superhorizon scales as in eq. (2.78) only if the scalar field

is light. If it is very massive in fact (mχ ≫ 3/2H) the fluctuations of the

scalar field remain in the vacuum state and do not produce perturbations on

cosmologically relevant scales. We introduced here the correlation function

since in the following two-point and four-point correlation functions will be

the language that we will use in the calculations of the contributions of loop

graphs to the perturbations. In fact result (2.90) is the fundamental result

over which we will build the corrections in chapters 5 and 6 where we will

analyze the importance of higher order diagrams in the perturbations and

their contribution to the non Gaussianity.
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Chapter 3

The Curvature Perturbation ζ

This chapter is dedicated to the study of the cosmological curvature pertur-

bation (usually indicated by ζ) and its conservation under suitable hypoth-

esis at all perturbation orders and during any era. This is of the greatest

importance in the contest of this thesis, since the curvature perturbation is

observable as opposed to scalar field perturbation, which cannot be directly

measured. In particular, it is possible to obtain the conservation without

invoking any field equation for gravity [50, 51]. Section 3.21 shows how a

suitable geometry can be chosen and which are the requirements for con-

servation of ζ, while Section 3.2 goes a little forward, looking into how the

curvature perturbation can evolve.

3.1 ∆N Formalism

3.1.1 Separate Universes and Geometry

Assuming a smooth spacetime it is possible to decompose the metric in the

usual (3+1) ADM form. Defining N the lapse function , βi the shift vector

and γij the usual spatial metric, the line element becomes:1

ds2 = −N 2dt2 + γij(dxi + βidt)(dxj + βjdt) . (3.1)

1As usual, Greek indices will take the values µ, ν = 0, 1, 2, 3, Latin indices i, j = 1, 2, 3.

The spatial indices are raised or lowered by γij or γij .
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The time-like vector nµ normal to the hypersurface x0 = t = constant is

nµ = [−N , 0] and nµ =
[

1
N ,−βi

N

]
. Since we are interested in perturbations,

we will write the spatial metric as a product of two terms:

γij ≡ e2αγ̃ij , (3.2)

where α and γ̃ij depend on spacetime coordinates and det[γ̃ij] = 1. The

condition on the determinant makes the exponential factor a locally-defined

scale factor. We factor an a(t) to show explicitly the dependence on inho-

mogeneities:

eα ≡ a(t)eψ(t,xi) , (3.3)

where ψ(xi, t) is the perturbation, that we assume to be small and with a

vanishing value when averaged over a region of scale H−1. Again, the spatial

metric can be factored as γ̃ ≡ IeH , where I is the identity matrix and H a

traceless matrix2. Now that the metric is set, we need a theoretical frame to

calculate the perturbations. We use here the gradient expansion approach,

which is a spatial gradient expansion of the inhomogeneities. To be able to

do this, there are two requirements:

• a smoothing scale, over which each observable quantity can be consid-

ered as smooth;

• a parameter χ to be used in the expansion of the power series;

The smoothing scale is not meant to smooth the field equations of any gravity

theory in use, but more simply as a smoothing that gives a good approxi-

mation of the actual Universe on coordinate scales greater than k−1, which

immediately translates to a(t)/k in our observable Universe. In a linear per-

turbation theory this would mean dropping the wavenumber greater than k

in the Fourier expansion, but this is not our case since we want to obtain a

non-linear general result. So we define the formal parameter χ to be used for

the expansion. One can already assume:

χ ≡ k

aH
, (3.4)

2This comes from the conditions on determinat of γij through det(eH) = eTr(H)
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where H is the unperturbed Hubble parameter. This identification is inter-

esting because the limit χ → 0 corresponds to the late time limit during

Inflation, which is the era we are interested in. The central physical assump-

tion is then: in the limit of small χ the Universe is locally homogeneous and

isotropic on a sufficiently large coordinate scale3.

What does it mean exactly local isotropy on large scale?

To explain it [52, 53, 54, 55] we consider that each different super-horizon

sized region (& H−1) of the Universe is evolving as an indipendent Robertson-

Walker Universe. Let us denote λs the typical coordinate size of the regions

and assume that they are locally homogeneous over such scale, even if dif-

ferent regions may have different densities and pressures. We patch them

together over a length scale ≃ λ, which is the perturbation coordinate length

we are interested in. We then introduce also another length, λBG, to be con-

sidered as the background against which perturbations are defined. One may

observe that it is not evident that each super-horizon region should behave

as an unperturbed Universe. Still, there must be a scale λs over which it

becomes a viable approximation, since, if there were not such a scale, then

it would be impossible to define an unperturbed Robertson-Walker back-

ground and thus perturbations. This is usually called the separate universes

hypotesis. Since we are considering a perturbed Universe we have the Hubble

scale, the k−1 scale and eventually other scales coming from the stress-energy

tensor, but as long as these are not larger than k−1 local isotropy and homo-

geneity are a good approximation in the late time limit (i.e. super-horizon

era). Locally measurable parts of the metric are then those of a FLRW met-

ric. Thus it is possible to find a set of coordinates where the metric in any

local region becomes:

ds2 = −dt2 + a2(t)δijdxidxj . (3.5)

In the limit χ → 0 the metric (3.5) is supposed to become globally valid.

So we can obtain informations about the metric components by comparison

with (3.1). The shift vector must disappear and so we have βi = O(χ). The

case of the spatial metric γ̃ij is a little different since it is time-dependent. It

3i.e. a FLRW Universe.
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is not possible to locally transform it by a coordinate transformation, since

there will be also a contribution from its time derivative. So to maintain the

FLRW Universe we need also γ̇ij = O(χ). However, if γ̇ij is linear in χ, it

decays as ã−3 in Einstein gravity [50]. Since we are interested in conserved

perturbations, it can be ignored. Therefore the condition on γ̇ij is O(χ2) and

the line element (3.1) becomes:

ds2 = −N 2dt2 + 2βidxidt + γijdxidxj . (3.6)

At this point we need to connect the metric with the energy density in space-

time or in other words we need to choose a form for the stress-energy tensor.

Being the involved cosmological scales so large, the hypothesis of ”separate

universes” let us assume the scale-free perfect fluid form for the stress-energy

tensor.

Tµν ≡ [ρ(xµ) + P (xµ)] uµuν + gµνP (xµ) . (3.7)

What we will do now is choosing an appropriate set of coordinates (namely

spatial coordinates comoving with the fluid) to calculate the 4-velocity di-

vergence in the comoving frame and substitute it in the energy conservation

equation. This should provide us with a direct relation between the yet ill-

defined ”perturbed Hubble parameter”, ψ and N .

The calculation proceeds as follows. We choose spatial coordinates comov-

ing with the fluid, which are the ones whose threads xi = constant coincide

with the comoving worldlines (integral curves of the 4-velocity field uµ). The

spatial velocity consistently vanishes (vi = ui

u0 = 0) and in components the

4-velocity is:

uµ =

[
1√

N 2 − βkβk

, 0

]
=

[
1

N , 0

]
+ O(χ2) , (3.8)

uµ =

[
−

√
N 2 − βkβk

βi√
N 2 − βkβk

]
=

[
−N ,

βi

N

]
+ O(χ2) . (3.9)

The expansion of uµ in the comoving coordinates is given by:

θ ≡ ∇µu
µ =

1√−g
∂µ

(√−guµ
)

=
1

e3α
∂0

(
e3αu0

)
(3.10)
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=
1

e3α
∂t

(
e3α

√
2 − βiβi

)
=

3α̇

N + O(χ2)

where γ̃ij does not appear because det γ̃ij = 1. The relation between the

coordinate time x0 = t and the proper time τ along uµ can be read directly

from (3.8),

dt

dτ
= u0 =

1√
N 2 − βiβi

. (3.11)

At this point we can insert into the energy conservation equation (calculated

along worldlines),

0 = −uµ∇νT
µν =

[
d

dτ
ρ + (ρ + P )∇µu

µ

]
=

[
d

dτ
ρ + (ρ + P ) θ

]
, (3.12)

and multiply on each side by
√

N 2 − βkβk,

√
N 2 − βkβk

[
d

dτ
ρ + (ρ + P ) θ

]
= ρ̇ + 3 (ρ + P ) α̇ + O(χ2) = 0 . (3.13)

Equation (3.13) is the starting point for the curvature perturbation conser-

vation, which we will treat in detail in section 3.1.2. However, before going

ahead, it is useful to write down the expansion of the unit timelike vector

normal to the constant t hypersurface, because this is closely related to θ

and to the ”perturbed Hubble parameter” we mentioned above. So, θn is:

θn ≡ ∇µn
µ =

3α̇

N − 1

N e3α
∂i

(
e3αβi

)
. (3.14)

Comparing (3.14) and (3.8) we see that θ and θn coincide at order χ. On the

base of this equivalence the ”perturbed Hubble parameter” we mentioned

can be defined more precisely. In particular we define the local perturbed

Hubble parameter as:

H̃ ≡ 1

3
θn . (3.15)

Derivating equation (3.3)

d

dt
eα = α̇eα = ȧ(t)eψ + a(t)ψ̇eψ , (3.16)

and dividing by eα,

α̇ =
ȧ

a
+ ψ̇ , (3.17)
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we obtain the expression for α̇ in terms of a and ψ. Finally substituting in

(3.15), the result is:

H̃ =
1

N

(
ȧ

a
+ ψ̇

)
+ O(χ2) , (3.18)

The coincidence of θ and θn at the linear order implies the same coin-

cidence for any choice of threading that maintains βi = O(χ). In fact, at

any point (t, xi), the threading change affects θn only at the order O(χ2)

hence it cannot break the equivalence. Secondly, we applied this machinery

to the whole fluid, but it can be applied without modifications to any smaller

volume of the fluid, as long as:

a) the subvolume does not exchange energy (i.e. behaves adiabatically),

and

b) the comoving threading in respect to the subvolume maintains the con-

dition βi = O(χ).

3.1.2 Slicings

The ingredients of this section are spatial slices and slicings. As ob-

served above the choice of threading of spacetime is effectively unique,

because all the threadings are equivalent up to order χ2, while we stop

at χ. To completely characterize the spacetime foliation we need to

specify a slicing or better we need to know how a change of slicing

affects ψ. So we define the number of e-foldings of expansion along a

comoving worldline [55, 51]:

N(t2, t1; x
i) ≡ 1

3

∫ t2

t1

θNdt = −1

3

∫ t2

t1

dt
ρ̇

ρ + P

∣∣∣∣
xi

, (3.19)

N is also called integrated expansion. Substituting equation (3.18) and

performing the integration it follows:

ψ(t2, x
i) − ψ(t1, x

i) = N(t2, t1; x
i) − ln

[
a(t2)

a(t1)

]
(3.20)
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If we define the unperturbed background number of e-foldings as

N0(t2, t1) ≡ ln[a(t2)/a(t1)], the latter equation takes the form:

ψ(t2, x
i) − ψ(t1, x

i) = N(t2, t1; x
i) − N0(t2, t1) (3.21)

The interpretation is straight-forward. Let us first assume to go from

a flat slice at t1 to another flat slice at t2. By definition on flat slices

ψ vanishes and so the left-hand side of equation (3.21) too, giving

N(t2, t1; x
i) = N0(t2, t1). Note that N0, being the unperturbed value,

has no dependence on position and that the number of e-foldings be-

tween any two flat slices coincides with the unperturbed background

value [51]. Let us now assume to move along two different slicings. Let

them coincide at a given time, say t1 in our notation, for a given point

xi. Let us specify now the slicings: the one denoted by the underscript

”ρ” starts on a flat slice at t1 and ends on an uniform-density slice at t2,

while the one denoted by ”f” moves on flat slices for all times between

t1 and t2. Applying eq. (3.21) we have:

ψρ(t2, x
i) − ψρ(t1, x

i) = Nρ(t2, t1; x
i) − N0(t2, t1)

ψf (t2, x
i) − ψf (t1, x

i) = Nf (t2, t1; x
i) − N0(t2, t1)

but, since at t = t1 the two slicings coincide and are on a flat slice,

ψρ(t1, x
i) = ψf (t1, x

i) = 0. Subtracting the second line from the first,

we obtain:

ψρ(t2, x
i) = Nρ(t2, t1; x

i) − N0(t2, t1) ≡ ∆Nρ(t2, t1, x
i) (3.22)

Note that eq. (3.22) is a completely non-linear version of the δN [51, 55]

formalism and it follows directly from the geometry without specifying

any field equation for gravity.

If we now assume P to be a function only of ρ, it possible to simplify

the integrand function in eq. (3.19):
∫ t2

t1

dt
ρ̇

ρ + P
→

∫ ρ(t2,xi)

ρ(t1,xi)

dρ

ρ + P

obtaining so:

ψ(t2, x
i) − ψ(t1, x

i) = − ln

[
a(t2)

a(t1)

]
− 1

3

∫ ρ(t2,xi)

ρ(t1,xi)

dρ

ρ + P
(3.23)
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Hence have constructed a time-slicing indipendent conserved quantity:

−ζ(xi) ≡ ψ(t, xi) +
1

3

∫ ρ(t,xi)

ρ(t)

dρ

ρ + P
(3.24)

which on uniform-density slices (δρ = 0) takes the comfortable form:

−ζ(t) ≡ ψρ(t) (3.25)

It must be stressed that this result holds only for adiabatic perturba-

tions (P = P (ρ)). This result can be explained also as follow: if we

set the integrated expansion N = 0 on an initial spacetime slice and

integrate the local continuity equation [51]:

dρ

dN
= −3(ρ + P ) (3.26)

we obtain ρ = ρ(N + ∆N), where ∆N is the integration constant for

each worldline determined by the density on the initial slice (N = 0).

Starting from a flat slice and considering an uniform-N sequence of

slices, we see that ∆N does not depend on time by construction. So if

we move along an uniform-N slicing, which we just showed on super-

horizon scales is also an uniform-density slicing, ∆N is conserved and

so ζ. In others words, under the assumption of adiabatic perturbations

uniform-density slices are separated by uniform expansion, therefore

along uniform-density slicings ζ is conserved. We want to stress again

the importance of this result since it is:

– completely non-linear and thus valid for all orders in the pertur-

bations, provided the adiabatic condition is satisfied;

– obtained without assuming a form for gravity and thus valid for

any gravity field equations.

The non-linear result can be used to calculate the curvature perturba-

tion in perturbation theory to any order. Using the nonlinear result

(3.22), one can write at perturbation order n δNn = −ζn, where δNn is

obtained expanding N in power series of δρ centered on a flat slicing up
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to order n and using the energy conservation eq. (3.13). For example,

the result at second order is [51]:

δN2 =
H

ρ̇0

δρ2 − 2
H

ρ̇2
0

δ̇ρ1δρ1 +

(
H

ρ̈0

ρ̇0

− Ḣ

) (
δρ1

ρ̇0

)2

(3.27)

where the right-hand side is evaluated on flat slices.

3.2 Non-adiabatic Perturbations and Evo-

lution of ζ

We showed at the non-linear level how ζ is conserved in adiabatic per-

turbations. Now the natural question is: how does ζ change when

we consider non-adibatic perturbations? We address the problem us-

ing perturbation theory this time, namely we start at first order in

density perturbations. We invoke the local conservation of the energy

nνTµ
ν;µ = 0 and obtain the gauge-indipendent expression [55]:

δ̇ρ = −3H(δρ + δP ) + 3(ρ + P )[ψ̇ −∇2(σ + v)] +
βkβ

k

N 2
(3.28)

where σ is a scalar describing the shear and ∇iv is the 3-velocity of

the fluid. We assume the gradients are small and we neglect the shear

terms [56], keeping the first two terms on the right side of eq. (3.28).

On uniform-density slices ψ = −ζ and δρ = 0 and therefore the adi-

abatic part of the pressure perturbation, δPad, vanishes. Hence the

only contribute comes from non-adiabatic perturbations, δP = δPnad.

Equation (3.28) becomes then:

ζ̇ = − H

ρ + P
δPnad (3.29)

At first order, this reproduce the conservation of curvature perturba-

tions ζ in the uniform-density gauge on large scales for adiabatic per-

turbations.

A scalar field cannot be in general described by an equation of state
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P (ρ) due to the total energy being split in kinetic and potential energy.

However, the existence of an attractor solution for a strongly-damped

inflaton field allows one to drop the decaying mode as Inflation pro-

gresses and ensures a unique relation between the field value and its

first derivative.

The relation between the scalar field and the curvature depends on

the chosen gauge. We calculate then the scalar field value in the com-

fortable flat gauge (ψ = 0, also called uniform-curvature) and then

trasform to the uniform-density gauge in order to recover ζ.

The field perturbations have the gauge-invariant definition [57]

δφ +
φ̇

H
ψ . (3.30)

where by gauge invariant we mean that (3.30) does not change under

t → t + δt

δφ → δφ − φ̇δφ (3.31)

ψ → ψ + Hδt

On flat slices then field perturbations take the form δφψ = δφ. On

comoving slices the scalar field is uniform and so δφc = 0. Inserting

the latter in eq.( 3.30),

δφψ = δφc +
φ̇c

H
ψc =

φ̇c

H
ψc , (3.32)

and finally:

ψc =
H

φ̇
δφψ , (3.33)

where the time derivative is taken over coordinate time. The curva-

ture perturbation on comoving hypersurfaces ψc is usually denoted −ζ.

Moreover in an arbitrary gauge, for a scalar field, density and pressure

perturbations have the form:

δρ = φ̇ ˙δφ − Aφ̇2 + V ′ δφ , (3.34)

δP = φ̇ ˙δφ − Aφ̇2 − V ′ δφ , (3.35)
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where V ′ ≡ dV/dφ and A = 1−1/N [41]. Subtracting the second from

the first we have:

δρ − δP = 2V ′δφ (3.36)

Assuming again adiabatic perturbation on a uniform-density slice and

V ′ 6= 0, δρ and δP vanish giving δφρ = 0. Using eq. (3.33) to first order

in δρ:

−ζ =
H

φ̇(0)
δφψ (3.37)

We can use this simple result to study the case of multiple adiabatic

fluids.

3.2.1 Multiple Adiabatic Fluids

Let us suppose to have a a certain number of fluids. Each fluid behaves

adiabatically. So, from eq. (3.29), we see that:

ζ̇i = H
δρi

ρ̇i

= 0 , (3.38)

where ζi is the curvature perturbation of the i−th fluid and the first

equality comes from the continuity equation. We can then define the

total curvature perturbation ζ:

ζ = H
δρ

ρ̇
= H

∑
i δρi∑
i ρ̇i

, (3.39)

which can be rewritten as:

ζ =
∑

i

ρ̇i

ρ̇
ζi . (3.40)

If we take the time derivative of ζ we see that in general it is different

from zero. In fact:

ζ̇ =
∑

i

(
d

dt

[
ρ̇i

ρ̇

]
ζi +

ρ̇i

ρ̇
ζ̇i

)
=

∑

i

d

dt

[
ρ̇i

ρ̇

]
ζi . (3.41)

This result is not surprising, since it is another way to express the fact

that an ensemble of adiabatic fluids is not globally adiabatic. Say we
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have two fluids. For them we can write the adiabatic relation P1 = w1ρ1

and P2 = w2ρ2. The total density and pressure are ρ = ρ1 + ρ2 and

P = P1 + P2. However it is not possible to write P as wρ, meaning

that the sum of the two fluids is not adiabatic. This example is not

a simple exercise because the resultant non-adiabacity and thus non

conservation of ζ has to be taken into account in models where more

than one field is present, e.g. in the curvaton scenario where radiation

and the curvaton field do not interact but are present together.
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Chapter 4

Non-Gaussianity

Why Non-Gaussianity of ζ? In short, because it is a powerful tool

to discriminate among different inflationary mechanisms. The primor-

dial cosmological perturbations are very small and so their generation

and evolution has been usually studied with linear perturbation theory.

Within the limits of this approach primordial perturbations are obvi-

ously consistent with Gaussianity. Still, being the mechanism by which

perturbations are actually produced during Inflation not yet clear, we

need to go deeper. In the next years it will become possible to measure

with accuracy the amount of non-Gaussianity in CMB anisotropies and

so it will be important to go beyond the linear treatment. There are in

fact many different models which are consistent with Inflation and the

creation of perturbations but predict -sometimes widely- different val-

ues for the non linear contributions to ζ. Therefore, Non Gaussianity

is the tool that will help in pinpointing which mechanism is the actual

one by putting constraints on the amplitude of higher order correlation

functions in different inflationary scenarios.

4.1 Scenarios

In chapter 2 we described Inflation. Now we want to present the two

major mechanisms for generating perturbations during or at the end
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of Inflation in order to outline how the effects of non linearities may

be important in discriminating which is actually responsible for the

inflationary era. They are the standard scenario, where the inflaton

is responsible for both the expansion and the generation of perturba-

tions, and the curvaton scenario, –the simplest multi–field scenario–

where the inflaton produces only the expansion and a second scalar

field –the curvaton– generates the primordial perturbations. We show

how they produce radically different predictions for the amount of non

gaussianity of the perturbations.

4.1.1 The Standard Scenario

We assume there is only one scalar field responsible for the expansion

and the perturbations, the inflaton φ. Using the δN formalism for a

single field, the curvature perturbation ζ can be expanded as:

ζ = δN =
∑

n

1

n!

∂nN

∂φn
(δφ)n (4.1)

For our current purposes an expansion to the second order it sufficient

and so we write

ζ =
∂N

∂φ
δφ +

1

2

∂2N

∂φ2
(δφ)2 , (4.2)

where using eq. (3.19) one has

N ′ ≡ ∂N

∂φ
=

∂N

∂t

∂t

∂φ
=

H

φ̇
, (4.3)

and for the second derivative

N ′′ ≡ ∂2N

∂φ2
=

∂

∂φ

(
H

φ̇

)

=
1

φ̇

[
Ḣ

φ̇
− H

φ̇2
φ̈

]
(4.4)

Moreover we have Ḣ = −4πG(P +ρ), but for a scalar field P = φ̇2

2
−V

and ρ = φ̇2

2
+ V . Substituting we have

Ḣ = −4πGφ̇2 ≡ −ǫH2 , (4.5)
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with ǫ = 4πGφ̇2/H2. The second derivative of N in respect to φ is then

∂2N

∂φ2
= −ǫH2

φ̇2
− 1

φ̇2

(
Hφ̈

φ

)
(4.6)

Usually −φ̈/(Hφ̇) is defined as δ = η− ǫ [42]. The curvature perturba-

tion is then

ζ =

(
H

δφ

φ̇

)
+

1

2
(η − 2ǫ)

(
H

δφ

φ̇

)2

= ζ(1) +
1

2
(η − ǫ)(ζ(1))2 (4.7)

where clearly ζ(1) = H δφ

φ̇
and it represents the linear-order curvature

perturbation. We note that in the standard scenario, due to the con-

straints on the slow–roll parameters, |η − 2ǫ| ≪ 1. So, where does the

non Gaussianity come from here? Gaussianity means that the two-

point correlation function 〈ζζ〉 is the only one containing information,

while the connected part of higher order correlation functions is re-

ducible to products of the former. Non Gaussianity then means having

a connected 3-point correlation which contains terms indipendent of

〈ζζ〉. Let us write it, using eq. (4.2)

〈ζζζ〉c =
1

2
(η − ǫ)〈ζ(1)ζ(1)(ζ(1))2〉c + 〈ζ(1)ζ(1)ζ(1)〉c , (4.8)

and, if we now write explicitly the dependence on δφ, equation (4.32)

becomes

〈ζζζ〉c = (N ′)2N ′′

2
〈δφδφ(δφ)2〉c + (N ′)3〈δφδφδφ〉c , (4.9)

plus other terms of higher order in the perturbations that we can ne-

glect at this stage. We can see here clearly the two sources of non

Gaussianity: gravity and the scalar field φ itself. The effect of gravity

is twofold. On one side, it acts at the level of the derivatives of N . On

the other side, as shown in [58, 59], it produces a non vanishing 3-point

correlator even if we assume the field to be perfectly Gaussian dis-

tributed, once the gravitational coupling as been accounted for. Thus

even a Gaussian inflaton produces non linearities in the perturbations.
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We note though that the coefficients before the two terms in eq. (4.9)

are O(ǫ, η) and so the contribution of non Gaussianity is expected to

be small. If we now drop the requirement of Gaussianity on φ, e. g. we

consider a self-interacting scalar field, then the term 〈δφδφδφ〉c in gen-

eral acquires a contribution from the intrinsic non linearity of φ. If this

term develops divergences at some order, it may overcome the damping

of slow–roll parameters and produce a large observable non Gaussian-

ity. For a detailed analysis of 3- and 4- point correlation functions in

single field Inflation we refer to [60, 61, 63]. A comfortable formalism

for the n-point correlation functions will be presented in section 4.2.

4.1.2 The Curvaton Scenario

One alternative to the standard scenario is the curvaton one: here the

cosmological perturbations are not produced by the inflaton but by a

second scalar field σ during Inflation. The second field, the curvaton,

is subdominant during Inflation and so it produces isocurvature fluctu-

ations. It becomes important near the end of the inflationary era when

its energy becomes a relevant part of the total energy and it begins to

oscillate around the minimum of its potential. This may happen when

the Hubble rate drops under the curvaton mass. We split σ as already

done in the zero order value and the perturbation:

σ = σ̄(t) + δσ(t,x) , (4.10)

The curvaton is supposed to generate the perturbations through its

oscillations so we choose a simple quadratic potential V (σ) = 1/2m2σ2.

¨̄σ + 2H ˙̄σ + V ′ = 0 (4.11)

δσ̈k + 2Hδσ̇k + k2δσ + m2δσk = 0 , (4.12)

which are respectively the equation of motion for the zero-order (infinite

wavelength) mode and for the perturbations modes expanded to first

order. If we assume a massive curvaton we can neglect the kinetic term

and we have the two case:
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– H ≫ m → δσ ≃constant ,

– H ≪ m → δσk(t) ≃ δσk(ti) cos[m(t − ti)].

In the second case also σ̄(t) = σ̄(ti) cos[m(t − ti)] and so one obtains

δσ

σ̄
= const. , (4.13)

which is not a surprise since eq. (4.13) is of the form of a conserved

curvature perturbation. We consider now the density ρ̄σ = 1/2( ˙̄σ
2

+

m2σ̄2) and its time derivative

˙̄ρσ = ¨̄σ ˙̄σ + m2σ̄ ˙̄σ = ˙̄σ[−3H ˙̄σ] = −3H( ˙̄σ)2 . (4.14)

For definiteness we consider the average of ˙̄ρ over many oscillations

(H),

〈 ˙̄ρσ〉 =
1

T

∫ T

0

˙̄ρσdt = −2H〈ρ̄σ〉 , (4.15)

and then we obtain this way:

δρ

ρ̄σ

= 2
δσ

σ̄
. (4.16)

The density of the oscillating field can be written as ρ̄σ ≃ m2σ̄2 and

thus δρσ = 2m2σ̄δσ+m2(δσ)2. We can substitute that in the expression

ζσ = H
δρσ

˙̄ρσ

, (4.17)

obtaining the curvature perturbation to second order in the perturba-

tions

ζσ =
1

3

(
2
δσ

σ̄
+

(δσ)2

σ̄2

)
(4.18)

= ζ(1)
σ +

3

4

(
ζ(1)
σ

)2
. (4.19)

To reproduce a result similar to eq. (4.7), we want to link ζσ to the radi-

ation curvature perturbation, ζγ . The curvaton is supposed to oscillate
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generating the perturbations and then to decay with a Γ ≃ H (sudden-

decay approximation) to relativistic matter. So its curvature is trans-

ferred to the radiation. At first order we can then write ζ
(1)
γ = r 2

3
δσ
σ̄

,

where r is defined by [20]

r =
−3Hρσ

−3Hρσ − 4Hργ |decay

=
3ρσ

3ρσ + 4ργ |decay

(4.20)

One can invert the latter equation and use it to obtain a relation at

second order in ζγ,

ζ = ζγ = rζσ = rζ(1)
σ + r

3

4
(ζ(1)

σ )2

= ζ(1)
γ +

1

r

27

16

(
ζ(1)
γ

)2
. (4.21)

We can already note a difference in respect to the inflaton scenario: in

front of the quadratic term of eq. (4.21) there is a coefficient that goes as

r−1. If we suppose that the curvaton energy density was subdominant

at the moment of decay, r−1 can become very large thus amplifying non

Gaussian effects, where in eq. (4.7) the slow–roll parameters suppressed

them. We see already that a measure of the non linearity is a powerful

tool to discriminate between different inflationary mechanisms.

4.1.3 Experimental Limits on Non-Gaussianity Pa-

rameters

There are two approaches to testing non-Gaussianity of the CMB. The

first is blind tests, which make no assumptions about the form of non-

Gaussianity and has the merit of being model-indipendent, while losing

some statistical power in comparison to the second approach, which

tests specific types of non-Gaussianity providing a better precision of

quantitative constraints at the cost of model-dependence. Here we

just want to report quickly the current observational results on the

non linearity parameters to give a general idea of what is the state of

the art. The most recent data come from the 3-year WMAP survey
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published in 2006 [32, 33] which have been analyzed in [62] for example.

The results are

−36 < fNL < 100 at 95% C.L. , (4.22)

We note that the limits on the non linearity parameter are still quite

wide allowing the possibility of high non Gaussianity models, like for

example multiple fields Inflation. However at present there is not yet

compelling evidence for primordial non-Gaussianity. Detection can be

made possible by the future WMAP and Plank data combining tem-

perature and polarization anisotropies, which could bring the precision

to fNL ≃ 1.

4.2 N-point Functions and Spectra

In the last two sections we showed simply how non Gaussianity can

originate in the single-field case of the inflaton and in the simpler multi-

field scenario, the curvaton one. Let us proceed now to the tools of the

trade: we introduce a general formalism for any number of scalar fields

which will let us comfortably handle higher order correlation functions

of ζ, so that we will be able to link them to the calculations performed

on the scalar field correlators in chapter 6.

Following [63, 64] we write φA, where the superscript labels the fields

in field space1. The connected 2-, 3- and 4-point functions of the fields

are defined by:

〈δφA
k1

δφB
k2
〉 = CAB(k)(2π)3δ 3(k1 + k2) , (4.23)

〈δφA
k1

δφB
k2

δφC
k3
〉 = BABC(k1, k2, k3)(2π)3δ 3(k1 + k2 + k3) ,

〈δφA
k1

δφB
k2

δφC
k3

δφD
k4
〉c = TABCD(k1,k2,k3,k4)(2π)3δ 3(k1 + k2 + k3 + k4) .

At linear order, the primordial power spectra depends purely on ζ(1),

in fact, defining NA ≡ ∂N/∂φA,

ζ(1) = NAφ(1)A , (4.24)

1For example if we have n fields, φAφB is a n × n matrix in field space
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where the superscript denotes the perturbation order. The power spec-

trum is thus

〈ζ(1)
k ζ

(1)
k′ 〉 = Pζ(k)(2π)3δ3(k + k′) , (4.25)

where

Pζ(k) = NANBCAB(k) , CAB(k) = δABP (k) =
(2π)3

4πk3
P(k) (4.26)

with P(k) defined by eq. (2.90).

The 3-point function of the curvature perturbations (again to leading

order) depends on ζ(1), (4.24) and

ζ(2) = NAφ(2)A + NABφ(1)Aφ(1)B . (4.27)

The primordial bispectrum is thus

〈ζk1
ζk2

ζk3
〉 = NANBNC〈φA

k1
φB

k2
φC

k3
〉 +

1

2
NA1A2

NBNC

[
〈
(
φA1 ∗ φA2

)
k1

φB
k2

φC
k3
〉 + (2 perms)

]
, (4.28)

where ′∗′ denotes the convolution, defined by

(
φA ∗ φB

)
k

=
1

(2π)3

∫
d3k′φA

k−k′φB
k′ . (4.29)

Hence the bispectrum of the curvature perturbation is

〈ζk1
ζk2

ζk3
〉 ≡ Bζ(k1, k2, k3)(2π)3δ3k1 + k2 + k3 , (4.30)

where to leading order [65]

Bζ(k1, k2, k3) = NANBNCBABC(k1, k2, k3)

+NANBCND

[
CAC(k1)C

BD(k2) (4.31)

+CAC(k2)C
BD(k3) + CAC(k3)C

BD(k1)
]

.

Finally, we define the trispectrum. The four-point function of the cur-

vature perturbation at leading order will depend on ζ(1), (4.24), ζ(2),

(4.27), and

ζ(3) = NAφ(3)A + NAB

(
φ(1)Aφ(2)B + φ(2)Aφ(1)B

)
+ NABCφ(1)Aφ(1)Bφ(1)C(4.32)
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The four-point function at leading order is [63] 〈ζk1
ζk2

ζk3
ζk4

〉c =

= NANBNCND〈φA
k1

φB
k2

φC
k3

φD
k4
〉c (4.33)

+
1

2
NA1A2

NBNCND

[
〈
(
φA1 ∗ φA2

)
k1

φB
k2

φC
k3

φD
k4
〉 + (3 perms)

]

+
1

4
NA1A2

NB1B2
NCND

[
〈
(
φA1 ∗ φA2

)
k1

(
φB1 ∗ φB2

)
k2

φC
k3

φD
k4
〉 + (5 perms)

]

+
1

3!
NA1A2A3

NBNCND

[
〈
(
φA1 ∗ φA2 ∗ φA3

)
k1

φB
k2

φC
k3

φD
k4
〉 + (3 perms)

]
.

The first term of the expansion above is the intrinsic 4-point function

of the fields [30]. The disconnected part of this term would only give

a contribution if the sum of any two k vectors is zero, e.g. if k1 +

k2 = 0. We will exclude this case, which is equivalent to neglecting

parallelograms of the wavevectors.

The second term of (4.33) consists of permutations of terms of the form

1

2
NA1A2

NBNCND
1

(2π)3

∫
d3q〈φA1

q φA2

k1−qφ
B
k2

φC
k3

φD
k4
〉 . (4.34)

This five-point function is zero for the first-order, Gaussian, perturba-

tions, hence the leading order contribution is sixth-order, due to the

second order contribution of one of the fields. Hence we use Wick’s the-

orem to split the 5-point function in to lower point functions. There

is no contribution to (4.34) from the split into a four-point and a one-

point function. Only the split into a two-point and three-point func-

tion gives a contribution. However the first possible contraction in

(4.34), 〈φA1

k1−qφ
A2
q 〉, does not contribute since it is only non-zero when

k1 = 0. Therefore we can reduce the above term into a power spectra

and a trispectrum in 6 different ways, which gives three distinct pairs

of terms. In total the second term of (4.33) is

NA1A2
NBNCND(2π)3δ 3(kt)

[
CA1B(k1)B

A2BC(k12, k3, k4)+

(11 perms)] , (4.35)

where we use the shortened notation kij = |ki +kj| and kt = k1 +k2 +

k3 + k4. The 12 permutations come from having 3 distinct choices for

the indices of the wavenumber kij (only three distinct choices because
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kij = kji and k12 = k34 etc). We then choose which two wavenumbers

form the remaining arguments of BABC , either ki, kj or the other pair

of wavenumbers, and finally we choose which of the two indices i or j

is attached to the wavenumber ki that is the argument of C.

Continuing this argument for the second and third terms of (4.33), we

find the connected part of the trispectrum of the curvature perturbation

is

〈ζk1
ζk2

ζk3
ζk4

〉c ≡ Tζ(k1,k2,k3,k4)(2π)3δ 3(k1 + k2 + k3 + k4) ,

(4.36)

where Tζ(k1,k2,k3,k4) =

NANBNCNDTABCD(k1,k2,k3,k4) (4.37)

+NA1A2
NBNCND

[
CA1B(k1)B

A2BC(k12, k3, k4) + (11 perms)
]

+NA1A2
NB1B2

NCND

[
CA2B2(k13)C

A1C(k3)C
B1D(k4) + (11 perms)

]

+NA1A2A3
NBNCND

[
CA1B(k2)C

A2C(k3)C
A3D(k4) + (3 perms)

]
.

If now we assume the scalar field perturbations to be independent,

Gaussian random fields, as we expect shortly after Hubble-exit during

Inflation in the slow-roll limit [66, 67] then the bispectrum for the fields,

BABC , and connected part of the trispectrum, TABCD, both vanish. In

this case the bispectrum of the primordial curvature perturbation (4.31)

at leading (fourth) order, can be written as a simple sum of products

of 2 two-point correlators,

Bζ(k1,k2,k3) =
6

5
fNL [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) (4.38)

+Pζ(k3)Pζ(k1)] , (4.39)

where the dimensionless non-linearity parameter is given by [68]

fNL =
5

6

NANBNAB

(NCNC)2 . (4.40)

The trispectrum (4.37) in this case reduces to

Tζ(k1,k2,k3,k4) = NABNACNBNC [P (k13)P (k3)P (k4) + (11 perms)]

+NABCNANBNC [P (k2)P (k3)P (k4) + (3 perms)] ,
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Hence we can write the trispectrum as

Tζ(k1,k2,k3,k4) = τNL [Pζ(k13)Pζ(k3)Pζ(k4) + (11 perms)] (4.41)

+
54

25
gNL [Pζ(k2)Pζ(k3)Pζ(k4) + (3 perms)] .

where comparing the above two expressions we see

τNL =
NABNACNBNC

(NDND)3
, (4.42)

gNL =
25

54

NABCNANBNC

(NDND)3
. (4.43)

The expression for τNL from multiple fields is given in [69].

In the preceding sections we introduced the inflaton and curvaton sce-

narios. These are single field scenarios or, differently said, there is a

single direction in the field space, since there only one field who domi-

nates. In this case, the curvature perturbation is again given by

ζ = N ′δφ +
1

2
N ′′δφ2 +

1

6
N ′′′δφ3 + · · · , (4.44)

where again N ′ = dN/dφ and analogously higher derivatives. If in

addition we assume that the field perturbation is purely Gaussian, φ =

φ(1), then the non-Gaussianity of the primordial perturbation has a

simple “local form” where the full non-linear perturbation at any point

in real space, ζ(x), is a local function of a single Gaussian random field,

φ(1). Thus we can write [70]

ζ = ζ(1) +
3

5
fNLζ(1)2 +

9

25
gNLζ(1)3 + · · · , (4.45)

where ζ(1) is Gaussian because it is directly proportional to the initial

Gaussian field perturbation, φ(1), and the dimensionless non-linearity

parameters, fNL and gNL, are given by

fNL =
5

6

N ′′

(N ′)2
, (4.46)

gNL =
25

54

N ′′′

(N ′)3
, (4.47)
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The numerical factors in Eq. (4.45) arise because the original definition

is given in terms of the Bardeen potential on large scales (in the matter

dominated era, md), ΦHmd = (3/5)ζ1, so we have [71, 89],

3

5
ζ = ΦHmd + fNLΦ2

Hmd + gNLΦ3
Hmd + · · · . (4.48)

The primordial bispectrum and trispectrum are then given by equa-

tions. (4.38) and (4.41), where the non-linearity parameters fNL and

gNL, given in eqs. (4.40) and (4.43), reduce to eqs. (4.46) and (4.47)

respectively, and τNL given in eq. (4.42) reduces to

τNL =
(N ′′)2

(N ′)4
=

36

25
f 2

NL . (4.49)

For completeness we report here the results obtained for the two de-

scribed scenarios [50, 51, 64, 70, 63, 20, 68].

Single Field Scenario In standard single field Inflation, one can

calculate the non-linearity parameters fNL and gNL in terms of the

slow-roll parameters (2.54) at Hubble-exit plus a third one

ξ2 ≡ mp
4V ′V ′′′

V 2
. (4.50)

Hence the non-linearity parameters for single field Inflation (4.46–4.47)

are given by

fNL =
5

6
(η − 2ǫ) , (4.51)

τNL = (η − 2ǫ)2 , (4.52)

gNL =
25

54

(
2ǫη − 2η2 + ξ2

)
. (4.53)

Note however that we have not calculated the full bispectrum and

trispectrum at leading order in slow roll, because we assumed that the

initial field fluctuations were Gaussian. If we included the contribution

from the non-Gaussianity of the fields at Hubble exit, the bispectrum

would have one extra term (4.31) and the trispectrum would have two
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extra terms, (4.37). The extra term for the trispectrum is at the same

order in slow roll, because [67] BABC(k1,k2,k3) ∼ O(ǫ
1

2 ) and the sec-

ond term of (4.37) is also of the same order. However Seery, Lidsey

and Sloth find [30], TABCD(k1,k2,k3,k4) ∼ O(1) which means the

first term of (4.37) is suppressed by one less order in slow roll then

the other three terms. However they find the contribution of this term

is still too small to be observable, even in the multiple field case [30].

All of these extra terms from the non-Gaussian field fluctuations are

momentum dependent, while all of the non-linearity parameters are

independent of momentum.

Curvaton Scenario In the curvaton scenario the energy density

of the curvaton is some function of the field value at Hubble-exit,

ρσ ∝ g2(σ∗), and hence the primordial curvature perturbation when

the curvaton decays is of local form (4.45). In the sudden-decay ap-

proximation the non-linearity parameters are [68, 72]

fNL =
5

4r

(
1 +

gg′′

g′2

)
− 5

3
− 5r

6
, (4.54)

and [70]

gNL =
25

54

[
9

4r2

(
g2g′′′

g′3 + 3
gg′′

g′2

)
− 9

r

(
1 +

gg′′

g′2

)

+
1

2

(
1 − 9

gg′′

g′2

)
+ 10r + 3r2

]
, (4.55)

and τNL satisfies (4.49) and r satisfies 0 < r ≤ 1, . As we argued in

previous section there is a significant non-Gaussianity if the curvaton

does not dominate the total energy density of the Universe when it

decays, r ≪ 1. In that case equations (4.54) and (4.55) reduce to

fNL ≃ 5

4r

(
1 +

gg′′

g′2 , (4.56)

gNL ≃ 25

24r2

(
g2g′′′

g′3 + 3
gg′′

g′2

)
. (4.57)
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In this chapter we presented how non Gaussianity can be present in the

curvature pertubation ζ and how it can be calculated in the context of

correlation functions. We are interested in evaluating the contribution

of non linearities intrinsic to the scalar field, so we need to calculate

the correlation functions at the various orders between states at equal

times. In the next chapter we will then introduce a powerful formalism

to treat this problem.
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Chapter 5

CTP Formalism

The Closed Time Path (CTP) formalism or in-in formalism has been

first proposed by Schwinger and developed by Keldysh, Koreman and

others [73, 74, 75]. It is different from the conventional in-out formal-

ism in that it does not involve asymptotic free states but rather focuses

on same time states in order to obtain the expectation values of observ-

ables rather than transition amplitudes. Thus it is very useful in our

case because it allows us to evaluate the correlation functions between

vacuum states at some very early time, where we could not easily spec-

ify the asymptotic future and past states needed in the conventional

approach.

In the convential approach indeed the effective field equation is deriv-

able form the effecive action Γ, which is the Legendre trasform of the

generating functional W related to the vacuum persistance amplitude

〈0+|0−〉 by

〈0+|0−〉J = eiW [J ] =

∫
Dφei(S[g,φ]+Jφ) , (5.1)

where |0±〉 denote the asymptotic vacuum states. Here J is an exter-

nal source, S is the action, g is the spacetime metric and Dφ is the

measure of the functional integral over the scalar field φ. As spacetime

evolves, the out vacuum can in general be different from the in vacuum

due to particle production. Thus one can calculate matrix elements

〈0+|T |0−〉 of a certain operator T rather than its expectations value
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〈T 〉 = 〈0−|T |0−〉 calculated at the same time. Transforming in-out el-

ements to in-in values is possible, but one needs to sum over a set of

intermediate complete states, which involves knowing the Bogolubov

coefficients. One can also use functional tranforms but these are more

likely to be of formal than practical value. We note that the CTP

formalism is an initial-value problem, a functional integral method for-

mulated with respect to the same initial state, while the conventional

formulation is a boundary-value problem, since it needs asymptotic

regions.

How is the CTP formalism built? We let the vacuum evolve indipen-

dently under two different external sources J+(x) and J−(x) and com-

pare the result with a common state |ψ〉 in the future [76]. The gener-

ating functional W [J+, J−] is defined as

eiW [J+.J−] =
∑

φ

〈0−|φ〉J−〈φ|0+〉J+ . (5.2)

where |φ〉 is a common eigenvector of the field operator ΦH at some

large time t∗, ΦH(x, t)|φ〉 = φ(x)|φ〉. The set |φ〉 is complete and

orthonormal. In the path integral representation, this can be thought

of as a sum over paths which go forward in time in the presence of J+

from |0−〉 to |φ〉 on a hypersurface Σ of costant time t∗ and backwards

in time along the same hypersurface in the presence of J−. This is the

reason why the formalism is called Closed Time Path. The effective

in-in action is defined by [76]

Γ[φ̂+, φ̂−] = W [J+, J−] − J+φ̂+ + J−φ̂− , (5.3)

where φ̂± ≡ ±δW [J+, J−]/δJ±. When J+ = J− = 0 they are the

expectations values of φH with respect to |0−〉, i.e.

φ̂+(x) = φ̂−(x) = 〈0−|φH(x)|0−〉 . (5.4)

It can be easily seen that this formalism doubles the sources and fields

therefore increasing the number of Feynmann diagrams which need to

be accounted for. Yet, it is worth it, because the advantage that one

gets is great. The effective action and field equations are real and
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causal and hence their results are more easily physically interpretable.

More, the formalism has multiple Green’s functions which are treated

in the same way, obeying the same set of matrix equations. The CTP

formalism then is particularly powerful in tackling statistical problems,

where causal and correlational properties of a time-dependent system

are important.

5.1 Basic Formalism

Following Schwinger [73], we introduce the two external sources J+(x)

and J−(x) and consider the quantity

Z[J+, J−] = J−〈0−|0+〉J+ . (5.5)

In contrast with the in-out formalism, where one lets the in vacuum

evolve under the influence of an external source and compares the result

with the out vacuum, in the in-in formalism, one lets the in vacuum

evolve indipendently under two sources J+ and J−, and compare the

results in the future. We may rewrite the latter as

Z[J+, J−] =

∫
Dφ

〈
0−

∣∣∣∣T̃ exp

[
−i

∫ t∗

−∞
dt

∫
d3xJ−(x)φH(x)

]∣∣∣∣ φ

〉

〈
φ

∣∣∣∣Texp

[
i

∫ t∗

−∞
dt

∫
d3xJ+(x)φH(x)

]∣∣∣∣ 0−

〉
, (5.6)

where T̃ denotes antitemporal order. Here |φ〉 is an element of a com-

plete, orthonormal set of common eigenvectors of the field operators at

some late time t∗,

φH(x, t)|ψ〉 = Φ(x)|φ〉 (5.7)

From the definitions (5.5) and (5.6), one can obtain the following rela-

tions [76]:

Z[J, J ] = 1, Z[J+, J−] = (Z[J−, J+])∗ , (5.8)
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and

(−i)n−m ∂n+mZ[J+, J−]

∂J−(x1) . . . ∂J−(xm)∂J+(y1) . . . ∂J+(yn)

∣∣∣∣
J+,J−=0

=

〈0−|T̃ [φH(x1) . . . φH(xm)]T [φH(y1) . . . φH(yn)]|0−〉 . (5.9)

We see that expectations value can be be obtained by variation of the

sources J+ and J− as in eq. (5.13). In particular for a time-dependent

Hamiltonian system H(t) that starts in a state |in〉 at time tin, we can

write the expectation value as:

〈Q(t)〉 =

〈
in

∣∣∣∣
[
T̄ exp

(
i

∫ t

tin

dt′ H(t′)

)]
Q

[
T exp

(
−i

∫ t

tin

dt′ H(t′)

)]∣∣∣∣ in

〉
.

(5.10)

5.2 Green’s Functions

Now we move to a curved space, namely to a de Sitter background. We

write the Lagrangian density for a scalar field with potential V (φ) as

L [φ] =
√−g

(
gµν 1

2
∂µφ∂νφ − 1

2
m2φ2 − 1

2
ξRφ2 − V (φ)

)
+ δL ,

(5.11)

where the metric has signature −+++ and ξ is the conformal parame-

ter. Choosing m = 0 and ξ = 0 we select a massless minimally coupled

scalar field. The generating functional becomes [25]

Z[J+, J−, ρ(tin)] =

∫
Dφ+

inDφ−
in〈φ+

in|ρ(tin)|φ−
in〉 (5.12)

∫ φ−

in

φ+
in

Dφ+Dφ−e
i

R t

tin
dt′

R

d3x(L[φ+]−L[φ−]+J+φ++J−φ−) .

Note that the generating functional depends explicitly on the initial

density matrix ρ(tin). The path integral on the second line can be

written in short-hand notation as
∫

Dφ exp

[
i

∫

C
dt′

∫
d3x (L[φ] + Jφ)

]
, (5.13)
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Figure 5.1: An example of Keldysh Contour C

where C is the so-called Schwinger-Keldysh contour which runs from

tin to t and back. The field φ and source J are split up in φ+, J+ on

the first part of this contour, and φ−, J− on the second part, with the

condition φ+(t) = φ−(t).

To calculate perturbatively correlation functions we need to have the

free two-point functions. There are 4 possible time orderings and, using

eq. (5.13) one obtains:

G−+(x, y) = i〈φ(x)φ(y)〉(0), (5.14)

G+−(x, y) = i〈φ(y)φ(x)〉(0), (5.15)

and

G++(x, y) = i〈Tφ(x)φ(y)〉(0) (5.16)

= θ(x0 − y0)G
−+(x, y) + θ(y0 − x0)G

+−(x, y),

G−−(x, y) = i〈T̄φ(x)φ(y)〉(0) (5.17)

= θ(x0 − y0)G
+−(x, y) + θ(y0 − x0)G

−+(x, y),

where by the superscript (0) we denote the free field correlation func-

tions. They obey the important identity

G++(x, y) + G−−(x, y) = G−+(x, y) + G+−(x, y), (5.18)

and they can be put together in a matrix:

G(x, y) =

(
G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)

)
. (5.19)

Note that the two point functions depend on the initial conditions via

the dependence on ρ(ti) of the generating functional eq. (5.13).
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It is useful to transform the φ+ and φ− fields to a different basis, which

is a variation of the Keldysh basis (see also [77]):

(
φC

φ∆

)
=

(
(φ+ + φ−)/2

φ+ − φ−

)
= R

(
φ+

φ−

)
, (5.20)

with

R =

(
1/2 1/2

1 −1

)
. (5.21)

The free two point functions in this basis can easily be obtained by the

transformation

GK(x, y) = RG(x, y)RT =

(
iGC(x, y) GR(x, y)

GA(x, y) 0

)
, (5.22)

with

GC(x, y) = − i

2

(
G−+(x, y) + G+−(x, y)

)
, (5.23)

GR(x, y) = G++(x, y) − G+−(x, y)

= θ(x0 − y0)
(
G−+(x, y) − G+−(x, y)

)
, (5.24)

GA(x, y) = G++(x, y) − G−+(x, y)

= θ(y0 − x0)
(
G+−(x, y) − G−+(x, y)

)
, (5.25)

where we have used identity eq. (5.18). Also the ”G∆∆” propagator in

the matrix (5.22) (the element (2,2) of GK(x, y)) is identically zero due

to eq. (5.18), as can be seen by performing directly the product. Finally

the GR and GA two point functions are often called the retarded and

advanced propagators and GA(x, y) = GR(y, x).

The correlation functions in the Keldish base obey the equations

(
¤x + m2 + ξR(x)

)
G(x, y) = 0 , (5.26)

(
¤x + m2 + ξR(x)

)
GR,A(x, y) =

δ4(x − y)√
−g(x)

, (5.27)

where

¤x =
1√

−g(x)
∂µ

(√
−g(x) gµν(x)∂ν

)
. (5.28)
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5.3 Feynman Rules

We want to calculate the non Gaussianity due to the intrinsic non

linearity of the scalar field, this translates into calculating higher order

graphs. We will do that in the next chapter, but before we need a

method to draw those graphs. So what we need is a set of Feynman

rules for our theory. We choose a self–interacting field and in particular

we choose the potential to be V (φ) = λ
4!
φ4. The Lagrangian density

becomes:

L [φ] =
√−g

(
gµν 1

2
∂µφ∂νφ +

λ

4!
φ4

)

Taking into account the minus produced by the orientation of the line

of integration 1, the Lagrangian density becomes:

L [φ+, φ−] =
√−g

(
gµν 1

2
∂µφ

+∂νφ
+ − λ

4!
(φ+)4 − gµν 1

2
∂µφ

−∂νφ
− − λ

4!
(φ−)4

)

We perform now the field transformation as in eq.(5.20). The terms of

the Lagrangian density containing derivatives become:

gµν∂µ(
φ+ + φ−

2
)∂ν(φ

+ − φ−) = gµν(∂µφC∂νφ∆)

while the terms of potential become:

− λ

4!
[(φ+)4 − (φ−)4] = − λ

4!
2φCφ∆

(
2φC

2 +
φ∆

2

2

)

Putting all the terms together L [φC , φ∆] is:

L [φC , φ∆] =
√−g

[
gµν∂µφC∂νφ∆ − λ

4!

(
4φC

3φ∆ + φCφ∆
3
)]

(5.29)

As expected there are two different interaction terms, thus two vertices.

From now on we will utilize the conformal time τ , defined as τ =

−
∫ ∞

t
dt′/a(t′). Note that, as a function of τ , the scale factor is a(τ) =

1φ+ lives in the space Imτ > 0, while φ
−

lives inImτ < 0 and we are going from τ to

∞ in the positive plane and then back to τ in the negative plane
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−(Hτ)−1. Using eq. (2.87) one can derive the free two-point functions:

GC(k, τ1, τ2) =
H2

2k3

[
(1 + k2τ1τ2) cos k(τ1 − τ2) (5.30)

+k(τ1 − τ2) sin k(τ1 − τ2)] ,

GR(k, τ1, τ2) = θ(τ1 − τ2)
H2

k3

[
(1 + k2τ1τ2) sin k(τ1 − τ2) (5.31)

−k(τ1 − τ2) cos k(τ1 − τ2)] ,

and GA(k, τ1, τ2) = GR(k, τ2, τ1), and where the two point functions

depend only on the length of the spatial momentum k = |k|.
We represent the φC field with a full line and the φ∆ field with a dashed

line and so we can write the Feynman rules for the two

point functions as
τ1 τ2 = GC(k, τ1, τ2),

τ1 τ2 = −iGR(k, τ1, τ2) = −iGA(k, τ2, τ1) .

We have two different vertices. One contains three powers of φC and

one of φ∆ so we draw it with three full lines and one dashed line. The

other instead contains one power of φC and three of φR, hence a vertex

with three dashed lines and one full line. Since we are in a de Sitter

background,
√−g = a4(τ) and the vertices become:

−ia4(τ) λ
3!
φC

3φR −ia4(τ) λ
4!
φCφR

3

When a two point function is attached to a vertex, the corresponding

time has to be integrated over, so we get a
∫

dτ , while for a closed loop

we get an integral over the internal spatial momentum
∫

d3p/(2π)3.

Considering the form of GR we can already exclude the presence of

loop with mixed lines, like in figure (5.3). In fact such a loop would

close a retarded propagator GR on the same time τ = τ1 = τ2 but, due

to the embedded Θ(τ1 − τ2), it vanishes. So the only possible loop that
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we can build with our set of Feynmann’s rules is made of a full line. It

is given by

L(τ) =

∫
d3p

(2π)3
G

(0)
C (p, τ, τ) , (5.32)

where by the superscript (0) we mean the free correlation functions.

Since we will calculate correlation functions at higher orders, the su-

perscript (i) will help us keep track of which order are we considering

at each moment. As argued in [76], primitively divergent graphs con-

tain only vertices of the same type. If there were vertices of different

type, then at least two internal lines would be retarded propagators,

the corresponding momenta would be on shell, the corresponding loop

integral would be finite and the graph would not have been primitively

divergent. Now the graphs of the in-in effective action with all vertices

of the same sign are just the graphs of the in-out theory plus their com-

plex conjugates, so the primitive divergences must be the same. Once

the primitive divergences are controlled, it is only a matter of combi-

natorics to show that the overlapping divergences disappear as well. In

fact what we will do in the next chapter is exploring the behaviour of

higher order loop corrections to the free correlators and in doing this

we will discover how only the vertices with three full lines really con-

tribute to divergences in the infrared limit, which is equivalent to say

the late time limit during Inflation.

Figure 5.2: The loop is formed by a retarded propagator GR starting and

ending at time τ3, thus it vanishes.
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Chapter 6

Loops and Correlation

Functions

We have seen that the non Gaussianity of the curvature perturbation

depends on the gravity, but also on the eventual non Gaussianity of

the scalar field itself. It has been shown [26, 23, 24] that the loop

corrections at the first orders can become very large at late times (kτ ≪
1). It was shown in fact that a self-interacting field develops logarithmic

divergences in the late times limit [25]. Moreover these corrections

receive powers of N through the integrals over momenta, making so

the divergences even worse as one proceeds to higher orders. Thus

one would expect unlimited growing corrections as we near the end

of Inflation. Yet, all these studies did not address the question of

what happens if one tries to resum the divergences. In this chapter,

using all the machinery developed in the previous chapters, we address

exactly this question: can the divergences be reabsorbed to produce a

non divergent theory?
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6.1 Two-Point Functions

As shown in chapter 3, we are particularly interested to in the 2-

and 4-point functions since they are the interesting ones to predict

the non Gaussianity.We calculated the free two-point correlation func-

tions in eq. (5.3). In the approximation of late times (−kτi≪1) and

small internal momenta1, the free two-point functions GC(k,τ1, τ2) and

GR(k,τ1, τ2) can be expanded in powers of kτi [25]:

G
(0)
C (k, τ1, τ2) =

H2

2k3
[1 + O(k2τ 2

i )], (6.1)

G
(0)
R (k, τ1, τ2) = θ(τ1 − τ2)

H2

3k3
[k3(τ 3

1 − τ 3
2 ) + O(k5τ 5

i ))]. (6.2)

We have two vertices but we will use only the three full lines and one

dashed line. The reason is that the 〈φCφC〉 = GC has a momentum

depence k−3 and thus is divergent in the infrared, while the 〈φCφ∆〉 =

GR does not. Moreover, we note that for a vertex with three dashed

lines it is not possible to build loops since they vanish identically. We

remember that in the previous chapter we explained that divergences

could come only from graphs with the same type of vertice, thus in

the light of these considerations the vertex with the highest number of

possible GC is the natural choice since we are interested in exploring the

late time limit. Let us use these to calculate the corrections produced

by graphs containing one or more tadpoles or even more complicated

configurations.

6.1.1 First Order Diagrams

The simplest correction to the free propagators G
(0)
C and G

(0)
R comes

from the graphs with a single tadpole. As already argued, it is not

possible to have a loop made with dashed lines since G∆∆ vanishes

1This means that in loops we integrate over momenta which are already outside of the

horizon when the considered scale k crosses it. In other words this means that we consider

momenta smaller than k.
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identically and GR vanishes when evaluated at the same time. So we

include only the full line loop and thus figure 6.1 is the only first order

correction to G
(0)
C : it is clear that due to the simmetry of GC we must

Figure 6.1: One tadpole GC propagator

consider also the mirror diagram. Using the expressions (6.1) and (6.2),

figure 6.1 translates into the following integral,

(−i
λ

3!
)(−i)

∫ τ1

− 1

k

dτ3a
4(τ3)G

(0)
R (k, τ1, τ3)

∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3)G

(0)
C (k, τ3, τ2) ,

(6.3)

where p is the internal momentum of the tadpole and k the momentum

flowing in the diagram. The mirror graph gives

(−i
λ

3!
)(−i)

∫ τ2

− 1
k

dτ3a
4(τ3)G

(0)
R (k, τ2, τ3)

∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3)G

(0)
C (k, τ3, τ1) .

(6.4)

We set the inferior limit of integration to − 1
k

instead of −∞, because we

are interested in following perturbations from the moment of horizon

exit up to some later time τ . The horizon exit time is given by the

condition −kτh = 1 and so τh = − 1
k
. Physically this means that we

neglect every correlation with what happened before the horizon exit

and we start to consider correlations only after the exit of each relevant

scale. The tadpole integral over d3p is divergent but can be in general

regularized choosing appropriate infrared and ultraviolet cutoffs, ΛIR

and ΛUV , ∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3) =

H2

(2π)2
ln(

ΛUV

ΛIR

) . (6.5)
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How can we choose ΛIR and ΛUV ? We are interested in super-horizon

scales, so we choose ΛIR corresponding to the smallest scale already

outside of the horizon at the beginning of Inflation and we choose ΛUV

corresponding to the wavelength that leaves the horizon at the final

istant of Inflation. In this context though, this choice comes with a

natural expression: ΛIR is proportional to a(tin) evaluated at the be-

ginning of Inflation, while ΛUV is proportional to the scale factor at the

end of Inflation a(tfin) = a(tin)eN , therefore the logarithm is propor-

tional to the number of e-folds that Inflation lasts. Before performing

the calculation we must also consider the coefficient in front of the

graph coming from Wyck’s theorem. We have φ∆(φC)3 from the vertex

and the external legs, φC(τ1) and φC(τ2). So there are three possibili-

ties for contracting φ(τ2) with one of the φC of the vertex and one for

contracting φC(τ1) with the vertex’s φ∆, which sum up to 3 in front of

the graph. Performing the calculation and considering also the mirror

graph, we obtain

G
(1)
C = 3

λ

3!6k3
(
H

2π
)2 ln(

ΛUV

ΛIR

)

1

3
[2 + (k3τ1

3 + k3τ2
3) + 3(ln(−kτ1) + ln(−kτ2))] , (6.6)

which at leading order reduces to

G
(1)
C (k, τ1, τ2) ≃ H

2k3

λL

3!H2
(ln(−kτ1) + ln(−kτ2)) , (6.7)

where from now on by L we mean eq. (5.32) evaluated between the

cutoffs, L =
(

H
2π

)2
ln

(
ΛUV

ΛIR

)
. Exactly as for the GC , it is possible to

draw a one tadpole GR as in fig. 6.2. It translates to

−iG
(1)
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3(−i
λ

3!
a4(τ3))(−i)G

(0)
R (k, τ1, τ3)

∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3)(−i)G

(0)
R (k, τ3, τ2) (6.8)

In this case there is not a mirror graph due to the oddness of the GR

under exchange of times. The coefficient is again 3 since there are three

possibilities to contract φ(τ2) with one of the vertex’s φCs and one to
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Figure 6.2: One tadpole GR propagator

contract φC(τ1). Then, for a correction to a GR graph with τ1 > τ2:

−iG
(1)
R (k, τ1, τ2) = 3θ(τ1 − τ2)

iλ

3!27
(
H

2π
)2 ln(

ΛUV

ΛIR

)[2(τ1
3 − τ2

3)

+3(τ1
3 + τ2

3) ln

(
τ1

τ2

)
] , (6.9)

that at leading order reduces to

−iG
(1)
R (k, τ1, τ2) = θ(τ1 − τ2)

iH2

3

λL

3!H2
(τ1

3 + τ2
3) ln

(
τ1

τ2

)
.(6.10)

Note that the first order correction to the retarded propagator is con-

sistently odd under exchange of the times τ1 and τ2. Also, we see that

in the limit of late times (kτ ≪ 1) both propagator have logarithmic

divergences. We have so far reproduced in a simple way the results

of [26, 27]. In our quest to cure the divergence we now proceed to

the second order, hoping to find a hint about what is the right way to

reabsorb the infinities.

6.1.2 Second Order Diagrams

Analogously to the one-tadpole graph, a graph with two tadpoles can

be easily constructed, basically adding a GR and closing in a tadpole

two of the straight lines of the second vertex, as in figure 6.3.

The amplitude for this diagram is easily calculated:
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Figure 6.3: Two-tadpole GC propagator.

G
(2)
C (k, τ1, τ2) =

∫ τ1

− 1

k

dτ3(−i)G
(0)
R (k, τ1, τ3)(−i

λ

3!
a4(τ3))

∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3)

∫ τ1

− 1

k

dτ4(−i)G
(0)
R (k, τ3, τ4)(−i

λ

3!
a4(τ4))

∫
d3q

(2π)3
G

(0)
C (q, τ4, τ4)G

(0)
C (k, τ4, τ2) , (6.11)

plus the mirror graph. With the notation of fig. 6.3, there are two

vertices so we have two ways to contract φC(τ1) with one of the φ∆,

then three possibilities to contract one of the three φC of the same

vertex with the remaining φ∆ and then three more to contract φC(τ2)

with the one φC of the second vertex. So the coefficient in front of the

amplitude due to Wyck’s theorem is 18/2!. The integral in dτ4 however

is not truly up to τ1, because the θ(τ3 − τ4) embedded in G
(0)
R (k, τ3, τ4)

forces τ3 > τ4 and so:

∫ τ1

− 1
k

dτ4 →
∫ τ3

− 1
k

dτ4 (6.12)

In the end the result is:

G
(2)
C (k, τ1, τ2) =

18

2!

λ2

3!18k3

1

H2
[(

H

2π
)2 ln(

ΛUV

ΛIR

)]2
1

6
[4 + 2k3τ1

3 + 2k3τ2
3

+ ln(−kτ1)(4 − 2k3τ1
3) + ln(−kτ2)(4 − 2k3τ2

3)

+3[ln2(−kτ1) + ln2(−kτ2)]] (6.13)
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which at leading order reduces to

G
(2)
C (k, τ1, τ2) ≃ H

2k3

(
λL

3!H2

)2
1

2!
(ln2(−kτ1) + ln2(−kτ2))(6.14)

Figure 6.4: Two-tadpole GR propagator.

The two–tadpole graph for the retarded propagator is shown in figure

6.4. Its amplitude is given by

−iG
(2)
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3(−i
λ

3!
a4(τ3))(−i)G

(0)
R (k, τ1, τ3) (6.15)

∫
d3p

(2π)3
G

(0)
C (p, τ3, τ3)

∫ τ3

τ2

dτ4(−i)G
(0)
R (k, τ3, τ4)

(−i
λ

3!
a4(τ4))

∫
d3qG

(0)
C (q, τ4, τ4)(−i)G

(0)
R (k, τ4, τ2) .

where the superior integration limit of the integral in dτ4 has already

been changed to τ3, due to the θ(τ3−τ4) embedded in G
(0)
R (k, τ3, τ4). The

combinatorial coefficient is again 18/2! and performing the calculation

we obtain

−iG
(2)
R (k, τ1, τ2) =

18

2!

−iλ2

3!27H2

[
(
H

2π
)2 ln(

ΛUV

ΛIR

)

]2

1

6

{
4(τ1

3 − τ2
3) − 6(τ1

3 + τ2
3) ln

(
τ1

τ2

)

+ 3(τ1
3 − τ2

3) ln2

(
τ1

τ2

)}
(6.16)

≃ −iH2

3

(
λL

3!H2

)2
1

2!
(τ1

3 − τ2
3) ln2

(
τ1

τ2

)
.(6.17)
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The diagrams that we have calculated up to now though are not the

only ones present at the second order. Indeed, we can draw two more

diagrams for each propagator, namely the so-called sunrise diagrams,

shown in figure 6.5, and the tower diagrams, shown in figure 6.6.

Figure 6.5: Second order sunrise diagrams for GC(left) and GR(right).

Figure 6.6: Second order tower diagrams for GC(left) and GR(right).
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Sunrises and Towers Let us start with the sunrise diagrams. De-

spite the graphical difference, these diagrams translate exactly to the

two tadpole graphs. We can see in fact that they can be written as:

G
(2)sun
C (k, τ1, τ2) =

∫ τ1

− 1

k

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

− 1

k

dτ4(−i)G
(0)
R (k, τ1, τ3)

(−i
λ

3!
a4(τ3))G

(0)
C (p, τ3, τ4)(−i)G

(0)
R (k − p − q, τ3, τ4)

(−i
λ

3!
a4(τ4))G

(0)
C (q, τ3, τ4)G

(0)
C (k, τ4, τ2) , (6.18)

−iG
(2)sun
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

τ2

dτ4(−i
λ

3!
a4(τ3))

(−i)G
(0)
R (k, τ1, τ3)G

(0)
C (p, τ3, τ3)(−i)G

(0)
R (k − p − q, τ3, τ4)

(−i
λ

3!
a4(τ4))G

(0)
C (q, τ4, τ4)(−i)G

(0)
R (k, τ4, τ2) . (6.19)

We see by comparison with eq. (6.11) and eq. (6.15) that the only differ-

ence is in the G
(0)
R between τ3 and τ4. The free retarded propagator in

the late time limit does not depend on the momentum flowing through

it, so G
(0)
R (k − p − q, τ3, τ4) = G

(0)
R (k, τ3, τ4) and we find again the inte-

gral (6.15) written for the two tadpole diagrams. We did not mention

yet the combinatorial coefficient in front of the intergrals. We have two

ways to contract φC(τ1) with a φ∆ of the vertices, then three to con-

tract one φC of the first vertex to the φ∆ of the second and finally six

to contract the remaining free φC in the two vertices. In total we have

a 36/2!. We see then that the contributions coming from the tadpole

and sunrise diagrams are not exactly equal, but differ for a numerical

constant.

In writing the amplitude for the Gtower
C at second order we must be

more careful. Indeed, we have two loops which are chained one into

the other; in the GR tower diagram from two consecutive retarded

propagators G
(0)
R (k, τ1, τ3)G

(0)
R (k, τ3, τ2) one obtains τ1 > τ3 > τ2 while

for the GC tower diagram one obtains only τ1 > τ3. We note however

that the times internal to the loops do not receive constraints from the

θ functions relative to τ1, τ3, τ2. The integral over the time dτ4 must

then extend from a loop characteristic time to the upper end which
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is given by the θ function embedded in GR(p, τ3, τ4). The only time

scale available is the one given by the momentum p, thus the integral

over dτ4 is evaluated between −1
p

and τ3. With these considerations

the amplitude for the tower GC diagram is given by

G
tower(2)
C (k, τ1, τ2) =

∫ τ1

− 1

k

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

− 1
p

dτ4(−i)G
(0)
R (k, τ1, τ3)

(−i
λ

3!
a4(τ3))G

(0)
C (k, τ3, τ2)(−i)G

(0)
R (p, τ3, τ4)

(−i
λ

3!
a4(τ4))G

(0)
C (q, τ4, τ4)G

(0)
C (p, τ4, τ3) , (6.20)

and the amplitude for the retarded propagator is

G
tower(2)
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

− 1
p

dτ4(−i)G
(0)
R (k, τ1, τ3)

(−i
λ

3!
a4(τ3))G

(0)
R (k, τ3, τ2)(−i)G

(0)
R (p, τ3, τ4)

(−i
λ

3!
a4(τ4))G

(0)
C (q, τ4, τ4)G

(0)
C (p, τ4, τ3) , (6.21)

Now it is no more indifferent the order with which we perform the

integrals, since the momentum p is now in the integration limits of

τ4, so we need to perform first that integral and then the one over p.

Performing the calculation:

G
tow(2)
C (k, τ1, τ2) =

36

2!

(
λ

3!

)2
L

36k3

1

54k3

(
−2Λ3

IR + 2Λ3
UV − 2k3Λ3

IRτ1
3 + 2k3Λ3

UV τ1
3

−27k3 ln2[−k] ln

[
ΛUV

ΛIR

]
− 3k3 ln[−k]

(
−2Λ3

IRτ1
3 + 2Λ3

UV τ1
3

+9 ln2[−ΛIR] − 9 ln2[−ΛUV ] +
(
−6 + 6k3τ1

3
)
ln

[
ΛUV

ΛIR

]
)

+6k3ΛIR
3τ1

3 ln[τ1] − 6k3ΛUV
3τ1

3 ln[τ1]

−9k3 ln2[−ΛIR]
(
1 + k3τ1

3 +3 ln[τ1]) + 9k3 ln2[−ΛUV ]

(
1 + k3τ1

3 + 3 ln[τ1]
)

+ 3k3 ln

[
ΛUV

ΛIR

]

(
4 + 4k3τ1

3 + 12 ln[τ1] + 9 ln2[τ1]
)

. (6.22)

Considering also the mirror graph, at leading order we have

G
tow(2)
C ≃ H2

2k3

(
L

H2

)2
1

2!
[ln2(τ1) + ln2(τ2) − 2 ln2(−1

k
)] . (6.23)

82



To obtain a more compact and elegant result we use explicitly the small

momenta approximation and, in the integral over τ4, we integrate from

− 1
k

instead of −1
p
, obtaining :

G
tow(2)
C ≃ H2

2k3

(
L

H2

)2
1

2!
[ln2(−kτ1) + ln2(−kτ2)] . (6.24)

We note that using this simplification does not alter the physical mean-

ing of our calculation and its validity since what we have been cal-

culating up to now are the super–horizon correlations. Moreover the

substitution does not change the divergent behaviour for late times but

provides an easier to handle expression.

We can calculate the tower diagram (fig. 6.6) for the retarded propa-

gator and we obtain the following result:

G
tow(2)
R =

36

2!

(
λL

3!(2π)

)2
1

27

1

54

(
ΛIR

3τ1
6 − ΛUV

3τ1
6 − ΛIR

3τ2
6 + ΛUV

3τ2
6

+12
(
τ1

3 − τ2
3
)
ln

[
ΛUV

ΛIR

]

+6
(
−ΛIR

3 + ΛUV
3
)
τ1

3τ2
3 ln

[
τ1

τ2

]

−36τ2
3 ln

[
ΛUV

ΛIR

]
ln

[
τ1

τ2

]

−27
(
τ1

3 + τ2
3
)
ln

[
ΛUV

ΛIR

]
ln2

[
τ1

τ2

]

+9 ln[−ΛUV ]2
(

2τ1
3 − 2τ2

3 − 3
(
τ1

3 + τ2
3
)
ln

[
τ1

τ2

])

+9 ln2[−ΛIR]

(
−2τ1

3 + 2τ2
3 + 3

(
τ1

3 + τ2
3
)
ln

[
τ1

τ2

])

+36
(
τ1

3 − τ2
3
)
ln

[
ΛUV

ΛIR

]
ln[τ2]

−54
(
τ1

3 + τ2
3
)
ln

[
ΛUV

ΛIR

]
ln

[
τ1

τ2

]
ln[τ2] .

(6.26)

83



At leading order it takes the shorter form

−iG
tow(2)
R ≃ +iH2

3

(
λL

3!H2

)2 (
τ1

3 + τ2
3
)
ln2

[
τ1

τ2

]
. (6.27)

We want to make two observations:

a) In all cases (tadpole graphs, sunrise and tower) we have the same

quadratic logarithmic divergence for late times. We can imagine

that proceeding to higher orders the powers of the divergent log-

arithms will grow following the increasing order. For the tadpole

graphs this is rather easy to see. Indeed, given a tadpole graph of

Figure 6.7: Tadpole added at each order

the nth order, which means a graph with n consecutive tadpoles,

we can obtain the one with n + 1 tadpoles by simply adding a

vertex with a tadpole and a G
(0)
R on the left side (see figure 6.7).

Dimensionally each free retarded propagator brings a τ 3 while each

vertex brings a τ−4 and an integral over τ . The tadpole does not

contribute to the powers of τ but contributes with a L. So in total

we obtain an L
∫

dτ
τ

, which qualitatively shows why at each order

n we expect a divergence ≃ lnn(τ);

b) If we take into consideration only the tadpole graphs, we see that

the G
(1)
C and G

(2)
C show the structure of a power series. In partic-

ular, if we define the parameter

ǫ =
λL

3!H2
(6.28)
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we see that they correspond to the first and second order terms

of the expansion in powers of ǫ of G
(0)
C eǫ ln(k2τ1τ2). However the

first two corrections to GR do not show such a simple behaviour.

Actually this was expected due to the request of oddness, since at

odd orders we must have a term (τ1
3+τ2

3) in front of the logarithm,

while at even we need a term of the form (τ1
3 − τ2

3), due to the

powers of the logarithm being in the two cases, respectively, odd

and even. Therefore if we want to have a chance of summing the

GR tadpoles graphs we need to check at least the next odd and

even orders, in other words, the third and fourth.

6.1.3 Higher Order Diagrams

The observation at the end of last section prompt us to explore the

behaviour of the same type of graphs at higher order. As we proceed

to higher orders we find new types of diagrams that we should account

for. We restrict our analysis now to the simpler ones, keeping in mind

our aim of finding a feasible resummation for those, that could be

indicative also of the behaviour of the complete theory. Let us start

now with the third and fourth order diagrams for GR and GC with only

tadpoles. These are the easiest and the calculation is straightforward

as it mimicks exactly what we did for the lower orders. The diagrams

are shown in figures 6.8 and 6.9 and the results at leading order are:

G
(3)
C (k, τ1, τ2) ≃ H

2k3

(
λL

3!H2

)3
1

3!
(ln3(−kτ1) + ln3(−kτ2)), (6.29)

G
(4)
C (k, τ1, τ2) ≃ H

2k3

(
λL

3!H2

)4
1

4!
(ln4(−kτ1) + ln4(−kτ2)), (6.30)

−iG
(3)
R (k, τ1, τ2) ≃ −iH2

3

(
λL

3!H2

)3
1

3!
(τ1

3 + τ2
3) ln3(

τ1

τ2

), (6.31)

−iG
(4)
R (k, τ1, τ2) ≃ −iH2

3

(
λL

3!H2

)4
1

4!
(τ1

3 − τ2
3) ln4(

τ1

τ2

). (6.32)
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Figure 6.8: Three tadpole GC diagram

Figure 6.9: Three tadpole GR diagram

Figure 6.10: Four tadpole GC diagram

Figure 6.11: Three tadpole GR diagram
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We see that our guess for GC is confirmed. In terms of the ǫ defined

in eq. (6.28), we define the sum of all the tadpole graphs (at leading

order) for GC as

Gchain
C (k, τ1, τ2) = G

(0)
C eǫ ln(k2τ1τ2) (6.33)

=
H2

2k3
e

λL

3!H2 ln(k2τ1τ2) . (6.34)

This Gchain
C is not anymore divergent for late times! Indeed in that limit

it simply goes to 0. This our first important result. We stress that to

obtain eq. (6.33) we have discarded all the the sunrise, tower and the

more complex diagrams that eventually arise as the order increases. Yet

it is a first indication that the resummed theory may be not divergent.

Let us focus now on what happens to the GR. We observe separately

the odd and the even order tadpole diagrams. The even terms show a

structure of the form:

−iG
(0)
R − iG

(2)
R − iG

(4)
R 1 +

x2

2!
+

x4

4!
+ . . . , (6.35)

while odd terms:

−iG
(1)
R − iG

(3)
R − iG

(4)
R − (

x

1!
+

x3

3!
+ . . .) . (6.36)

The series expansion (6.35) and (6.36) respectively correspond to those

of the hyperbolic cosine and sine. So considering only the tadpole

graphs again, we define Gchain
R (k, τ1, τ2) as:

−iGchain
R (k, τ1, τ2) = −i

H2

3
(τ1

3 − τ2
3) cosh

[
ǫ ln

(
τ1

τ2

)]

+i
H2

3
(τ1

3 + τ2
3) sinh

[
ǫ ln

(
τ1

τ2

)]

= −i
H2

3
(τ1

3 − τ2
3)

1

2

τ 2ǫ
1 + τ 2ǫ

2

(τ1τ2)ǫ

+i
H2

3
(τ1

3 + τ2
3)

1

2

τ1
2ǫ − τ2

2ǫ

(τ1τ2)ǫ
, (6.37)

which can be written in the shorter form

−iGchain
R (k, τ1, τ2) = −i

H2

3
(τ1

3−ǫτ2
ǫ − τ1

ǫτ2
3−ǫ) (6.38)
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Figure 6.12: Examples of higher order and more complex diagrams.

We note that if ǫ < 3 than also Gchain
R does not diverge at late times.

Results (6.33) and (6.38) are very important in that they provide a

first non perturbative estimate of the behaviour of the theory. Previ-

ous attempts have only explored the first [26, 27, 78, 23, 25], sometimes

second, order in perturbation theory, stating the presence of the log-

arithmic divergences but not providing any indication about whether

they were curable. Here we have just shown that, at least considering

this tadpole class of diagrams, it is possible to obtain a non perturbative

finite result for both the propagators.

Figure 6.13: Third order GR tower graph.

A natural problem arises now: we have neglected many diagrams in
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our ’resummation’, is this justified? In other words, can we somehow

show that their contribution is not important in comparison to the

tadpoles ones or that, when summed, they are not plagued by malicious

divergences? Let us take a look at what happens if we consider the third

order tower graph for GR (fig. 6.13). Its amplitude can be written as:

G
tower(3)
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3(−i)G
(0)
R (k, τ1, τ3)(−i

λ

3!
a4(τ3))G

(0)
R (k, τ3, τ2)

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

− 1
p

dτ4(−i)G
(0)
R (p, τ3, τ4)

(−i
λ

3!
a4(τ4))G

(0)
C (q, τ4, τ3)

∫ τ4

− 1

q

(−i
λ

3!
a4(τ5))G

(0)
R (q, τ4, τ5)

G
(0)
C (q, τ5, τ4)

∫
d3t

(2π)3
G

(0)
C (t, τ5, τ5)

The combinatorial coefficient is 3423

3!
and thus the straightforward cal-

culation gives (at leading order):

G
tow(3)
R = θ(τ1 − τ2)

iH2

3

(
λL

3!H2

)3
22

3!
(τ1

3 + τ2
3) ln3

(
τ1

τ2

)
.(6.39)

Comparing this result with eq. (6.27) we are tempted to see a trend. If

we assume that each higher order has the same dependence of the type

−iG
tow(n)
R (k, τ1, τ2) = θ(τ1−τ2)

iH2

3
ǫ2+m 22m

(2 + m)!
(τ1

3+τ2
3) ln2+m

(
τ1

τ2

)
,

with m running from 0 to ∞ we may expect to be able to sum the series.

In particular we collect a θ(τ1−τ2)
iH2

3
(τ1

3 +τ2
3) ln2

(
τ1
τ2

)
, obtaining the

series below

θ(τ1 − τ2)
iH2

3
(τ1

3 + τ2
3) ln2

(
τ1

τ2

) [
ǫ2

2!
+

4ǫ3

3!
ln

(
τ1

τ2

)
+ . . .

]
,

where the terms in the parenthesis can be summed. The sum gives

∞∑

m=0

ǫ2+m

(2 + m)!

[
4 ln

(
τ1

τ2

)]m

= −
1 −

(
τ1
τ2

)4ǫ

+ 4ǫ ln
(

τ1
τ2

)

16 ln2
(

τ1
τ2

) . (6.40)
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Multiplying now eq. (6.40) by the expression we collected before, we

note that the summed tower graphs are not more divergent than a first

order graph anymore. The complete expression is

θ(τ1 − τ2)
iH2

3
(τ1

3 + τ2
3) ln2

(
τ1

τ2

)
−

1 −
(

τ1
τ2

)4ǫ

+ 4ǫ ln
(

τ1
τ2

)

16 ln2
(

τ1
τ2

) .

and one sees immediately that it is formed by the sum of three terms.

Omitting for clarity the θ functions, we have

−iH2

3
(τ1

3 + τ2
3) +

iH2

3
(τ1

3 + τ2
3)

(
τ1

τ2

)4ǫ

− iH2

3
(τ1

3 + τ2
3)4ǫ ln

(
τ1

τ2

)
.

For late times the only divergent term is the last one. If we compare

it with eq. (6.16), we immediately see that they are equal apart for a

factor 4. Thus the resummation of the whole tower graph class is up to

a factor equivalent to a tadpole graph. It is first order in the parameter

ǫ and has a divergence ln. If we sum the two we obtain

−iG
tad+tower(1)
R (k, τ1, τ2) =

iH2

3
(τ1

3 + τ2
3)5ǫ ln

(
τ1

τ2

)
, (6.41)

where G
tad+tower(1)
R is effectively the G

(1)
R renormalized to include all the

tower graphs and the single tadpole graph (which can be viewed as the

first order tower). If we define ǫ′ = 5ǫ, one can use this new G
tad+tower(1)
R

to build chains as we did before with simple tadpoles and we expect

formally the same result,

−iGchain−tower
R (k, τ1, τ2) = −i

H2

3
(τ1

3−ǫ′τ2
ǫ′ − τ1

ǫ′τ2
3−ǫ′) . (6.42)

Moreover we see that the odd behaviour of the −iG
tow(n)
R with even

n is automatically cured by summing over all the graphs. We do not

need to repeat the derivation for the GC propagator since it differs

for a retarded propagator outside of the tower, which therefore cannot

modify the result that we have just obtained. Analogously we define

the resummed propagator GC over general chains of towers as

Gchain−tower
C (k, τ1, τ2) = G

(0)
C eǫ′ ln(k2τ1τ2) . (6.43)
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One can try to do the same thing for the sunrise diagrams too. However,

in this case, it is necessary to sum separately the odd and even terms

due to the alternating terms (τ1
3 ± τ2

3). The second order sunrise has

already been calculated in eq. 6.18, so we show here that the amplitude

of the third order graph (which is the bottom one in figure 6.12) has

the same analytical form of the third order tadpole graph. This is an

example but the general m–order sunrise with odd m has a similar

graph with m − 1 ’inner’loops. For the third order GR we write

G
sun,(3)
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3(−i
λ

3!
a4(τ3))(−i)G

(0)
R (k, τ1, τ3) (6.44)

∫ τ1

τ2

dτ4(−i
λ

3!
a4(τ4))

∫
d3q

(2π)3

d3p

(2π)3

d3t

(2π)3

G
(0)
C (p, τ3, τ5)(−i)G

(0)
R (k − p − q, τ3, τ4)G

(0)
R (q, τ3, τ4)∫ τ1

τ2

dτ5(−i
λ

3!
a4(τ5))(−i)G

(0)
R (k − p − t, τ4, τ5)

G
(0)
R (k, τ1, τ3)G

(0)
R (t, τ4, τ5)(−i)G

(0)
R (k, τ5, τ2) ,

but at late times the free retarded propagators do not depend on the

momentum flowing through them and the free GC do not depend on

the times, so all the retarded propagators go out of the integrals over

p,q and t and we obtain three simple loop integrals as in eq. (5.32),

G
sun,(3)
R (k, τ1, τ2) ≡

∫ τ1

τ2

dτ3(−i
λ

3!
a4(τ3))(−i)G

(0)
R (k, τ1, τ3) (6.45)

∫ τ1

τ2

dτ4(−i
λ

3!
a4(τ4))(−i)G

(0)
R (k, τ3, τ4)

∫ τ1

τ2

dτ5(−i
λ

3!
a4(τ5))(−i)G

(0)
R (k, τ4, τ5)(−i)G

(0)
R (k, τ5, τ2)

∫
d3q

(2π)3

d3p

(2π)3

d3t

(2π)3
G

(0)
C (p, τ3, τ5)G

(0)
C (q, τ3, τ4)G

(0)
C (t, τ4, τ5) ,

where we put k in the retarded propagators to show the equivalence

with the three tadpole case. The only difference is the coefficient due to

Wyck’s theorem in front of the amplitude. In this case for the second

order sunrise is (3223)/2! and for the third order (3523)/3!. Expliciting

all the coefficients we obtain two different sums, one for even terms and
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one for odd terms. For the even terms we obtain:

≃ −iH2

3
4(τ1

3 − τ2
3) ln2

(
τ1

τ2

) cosh
[
9ǫ ln

(
τ1
τ2

)]
− 1

81 ln2
(

τ1
τ2

) ,

and we can see easily that it has no logarithmic divergence, vanishing

for late times, while for the odd terms we obtain:

≃ −iH2

3
4(τ1

3 + τ2
3)

[
ǫ

9
ln

(
τ1

τ2

)
− ǫ

81
sinh

[
9ǫ ln

(
τ1

τ2

)]]
,

which instead shows a logarithmic divergence. As opposed to the tower

graphs, we cannot sum over chains of sunrise graphs to reabsorb the

divergence since we have already done that. Can we cure it somehow?

There is a way. Until now we calculated all the graphs using as funda-

mental bricks the free propagators of (5.32), yet using them we cannot

avoid the arising of logarithmic divergences due to the combination of

vertex, free retarded propagator and integration over τ . Now however

we have at our disposal a more powerful tool: we have summed the

tadpole–only chains and we have seen how tower graphs correct them

only by a factor in the parameter ǫ. What we can do then is to renor-

malize the sunrise diagrams by calculating them with the resummed

propagators (equations (6.33) and (6.38)) instead of the bare ones. In-

deed the second order sunrise becomes non divergent just using the

tadpole chain graphs. If we use the new symbols of figure (6.14) for

the Gchain
R (upper one in the figure) and Gchain

C (bottom one), we may

Figure 6.14: Tadpole chain propagators.

formally write the same integral (6.18) substituting the free propaga-

tors with the tadpole–chain ones and the corresponding graph is the
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one in figure 6.15. Then the integrals for the two sunrise second order

diagrams are

G̃
(2)sun
C (k, τ1, τ2) =

∫ τ1

− 1

k

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

− 1
k

dτ4(−i)Gchain
R (k, τ1, τ3)

(−i
λ

3!
a4(τ3))G

chain
C (p, τ3, τ4)(−i)Gchain

R (k − p − q, τ3, τ4)

(−i
λ

3!
a4(τ4))G

chain
C (q, τ3, τ4)G

chain
C (k, τ4, τ2) , (6.46)

−iG̃
(2)sun
R (k, τ1, τ2) =

∫ τ1

τ2

dτ3

∫
d3p

(2π)3

∫
d3q

(2π)3

∫ τ3

τ2

dτ4(−i
λ

3!
a4(τ3))

(−i)Gchain
R (k, τ1, τ3)G

chain
C (p, τ3, τ3)(−i)Gchain

R (k − p − q, τ3, τ4)

(−i
λ

3!
a4(τ4))G

chain
C (q, τ4, τ4)(−i)Gchain

R (k, τ4, τ2) . (6.47)

Performing the calculations, one see that the resulting G̃R and G̃C are

non divergent for late times. If we consider now a chain of sunrise

diagrams built with the resummed diagrams (6.15), the higher order

diagrams are less divergent than the one shown above because we will

be injecting powers of τ and thus the graphs will depend on powers of

τ ǫ or higher powers, therefore producing an even stronger convergence

at late times.

Results (6.33, 6.38, 6.42, 6.43) are extremely important: they show

indeed that it is possible to separately resum the tadpoles graphs, the

Figure 6.15: Example of sunrise drawn using the resummed tadpole propa-

gators.

93



tower graphs and even build chains of tower graphs, that we expect to

be non divergent in the late time limit. We started with logarithmic

divergences that kept growing with the increasing orders and found

that when considered globally they produce non divergent propagators

therefore non divergent two-point correlation functions. It is clear that

here we are overlooking many diagrams: actually one could continue

to refine the analysis, for example resumming the tadpole graph built

with the chain propagator of figure 6.14, and to be able to include all

the possible diagrams one should iterate the process infinite times, con-

sidering the different type of graphs that arise at the various orders.

For example, putting chain of tadpoles ’inside’ other chains of tadpoles

one builds the so called daisy graphs. Still, our aim was not to renor-

malize the whole theory but to provide evidence that in the limit of

late time during Inflation the divergences arising from higher order loop

corrections are naturally reabsorbed by considering more diagrams in

the way we have shown. We now have that strong evidence to expect

the completely resummed theory to be non divergent. Moreover, the

finiteness of the correlation functions at late times allows us to make

meaningful predictions about the level of non Gaussianity introduced

by the non Gaussian field.

The target in our analysis is calculating the connected part of four–

point functions which is not reducible to a product of two–point func-

tions, since, as explained in section 4.2, that is the contribution to the

non Gaussianity due only to the intrinsic non linearity of the field. Now

we have resummed non divergent propagators that we expect will allow

us to obtain a non divergent four–point function.

6.2 Four Point Functions

We want to calculate now the four–point correlation function T aris-

ing from our λφ4 theory. As shown in section 4.2, knowledge of T

would allow us to constraint the perturbations non Gaussianity com-

ing from the field itself. Formally it is possible to build 5 different four
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point functions, combining φC and φ∆. The one we are interested in

is 〈δφCδφCδφCδφC〉. In general each of the fields will depend on a mo-

ment ki and on a different time. Still, we are interested evaluating the

four–point function at equal times, so more precisely the quantity we

want to calculate is:

〈δφC(k1, τ)δφC(k2, τ)δφC(k3, τ)δφC(k4, τ)〉 = T (k1,k2,k3,k4)(2π)3δ 3(k1 + k2 + k3 + k4) .

(6.48)

The first thing we can do is to go at tree level and see what happens.

The diagram in terms of free propagators at tree level is drawn in figure

(6.16). It is easy to build it using three G
(0)
C and one G

(0)
R , but we must

Figure 6.16: Tree level four point function 〈δφCδφCδφCδφC〉.

then sum over the permutations since each of the four momenta can

be flowing through the retarded propagator. So the amplitude at tree

level is

T tree(k1,k2,k3,k4) =
4∑

i=1

∫ τ

dτ ′e−i(
P4

l=1 kl)τ
′

(−i
λ

3!
a4(τ ′)) (6.49)

(−iG
(0)
R (ki, τ, τ

′))
∏

j 6=i

G
(0)
C (kj, τ, τ

′)e−i[
P4

i=1 ki]τ
′ .

The indefinite integral becomes:

=
e−i(

P

ki)τ
(
(−2 + i(

∑
ki)τ + (

∑
ki)

2τ 2) τ 3 + iei(
P

ki)ττ 3 (6i + (
∑

ki)
3τ 3)

)

6τ 3

Ei(−i(
∑

ki)τ) , (6.50)
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where Ei(z) is:

Ei[x] = −
∫ ∞

−x

e−s

s
ds . (6.51)

And so in the limit of late times, neglecting terms of order kτ :

T tree(k1,k2,k3,k4, τ) = − λH4

3!24
∏

ki
3

∑
ki

3

[
−γ − iπ

2
− ln

[
−(

∑
ki)τ

]]
.

(6.52)

Equation (6.52) reproduces in a simple way the result obtained by

Bernardeau et al. in [28]. In their analysis they provide also a next to

leading term, which is actually a form factor of the momenta configura-

tion. In our analysis we have systematically dropped them for easiness

of calculation since, in calculating loop terms, they tend to quickly

multiply, soon becoming of difficult handling. It is important still that

we have obtained the same leading behaviour for the tree level 4–point

function. We stress that for late times T shows again a logarithmic

divergence.

We want now to see whether also this divergence is reabsorbed by sum-

ming over many diagrams. We have shown that the tadpole, tower and

sunrise classes can be made finite by considering a sufficient number

of graphs. We also showed how adding more diagrams cannot pro-

duce divergences but just reinforce the convergence for late times. So

among our set of ’resummed’ propagators we choose the tadpole chain

propagators (6.33, 6.38). Our hope is to find that considering only

the tadpole graphs is enough to reabsorb the divergence. It would be

indeed a powerful result. So we draw again the four–point function

but this time we use the ’double-line’ propagators as in fig. 6.17. The

amplitude is

T chain(k1,k2,k3,k4) =
4∑

i=1

∫ τ

dτ ′e−i(
P4

l=1 kl)τ
′

(−i
λ

3!
a4(τ ′)) (6.53)

(−iGchain
R (ki, τ, τ

′))
∏

j 6=i

Gchain
C (kj, τ, τ

′)e−i[
P4

i=1 ki]τ
′

= − λ

3!

H4

24

1∏4
i=1 ki

3

4∑

i=1

ki
3
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Figure 6.17: 4–point function calculated using Gchain
C and Gchain

R .

∏

j 6=i

kj
2ǫτ 6ǫ [−E4−4ǫ(iktτ) + E1−2ǫ(iktτ)] , (6.54)

where the function En(z) is defined as

En(z) =

∫ ∞

1

e−zt

tn
dt , (6.55)

and thus in the limit −kτ ≪ 1 the amplitude becomes:

T chain(k1,k2,k3,k4) = − λ

3!

H4

24

1∏4
i=1 ki

3

4∑

i=1

ki
3
∏

j 6=i

kj
2ǫ (6.56)

τ 6ǫ(iktτ)−4ǫ
[
(iktτ)2ǫΓ(2ǫ, iktτ) + ik3τ 3Γ(4ǫ − 3, iktτ)

]

Performing the limit for kτ → 0 we find that T chain(k1,k2,k3,k4) van-

ishes. Figure 6.18 is the plot of the amplitude’s absolute value |T | near

kτ = 0 for ǫ = 0.1, while figure 6.19 shows the behaviour of |T | as a

function of both ǫ and kτ . Once again we see that the simple inclusion

of more graphs is enough to reabsorb the divergence of the 4–point

functions and even more it makes it vanishingly small at late times.

This was the result we have been pursuing in this work. We have shown

that in the case of a minimally coupled massless scalar field with a φ4

self–interaction the contribution to the non Gaussianity of ζ coming

from the intrinsic non linearity of the field is vanishingly small at large

times. Thus, the non gaussian contributions to ζ come only from the
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effects of gravity.

It must be stressed that (6.56) is valid for any minimally coupled mass-

less scalar field not only for the inflaton. So the resut applies to any

scalar field present during Inflation.

It must be specified that in our calculations we made an assumption

(H = constant) which is contradictory with identifying φ with the

inflaton. In effect, if we say that φ is the inflaton with a φ4 potential

then H2 ≃ V ≃ φ4 and so we would need a constant field all over the

space to obtain a constant H, but this contrasts with the equation of

motion, which gives φ̇ 6= 0. If instead we say that φ is not the inflaton,

we have no problems in having a costant H, but we have to account

for the change in ζ due to the presence of multiple fields. However our

results are meaningful under the suitable hypothesis of, respectively, a

slowly changing H or a neglectable ζinflaton for the inflaton field.
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Figure 6.18: Plot of |T | for a square configuration (k1 = k2 = k3 = k4) with

ǫ = 0.1, showing the steep decrease of the amplitude absolute value for small

kτ .
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Figure 6.19: 3D Plot of |T | for a square configuration (k1 = k2 = k3 = k4)

for values of kτ and ǫ: 0 < kτ < 0.1 and ǫ < 1. It is evident the fast decrease

of the amplitude for small kτ .
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6.3 Diagrams Selection and O(N) symme-

try

Up to now we have shown that it is possible to resum the tadpole and

tower diagrams obtaining non divergent propagators, we have also tried

to resum the sunrise diagrams but we have obtained is an extremely

large propagator that can be made non divergent recalculating it with

the tadpole–chain propagator. Then we have used those resummed

propagators to calculate the 4-point correlation function at tree level

finding it to be non divergent in the late time limit. However what

happens to the whole lot of the diagrams that we have not taken into

account? When we have first summed over tadpole chains of arbitrarily

length, we found finite propagators but at the same time we renounced

to the benefits of a perturbative approach and put ourselves in the

uncomfortable position of having to account for all the diagrams, of

every order and topology. Our choice proved to be interesting even if

tricky. However there is a way to deal in a single swipe with all the

diagrams we have left out. We need however to change slightly the

terms of our problem and invoke a O(N) symmetry over N fields2.

Following [95], we consider a theory of N real scalar fields, φa, with

O(N)–symmetric quartic interactions. The Lagrangian density for the

theory is

L =
1

2
∂µφ

∂µφa − λ

8N
(φaφa)2 , (6.57)

where the sum over repeated indices is implied. This model can be an-

alyzed in two ways: one is ordinary perturbation theory in λ for fixed

N , the other is perturbation theory in 1/N for fixed λ. It has been

shown that in the second expansion, at least to leading order in 1/N , it

is possible to obtain formulas for many quantities of physical interest.

These formulas typically display richer structures than the correspond-

ing leading–order expressions in ordinary perturbation theory. This

is because the leading 1/N approximation preserves much more of the

2Here N has nothing to do with the δN formalism and the doubling of notation is sadly

due to literature conventions.
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nonlinear structure of the exact theory that does ordinary lowest–order

perturbation theory. We are interested in this theory since it provides

a natural way to show how certaing Feynman diagrams become sup-

pressed in the large–N limit.

We note as first thing that each interaction vertex has field indices dis-

tributed as in figure 6.20. Each vertex brings a factor 1/N due to the

Figure 6.20: Vertex showing the fields’ indices.

potential normalization. A diagram with r vertices then has a suppres-

sion factor of 1/N r. However when considering loop diagrams there is

the possibility of summing over free field indices. As meaningful exam-

ples we propose the first order tadpole diagram (fig. 6.21), the second

order tower diagram (fig. 6.22) and the second order sunrise diagram

(fig. 6.23).

In the tadpole one the propagated field is labeled by a and so the

Figure 6.21: Tadpole graph showing fields’ indices.

two b legs of the vertex are closed together. This leaves the choice of
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the field flowing in the tadpole free and therefore the sum produces a

factor N . The tadpole diagram then has a suppression factor of order

1/N ×N = 1. Thus tadpole diagrams are not suppressed, since at each

vertex corresponds a loop and so the factors cancel. In the tower graph

Figure 6.22: Tower graph showing fields’ indices.

of fig. 6.22 the propagated field is again labeled by a. In the figure

we see that despite the presence of two vertices (1/N2) there are also

two loops where the flowing fields can be freely chosen and that gives a

N2. So also this diagram is not suppressed. Higher order tower graphs

are not suppressed either since for each additional vertex there is an

additional loop, as in the tadpole case. The sunrise diagram is the first

Figure 6.23: Sunrise graph showing fields’ indices.

diagram we find to have a different behaviour. In fact the two vertices

give a 1/N2 factor but here we do not have two free indices to sum over

and cancel the factor. In fact we have only the field labeled by b as a
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free choice and so we get just a N factor. Thus the sunrise diagram is

suppressed by 1/N . In the large–N limit the sunrise diagrams, which

-we remind- were the divergent ones also after resumming them, are

naturally less important than the tadpole and tower graphs, since the

nth order tadpole or tower graph has always a factor 1 in front, while

the corresponding sunrise a 1/N
n
2 for even n and 1/Nn−1 for odd n.

However, starting from the third order and going up one can start to

draw diagrams which do not belong to any of classes we analyzed, so

a natural question arises: are those other diagrams suppressed in this

O(N) theory or do they still represent an unsolved issue?

Let us suppose to have a general diagram Υ of order l. This means that

it has l vertices and thus a factor 1/N l. We have seen that the leading

diagrams have at all orders a global factor 1. So for our diagram Υ

to be dangerous we need to find a way for it to produce l loops where

the internal summation over fields is free, or in other words l free field

indices. To have a free index though we need the loop to be indipendent

of the propagated field (which we usually denoted as a in the previous

pictures). This can be done in two ways:

1. closing two legs of each vertex on themselves, so that all the ver-

tices themselves give a factor 1. However a diagram of this kind is

by definition a tadpole graph and so it has already been accounted

for;

2. closing two legs of a vertex on a second one which is completely

indipendent of the propagated field and that will not reconnect to

it. However this produces invariably tower graphs, which again

have been already accounted for.

Every other graph is suppressed at least by a factor 1/N .

We see now that our choice to focus on only particular classes of dia-

grams has been daring but somehow rewarding: we found a reasonable

reason to neglect the contributions of all classes of diagrams expect the

tadpole and tower ones. It is clear that this result is valid only in the
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large–N limit while until now we have always considered just one field

at a time. However the O(N) symmetry that we invoked allows us to

apply the same argument to our case.
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Chapter 7

Conclusions

We have presented the tools needed to calculate correlation functions

of arbitrary order during a de Sitter stage in the case of a scalar field

with a potential V [φ] = λ
4!
φ4. We have showed how the divergences

at late times are generated when using the free two–point functions

and how they persist at higher orders. We have then chosen differ-

ent classes of diagrams and shown how considering the resummation

of each class it is possible to reabsorb the divergences. In particular

we have found that for late times the tadpole and tower resummed

two–point functions are vanishingly small. These resummed two–point

functions have then been used to calculate the connected four–point

function 〈δφCδφCδφCδφC〉 and it was shown to be vanishingly small

in the late time limit. A justification for neglecting different classes

of diagrams has been given under the assumption of a large number

N of scalar field obeying a O(N) symmetry. Our main result is thus

that a scalar field with a quartic potential does not contribute to the

non Gaussianity of the curvature pertubation ζ, since both the two–

and four–point correlation functions vanish at the end of the de Sitter

stage.

We stress that our work was performed with a particular potential,

however a generalization to a φn potential would be natural and inter-

esting. As a final remark, we point out that we calculated the propaga-

tors at lower orders and then built up to loop corrections. It would be
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interesting at this point to investigate whether a stochastic approach to

the calculation of field correlation functions does account -and in what

measure- for loop corrections and whether it can provide a complete

solution.
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