
The Replica Consistency Problem in Data Grids

Gianni Pucciani

A thesis submitted for the degree of Doctor of Philosophy in
Information Engineering

Department of Information Engineering
University of Pisa

February 2008

ii

iii

Abstract

Fast and reliable data access is a crucial aspect in distributed computing and is often
achieved using data replication techniques. In Grid architectures, data are replicated
in many nodes of the Grid, and users usually access the “best” replica in terms of
availability and network latency. When replicas are modifiable, a change made to one
replica will break the consistency with the other replicas that, at that point, become
stale. Replica synchronisation protocols exist and are applied in several distributed
architectures, for example in distributed databases. Grid middleware solutions pro-
vide well established support for replicating data. Nevertheless, replicas are still
considered read-only, and no support is provided to the user for updating a replica
while maintaining the consistency with the other replicas.

In this thesis, done in collaboration with the Italian National Institute of Nu-
clear Physics (INFN) and the European Organisation for Nuclear Research (CERN),
we study the replica consistency problem in Grid computing and propose a service,
called CONStanza, that is able to synchronise both files and heterogeneous (differ-
ent vendors) databases in a Grid environment. We analyse and implement a specific
use case that arises in high energy Physics, where conditions databases are replicated
using databases of different makes. We provide detailed performance results, and
show how CONStanza can be used together with Oracle Streams to provide multi-
tier replication of conditions databases using Oracle and MySQL databases.

iv

v

Ai miei genitori, e a Karolin.

vi

Contents

1 Introduction 1
1.1 Structure and contents overview 2

I Foundations 5

2 Consistency in centralised and distributed databases 7
2.1 Concepts and definitions . 8

2.1.1 Recoverability . 9
2.1.2 Serializability . 9

2.1.2.1 Consistency preservation 10
2.2 Techniques used in centralised databases 11

2.2.1 Locking schedulers . 12
2.2.1.1 Basic 2PL . 13
2.2.1.2 Variations of 2PL 13
2.2.1.3 Tree locking (TL) 14

2.2.2 Non-locking schedulers 14
2.2.2.1 Timestamp ordering (TO) 15
2.2.2.2 Serialisation graph testing (SGT) 15
2.2.2.3 Certifiers . 16
2.2.2.4 Integrated schedulers 16

2.2.2.4.1 Thomas’ write rule (TWR) 16
2.2.2.5 Multiversion concurrency control (MV) 17

2.3 Distributed Databases, concepts and consistency mechanisms 17
2.3.1 Concurrency Control in DDBMS 18

2.3.1.1 Primary site 2PL 18
2.3.1.2 Distributed 2PL (D2PL) 19

viii

2.3.2 Reliability in DDBMS . 19
2.3.2.1 Two-Phase Commit Protocol 19
2.3.2.2 Three-Phase Commit Protocol 20

2.3.3 Lazy approaches in replicated databases 21

3 Replication and consistency in wide area data stores 23
3.1 Data Replication . 24

3.1.1 Snapshot or Static Replication 26
3.2 Replica synchronisation techniques 28

3.2.1 Optimistic replication . 29
3.2.1.1 Single-master vs multi-master 29
3.2.1.2 Content-transfer vs log-based 30
3.2.1.3 Push-based vs Pull-based 31
3.2.1.4 Consistency guarantees 31
3.2.1.5 Conflict management in multi-master systems . . 32

3.3 SWARM and its composable consistency model 33
3.3.1 Composable Consistency options 33
3.3.2 Replication in SWARM 34
3.3.3 Implementation of composable consistency 34

3.4 TACT . 35
3.5 Oracle Streams . 36

3.5.1 Bi-directional synchronisation 39
3.5.1.1 Conflict resolution in Oracle Streams 39

4 Requirements from Particle Physics 41
4.1 Particle Physics at CERN: the LHC experiments 42
4.2 The ATLAS experiment . 43

4.2.1 The ATLAS Computing Model 44
4.2.2 Conditions Data . 46
4.2.3 The COOL API . 47

4.2.3.1 Folderset arrangement 47
4.2.3.2 Basic COOL capabilities 49

4.3 Data Storage and Distribution . 50
4.4 The LCG-3D project . 51

4.4.1 Oracle Streams for Tier-0 to Tier-1 replication 52
4.4.2 Using FroNTier/Squid for distributed caching 54

4.4.2.1 Consistency issues in FroNTier/Squid 55
4.4.3 Applications managed by the LCG-3D replicated environment 55

Contents ix

5 Grid Computing 57
5.1 Grids as a model for collaborative computations 58

5.1.1 The EGEE Project . 60
5.1.1.1 Applications . 60

5.2 What is a middleware and what is it made of 62
5.2.1 The gLite middleware . 63

5.2.1.1 Security . 64
5.2.1.2 Information Service 65
5.2.1.3 Workload Management 66
5.2.1.4 Data Management 67

5.2.2 Data Management in the Globus Toolkit 69
5.2.2.1 Data Management Services 69

5.2.2.1.1 File Transfers 70
5.2.2.1.2 Replica Location 71
5.2.2.1.3 Data Replication 72

5.3 Service Oriented Architectures and the Grid 73
5.3.1 Integration of databases into the Grid with OGSA-DAI . . . 73
5.3.2 OGSA-DAI Distributed Query Processing 74

5.4 Replica consistency in Grid computing 74
5.4.1 Issues in designing a Replica Consistency Service 75

5.4.1.1 Scalability . 75
5.4.1.2 Security . 76
5.4.1.3 Replica Location 76
5.4.1.4 Efficient file transfer 76
5.4.1.5 SE heterogeneity 76
5.4.1.6 Disconnected nodes 77
5.4.1.7 Metadata Consistency 77

5.4.2 Previous and current efforts in Grid replica consistency . . . 77

II System Details 81

6 CONStanza, the Replica Consistency Service for Data Grids 83
6.1 Domain analysis . 84
6.2 Requirements . 85

6.2.1 Functional Requirements 85
6.2.2 Non-functional Requirements 89
6.2.3 Use Case Model . 92

x

6.2.3.1 Actors . 93
6.2.3.2 Use cases description 93

6.2.3.2.1 Automatic DB update with single-master
asynchronous log-based push mode pro-
tocol 95

6.2.3.2.2 Update file with single-master asynchronous
file replacement push mode protocol . . 96

6.3 Analysis . 96
6.3.1 Analysis classes . 97
6.3.2 Use case realisation . 102

6.3.2.1 Automatic database update with single master asyn-
chronous log-based push mode protocol 102

6.3.2.2 File synchronisation with asynchronous single mas-
ter push based protocol 103

6.4 Design and Implementation . 106
6.4.1 Nodes and network configuration 106
6.4.2 Subsystems decomposition 107
6.4.3 Subsystems in details . 109

6.4.3.1 GRCScore . 109
6.4.3.1.1 IGRCS-Admin 110
6.4.3.1.2 IGRCS-User 110
6.4.3.1.3 IGRCS-Internal 111
6.4.3.1.4 DefOpsContainer 111
6.4.3.1.5 GRCScore 113
6.4.3.1.6 UpdateOperation 114

6.4.3.2 Communication subsystems 116
6.4.3.3 Security subsystems 117
6.4.3.4 Configuration subsystems 117
6.4.3.5 LRCScore . 119
6.4.3.6 DBUpdater . 120
6.4.3.7 Database Replica Update 121
6.4.3.8 Oracle Log Mining 124
6.4.3.9 DBWatcher . 126
6.4.3.10 Monitoring of the Oracle Master Database 127
6.4.3.11 SQL Translator 130

6.4.4 CONStanza in action: Oracle to MySQL synchronisation . . 130
6.5 CONStanza, OGSA and OGSA-DAI 135

Contents xi

7 Performance Analysis 137
7.1 Testbed description . 138
7.2 Response variables . 138
7.3 Factors and parameters . 140
7.4 Experimental design . 142
7.5 Experimental results and analysis 142

7.5.1 Response time for automatic database synchronisation: yAutUpdT 143
7.5.1.1 Computation of effects 144
7.5.1.2 Allocation of variation 146

7.5.2 Time needed to create an update file: yLogGenT 148
7.5.3 Time needed to translate an update file: yTranslT 150
7.5.4 Time needed to notify the GRCS: yGRCSNotT 152
7.5.5 Time needed to retrieve an update file: yFilecpT 153
7.5.6 Time needed to apply an update file: yDBupdT 155
7.5.7 Sums of partial times: ysumsT 156

7.6 Conclusions of Performance Analysis 159

8 CONStanza and Oracle Streams for Conditions Database Replication 161
8.1 Testbed setup . 161

8.1.1 Streams setup . 162
8.1.2 CONStanza setup . 163

8.2 Testing COOL insertions and retrievals 164

9 Conclusions and Future Work 167
9.1 Future Work . 168

9.1.1 Application to Biomedical databases 168
9.1.2 Multi-master protocols . 169
9.1.3 Full support of the COOL API 169
9.1.4 An OGSA implementation of the RCS 169

10 Acknoweledgements 171

Appendix A Configuration files 173
A.1 GRCS . 173
A.2 LRCS . 174

Appendix B SQL Translator syntax 181

xii

Appendix C LogMiner Utility Package 185

List of Figures

2.1 Relationships among history properties 12

3.1 Distributed environment with a single data storage 24
3.2 Distributed environment with replicated data 25
3.3 Scenario for a Snapshot replication, static replication of history data 27
3.4 High-level view of Oracle Streams 36
3.5 Architecture and data flow in Oracle Streams 37

4.1 The Large Hadron Collider . 43
4.2 An inside view of the LHC tunnel 44
4.3 The ATLAS Detector . 45
4.4 Conditions databases deployment in ATLAS 51
4.5 Streams Setup for the LCG-3D project 53
4.6 The FroNTier/Squid architecture 54

5.1 RLS, fully connected deployment 72

6.1 Flexibility provided by different consistency protocol setups 89
6.2 Use case diagram . 92
6.3 Specialisation for the Update dataset use case based on the dataset type 94
6.4 Specialisation for the Update dataset use case based on the protocol

used . 94
6.5 Analysis classes for Dataset generalisation 97
6.6 File replication concepts. 98
6.7 Database replication concepts. 99
6.8 Class diagram for DB replication 100
6.9 Dataset replication concepts. 100
6.10 Analysis classes for the Update Dataset use case 101

xiv

6.11 Analysis classes for the synchronisation of databases 102
6.12 Sequence diagram for the synchronisation of databases 103
6.13 Class diagram for the synchronisation of replicated files 104
6.14 Sequence diagram for the synchronisation of flat files 105
6.15 Network configuration . 106
6.16 Main subsystems of the RCS . 108
6.17 Design classes for the GRCScore subsystem 109
6.18 An example of the DefOpsContainer structure 112
6.19 GRCScore class . 113
6.20 Update Operation class . 114
6.21 Update Propagation phase . 115
6.22 Design classes for the LRCSComm and GRCSComm subsystems 117
6.23 Design classes for the GRCSconfiguration subsystem 118
6.24 Design classes for the LRCScore subsystem 120
6.25 Design classes for the DBUpdater subsystem 120
6.26 Design classes for the DBUpdater subsystem 121
6.27 Flow of events for the Database Replica Update phase 123
6.28 Design classes for the DBWatcher subsystem 126
6.29 Design classes for the DBWatcher subsystem 127
6.30 Design classes for the DBWatcher subsystem 129
6.31 Design classes for the SQLtranslator subsystem 130
6.32 Sequence diagram of a complete Oracle to MySQL synchronisation

process . 134
6.33 OGSA-DAI and CONStanza to manage access to consistently repli-

cated heterogeneous databases . 136

7.1 CONStanza testbed . 139
7.2 Sequence diagram for database synchronisation 141
7.3 yAutU pdT . 143
7.4 yLogGenT . 148
7.5 yTranslT . 150
7.6 yGRCSNotT . 152
7.7 yFilecpT . 154
7.8 yDBupdT . 156
7.9 ysumsT . 157
7.10 ydi f f sT . 158

List of Figures xv

8.1 Scenario for the replication of conditions databases using Oracle Streams
and CONStanza . 164

xvi

List of Tables

4.1 Example of single version table . 48
4.2 Example of multi-version table . 49

6.1 Functional requirements. 90
6.2 Non functional requirements. 91

7.1 Computation of effects for yAutUpdT 145
7.2 Computation of effects for yLogGenT 149
7.3 Computation of effects for yTranslT 151
7.4 Computation of effects for yGRCSNotT 153
7.5 Computation of effects for yFilecpT 155
7.6 Computation of effects for yDBupdT 155
7.7 Computation of effects for ydi f f sT 159

xviii

Chapter 1

Introduction

Information management is becoming increasingly critical in today’s IT infrastruc-
tures. More and more data need to be stored, and ever more complex analyses are
performed on these data. In addition, data access must be efficient and without inter-
ruptions.

In research environments, as well as in the industry, Grids are used to handle
new computing challenges. In a Grid, many different institutions share computing
and data storage resources, and collaborate to perform data and CPU intensive tasks.
For example, at CERN (European Organization for Nuclear Research), a Grid infras-
tructure is used to store and analyse huge amounts of data coming from a particle
accelerator in order to discover new elementary particles. Data are generated by par-
ticle detectors, and shipped to world-wide distributed data analysis centres where the
actual analyses are performed.

In Grids, as well as in other distributed computing platforms, data are replicated,
i.e., copied at different locations, in order to improve the performance and the relia-
bility of the applications. However, the replication mechanisms developed so far in
Grid computing can be considered incomplete, in that they do not provide support for
replica consistency. This means that when a copy of a data item is modified by a user
or an application, the modification is not propagated to the other copies (replicas) of
the same data item, creating an inconsistency among the replicas.

In this thesis, done in collaboration with the Italian Institute for Nuclear Physics
(INFN) and CERN, we investigate the possibility to fill this gap by providing a
Replica Consistency Service for Grids. Replica consistency is an application spe-
cific topic; it has already been dealt with in distributed databases, and in many other
distributed architectures, using different approaches, but no solutions are currently

2

implemented in Grid computing. This is why, in the first part of this thesis, we con-
centrate on existing solutions from other fields, and evaluate the possibility of their
application to a Grid environment. In the second part instead, we present the design
and the implementation of a novel Replica Consistency Service for Grids.

The two main contributions of this thesis are the theoretical study of the replica
consistency problem in Grid computing, where only few efforts have been done so
far, and the development of a Grid software to solve this problem. The Replica Con-
sistency Service we developed has been successfully tested for a specific use case
that arises in High Energy Physics (HEP), that is the synchronisation of heteroge-
neous databases. A performance analysis has also been done in order to evaluate the
performance of the software and drive future development.

1.1 Structure and contents overview
This thesis is organised in two main parts. In the first one, that comprises Chapters 2
through 5, we introduce the application domain and the state of the art. We review the
main concepts about replication and consistency, and present some practical applica-
tions. We also discuss the feasibility and the main issues in developing a consistency
mechanism for Grids. In the second part, from Chapter 6 to Chapter 8 we present the
main deliverable of this work, CONStanza, a Replica Consistency Service for Grids.
The design and the implementation of this service are explained. A detailed perfor-
mance analysis is presented to help driving future developments. A functional test
for a specific use case is presented, where CONStanza is used together with Oracle
Streams to consistently distribute data in a tiered architecture.

The chapters are organised as follows. In Chapter 2, the theory of concurrency
control in centralised and distributed databases is reviewed. Database theory is a
solid and well understood discipline and it presents many analogies with the problem
we are facing in Grid computing. In Chapter 3, we introduce the main mechanisms
used in wide area data stores to enforce replica consistency. We focus on optimistic
replication, and we characterise different options based on the consistency level that
they offer. In Chapter 4, the main application field that drove this work, particle
Physics (or HEP) and the experiments performed at CERN, are presented. We fo-
cus on the ATLAS experiment, and we present the techniques used to distribute data
from CERN to world-wide distributed partner institutions. In Chapter 5, Grid com-
puting is explained, highlighting the peculiarities that make it a novel architecture
for distributed and collaborative computing. The software used to manage a Grid is
presented, with a focus on data replication services. In this chapter we show the ex-

1.1. Structure and contents overview 3

isting gap in replication services for what concern data synchronisation. In Chapter 6,
the main deliverable of these Ph.D. studies is presented: a Replica Synchronisation
Service for Grids called CONStanza. We present its development from requirements
collection to design and implementation. In Chapter 7, performance and scalabil-
ity of CONStanza are analysed using a two-factor full factorial experimental design.
This analysis allowed us to discover possible bottlenecks of the architecture and to
drive future developments. In Chapter 8, we present a functional test that shows how
CONStanza can be integrated with the Oracle Streams technology to provide multi-
tier data replication with heterogeneous databases. Finally, in Chapter 9, we conclude
summarising the main results and describing some interesting work that could follow
from this thesis.

4

Part I

Foundations

Chapter 2

Consistency in centralised and
distributed databases

Database systems play a fundamental role in every IT infrastructure; information is
critical and its correctness and reliability must be guaranteed without interruptions.
Software applications, even when they are carefully designed, well implemented and
tested, can suffer from inadequate data management. Concurrent access and fail-
ures are the main sources of problems. Nowadays, database technologies are robust
enough to be used in critical activities like banking and airlines as well as in advanced
research institutes. Databases allow these activities to perform well even when thou-
sands of users access data at the same time, or when hardware failures or disasters
cause the unavailability of storage and processing devices. Despite all this, databases
are robust enough not to cause service interruptions.

The database theory can be used as a starting point of our problem analysis; it
is a solid and well understood discipline, and it presents many analogies with the
problem we are faced with, the consistency of replicated data in Grid computing.
However, as we will see in Section 5.1, Grid environments present some more issues
that databases systems often do not have.

In this chapter we start reviewing the basic concepts of the database theory in
Section 2.1. Then, in Section 2.2, we recall the main techniques used in centralised
databases to enforce consistency and reliability. Finally, in Section 2.3, we see how
these techniques can be extended to guarantee consistency and reliability in dis-
tributed databases.

8

2.1 Concepts and definitions
Users access data stored in a database (DB) by means of database operations like
read(x) (reading the data item x) and write(x,val) (writing the value val into the
data item x) managed by a software application, the Database Management Sys-
tem (DBMS)1. In this section and in the rest of the thesis, we consider relational
databases2 , that is, databases conform to the relational model [52] where a collection
of data items is organised as a set of formally-described tables from which data can
be queried using the Structured Query Language (SQL).

Database operations are executed atomically, meaning that they can be considered
as units of execution, not decomposable into smaller operations. A set of logically
correlated database operations can be grouped to form a transaction. Transaction
operations, like start, commit and abort, are also atomic and they are used to manage
transactions. A transaction can be seen also as an execution of one or more programs
that include database and transaction operations.

At this point, before providing further definitions, it is important to recall the
basic ACID properties of a transaction [72]: atomicity, consistency, isolation and
durability. No database that fails to provide the ACID properties can be considered
reliable.

Atomicity Atomicity states that a transaction is treated as a unit of operation. It is
also called the “all-or-nothing property” and it involves the problem of state
recovery in case of failures happened during the transaction’s operations.

Consistency The consistency property says that a transaction should move the database
from one consistent status to another, where the consistent status is defined in
terms of integrity constraints.

Isolation The isolation property requires that each transaction will not reveal its re-
sults to other concurrent transactions before its commitment. This is a neces-
sary condition to avoid that a transaction that is going to abort could provide
data read by other concurrent transactions.

Durability Durability ensures that the results of a transaction, after its commit, are
permanent and cannot be erased from the database.

After seeing the ACID properties, let us continue to recall some basic concepts
of the database theory.

1Oracle and MySQL are two examples of DBMS that we will discuss later in this thesis.
2Other database models exist, like object-oriented and object-relational.

2.1. Concepts and definitions 9

2.1.1 Recoverability
A database should perform its operations in such a way that, even in case of a trans-
action abort, it is able to undo the effects of the aborted transaction allowing active
transactions to continue their execution. A database should always behave as if it con-
tains all the results of committed transactions and none of the results of uncommitted
ones. Recoverable executions, cascadelessness and strict executions are important
concepts in defining the recoverability of a database.

Recoverable executions A recoverable execution is one where a transaction T can-
not commit until all transactions that wrote values read by T are themselves
committed. We can also say that an execution is recoverable when, for every T
that commits, T ’s commit follows the commit of every transactions from which
T reads. Usually delaying the processing of certain commit operations is one
way the DBMS can ensure that executions are recoverable. This includes de-
laying not just write operations on the database, but also output operations that
may display intermediate or uncommitted results. In fact, a user might inad-
vertently use such information as input to further transactions that would fail
or be incorrect if the original transaction aborts.

Cascadelessness A DBMS avoids cascading aborts3 (or is cascadeless) if it ensures
that every transaction reads only those values written by committed transac-
tions. Thus, only committed transactions can affect other transactions.

Strict executions Strict executions are those in which both reads and writes for a
data item x are delayed until all previous transactions that wrote into x are
committed or aborted. It has been proven that strict executions avoid cascading
aborts and are recoverable [79].

2.1.2 Serializability
Concurrency control problems are entirely due to the concurrent execution of some
transactions that operate on the same data items. It is a different problem from Re-
coverability, that we saw in Section 2.1.1, and can happen also when there are no
transaction aborts. Two of the most common problems of concurrent access are lost
updates and inconsistent retrieval. Lost updates happen when two transactions read
the same data item and update it one after the other: in this case the second transaction

3 A cascading abort happens when a single transaction abort leads to a series of transaction rollback
of those transactions that used values written by the aborted transaction.

10

overwrites the value written by the first one, whose update is lost. An inconsistent
retrieval happens when a transaction reads a data item which, in the meantime, has
been modified by another transaction that has not yet committed. Thus, the first trans-
action reads a stale data item, and can perform write operations based on this stale
information.

Since transactions that execute serially (serial executions) do not interfere with
each other, they are “correct” from the point of view of the concurrency control,
and do not leave space to problems such as lost updates or inconsistent retrieval.
Hence, the goal of a concurrency control mechanism would be that of arranging
transactions so that they execute serially, but in this case we would loose the benefit
of concurrency.

On the other hand, if an execution has the same effects and produce the same
output of a serial execution, it is “correct” too. In this case the execution is called
serializable (SR). Thus, serializability is seen as the correctness property for concur-
rency control in DBs.

2.1.2.1 Consistency preservation

When dealing with database consistency, it is important to make a distinction between
internal and external consistency. Internal consistency concerns a single database,
while external consistency is used to express the consistency among replicated databases.
In what follows we deal with internal consistency; external consistency is introduced
in Section 2.3, where we review the consistency of distributed databases.

One can define a “consistency predicate” p() about a particular state of the DB
in terms of the integrity constraints defined on the database. The DB is consistent
if and only if the predicate p(DB) is true. So, we can say that each transaction is
correct if it preserves the DB consistency. Thus, if each transaction preserves the DB
consistency, so does any serial execution, and hence also any serializable execution.
To resume, serializability ensures DB consistency.

It might happen that serializability is not appropriate for some concurrency con-
trol problem, either because the concept of transaction does not apply or because, due
to the purpose of the application, a certain degree of inconsistency can be tolerated
by the system to have a gain in terms of the overall performance. We will see some
of these examples in Section 2.3.3, when we talk about lazy replicated databases.

2.2. Techniques used in centralised databases 11

2.2 Techniques used in centralised databases
In this section we illustrate some approaches to build serializable schedulers4 . We
do not provide details but just the main idea that is behind each technique to help the
discussion in later chapters.

A history (H) is the description of a concurrent execution of a set of transactions
and it is defined as a partial order that must preserve the partial order of any pair
of operations that are ordered within each transaction [79]. It is also required that a
history specifies the order of all conflicting operations. Two operations are conflicting
if they both operate on the same data item and at least one of them is a write. A
history that preserves the order of any pair of operations of its transactions and that
specifies the order of all conflicting operations is called a complete history. The
committed projection of a history, instead, is a complete history defined over the set
of committed transactions in that history.

From what has been said in the previous section, to see whether an execution is
correct, we need to verify its equivalence to a serializable one. In order to do this
we need to state the concept of equivalence of histories: two histories are equivalent
when they are defined over the same set of transactions and they order conflicting
operations of non-aborted transactions in the same way. It follows that a history is
serializable if its committed projection is equivalent to a serial history, that is a history
where transactions are executed serially, one after the other.

The serializability theory makes use of so called serialisation graphs (SG). Se-
rialisation graphs are graphs whose nodes are the transactions and whose arcs are
the order relations between two transactions. In a serialisation graph, a transaction
Ti happens before another transaction T j when one of Ti’s operations precedes and
conflicts with one of Tj’s operations. Using the serialisation graphs, the serializabil-
ity theorem [79] says that “a history H is serializable iff its serialisation graph is
acyclic”.

In the presence of failures, in order to ensure the correctness of some executions
it is not sufficient to verify that they are serializable, they must also be recoverable.

It is worth recalling three other important results:

• A history is recoverable (RC) if each transaction commits after the commitment
of all transactions from which it reads.

• A history avoids cascading aborts (ACA) when its transactions may read only
4The scheduler is the component of a DBMS that is in charge of arranging the execution of transac-

tion operations so that the database is consistent and recoverable.

12

those values that are written by committed transactions or by itself.

• A history is strict (ST) when no data item may be read or overwritten until the
transaction that previously wrote into it commits or aborts.

A history can be RC but not ACA, or ACA but not ST. As regards these properties
we can say that ST ⊂ ACA ⊂ RC. The SR property intersects all the previous sets,
as shown in Figure 2.1.

Serial

RC

ACA

ST

SR

Figure 2.1: Relationships among history properties

Every time we want to build the serialisation graph to verify that it is acyclic (and
hence the history is serializable) we have to specify the compatibility matrix among
each of the possible database operations to find out when conflicts occur.

We must also note that the previous definition of equivalence is known as conflict
equivalence. There is another way to state the equivalence of two histories, known
as view equivalence. Since most of the concurrency control algorithms are conflict
based we do not discuss further the view equivalence.

2.2.1 Locking schedulers

Locking schedulers are the most popular in commercial products. They are gener-
ally based on the two-phase locking (2PL) algorithm or one of its variations, that we
review in the next sections. Two locks conflict if they are issued by different transac-
tions, on the same data item and they are of conflicting type (e.g, at least one is a write
lock). It is important to consider the distinction between aggressive schedulers (tend
to schedule operations as soon as they arrive, optimistically) and conservative sched-
ulers (tend to delay operations, pessimistically, the extreme case of this being a serial

2.2. Techniques used in centralised databases 13

scheduler). Knowing in advance the readset5 or the writeset6 of each transaction
may be very useful in building aggressive schedulers. However, in many applica-
tions, readsets and writesets are not know in advance. The next sections review the
main concepts behind 2PL algorithms without going to much into the details of their
specifications.

2.2.1.1 Basic 2PL

The basic version of the 2PL algorithm uses two phases: in the growing phase the
transaction obtains the locks it needs and in the shrinking phase it releases the locks.
In this version the only limitation for a transaction is that it may not get any more
locks when it has already released one. This is not sufficient to avoid deadlocks since
locks from different transactions may interleave. One way to avoid deadlock is using
timeouts, although they can fail assuming the presence of a deadlock or become too
expensive when they are set to high values, so that their tuning is a fundamental
operation. Another approach for contrasting deadlocks is to detect them by using the
Wait-For Graph (WFG). In this graph there is a line from T1 to T2 if T1 is waiting
for T2 to release some locks. When the WFG has a cycle, it means that the system
has a deadlock. The period of the WFG check must also be correctly tuned. Another
important issue is the selection of the victim when a deadlock has been discovered;
one of the transactions involved in the deadlock must be aborted. Different policies
exist for choosing the victim but they do not add anything relevant to the scope of
this thesis.

2.2.1.2 Variations of 2PL

A variation of the basic 2PL , called conservative 2PL, imposes that a transaction
acquires all locks it needs before executing any operation, that is predeclaring its
readset and writeset. This way deadlocks are avoided.

Almost all implementations of the 2PL use a variant called strict 2PL. This tech-
nique does not avoid deadlocks but it ensures strict executions (that is RC and ACA,
see Section 2.2). It differs from the basic 2PL in that it requires the scheduler to
release all of a transaction’s locks together, when the transaction terminates.

In some cases effective improvements in the concurrent execution can be obtained
if we define some new special operations (like increment(x) or decrement(x), that

5The readset of a transaction is the set of data iitems read by its operations.
6The writeset of a transaction is the set of data items written by its operations.

14

specialise the more general form write(x)) with new types of locks and we build a
new compatibility matrix.

In designing a concurrency control mechanism the granularity of the object being
accessed and the locking technique can lead to choose different types of schedulers.
A trade-off between concurrency and lock overhead exists as regards the optimal
granularity and it depends highly on the application. There is also the possibility to
use multigranularity locking. This mechanism usually requires the application to be
aware of the data that the transaction wants to access and thereby be able to choose
the most appropriate lock granularity.

Using 2PL or some of its variations, sometimes breaking long transactions that
access several data items into smaller ones can provide some advantages and simplify
the design.

2.2.1.3 Tree locking (TL)

This mechanism differs from the 2PL (and its variations) in that it assumes that data
are organised in a hierarchical structure and locks can be acquired also after another
lock on a different data item has been released. The key rule is that a transaction
can lock a data item only if it holds the lock on its parent. It can be proved that tree
locking produces serializable executions and avoid deadlocks. TL only makes sense
in those applications where the access pattern of a transaction is known, so that, when
a lock on a data item is released, we are sure that no children of that data item will
be subsequently accessed. In this case we are able to provide better performance
(meaning more concurrency) than 2PL since locks can be released earlier. However,
the benefits is only realised if transactions normally access data in root-to-leaf order
as organised in the data tree.

As regards the recoverability we need to impose further rules on the simple TL.
For example, to avoid cascading aborts each lock on a data item must be held until
the transaction commits, and this has a serious impact on performance. Variations of
TL exist to reduce the lock contention.

2.2.2 Non-locking schedulers

We will see shortly some of the main techniques that do not use locking. They are
mostly theoretical since they are not used by commercial DBMS but they provide
useful ideas for the purpose of this thesis.

2.2. Techniques used in centralised databases 15

2.2.2.1 Timestamp ordering (TO)

It assigns a unique timestamp to each incoming transaction. Every operation takes
the timestamp of the transaction it belongs to. For every data item the value of the
maximum timestamp of both read and write operations is recorded. An operation on
a data item is executed only if its timestamp is greater than the maximum timestamp
of a conflicting operation on the same data. If the timestamp is less, the operation is
rejected causing the transaction to abort. Then, the aborted transaction, when resub-
mitted, will have a greater timestamp avoiding further aborts. Executions of opera-
tions must be carried out using a queue and acknowledgements7 to ensure the correct
order. Thus, the scheduler produces serializable executions (refer to [79] for a formal
proof).

However, TO does not ensure recoverability, since it can happen that an operation
reads a value from a not yet committed transaction. A strict version of TO exists that
provides strict executions with a slight change in the algorithm. The size of the data
structure used for storing timestamp values is proportional to the number of data
items and can have a bad impact on system scalability. Some tunable techniques to
reduce its size can be used but they build on the assumption that an accurate real
time clock exists to produce timestamp values, and transactions execute for relatively
short periods of time.

The technique just described is said to be aggressive (we could say optimistic as
well) in that it schedules transactions as soon as they arrive. There are also conserva-
tive variations which introduce a certain delay to reduce the conflict probability and
so the number of rejections. We can build a conservative scheduler that never rejects
operations if every transactions is able to predeclare its readset and its writeset.

2.2.2.2 Serialisation graph testing (SGT)

This method uses a Stored Serialisation Graph (SSG) to discover if a transaction
that is to be submitted can create a cycle, leading to a non-serializable (non-SR)
execution. If that happens, the transaction is rejected, that is, aborted. The SSG
includes all transactions, but mechanisms to delete information can be used to reduce
the complexity of the graph. Also for SGT there exists a conservative variation and
an aggressive one as well.

7In case of a classic DBMS model between the scheduler and the data manager as explained in [79].

16

2.2.2.3 Certifiers

The approach followed by certifiers is to schedule operations as soon as they arrive
and from time to time checking if all goes well. If so, a certification is done and the
scheduling goes on, otherwise they must abort certain transactions. Obviously, not to
commit transactions involved in non-SR executions, they must check at least before
every commit operation. Thus, certifiers are also known as optimistic schedulers.
There exist certifiers based on the 2PL idea and on the SGT as well. In distributed
systems, the certification process is done only when a unanimous decision is reached
by the local certifiers involved that must exchange their vote8. We discuss distributed
databases later in this chapter.

2.2.2.4 Integrated schedulers

Integrated schedulers decompose the problem of concurrency control into two sub-
problems, the read-write synchronisation9 and the write-write synchronisation. Then,
they usually deal with the two sub-problems using 2PL, TO or SGT consistently.
There can be pure schedulers, which use the same mechanism for both sub-problems,
and mixed schedulers, which use different approaches.

It is worth noting that each mechanism used for a sub-problem, must be redefined
in order to reflect the new definition of conflicting operations; in fact, in read-write
synchronisation, two writes on the same data item are not considered conflicting.
In integrated schedulers the hardest part is to ensure the compatibility between the
solution to the two sub-problems, as we can see from the TWR rule that follows. In
general the problem is that of ensuring that if SGrw(H) (serialisation graph for the
history made of conflicting read-write operations) and SGww(H) (serialisation graph
for the history made of conflicting write-write operations) are each acyclic then also
their union SG(H) is acyclic.

2.2.2.4.1 Thomas’ write rule (TWR) The TWR never delays or rejects any op-
erations. In case of a TO w-w synchronisation if it receives a wi(x) after it has already
scheduled w j(x) and ts(Ti) > ts(Tj) (ts is the timestamp) it simply ignores the wi(x)
but it reports its successful completion. The key fact to prove its correctness follows
from the fact that it is a w-w synchroniser, so the problem of r-w conflict is not its
business but it will be solved by the r-w synchronizer.

8The problem of disconnected nodes is not considered so far.
9With r-w we also consider the symmetric problem w-r.

2.3. Distributed Databases, concepts and consistency mechanisms 17

The TWR can be used as an optimisation of the basic TO mechanism, where the
TWR is used for the w-w part and TO or strict 2PL for the w-r one.

2.2.2.5 Multiversion concurrency control (MV)

In MV schedulers every write operation produces a new version of a data item and the
old copy is not thrown away. In this way some reads that should have been rejected
(because their value has been overwritten) can be executed normally using an old
copy. Keeping old copies is not a big effort since recovery mechanisms already keep
old values of data overwritten by active transactions. Every write produces a new
version of a data item. Old versions can be purged as soon as they become useless
(with respect to active transactions). This process is hidden to the database user, so
he/she still acts as if there were a unique copy of a data item. This method is used to
improve the performance by rejecting operations less frequently.

A different scenario is where users want to explicitly access old versions; the MV
mechanism described in this section is not suitable for those kind of applications.

2.3 Distributed Databases, concepts and consistency mech-
anisms

In [75] a distributed database (DDB) is defined as “a collection of multiple, logically
interrelated databases distributed over a computer network”. Distributed databases
are often used within organisations that have offices in several towns or countries. In
such cases, stored information is fragmented, that is, partitioned among the different
offices. Data related to a given office can be stored at the same office where they
will be more frequently accessed. Fragmentation can be done horizontally or verti-
cally. Horizontal fragmentation separates rows, while vertical fragmentation sepa-
rates columns and tables. The DBMS responsible for the management of a DDB that
uses fragmentation should provide a way to hide this fragmentation to the end users
of the database. Queries involving different fragments should be sent to the DBMS
the same way a query on a single fragment is sent.

A DDB can implement also some sort of replication. Copies of the same data
can be stored at multiple locations to achieve fault tolerance and speed up the data
access. Also the replication process should be made transparent to end users. A user
should ask the DBMS for the data without providing any information about its actual
location; the user should not even know that there could be more than a single copy
of a data item.

18

Distributed databases are inherently more complex than a central stand alone
database. The design of the database is different, the query processing is different,
concurrency control now has to span different locations, and security and reliability
issues related to the use of a network to connect the databases must be considered.
When replicated, database replicas must be kept synchronised.

When dealing with a distributed system, like a DDB, three important properties
can be considered: autonomy, distribution and heterogeneity. Autonomy deals with
the distribution of control (management, consistency and query processing), not data.
Federated databases (like in IBM Federated Database Technology [73]), clustered
databases (like in Oracle Real Application Cluster [33]) and replicated databases
(provided in different solutions by several vendors, we will study in particular Oracle
Streams technology in Section 3.5) are some specific types of distributed databases
that mainly provide different levels of autonomy to each location. Different degrees
of autonomy are possible for distributed databases, and the choice is sometimes re-
lated to the distribution of data. Distribution regards the distribution of data, frag-
mentation and replication. Heterogeneity may occur at different levels: hardware,
operating system, database vendor and DBMS configuration. Among them, database
vendor differences are the most difficult to cope with, since they often involve the use
of different SQL support and different interfaces for data access.

Concurrency control and reliability in DDB can be separately studied and this is
what we do in the next sections.

2.3.1 Concurrency Control in DDBMS

Concurrency control in distributed databases deals with the isolation and consistency
properties of transactions. Dealing with distributed concurrency control, one can as-
sume that the distributed system does not experience any fault; this strong assumption
will be discussed in Section 2.3.2. As we are going to see, distributed concurrency
control techniques are simple or more complex extensions of the techniques used for
concurrency control in centralised databases, discussed in Section 2.2.

2.3.1.1 Primary site 2PL

In Section 2.2.1 we reviewed the concepts of the two-phase locking algorithm to
manage the concurrency control within a single database. For distributed (replicated
or partitioned) databases, a simple extension to the classic 2PL algorithm, known as
primary site 2PL [77] can be applied. It consists in delegating the lock management

2.3. Distributed Databases, concepts and consistency mechanisms 19

to a single database only. The other databases will contact the lock manager of the
primary site whenever they need a lock operation.

2.3.1.2 Distributed 2PL (D2PL)

When lock managers are available at each site of a distributed database system, an
extension of the 2PL algorithm, called distributed 2PL (D2PL), can be used. In repli-
cated environments, the D2PL implements a ROWA (Read One Write All) protocol,
where a single replica can be contacted for a read operation but all the replicas must
be available for a write operation. If the database is not replicated, the D2PL becomes
the primary site 2PL.

Unreliable links and disconnected sites are an issue when using 2PL for replicated
databases. To be able to complete a transaction when just a subset of all the replicas
is available, other algorithms have been proposed (see for example [78]).

2.3.2 Reliability in DDBMS
The reliability problem for distributed databases includes the specification of commit-
ment, termination and recovery protocols. Commitment protocols ensure the atom-
icity property (see Section 2.1) of distributed transactions. Termination protocols are
used to allow the termination of a distributed transaction even when one of the partic-
ipating sites is down, while recovery protocols deal with the recovery of the database
that experienced the fault. In the next sections we briefly review the most important
concepts of these protocols which will help the discussion in the rest of the thesis.

2.3.2.1 Two-Phase Commit Protocol

The Two-Phase Commit protocol (2PC) is used to ensure atomic commitment in
distributed transactions, that is when data updates need to occur simultaneously at
multiple databases within a distributed system; the process is synchronous, thus its
application through unreliable links or with faulty nodes presents some difficulties. It
has been used since the 1980s in critical sectors like airline reservation and banking
applications. Different implementations and variations of this protocol exist; a simple
overview of the main steps involved in the classical 2PC protocol is:

Prepare phase the initiating database sends a query to all participants requesting
that they will all either commit or abort the transaction. Each participant ex-
ecutes the query without committing it, and send an acknowledgement to the
initiator.

20

Commit phase if the initiator receives all the acknowledgements from all the par-
ticipants, then it sends back a request to commit the transaction. If all the par-
ticipants successfully execute the commit operation, then the initiator closes
the circle committing its transaction. If the initiator does not receive a positive
acknowledgement of his request from all the participants, then it sends a global
abort message to everybody and the transaction does not happen in any of the
databases.

An interesting aspect of this protocol is that an abort decision acts as a veto, that is
the abort decision can be unilateral. Thus, this version of the protocol can only lead to
a global commit only in absence of failures. We should also note that, in this version
of the 2PC protocol, the participants do not communicate among themselves, but only
with the initiator. This is the reason why this protocol is also called centralised 2PC.

Variations of the 2PC protocol exist depending on the communication pattern
and the network topology. For networks that do not have broadcasting capabilities,
a variation of the 2PC protocol called linear 2PC is possible. In this case the pre-
pare message and the acknowledge messages can flow from node to node in a linear
way [75]. Distributed 2PC is another variation and involves messages from the initia-
tor to all the participants in the first phase, but then each participant sends its decision
to all the other participant and the initiator [75]. Thus, every site is able to decide
whether to commit or abort the transaction by its own, without the need of a global
commit or abort message.

Termination protocols ensure that a transaction reach a final state even in the pres-
ence of a site failure. In this case a timeout procedure is used, both at the initiator
and at the participant site. Timeouts procedures must be tuned considering the appli-
cation and the network topology, and a trade-off between efficiency and correctness
must be found.

2.3.2.2 Three-Phase Commit Protocol

The 2PC algorithm is blocking in the sense that when a failure at the initiator site
happens, participant sites have to wait for its recovery before taking a final decision
on the transaction. To overcome this problem, the three-phase commit protocol has
been developed [51]. We do not go through the details of this protocol since it does
not add concepts useful to the scope of this thesis. It is however important to point
out that the 3PC protocol is not able to deal with partitioned networks. In case of
network partitioning, partitions will continue to process operations independently.

2.3. Distributed Databases, concepts and consistency mechanisms 21

2.3.3 Lazy approaches in replicated databases
In [59] it was found that blocking protocols have serious performance degradation
when implemented on wide area replicated databases; deadlocks increase as the cube
of the number of sites and as the fourth power of transaction size. Lazy approaches
try to offer better performance removing the atomic commitment; once a transaction
has committed at the originating site, it eventually commits independently at repli-
cated sites. In [88], a single-master (or primary site) approach is described; it is able
to tolerate site failures but not network partitions. Another lazy protocol that is not
based on a single-master approach, is described in [60]. Its approach is what is gen-
erally called write-anywhere, since a client can perform write operations on all the
replicated databases. Vector clocks [64] are used to order operations and each site
stores enough information to have a complete picture of the events in the overall sys-
tem. This protocol avoids global deadlocks and reduces delays caused by locking. In
order to commit an operation, all sites must be eventually available, but the protocol
can be extended using a quorum system to resolve commit decision among a subset
of available sites.

22

Chapter 3

Replication and consistency in
wide area data stores

In distributed systems data are often replicated to several sites in order to improve
data availability and fault tolerance, but also to provide users with fast data access.
Data are in fact replicated close to the users that need to access them. When replicas
can be modified, we need a mechanism to keep them consistent; this is the goal of a
synchronisation mechanism, that can be achieved using different techniques. In this
chapter we study different synchronisation techniques and their application to several
application environments.

In Section 3.1 we review the main concepts of data replication, stressing the dif-
ference between static replication and replica synchronisation. In Section 3.2 dif-
ferent synchronisation techniques are studied. Since we are especially interested in
synchronisation over wide area networks, we focus on optimistic replication, where
replicas are kept consistent in a “relaxed way”. In the rest of the chapter we review
some practical applications of these concepts. In Section 3.3 we present the SWARM
middleware and its composable consistency model, while in Section 3.4 we present
the TACT project. We conclude the chapter with a section about Oracle Streams, the
Oracle solution for the synchronisation of Oracle databases, that, as we will see in
Chapter 4, is extensively used at CERN to replicate Physics data.

24

3.1 Data Replication
Data replication is a well known strategy to improve performance and reliability of
distributed computing platforms. When the users of a system are distributed over a
wide area network (WAN), keeping data at a single location can affect data access in
three ways:

Latency The data access time varies with the distance and link bandwidth of the user
from the data storage, and it is subject to network problems related to the WAN
environment.

Availability Having a single data storage site is a risk for critical applications: when
storage is temporarily unavailable (for faults or maintenance reasons), or the
storage site is not reachable due to network problems, users do not have access
to data.

Congestion The single data storage site must sustain a potentially high number of
users requests; the hardware used for data storage can be very expensive or fail
to satisfy user requests.

For these reasons, in many distributed environments data are replicated, i.e.,
copied, at different locations. In Figure 3.1 an environment with a single data provider
is shown. In Figure 3.2 instead, we show the same system with the data storage repli-
cated in three locations.

Data
Storage

Wide Area Network

Figure 3.1: Distributed environment with a single data storage

3.1. Data Replication 25

Wide Area Network

Data
Storage

Data
Storage

Data
Storage

Figure 3.2: Distributed environment with replicated data

In the system that replicates the data store we do not have a single point of failure
for data storage: if a storage component fails, users can still have access to the infor-
mation through the other two replicas. Users also have data closer to their location,
which speeds up data access. Besides, since the load on the storage devices is shared
among the replicas, the storage devices can be built using less expensive hardware or,
in any case, can better sustain user requests. To summarise, with data replication we
achieve: fault tolerance, fast data access and load distribution.

Unfortunately, the benefits before mentioned come at a price. Having different
replicas of a same data item, we need a way to locate them, hence saving their location
and some metadata information. As we will see in Chapter 5, replica catalogues are
used to this purpose, together with a well defined naming scheme. Replicas must
also be created and placed according to the system configuration, or based on some
dynamic criteria. For example, a replica could be created and saved close to a user
just for the time the user needs that data, and then removed from the system. This
is what is called dynamic replication, or sometimes replica optimisation. Moreover,
we have to face problems of replica coherence, and synchronisation when replicas
can be independently modified by users. In particular, replica coherence and replica
synchronisation can be two faces of a more general problem, that of maintaining
replica consistency.

Generally speaking, replica consistency means that replicated data have the same
content. Then, since contents can diverge for different reasons, we distinguish be-

26

tween the two problems:

• replica coherence: even when replicas are read-only, from the point of view of a
user application, replica coherence can be broken when one of the replicas gets
corrupted, either for hardware or software problems. In this case the content
of the corrupted replica is different from the one of the other replicas. Replica
coherence must be checked also when a new replica is introduced into the
system: the content of the replica should be checked in order to ensure that it is
a real copy of the replicas already present in the system. It is worth stressing the
fact that replica coherence must be checked also in case of read-only replicas.

• replica synchronisation: synchronising replicas in only needed when replicas
are modifiable. When a replica is modified by a user, the other replicas become
stale. In order to re-establish consistency among replicas we need to propagate
the modification done on the first replica to the others, in a process that is
usually called update propagation, the main part of a replica synchronisation
process.

Replica coherence can be enforced with periodic checks on replicas, and control-
ling the creation of new replicas. Replica synchronisation is more complex to deal
with, and different approaches exist. Before studying these approaches in Section 3.2,
we clarify, in the next section, the difference between replication and synchronisation,
which is sometimes a source of misunderstandings.

3.1.1 Snapshot or Static Replication
Often, the terms “replication” and “synchronisation” are used with the same meaning.
However, they are different in that they involve two different tasks, that frequently
are complementary. Replication is the task of replicating, i.e., copying, a data item at
different locations, generating new replicas. Synchronisation is the task of keeping
these replicas consistent, when they are modifiable. A synchronisation system does
not create replicas, but works on existing ones, therefore relying on a replication
system. However, a replication system can work with or without a synchronisation
system. When replicas are read-only, or when no consistency guarantees are required
by the users of the replicated system, a synchronisation system is not needed. In these
cases we often refer to static or snapshot replication.

In databases, snapshot replication provides a replica of a database, or part of it,
as it was in a particular point in time. When data changes are infrequent and the size
of the data is not very large, the replication process can be performed periodically.

3.1. Data Replication 27

Snapshot replication does not propagate changes, but database snapshots, therefore
the consistency of the replicas is not guaranteed when the main database is modi-
fied. In certain use cases, as when storing history information, a replicated database
could be configured with a master site containing all the up-to-date information and
replicas containing data belonging to different non-overlapping periods of time. This
case is depicted in Figure 3.3, where the main database holds history information
from the year 2000 to the present, and the replicas hold data in intervals of two years
extent. This is a useful way of off-loading information especially when the load on

Master DB

2000 to present

Slave DB1

2000 to 2002

Slave DB2

2002 to 2004

Slave DB3

2004 to 2006

Figure 3.3: Scenario for a Snapshot replication, static replication of history data

the database is mostly made of read operations. In this case queries can be redirected
to one of the slave replicas depending on the information the user needs. This redi-
rection can be transparent to the user or not, and can rely on a central or distributed
catalogue to find out the location of the database to query.

Snapshot replication is implemented in many relational databases, among which
MS SQL Server [38] and Oracle [35], where snapshots are known as materialized
views.

Cross-technology replication tools exist: Enhydra Octopus [10] is a Java-based
Extraction, Transformation, and Loading (ETL) tool that allows data to be repli-
cated statically using different database technologies. Octopus has been tested in
the ATLAS experiment (see Section 4.2) for replicating, statically, geometry and tag
databases [28].

28

3.2 Replica synchronisation techniques

While replica coherence can be enforced with proper checks when a replica is created
and added to the system, or with periodic checks on all the replicas, replica synchro-
nisation presents more issues and different protocols for update propagation exist. A
first classification can be done between pessimistic and optimistic techniques.

Pessimistic techniques are often used in replicated databases, in order to pro-
vide single-copy consistency [47] (also know as one-copy serializability). Pessimistic
techniques can be used in a LAN environment, where the system is made of few ho-
mogeneous copies. These techniques give users the illusion of having a single, highly
available copy. As we saw in Section 2.3, they are usually implemented using lock-
ing techniques. During the update of a replica, the access to all the other replicas is
blocked until the update has been correctly applied to the first replica and propagated
to the others. For this reason they are also called synchronous. Pessimistic techniques
are not feasible when replicas are connected through unreliable links, through links
with low latency, or when replicas are subject to failures. The update propagation
would have to delay the update of a replica, and, even worse, could be blocked in-
definitely or rejected in case of network partitions. Moreover, the performance of
pessimistic techniques decreases when the number of replicas is high and updates are
frequent [59]. These are the reasons why in many distributed applications optimistic
replication is often preferred.

Optimistic replication1 , or asynchronous replication, is the term used when, in a
replicated environment, the update of a replica is propagated to the other replicas in
a relaxed way, that is, after the commit of the original transaction. Such a way of
synchronising replicas is called optimistic because the access to the replicas is not
blocked when one of them is being updated, and this could cause stale reads for a
limited amount of time. In these cases we also talk about relaxed consistency [43], or
lazy consistency. Delaying the propagation phase helps to speed up the write access
even in the presence of slow and unreliable links. As for pessimistic replication,
however, the overall performance decreases and the system gets complicated when
all the copies are writable, and write operations are frequent. Coordination among
write operations is fundamental for the effectiveness of an optimistically replicated
system. In the next section we see different approaches that can be followed for
implementing an optimistic replication mechanism.

1When the term “replication” is used with optimistic, or pessimistic, that characterises a synchroni-
sation technique, it is implicit that we talk about replica synchronisation, and not about static replication.

3.2. Replica synchronisation techniques 29

3.2.1 Optimistic replication
Different types of optimistic replication can be implemented, and in this section we
see the main criteria to distinguish them. A fairly simple way to do it is through three
simple questions, that we call the 3 w’s questionnaire:

1. Where can an update be done?

2. What is transferred as an update?

3. Who transfers an update?

The answers define the system as it is explained in the following sections.

3.2.1.1 Single-master vs multi-master

The first question of the 3 w’s questionnaire helps to separate single-master systems
from multi-master systems, which is the main classification for optimistic techniques.
We call “master” (or primary replica) a replica that can be updated by end users and
that always has the most recent version of a data item2. In single-master systems
only one replica is designated to act as master: this replica is the only one that can
be updated by users. The other replicas are read-only slaves (or secondary repli-
cas), and cannot be updated by users but only by the replica synchronisation system.
Single-master systems are optimal when updates are not frequent, and data access is
mainly for reading. In this case read operations are faster than in a non-replicated
environment, the system is more fault tolerant for read operations and the read load
on the replicas is balanced. However, these improvements do not apply to write op-
erations; they still must be issued on the single master replica, thus the master replica
can become a bottleneck for writing, and a single point of failure as well. For what
concerns the single point of failure, the effect can be reduced by implementing an
election algorithm among the slave replicas in case the master is unavailable. Slave
replicas can elect a new master, and the old master will become a slave replica as
soon as it is available.

Single-master systems are fairly simple to implement, but the update propagation
phase must be properly designed when the slave replicas can be temporarily unavail-
able. In these cases a quorum system can be implemented to perform an update prop-
agation only when a quorum among the slave replicas is reached, and the remaining

2In case of multi-master systems master replicas can temporarily diverge for the time they need to
exchange the updates and solve potential conflicts.

30

replicas can be updated later on. The performance of the update propagation phase is
fundamental in order to decrease the probability of having stale reads on slave repli-
cas. As we will see in Chapter 6 and Chapter 7 the Replica Consistency Service we
developed uses a single-master approach, with a quorum system and special provi-
sions to manage disconnected sites. A detailed performance analysis has been done
in order to have an estimate of the lazyness of the system and of the factors that affect
it more.

In multi-master systems there are more master replicas that can be used for both
reading and writing, the extreme case being the one where all the replicas are mas-
ter, also known as update anywhere solution. Thus, unlike in single-master systems,
performance increases for both read and write operations, and failures of a master
replica are better tolerated by the system since a user can write on another master,
without the need of election algorithms. The main drawback of multi-master systems
is that concurrent writes on different masters need to be carefully managed and pos-
sible conflicts resolved. An update conflict happens when two users update the same
data item at different master replicas. Usually masters exchange their update in the
background, and the way they resolve conflicts is very application-specific. In some
applications, where write operations are “append” operations, or where the content
of different updates can be easily merged, multi-master solutions are very effective.
On the other hand, when the semantics of the application complicates the update res-
olution phase and when updates are frequent, multi-master systems can become too
difficult to manage and can provide no solutions for lost updates.

3.2.1.2 Content-transfer vs log-based

The second question of the 3 w’s questionnaire raises the point of defining what an
update is. In some systems, where replicas are for example flat files, content transfer
mechanisms are used, meaning that an update can be either the whole new version
of the file, or just a piece of it, usually the binary difference between the old and
the new version. For small changes, the whole replica can be used to replace the
old versions (total file replacement). When changes are large, we can improve the
propagation phase by propagating just the difference between the new and the old
version: a difference extraction/application tool must be available for the type of data
managed. In a Unix environment the diff and patch command can be used to this
purpose.

In other cases, for example with structured data as in relational databases, updates
can be described by sets of operations (i.e., transactions) and we can propagate the
updates just propagating the operations that generated them. That can be much faster

3.2. Replica synchronisation techniques 31

than propagating all the rows involved in an update. In these cases we talk about log-
based mechanisms. As we will see in Chapter 6, our Replica Consistency Service
uses a log-based method for synchronising databases, and a total file replacement
(hence, content transfer) system for flat files.

3.2.1.3 Push-based vs Pull-based

The third question of the 3 w’s questionnaire helps to discriminate between push-
based systems and pull-based ones. In push-based systems the replica that has been
updated is responsible for triggering and performing an update propagation. In pull-
based systems it is up to each slave replica to retrieve the updates and synchronise its
content with the one of the up-to-date replicas. The choice of using one or the other
method depends on several factors, like the frequency of read and write operations
and the availability of secondary replicas. For example, when updates are frequent on
the master replica but read operations on secondary replicas are rare, it is convenient
to update the content of the secondary replicas with a pull-based mechanism, only
when needed, that is when the read operation is requested. On the other hand, when
updates are rare, and read operations on slave replicas are frequent, it is convenient
to immediately update the secondary replicas with a push mechanism as soon as the
updates are available on the master replicas.

3.2.1.4 Consistency guarantees

Sometimes, synchronisation mechanisms are grouped based on the consistency guar-
antees that they offer. For example, the weakest guarantee that each synchronisation
system must provide in order to be considered “correct” from a functional point of
view, is eventual consistency. This guarantee states that the content of the replicas,
when no new updates are issued, will be eventually the same [89]. In other words,
a replica may remain inconsistent for some time. Many applications can work well
with such a weak guarantee, others may instead require that users will never read data
that are older than a fixed amount of time. To provide such a guarantee we need a
way to estimate replica divergence, and prohibit the access to replicas when the diver-
gence exceeds a given threshold. In a single-master system, a limit on the staleness
of a replica can be fixed by using a pull based system where secondary replicas syn-
chronise with the master replica periodically, with a period less than the maximum
allowed staleness.

In [63] four per-session guarantees are proposed as a way to provide users with
a view of the database that is consistent with their own actions at different levels of

32

complexity. For example, a user may require a level of consistency in order to be sure
that a read operation always sees previous writes done by the same user (read your
write, RYW), even if different replicas are used for reading and writing.

3.2.1.5 Conflict management in multi-master systems

As we discussed in Section 3.2.1.1, multi-master systems can improve the perfor-
mance of both read and write operations. However, they must be carefully planned
in order to avoid conflicts between concurrent writes on the same data item done at
different replicas. Conflict management is a very application specific topic, and can
be dealt with in two ways: avoiding the conflicts, or detecting and resolving them.
Conflict avoidance can be obtained with locking techniques, as done in pessimistic
replication. In optimistic replication, where locking not used, conflicts may happen
and need to be detected and resolved. A straightforward solution uses the Thomas’s
write rule (see Section 2.2.2.4), where write operations are applied in their timestamp
order.

For serialising operations scheduled at different replicas, and detecting conflicts,
the most known method is using vector clocks. A vector clock is a data structure that
is used to propagate synchronisation information in a distributed environment. It is
usually implemented as an array of M elements, where M is the number of master
replicas. The array contains timestamp values; when site i has the timestamp value a
in the j− th element of its vector clock, it means that it has received all the updates
from site j with timestamp up to a. The size of this data structure is the main concern
when vector clocks are used in environments with many replicas, and can impose a
limit on the system scalability.

Once detected, conflict must be resolved. Manual and automatic conflict reso-
lution mechanisms exist. Manual conflict resolution detects conflicts and presents
to the user two versions of the data; it is up to the user then to resolve the conflict
either merging the content of the new versions or discarding one of them. This is
the system used in code repositories like CVS [55]. Automatic conflict resolution
is performed by specific procedures that are applications specific. In replicated file
systems different procedures are used to resolve conflicts depending on the type of
file that experienced the conflict. For example, when the file is a compiled file, the
conflict can be resolved by recompiling it again from its source.

3.3. SWARM and its composable consistency model 33

3.3 SWARM and its composable consistency model
In this section we present SWARM, a middleware for wide area replicated data stores
that implements a consistency model for peer-to-peer systems called composable
consistency [84]. SWARM architecture comprises a collection of servers (SWARM
Servers) that are put on top of distributed data stores, and provide a session-oriented
file interface that can be used by its client applications to create and remove files,
open a file session with specific consistency options, read and write file blocks and
close the session.

In SWARM, a session3 is the unit used to define the consistency behaviour. In
other words, the consistency of the operations made on a file is managed during
the opening and the closing of a file. For example, when opening a file, the user
can choose whether to retrieve the most up-to-date copy of the file or deal with the
possibility of having a stale reads. In the same way, when closing a file, a user can
choose whether to propagate immediately the updates done or not. In order to use
SWARM an application has to link to the SWARM client library and use the file
interface provided with it. When a user wants to access a file, he can work on a
local replica, and specify the consistency behaviour of the current session; SWARM
servers will then communicate to implement that specific behaviour.

The composable consistency model can be applied to applications structured in
a peer-to-peer paradigm, where each site holds a portion of the application state and
caches other site’s information. A small set of primitive options are used by applica-
tions to build a consistency model which is appropriate to their data sharing needs.

3.3.1 Composable Consistency options
Composable Consistency (CC) uses five basic options to define the consistency re-
quirement of an application, at the session level:

• Concurrency: it defines whether, within the current session, read and write
accesses to a replica must be done in a concurrent or exclusive way with respect
to the other replicas. When the exclusive way is chosen, the access to the other
replicas of the same file is blocked until the current session is finished.

• Replica Synchronisation: it defines the replica staleness that can be tolerated
by the current session.

3In this context a session is a set of operations made on a file, that start with an open(file) and
end with a close(file).

34

• Failure Handling: it defines the update propagation behaviour of the current
session when some replicas are unavailable or have poor connectivity.

• Update Visibility: it defines when new updates generated by the current session
must be made visible to the other replicas.

• View Isolation: it defines when updates generated remotely must be made vis-
ible to the current session.

These five options are considered enough to define the consistency behaviour of
a wide range of peer-to-peer applications. They are considered orthogonal, even if
they are not completely independent. Each option has a predefined set of values that
application programmers can use to build the model more suitable for their applica-
tion. Options also have a default value, and some predefined combinations of option
values are also provided, grouped into well known consistency behaviours. A user
can choose one of those predefined combinations, or refine its consistency model
selecting the most appropriate value for each option.

3.3.2 Replication in SWARM
SWARM servers that hold a particular replica, organise themselves in a replica hi-
erarchy: the root (or home) node is the one where the file was initially created, and
its server is the one that coordinates all the consistency operations on that file repli-
cas. However, for each file, there can be more than one home node, to increase the
fault tolerance; when a single home node is present, an election algorithm is used to
elect a new home node in case the first fails. When a server wants to have a replica
of a certain file, it contacts the home node of that file and obtains a copy becom-
ing automatically child of the home node for what concerns that file. Network links
are constantly monitored by the servers in order to perform some optimisation tasks;
for example, when looking for a home node, a server, in case more home nodes are
present, can choose the one that is “closest” to it regarding the network speed. Each
server has a limited fanout: when a home node is saturated, one of its children can
be used as home node for new replicas. In this way the communication overhead is
distributed over the replica hierarchy.

3.3.3 Implementation of composable consistency
To implement the composable consistency model outlined in Section 3.3.1, each
SWARM server has a consistency module, that performs specific operations each

3.4. TACT 35

time a user opens, accesses and closes a file. The consistency module implements
the required consistency model by communicating with the other servers. The data
structure used by each consistency module to save consistency information about
replicas is called privilege vector (PV). Privilege vectors are exchanged by peer con-
sistency modules in order to learn of each other’s PVs. Thus, each module knows
when it can grant a file access to a client without contacting its peer modules, or
when more coordination is needed. We do not go through the details of the imple-
mentation of the different models since the details of this system are out of our scope.
The SWARM architecture and its composable consistency model has been evaluated
building a SWARM-based file system on a cluster of PCs using the Emulab Network
Testbed [9] to emulate WAN topologies among the clustered PCs [83].

3.4 TACT
In this section we outline the TACT (Tunable Availability and Consistency Trade-
offs) [68] toolkit, a middleware layer that mediates read/write accesses to underly-
ing data stores in order to enforce some tunable consistency requirements. TACT
provides different consistency models that are logically placed between strict con-
sistency and eventual consistency, using a set of metrics to define the consistency
requirements of a distributed application. Using TACT the tradeoff between perfor-
mance and consistency can be quantified for some specific application use cases, and
the consistency requirements can be dynamically varied in order to cope with network
conditions.

The implementation of TACT has the same logical structure of the SWARM
servers, that sit on top of a replicated data store and provide a file interface to ac-
cess data. A TACT server can limit the staleness of a replica by intercepting and in
case blocking new updates when the number of uncommitted operations exceeds a
user-specified threshold. In other words, it blocks any attempt of modifying a file
when the file is older than a certain threshold.

In TACT, an application can define its requirements in terms of consistency by
defining a conit, that is, a logical unit of consistency. Different granularity levels
can be specified by changing the definition of a conit. An example of conit could
be a file on a filesystem, a table inside a database and so on. Then, for each conit,
a consistency value is quantified as a three-dimensional vector of: numerical error,
order error, staleness. Numerical error gives a measure of unseen writes, order error
measures the number of out of order writes on a given replica, and staleness bounds
the difference in time between the present and the time of the oldest write not seen

36

locally. When the three values are zero the consistency value is the same that one
would obtain in a synchronous system. Using these three measurements, the middle-
ware can enforce consistency bounds among replicas.

The details of the implementation of the update propagation algorithm can be
found in [68], where the TACT toolkit has been applied and evaluated for three dif-
ferent applications: a bulletin board, an airline reservation system and a system to
enforce quality of service in web servers.

3.5 Oracle Streams
Oracle Streams [34] is an Oracle product to achieve high speed replication and data
sharing among widely distributed sites. It was introduced as a new major feature
in the Oracle release 9.2. Before Streams, replication of Oracle databases was still
possible using snapshot replication (see Section 3.1.1). As depicted in Figure 3.4,
the Oracle Streams working model is made of three phases: capture, staging and
consumption.

CAPTURE STAGING CONSUMPTIONS

Figure 3.4: High-level view of Oracle Streams

SQL DML (Data Manipulation Language) and DDL (Data Definition Language)
changes are captured at the source database, staged into a queue, and consumed at
destination sites. Besides DML and DDL changes, Oracle Streams is also able to
capture user defined events.

At the source database, log files are read in order to extract changes made to
a table, schema or another database object. These changes are then translated into
specific update units, called Logical Change Records (LCRs), enqueued in specific
queues, propagated and applied to databases at destination sites.

LCRs are enqueued using an Oracle specific mechanism called Advanced Queue-
ing (AQ). The update propagation happens between a source and some destination
queues created with AQ, using a publish-subscribe mechanisms.

3.5. Oracle Streams 37

All the Oracle Streams activities included in the three main phases (capture, stag-
ing, consumptions) are performed by three main processes: Capture, Propagation
and Apply. As the name suggests, the Capture process is used at the source database
to capture specific events, usually DML and DDL queries. The Propagation process
is used to transfer data from a source to a destination queue, and the Apply process to
extract events from a destination queue and apply them to the destination database.
The events flow is shown in Figure 3.5.

log files

CAPTURE

Source Queue

PROPAGATION

Destination Queue

Source
DB

Destination
DB

APPLY

Figure 3.5: Architecture and data flow in Oracle Streams

In Oracle every change done on a database is recorded into the redo log files
(on-line and archived, as explained in Section 6.4.3.8). Entries in a redo log file are
converted into LCRs events (or captured events) by the Capture process and then
stored into the source database queue. An LCR is implemented as a specific Oracle
object with a specific System Change Number (SCN) and can be a of two types: Row
LCR or a DDL LCR. In case of Row LCR, DML changes are stored recording the
old (before image) and the new value of a row, together with additional metadata
(database name, schema, session id, etc.). A DDL LCR instead contains the DDL
statement that modified the database, for example a create table statement.

The Capture process usually runs on the source database. However, in order to
improve the performance and reduce the load on the source database, the Capture
process can also run on a separate database, called the downstream database. In
this case, the Capture process reads the archived redo log files that are shipped from

38

the source database to the downstream database. The downstream database is just
another Oracle database where the Capture process and the associated queues are
created. In the downstream database the Capture process reads the archived log files
while, when the Capture process runs on the source database, it can read either the
on-line or the archived redo log files. This means that, when using a downstream
database, the synchronisation process is delayed because the Capture process has to
wait for the archived logs to be written and copied to the downstream database4 .

Captured events can be stored in more than one queue, at the source database,
if necessary. In this case a Capture process must be defined for each queue. The
Oracle LogMiner utility is used by the Capture process to scan the redo log files;
when more than one Capture process is defined, each Capture process works with
a separate LogMiner session. For the LogMiner to function properly, supplemental
logging must be enabled on the source database. This means that the logging activity
is enhanced and extra data are written into the redo log files. Another important
features is the possibility to define rules on the Capture activity, so that LCRs are
enqueued or discarded basing on defined rules.

Captured events are dequeued from the source or downstream database queue and
enqueued into the destination database queue by the Propagation process. A queue
at a source database can provide data for multiple queues at some destination sites.
In this case a Propagation process must be defined for each destination site. In other
words, a Propagation process cannot propagate data to multiple destinations or from
multiple sources. We can define rules also within a Propagation process. When a rule
is evaluated to “true”, the event is propagated, otherwise it is discarded.

When LCRs go into the destination queue, the Apply process can either apply
them to the destination database, or pass them to some specific handlers, that are user
defined procedures.

It is worth noting that, when a table in created at the source database, it is repli-
cated to the destination site. But what happens if a table containing some rows al-
ready existed at the source site, before setting up the Ctreams processes? How is the
destination database synchronised with the source database? A starting point must
be fixed in order to start correctly the Streams replication. This operation is called
instantiation and can be achieved by copying the table with one of the import/export
methods available in Oracle. After the copy, an SCN value is fixed as a starting point
for the replication process.

As most of the database replication solutions, Oracle Streams can be used both

4In Oracle the archived log files are written only when an on-line redo log file is filled, and a switch
of the on-line redo logs happens. In Section 6.4.3.8 more details are given.

3.5. Oracle Streams 39

for load sharing and fault tolerance.

3.5.1 Bi-directional synchronisation

Bi-directional replication is the term used when two database replicas are synchro-
nised and changes can happen at both databases, that is when we have a multi-master
configuration. The propagation of updates must occur in both directions. With Oracle
Streams bi-directional replication can be implemented, but the management of this
scenario can be very complex.

A first issue that must be considered is the cyclic propagation of updates. When
two databases, namely DB1 and DB2, are synchronised with bi-directional replica-
tion, changes occurred at DB1 are captured and propagated to DB2. But, since there
is a bi-directional replication, also the changes done in DB2 are captured, and should
be propagated to DB1 as well. Obviously, changes generated at DB1 must not come
back and applied again to DB1. To avoid the cyclic propagation of updates, Oracle
Streams allow the use of Streams Tags. In this way, entries in the redo logs gener-
ated at DB1, can be labelled with a specific tag. These changes will be propagated
and applied to DB2, but here the Capture process will have a specific rule to avoid
capturing LCRs with that specific tag. Thus, only changes generated at DB2 will be
captured and propagated to DB1.

The most difficult issue that must be solved in every bi-directional (or multi-
master) synchronisation is conflict resolution, as already explained in Section 3.2.1.5.
In the next section we see the approach followed by Oracle Streams to deal with
conflicts.

3.5.1.1 Conflict resolution in Oracle Streams

Conflicts happen when, in a replication environment, more than one database can be
updated at almost the same time.

A straightforward solution that is not valid for all the scenarios, is to separate
the ownership of data. In this case, each database is responsible of updating directly
part of the data, while the rest will be updated through the Streams processes. This
solution is not always possible, and it depends on the semantics of the application.

Different types of conflicts are possible. Some of them can be avoided with some
application design solution, others require specific conflict resolution policies.

The conflict that arises when an insertion with the same primary key (for example
a sequence number) is done at all the master databases, can be solved using a different

40

primary key that includes a different number associated to each database, so that all
new values generated at different sites are different.

In case of conflict associated with delete operations, we can transform a delete
operation in an operation that simply marks a row for deletion. Then, only one site
will be responsible for deleting marked rows.

When it is not possible to separate the ownership of data, or use some design
solutions to avoid conflicts, conflicts must be explicitly detected and resolved. Oracle
detects conflicts using the before image: when two changes are applied to the same
row, at the same time, but at different sites, when they are propagated and applied,
the before image is not the one expected, and both the databases experience an error.
The Oracle default action would be to place these changes in an error queue, but the
database administrator can set up a specific conflict resolution procedure to resolve
conflicts before they end up in the error queue.

In Oracle Streams, some prebuilt conflict handlers are available, that implement
one of the following policies: maximum, minimum, override and discard. The first
two methods perform a comparison of the two values that caused the conflict and
keep either the maximum or the minimum. Otherwise, a conflict handler can decide
to override the present value, or to discard the new value. A database administrator
can also choose to implement his own conflict handler (custom conflict handler), in
the form of a PL/SQL procedure. A different conflict handler can be specified for
each table. Moreover, in case both a prebuilt and a custom conflict handler exist for
the same table, the custom handler has the precedence unless, inside its code, some
specific options are set to redirect the control to the prebuilt handler.

Chapter 4

Requirements from Particle
Physics

In this chapter we introduce the main application field that has driven this work, high
energy Physics and the experiments performed at CERN. Although Grid computing
is not exclusively tied to high energy Physics, this discipline has been the one that
provided the necessary requirements and the one where this work has been developed.
Particle Physics is a very complex discipline; in this chapter we only give a very
informal introduction to some main concepts.

Within a particle accelerator, beams of protons are made to collide at very high
energy. The collisions are analysed through particles detectors that generate large
amounts of data for each collision. These data are recorded and analysed to discover
the possible creation of new particles. With the ATLAS experiment and its model for
data distribution, we describe one of the main scenarios where this work on replica
consistency can be effectively applied.

The chapter is structured as follows. In Section 4.1 we introduce the particle
accelerator in construction at CERN, and its goals. In Section 4.2 the ATLAS ex-
periment and its computing model are presented, with a focus on the management of
conditions data. Conditions data storage and distribution in the ATLAS experiment
are further discussed in Section 4.3. In Section 4.4 the LCG-3D project is presented,
and the techniques used to distribute data from Tier-0 to Tier-1 and Tier-2 sites are
explained.

42

4.1 Particle Physics at CERN: the LHC experiments
Two questions are the main concern of particle physicists: what is the world made of?
And, what holds it together? Physics research has been investigating for centuries in
“fundamental particles”, trying to discover the unit of matter. From water, fire, air and
earth we passed to atoms, and then to nuclei (protons plus neutrons) and electrons.
Then, they found out that protons and neutrons are made of quarks, and now they start
suspecting that even quarks and electrons are not fundamental, that there is something
smaller. They also discovered that for each particle, an antimatter particle exists.
All the known particles, their behaviour and their interactions are explained in the
Standard Model, the most complete explanation of the basic constituent of matter to
date [76].

Particle accelerators have been extensively used by modern particle Physics to
discover new particles and their properties. The Large Hadron Collider (LHC), in
construction at CERN, will be the world’s most powerful particle accelerator ever
built. In its underground tunnel1 two counter-rotating beams of protons, guided by
powerful superconducting magnets, will circulate very close to the speed of the light
and will be made to collide at four points where the detectors of the four LHC exper-
iments (ALICE, ATLAS, CMS and LHCb) are placed.

Current accelerators increase more and more the energy of the circulating beams,
since certain phenomena can happen only at extremely high energies. This is the
reason why particle Physics is often referred to as high energy Physics2.

More than a hundred nations have been participating in the design and the con-
struction of the LHC in all its components, the tunnel, the detectors and the comput-
ing infrastructure that will be used to analyse data coming from the detectors.

Much of the effort of the LHC experiments is put into finding elementary particles
and to explain the way they interact with each other. Dark energy, dark matter, anti-
matter and supersymmetry are some of the Physics topics where the LHC is expected
to bring light. In order to do so, huge amounts of data coming from the detectors
must be analysed, of the order of Petabytes (1015 bytes) every year.

The storage and the distributed analysis of this unprecedented amount of data
requires a new computing infrastructure. To this purpose CERN is promoting the
development of the Grid technology, that we discuss in details in Chapter 5. Grid
computing is used by the LHC experiments to perform part of their data analysis

1Built 100 metres beneath the Franco-Swiss border, with a circumference of 27 kilometres, see
Figure 4.1 and 4.2.

2In LHC, energies of 14 TeV will be reached during the collisions.

4.2. The ATLAS experiment 43

Figure 4.1: The Large Hadron Collider

tasks.
In the rest of this chapter we focus on the ATLAS experiment, since its comput-

ing model shows the need of employing the replication of heterogeneous databases
which is one of the main topic of this thesis. It will also help to understand the main
requirements that led to the use of Grid computing in high energy Physics experi-
ments.

4.2 The ATLAS experiment
ATLAS is a high energy Physics (HEP) experiment that will explore the fundamental
nature of matter and the basic forces that shape our universe. With a diameter of 25
metres, a length of 46 metres and a weight of about 7000 tons, the ATLAS detector
(shown in Figure 4.3) is the largest among the four LHC detectors. It has a layered
structure; each layer is made of different material and has a different goal. Particles
created during a collision radiate in all directions and pass through one or more of
these layers leaving behind them a “signature” that allows them to be identified. The
results of a collision are then filtered so that only interesting events are recorded and

44

Figure 4.2: An inside view of the LHC tunnel

processed for making them suitable for Physics analyses. The ATLAS experiment
will provide data to bring light in topics like dark matter, relation between matter
and antimatter and proofs of the existence of the Higgs particles3 . The experiment
involves more than 1900 scientists from more than 160 universities and laboratories
in 35 countries.

4.2.1 The ATLAS Computing Model
In the ATLAS detector collisions are expected to happen at a rate of about 40 MHz
but interesting collisions, called events, that is collisions that may lead to an inter-
esting configuration of outgoing particles, will be just a few in tens of millions of
collisions. To this end, the first critical task of a detector is to separate ordinary colli-
sions from events, and this is the task of the trigger, which is placed in the so called
counting room next to the detector. Raw data coming from the trigger are expected
to have a rate of 200 Hz, with an event size of 1.6 MB, and are transferred to the
CERN computing centre through dedicated high speed links. Here data are stored on
tapes and on disk buffers for the first processing which produces event summary data
(ESD). Event summary data have a size of approximately 500 KB.

The ATLAS Computing Model [87] describes the software used in the ATLAS
experiment, the type and the flow of data coming from the detector and the deploy-

3The Higgs particle is a particle whose existence was predicted over 30 years ago, in order to explain
the mechanism by which particles acquire mass.

4.2. The ATLAS experiment 45

Figure 4.3: The ATLAS Detector

ment of the hardware infrastructure. Computations in ATLAS make wide use of Grid
computing. Three Grid infrastructures, EGEE [7], OSG [31] and NorduGrid [27] are
used.

The organisation and the flow of data and computations in the LHC experiments
follow the MONARC model (Models of Networked Analysis at Regional Centres for
LHC Experiments [25]). According to this model, sites participating in the ATLAS
experiment have a hierarchical or tiered structure: CERN represent the Tier-0 site,
where the raw data coming from the detector are stored and preliminarily processed.
Raw data and the results of the first computations are then shipped to Tier-1 centres;
in ATLAS there are ten world-wide distributed Tier-1 sites. Each Tier-1 site stores
part of the raw data, performs further processing (or reprocessing), stores all the
different versions of processed data and makes them available for Physics analysis.
Each Tier-1 site is then responsible for the management of tens of Tier-2 sites where
further analysis will happen. Tier-2 sites will also store part of Tier-1 data and provide
simulation and analysis facilities; some of them will also perform some calibration
operations4 based on processing raw data. Additional resources will be available for

4What calibration means will be clarified in the rest of the section, where non-event data are intro-
duced.

46

data analysis at Tier-3 sites. All the computations made on ATLAS data are done
using a special software framework called Athena, which is a joint effort between the
LHCb and the ATLAS experiment.

Like in all the other LHC experiments, the real challenge of the ATLAS exper-
iment is to store enormous quantity of data, around 10 PB (that is 1015 bytes), per
year, and make them available for scientific analysis spread over four continents. In
this challenge we can find the real nature, and the innovative idea of Grid computing
and Data Grids, explained in detail in Chapter 5.

4.2.2 Conditions Data
Data generated by the detector during a collision, are called event data. These data
are mostly read-only. In order to perform event data analyses, another type of data
is needed besides event data; they are called conditions, or non-event data and are
usually modifiable. Conditions data are data produced during the operation of the
detector and are required to perform reconstruction5 and analysis. They come from
the Detector Control System (DCS), from calibration and alignment elaborations and
from other monitoring and book-keeping systems within the detector and the hard-
ware and software infrastructure connected to it at the detector site. Calibration and
alignment processing refers to the processes that generate non-event data that are
needed for the reconstruction of ATLAS event data.

Conditions data vary with time, and are usually characterised by an Interval Of
Validity (IOV), that is a time interval during which certain data have a fixed valued.
Conditions data can have different payload structures. The payload is the part of the
object where actual values reside. These values can be temperatures, voltages (mea-
sured and nominal), pressures and so on. Sometimes a condition object value can also
be a reference to an external file where the actual value is stored. A condition object
can also exist in different versions as a result of different computations performed
during alignment and calibration on the raw data.

Conditions data are stored in relational databases. A MySQL database was tested
in 2004, but the final solution will be based on COOL (see Section 4.2.3) and exploit
Oracle Database technology features. Conditions databases are fundamental for the
correct implementation of the ATLAS computing work flow, and the reliability and
the performance of conditions databases are vital to the success of the experiment.
This is why conditions databases will be replicated to Tier-1 and Tier-2 sites.

5Reconstruction is a specific kind of data elaboration to derive from the stored raw data the relatively
few particle parameters necessary for Physics analysis.

4.2. The ATLAS experiment 47

4.2.3 The COOL API
The LCG Condition Database project (COOL) [4] was launched in 2003 with the
goal of implementing a common persistency solution for the storage and manage-
ment of the conditions data of the LHC experiments at CERN. It defines a common
C++ API for conditions data storage and retrieval on different relational databases
technologies (Oracle, MySQL, SQLite). It also support the use of FroNTier/Squid, a
cache mechanism, that is explained in Section 4.4.2. At the moment COOL is used
by Atlas and LHCb.

In the previous section we described the nature of conditions data. We saw that
they are characterised by an IOV and a payload and that they can exist in different
versions. Since there can be different sources producing conditions data, a condition
object can be associated to a specific channel. Thus, usually, a set of measurements
for the same condition object can be saved in a relational table with the following
structure:

cond_data = (IOV, tag_name, channel_Id, payload)

The column “tag_name” is a tag associated with a particular version and the “chan-
nel_Id” is an identifier of the source channel. The payload can be a set of columns or
just a column with an external reference.

Storing the payload in the row with its metadata is appropriate when the size of
the payload is not too big and the payload has no meaning outside the context of an
IOV. Storing the payload in an auxiliary table in the same database, with a foreign
key referencing the IOV table, is appropriate when the data is naturally represented
as a relational table but it is not always associated with an IOV, or it is shared by
many IOVs.

4.2.3.1 Folderset arrangement

From the user point of view, the Condition Database (CondDB) looks like a tree (or a
Unix filesystem), where the leaf nodes can hold conditions data objects. Leaf nodes
are called “Folders” (equivalent to Unix files), while nodes that contain other nodes
are called “FolderSets” (equivalent to Unix directories). The hierarchical structure
allows a logical organisation of the conditions data; for example, one can put all the
Folders for the conditions needed by a specific part of the detector in a dedicated
FolderSet called SubdetectorA, or all the temperatures measured within the detector
can go in a FolderSet called Temperatures. Thus, the user can create and manage
Folders and FolderSets just like files and directories in a Unix filesystem.

48

IOV Version Tag Channel Id Payload
t1 to t2 - 1 10 10 comment
t2 to t3 - 1 13 10 comment
t3 to t4 - 1 11.5 10 comment
t1 to t4 - 2 42 6 comment

Table 4.1: Example of single version table

The COOL API provides two types of Folders: single-version and multi-version.
The first one can only store objects with IOVs that do not overlap; given a time
value, only one object exists and can be retrieved from a single-version Folder. In
multi-version Folders, IOVs of different objects can overlap, and the user can use the
version tag to discriminate between two or more objects in a specified time interval
or time instant. In a multi-version Folder the most recent version of all the stored
conditions objects is called the “Head” version, just like in a CVS repository. At a
certain point in time, through the COOL API, it is possible to tag the Head version
giving it a specific tag name. Users can then use this tag name to retrieve the specific
version of an object.

It is worth noting that a Folder, which we may think of as a logical table in the
Conditions Database, holds a set of measurements pertaining to the same condition
data object. It also useful to note a possible usage of the channel_Id column. In case
we have more data sources with the same payload structure, we could store data of
these two sources in the same Folder and use the channel_Id to select one or the other
source.

In Table 4.1 an example of a single version folder is shown with a table represen-
tation. We could think of this table as the one used to store temperature of a given
“component X” of the detector, with 2 channels, expressed as an average value on a
given number of samples. The table does not correspond to the real database table
used by COOL to store the Folder but it is just a logical table that is useful to clar-
ify the concept just explained. Being the table the representation of a single version
folder, the version tag is not used, and rows (measurements of temperatures of com-
ponent X) with the same channel_Id have non overlapping IOVs. For these rows,
the payload is just two integer numbers (the average temperature and the number of
samples) and a string (a comment). The first channel has 3 values from t1 to t4, while
data coming from the second channel is more stable and has one value valid from t1
to t4.

In Table 4.2 an example of a multi-version folder for an analogous scenario is

4.2. The ATLAS experiment 49

IOV Version Tag Channel Id Payload
t1 to t2 1 1 12 10 comment
t2 to t3 1 1 13 10 comment
t2 to t3 2 1 11.5 100 comment
t3 to t4 1 1 14 10 comment
t3 to t4 2 1 14.8 100 comment

Table 4.2: Example of multi-version table

shown. The table shows a possible use of the version tag: for the IOV [t1, t2) we
have only one version, 12, which is the average value on 10 measurements. For
the other two IOVs, [t2, t3) and [t3, t4), we have to versions: the first is the average
value of the temperature with 10 samples, and the second version is the average value
computed with 100 samples.

4.2.3.2 Basic COOL capabilities

This section collects the basic capabilities of COOL as they are explained in the
Examples of the Doxygen documentation [3].

SingleVersion Storage A user can create a single-version Folder with a specific pay-
load structure (payload specification) and insert/retrieve objects into/from it.
The insertion can be done either with or without the bulk option. The bulk op-
tion allows storing a given number of objects in a single database transaction.
The bulk size can vary.

MultiVersion Storage A user can create a multi-version Folder with a specific pay-
load structure and insert/retrieve object into/from it. A user can also tag the
Head version and later retrieve objects with a specific tag name.

Use FolderSets A user can create FolderSets just like he creates directories in a Unix
filesystem. He can then create Folders inside FolderSets. He can also get
specific FolderSets/Folders or list the Folderets/Folders inside the DB or inside
a FolderSets.

Use Channels A user can insert/retrieve objects into/from a Folder by specifying a
channel_Id.

50

Retrieve multi-channel objects in bulk mode A user can retrieve objects from a
Folder in a given channel range.

UseTags A user can create tags (i.e., tag the current Head), remove tags, list current
tags and print the content of a tag (i.e., retrieving objects with a given tag
name).

ReTag A user can retag some objects removing the old tag and using the tagHeadA-
sOfDate call.

UseClob A user can set a field of the payload as CLOB (very long string).

4.3 Data Storage and Distribution
Two complementary storage approaches are used in ATLAS as well as in the other
LHC experiments: file based and relational databases. Event data and large volumes
of conditions data are stored in files. Relational databases are used when serialisation
of data, transactional consistency and query based retrieval is required. Databases are
also the choice when the access pattern is compatible with a centralised writer and
distributed reader approach.

In both cases (files and databases), the ATLAS software environment is primarily
object-oriented; the Athena framework, for example, is implemented in C++. File
based storage of C++ object is done, in ATLAS, using ROOT I/O [80] and the POOL
persistency framework [71]. For SQL based relational storage Oracle is the primary
choice at CERN. However, MySQL has emerged as the preferred engine for instal-
lation at small research institutes. Vendor neutrality in the DB access, that is the
possibility to use a standard interface to access databases of different vendors, has
been addressed by the CORAL project [5]. Replication of Oracle databases at CERN
to other technologies for distributed read-only use will be the key to allow distributed
analysis of ATLAS data. The goal is to ensure that all ATLAS physicists, wherever
they are located, will have access to all data of their interest.

For conditions databases, the ATLAS setup is shown in Figure 4.4. Data com-
ing from the detector (on-line trigger farm) are firstly stored in the on-line database,
which is an Oracle database with RAC technology [33]. The on-line database is the
one where most of the data insertion operations (write accesses) happen. From the
on-line database data are shipped to the off-line DB, another RAC installation, using
a first level of Oracle Streams replication (explained in Section 3.5 and Section 4.4).
The on-line database will only contain data valid in a short period, while the off-line

4.4. The LCG-3D project 51

Online
Trigger
Farm

Tier−1
Oracle

read−only
replica

Tier−1
Oracle

read−only
replica

ATLAS pit

Off−line
Oracle

Master DB

On−line
Oracle DB

CERN Computing Centre

STREAMS

STREAMS

STREAMS

Outside world

Figure 4.4: Conditions databases deployment in ATLAS

database will store all the data. The off-line database then acts as a master for the
replication towards Tier-1 sites. Also this second level of replication is performed
using Oracle Streams. The estimated yearly data volume for conditions data stored
in relational databases is around 1TB.

4.4 The LCG-3D project
The LCG-3D project [57] (Distributed Deployment of Databases) focuses on the de-
ployment of databases for the WLCG infrastructure. The CERN IT/DM (Data Man-
agement) group and LHC experiments are the main actors. The project, besides the
coordination of database deployment and maintenance at Tier-0 and Tier-1 sites, is
also investigating data distribution techniques for relational databases.

Within the 3D project, Oracle Real Application Cluster, or RAC [33] is the sug-
gested technology to deploy high availability services. RAC technology provides a
way for building database clusters with higher availability than single node databases
and at the same time allows scaling the server CPU with the application demands.
High availability is achieved through a software management layer that redirects in-
coming client connections to other nodes in case one of them is unavailable. By
adding nodes to a cluster, the number of queries and concurrent sessions can be in-
creased without affecting running services on the existing nodes.

In terms of data distribution, different techniques are available, each providing

52

different levels of support for fault tolerance, scalability and data consistency. For
smaller data volumes and in reliable network environments direct synchronous data
copying can be done for example through materialised views (see Section 3.1.1). In
more complicated scenarios, with high data volume, unreliable links and frequent up-
dates, Oracle Streams technology is expected to be the most reliable solution. Oracle
Streams are discussed in Section 3.5. The next section reviews its application in the
context of the LCG-3D project.

4.4.1 Oracle Streams for Tier-0 to Tier-1 replication

The Oracle Streams product allows the connection of single tables or complete schemas
in different databases and ways to keep them synchronised. In the LCG-3D project,
CERN is the master site and holds the tables that can be modified by users. Logs
of these changes are automatically shipped to Tier-1 sites, where they are reapplied
in correct transactional order. In case a database at one of the Tier-1 sites is not
reachable (e.g. because of a network outage or database service intervention) logs
(Logical Change Records, see Section 3.5) are kept on the master database system
and are automatically applied once the connection has been re-established.

The database process which is capturing and queuing changes can optionally be
executed on a separate machine to reduce the impact of the Capture process on the
source database. Streams can be set up to provide a uni-directional or bi-directional
replication between their endpoints. Even though bi-directional streams have been
tested successfully, they add significant complexity to the deployment as conflicts
between updates on both streams endpoints may arise and need to be properly han-
dled. In the context of the LCG-3D project, hence, the single-master approach is the
one that is currently in production. In Figure 4.5 an overview of the Streams setup
managed by LCG-3D is shown.

The Oracle Streams technology has the advantage of being transparent to the
database applications, which means that applications developed to work in a non-
replicated environment will continue to work also with a Stream replication envi-
ronment. Of course, to exploit the full capabilities of the replication, a middleware
software that redirect users write/read accesses to different replicas must be present.

Many key WLCG database applications have been validated in the Streams en-
vironment and continue to function without any application change or application
specific replication procedures.

Ten Tier-1 sites participate in the setup of the Streams environment within the
LCG-3D project:

4.4. The LCG-3D project 53

CERN RAC CERN Downstream Database

Destination sites

redo log files
shipping

propagation
processes

Source Database

capture
processes

Figure 4.5: Streams Setup for the LCG-3D project

• ASGCC (Academia Sinica Grid Computing Centre, Taiwan)

• BNL (Brookhaven National Laboratory, USA)

• CNAF (Italian National Center for Research and Development about Informa-
tion and Data transmission Technologies, Italy)

• GridKA (Grid Computing Centre Karlsruhe, Germany)

• IN2P3 (Institut National de Physique Nucléaire et de Physique des Particules,
France)

• RAL (Rutherford Appleton Laboratory, UK)

• PIC (Port d’Informació Científica, Spain)

• NIKHEF (National institute for subatomic Physics, Netherlands)

• NDGF (The Nordic Data Grid Facility, Denmark)

• TRIUMF (National Laboratory for Particle and Nuclear Physics, Canada)

54

4.4.2 Using FroNTier/Squid for distributed caching
The LCG-3D project is evaluating FronNTier [61] as a data distribution technique
for Tier-1 to Tier-2 replication. Distributed caching using FronNTier/Squid has been
designed and implemented within the CDF (the Collider Detector at Fermilab) ex-
periment. Its purpose is to deliver read-only data stored in a database to multiple
users distributed world-wide. The cache system allows users to retrieve data even
when they are decoupled from the central database. The generic architecture of a
FroNTier/Squid installation is shown in Figure 4.6.

Client

Database

Cache

Conversion
 layer

HTTP

HTTP

JDBC

FroNTier Servlet
running under Tomcat

Squid Server

FroNTier Client API

Figure 4.6: The FroNTier/Squid architecture

This architecture provides no single point of failure, scales easily to thousands of
clients, and it significantly decreases the load on the central database.

Client queries to the database are translated by the FronNTier Client API library
into HTTP requests that are delivered to a Squid web cache. Only in case the data of
interest are not found in the cache, the query is sent to the database. Results of the
query are then put into XML files by the FroNTier server and stored into the Squid
cache so that the same query, the next time it is issued, can find the data in the cache.

4.4. The LCG-3D project 55

This scenario works well when clients use repeatedly the same queries on the same
read-only database tables, which is often the case in high energy Physics applications.

4.4.2.1 Consistency issues in FroNTier/Squid

One of the drawbacks of this solution is that the consistency among the central
database and the distributed caches is not enforced. A squid cache server is not
aware of possible database updates, so that applications running in a FroNTier/Squid
environment need to be carefully designed and tested to avoid possibly subtle consis-
tency issues caused by stale cached data. Periodically or on demand, cached objects
must be refreshed.

The CMS experiment, which is one of the main user of the FroNTier/Squid solu-
tion, has agreed to a policy of never changing objects that are stored into the central
database, and ultimately other cache refresh options will be implemented [50]. A
mechanism that provides periodic cache refresh is implemented as an expiration time
included as a meta tag in the cached XML file, which causes the file to expire the next
day. This is an adequate solution for the short term. However, periodically reload-
ing every cached object at every participating site will have significant performance
implications.

4.4.3 Applications managed by the LCG-3D replicated environment
As we have already seen in the previous sections, data in the LHC experiments are
mainly event and non-event data. However, the set of data used either directly or
indirectly by users and services includes also different types of metadata. Several
middleware services, for example the Replica Catalogue, use relational databases to
store data. These databases need also to be replicated in order to obtain the advan-
tages already explained in Chapter 3. In this section we briefly review the applications
whose multi-tier replication is based on the LCG-3D replicated environment.

ATLAS Conditions Databases Tier-0 on-line to off-line and Tier-0 off-line to Tier-
1 sites replication of ATLAS conditions databases is achieved with two Oracle
Streams deployments (see Section 4.3). Data in conditions databases are in-
serted and retrieved using the COOL API.

AMI The Atlas Metadata Interface (AMI) is an ATLAS middleware service for
dataset selection. AMI stores metadata about logical Physics datasets allowing
users to choose the data they are interested in. AMI provides capabilities that

56

are complementary to the ones provided by DonQuijote-2 (DQ2), the ATLAS
Data Management framework. AMI can be deployed using Oracle and MySQL
databases.

CMS Conditions Databases In CMS, Oracle Streams is used to replicate the con-
ditions database from the on-line system to the Tier-0 off-line system. Two
levels of FroNTier/Squid caches are then used to provide read-only facilities at
Tier-1 and Tier-2 sites.

LHCb Conditions Databases The LHCb experiment uses COOL to store and man-
age conditions data. Tier-0 to Tier-1 replication is done using Oracle Streams.

AMGA AMGA is a metadata catalogue used to store metadata associated to logical
file names. AMGA is used in the WLCG project and the replication is done
between Tier-0 and Tier-1 sites.

LFC LFC is the LCG File Catalogue (replica catalogue) used in the WLCG project.
Its main purpose is to store the association between logical and physical file
names (see Section 5.2.1.4). This catalogue is the results of a re-engineering
process done on a previous catalogue developed within the European DataGrid
project, that had serious performance issues.

Chapter 5

Grid Computing

Driven by the need of more computational power and storage capacity to solve com-
plex data analyses, Grid computing is becoming a widely used computing model in
many research fields. As an example, in Chapter 4 we presented the scientific chal-
lenge that physicists are facing at CERN, where the LHC will produce unprecedented
amounts of data to analyse in order to investigate on high energy Physics. A Grid in-
frastructure will be used to store and analyse data coming from the LHC.

In this chapter we better define the characteristics of a Grid and we introduce the
software used to manage a Grid, what we call middleware. We focus on the aspects
that make the Grid original, even if, as we will see, it would be more appropriate to
talk about an evolution more than a revolution in distributed and parallel computing.
In many cases, in fact, well known standards and software are used to create services
that are part of the middleware. We discuss more in detail data management and
replication issues, where we also highlight the lack of a synchronisation service for
replicated data.

The structure of this chapter is the following. In Section 5.1 we introduce the
main concepts that help to define Grid computing and differentiate it from other meth-
ods of distributed and high performance computing. To give a practical example of
Grid Computing we introduce the EGEE project, that manages the main European
Grid infrastructure for e-Science applications. We also give an idea of what research
communities are using the EGEE Grid. In Section 5.2 we explain what a middleware
is and what are the main services that it uses to manage the resources and to execute
user tasks. Two middleware examples are reviewed, the gLite middleware used in
EGEE, and the Globus Toolkit which is widely used in many Grid infrastructures.
We put more emphasis on data management topics, especially on services offered for

58

data replication, and we investigate on the support provided for replica consistency.
In Section 5.3 we talk about Service Oriented Architectures and the Open Grid Ser-
vice Architecture, which defines a model for creating and connecting Grid Services
used in the Globus Toolkit starting from version 3. Tools for Data Access and In-
tegration are introduced. In Section 5.4 we draw some conclusions about replica
synchronisation in Grid computing, and state the main reasons for which we believe
it is important to do research in this topic. The main issues in developing a Grid
Replica Consistency Service are analysed, and the few previous and current efforts
in this sector are cited.

5.1 Grids as a model for collaborative computations
Many different definitions have been used so far to define Grids and Grid Comput-
ing [67]. For our purposes, a Grid can be thought of as a distributed collection of
heterogeneous computing, storage and network resources, that are bound together
by a set of software services normally called middleware, and that are used by dy-
namic sets of people and institutions. The term Grid was introduced in [69], in 1998,
with the idea of comparing this new distributed computing infrastructure to the elec-
tric power grid. The term Data Grid is often used to stress the properties of a Grid
whose main purpose is the management of huge amounts of data1, while the term
Computational Grid is used when we want to focus on the processing power of a
Grid. However, these are minor terminology aspects, and recently the two terms have
started to be used together to define Grids as a Computational Data Grids.

As we are now able to plug a home appliance in the electricity socket in the
wall, according to the “Grid vision” one day we could attach our personal computer
to a Grid system to receive not electric power but computing and storage capacity
to run our jobs. Of course this is a figurative way to give an immediate idea; the
situation now is quite far from this vision, and Grids are mainly used in research
fields where complex computations must be performed on large amounts of world-
wide distributed data. The resources owned by a single institution are not enough to
perform some tasks, this is why multiple institutions need to cooperate, sharing their
resources, in order to achieve better results. If with the introduction of the World
Wide Web he have been able to access and share world-wide distributed information,
with the Grid we will be able to do the same with computational power and storage
capacity.

1 This is the case of the EU DataGrid project that was created for collecting and analysing data
coming from the LHC experiments at CERN, that we discussed in Chapter 4.

5.1. Grids as a model for collaborative computations 59

Grid computing, at first sight, can look like another way to identify cluster com-
puting or cycle-scavenging applications, but there are important differences to con-
sider. Hence, let us refine the definition of Grid having a more detailed look into the
main characteristics of a Grid.

When we say distributed collection of resources, we mean world-wide distributed;
Grids today involve resources placed in different continents. The biggest difference
that discriminates Grid computing from cluster computing is this one, and also the
control of the resources. A Grid spans different administrative domains, there is no
central point of management on the resources. A site that wants to join a Grid can
share its resources still enforcing its access policies and keeping the ownership of
them. This decentralised control over the resources is one of the biggest challenges
of Grid computing. The number of resources used in Grid computing poses new chal-
lenges also in terms of scalability: thousands of users, and thousands of processors
and disks connected through unreliable links must be managed in an efficient way.

We also mentioned that the resources are used by dynamic sets of organisations.
In Grid computing we generally refer to Virtual Organisations (VOs) to identify a
group of people that share a common goal that can be achieved using the Grid. For
example, in the LHC Computing Grid [41] each LHC experiment (see Section 4.1)
has its own VO, with many institutions participating in it. Virtual Organisations are
dynamic in that people and resources forming a VO come and go; an institution or
a single person can join a VO for a limited time as well as resources can be made
available for some time, for special purposes, and then taken back. This dynamic
property is another complicating factor in the development of Grid software.

Heterogeneity in the collection of resources being shared is another important
factor. Jobs submitted to the Grid can be executed using different hardware and soft-
ware components, and can read and store data from different storage technologies.
Matchmaking services are generally used to find, dynamically, the most proper re-
sources to execute a job; a job can have its constraints, like a hardware platform or
the presence of some software programs. The user of the Grid is generally unaware
of where his job will run, or where his job will read the data from. A big effort in
developing Grid services is done to guarantee this access transparency.

Another important property of Grid computing is that of being based on open
standards, and using as much as possible well-known and reliable protocols. Many
services like file transfers and security services in fact rely on protocols that are not
new in computer science; Grid tools are expected to use such protocols, enhancing
them with new capabilities or adapting them to the new constraints posed in Grid
environments.

60

5.1.1 The EGEE Project
As an example of an international Grid project, we now introduce the EGEE project,
Enabling Grids for E-sciencE [7]. Funded by the European Commission, the project,
in its first phase, started in 2004 with the goal of providing scientists with a production
quality Grid infrastructure supporting applications from various scientific domains,
like Earth Sciences, High Energy Physics, Biomedicine and Astrophysics.

The EGEE project ended in 2006 when the second phase of the project, EGEE-II,
started. The EGEE-II project extends and consolidates the EGEE Grid infrastructure,
which is shared with the Worldwide LHC Computing Grid Project (WLCG) [41].
The capacity provided by Grids like the EGEE Grid is much bigger than the typical
capabilities of local clusters at individual centres. With EGEE multiple institutions
can effectively collaborate towards a unique and sustainable tool for computationally
intensive science (e-Science).

Today, the project brings together scientists and engineers from more than 240
sites in 48 countries world-wide. More than 5000 people are registered to use the
infrastructure, but the number of people benefiting from it is more than twice larger.
The set of resources shared in the EGEE Grid infrastructure add up to something like
30,000 CPUs and 20 PB of data storage. These numbers are expected to increase in
the next few years.

Research institutions are not the only ones to benefit from the EGEE project, that
is also highly committed to building strong relations with industry. Regular events are
organised by the project to promote the adoption of Grid in industry, analysing busi-
ness needs, highlighting technical and non-technical barriers and suggesting ways to
overcome them.

EGEE is not only hardware infrastructure and middleware, these are just two of
11 activities within the project that also comprises things like training, support, work
on standards, international collaborations and on relation with business communities.

5.1.1.1 Applications

High Energy Physics (HEP) and Biomedicine were the first two scientific groups that
joined the EGEE project. More and more applications are starting to use the EGEE
Grid infrastructure and today we have applications in Earth Sciences, Bioinformatics,
Astrophysics, Multimedia and Finance, Astrophysics, Archaeology, Computational
Chemistry and Geology. Researchers in those fields form Virtual Organisations, and
collaborate, share resources, and access common datasets to solve computational and
data intensive tasks. The original community that promoted the development of the

5.1. Grids as a model for collaborative computations 61

EGEE Grid infrastructure was the one working at CERN with the four LHC experi-
ments (see Chapter 4). Other international HEP experiments are also making use of
the EGEE infrastructure, including BaBar (B and B-bar experiment) and CDF (Col-
lider Detector at Fermilab).

In Computational Chemistry, the initial and primary user is the GEMS a-priori
molecular simulator [58]. Several applications have already been ported to the Grid to
calculate chemical reactions, simulate the molecular dynamics of complex systems,
and calculate the electronic structure of molecules, molecular aggregates, liquids and
solids.

In Astrophysics several communities share problems of computation involving
large-scale data acquisition, simulation, data storage, and data retrieval. In 2008
the European Space Agency (ESA) is expected to launch the Planck satellite with
the goal of mapping microwave sky with an unprecedented combination of sky and
frequency coverage, accuracy, stability and sensitivity. PlanckEGEE [36] is a project
whose main goal is to verify the possibility of using a Grid Technology to process
Planck satellite data. Another example application is the MAGIC [24] application,
that runs simulations needed to analyse the data of the MAGIC telescope (located in
the Canary Islands) to study the origin and the properties of high-energy gamma rays.

In Earth Sciences, the EGEE project is contributing to efforts in a large range of
topics related to the earth’s atmosphere, ocean, crust and core, including applications
in earthquake analysis.

The biomedical community is benefiting from the Grid by enabling remote col-
laboration on shared datasets as well as performing high throughput calculations. The
applications involve medical imaging, bioinformatics and drug discovery, with many
individual applications deployed or being ported to the EGEE infrastructure. Among
the most interesting projects, we cite the WISDOM (Wide In Silico Docking On
Malaria) project, that makes use of the Grid for developing new drugs for neglected
and emerging diseases with a particular focus on malaria.

Multimedia and Finance domains have just started to evaluate and use the Grid
with EGEE.

To summarise, in the research environment, more and more application domains
have started considering the use of Grid technologies as a good opportunity to im-
prove their achievements. More computing power means having the opportunity to
use more and more complex data analysis algorithms. Access to world-wide dis-
tributed storage facilities means increasing the scope of your analysis. Last but not
least, the collaboration concept which is the most original contribution of Grid tech-
nologies offers to research institutes of medium-small size the possibility to join com-

62

plex and international projects which were before out of their scope.
In the commercial world, Grid technologies are mainly used in the finance sector

to perform Montecarlo simulations and complex statistical analysis. In this sector,
however, one of the key ideas behind Grid computing is missing: collaboration, that
is, information and resource sharing. The collaboration of dynamic groups based
on open standards is in contrast with some requirements of the finance sector, like
privacy and competition with other companies. This is the reason why, for the finance
sector, the distinction among Grid computing, High Performance Computing (HPC)
and Service Oriented Architecture (SOA) is often unclear.

5.2 What is a middleware and what is it made of
In a high level view of the Grid, three main types of node can be found: Comput-
ing Elements (CE), Storage Elements (CE) and User Interfaces (UI). The term CE
is used to identify a set of machines where a job-manager and a batch system are
installed. The CE then will execute jobs using Worker Nodes (WN). For the purpose
of this work, we can consider a CE as a single node where jobs can be scheduled and
executed. Storage Elements are storage systems, like disk pools and mass storage
systems with a “Grid Interface”, that is the support of some data access and transfer
protocols used in a Grid. Grid data are stored in SEs, and usually replicated on sev-
eral SEs. To interact with the Grid, users use software installed on some machines,
called User Interfaces, where they can log in and submit jobs, copy and move data
and so on.

What in Grid computing is generally called middleware is a collection of software
services, libraries and command line clients used to manage Grid resources and to
provide services to users. The middleware is the glue that connects together all the
actors and resources involved in a Grid infrastructure. The purpose of the middleware
is also to hide most of the complexity of the Grid environment to end users, and
ideally present them the Grid as a single large virtual computer that they can use to
execute their computation.

In principle, a middleware should provide basic services for:

• Submitting and controlling user jobs. A user, especially in HEP, interacts with
the Grid by submitting jobs, specifying the program to execute and the input
data needed by the program. An identification number is usually returned to
the user, that can use it to monitor the execution of the job and retrieve its
output.

5.2. What is a middleware and what is it made of 63

• Finding the most appropriate resources to execute jobs. Many heterogeneous
computing and storage resources are available in a Grid. The middleware must
be able to find resources that satisfy special requirements of the jobs. Policies
related to different VOs, and efficient use of the resources, impose that the
choice of the resources to use for the execution of a job consider also some
accounting criteria in order to ensure that the job have access to the resources
that it is allowed to use.

• Managing data stores, data access, transfer and replication. Different types
of storage resources are available in a Grid, from disk pools to mass storage
systems. The access to these technologies must be transparent to the user,
that must be shielded from technology specific details. Services for accessing
data, copying data from one site to another, and for replicating data must be
provided.

• Collecting and publishing the state of the resources. Resources in a Grid are
dynamic and heterogeneous. Their characteristics and status must be continu-
ously available to users and middleware services in order for them to be prop-
erly used.

• Enforcing security and VO-specific policies. Security rules must be applied
in order to avoid malicious use of resources. The users of a Grid must be
authenticated and authorised to use the resources. Special policies related to
virtual organisations must also be applied.

In the next sections we see two examples of middleware: gLite, the middleware
used in EGEE, and the Globus Toolkit. We provide more details about data manage-
ment services, highlighting the services used for replicating data, and the support for
replica consistency. We also talk about Service Oriented Architectures, that is the
model where Grid deployment is moving towards.

5.2.1 The gLite middleware
The middleware used by the EGEE and WLCG projects is gLite [13]. gLite builds on
top of existing services developed in previous Grid projects, especially in EDG [11].
Many of these services have been re-engineered, others have been adapted to new
sets of requirements, others have been designed and built from scratch.

Four areas can be used to group the basic capabilities offered by the gLite mid-
dleware, and in general by any middleware: Security, Information Service, Workload

64

Management and Data Management. In the next sections we review the main con-
cepts and solutions provided in each of these areas and then we explain the main steps
involved in a typical Grid user operation, the submission of a job. More emphasis is
put on Data Management topics, since this is the area where the Replica Consistency
Service is located.

5.2.1.1 Security

Security plays a fundamental role in the activities of a Grid. Data and resource shar-
ing needs to be organised and managed considering all the potential security threats,
like the use of resources by unauthorised users or the failure of critical operations due
to an integrity violation in some client-server communications.

In the EGEE Grid infrastructure, the Grid Security Infrastructure (GSI) [17] pro-
vided by the Globus Toolkit is used. The GSI is based on, and extends, the Public
Key Infrastructure, where a private key is owned and kept secret by an actor (user
or server in the Grid), and a corresponding public key is publicly available to all the
other actors who want to communicate with him/it in a “secure” way.

In general a secure communication between two actors is a communication where:

• each actor is sure about the authenticity of his counterpart (authenticity),

• the messages exchanged by the two actors are private, meaning that an external
user intercepting the messages is not able to understand them (privacy),

• the messages exchanged cannot be modified by an external actor trying to alter
the meaning of the conversation (integrity),

• the two actors are explicitly authorised to take part in the communication,
meaning that one has the right to contact the other (authorisation).

The GSS-API is an IETF standard defined in the RFC 2743 and 2744 which de-
fines an API that can be used by generic applications to achieve authenticity, privacy,
integrity, and delegation. Delegation is the way a server can execute operations on
behalf of a client.

The Globus Toolkit provides a set of security services, implemented following
the GSS-API standard, in the form of Java packages, C++ libraries and command
line client tools. These services cover privacy, authentication through X.509 certifi-
cates [39] , different methods for authorisation, and delegation and single sign-on
through proxy certificates.

5.2. What is a middleware and what is it made of 65

Coming back to the gLite middleware, let us see what a Grid user has to do in
order to use the Grid in terms of security. First of all a user needs to obtain an X.509
certificate from a Certification Authority (CA) recognised by EGEE, as described
in [54]. The certificate obtained by the user is usually valid for one year, and allows
the user to submit jobs to the Grid and use Grid services. But, before the user can
use the EGEE Grid infrastructure, he has to belong to a Virtual Organisation, and
adhere to its rules. Different VOs are available, usually bound to a specific project;
the complete list of VOs operated in EGEE and the way to join a VO can be found in
the EGEE User and Application portal [8]. The next step is to obtain an account on a
User Interfaces (UI) node; this is a machine where UI tools are installed, and a user
should usually refer to the system administrator of his home institution to ask for an
account. At this point the user, logging in to the UI machine, is able to execute a
command line tool to generate a proxy certificate. This proxy certificate has a shorter
validity than the user’s certificate, and it is used to delegate the user credentials to the
services the user wants to work with. With a valid proxy certificate, the user is able
to submit jobs, retrieve information, and execute basic data management operations.

5.2.1.2 Information Service

The Information Service is used to publish users and resources information and make
them available to other users and resources. Through the Information Service the
resources available on the Grid and their status can be queried in order to the decide
where and how a given job can or should be executed. Resource discovery is not the
only usage of the Information Service. Accounting information must also be kept in
order to monitor the usage of resource by different groups of users.

In gLite, two Information Services are used, the Globus Monitoring and Dis-
covery Service (MDS) [20] and the Relational Grid Monitoring Architecture (R-
GMA) [37].

The MDS is used to publish resources information for resource discovery pur-
poses. Both static (i.e., the type of a resource) and dynamic (i.e., the current status)
information can be published and queried. The MDS has a hierarchical architecture
with servers at resource, site, and central level. Each resource, CE or SE, publishes
information in its Grid Resource Information Server (GRIS). At the site level then, the
Site Grid Index Information Server (GIIS) collects information from different GRIS
providing a general view of the resources available at that site and their status. At the
top level of the hierarchy a Berkeley Database Information Index (BDDI) is used to
provide an overall view of the resources available in the Grid. MDS is based on an
open source implementation of LDAP (Lightweight Directory Access Protocol) [32],

66

a database optimised for reading operations.
R-GMA is an implementation of the Grid Monitoring Architecture (GMA) pro-

posed by the Open Grid Forum (OGF) [30]2. From the user point of view R-GMA
is a standard relational database where information about the system can be stored
and queried using a subset of SQL. It provides a more stable and flexible solution
compared to MDS. Its internal architecture is based on three main components: Pro-
ducers, Consumers and the Registry. Producers provide information and register
themselves to the Registry. Consumers can request information using the Registry
to locate Producers holding the information they are looking for. Then, they can con-
tact Producers directly to execute the queries. R-GMA, given its flexibility, can be
used to store user defined information, in general for accounting purposes, to track
the usage of resources by Grid users.

5.2.1.3 Workload Management

The Workload Management System (WMS) is the set of components that manage
the job submission and execution process. A user on a UI node can submit a job
providing a specification file written in JDL (Job Description Language) [65] where
properties of the job to be executed are specified, like the location of the executable
and the value of its arguments. Using JDL, the user can also list a number of files that
the job needs to access during its execution, put some requirements on the machine
where the job will be executed (e.g, platform, operating system) and specify where
the output of the file need to be stored.

The WMS is a very complex system because it has to take decisions based on
the status of the Grid resources at the time a job is to be executed, hiding most of
the complexity of the Grid to users. The most proper CE must be found, and files
needed by the job must be placed close to the machine where the job will execute. In
order to do this, the WMS uses services provided by the Information Service and by
the Data Management Service. During the job execution the user can retrieve status
information and, in case, cancel the job, using the job identification number received
when he submitted the job.

Many advanced features are available besides the basic ones, like the automatic
resubmission of jobs in case of errors, the possibility to submit collections of jobs
with dependencies and to retrieve the output of jobs in real time.

2The former GGF, Global Grid Forum.

5.2. What is a middleware and what is it made of 67

5.2.1.4 Data Management

Data Management Services in the gLite middleware use the file as the primary unit for
data management. A file is usually replicated for performance and reliability reasons,
but after the creation a replica cannot be modified not to break the consistency among
the replicas.

Different names are used to identify a file in the Grid:

• GUID, Grid Unique IDentifier: it is used to identify unambiguously a file into
the Grid. Its format is: guid:<unique string> where the unique string is
made of a MAC address plus a timestamp.

• LFN, Logical File Name: this is a human readable string, chosen by users, that
they will normally use to refer to a file irrespective of its location. The format
is lfn:<any string>.

• SURL and TURL, Storage and Transport URL: they refer to a physical file,
meaning to a specific replica stored in a specific SE. The SURL (also known
as Physical File Name, PFN) includes the name of the host where the file is
stored, plus the path to its current location.
The format is either sfn:<SE_hostname>/<path> or srm:<SE_hostname>/<path>
depending on the type of SE, with or without an SRM interface3 . The TURL
has also a protocol specification and it is used to retrieve or move the file. The
format is <protocol>://<SE_hostname>:port/<path>.

Files are stored in Storage Elements, but the mapping between GUID, LFN and
SURL is kept on a replica catalogue. The catalogue supported by gLite is the LFC
File Catalogue, that we discuss later.

Different Storage Elements and access protocols are supported in gLite. As re-
gards the Storage Elements, three types of storage elements are supported: Castor,
dCache and LCG Disk pool manager. Castor is a mass storage system that uses a
disk buffer as front end to a tape robot. Files are kept on tapes and transferred to the
disk buffer before being accessed. dCache is a system of disk pools managed by a
single server which presents a single virtual file system to the users. This system can
be used both as front end for mass storage systems or as disk server. LCG Disk pool
manager is a lightweight disk server solution for small sites.

All the three types of Storage Element provide a uniform interface to users, the
Storage Resource Manager (SRM) interface, which allows users to do operations like

3SRM is a standard interface for SEs, that we discuss later in this section.

68

requesting files, moving them from tape to disk buffer in case of mass storage system
and reserving space, in the same way on all the SEs.

As we said, the catalogue used in gLite to locate files is the LHC File Catalogue
(LFC). It contains the mapping between GUIDs and LFNs and between GUIDs and
SURLs (the TURL can be obtained dynamically from the SURL). This catalogue
is implemented using Oracle as backend database, but MySQL is also supported.
Using Oracle, the catalogue can be replicated to several sites, but only with a single
master configuration, that is, only one replica can be updated and the others are read-
only synchronised copies. This type of replication is done using Oracle Streams (see
Section 3.5), as we saw in the LCG-3D project in Section 4.4. The LFC publishes
its endpoint in the Information Service, so that it can be found and queried by other
services, like the Workload Management System. The LFC provides a command line
interface through which users can query the catalogue to retrieve the list of registered
files. In the LFC, LFN entries are organised like a Unix filesystem: users can create
directories, list their contents, change their access rights and so on (for the complete
list of commands see [54]).

For replica management gLite offers different solutions. The most proper way to
manage replicas is through a set of command line client tools called lcg_utils. They
provide commands to move data into or out of the Grid, to create or delete replicas,
to move replicas from one SE to another one, to list the replicas of a given LFN, to
retrieve the GUID from an LFN or SURL and so on.

It is worth emphasising that files are considered read-only: if a user modifies
directly a single replica, all the other replicas became stale without warning the users
of the Grid. There is no replica consistency service in gLite.

When using the LFC commands a user has also to be aware that the operations
he does on the catalogue do not involve the files, but just the catalogue entry. For ex-
ample, when removing an LFN from the catalogue, all the replicated files associated
to that LFN are not removed from their SEs, but they will not appear as part of the
Grid. Thus, these replicas will be unavailable but will still take space in the SE.

Another gLite Data Management Tool is the File Transfer Service (FTS) [12],
which can be used to schedule file transfers between a source and a destination SE
in the Grid. The FTS service is based on GridFTP, the standard protocol for data
transfers in Grid computing. In order to use the FTS command line clients a user
has to have a proxy certificate4 , after which he can use the command to submit a file
transfer job either specifying sources and destinations as arguments, or giving a file

4In this case the proxy is a long-term proxy, created using a special service called MyProxy [26]
server.

5.2. What is a middleware and what is it made of 69

where sources and destinations are listed. The submission commands return to the
user an identification string that can be used to query the status of the job or to cancel
it.

Lower level tools also exist to execute data management operations, but users
are encouraged to use the high level services that we just presented, mainly for two
reasons: they are easier to use and they protect against possible inconsistencies that
can be generated when using the lower level tools.

5.2.2 Data Management in the Globus Toolkit
The Globus Toolkit [15] is an open source software framework used for building
Grids. It is being developed by the Globus Alliance [14] in collaboration with many
others institutions.

Services and libraries of the Globus Toolkit are present in most of the Grids de-
ployed all over the world, as we saw in the case of the EGEE project, where GSI,
GridFTP and the MDS are used. Starting from version 3, the components of the
Globus Toolkit follow the OGSA standard (see Section 5.3) and are built as web ser-
vices. Some of the components offer both WS version (based on web services) and a
pre-WS one, without web services.

The Globus Toolkit provides solutions for Security, Information Service, Job
Submission and Monitoring, and Data Management. As regards the Security ser-
vices, the main concepts have already been explained in Section 5.2.1.1. As Infor-
mation Service the Globus Toolkit provides the MDS (see Section 5.2.1.2), both in
a WS and a pre-WS version. The pre-WS version is the one used in gLite, while
the WS version, also called MDS4, is an enhanced version with an OGSA based
implementation. For the job submission, execution and monitoring part, the Toolkit
provides a set of services know as Execution Management, also in this case with two
versions, WS and pre-WS. The Execution Management is based on the GRAM (Grid
Resource Allocation and Management) server [16] that provides, at least from a user
perspective, capabilities similar to the gLite Workload Management System.

5.2.2.1 Data Management Services

In this section the basic data management services provided by the Globus Toolkit
are reviewed. In particular, we highlight the differences with gLite and see, in detail,
how the replication services are organised, and whether they provide any support
for replica consistency. Three main components are provided, for file transfer, data
location, and a higher level Data Replication Service.

70

5.2.2.1.1 File Transfers Two main components are provided to move files: GridFTP
and RFT (Reliable File Transfer Service). GridFTP is the basic protocol that we al-
ready mentioned when talking about the gLite middleware. Here we give some more
details about it.

GridFTP is a protocol defined by Global Grid Forum Recommendation5 GFD.020,
RFC 959, RFC 2228, RFC 2389. The Globus implementation of GridFTP is used in
most of the Grids deployed nowadays. It provides a secure, efficient and reliable way
of transferring files from or into the Grid as well as between two Grid sites. A server,
a command line client plus a set of libraries to build custom clients are provided
within the Globus Toolkit6.

The GridFTP protocol derives from the well known FTP protocol, the Internet
file transfer protocol. GridFTP extends FTP by adding some new capabilities like the
multistreamed transfer, and integrating the GSI. It was built to provide a uniform data
transfer protocol to be used in several storage systems in use by the Grid community.

Third-party data transfer is also possible using GridFTP. It means that a file trans-
fer between two machines can be initiated and controlled from a third machine. Par-
allel, or streamed data transfer improves the aggregate bandwidth over using a single
TCP stream. Another bandwidth improvement comes from the striped data trans-
fer, meaning the transfer from multiple sources to a single destination when data are
partitioned among multiple servers. When files are large, it is sometimes desirable
having the possibility to transfer just a “piece” of file. In GridFTP this is possible
with the partial data transfer, where the transfer of a piece of a file starting at a par-
ticular offset can be done. These are the most interesting features of GridFTP; the
complete set of commands or server options can be found in [19].

The Reliable File Transfer Service builds on top of GridFTP and provides a web
service oriented interface to it, plus new features to recover from transfer failures,
both on the client and server side. The RFT Service is an OGSA compliant Grid
Service, and allow users to schedule one or more file transfers and monitor them
asynchronously, as we already saw for the gLite File Transfer Service.

5The Global Grid Forum, now Open Grid Forum (OGF) [30] is a community of users, developers,
and vendors whose mission is to accelerate the adoption of Grid technologies by providing an open
forum where the main activity is to promote Grid software interoperability through the definition of
open standards. Besides collecting and reviewing proposal for protocols, services and best practises in
the use of Grid technologies, the OGF also organises events that bring together Grid experts from all
over the world.

6GridFTP C++ libraries are used in CONStanza, as we explain in see Section 6.4.3.5.

5.2. What is a middleware and what is it made of 71

5.2.2.1.2 Replica Location As we already saw in gLite, data can be replicated
on several storage systems of a Grid environment. When multiple copies of a same
data item exist, we need a way to locate them. We already saw in gLite the naming
scheme (GUID, LFN, SURL and TURL) and the catalogue used to locate replicas,
the LFC. In Globus, just LFN (Logical File Name) and PFN (Physical File Name)
are used, and their association is kept in the Replica Location Service (RLS). In this
case, the LFN plays the role of unique identifier, like the GUID in gLite.

The RLS is made of one or more Local Replica Catalogues (LRC) and zero or
more Replica Location Indexes (RLI). An LRC holds the mapping between LFNs and
PFNs. A client can query an LRC to find where the replicas associated with a given
LFN are physically stored. An LRC can be deployed on MySQL, PostgreSQL, and
Oracle. When multiple LRCs are present in the same Grid environment, a Replica
Location Index can be used to store the LFN mappings present at each LRC: in this
way, a client that wants to find the physical location of a replica, instead of contacting
all the LRCs, can query an RLI to find which LRCs holds the mapping for a given
LFN. Then it will contact directly that LRC to retrieve the PFNs associated to that
LFN. Entries in the RLI are pushed in by the LRCs, which periodically must refresh
these information that have a limited life time.

In a small environment, with up to ten sites, a fully connected deployment of
LRCs and RLIs is possible. In this case an LRC is present at each site7 together
with an RLI. The LRC stores mappings at its own site, and the RLI stores the LFNs
mappings of all the LRCs. Thus, an LRC has to publish its information in all the
indexes. In this way, every site has a complete picture of the overall system, and a
user can query a single index to find out in which LRC the mapping he is looking
for is stored. An example of fully connected deployment with 3 sites is depicted in
Figure 5.1.

Entries in the RLIs are the same and for this reason the figure shows only one
case. In this example a client looking for replicas of the logical file LFNa, will first
query an RLI. The RLI will reply saying that in order to find all the replicas it has to
contact all the LRCs, because all of them hold at least one replica. Instead, to find
replicas of LFNe for example, just LRC2 must be contacted.

In larger deployments, this configuration will not scale since every LRC has to
periodically send refresh information to all the RLIs. In these cases the LRCs can be
configured to publish their information only to some indexes. Thus, indexes will not
have a complete view of the overall system but just a partial one, and one or more
RLI could be contacted by clients in order to retrieve the needed information.

7We assume that a site has a single SE.

72

SE1

LRC1

Site1

RLI1

LFNa ----> PFNa1, PFNa2

LFNb ----> PFNb1

LFNc ----> PFNc1,PFNc2,PFNc3

LFNd ----> PFNd1,PFNd2,PFNd3

SE2

LRC2

Site2

RLI2

SE3

LRC3

Site3

RLI3

LFNa ----> PFNa3

LFNb ----> PFNb2

LFNc ----> PFNc4,PFNc5,PFNc6

LFNe ----> PFNd1,PFNd2

LFNa ----> PFNa4

LFNb ----> PFNb3

LFNf ----> PFNf7

LFNg ----> PFNg1

LFNa ---->LRC1,RLC2,LRC3

LFNb ---->LRC1,LRC2,LRC3

LFNc ---->LRC1,LRC2

LFNd ---->LRC1

LFNe ---->LRC2

LFNf ---->LRC3
LFNg ---->LRC3

Figure 5.1: RLS, fully connected deployment

It is worth noting that the RLS does not perform any consistency check. When
two replicas are registered into the LRC the system does not do anything to check
whether the two replicas are actually exact copies. In the same way, if a replica is
modified, the modifications are not propagated to all the other replicas so that what
in the RLS appear to be copies of the same LFN in reality are different. No support
for replica synchronisation is provided, and users have to be careful and manually
remove replicas when executing some updates. This lack of replica synchronisation
has been already found in the gLite Data Management Services, and is one of the
main factors that led to the work done in this thesis.

5.2.2.1.3 Data Replication For what we have seen so far, the Globus Toolkit pro-
vide file transfer services and replica location services. This means that if a user wants
to replicate data, and make the new replica visible into the Grid, he has to do a file
transfer (copy the original file to a new destination) and then manually insert into
the LRC an entry for the new file, specifying that it is a copy (replica) of an exist-
ing LFN. In version 4.0 (the current one) of the Globus Toolkit a Data Replication
Service (DRS) is presented as a technical preview.

The DRS builds on top of the RFT Service and the RLS. The DRS is a web ser-
vice compliant with the OGSA specifications and provides a command line client
to create a replication task and control it. The task, that is the replicas to cre-
ate, is specified in a request file that must be given as argument to the command

5.3. Service Oriented Architectures and the Grid 73

globus-replication-create. The user can then monitor and in case stop the repli-
cation task using others command line clients [18].

5.3 Service Oriented Architectures and the Grid
In the previous sections we introduced the basic services provided by the Globus
Toolkit, and mentioned that WS and pre-WS versions exist for some services. Start-
ing from version 3, the Globus Toolkit is based on the Open Grid Service Architec-
ture (OGSA) [70], that merges concepts from Web Services and Grid computing. In
OGSA a Grid architecture is seen as a Service Oriented Architecture (SOA) or more
specifically as a collection of Grid services that can be dynamically created and con-
nected to provide services. A Grid service, as defined in OGSA, is a web service that
implements a specific interface and provides a standard way to manage the service
lifetime. A standard approach to notification can also been implemented by a grid
service, so that a user can subscribe to a service in order to receive messages about
significant changes in the service internal state. Each grid service is then associated
with a set of service data, through which a user or application can discover a grid
service that provides the desired capabilities.

Grid services can be hosted in an application server environment such as J2EE
or .NET, or deployed as self-standing processes. In complex environments, how-
ever, the services will span heterogeneous, geographically distributed environments.
Exploiting the platform independent capabilities of web services, grid services can
effectively support the operations performed by Virtual Organisations.

5.3.1 Integration of databases into the Grid with OGSA-DAI
While early Grid applications were only using file based data access, nowadays the
need of databases and their integration with middleware services is widely recog-
nised. Databases are not only used to store application data but also middleware
service metadata. OGSA-DAI [29] is “a middleware product which supports the ex-
posure of data resources, such as relational or XML databases, on to Grids”. It is part
of the Globus Toolkit and its main goal is to provide a service-based interface to dif-
ferent types of databases. At the moment OGSA-DAI supports MySQL, IBM DB2,
Microsoft SQL Server, Oracle, PostgreSQL and the eXist XML database. An impor-
tant functionality of OGSA-DAI is the possibility to group several database queries
into a single service request, which will be exploited by the Distributed Query Pro-
cessing service described in the next section. Different options for delivering results

74

are also possible.
In OGSA-DAI the main role is played by data services, that are specific imple-

mentation of grid services used to manage the access to a data storage resource. Using
OGSA-DAI a user can, with a single request to the OGSA-DAI data service, send an
update to a database, then query this database and deliver the results of the query to a
third party. The data service interface is based on activities. Each activity (a query to
a database, an operation on the result or the delivery of the result) is mapped to a Java
class that is responsible of its implementation. This architecture provides the way to
extend OGSA-DAI with operations that are relevant to a specific application, for the
purpose of data access, transformation and delivery tasks.

5.3.2 OGSA-DAI Distributed Query Processing
OGSA-DAI Distributed Query Processing (DQP) [62] is a service to perform dis-
tributed queries over a set of databases in a service oriented middleware as defined
in OGSA. DQP itself is built as an OGSA-DAI service. It provides a way to exe-
cute parallel queries over a set OGSA-DAI and other Grid Services. OGSA-DQP’s
architecture includes a coordinator service, to interact with a user request. The coor-
dinator receives a query plan as an XML document (perform document) and breaks
it into multiple sub-plans that can be executed in parallel by evaluation services on
the actual data resources. As we saw in OGSA-DAI, the results of the distributed
query can be returned synchronously or asynchronously to the user or sent to another
service. This allows users to combine data integration (query results from different
data sources) with analysis capabilities (results sent as input to an analysis service).

5.4 Replica consistency in Grid computing
In Section 5.2, when we reviewed the gLite and the Globus Toolkit software, we saw
that both middleware solutions provide services for replicating data and for locating
replicas with replica catalogues. However, none of them provide any support for
replica synchronisation. A user that wants to update a replicated file, can select one
of this replica and modify it, but then he has to be aware that this would cause the
other replicas to become stale. What a user can do is to manually remove all the other
replicas, and create new replicas using the one that he previously modified. It is clear
that this is not a good solution; it is complex, error prone, and cannot be used when
updates are frequent. Moreover, when users want to update the same replica, they
have to coordinate themselves in order to avoid inconsistencies

5.4. Replica consistency in Grid computing 75

The lack of replica consistency support is partly due to the fact that many appli-
cations that are driving the development of Grid middleware expect to use modifiable
datasets in the future, but currently use mostly read-only data. As a consequence,
requirements for replica consistency are still unclear. More precise requirements will
be defined when users begin to try new models of computation. Even if in most ap-
plications the read-only assumption is reasonable and allows for a simplification in
the data management architecture, research in replica consistency issues is impor-
tant [66].

Research in replication algorithms has shown that replica synchronisation comes
at some cost in terms of data availability, so that only certain applications can fully
profit from replicated data with update features. Just as replica consistency has be-
come an essential property in distributed databases and filesystems, the same will
obviously occur in Grid infrastructures. Further, considering that Grid computing
is a rapidly emerging technology, it is likely that new applications, outside the sci-
entific field, will arise in the next few years, providing more requirements for the
implementation of a Replica Consistency Service.

5.4.1 Issues in designing a Replica Consistency Service

The design of a Replica Consistency Service as part of a Grid middleware must face
many difficult issues that derive from specific properties of a Grid environment. In
general, being replica consistency a highly application-specific problem, designing
one consistency management mechanism for different applications requires finding
trade-offs on many different design choices. In the next paragraphs we review some
of the most important issues that need to be dealt with, providing hints for the design
of a Replica Consistency Service.

5.4.1.1 Scalability

First of all, any Grid infrastructure involves the management of many sites, hence, in
case of flat files, it is likely to have to deal with several thousands of replicas, some
of which could not be continuously available. Thus, update propagation algorithms
must be properly designed to provide good performance also with large numbers of
replicas. Keeping the design simple can be the key to success; whenever possible,
single master solutions are the recommended way to provide fast read access and
high data availability.

76

5.4.1.2 Security

Security issues must be considered in the development of a RCS, like in any other
middleware service. Communication with the service should be secure; this means
that the service should deal with authorisation, authentication, privacy, and integrity
issues. The Grid Security Infrastructure (GSI) provided by the Globus Toolkit is
widely adopted as an integrated solution to security problems and it is based on the
public key infrastructure. The GSI can be easily integrated in a Grid service.

5.4.1.3 Replica Location

Replica location services and replica catalogues are used in Grid middleware to store
the association between a logical file and all its replicas. Among the most used imple-
mentation we cite the Globus Replica Location Service (RLS) and the LCG File Cat-
alogue (LFC) seen in Section 5.2. The RCS has two options: interfacing with these
catalogues or implementing its own replica catalogue. Both options have advantages
and disadvantages. Using an external replica catalogue would avoid duplicating in-
formation and complicating the system. On the other hand, the integration with an
external service should be carefully planned and would require such catalogues to
be modified. For example, not all the logical files registered in a replica catalogue
need the consistency management, like read-only files. For files that do require con-
sistency management, some new attributes (e.g. master/slaves, fresh/stale, version
number) should be added to each replica’s metadata.

5.4.1.4 Efficient file transfer

An efficient file transfer tool should be used for update propagation. File transfer ser-
vices for Grid computing are normally built on top of the GridFTP protocol. The RCS
should use either GridFTP or higher level services to efficiently propagate updates to
possibly thousand of replicas. Most of the Storage Elements support the GridFTP
protocol, making it an ideal choice to solve the file transfer issue in the RCS.

5.4.1.5 SE heterogeneity

A Grid connects many different resources. Storage Elements, where files are stored,
can have different implementations and different access protocols. Although a stan-
dard interface could be available in the next few years (SRM), a RCS should interface
with different SEs. Lock management features should be provided by the SE since, in

5.4. Replica consistency in Grid computing 77

certain scenarios, the access to a replica may need to be blocked to avoid concurrent
access.

5.4.1.6 Disconnected nodes

The RCS should be able to perform the synchronisation of replicated datasets even
when some of them are not available. Quorum mechanisms could be used to ensure
that an operation is performed when at least a given number of replicas are available,
and it should be possible to select this number depending on the application require-
ments. Basically, a quorum system should be used to deal with disconnected sites
(see Section 3.2.1.1). Synchronisation of unavailable replicas should be retried as
soon as they become available.

5.4.1.7 Metadata Consistency

The RCS should provide synchronisation capabilities both for applications and mid-
dleware services. Many middleware services in fact use replication for fault tolerance
and reliability. One example can be found in the Globus RLS, where catalogues are
replicated but consistency management is not supported. This led us to consider, as
already stated in this work, the consistency of both files and databases. Although
they present different characteristics, file synchronisation and database synchroni-
sation have similarities that should be exploited to provide a general and flexible
Replica Consistency Service.

5.4.2 Previous and current efforts in Grid replica consistency

The first work on replica consistency in Grid computing is dated August 2001 [56].
In this work the problem of files, objects and database consistency in a Data Grid
is analysed. Use cases for High Energy Physics (HEP) applications are presented
and different possible inconsistencies scenarios are introduced. Here the Consistency
Service proposed is set on top of other Data Management middleware services like
File Transfer, Replica Catalogue and Replica Manager. It is also stressed that the
Replica Consistency problem is highly dependent on the application requirements
and the data model. Thus, the envisioned Consistency Service must support different
synchronisation protocols. It is also noted that consistency issues can derive not only
from updates on existing data but also from creation of new data. No prototypes nor
simulation studies were done in that work.

78

The first practical study about a possible synchronisation service has been done
in [44], where the OptorSim Grid Simulator [53] was enhanced with a consistency
module to simulate two replica synchronisation algorithms. A synchronous and an
asynchronous protocol have been simulated on replicated files in a Grid made of 3 CE
and 10 SE with job requesting logical files replicates on all the SE. The probability
that the file access was a write operation has been used as a parameter to study how
many times read and write access were done on the up-to-date replicas.

In [90] two coherence protocols for Grid applications are presented. In the first
one, a lazy approach is used, where a replica is updated only before being accessed.
A central catalogue is used to store metadata information, including the timestamp of
the last modification of each replica. One replica acts as the home for all the others,
meaning that it always has the most up-to-date information (it is a master replica).
The update of a replica is done comparing the timestamp of the replica we want to
access with the one of the home replica. In case the home replica is newer, a “diff”
between the two replicas is done and the stale replica is synchronised. The second
protocol uses an aggressive-copy approach, where the replicas are updated as soon as
the home replica is modified, using a push method. The problem of temporarily dis-
connected replicas is not dealt with. No simulations nor prototype implementations
of these two protocols are presented.

In [81] an architecture called Adaptable Replica Consistency Service (ARCS)
for dealing with replica synchronisation in Grid computing is presented. Grid sites
located closely are organised into a region, and the consistency of replicas in each
region is managed by a Region Server. Each region has only one master replica,
which is responsible of write operations and of synchronising the read-only replicas
(slaves) in its site. The overall architecture however has a multi-master configuration,
with one master located in each region. The access serialisation among the master
replicas is done using a key, that is a token, kept is the replica catalogue, which grants
a master replica the right to be updated. Thus, a synchronous approach among the
master replicas is foreseen. A simulation model, implemented on top of the OptorSim
Grid Simulator is presented.

For what concerns database replication in a Grid environment, in [49], a novel
Grid Database Replication Model is presented to provide a framework for replicating
and synchronising databases in a Grid environment. The architecture uses existing
Grid services like the Metadata Registry (replica catalogue) and the Transfer Ser-
vice (GridFTP), and relies on existing proprietary database replication solutions. To
achieve heterogeneous database replication, the main idea is to provide a standard in-
terface towards different database replication mechanisms, to perform operations like

5.4. Replica consistency in Grid computing 79

log extraction (capture) and export (to create a replica) on the source database and
log application (apply) and import on the destination database. Between the capture
and the apply process, a Grid file transfer service is used to propagate data. Although
it is planned to address both homogeneous and heterogeneous database replication,
the current prototype implementation is based on IBM DB2 databases and DB2 SQL
Replication [21].

The problem of concurrency control in distributed heterogeneous databases in a
Grid environment is studied in [85]. This work focuses on the problem of consistency
in distributed databases when data are partitioned among different databases in a
Grid, and transactions must be properly scheduled when accessing data on multiple
databases. Due to the lack of a global management system, it is shown how incorrect
schedules can generate inconsistencies among the databases. A Grid Concurrency
Control (GCC) protocol is proposed, extending the serializability concepts seen in
Chapter 2 to heterogeneous databases. The discrete-event simulator CSIM [6] has
been used to study the performance of the protocol.

80

Part II

System Details

Chapter 6

CONStanza, the Replica
Consistency Service for Data
Grids

In Chapter 5 we saw two important and representative examples of middleware, gLite
and the Globus Toolkit, and analysed the support they provide for data replication.
We also stated that no support for automatic synchronisation of replicated data is
provided, leaving to the users the task of executing manual operations in order to
solve potential inconsistencies. In particular, in gLite, file replicas are considered
read-only, but users do have the possibility to modify a replicated file introducing
inconsistencies. We explained the reasons why the replica consistency problem has
not been faced so far, and we also stressed the reason why we think it is important to
do research in this topic.

In this chapter, the main deliverable of this work, the CONStanza project, is
presented. The CONStanza project started in 2003, as an investigation on possible
algorithms for the consistency of replicated files in a Data Grid [44]. After that
experience within the INFN-Grid project it was decided to start a real implementation
of a Grid Replica Consistency Service.

This chapter presents the design and the implementation of such a service. In
Section 6.1 we quickly review the domain of the system we want to design, recalling
the main concepts and the terminology that we will use in the following sections. In
Section 6.2 we state the requirements of the system, separating functional require-
ments from non-functional ones, and we present a use case model with a detailed
specification for the main uses cases. In Section 6.3 we analyse the functional re-

84

quirements in order to formalise some concepts for a smooth approach to the design
phase. We present the main analysis classes of the system, their associations and
how they interact in order to realise the use cases. In Section 6.4 the architecture of
the system is presented, and more details for each subsystem are provided. In par-
ticular, we show how CONStanza implements the synchronisation of heterogeneous
databases, considering also non-functional requirements like fault-tolerance.

6.1 Domain analysis
A domain analysis has already been done when we talked about Grid computing, and
specifically about the middleware and Data Management services, in Section 5.2.
In this section we briefly review some of the most important concepts that consti-
tute the domain of the system we want to develop, the Replica Consistency Service.
In what follows we refer to a generic Grid environment where we distinguish three
kinds of Grid nodes: Computing Elements (CE) provide computing power, Storage
Elements (SE) provide storage capacity, and User Interfaces (UI) are the hosts that
users connect to for accessing the Grid. Several services compose the Grid middle-
ware, providing such capabilities as Grid-wide job scheduling, resource allocation,
security and data management. The latter class of capabilities includes the Replica
Management Service (RMS) and it is also where our Replica Consistency Service is
located.

A Virtual Organisation (VO) is a group of people sharing computing resources
and collaborating towards a common goal according to well-defined rules. This con-
cept plays a vital role in the mechanisms that control access to Grid resources and in
the management of the resources themselves.

The Replica Management Service is a middleware component that provides data
management capabilities to Grid users. One example of RMS has been already pre-
sented in 5.2.1, where we talked about the lcg_utils command line clients provided
by the gLite middleware.

As discussed in Section 3.1, data replication imposes a distinction between a log-
ical dataset and its physical instances, i.e., its replicas. Replicating a dataset means
that several physical copies of its content exist on different Grid nodes, i.e., on dif-
ferent SEs. In the case of file replication, a unique name (GUID) identifies the set of
replicas for a file, and Logical File Names (LFNs) are mapped to the unique name.
Logical file names can have some metadata associated to them. Logical file names
are an abstraction mechanism, used to identify a group of replicas, but the GUID
is the unique identifier that identifies unambiguously a set of replicas. File replicas

6.2. Requirements 85

are stored in Storage Elements, of different types, with different access protocols. A
replica on a SE is identified by a Physical File Name (PFN). Replicas of the same
logical file can be independently modified, but the RMS does not provide any mech-
anisms to enforce consistency among them.

Besides Storage Elements, relational databases are also used to store data. Replica
catalogues, like the RLS and the LFC discussed in Section 5.2 are deployed using
Oracle, MySQL, Postgres and SQLite databases. Such replica catalogues can be
replicated, but this replication is based on proprietary solutions (like Oracle Streams,
explained in Section 3.5) and supports only homogeneous replication, i.e., among
databases of the same vendor.

6.2 Requirements
Collecting and defining requirements is the first and most important phase of a soft-
ware development process. Starting the design of a system without having clarified
what the system should do is one of the main causes of failure in software projects.
In this section we define the requirements of the Replica Consistency Service; we
separate functional requirements (what the system should do) from non-functional
requirements (properties or constraints of the system). Then we start building our use
cases providing details for the most important ones.

6.2.1 Functional Requirements
Functional requirements describe what the system should do. It is important, in this
phase, to avoid mentioning how the system should do something. Each requirement
is identified with a label Fi and a priority level is associated to it; in some cases a note
will be appended to add information about the requirement.

F1 The RCS shall allow clients to maintain consistency among replicated files. To
this purpose, it must be able to propagate update information and apply them
to all the replicas of a a logical file.

• Priority: High.
• Notes: This is the main requirement, for flat files. The synchronisation

of files is triggered by a user request on all the replicas of a given logical
file. A requirement for an automatic procedure to synchronise replicas
with a given periodicity has a low priority.

86

F2 The RCS shall allow clients to maintain consistency among replicated hetero-
geneous relational databases.

• Priority: High.
• Notes: This is the main requirement, for relational databases. For databases,

on demand synchronisation and automatic synchronisation, with a user-
defined periodicity must be provided.

F3 Strict consistency is generally not needed, lazy algorithms must be preferred
(see Section 3).

• Priority: High.
• Notes: The details about the algorithm that will be used for Update Prop-

agation (UP) is not important in this phase. For flat files a synchronous
approach will also be provided, but with a low priority.

F4 The RCS shall allow clients to specify a quorum value for an update operation.

• Priority: High.
• Notes: This is a requirement that deals with the possibility of having

some replicas unavailable at the time an update operation is done. The
quorum is the minimum number of available replicas required for an up-
date operation.

F5 The RCS shall allow clients to retrieve the list of up-to-date replicas of a logical
dataset and the update status of all the replicas of the dataset.

• Priority: High.
• Notes: A replica can be stale with respect to some other replicas of the

same logical dataset when an update operation is running (not yet com-
pleted) or when such a replica is unreachable. In order to avoid stale reads
the user must be able to retrieve update information about the replica that
he wants to access.

F6 The RCS shall allow clients to check the status of an update operation.

• Priority: High.
• Notes: When a user requests an update operation, he must be able to

monitor the update process.

6.2. Requirements 87

F7 For flat files, the RCS shall work independently from the Replica Management
Service (RMS).

• Priority: High.
• Notes: We will start designing the system to work independently from

the RMS. The integration with a RMS will have a low priority.

F8 The RCS shall allow privileged users to register/unregister logical datasets as
well as their replicas, putting them under or removing them from the RCS
control.

• Priority: High.
• Notes: The RCS maintains consistency only of those replicas that have

been previously registered to it.

F9 The RCS shall allow privileged users to set the UP protocol and its details, if
any, but, at any time, there can only be one active protocol responsible for all
the datasets and all the update operations (one-for-all).

• Priority: High.
• Notes: The consequences of a change of protocol when some update

operations are still running must be considered.

F10 The UP protocol can be different for different types of dataset (one-per-dataset-
type).

• Priority: Low.
• Notes: At a certain point in time the RCS can use a protocol to update

flat files and a different one to update databases.

F11 The RCS shall allow different UP protocols to be used by different VOs (one-
per-VO).

• Priority: Low.
• Notes: Assuming that the RCS is unique in a Grid architecture, and serves

different VOs, it must be able to use different UP protocols for different
VOs. The feasibility of using different UP protocols at the same time
needs to be evaluated.

88

F12 The RCS shall allow clients (or privileged users) to set/change the UP protocol
of a logical dataset: the protocol will act in the same way for all the update
operations concerning a logical dataset (one-per-dataset).

• Priority: Low.

F13 The RCS shall allow clients to choose the UP protocol of any update operation
(one-per-operation).

• Priority: Low.
• Notes This is a very complex case that needs to be refined.

F14 The RCS shall allow an external monitoring system to retrieve useful data
about the consistency of replicated data.

• Priority: Low.
• Notes: We have to provide the system with proper methods that can be

used by a monitoring system for retrieving status information about the
service. The integration with a specific monitoring system must still be
defined.

F15 The RCS shall allow privileged clients to choose an update mechanism.

• Priority: Low.
• Notes We will start with a fixed update mechanism, that is log based for

databases and file replacement for flat files.

F16 For flat files, the RCS shall work with Replica Management Service (RMS).

• Priority: Low.
• Notes: We will start designing the system to work independently from

the RMS. The integration with a RMS will have a low priority.

Requirements F9 through F13 define the flexibility/configurability of the proto-
col, specifying different numbers of degrees of freedom.

Requirement F9 is the less flexible in that it provides a fixed protocol to deal with
the consistency of all the datasets. It is likely that more flexibility will be required,
for example, to use a different protocol for files and databases (Requirement F10).
Requirement F11 instead would allow different VOs to set their own protocol; this
flexibility level could be useful in case VOs can be logically grouped basing on their

6.2. Requirements 89

RCS usage pattern. Increasing again the degree of flexibility, Requirement F12 could
allow privileged users to choose the best protocol for each logical dataset; some ser-
vice clients could need to use different protocols for different datasets, in case the
requirements in terms of consistency is logically bound to the semantics of the data.
Requirement F13 is at the other extreme in terms of flexibility: in this case even the
same file can be treated differently depending on some dynamic criteria like the user
requesting the operation or the execution time of the operation. In Figure 6.1 these
different approaches are ordered along a flexibility axis.

In case a protocol is bound to a VO, to a dataset or to a dataset type, it should
be clarified whether this association can change over time. This case could present
some issues when a protocol change overlaps some update operations involved with
the change.

At the beginning, we decided to focus our attention on the simplest case, that is
Requirement F9.

Protocol flexibility− +

one−per−dataset one−per−operationone−for−all one−per−dataset−type one−per−VO

Figure 6.1: Flexibility provided by different consistency protocol setups

The functional requirements are summarised in Table 6.1.

6.2.2 Non-functional Requirements
Non-functional requirements cover general design guidelines and system constraints
that can be stated during the definitions of the requirements.

NF1. The RCS shall use a strictly consistent internal catalogue.

• Priority: High.
• Notes: The RCS, having itself a catalogue, should make use of replica-

tion, thus of consistency mechanisms too. This can be done using existing
solutions for homogeneous databases in a local area network, like Oracle
or MySQL single-master replication.

NF2 The RCS shall cope with disconnected sites.

• Priority: High.

90

Priority Requirements
High F1 Update file replicas

F2 Update DB replicas
F3 Use a lazy protocol
F4 Use a quorum value for propagating updates
F5 Provide update status of replicas
F6 Provide status of running update operations
F7 Work independently of a RMS
F8 Provide subscription mechanism for datasets
F9 One UP protocol for all update operations

Low F10 Users/Admins set protocol for each dataset type
F11 Users/Admins set protocol for each VO
F12 Users/Admins set protocol for each dataset
F13 Users/Admins set protocol for each operation
F14 Publish information for Monitoring Systems
F15 Users/Admins set update mechanism
F16 RCS integrated with a RMS

Table 6.1: Functional requirements.

• Notes: The Grid environment is highly dynamic: we have to consider
that, at certain times, some replicas might not be available. This non-
functional requirement introduces some issues in the main functional re-
quirements, that is Requirement F1 and F2. We analyse this topic later,
when we study and specify the use cases (Section 6.2.3.2).

NF3 The RCS shall be designed as a general service, suitable for different Grid
architectures.

• Priority: High.
• Notes: We will use the WLCG/EGEE Grid infrastructure as a specific

case but the design should be kept as general as possible to make possible
the integration in different Grid architectures.

NF4 The RCS shall provide different command line interfaces suitable for differ-
ent kinds of clients (i.e., separating user commands from administrative and
configuration ones).

6.2. Requirements 91

• Priority: High.

NF5 The RCS shall use secure communications.

• Priority: High.

• Notes: Security standards must be used; the GSI is the common security
infrastructure used in Grid environments and this is the one we will use
for our service.

NF6 The RCS shall use configuration files to set up the services.

• Priority: High.

• Notes: It is already clear that the RCS will have a distributed architecture
with many servers. Configuration files will be used to set up these servers.

NF7 The RCS shall allow users to check the consistency of a replica with a check-
sum mechanism, to prevent the use of corrupted files. A corrupted file may
result from incorrect access (for instance when it has been modified without
the RCS control) or simply because of some damage, e.g., after a remote trans-
fer or due to disk corruptions.

• Priority: Low.

The non functional requirements are summarised in Table 6.2.

Priority Requirement
High NF1 Strictly consistent internal catalogue

NF2 Cope with disconnected sites
NF3 Allow for integration in different Grid architecture
NF4 Command line user interfaces of different kinds
NF5 Use Grid Security Infrastructure
NF6 Use configuration files

Low NF7 Checksum mechanism

Table 6.2: Non functional requirements.

92

6.2.3 Use Case Model
In this section we present a use case model for the RCS. We specify primary actors,
those who will directly use the RCS services, and secondary actors, those who will
collaborate with the RCS to realise a specific use case. In Figure 6.2 the diagram with
the use cases we found is shown.

Replica Consistency Service

Update file

Retrieve update operations status

Manage RCS settings

Register/Unregister
 datasets

Monitor RCS functions

Retrieve replicas status

Privileged User

Monitoring System

Replica Interface

Service Client

Get dataset info

RMS

Update replica Information

Check dataset consistency

Check dataset coherence

Update DB

Time

Figure 6.2: Use case diagram

6.2. Requirements 93

6.2.3.1 Actors

The main actor of this model is the Service Client: it can be a user that directly uses a
command line client interface on its UI machine, a user’s job or even another software
program or middleware service. For this reason we use the class icon instead of the
stick figure.

The actor Privileged User is a specialisation of the previous actor, since it is
a user with specific rights that allow him to do critical operations like setting and
changing the RCS properties. Being a specialisation of the “Service Client” actor, it
also inherits the use cases of its parent.

Then there is a possible Replica Management Service that might work in collab-
oration with the RCS: its task as regards the RCS is to integrate information about
dataset consistency provided by the RCS with the one that it directly manages.

The class representing the Monitoring System, in charge of collecting informa-
tion regarding the behaviour of the RCS, is another primary actor.

Time can be seen as another actor in that some operations can be executed peri-
odically; in particular we should note that the Update file and Update DB use cases
are associated both to the Service client and the Time actors. This means that these
use casee can be executed by the client, with a specific request, or automatically, with
a given periodicity.

As regards secondary actors, we have a Replica Interface which provides inter-
face services between the RCS and the replicas.

6.2.3.2 Use cases description

In our case a formal use case specification is not very useful because the system has
only two basic use cases: Update file and Update DB; all the others are ancillary to
these two or represent simple methods to retrieve or set properties. Moreover, these
use cases depend on complex algorithms and can be further specified in an automatic
(triggered by a time event) and a manual one (triggered by a user request). Therefore,
we focus our attention on these two use cases.

The use cases Update file and Update DB can be seen as specialisation of a gen-
eral use case, Update dataset. Both of them can also have a manual and an automatic
version. This generalisation is shown in Figure 6.3 where we highlighted the two
specifications that we will focus on.

The two sub-cases have many similarities but are also different, not only for the
data they work on, but also for the way the clients use them. For both cases we will
show a basic scenario with the description of the main steps involved.

94

Service Client
Update dataset

Update DB Update File

RCS

Time

Replica Interface

Automatic Manual Automatic Manual

Figure 6.3: Specialisation for the Update dataset use case based on the dataset type

Another specialisation we can do over the Update dataset use case is related to
the algorithm used. Looking at the classification done in Chapter 3 about optimistic
replication, we can derive different use cases from the Update dataset one. The
Figure 6.4 shows the consistency protocols hierarchy. The choice of the algorithm
used is based on application specific requirements.

Update Dataset

Asynchronous
Synchronous

Single Master

Log-based File repl.

Multi Master

Figure 6.4: Specialisation for the Update dataset use case based on the protocol used

In the next section we review two main use cases that will be the focus of our first
prototype implementation.

6.2. Requirements 95

6.2.3.2.1 Automatic DB update with single-master asynchronous log-based push
mode protocol Database update is one of the main use cases for the RCS since
it satisfies requirements regarding the replication of conditions databases (see Sec-
tions 4.3) and Replica Catalogues (see Section 5.2). We now specify all the steps that
must be done in order to execute this use case, stating actors involved, pre-conditions,
flow of events and post-conditions.

• Actors: Time, Replica Interface.

• Preconditions:

1. A logical DB is registered with the RCS together with its replicas.
2. One of the replicas is the master one, and it is the only one that can be

updated by users. The other secondary replicas must be updated by the
RCS.

3. At a certain point in time, the master database is updated and a log is
created. A log file on the master database contains the statements that
modified the database.

• Flow of events:

1. The use case scenario starts at a certain time and repeats with a given pe-
riodicity. The RCS extracts update statements from the log of the master
database and creates an update unit.

2. Database replicas can be hosted on DBMSs of different vendors, with
different SQL dialects. The RCS before propagating the update unit must
elaborate it to make it suitable for the replica it will be applied to.

3. The RCS propagates the update unit to the secondary replicas. The update
unit is stored until every replica has correctly received and applied it.
Replicas are distributed geographically and by means of unreliable links:
this implies that the RCS must deal with cases where some replicas are
not available during an update operation. An update operation must be
able to complete and deal with the disconnected replicas in a flexible way,
with the possibility to use a quorum value.

4. At each replica site the update unit is applied to the database replica using
the Replica Interface.

• Postconditions:

96

1. All the replicas of that DB, after a variable amount of time1, are synchro-
nised.

6.2.3.2.2 Update file with single-master asynchronous file replacement push
mode protocol This is the main use case for flat files.

• Actors: Service Client, Replica Interface.

• Preconditions:

1. A logical file is registered with the RCS together with its replicas.
2. A Service Client modifies a replica creating a new version of the file.

• Flow of events:

1. To update all the secondary replicas the Service Client requests an update
file operation to the RCS, providing the location of the new version of the
file.

2. The RCS finds all the replicas and propagates the new version of the file.
The same consideration about disconnected sites for the previous scenario
applies here as well. An update operation must be able to successfully
execute despite disconnected nodes.

3. At the destination sites, the new file replaces the old one.

• Postconditions:

1. All the replicas of that file, after a variable amount of time are up-to-date
and synchronised.

6.3 Analysis
In this section we present some analysis concept used to design the main packages
and classes of the system. This analysis work is important to clearly state the system
domain and to refine and help the maintenance of the requirements. In Section 6.1
part of this work has already been done, and this has helped us to define the require-
ments unambiguously. However, in this phase we try to formalise more the concepts
exploiting the use of class diagrams. In preparing the analysis classes we focus on

1It depends upon the laziness of the used protocol and the availability of the replicas.

6.3. Analysis 97

functional requirements; non-functional requirements will be dealt with during de-
sign and implementation.

6.3.1 Analysis classes
As described in Section 6.1 the term dataset can be used as a generic term that refers
to the data we deal with: it encompasses structured and unstructured entities. We
consider databases as a kind of structured dataset: database replicas are updated us-
ing high-level commands, mainly sequences of SQL commands. On the other side,
as unstructured dataset, we consider flat files that are modified using byte-oriented
I/O operations and that are updated with file replacement or binary difference mech-
anisms. This classification is shown in Figure 6.5.

Dataset

Structured Dataset
+high-level commands()

Unstructured Dataset
+byte-oeriented I/O operations()

DB Flat File

Figure 6.5: Analysis classes for Dataset generalisation

During the domain analysis we already discussed some concepts like replication,
logical and physical files. Now we try to further clarify these concepts building some
analysis classes that will help us in approaching the design and the implementation
phases.

As regards file replication, a Logical File Name (LFN) is an identifier associated
to GUID and Replicas. Replicas are identified with a Physical File Name (PFN),
have their own contents and are stored in Storage Elements. Storage Elements are of
different types and provide different access methods. The PFN2 holds the information
needed to access a given replica: typically this information will include the address of
the SE holding the replica, a pathname within the SE’s file system (or some logically
equivalent information), and possibly an access protocol supported by the SE.

The property of consistency for a set of replicas can be defined as follows:
2This term occurs in the literature with slightly different meanings. We use it as a synonym of

SURL, that we saw in Section 5.2.

98

For any pair of replicas of the logical file, their contents are equal.

The above definition can be expressed as a constraint on the association between
GUID’s and replicas:

{(a.isTypeOf(Replica) and b.isTypeOf(Replica) and a.id = b.id) implies
a.contents = b.contents}

Figure 6.6 summarises all these concepts.

Logical File Name
+LFN

1..* 1

Unique Id
+Id

Replica
+PFN
+contents
+version

id
1

replica
1..*

Metadata

1

1

((a.isTypePf(Replica) and b.isTypeOf(Replica)
and a.id = b.id) implies a.contents = b.contents)

Storage Element
+type

+access method()

1..*

1

Figure 6.6: File replication concepts.

For databases an analogous analysis can be done. A logical identifier, Logical
Database name (LDB) can be used to identify a set of possibly heterogeneous (dif-
ferent vendors) replicated databases. The schemas of the replicas must be equivalent,
and when the replicas are consistent the same query should return the same results in
each replica. Database replicas hold a master/slave attribute that has a meaning ac-
cording to the protocol used to maintain the consistency. They are also characterised
by a version number. When they are consistent their version number should be the
same. In Figure 6.7 these concepts are represented.

Figure 6.8 shows a static view at a certain point in time in a scenario where
the LFC (see Section 5.2.1.4) database is replicated with an Oracle master database
and two MySQL slave replicas. The snapshot highlights that at a certain instant
the replica named “slave2” is stale compared to the other slave replica “slave1”. This
staleness is possible since the algorithm is lazy: the stale replica could be temporarily
unreachable or might have simply not yet received the update.

At this point, the similarities between the two cases can be exploited, and the
two diagrams for files and databases can be unified using the dataset concept and
generalisations. Figure 6.9 shows the unified scenario in terms of datasets.

The term update operation is present in both the use case description for file and
database update. We now look for analysis classes considering the update dataset use

6.3. Analysis 99

Logical Database
+LDB

Replica
+DBname
+contents
+master/slave
+version
+type = DB
+subtype

+query()

id
1

replica
1..*

((a.isTypePf(Replica) and b.isTypeOf(Replica)
and a.id = b.id) implies a.query = b.query and
a.version = b.version

DBMS
+vendor

+extract logs()
+apply logs()
+checkForUpdates()

1..*

1

Figure 6.7: Database replication concepts.

case, which includes both files and database synchronisation. An update operation is
requested by a Service Client or triggered by a Timer, and performed by the RCS. It
involves the synchronisation of all the replicas of a given logical dataset which are
distributed over a WAN and connected with unreliable links. To implement the up-
date propagation protocol, an update operation must act on dataset replicas using the
Replica Interface. An update operation is characterised by an unique identifier, and it
operates according to a specific update propagation protocol to deliver updates and to
a specific update mechanism to apply these updates. It also holds status information
that can be retrieved by Service Clients that issued the update request. A quorum at-
tribute is used in order to decide whether to execute or not an update propagation. In
Figure 6.10 a class diagram that summarises these concepts is shown; we can notice
that the Update Operation class plays an important role being associated with all the
other analysis classes.

100

Logical Database
+LDB

Replica
+DBname
+contents
+type = DB
+subtype
+version
+master/slave

:Replica

DNname = slave2
contents
type = DB
subtype = MySQL
version = 2
slave

:Replica

DBname = slave1
contents
type = DB
subtype = MySQL
version = 3
slave

:Replica

DBname = master1
contents
type = DB
subtype = Oracle
version = 3
master<<instaceOf>>

<<instanceOf>>

<<instanceOf>>

1

1..*

:Logical Database

LDB = LFC

<<instanceOf>>

Figure 6.8: Class diagram for DB replication

Logical Dataset Replica
+name
+contents
+version

id
1

replica
1..*

Replica Interface
+type

+access methods()

1..* 1

Logical Database
+LDB

Logical File Name
+LFN DB Replica File Replica DBMS

+vendor

+extract logs()
+apply logs()

Storage Element
+type

+access methods()

Figure 6.9: Dataset replication concepts.

6.3. Analysis 101

RCScore
+name
+address

+update dataset()

Update Operation
+Update Propagation Protocol
+Update Mechanism
+update Id
+status
+quorum

0..* 1

Logical Dataset 1 1

Replica

1..*

1

1..*

1

Service Client

0..*

1

<<use>>

Replica Interface

<<use>>

1..*

1

Time

0..*

1

<<use>>

Figure 6.10: Analysis classes for the Update Dataset use case

102

6.3.2 Use case realisation
Use cases realisations are important during an analysis work in that they explain,
through the use of analysis classes, how a specific use case is realised by the system.

In case of databases, we decided to start with a simple single-master scenario.
where the update propagation is triggered by the Time actor. For flat files the sce-
nario is different in that a client can retrieve and modify a replica and then submit a
synchronisation request.

6.3.2.1 Automatic database update with single master asynchronous log-based
push mode protocol

In case of database synchronisation, the class diagram of Figure 6.10 can be enhanced
with two new classes. The result is shown in Figure 6.11

RCScore
+name
+address

+update dataset()Update Operation
+Update Propagation Protocol
+Update Mechanism
+update Id
+status
+quorum

0..*

1

Logical Database 1

1

DBReplica

1..*

1

1..*

1

DBMS
<<use>>

1..*
1

Time
0..*

1

<<use>>

DBWatcher
+checkForUpdates()
+extract updates()

DBUpdater
+Apply updates()

<<uses>>

<<uses>>

Figure 6.11: Analysis classes for the synchronisation of databases

The class DBWatcher is the entity whose task is to monitor the master database
looking for updates. In case of an automatic procedure, the DBWatcher’s activity is
triggered by a timer so that it checks the master database with a specific periodicity.
The DBWatcher uses the DBMS in order to find and in case extract updates from the
master database. The class RCScore is contacted by the DBWatcher in order to start
an update propagation phase. RCScore uses the Update Operation class to manage
each single update propagation task. A class DBUpdater is in charge of applying the
updates to slave replicas, through the DBMSs that manage the database replicas.

The realisation of this use case is shown in Figure 6.12 through a sequence dia-
gram where the main analysis classes are involved. The Timer triggers a check op-
eration executed by the DBWatcher class to find out whether the master database has
been updated since the last check. In case updates are found on the master database,

6.3. Analysis 103

trigger DB Check

update replica

:Time :DBWatcher

:Update Operation<<create>>

:DBUpdater :MySQLDBMS

apply updates
if the replica is not reachable
go on and retry later

update all the other replicas
in the same way

:OracleDBMS

CheckForUpdates
updates found

extract updates

update unit

ok

:RCScore

notify

Figure 6.12: Sequence diagram for the synchronisation of databases

the SQL statements that modified the database are extracted from the master database
and put in an update unit. The RCScore is then contacted in order to manage an up-
date propagation task. This is done through the creation of an an Update Operation
object responsible for the implementation of the update propagation algorithm. The
Update Operation object contacts every secondary replica (slave database), and,
using the DBUpdater class, applies the updates.

6.3.2.2 File synchronisation with asynchronous single master push based pro-
tocol

As regards the file synchronisation, the class diagram in Figure 6.10 can be refined
into the specific model for flat files. The result is shown in Figure 6.13.

In this scenario the actor requesting the update operations is the Service Client.
The Update Operation class, responsible for the implementation of the update prop-
agation protocol, uses the services offered by the Storage Element in order to update
replicated files. In Figure 6.14 a sequence diagram describing this scenario is shown.
Assuming a logical file is already registered into the system, together with its repli-
cas, stored at several Storage Elements, the Service Client can retrieve a copy of a
file, modify it, and submit an update request to the RCScore specifying the location
of the modified copy and the logical name of the file. At this point an Update Oper-
ation object is created in order to manage the update of each replica of that logical
file. All the Storage Elements that hold a replica of that file are contacted to replace

104

RCScore
+name
+address

+update dataset()

Update Operation
+Update Propagation Protocol
+Update Mechanism
+update Id
+status
+quorum

0..* 1

Logical File 1 1

File Replica

1..*

1

1..*

1

Service Client

0..*

1

<<use>>

Storage Element
+copy file()

<<use>>

1..*

1

Figure 6.13: Class diagram for the synchronisation of replicated files

the old copy of the file with the new one.

6.3. Analysis 105

update file (LId, sourceFile)

update replica

:Client :RCScore

:Update Operation<<create>>

:Storage Element 1

ok

results

results

update replica

:Storage Element n

results

Figure 6.14: Sequence diagram for the synchronisation of flat files

106

6.4 Design and Implementation
In this section we investigate the architecture of the system, considering also non-
functional requirements. Analysis classes will be detailed, and new classes will be
added to the analysis model. To make this section more readable, we focus on the
main use case for the synchronisation of databases also because this use case is the
most urgent one and the one for which detailed tests have been performed (see Chap-
ter 7).

6.4.1 Nodes and network configuration
The RCS must be designed as a distributed system. In this section we focus on the
specification of the nodes and network configuration. In Figure 6.15 the nodes and
the connections that form the RCS architecture are shown.

LRCS

LRCS LRCS

GRCS

LAN

LAN LAN

Internet

Internet Internet

LAN

RCC

LAN LAN

LRCC LRCC

Figure 6.15: Network configuration

The RCS has a distributed architecture with two types of nodes (servers): the
Global RCS (GRCS) and several Local RCS (LRCS). Each server uses a relational
database to store persistent status information.

6.4. Design and Implementation 107

The GRCS is the main component of the system and the one that can be contacted
directly by clients in order to manage an update operation. The GRCS also controls
all the LRCSs that are part of the RCS architecture.

The database used by the GRCS is called Replica Consistency Catalogue (RCC)
while the database used by the LRCSs are called Local Replica Consistency Cata-
logues, (LRCCs). Particular attention is required on these catalogues, whose infor-
mation is critical for the activity of the overall service. A fail-over solution must be
implemented on these databases.

LRCS nodes are responsible for the management of the database replicas on be-
half of the Replica Consistency Service. An LRSC can be deployed at a master site
(the site holding the master database) or at a slave site (a site holding slave database
replicas). Regarding the site where they are deployed, we usually refer to master or
slave LRCSs. Among their tasks, the most important are the monitoring of the master
database and the extraction of update statements in case of a master LRCS, and the
application of updates in case of a slave LRCS.

6.4.2 Subsystems decomposition

Identifying subsystems is useful to decompose the model into several pieces on which
we can often work in parallel. Subsystems are conceptually separated parts of the
system that perform specific tasks. In our case the subsystems decomposition is
tightly bound to the decomposition into network nodes.

In Figure 6.16 the main subsystems that form the RCS software are shown.
The subsystems GRCS and LRCS have a similar structure, with many internal

subsystems in common. The Core subsystem is where the logic of the applica-
tion is implemented, mainly tasks concerning the update propagation protocol and
all the other tasks that derive from the functional requirements (see Section 6.2.1).
The Server subsystem includes the server code and scripts used to start, stop and
restart the server. The Communication subsystem is the one where the code related
to client-server and server-server communications is placed. The Security subsys-
tem is concerned with authentication, privacy, integrity and authorisation in these
communications. The Client subsystem holds the client programs used to commu-
nicate with the servers. Finally, the configuration subsystem is responsible for the
management of configuration files and scripts that will be used to set up and start the
servers.

Within the LRCS subsystem we can identify two additional components that
can be developed as independent subsystems: the DBWatcher, to monitor a mas-

108

GRCS

Core

Communication

Client

Server

Security

Configuration

RCC

Core DB Utilities

LRCS

Configuration

Security

Server

Client

Communication

Core
DBWatcher

DBUpdater

SE Interfacce

LRCC

DB UtilitiesCore

<<uses>>

<<uses>>

<<uses>>

<<uses>>

SQLTranslator

Figure 6.16: Main subsystems of the RCS

ter database in case of database synchronisation, and the DBUpdater, in charge of
the application of the updates to secondary replicas. In case of file replication in-
stead, an SE Interface subsystem will interface the LRCS with the SE using specific
protocols. We used also two different subsystems to group the software concerned
with database access, one for the RCC (used by the GRCS) and one for the LRCCs
(used by the LRCSs). These subsystems are made of a Core part, to implement all
the queries to the database and a DB Utilities part, where we will put utility code for
the management of the databases.

6.4. Design and Implementation 109

6.4.3 Subsystems in details
In this section, we refine the analysis classes previously found (see Section 6.3.1) and
enhance that model with some details about analysis classes and the insertion of new
classes. The subsystem decomposition will help us to define what are usually called
design classes, refined version of the analysis classes, and to logically place them
into the appropriate subsystems. We decided to provide details about the subsystem
as much as it is required to understand the logic of the service, especially for what
concern the use case for synchronisation of databases. For more details the repository
of the CONStanza project can be browsed [2].

6.4.3.1 GRCScore

In Figure 6.17 the design classes for the subsystem GRCScore are shown.

GRCScore

GRCScore

<<interface>>

IGRCS-Admin
<<interface>>

IGRCS-User
<<interface>>

IGRCS-Internal

UpdateOperationDefOpsContainer

<<uses>> <<uses>>

Figure 6.17: Design classes for the GRCScore subsystem

Three different interfaces are implemented by the GRCScore class. An adminis-
tration interface, IGRCS-Admin, exposes administration operations that require cer-
tain privileges, and will be normally executed by the service administrator (Privileged
User in the Use Case model of Figure 6.2). A user interface, IGRCS-User, exposes
methods that can be called by normal service users, like starting an update propaga-
tion. Finally, an internal interface, IGRCS-Internal, is provided for those methods
that will be requested by LRCSs. The GRCScore class uses two important classes. An
UpdateOperation class is responsible for the management of an update propagation

110

phase. The class DefOpsContainer is a class used to manage update operations that
have not successfully completed due to some LRCS faults. This container will store
uncompleted operations for them to be re-executed.

Let us start to look into the details of these classes.

6.4.3.1.1 IGRCS-Admin This interface exposes methods used by privileged users
to set up important RCS parameter and perform critical operations. The main meth-
ods of this interface are:

• int setUPProtocol(ProtEnum prot);

It is used to set the propagation protocol.

• int setUpdMechanism(UpdMechEnum mech);

This method allows privileged user to set up the update mechanism.

• int setQuorum(int quorum);

It is used to set up a quorum value.

• int subscribeLRCS(URI addr, string name);

This method is used to subscribe an LRCS to the GRCS. The GRCS uses a
subscription method to keep track of the available LRCS that are part of the
RCS architecture. The GRCS identifies an LRCS using the server URI plus a
name.

• int unsubscribeLRCS(URI addr, string& name);

This method can be used in order to unsubscribe a specific LRCS.

6.4.3.1.2 IGRCS-User This interface provides basic services that non-privileged
users can request. In what follows we cite the main ones:

• int updateDB(LId ldb, URI logFile, int quorum,
Version version, UpdId& res);

This is the method used to request an update of database replicas. It is used in
the “manual” scenario, where the update is triggered by a client request. The
request must specify a logical database, the location of a log file containing
the SQL statements to be applied to secondary replicas, a quorum value to
be used for this update propagation and a version number to be used to avoid

6.4. Design and Implementation 111

conflicts. An update Id is returned to the user that can use it to check the
status of the operation. To satisfy such a request the GRCScore creates an
UpdateOperation object and executes it.

• int updateFile(LId lfn, FileURL src, int quorum,
Version ver, UpdId& res);

This is the method used to update file replicas. It is the same as in the case of
database update but this time instead of a log file we use as “update source” a
file, that will replace the stale replicas.

• int getStatus(UpdId id, UpdStatus& res);

This is the method used to check the status of an update operation. The status
can be one of: CREATED, RUNNING, FAILED, UNCOMPLETED, DONE,
NA. The NA status is returned when the Update Id provided is not valid.

The rest of the methods of this interface can be found in the CONStanza reposi-
tory.

6.4.3.1.3 IGRCS-Internal This interface groups the method requested by LRCSs.

• int ackUpdate(UpdId id, UpdStatus st);

It is used to send an acknowledgement about a requested updated operation.

• int refreshLRCS(URI addr);

It is used to refresh information stored by the GRCS about a specific LRCS.

6.4.3.1.4 DefOpsContainer This is the class used to manage operations that are
not completed due to some unavailable LRCS. These operations will be re-executed
at a later time. This class holds a container plus methods to interact with it. The
container is a map that associates to each LRCS a queue of operations that must be
completed on the same LRCS. In Figure 6.18 an example of the structure of the con-
tainer is shown. During an update propagation phase, when an LRCS is unavailable
to receive an update, the GRCS (more precisely an UpdateOperation object) will
insert a reference to the operation into the queue of that LRCS. Later, when the LRCS
will be available, this operation can be re-executed. The main methods to access the
container are:

112

Figure 6.18: An example of the DefOpsContainer structure

• int pushOperation(LRCSaddress addr, UpdateOperation* pOp);

It is used to insert an operation into the queue of a given LRCS.

• int nextOperation(LRCSaddress addr, UpdateOperation*& pOp);

It is used to select the next operation to be processed from the queue of a given
LRCS. It does not remove the operation from the queue.

• int popOperation(LRCSaddress addr, UpdateOperation*& pOp);

It is the same as nextOperation but this time removing the operation from
the queue.

• int remOperationFromQueue(LRCSaddress addr, UpdId id);

It is used to remove a specific operation from the queue of an LRCS.

• int emptyQueue(LRCSaddress addr);

It is used to empty the queue of an LRCS.

• int print();

It is used to print the status of the container: for each LRCS all the operations
in its queue will be listed.

6.4. Design and Implementation 113

• int isEmptyQueue(LRCSaddress addr);

It is used to verify that the queue of an LRCS is empty.

6.4.3.1.5 GRCScore The GRCScore is the most important class of the RCS ar-
chitecture since it contains the logic of the GRCS, the main node. It implements the
interfaces IGRCS-Admin, IGRCS-User and IGRCS-Internal. It has a reference to
the RCC and to the DefOpsContainer, that are singleton objects, used respectively
to store status information and uncompleted update operations. It also has a container
to store the addresses of the LRCSs that have been correctly subscribed, plus objects
to hold the type of UP protocol and Update Mechanism used. Figure 6.19 provide a
view of the main data member of the GRCScore class. It does not show the imple-

GRCScore
+protocol: ProtEnum
+quorum: int
+mechanism: UpdMechEnum
+myendpt: URI
+db_name: String
+db_host: String
+db_port: int
+db_user: String
+db_pass: String
+rccRef: RCC*
+defContainer: DefOpsContainer*
+ops: OperationsMap*
+lrcsContainer: LRCSContainer*

-recoverState(): int

DefOpsContainer
+lrcsOpMap: map<LRCSaddress, OperationQueue*>

+pushOperation(addr:LRCSaddress,pOp:UpdateOperation*): int
+popOperation(addr:LRCSaddress,out pOp:UpdateOperation*): int

OperationsMap
+map: map<UpdId, UpdateOperation*>

LRCSContainer
+container: map<URI, LRCSStub*>

Figure 6.19: GRCScore class

mentations of the interfaces to make the figure more readable. As we can see, the
main properties that define how the synchronisation of replicas is performed are:

• protocol: it defines the protocol used for update propagation, the UP protocol;
it can be one of the protocol names defined in the ProtEnum enumeration.
In our first prototype implementation only one protocol is defined, labelled
ASYNCH_ONE_MASTER.

• mechanism: it defines the mechanism used by LRCS for replica update. As
we saw in Chapter 3, several mechanisms can be used, like total file replace-
ment, log-based, or binary difference. In our first prototype implementation
log-based is used for database synchronisation while total file replacement is
used for flat file synchronisation.

• quorum: this is an integer value which defines the minimum number of LRCS
that must be available in order to execute an update propagation. This value

114

can be set as a global RCS property or can be given to an update command line
client as argument to be used only for that single operation.

Then we have data to define the access to the database used to store the RCC
and a field to keep a reference to it. The defContainer field holds a reference to
a DefOpsContainer that is used to save deferred update operations as explained
in 6.4.3.1.4. The ops field is used to save information about running update opera-
tions and the lrcsContainer points to a container that keeps information about all
the LRCS that have been correctly subscribed to the GRCS, holding a pointer to the
Stubs used for remote calls to each of them.

6.4.3.1.6 UpdateOperation The UpdateOperation class is used to execute the
UP protocol: every update request triggers the creation of a new UpdateOperation
object that takes care of implementing the update propagation phase. The UpdateOperation
class has already been outlined as an analysis class (see Figure 6.10). In Figure 6.20
more details are given.

UpdateOperation
-ldataset: LId
+protocol: ProtEnum
+mechanism: UpdMechEnum
+UpdId: id
+UpdStatus: status
+version: Version
+quorum: int
+updRoutine: void*
+reps: URIs
+redoreps: URIs
+updateUnit: URI

-upd_routine_asynch(): void*
+execute(): int
+complete(): int
+checkQuorum(): int
+getStatus(out status:UpdStatus): int

Figure 6.20: Update Operation class

The main methods are:

• int execute(double& Status);

It is the method used to execute the operation, that is to execute the propagation
protocol.

• int getStatus(UpdStatus& status);

6.4. Design and Implementation 115

It is used to retrieve the status of the operation, which changes during its exe-
cution.

• int complete(dUpdStatus& Status);

It is used to re-execute the operation when the first execution has not been com-
pleted due to some unavailable LRCS. In this case a reference to this operation
is kept inside the DedOpsContainer.

• int checkQuorum();

It used before executing the operation, in order to check whether enough LRCSs
are available for receiving the updates.

In Figure 6.21 the update propagation phase executed by an UpdateOperation ob-
ject is shown.

status := RUNNING

 call LRCS updateDBreplica

complete task?

yes

reps := redoreps
and clear redoreps

Get LRCS Stubs

next replica to update?

error in remote call?
yes

no

save the replica in
the redoreps container

push this operation into
the DefOpsContainer

for deferred execution

no

no more replicas

return ok

ok

status := FAILED

status := DONE

Figure 6.21: Update Propagation phase

116

An UpdateOperation execution is triggered by the GRCS only when the quo-
rum check has been successfully passed. When calling the execute method on the
UpdateOperation object, the object has already been given the list of replicas that
need to be updated and the location of the update unit. During the processing of an
update propagation the status of the operation is kept both in memory and into the
RCC database.

The same procedure is used by an UpdateOperation object to perform a “first
execution” or a “complete-task”. A first execution is the normal activity, while a
complete task is the execution of an update propagation done after a failure, when the
operation is saved into the DefOpsContainer. Thus, at the beginning, it is important
to state whether the current execution is a complete task or not. In case of a complete
task the set of replicas used for the current execution is retrieved from the redoreps
container, where the replicas not updated in the previous executions are saved. Then,
for each replica to be updated, the UpdateOperation gets the Stub of each LRCS to
contact and issues a remote call to them to execute the updateDBreplica method. If
the remote call is successfully executed, then the flow of events goes on to pick up the
next replica to be updated, otherwise the operation inserts details about the replica in
the redoreps container, and some information into the DefOpsContainer in order
to be re-executed on the failed replicas later on.

6.4.3.2 Communication subsystems

For the Communication subsystems, we decided to use the tool gSOAP [86] for the
creation of web services. Using this tool we can easily create web services without
developing the SOAP/XML infrastructure. Stub and skeleton objects are automati-
cally created by the gSOAP compiler starting from a description of the service and
its remote call included in a C++ header file. Together with them a set of utilities
are also created for the de/serialisation of C++ objects into XML. We will consider
these utilities as part of the stub and skeleton classes. Two header files for the GRCS
and the LRCS web services will be provided. Using the gSOAP stub and skele-
ton compiler, skeleton classes (WGRCS and WLRCS) and stub classes (GRCSproxy and
LRCSproxy) will be generated. The Communication subsystem of the GRCS and
LRCS will use these gSOAP classes to implement the remote method invocation as
depicted in Figure 6.22.

We don’t go through the details of this package since they are mainly implemen-
tation details that can be skipped in order to understand the logic of the service.

6.4. Design and Implementation 117

GRCSComm

WRCS_svt
<<gSoapObject>>

WGRCS

LRCSComm

<<gSoapObject>>

WRCSWLRCS_svt

GRCSstub
<<gSoapObject>>

GRCSproxy
LRCSstub

<<gSoapObject>>

LRCSproxy

Figure 6.22: Design classes for the LRCSComm and GRCSComm subsystems

6.4.3.3 Security subsystems

For what concerns the security of our system, the solution provided by the Globus
Toolkit (see Section 5.2.2), GSI, is the standard in Grid environments. Moreover,
using gSOAP for the implementation of the communication mechanisms, we can
easily integrate the GSI into our architecture using a gSOAP plug-in called CGSI [1].
Using CGSI the communication between GRCS and LRCSs, and between Clients
and the GRCS are secure, meaning that they support authorisation, authentication,
privacy and integrity. A more detailed description on how the GSI has been integrated
into the RCS has been presented in [74]. Details on how to set up the certificate and
the private keys for the RCS servers are included into the RCS User Guide [2].

6.4.3.4 Configuration subsystems

The Configuration subsystem is present in both the GRCS and the LRCS subsys-
tems. It contains configuration files needed to setup the servers. It also contains
two classes used to parse the configuration files, in particular a lexical analyser and
a parser. In order to build the lexical analyser and the parser we use Flex and Bi-
son [23]. A TokenFile file will contain all the lexical patterns and will be used by
the Flex compiler to build the lexical analyser (GRCSconfLexer). Using a syntax file
(SyntaxFile) then, the Bison compiler will generate the parser (GRCSconfParser).
Finally, using the lexical analyser, the parser will be able to read the configuration file
and setup properties that will be used by the GRCScore package. In Figure 6.23 the
Configuration subsystem for the GRCS package is shown. An analogous diagram
can be built for the LRCS.

Configuration files are text files with key-value pairs. These pairs are then log-
ically grouped into sections. In the GRCS configuration file, three sections can be
used: GRCS, LOGGING and RCC. The GRCS section contains information like the

118

GRCSconfiguration

GRCSconfParser

GRCSconfLexer

<<uses>>
GRCSconfFile

<<uses>>

TokenFile SyntaxFile

Flex compiler
<<ext. package>>

<<uses>><<creates>>

Bison compiler
<<ext.package>>

<<uses>>

<<creates>>

Figure 6.23: Design classes for the GRCSconfiguration subsystem

server endpoint, the protocol and the quorum used and a name to identify the GRCS.
The LOGGING section is used to group information related to the logging activity
like the filename and the directory to be used to store log files, and the level of severity
of the logging activity. For what concerns the technology to be used for logging the
activity of the RCS, we decided to use a C++ library already available, Log4cpp [45].

Configuration files for the LRCSs have a similar structure. The role that the
LRCS server will play (master or slave) is decided using the appropriate LRCS
configuration files. Two types of configuration files exist, one for a master LRCS
(lrcs.master.conf) and one for a slave LRCS (lrcs.slave.conf). Which con-
figuration file will be used is specified in another file that is automatically sourced by
the server scripts. This file is called lrcs_profile. In this file we can also spec-
ify whether we want to use the GSI security or not, which level of debug will be
used, and the hostname and port to be used. An example of lrcs_profile file is the
following:

#!/bin/bash
#
description: LRCS server profile script

LRCS_HOST="pcgridtest3.pi.infn.it"
LRCS_PORT=8091
LRCS_DEBUG="1"
LRCS_GSI="ON"

6.4. Design and Implementation 119

LRCS_CONF="lrcs.master.conf"

In this case the LRCS server will act as master, using the information recorded in the
file lrcs.master.conf. In case of database synchronisation, the LRCS configura-
tion files have a section to hold specific information about the database to manage,
like the vendor, the account to be used to access it, and the name of the database. In
Appendix A some examples of configuration files for the GRCS, LRCS master and
LRCS slave are given.

6.4.3.5 LRCScore

The LRCScore subsystem is where the logic of the LRCS server is implemented. An
LRCS node can act as a master or as a slave, but this distinction is done only at con-
figuration time, before starting the server (See Section 6.4.3.4). In case of master
LRCS, the LRCScore module will mainly use the DBWatcher component in order to
monitor a master database; this task is explained in detail in Section 6.4.3.9. In case
of slave LRCS, the LRCScore module will mainly receive update requests from the
GRCScore module, and specifically from an UpdateOperation object which man-
ages an update propagation operation. The module DBUpdater is then used to per-
form the actual replica update, using the selected replica update mechanism. The
update of a database replica is explained in Section 6.4.3.7. In Figure 6.24 the main
structure of the LRCScore module is represented, with a level of detail enough to
understand the following sections.

An LRCS node can manage several master and slave replicas. Although a logical
database can have at most one master replica3, an LRCS can manage master replicas
of different logical databases. An LRCS can also manage several slave replicas, and
in this case they can belong to the same logical database. In order to do this, the
LRCScore uses some data structures to keep track of the DBUpdater (UpdatersMap)
and DBWatcher (WatchersMap) components it uses.

Another important data structure, fundamental for ensuring fault tolerance on
the slave database replicas, is the map of pending updates (PendingsMap). When
a database update cannot be applied to the slave database (for example when the
DBMS server is down), it is saved in the PendingsMap and it can be re-applied later
on when the connection with the database is re-established. The procedure used to
apply pending updates ensures that the correct order of the update is respected. In
the following sections, after presenting the DBUpdater component, we provide more
details on how the database replica update phase is implemented.

3Multi-master replication is not yet supported.

120

LRCScore
+pGRCS: GRCSStub*
+grcs_endpt: URI
+updatesdir: string
+logsdir: String
+updatersMap: UpdatersMap
+watchersMap: WatchersMap
+secRepsMap: SecRepsMap
+pendigsMap: PendingsMap
+db_name: String
+db_host: String
+db_port: String
+db_user: String
+db_pass: String

-setWatcher(): int
-setDBUpdater(): int
-checkForPending(repname:String): int
-applyPending(repname:String): int
-reliableApply(repname:String,update:URI,
 version:int): int
-registerNewPending(repname:String,update:URI,
 version:int): int
-updRep_routine(): void*
+updateDBReplica(ldataset:LId,update:URI,
 version:int,out id:LUpdId): int
+updateFileReplica(ldataset:LId,source:URI,
 dest:URI,version:int,out id:LUpdId): int
+setUpdMechanism(mechanism:UpdateMechanism): int
+stopWatcher(dbname:String): int
+isUp(): int

UpdatersMap
+map: map<DBname, DBUpdater*>

WatchersMap
+map: map<DBname, WatchersMap>

SecRepsMap
+map: map<LId, repList>

PendingsMap
+map: map<repName, Version>

DBUpdater

Figure 6.24: Design classes for the LRCScore subsystem

6.4.3.6 DBUpdater

The DBUpdater subsystem is composed of a single class, the DBUpdater class. It
is used by the LRCScore subsystem to apply update units to secondary replicas. In
case of an Oracle to MySQL replication the DBUpdater will use the MySQL client
program in order to perform its task. In Figure 6.25, the DBUpdater subsystem and
its dependencies is shown.

DBUpdater

DBUpdater

MySQL CLI
<<uses>>

LRCScore

<<uses>>

Figure 6.25: Design classes for the DBUpdater subsystem

In Figure 6.26 the basic structure of the DBUpdater class is shown. It is worth
noting that also the DBUpdater keeps track of the version of the database it man-
ages. This version corresponds to the number of update units correctly applied. A
checkVersion method is used to check if an update unit can be correctly applied;

6.4. Design and Implementation 121

DBUpdater
+LDB: string
+DBname: string
+DBuser: string
+DBpasswd: string
+currVersion: int

+applyUpdate(updateFile:URI,id:LocalUpdId): int
+checkVersion(newVersion:int): int
+setVersion(version:int): int
+getUpdStatus(id:LocalUpdId,out status:UpdStatus): int

Figure 6.26: Design classes for the DBUpdater subsystem

due to networks interruptions or delays it can happen that the order of two update
requests coming from the GRCS is inverted. The version mechanism implemented
by the DBUpdater ensures that the correct order of application of the updates is re-
spected.

6.4.3.7 Database Replica Update

The update of a database replica is done in a non-blocking way by the LRCScore
method updateDBreplica. A thread is spawned and an Id number is returned. Be-
fore starting the thread, the updateDBreplica method retrieves the list of secondary
replicas to update (from the map of secondary replicas) and passes it as argument to
the thread. The multithreaded implementation has been done to speed up the update
propagation phase; an updateDBreplica call is assumed successfully executed as
soon as a thread is spawned correctly and an Id is returned.

We now look at the body of the thread that implements the actual update of the
database replica. The flow of events is shown in Figure 6.27. The Database Replica
Update phase starts with a GridFTP file transfer, where an LRCS slave node retrieves
the update unit. The location of the file has been specified by the updateDBreplica
call issued by an UpdateOperation during its update propagation phase. The update
unit is usually located in a standard location at the master site (usually /tmp/logs),
where the DBWatcher component stores it after the translation operation (see Sec-
tion 6.4.3.9). A GridFTP server must be enabled on the master site to serve the
request issued by the LRCS slave, that saves the file in a standard location (usually
/tmp/updates4).

4The directory where logs and update units are stored can be changed before starting the LRCS
server using the LRCS master or slave configuration files, explained in Section 6.4.3.4.

122

Since more database slave replicas can be managed by an LRCS server, the steps
shown in Figure 6.27 are repeated for each replica. A reference to the appropriate
DBUpdater is retrieved from the UpdatersMap, and a version check is done in order
to respect the correct order of application of the updates. If the version check fails,
the update is not applied but saved as pending update into the PendingsMap. In this
case, an applyPendings routine is called which applies the pending updates in the
correct order, included the one just saved. If the version check was successful, the
update is immediately applied and the version of the replica is incremented. After
this, the pending updates map is checked and possible pending updates are applied.

6.4. Design and Implementation 123

Get a copy of the update file

Get a DB replica to update

Get the associated DBUpdater

version ok?

registerNewPending()

DBUpdater.appyUpdate()

increment replica version

ver := DBUpdater.checkVersion

yes

no (version conflict)

update ok?

yes

pendings available?
yes

noapplyPendings

return ok

no (DB error)

any more replicas to update?

no

yes

Figure 6.27: Flow of events for the Database Replica Update phase

124

6.4.3.8 Oracle Log Mining

Before going into the details of the DBWatcher architecture, we give some informa-
tion on how it is possible, in Oracle, to perform the log mining operation. Log mining
means analysing the database log information in order to retrieve the operations done
on the database. Log mining is usually done to track the usage of the database, or to
recover lost data, but it also plays a fundamental role for replicating the database.

In Oracle, the log mining phase is also part of the Streams work flow, described in
Section 3.5. Oracle stores log information into two or more redo log files. In what fol-
lows we assume that we are in a single instance database; multiple instance databases
are used in RAC (Oracle Real Application Cluster) environments, and present impor-
tant differences for what concerns log mining. CONStanza, in the current release,
does not support the replication from Oracle to MySQL when the Oracle master
database is implemented in a RAC environment.

Redo log files are filled with SQL statements that modified the database (DML
plus DDL statements) and other metadata. These data are generally written into the
redo log files whenever a transaction is committed, but in certain situation they can
be written before the commit. Redo log files are written in a circular fashion: when
the current log file fills, the next file is written, and when the last one also fills, the
DBMS start overwriting the data present in the first file. The DBMS can work in a
special mode, called ARCHIVELOG mode, where every time a redo log file is to be
overwritten the DBMS makes sure that the file is firstly archived, that is, a copy of
the file is saved on the disk. These copies are called archived redo log files while
the others are called on-line redo log files. Different redo log files configurations are
possible, each providing a different degree of protection against data loss. We do not
go through these details since they are outside our scope.

The LogMiner is an Oracle utility that allows you to query the redo log files (both
on-line and archived) with an SQL interface. LogMiner operations are available in
the DBMS_LOGMNR PL/SQL package, and work on the V$LOGMNR_CONTENTS view.

To start the LogMiner we have to use procedure DBMS_LOGMNR.START_LOGMNR
providing some arguments like:

• dictionary option: a data dictionary is used to translate object names stored in
an Oracle special format into a human readable form. Oracle recommends to
use the option DICT_FROM_ONLINE_CATALOG [40].

• redo log file option: when mining the log files the LogMiner needs to know
which redo log files to use. Oracle gives you the possibility to provide a list of

6.4. Design and Implementation 125

redo log files to use, or to ask the LogMiner to automatically and dynamically
create such a list by using the option CONTINUOUS_MINE.

• time interval: if you want to look for data in a specified time range, you can
provide a time interval to the LogMiner as an option, by specifying two values:
starttime and endtime.

Many more options can be given to the LogMiner but these are enough to under-
stand how we used it. Once started the LogMiner with the appropriate options, one
can issue queries on the V$LOGMNR_CONTENTS view and retrieve data.

In CONStanza we developed an additional PL/SQL package with some utility
procedures that can be used to start the LogMiner, but also to test its behaviour. The
complete code of the package is reported in Appendix C. In the following we show
the procedure that is used by the DBWatcher to start the LogMiner:

procedure startLogMinerCMine(t1 varchar2, t2 varchar2) is
begin

dbms_output.PUT_LINE(’Starting LogMiner: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

sys.dbms_logmnr.start_logmnr(options =>
sys.dbms_logmnr.dict_from_online_catalog
+ sys.dbms_logmnr.committed_data_only
+ sys.dbms_logmnr.no_rowid_in_stmt
+ sys.dbms_logmnr.continuous_mine
, starttime => to_date(t1,’DD-MON-YYYY HH24:MI:SS’)
, endtime => to_date(t2,’DD-MON-YYYY HH24:MI:SS’));

dbms_output.PUT_LINE(’LogMiner started: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

end startLogMinerCMine;

The procedure takes two arguments, that are used as starttime and endtime for
starting the LogMiner. It uses the continuous_mine option, and specifies that only
committed transactions should be analysed, since these are the only ones involved
in a replication procedure. The no_rowid_in_stmt is used to avoid having some
metadata in the queries results.

126

6.4.3.9 DBWatcher

The DBWatcher is a subsystem whose task is to provide the capabilities of monitor-
ing a master database. Monitoring a database means periodically checking its log
files and find out when the database is updated. When the DBWatcher finds some
updates, it must be able to extract and put them in a file that we will refer to as
update unit or update file. Putting the updates in a file simplifies the update propa-
gation phase, which can be done with file transfer services already present in all the
Grid middleware, like GridFTP(see Section 5.2.2). A GridFTP server can be eas-
ily installed on LRCS nodes. In case of an Oracle master database, the DBWatcher
component can exploit the services offered by the Oracle LogMiner package (see
Section 6.4.3.8). In Figure 6.28 the DBWatcher subsystem with its dependencies
is shown. The Oracle LogMiner subsystem is used to monitor the Oracle master

DBWatcher

DBWatcher

Oracle LogMiner

<<uses>>

<<uses>>
SQLTranslator

<<uses>>

<<creates>>

Oracle Log File

Update File

GRCS
<<uses>>

<<uses>>

LRCC

<<uses>>

Figure 6.28: Design classes for the DBWatcher subsystem

database. The SQLTranslator module is used to translate the SQL statements re-
trieved with the LogMiner and modify them to make them suitable for a MySQL
database. The SQLTranslator works on an update file, which is created by the
DBWatcher. The DBWatcher also uses the LRCC subsystem, in order to persistently
store status information, and the GRCS subsystem to trigger update propagation oper-
ations.

In Figure 6.29 the main class of this package is shown. The DBWatcher has data
members to access the master database, a version number to keep track of the updates
so that on the slave sites they are applied in the correct order, and time information
to check the master database in the proper way, that is, without missing updates and
without taking them more than once. We will see that the monitoring activity is
performed by a separate thread, which runs concurrently with the main LRCS server

6.4. Design and Implementation 127

DBWatcher
+vendor: string
+DBname: string
+DBschema: string
+DBuser: string
+DBpasswd: string
+connString: string
+version: int
+updFileName: string
+currentTime: Time
+prevTime: Time
+lastVersionSent: int

+start(): int
+stop(): int
+restart(): int
+setSleepTime(sleepTime:Time): int
-checkForUpdates(): int
-incLastVersionSent(): int
-notifyGRCS(): int
-extractLog(): int

Figure 6.29: Design classes for the DBWatcher subsystem

process. Thus, the DBWatcher exposes methods to start, stop and restart a monitoring
thread, and to change its polling frequency5 .

6.4.3.10 Monitoring of the Oracle Master Database

In Figure 6.30 the algorithm executed during the monitoring phase is shown. The
DBWatcher class will have its own thread to execute the monitoring.

The checkForUpdates private method is used to issue a query to the LogMiner
view in order to check the maximum timestamp of the statements executed since the
previous check; the query will be something like:

select max(TIMESTAMP) from V$LOGMNR_CONTENTS
and SEG_NAME = <list of tables to monitor>
and timestamp > prevTime;

It searches in the V$LOGMNR_CONTENTS view the maximum timestamp of the state-
ments issued on some specific monitored tables6 (column SEG_NAME) starting from a
given time.

5The polling frequency of the DBWatcher is set using the master LRCS configuration file, but it can
be dynamically changed.

6This is the way it is possible to implement a partial replication, that is the replication of few selected

128

If the maximum timestamp is greater than the time saved in prevTime, then it
means that the database has been updated since the last check. If not, no updates
have been issued and the flow goes to the sleeping point. If updates are found,
the version number of the update must be incremented. Then, the private method
extractLog is called. It extracts the SQL statements (SQL_REDO column of the
V$LOGMNR_CONTENTS view) issued on the monitored tables since the last check and
puts them in a file, the so called update unit. The query to extract the updates will
look like:

select SQL_REDO from V$LOGMNR_CONTENTS
and SEG_NAME = <list of tables to monitor>
and timestamp > prevTime;

At this point we have a file with statements in an Oracle-specific SQL dialect. In
order to apply it to a MySQL replica, we need to use the SQLTranslator subsystem
to translate the file, and this is done in the translateLog processing step.

Now the DBWatcher can notify the GRCS about the availability of a new up-
date unit. If the GRCS acknowledges a successful reception of the notification, the
prevTime value used as a bookmark for updates can be shifted to currTime which
is the maximum timestamp of the new updates found. The prevTime, for recovery
purposes, is also saved into the LRCC. Before reaching the sleeping point, a value
holding the last version number received correctly by the GRCS is also incremented.
In case the GRCS does not acknowledge having correctly received the notification,
for example because of network problems, the DBWatcher flow simply jumps to the
sleeping point, and at the next iteration will try again to send the updates previously
found plus potential new ones.

tables in a database. In CONStanza, these tables are specified in the LRCS Master configuration file,
see Section 6.4.3.4.

6.4. Design and Implementation 129

checkForUpdates

updates available?

increment version

extractLog

notifyGRCS

GRCS ack. received?decrement version

set prevTime = currTime

save prevTime in LRCC

inc. last version sent
into the LRCC

sleep for sleepTime

translateLog

no

yes

no

yes

Figure 6.30: Design classes for the DBWatcher subsystem

130

6.4.3.11 SQL Translator

The SQLTranslator is built in an analogous way. Flex and Bison are again used
to create a lexical analyser and a parser. This time the parser will read an update
file containing SQL statements extracted from the master database and will create a
file with SQL statements that can be applied to slave databases. In Figure 6.31 the
SQLTranslator package is explained. In Appendix B the syntax file used to imple-
ment the Oracle to MySQL translation is shown. As we will see in the performance

SQLtranslator

SQLParser

SQLLexer

<<uses>>

SQLinput

<<uses>>

TokenFile

SyntaxFile

Flex compiler
<<ext. package>>

<<uses>><<creates>>

Bison compiler
<<ext.package>>

<<uses>>

<<creates>>

<<creates>>
SQLoutput

Figure 6.31: Design classes for the SQLtranslator subsystem

and functional tests of Chapter 7, the SQLTranslator syntax supports the COOL
APIs for the heterogeneous replication of conditions databases.

6.4.4 CONStanza in action: Oracle to MySQL synchronisation
In this section we review all the main phases, components and interactions that are
used to satisfy the Oracle to MySQL synchronisation.

As we saw in the previous sections, the CONStanza architecture is made of two
main types of services: the GRCS, which is responsible for the coordination of the
overall architecture, and the LRCS, which is a service deployed close to the replicas
and that takes care of database monitoring (in case of a master LRCS) and update ap-
plication (in case of a slave LRCS). These two servers use MySQL databases (RCC
and LRCC) to store status information providing protection against network and soft-
ware failures.

The CONStanza RCS software is available at the project site [2], where RPMS
packages can be downloaded for source and binary installation7 . The CONStanza

7At the moment only Intel 32 bit platforms with Scientific Linux CERN version 3, SLC3, and Red

6.4. Design and Implementation 131

User Guide explains the installation procedure, and how to configure keys and cer-
tificates for enabling the GSI. The security infrastructure, for testing purposes, can
also be disabled through the GRCS and LRCS server configuration files.

Once the servers are installed, configuration files must be edited to set basic prop-
erties like database access and logging behaviour. On the master site, where an LRCS
master is deployed for monitoring the Oracle master database, the lrcs.master.conf
file allows the configuration of the access to the master database and the frequency
used by the DBWatcher component to check the log files. It is also possible to select
the tables to monitor, allowing the implementation of a basic form of partial replica-
tion at the table level. For a single master configuration like the one used in the Oracle
to MySQL replication scenario, it is suggested to deploy the GRCS server at the same
master site, to reduce the impact of potential network failures. At slave sites, LRCS
servers are deployed and configured using the lrcs.slave.conf configuration file.

When the installation and configuration procedure are completed, we can start
the servers in the following sequence:

1. Start the GRCS server using the grcs-server.sh script:

[rcs@oracle-db-3 etc]$./grcs-server.sh --help
GRCS host name is oracle-db-3.cr.cnaf.infn.it
GRCS port is 8090
GRCS debug level is 1
GRCS security is ON
grcs.conf
GRCS configuration file is: grcs.conf
Lock file is: /home/rcs/tests/t1t2tests/sbin/grcsserver.lock
Usage: ./grcs-server.sh {start|stop|restart|status}

[rcs@oracle-db-3 etc]$./grcs-server.sh start
GRCS host name is oracle-db-3.cr.cnaf.infn.it
GRCS port is 8090
GRCS debug level is 1
GRCS security is ON
grcs.conf
GRCS configuration file is: grcs.conf

Hat Enterprise Linux 3 have been fully tested.

132

Lock file is: /home/rcs/tests/t1t2tests/sbin/grcsserver.lock
Starting grcsserver
....

The GRCS, when started, creates the RCC database and starts listening for
requests from the LRCS servers on the specified port.

2. Start the LRCS slave server using the lrcs-server.sh script:

[lrcs@pcgridtest2 etc]$./lrcs-server.sh start
LRCS host name is pcgridtest2.pi.infn.it
LRCS port is 8081
LRCS debug level is 1
LRCS security is ON
lrcs.slave.conf
LRCS configuration file is: lrcs.slave.conf
Lock file is: /t1t2tests/sbin/lrcsserver.lock
Starting lrcsserver
....

This operation must be done after the GRCS server is started, because when an
LRCS server starts, one of the first things it does is to subscribe to the GRCS.
Then, the LRCS slave server creates its LRCC and verifies the access to the
slave replica (specified in the configuration file). If the replica is accessible, the
LRCS subscribes a slave replica to the GRCS, and waits for update requests.

3. Start the LRCS master server using the lrcs-server.sh script:

[lrcs@oracle-db-3 etc]$./lrcs-server.sh start
LRCS host name is oracle-db-3.cr.cnaf.infn.it
LRCS port is 8091
LRCS debug level is 1
LRCS security is ON
lrcs.master.conf
LRCS configuration file is: lrcs.master.conf
Lock file is: /t1t2tests/sbin/lrcsserver.lock
Starting lrcsserver
....

6.4. Design and Implementation 133

The LRCS master also subscribes to the GRCS, creates its LRCC and creates
and starts the activity of a DBWatcher component on the master database spec-
ified in the configuration file.

Once the service infrastructure is in place, a typical update extraction-propagation-
application phase is described in Figure 6.32.

The DBWatcher, created and activated by the LRCS master, periodically uses the
LogMiner in order to discover new changes on the master database. When some up-
dates are found, they are extracted and saved in a file. This file is then used by the
SQLTranslator to produce another file with an SQL syntax supported by MySQL.
When the translation is finished, the DBWatcher notifies the GRCS about the avail-
ability of new updates. On the GRCS, this operation triggers the creation of a new
UpdateOperation object in charge of the update propagation phase. Before starting
the update propagation, the GRCS checks whether a quorum among the secondary
replicas is reached. If so, it executes the update operation, otherwise the operation
is rejected. When executing, an UpdateOperation object retrieves the list of all the
slave LRCSs that must be contacted, and sends them an updateDBreplica com-
mand specifying the location of the update unit at the master site. When an LRCS
does not reply to an updateDBreplica command the UpdateOperation uses the
DefOpsContainer to save the operation so that it can be re-executed later on when
the LRCS is again available. On the LRCS slave site this request triggers the creation
of an updateThread, which retrieves the update file with a GridFTP file transfer and
takes care of the update application through the DBUpdater component. The correct
order of application of the updates is respected by the DBUpdater.

It is worth noting that the GridFTP file transfers used by the LRCSs to retrieve the
update file happen concurrently, giving an important contribution to speeding up the
update propagation phase and making it scalable with increasing numbers of slave
sites. We will analyse better the performance of the RCS in the next chapter.

Another important thing to note is that the sleep time specified in the LRCS mas-
ter configuration file represents only an upper limit for the polling frequency used
by the DBWatcher. The sleep time in fact starts as soon as an UpdateOperation
acknowledges the correct propagation of the updateDBreplica command.

134

trigger DB Check

updateDBreplica

Time

:UpdateOperation<<create>>

:DBUpdater

CheckForUpdates

updates found

extract updates

update unit

ok

notify

Oracle DBMS LRCSMaster GRCS

set replicas

check quorum

execute

LRCSSlave1

check version
ok

applyUpdate

GridFTP file copy
update unit

LRCSSlave2

MySQL

updateThread<<create>>
ok

updateDBreplica

mysql < update unit
ok

ok

ok
ok

ok

sleep time
trigger DB Check

:DBWatcher <<create>>

SQL Translation

Figure
6.32:

Sequence
diagram

of
a

com
plete

O
racle

to
M

ySQ
L

synchronisation
process

6.5. CONStanza, OGSA and OGSA-DAI 135

6.5 CONStanza, OGSA and OGSA-DAI
The Open Grid Service Architecture (OGSA) was introduced in Section 5.3. We saw
that in OGSA the middleware is made of Grid services, web services with a specific
semantic and well defined interfaces in terms of lifetime management, notification
and service discovery. Although the CONStanza RCS is not built as a “Grid service”,
as defined in OGSA, it is a web service that works in a Grid architecture and its archi-
tecture is a Service Oriented Architecture (SOA). Therefore, a re-engineering process
of the CONStanza RCS to make it compliant with the OGSA standard would require
a fairly short time, and would be both an interesting exercise and a valuable activ-
ity. However, during this work, we focused more on providing a reliable service that
could fit the LGC/gLite middleware, that is not based on OGSA. Therefore, making
the CONStanza RCS OGSA compliant has been left as a future work. Nonetheless,
we expect that the OGSA standard will be used more and more in the future, thus the
adaptation of the RCS to OGSA will be required.

The relation between our RCS and OGSA-DAI (see Section 5.3.1) is different.
They provide complementary services: while OGSA-DAI deals with data access and
integration, our RCS deals with the synchronisation of data sources. In the replica-
tion of databases, we believe in a scenario where OGSA-DAI is placed between the
client and the data sources, and the RCS is placed behind the data sources, without
interaction with users. This picture is shown in Figure 6.33, where heterogeneous
databases are considered as data sources.

Thanks to OGSA-DAI clients could discover and access a database replicated on
heterogeneous platforms kept synchronised using the CONStanza RCS.

136

Data Service Data Service Data Service

Client

LRCS LRCS LRCS

GRCS

Oracle MySQL Postgre
 SQL

Figure 6.33: OGSA-DAI and CONStanza to manage access to consistently replicated
heterogeneous databases

Chapter 7

Performance Analysis

In Chapter 6 we presented CONStanza, the Replica Consistency Service for Data
Grids. We started from the requirements, functional and non-functional, then we pre-
sented the use case model and the analysis classes. We showed the RCS architecture,
the GRCS and the LRCS servers, and how they collaborate to implement the use
cases. We focused on two main use cases: file and database update. Being it the
highest priority requirement during the development, in Section 6.4.4 we detailed the
implementation of the database update use case, and in particular the synchronisa-
tion, in a single master configuration, of an Oracle database with MySQL replicas.
Several tasks must be accomplished in order to realise this use case: Oracle log mon-
itoring and log extraction, log translation, update propagation and update application
at remote replicas.

In order to understand better the system, and plan optimisation tasks for the fu-
ture, we analysed the performance of the RCS in that use case. The main goal of this
analysis was to evaluate the system scalability, and possible system bottlenecks. The
performance analysis has been done with a two-factor full factorial design model with
replication [82]. This analysis allowed us to discover the most time consuming tasks,
to have an idea of the responsiveness of the system and, therefore, of the lazyness of
the used protocol.

The chapter is structured as follows. In Section 7.1 we present the testbed used
to perform the experiments. In Section 7.2 we describe the response variables used
during the experiments. In Section 7.3 instead we describe the factors, or controlled
variables, and parameters, or fixed quantities. In Section 7.4 we present the model
used to study the system, and specifically the effect of the factors on the response
variables. In Section 7.5 we show and discuss the results, highlighting the cases

138

in which the model equation revealed not accurate enough to explain the observed
behaviour. Finally, in Section 7.6, we summarise the conclusions of this performance
analysis.

7.1 Testbed description
In Figure 7.1 the testbed used for the experiments is shown. It is made of five sites:
CNAF Bologna (Italy), INFN Pisa (Italy), SNS Pisa (Italy), INFN Bari (Italy) and
CERN Geneva (Switzerland) with the following hardware:

CNAF Bologna: 2 Intel(R) Xeon 2.2 GHz with 2 GB RAM.

INFN Pisa: Intel(R) Xeon 1.7 GHz with 512 MB RAM.

SNS Pisa: AMD Athlon 900 MHz with 256 MB RAM.

INFN Bari: 2 Intel(R) Xeon 3.06 GHz with 2 GB RAM.

CERN Geneva: 2 Pentium3 Coppermine 1 GHz with 512 MB RAM.

All the machines run on Scientific Linux CERN 3 apart from CERN that uses Red
Hat Enterprise Linux 3, and they are all equipped with FastEthernet network cards.

7.2 Response variables
Response variables (expressed as y below) are the system variables we want to mea-
sure during the performance analysis of CONStanza. In what follows we list the
seven response variables we chose, with a brief description.

1. Response time for automatic database synchronisation: yAutUpdT . It can be
defined as the time interval between the commit of an update operation on the
master database and the time all the slave replicas have been updated. The
measured time interval starts with the time recorded in the Oracle log files
and finishes with the time recorded by the DBUpdater that prints the system
time after it has successfully applied an update to the replica. Since we have
more than one slave replica, we chose the maximum value printed by all the
DBUpdater components of the testbed.

7.2. Response variables 139

DB2
MySQL

lrcs2.pi.infn.it:8080

LRCS2
DBUpdater

INFN PISA

DB3
MySQL

lrcs3.sns.it:8080

LRCS3
DBUpdater

SNS PISA

DB4
MySQL

firblibi01.ba.infn.it:8080

LRCS4
DBUpdater

INFN BARI

DB5
MySQL

lrcs5.cern.ch:8081

CERN

LRCS1

rcs.cnaf.infn.it:8080, 8081

DB1
Oracle

CNAF

GRCS
DBWatcher

LRCS5
DBUpdater

Figure 7.1: CONStanza testbed

2. Time needed to create an update file: yLogGenT . This time interval is the time
needed to extract the new updates from the Oracle master database using the
LogMiner plus the time needed to translate these statements to make them
MySQL compatible.

3. Time needed to translate an update file: yTranslT . This is the time needed for
the SQL translation which is also included in yLogGenT .

4. Time needed by the DBWatcher to notify the GRCS: yGRCSNotT . This time cov-
ers the main part of the update propagation process. It starts with the time the
DBWatcher makes the call to the GRCS to request a new update operation and

140

ends with the time the DBWatcher gets a response.

5. Time needed by the UpdateOperation object to deliver an update replica re-
quest to all the LRCSs involved: yU pdRepsT . This time starts with the first update
replica call to the first LRCS and ends when the UpdateOperation object has
received the response from the last LRCS; it is also included in yGRCSNotT . It
is worth stressing the fact that, as we have seen in the sequence diagram in
Figure 6.32, this time does not include the actual file transfers and update of
the slave databases.

6. Time needed to retrieve the update file: yFilecpT . With this time we measure the
time needed by LRCS slaves to retrieve the update file using GridFTP.

7. Time needed to apply an update: yDBupdT . This is the time needed by the
DBUpdater to apply an update file to the slave database.

The first response variable, yAutUpdT , is the most important one since it gives an
exact measurement of the laziness of the system, that is the time interval the slave
replicas are in an inconsistent state with respect to the master replica. During this
time, stale reads may happen. The rest of the response variables are useful to detect
the most time consuming activities involved in a synchronisation process and possibly
the bottlenecks of the system; the sequence diagram in Figure 7.2 highlights these
time intervals to better understand their role in a synchronisation process.

All the response variables are time contributions and will be measured in mil-
liseconds; in what follows we will refer to yxxxT to indicate the response variable, and
to xxxT to indicate the time interval that yxxxT refers to. For AutUpdT we will also
use the term “synchronisation time”.

7.3 Factors and parameters

Factors are system variables that we intentionally varied in a set of experiments to
study their effect on response variables. Every factor has a specified number of levels
that are the values they will assume during the experiments. We have chosen factors,
and number and value of levels in order to analyse the system in all its main charac-
teristics, but considering also hardware availability and time constraints. The factor
list is:

7.3. Factors and parameters 141

UpdRep

LRCS3 /
DBUpdater

1.0 check log file

UpdOp

LRCS2 /
DBUpdater

update unit created

DBWatcher
LRCS1 /

FilecpT

Polling period

UpdRepT

3.3.4 update replica
UpdRepT

3.3.2.2 get the update unit

UpdRepsT

1.1 unchanged
2.0 update statement

3.1 modified

3.3.2.3 file copy result

3.3.2 update replica

3.3.2.4 apply update
3.3.2.5 result

WatcherT

GRCSNotT

GRCSMaster DB
Oracle

Slave DB2
MySQL

3.0 check log file
log file modifed

3.3 update replicas

3.3.1 <<create>>

3.3.2.1 <<create>>
3.3.3 result

3.3.5 result
3.4 result

LogGenT

DBupdT

Figure 7.2: Sequence diagram for database synchronisation

• a: number of secondary replicas. This factor has four levels1 (A = 4): 1,2,3,4.

• b: size of the update to the master in number of rows inserted. This factor has
four levels (B = 4): 1, 10, 100 and 10002 .

We decided to keep constant the following parameters which theoretically could
have influenced the response variables:

• k: database schema: four tables of mixed number and string values.

• l: initial database population: empty.

• m: number of logical databases: 1. CONStanza is able to serve multiple logical
databases, that is, with more than one master database3 . In this case we would
have had more DBWatcher components. Since in our main use case at the

1We use the letter ’A’ for the number of levels of factor a and the letter ’B’ for the number of levels
of factor b

2It is worth noting that factor b could be seen as a combination of other two alternative factors: the
polling time of the DBWatcher and the frequency of the updates to the master database (see Section 7.4).

3Here, we do not refer to multi-master configurations but to many deployments of a single master
configuration.

142

moment there are no requirements for managing multiple logical databases,
we decided to analyse the system with only one logical database.

7.4 Experimental design

The performance study started with the selection of the response variables, that is
the variables that need to be measured during the experiments. Then we analysed
the system to choose factors and parameters. In our case, having two factors with
four levels each, we decided to implement a two-factor full factorial design with
replication. A single experiment is done for each combination of levels of the two
factors, and every experiment is replicated R times; in our case R, also called the
replication level, is 4. In such a design, if N is the total number of experiments
needed, we obtain:

N = A∗B∗R = 4∗4∗4 = 64

An experiment consists in an execution of a script that periodically inserts some
rows in the master database. The script is run each time specifying a different number
of rows to be inserted (to vary factor b) and activating an increasing number of LRCS
slaves at the replica sites (to vary factor a).

7.5 Experimental results and analysis

In this section we analyse the collected results and show some graphs that summarise
the behaviour of the seven response variables varying the level of the factors.

Each subsection will cover the analysis of a single response variable introduced in
Section 7.2. Since we will perform the same analysis for each of the seven response
variables, we are going to explain it in details only for the first response variable; for
the other ones we will show only the results and make the proper deductions.

An analysis will start with a simple inspection of the bar chart that summarises
the results. After that, an analytical model will be used to evaluate the effects of the
factors on the response variable. Finally, we will evaluate the quality of the model
equation looking at how the variation of the response variable can be explained by
model factors and errors.

7.5. Experimental results and analysis 143

7.5.1 Response time for automatic database synchronisation: yAutUpdT

This is the major response variable since it gives an estimate of the laziness of the
protocol. The bar chart in Figure 7.3 summarises the value of the response variable
for each experiment, considering its mean value over the four replications of the
experiment.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4

Ti
m

e(
m

illi
se

co
nd

s)

Number of replicas

y_AutUpdT

Update size (rows)
1

10
100

1000

Figure 7.3: yAutU pdT

A first deduction we can draw by looking at this graph is that, considering the
levels used for each factor, the laziness of the system scales well with respect to the
number of replicas. While the scalability with respect to the update size is mainly
due to external components like the database management systems that control the
database replicas and the file transfer protocols (GridFTP), scalability with respect to
the number of replicas is highly affected by the update propagation protocol used by
the RCS and, obviously, by the network latency.

144

7.5.1.1 Computation of effects

To analyse the results with the goal of judging the importance of each factor on the
value assumed by the response variable, we use the following model:

yi jr = µ+α j +βi + γi j + ei jr (7.1)

where:

• yi jr is the value of the response variable of the rth repetition of the experiment
with factor a at level j and factor b at level i. The value yi jr corresponds to a
time expressed in (milli) seconds.

• µ is the overall mean response in (milli) seconds,

• α j is the effect of factor a at level j,

• βi is the effect of factor b at level i,

• γi j is the effect of the interaction between factor b and factor a when they are
respectively at level i and j,

• ei jr is the experimental error.

More precisely, this analysis aims at evaluating the effect of each factor on the
deviation of the response variable from its mean value. The effects of the single
factors a and b cancel out when summed over the respective levels:

A
∑
j=1

α j = 0;
B
∑
i=1

βi = 0 (7.2)

the effects of the interactions cancel out when summed over indexes i and j:
A
∑
j=1

γ1 j =
A
∑
j=1

γ2 j =
A
∑
j=1

γ3 j =
A
∑
j=1

γ4 j =
B
∑
i=1

γi1 =
B
∑
i=1

γi2 =
B
∑
i=1

γi3 =
B
∑
i=1

γi4 = 0 (7.3)

and the errors in each experiment add up to zero4:

R

∑
r=1

ei jr = 0 (7.4)

4These assumptions come directly from the definition of the mean value and the model equation.

7.5. Experimental results and analysis 145

So, averaging yi jr across r we obtain5:

ȳi j. = µ+α j +βi + γi j (7.5)

and doing the same across i and j besides r :

ȳi.. = µ+βi; ȳ. j. = µ+α j (7.6)

The overall average value is:
µ = ȳ... (7.7)

Using these results, we obtain:

α j = ȳ. j. − ȳ... (7.8)

βi = ȳi.. − ȳ... (7.9)

γi j = ȳi j. − ȳ. j. − ȳi.. + ȳ... (7.10)

Effects can be computed as in Table 7.1 where we put factor a on columns and
factor a on rows. Each cell contains ȳi j. (in seconds), that is the average value of the
response variable (yAutUpdT in this case) with factor a at level j and factor b at level i.

1 2 3 4 row mean βi

1 7 7 7.5 10.25 7.94 -1.05
10 7.5 8.5 8.25 10.75 8.75 -0.23
100 7.75 9.5 8 10 8.81 -0.17

1000 8.75 11.25 10.5 11.25 10.44 1.45
col. mean 7.75 9.06 8.56 10.56 µ=8.98

α j -1.23 0.08 -0.42 1.58

Table 7.1: Computation of effects for yAutUpdT

Table 7.1 says that the time needed by the service to synchronise all the replicas
is, on average, 8.98 seconds. Reading the column effects, we can say that with an
average number of rows inserted, the time needed with just one replicas is 1.23 sec-
onds lower than the average one, with two replicas it is 0.08 seconds greater, with 3

5The dot indicates over which index or indexes the mean is taken.

146

replicas it is 0.42 seconds lower and with 4 replicas it is 1.58 seconds greater than the
average value. The same consideration can be done reading the row effects. These
values confirm what we previously said about scalability with respect to the number
of replicas after looking at the bar chart (Figure 7.3), that is, the time needed to prop-
agate the updates and synchronise all the replicas does not decrease significantly for
increased levels of factor a; the difference of the maximum value and the average
value of yAutUpdT is about 17% of the average value, while for the minimum value it
is about 14% of it. Similar percentages appear also for factor b. We can state that the
response time of the synchronisation protocol, in our testbed, is not critically affected
by the number of the secondary replicas and by the size of the updates, when these
are less than one thousands rows.

7.5.1.2 Allocation of variation

In this section we are going to figure out how the variation of the response variable
from its mean value is explained by factor a, by factor b, by the interaction of these
two factors and by the experimental errors. Doing this we will be able to quantify the
importance of the two factors on the response variable as well as to have an idea of
the quality of the model used throughout the analysis.

Squaring both sides of the model equation (Equation 7.1) and adding across all
the experiments, we obtain6:

∑
i jr

y2
i jr = ABRµ2 +BR∑

j
α2

j +AR∑
i

β2
i +R∑

i j
γ2

i j +∑
i jr

e2
i jr (7.11)

The sums of squares (SS) are defined as:

SSy = ∑
i jr

y2
i jr (7.12)

SS0 = ABRµ2 (7.13)

SSa = BR∑
j

α2
j (7.14)

SSb = AR∑
i

β2
i (7.15)

6Recalling that cross products add to zero due to the constraint of the model (Equations 7.2, 7.3 and
7.4).

7.5. Experimental results and analysis 147

SSab = R∑
i j

γ2
i j (7.16)

SSe = ∑
i jr

e2
i jr (7.17)

Substituting the SS definitions Equation 7.11 becomes:

SSy = SS0 +SSa +SSb +SSab +SSe (7.18)

We call total variation, or total sum of squares (SSt), the term:

SSt = SSy −SS0 = SSa +SSb +SSab +SSe (7.19)

The total variation is made of SSa (the variation explained by factor a), SSb (the
variation explained by factor b), SSab (the variation explained by the interaction be-
tween the two factors) and SSe (the unexplained variation due to errors). The compu-
tations of the sums of squares are the following:

SS0 = 5166.02

SSa = 67.17

SSb = 52.67

SSab = 16.89

SSe = 80.25

From these terms we can compute the variation as percentage of the total varia-
tion:

explained by a = 100 SSa
SSt

= 30.96

explained by b = 100 SSb
SSt

= 24.27

explained by interaction = 100 SSab
SSt

= 7.78

unexplained = 100 SSe
SSt

= 36.98

148

We can see that the percentage of variation unexplained (or explained by errors)
is rather high, being 36,98% of the total variation. Consequently, for the response
variable yAutUpdT , the two-factor model should be refined to take into account other
causes of variation. Furthermore, the setup of the experiment should be improved to
remove any possible correlation between setup characteristics and the value of the
response variable.

7.5.2 Time needed to create an update file: yLogGenT

The meaning of this response variable has been explained in Section 7.2. In this
section we will use the concepts already explained in the analysis of the response
variable yAutUpdT , thus we will not discuss the mathematical procedure. In Figure 7.4
the bar chart that summarises the results for yLogGenT is shown. By design, the update
file creation process depends only on factor b, therefore we expect that the effect of
factor a on the response variable be negligible.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4

Ti
m

e(
m

illi
se

co
nd

s)

Number of replicas

y_LogGenT

Update size (rows)
1

10
100

1000

Figure 7.4: yLogGenT

As we can see from the graph no trends are present varying the number of repli-
cas, but just an expected trend for increasing values of the update size.

7.5. Experimental results and analysis 149

1 2 3 4 row mean βi

1 4100 4462.5 4345 5060 4491.88 -336.88
10 4145 4750 4405 5165 4616.25 -212.5

100 4465 5020 4765 5335 4896.25 67.5
1000 4782.5 6047.5 5150 5262.5 5310.63 481.88

col mean 4373.13 5070 4666.25 5205.63 µ=4828.75
α j -455.63 241.25 -162.5 376.88

Table 7.2: Computation of effects for yLogGenT

The table for the computation of effects is shown in Table 7.2 with values in
milliseconds.

From the table we see that the average value of yLogGenT is about 4.8 seconds.
Factor a should have no impact on the response variable since the update file creation
phase is not influenced by the number of replicas. According to this, the column
effects have no specific trend although their values are higher than one should ex-
pect (a deviation of about 10% from the mean value). Factor b instead shows the
expected trend: with only one row inserted the update file creation time is about 300
milliseconds less than the average time while with 1000 rows the time is about 500
milliseconds greater. The time needed to generate the update file is proportional to
the time needed by the LogMiner to parse the Oracle redolog files and execute the
query on the LogMiner view as explained in Section 6.4.3.8. Moreover, the higher the
number of updates found since the previous DBWatcher check, the higher the time to
put these updates on the new generated file, and the larger the size of the update file.
This file then must be translated (see Section 6.4.3.11), and we expect the translation
time to be proportional to the update file size. We will investigate the impact of the
translation time on yLogGenT in the next section.

With the same procedure used for yAutUpdT , we can compute the explained varia-
tion for yLogGenT :

explained by a = 28%

explained by b = 25.5%

explained by interaction = 9.81%

unexplained = 36.68%

150

The unexplained variation is high, approximately the same value as in yAutUpdT . Vari-
ation explained by the factors are similar, but as we have already mentioned the vari-
ation explained by b, showing a clear trend, can be considered a “good” variation.
The same is not true for the variation explained by a. Here the same considerations
about the quality of the model equation already done for yAutUpdT are valid.

7.5.3 Time needed to translate an update file: yTranslT

In Figure 7.5 the results for the translation time are summarised. Also this response
variable, by design, depends only on factor b, and in fact the graph shows no differ-
ences varying the number of replicas.

 0

 50

 100

 150

 200

 250

1 2 3 4

Ti
m

e(
m

illi
se

co
nd

s)

Number of replicas

y_TranslT

Update size (rows)
1

10
100

1000

Figure 7.5: yTranslT

From a visual inspection we can say that compared to the time needed to generate
the update file (yLogGenT), the translation time is almost negligible, being about 4% of
it in the worst case. For updates less than or equal to 1000 rows, the SQL translation
module is fairly efficient and is not going to be a bottleneck in the update file creation
process. However, the exponential trend of yTranslT suggests that maybe, for higher
values of factor b, yTranslT could play a role in increasing the value of yLogGenT . In

7.5. Experimental results and analysis 151

1 2 3 4 row mean βi

1 2.5 2.5 0 2.5 1.88 -59.84
10 0 2.5 2.5 0 1.25 -60.47
100 20 27.5 22.5 20 22.5 -39.22

1000 220 220 222.5 222.5 221.25 159.53
col. mean 60.63 63.13 61.88 61.25 µ=61.72

α j -1.09 1.41 0.16 -0.47

Table 7.3: Computation of effects for yTranslT

this case, some optimisation may be required exploiting some patterns in the original
SQL file, that is the input file for the SQL translation module. This aspect will be
part of future work.

The table for the computation of effects is shown in Table 7.3.
According to what the graph already showed, we can say that, when the update

size is less than 100 rows, the translation process is fast and its impact on the update
file creation time (yLogGentT) is negligible. When the update size reaches 1000 rows
the translation time has a large increase but still being about 4% of the update file
creation time. Effect of factor a on the response variable is negligible and does not
show any trend as expected.

The computed explained variations are:

explained by a = 0.01%

explained by b = 99.84%

explained by interaction = 0.03%

unexplained = 0.12%

In this case the model covers 99.88% of the variation of the response variable, mean-
ing that it precisely explains the behaviour of this response variable. In fact, it de-
pends basically only on factor b, which is the expected result since the translation
time, using a fixed set of insert statements, depends only on the number of rows
inserted and is not affected by the number of replicas.

152

7.5.4 Time needed to notify the GRCS: yGRCSNotT

The meaning of GRCSNotT is explained in Section 7.2. We will not analyse Up-
dRepsT since it is included in GRCSNotT, and does not provide further useful infor-
mation. The plot for yGRCSNotT is shown in Figure 7.6.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4

Ti
m

e(
m

illi
se

co
nd

s)

Number of replicas

y_GRCSNotT

Update size (rows)
1

10
100

1000

Figure 7.6: yGRCSNotT

This response variable, by design, only depends on factor a and its trend is linear
according to the implementation of this phase within the service. In fact, for each
slave LRCS, the GRCS has to spawn a thread to manage the update replica request
to that LRCS, so for each slave LRCS an almost constant time is added to the update
propagation process. As we saw from the results of the response variable yAutUpdT this
linear trend does not imply a linear increase of the of yAutUpdT with respect to factor
a. In fact, as we will see, the multi-threaded implementation of the update propa-
gation phase lets us perform the actual file transfers in a concurrent way, which has
a great impact in reducing the synchronisation time. However, GRCSNotT includes
a synchronous call from the DBWatcher to the GRCS (message 3.3 in the sequence
diagram in Figure 7.2), that contributes to increase the overall synchronisation time.

Effects computation is shown in Table 7.4.

7.5. Experimental results and analysis 153

1 2 3 4 row mean βi

1 367.5 632.5 1080 1382 865.63 -31.72
10 365 655 1055 1372 861.88 -35.47

100 372.5 637.5 1075 1390 868.75 -28.59
1000 495 772.5 1185 1520 993.13 95.78

col. mean 400 674.38 1098.75 1416.25 µ=897.34
α j -497.34 -222.97 201.41 518.91

Table 7.4: Computation of effects for yGRCSNotT

The average value of yGRCSNotT is about 900 milliseconds. Impact of factor b is
negligible; this is also confirmed by the allocation of variation.

explained by a = 97.24%

explained by b = 1.96%

explained by interaction = 0.04%

unexplained = 0.76%

The model suits the collected results since it explain 99.24% of of the total vari-
ation.

Comparing these results with the ones for the response variable yAutUpdT we can
say that the time to propagate update requests (U pdRepsT) does not constitute a
major contribution to the overall synchronisation time (AutUpdT).

7.5.5 Time needed to retrieve an update file: yFilecpT

This is the time needed to make a GridFTP file transfer from the master site to the
slave sites. The plot is shown in Figure 7.7. Since this time is related to a single slave
site, the plot shows the value of the response variable for each slave site varying the
update size (factor b).

Effects computation is shown in Table 7.5. The file transfer time takes from about
500 milliseconds to almost 1 second depending on the link between the master and
the slave LRCS.

154

 0

 200

 400

 600

 800

 1000

DB2
DB3

DB4
DB5

Ti
m

e(
m

illi
se

co
nd

s)

Database replicas

y_FilecpT

Update size (rows)
1

10
100

1000

Figure 7.7: yFilecpT

explained by a = 61.91%

explained by b = 8.74%

explained by interaction = 8.82%

unexplained = 20.53%

The average time spent for retrieving the file is 698 milliseconds. Explained vari-
ations say that, when the update size is not larger than 1000 rows, the placement of
the site and network characteristics are more important than the update size as regards
the update file transfer time. Also for this time interval we can say that comparing it
with AutUpdT , it does not provide a major contribution to the overall synchronisation
time, although things could change for larger numbers of rows inserted.

Possible future optimisations of this phase are related to the GridFTP server and
client configurations. A SOAP based protocol for file transfer, SOAPw/Attachment [46],
have been evaluated as a possible alternative to GridFTP; the tests done showed that

7.5. Experimental results and analysis 155

DB2 DB3 DB4 DB5 row mean βi

1 507.5 675 645 875 675.73 -22.03
10 515 567.5 642.5 900 656.25 -41.41

100 490 640 640 902.5 668.13 -29.53
1000 505 942.5 755 960 790.63 92.97

col. mean 504.38 706.25 670.63 909.38 µ=697.66
α j -193.28 8.59 -27.03 211.72

Table 7.5: Computation of effects for yFilecpT

DB2 DB3 DB4 DB5 row mean βi

1 10 20 15 20 16.25 -145.94
10 20 30 20 25 23.75 -138.44

100 80 80 65 72.5 74.38 -87.81
1000 660 595 312.5 570 534.38 372.19

col. mean 192.5 181.25 103.13 171.88 µ=162.19
α j 30.31 19.06 -59.06 9.69

Table 7.6: Computation of effects for yDBupdT

SOAPw/Attachment performs better than GridFTP only when the size of the file to
transfer is less than a few MBytes. The complete study can be found in [48].

7.5.6 Time needed to apply an update file: yDBupdT

The plot is shown in Figure 7.8.
Also in this case the bar chart is related to the four slave sites. The behaviour of

this response variable is like the one observed for yTranslT ; its contribution starts to be
significant when the update size reaches one thousand rows, although not even this
time, in the worst case (1000 rows), it constitutes a major contribution to the time
AutUpdT .

Computation of effects is shown in Table 7.6. The average update time is 162.19
milliseconds. LRCS 4, that runs on the most powerful hardware platform, has the
minimum time, being approximately 63% of the average value. As expected, how-
ever, the explained variations show that yDBupdT mainly depends on factor b:

156

 0

 100

 200

 300

 400

 500

 600

 700

DB2
DB3

DB4
DB5

Ti
m

e(
m

illi
se

co
nd

s)

Database replicas

y_DBupdT

Update size (rows)
1

10
100

1000

Figure 7.8: yDBupdT

explained by a = 2.38%

explained by b = 91.22%

explained by interaction = 6.2%

unexplained = 0.2%

7.5.7 Sums of partial times: ysumsT

To better understand how all the sub-phases we have studied so far contribute to
the synchronisation time, we computed a new response variable ysumsT defined as
follows:

ysumsT = yLogGenT + yGRCSNotT + yFilecpT + yDBupdT

7.5. Experimental results and analysis 157

Figure 7.9: ysumsT

Figure 7.9 shows the plot of ysumsT .
The bar chart gives a better idea of how important the update file creation phase

(LogGenT interval) is with respect to the other phases. Thus, the update file creation
phase is the one that we will need to address to improve the performance of the ser-
vice. This phase is performed by the DBWatcher that uses the Oracle LogMiner to
discover and extract update statements issued on the master database. It involves two
subsequent activations of the LogMiner which we found to be quite time consum-
ing. Since the LogMiner can be activated and its view queried using several options,
different alternatives will be investigated as part of the future work.

Comparing Figure 7.9 with Figure 7.3, we can also notice that there is a signifi-
cant difference between the sum of the sub-phases times we measured and the value
of the response variable yAutUpdT , meaning that we did not take into account some
time contributions. If we define:

ydi f f sT = yAutU pdT − ysumsT

158

the plot of ydi f f sT is shown in Figure 7.10.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4

Ti
m

e(
m

illi
se

co
nd

s)

Number of replicas

y_diffsT

Update size (rows)
1

10
100

1000

Figure 7.10: ydi f f sT

As regards the causes of these differences (di f f sT), we did not take into account
the time needed by the DBWatcher to discover an update on the master database.
Thus, the polling frequency is the inverse of polltime only when the DBWatcher
does not find any update on the master database; otherwise, the frequency decreases
by a factor that is proportional to the update file creation time (yLogGenT), making
ydi f f sT also sensitive to factor b. Besides this, we have to consider the delay intro-
duced by the synchronous call used by the DBWatcher component to notify a change
to the GRCS; this call blocks until the GRCS has performed the update requests
propagation phase, and the delay is proportional to the number of replica sites.

Computation of effects for ydi f f sT is shown in Table 7.7.
The average value of ydi f f sT is 2396.31 milliseconds and the explained variations

are as follows:

explained by a = 27.86%
explained by b = 32.03%

7.6. Conclusions of Performance Analysis 159

1 2 3 4 row mean βi

1 2015 1245 1180 2887 1831.88 -564.44
10 2455 2433 1870 3277.5 2508.88 112.56

100 2324.5 3137.5 2052.5 2262.5 2448.75 52.44
1000 2307.5 3363 2645 2867.5 2795.75 399.44

col. mean 2280 2544.63 1936.88 2823.75 µ=2396.31
α j -116.31 148.31 -459.44 427.44

Table 7.7: Computation of effects for ydi f f sT

unexplained = 40.12%

As for the first response variable analysed, yAutUpdT , the model is not accurate
enough to explain the total variation, and given what we said about the causes that
generate these time differences, it is understandable that the model cannot precisely
explain the behaviour of ydi f f sT . However, comparing the explained variation for
all the response variables analysed, we see that the term that is responsible for the
inaccuracy of the model with regards to the synchronisation time (yAutUpdT) is mainly
the time needed for the update file creation phase, yLogGenT .

7.6 Conclusions of Performance Analysis
In this section we collected and summarised the main observations we did throughout
the previous sections of the performance study. As regards the way the different sub-
phases contribute to the synchronisation time, we have seen that the main responsible
is the update file creation phase (LogGenT). This phase is much more time consum-
ing than the other ones and possible optimisations can be done improving the way
the DBWatcher interacts with the LogMiner. The second largest time contribution is
GRCSNotT , which is due to a synchronous call from the DBWatcher to the GRCS.
An asynchronous call could decrease the value of GRCSNotT but it would affect the
way update requests are serialized by the GRCS. This is the reason why we did not
deal with it in the current release of the software. All the other sub-phases, including
the update file transfer, scale well with respect to both of the factors, considering the
levels used for each of them.

As regards the model used to allocate the total variation of the response variables
from their mean value, we have seen that the model accurately explains the total

160

variations in all the cases but yAutUpdT and yLogGenT . In particular, the inaccuracy of the
model as regards yLogGenT and some time contributions we did not take into account
can be considered the causes of the inaccuracy of the model for the response variable
yAutUpdT . In particular, the delay for the synchronous call from the DBWatcher to the
GRCS (message 3.3 in Figure 7.2) and the variability of the polling frequency are not
included in the model.

Chapter 8

CONStanza and Oracle Streams
for Conditions Database
Replication

As we have already seen in Chapter 4, one of the main use cases for CONStanza and
the replication from Oracle to MySQL is the distribution of conditions databases.
The four LHC experiments, and ATLAS in particular, use relational databases to
save event metadata necessary for reconstruction analyses, what is generally known
as conditions data. At Tier-0, conditions data are stored in Oracle, and replicated
to Tier-1 sites to other Oracle databases using Oracle Streams. This replication is
supported by the LCG-3D project, as we mentioned in Section 4.4. For what concerns
the replication from Tier-1 sites to Tier-2 sites, more work needs to be done in order
to provide a reliable solution for replicating data to open source databases.

In this chapter we show how CONStanza can be used in this scenario. CON-
Stanza supports the synchronisation from Oracle to MySQL, and can be easily ex-
tended to support the synchronisation to other open source or commercial databases.
The COOL API, introduced in Section 4.2.3, will be used to insert and retrieve data
in a 3-tiers database architecture.

8.1 Testbed setup
The testbed we used for these functional tests comprises an Oracle database at CERN
(Tier-0), an Oracle database at CNAF (Tier-1), and a MySQL database at INFN-Pisa

162

(Tier-2). The two Oracle databases have been connected and kept synchronised us-
ing Oracle Streams, while CONStanza has been deployed at CNAF (GRCS + LRCS
Master) and at INFN-Pisa (LRCS Slave) for the heterogeneous synchronisation (from
Oracle to MySQL). The COOL API has been used to develop two programs to in-
sert data at the Tier-0 Oracle database and to read these data at the Tier-2 MySQL
database.

8.1.1 Streams setup
For configuring Streams on the two Oracle databases we used several scripts pro-
vided by the LCG-3D project (see Section 4.4) and available at the project web
page [22]. The scripts use Oracle predefined PL/SQL packages that simplify the
creation and the setup of database objects; for example, most of the procedures used
to setup the Capture, Propagation and Apply processes are included in a package,
DBMS_STREAMS_ADM, that is already available in Oracle. Assuming that two Oracle
databases (single instance) are running at the source and at the destination sites (Tier-
0 and Tier-1), the Streams setup consists of the following steps1:

• Creating the Streams administrator user and grant him the necessary privileges.
This operation is done both on the source and on the destination database. This
administrator account will be used to create database objects in the next steps.

• Creating a database link between the source and the destination database. This
link is necessary in order to propagate LCRs from a source queue to a destina-
tion queue.

• Enabling supplemental logging on the source database: this must be done for
the LogMiner to work properly during the Capture activities.

• Creating the source queue and the Capture process at the source database.
Streams replication is integrated with Oracle Advanced Queueing. The Cap-
ture process will use the LogMiner to extract DML and DDL changes made on
the source database and will enqueue these changes as LCRs into the source
queue.

• Creating the Propagation process at the source database. The Propagation pro-
cess is the process in charge of propagating LCRs from the source queue to the
destination queue. When creating the Propagation process we have to specify
the database link created in the second step.

1We outline the main phases without giving technical details; these can be found in [22].

8.1. Testbed setup 163

• Creating the destination queue and the Apply process at the destination database.
The Apply process is the process that takes LCRs from the destination queue
and applies them to the destination database.

• Test the infrastructure. After the previous steps, we tested the infrastructure
by issuing SQL DDL and DML queries on the source database and verifying
the correct application at the destination site. A simple test would be that of
creating a table with some records on the source database and querying these
records at the destination database.

These steps have been successfully done. After preparing the Streams infrastruc-
ture we passed to the installation and configuration of the CONStanza servers.

8.1.2 CONStanza setup
At the Tier-1 site, the destination database for Oracle Streams has been used as mas-
ter database for CONStanza. Here, a GRCS server and an LRCS server have been
installed and configured. After preparing the security infrastructure, installing keys
and certificates, we started configuring the servers. In the GRCS server configuration
file (refer to the Appendix A for the GRCS configuration file options) we specified
a logical database named “LDBCOOL”; when the GRCS server starts, this logical
database is automatically subscribed, initially without replicas.

For configuring the master LRCS server, the file lrcs.master.conf has been
edited, providing all the necessary options including the details about a database
replica named “COOLDB1”. When the master LRCS server starts, after subscribing
itself to the GRCS, it automatically subscribes the database replica “COOLDB1” as
replica of the logical database “LDBCOOL”.

Once the configuration files have been edited, we started the GRCS server. Before
starting the LRCS server, we configured the slave LRCS server at the Tier-2 site.
Here, an empty MySQL database named “COOLDB2” was created; this replica will
be automatically subscribed as a replica of the logical database “LDBCOOL” as soon
as the slave LRCS server starts.

Then, we started the slave LRCS server and, after, the master LRCS server. At
this time, all the synchronisation infrastructure is in place, and every change to the
Oracle database at Tier-0 will be propagated and applied, first at Tier-1, using Oracle
Streams, and then at Tier-2, using CONStanza. The scenario is depicted in Figure 8.1
The thick lines show the data flow, while the thin ones among the RCS servers show
communications needed for implementing the update propagation.

164

CAPTURE

Source Queue

PROPAGATION

Destination Queue

APPLY

Oracle
source DB

Oracle
dest DB

COOLDB1 Master LRCS

MySQL
COOLDB2

TIER-0 CERN

TIER-1 CNAF

TIER-2 INFN-Pisa

GRCS

Slave LRCS

COOL insert program

COOL read program

Figure 8.1: Scenario for the replication of conditions databases using Oracle Streams
and CONStanza

8.2 Testing COOL insertions and retrievals
The functional test consists in inserting conditions data into the database at Tier-0
(Oracle) and reading these data at the Tier-2 replica (MySQL). More specifically,
we insert and retrieve data into/from COOL SVSC folders (see Section 4.2.3), using
fixed intervals of one second as IOV and integer numbers as payload.

To insert data we developed two scripts:

• t1t2insert: to create a new COOL database with a SVSC folder and insert
conditions data in this folder. The script takes two arguments:

$./t1t2insert.csh
Usage: t1t2insert.csh nfolder nobjects

The first one is a number used to create the folder name; for example when
nfolder is 1, the folder named folder1 is created and nobject objects are created
in it, with IOV [0.1), [1,2), [2,3) and so on. The payload that is inserted into

8.2. Testing COOL insertions and retrievals 165

the objects is an integer number equal to “nfolder + 10 + until”2 , so that each
object takes a different payload.

• t1t2insert-nocreate: to insert objects into an existing folder, appending
them on top of the existing ones. This script takes three arguments:

$./t1t2insert-nocreate
Usage: t1t2insert-nocreate.csh nfolder nobjects offset

The first two arguments are the same as in the previous script, and are used to
choose the folder to work on and to state how many objects will be inserted. Fi-
nally, the last argument takes an offset to avoid IOV overlapping with existing
objects.

A typical output of the execution of the two program is:

$./t1t2insert.csh 1 2
nfolder = 1
nobjects = 2
Start
Creating a new COOL database
Creating folder /folder1
Inserting 2 objects into folder /folder1
End

$./t1t2insert-nocreate.csh 1 3 2
nfolder = 1
nobjects = 3
offset = 3
Start
Opening an existing COOL database, retrieving folder /folder1
Inserting 3 objects into folder /folder1
End

To retrieve data we used a third script:

$./t1t2retrieval.csh
Usage: t1t2retrieval.csh nfolder since until

2We recall that the until value is the upper bound of the IOV.

166

that takes three arguments. The first one is used to choose the folder to retrieve data
from. The second and the third one are used to specify the interval of validity where
objects will be retrieved.

After opening a COOL database, the program retrieves the folder and then all the
objects in the specified IOV. To check that the right number of objects is retrieved,
we inserted IOVs with a fixed and known length. This check is done inside the
retrieval script. After this check, the program also checks the payload of all the
objects retrieved. The payload is a function of the folder number and the object IOV;
in this way the retrieval program can check whether each payload contains the right
number.

A typical execution of the retrieval script is:

$t1t2retrieval.csh 1 0 5
nfolder = 1
since = 0
until =5
COOL DB opened
Start reading folder /folder1
Ok: found correct number of objects in IOV
Ok: payload is: 12
Ok: payload is: 13
Ok: payload is: 14
Ok: payload is: 15
Ok: payload is: 16
Data retrieval finished with 0 errors

The functional test completed successfully. This demonstrates that, from a func-
tional point of view, CONStanza can be used, together with Oracle Streams, for
synchronising conditions data between an Oracle database at Tier-0 and a MySQL
database at Tier-2.

Chapter 9

Conclusions and Future Work

This thesis presented a study of the replica consistency problem in Grid computing
and proposed a Replica Consistency Service to synchronise both files and heteroge-
neous databases in a Grid environment.

Starting from the basic theory of concurrency control in centralised and dis-
tributed databases, we studied different synchronisation techniques used to enforce
replica consistency in wide area replicated data stores. We focused on optimistic
replication, that synchronises replicas in a relaxed way, and we saw different design
choices that can be used.

Since the main application field of our service was within the Grid community,
and in particular Grid applications in High Energy Physics (HEP), we presented this
domain and the Grid middleware solutions currently in use. These solutions, while
providing full support for data replication, lack a replica synchronisation system that
allows users to modify a replica without introducing inconsistency with respect to the
other replicas. We emphasised that both files and databases need to be synchronised
in a Grid. In particular, for database synchronisation, a large class of applications
require the synchronisation of heterogeneous (different vendors) databases.

The main issues in providing such a synchronisation service, like scalability to
the number of replicas, security, site unavailability and resource heterogeneity, have
been discussed. Then, we presented the CONStanza project, and the Replica Consis-
tency Service we developed during these Ph.D. studies. The design of the service has
been thoroughly described, from the requirements collection to the implementation.
We focused on the synchronisation of heterogeneous databases, and in particular on
the synchronisation of an Oracle master database with many MySQL slave replicas.
A single master approach has been chosen in order to provide a simple but stable

168

solution that satisfies critical requirements like security, fault tolerance and smooth
installation, configuration and usage.

In CONStanza, the Oracle master database log files are checked with a config-
urable periodicity; changes are extracted, propagated (with a GridFTP file transfer),
and applied to remote MySQL replicas. The problem of the different SQL dialects
used by the two database vendors has been solved by building an SQL translation
module which performs specific data transformations, on-the-fly, before propagating
the updates.

A detailed performance analysis showed that, in our testbed, an average of 10
seconds are needed to propagate and apply updates (up to 1000 rows) to four slave
replicas. We also found out that the most time consuming phase in the log extraction,
transformation, propagation and application process was the monitoring of the master
database, which relies on the Oracle LogMiner utility. The SQL translation phase
demonstrated to be efficient, with a negligible impact on the overall system. The
propagation of the updates scales well with increasing the number of replicas thanks
to the multithreaded implementation of the file transfer procedure.

Then, using the COOL API, we tested CONStanza in a real use case, where a
conditions database was replicated and kept synchronised in three tiers architecture.
The replication from an Oracle database at Tier-0 (CERN) to another Oracle database
at Tier-1 (INFN-CNAF) was done using Oracle Streams, while CONStanza was used
to replicate the database at Tier-2 (INFN-Pisa), in a MySQL database. The overall
replication system successfully replicated the conditions database. This use case is of
particular interest to HEP experiments like ATLAS, where COOL is used for storing
and retrieving conditions data.

9.1 Future Work
In this thesis, we described the architecture and the implementation of a Replica Con-
sistency Service, focusing on a specific use case for heterogeneous database replica-
tion. Many interesting works could follow and enhance the CONStanza RCS; we
describe below some of the ones that could be of more interest to the Grid commu-
nity.

9.1.1 Application to Biomedical databases
File based databases are used in biomedical research to store data for remote, dis-
tributed analyses. We believe that an interesting work could be done to enhance

9.1. Future Work 169

CONStanza to support the replication of biomedical file based databases. In this
case, a database is a collection of files within a directory structure. In particular, the
database monitoring phase in CONStanza should be enhanced to provide an alterna-
tive implementation of the DBWatcher component, to able to monitor files in a given
directory tree. Database updates in this case are: creation of new files, modification
of existing ones, and deletion of files. These updates should be monitored by the
new DBWatcher and propagated to remote sites with minimal changes on the current
CONStanza architecture. This use case has been discussed in [42].

9.1.2 Multi-master protocols
Multi-master protocols have not been used in our service implementation. The main
reason of this was the lack of clear requirements from our application fields. Multi-
master protocols can be designed only with clear requirements on how to resolve
conflicts, and the scalability for increasing numbers of master replicas must be care-
fully analysed. In CONStanza, a multimaster protocol can be implemented enhanc-
ing the capabilities of the LRCS servers. In case of database synchronisation, both
a DBWatcher and DBUpdater should be deployed at each master database, and a
conflict resolution procedure should be implemented on the DBUpdater.

9.1.3 Full support of the COOL API
Currently the full support of the COOL API must be tested: the functional test in
Chapter 8 was performed using a COOL Single-Version Single-Channel (SVSC)
folder. Other COOL scenarios (see Section 4.2.3) must be tested.

9.1.4 An OGSA implementation of the RCS
In Section 5.3, we reviewed the Open Grid Service Architecture (OGSA). Grid ser-
vices compliant with the OGSA model are becoming widely used and are imple-
mented in the Globus Toolkit. As mentioned in Section 6.5, a re-engineering process
of the CONStanza RCS to make it OGSA compliant would be both an interesting ex-
ercise and a useful contribution to the Grid community. The services offered by the
RCS could be integrated with OGSA-DAI and OGSA-DQP to provide full support
for database access and management in Grid computing.

170

Chapter 10

Acknoweledgements

The acknowledgements chapter is the chapter I like best in this thesis, because it gives
me the opportunity to mention many people that helped and supported me during my
doctoral studies. First of all, I would like to thank my supervisors, and especially
Andrea, who, with his experience, wisdom and friendship, accompanied me through-
out my Ph.D. studies and contributed not only to model my way of doing research
but also my personality. I really enjoyed collaborating with him and I am very grate-
ful for all the time and effort he put in this work. A big thanks goes to Flavia, my
“hidden” tutor and every-day adviser. I am very grateful to her for giving me the op-
portunity to live this experience, from Tsukuba to Geneva. To close the CONStanza
circle, I would also like to thank Heinz, for his collaboration and his contribution to
the final review of the thesis. Thank you to all of them for the effort they put in the
CONStanza project, and for their friendship.

For the time spent at CERN as doctoral student, I would like to thank my CERN
supervisor Dirk, for making this experience at CERN the most interesting and enjoy-
ing of my Ph.D. career. With him, I would also like to thank all the other members
of the group, and especially Andrea and Romain for their collaboration within the
COOL project. Thanks to Eva for her help with Streams and LogMiner issues, and to
the DBAs Miguel, Jacek, Luca and David for their kind and professional availability.
At CERN I had the possibility to work with very pleasant and professional people,
and all of them contributed to make my time spent at CERN unique.

I would also like to thank the Department of Information Engineering at the Uni-
versity of Pisa, and the Italian National Institute for Nuclear Physics (INFN) in Pisa
and at CNAF, where this work has been done.

172

Thanks to Karolin, for her love. She helped me in the writing and the reviewing
of the thesis, and encouraged me during all this time in Geneva. I am indebted to her
for all the time and energy she spent to support this big effort.

And thank you to all my family for their support, and especially to my parents,
the main artificers of my university career; none of this would have happened without
their sacrifices.

Appendix A

Configuration files

A.1 GRCS
An example of profile script for a GRCS server is the following:

#!/bin/bash
#
description: GRCS server profile script

GRCS_HOST="oraclex.cr.cnaf.infn.it"
GRCS_PORT=8090
GRCS_DEBUG="1"
GRCS_GSI="ON"
GRCS_CONF="grcs.conf"

An example of configuration file for a GRCS is the following:

#This is an example of configuration file for a GRCS server

[GRCS]
here we put GRCS properties
#name = the name used to identify an GRCS
name = GRCS
#endpoint = host and port used by the server

174

endpoint = oraclex.cr.cnaf.infn.it:8090
#protocol = protocol used for update propagation (single-master)
protocol = ASYNCH_ONE_MASTER
#quorum = quorum used for update propagation
quorum = 1
#lids = list of logical dataset to subscribe
lids = (LDB1)

[LOGGING]
here we put information to drive log message generation
#filename = name where output messages are collected
filename = GRCSout.txt
#dirname = directory where output messages are stored
dirname = /tmp
#sizelimit = limit the size of output files in KB (0 = no limits)
sizelimit = 0
#filelevel = level of output messages on file
#(FATAL,ERROR,INFO,DEBUG)
filelevel = RCS_DEBUG
#consolelevel = level of output messages on console
#(FATAL,ERROR,INFO,DEBUG)
consolelevel = RCS_INFO

[RCC]
these are information related to the GRCS catalogue
host = localhost
bckphost = pcgridtest3.pi.infn.it
port = 3306
dbname = RCC
username = rcs
password = constanza

A.2 LRCS
An example of profile script for the LRCS server is the following:
#!/bin/bash

A.2. LRCS 175

#
description: LRCS server profile script

LRCS_HOST="oraclex.cr.cnaf.infn.it"
LRCS_PORT=8091
LRCS_DEBUG="1"
LRCS_GSI="ON"
LRCS_CONF="lrcs.master.conf"

An example of configuration file for a slave LRCS is the following:

[LRCS]
here we put LRCS properties
#name = the name used to identify the LRCS
name = LRCS2
#endpoint = host and port used by the LRCS server
endpoint = pcgrid3.pi.infn.it:8081
#grcsendpoint = host and port used by the GRCS server
grcsendpoint = pcgrid2.pi.infn.it:8080
#updatesdir = the default location for incoming updates when
#an LRCS acts as slave
updatesdir = /tmp/updates
#logsdir = the default location for log files extracted from
#the master replica when the LRCS acts as master
logsdir = /tmp/logs

[LOGGING]
here we put information to drive log message generation
#filename = name where output messages are collected
filename = LRCSout.txt
#dirname = directory where output messages are stored
dirname = /var/log/lrcs
#sizelimit = limit the size of output files in KB (0 = no limits)
sizelimit = 0
#filelevel = level of output messages on file
#(FATAL,ERROR,INFO,DEBUG)
filelevel = RCS_DEBUG

176

#consolelevel = level of output messages on console
#(FATAL,ERROR,INFO,DEBUG)
consolelevel = RCS_INFO

[LRCC]
these are information related to the LRCS database (LRCC)
host = localhost
port = 3306
dbname = LRCC
username = rcs
password = constanza

#then there are sections for database replicas.
#
[DB2]
#repname = database name
repname = DB2
#schema = schema name. Relevant only for Oracle DB
schema = none
#repuser = db replica user name
repuser = rcs
#reppassw = db replica password
reppassw = constanza
#connstring = ORACLE connection string
#(//host:port/service_name). Relevant only for Oracle DB
connstring = none
#vendor = ORACLE or MYSQL
vendor = MYSQL
#master = yes for master replicas, no otherwise
master = no
#LId = logical identifier of that replica
LId = LDB
#logfile = log file names, comma separated and between
#brackets. Relevant only #for Master DB
logfiles = none
#logsdir = location where the log files will be stored
#(none for default location indicated in the LRCS section)

A.2. LRCS 177

logsdir = none
#pooltime = interval between to successive log file check.
#Relevant only for Master DB
pooltime = none
#tables = list of tables to monitor, comma separated and
#between brackets. Relevant only for Master DB
tables = none

An example of configuration file for a master LRCS is the following:

#This is an example of configuration file
#for an LRCS acting as Master

[LRCS]
here we put LRCS properties
#name = the name used to identify the LRCS
name = LRCS1
#endpoint = host and port used by the LRCS server
endpoint = oraclex.cr.cnaf.infn.it:8091
#grcsendpoint = host and port used by the GRCS server
grcsendpoint = oraclex.cr.cnaf.infn.it:8090
#updatesdir = the default location for incoming updates when
#an LRCS acts as slave
updatesdir = /tmp/updates
#logsdir = the default location for log files extracted from
#the master replica when the LRCS acts as master
logsdir = /tmp/logs

[LOGGING]
here we put information to drive log message generation
#filename = name where output messages are collected
filename = LRCSout.txt
#dirname = directory where output messages are stored
dirname = /tmp
#sizelimit = limit the size of output files in KB (0 = no limits)
sizelimit = 0
#filelevel = level of output messages on file

178

#(FATAL,ERROR,INFO,DEBUG)
filelevel = RCS_DEBUG
#consolelevel = level of output messages on console
#(FATAL,ERROR,INFO,DEBUG)
consolelevel = RCS_INFO

[LRCC]
these are information related to the LRCS database (LRCC)
host = localhost
port = 3306
dbname = LRCC
username = rcs
password = constanza

#then there are sections for database replicas.
#
[COOLDB1]
#repname = database name
repname = COOLDB1
#schema = schema name
schema = GIANNI
#repuser = user name
repuser = GIANNI
#reppassw = password
reppassw = gianni
#connstring = ORACLE connection string (//host:port/service_name)
connstring = //oraclex.cnaf.infn.it:1521/pisatest.cr.cnaf.infn.it
#vendor = ORACLE or MYSQL
vendor = ORACLE
#master = yes for master replicas, no otherwise
master = yes
#LId = logical identifier of that replica
LId = LDB1
#logfile = log file names, comma separated and between brackets
logfiles = none
#logsdir = location where the log files will be stored (none for
#default location indicated in the LRCS section)

A.2. LRCS 179

logsdir = none
#pooltime = interval between to successive log file check
pooltime = 10
#tables = list of tables to monitor, comma separated and
#between brackets
tables = (NONE)

180

Appendix B

SQL Translator syntax

input ::= lines

lines ::= { line | lines line }

line ::= { insert ; | delete ; | update ; }

insert ::= INSERT single_table_insert

single_table_insert ::= insert_into_clause values_clause

insert_into_clause ::= INTO dml_table_expression_clause
[(column [, column]...)]

values_clause ::= VALUES ({ expr | DEFAULT }
[, { expr | DEFAULT }]...)

dml_table_expression_clause ::= schema . table

delete ::= DELETE [FROM] dml_table_expression_clause i
[where_clause]

where_clause ::= WHERE condition

condition ::= { simple_comparison_condition

182

| range_condition
| null_condition
| compound_condition

}

simple_comparison_condition ::= expr COMP expr

range_condition ::= expr [NOT] BETWEEN expr AND expr

null_condition ::= expr IS [NOT] NULL

compound_condition ::=
{ (condition)
| NOT condition
| { simple_comparison_condition { AND | OR }

simple_comparison_condition
[{ simple_comparison_condition { AND | OR }

simple_comparison_condition
}

]...
}

}

update ::= UPDATE dml_table_expression_clause update_set_clause
[where_clause]

update_set_clause :== SET column ASS { expr | DEFAULT}
[, column ASS { expr | DEFAULT}]...

expr ::= { simple_expression
| compound_expression
| function_expressio

}

simple_expression ::= { [dml_table_expression_clause .]
{ column | ROWID }

| TEXT

183

| NUMBER
| NULL

}

compound_expression ::= { (expr)
| { ADD | SUB } expr
| expr { MUL | DIV | ADD | SUB } expr

}

function_expression ::= single_row_function

single_row_function ::= { numeric_function
| datetime_function
| conversion_function
| miscellaneous_single_row_function

}

numeric_function ::= { ABS (NUMBER)
| EXP (NUMBER)
| LN (NUMBER)
| ROUND (NUMBER [, integer]
| SIGN (NUMBER)
| SQRT (NUMBER)

}

datetime_function ::= { CURRENT_DATE
| CURRENT_TIMESTAMP [(NUMBER)]
| SYSDATE
| SYSTIMESTAMP

}

conversion_function ::= { SCN_TO_TIMESTAMP (TEXT)
| TIMESTAMP_TO_SCN (TEXT)
| HEXTORAW (TEXT)

}

miscellaneous_single_row_function ::= { { EMPTY_BLOB | EMPTY_CLOB }

184

| UID
| USER

}

integer ::= NUMBER

schema ::= STC_NAME

table ::= STC_NAME

column ::= STC_NAME

Appendix C

LogMiner Utility Package

In this appendice we show the PL/SQL package used to start and test the LogMiner.

/*
Package that collects some LogMiner testing utilities
*/

set serveroutput on;

drop table CONSTABLE;

create table CONSTABLE (
name varchar2(20),
age number(2)

);

--Package Declaration
create or replace
package LogMinerUtils_pkg as

/*
Print info on redo groups, files, threads etc..
*/
procedure printRedoInfo;

/*

186

Start the LogMiner with start and end time plus continuous mine option.
*/
procedure startLogMinerCMine(t1 varchar2, t2 varchar2);

/*
Start the LogMiner without using the continuous mine option
and specifying all the online redo logs.
*/
procedure startLogMiner;

/*
Query the LogMiner view in order to collect updates done in [t1,t2)
issued by ’user’. Return number of statements found in stmtfound.
*/
procedure queryLogMiner(t1 varchar2, t2 varchar2, user varchar2,

stmtfound out number);

/*
Terminate the LogMiner
*/
procedure closeLogMiner;

/*
Insert a row into the test table CONSTABLE.
*/
procedure insertIntoTestTable;

/*
Insert a row and retrieved it with the LogMiner.
Use the continuous mine option.
stmt found returns the number of stmts found and elapsed time the
time needed to start and query the LogMiner.
Start the LogMiner with t1,t2
*/
procedure test1(elapsedTime out number, stmtfound out number,

user varchar2);

187

/* Same as test1 but starting the LogMiner without cmine, adding all
the redolog files
*/
procedure test2(elapsedTime out number, stmtfound out number,

user varchar2);

/*
Execute ’times’ times the test1 procedure and print the average
elapsed time to execute the query to the Logminer.
When the query does not secceed in finding the statement, it exits
the loop and print the iteration where the error was found.
Each loop run with a 3 sec pause.
This procedure is made in order to discover non deterministic errors.
*/
procedure test1n(user varchar2, times number);

/* Same as test1n but using test2
*/
procedure test2n(user varchar2, times number);

LogMinerUtils_pkg;

--Package Definition
create or replace
package body LogMinerUtils_pkg as

procedure printRedoInfo is
begin

--Print number of Redo Groups
for redogroups in (select count(distinct group#) numero

from v$log
)

loop
dbms_output.PUT_LINE(’Number of redo groups: ’

|| to_char(redogroups.numero));
end loop;

188

--Print size of Redo Groups
for sizes in (select distinct(bytes) numero

from v$log
)

loop
dbms_output.PUT_LINE(’Size in Bytes: ’ || to_char(sizes.numero));

end loop;

--Print number of Threads
for thread in (SELECT count(distinct(thread#)) numero

FROM v$log
)

loop
dbms_output.put_line(’Number of threads: ’ || thread.numero);

end loop;

--Print Log Files
for member in (select member name from v$logfile)
loop

dbms_output.put_line(’Log file: ’ || member.name);
end loop;

end printRedoInfo;

procedure startLogMinerCMine(t1 varchar2, t2 varchar2) is
begin

dbms_output.PUT_LINE(’Starting LogMiner: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

sys.dbms_logmnr.start_logmnr(options =>
sys.dbms_logmnr.dict_from_online_catalog
+ sys.dbms_logmnr.committed_data_only
+ sys.dbms_logmnr.no_rowid_in_stmt
+ sys.dbms_logmnr.continuous_mine
, starttime => to_date(t1,’DD-MON-YYYY HH24:MI:SS’)
, endtime => to_date(t2,’DD-MON-YYYY HH24:MI:SS’));

189

dbms_output.PUT_LINE(’LogMiner started: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

end startLogMinerCMine;

procedure startLogMiner is
begin

--add all the redo log files to the LogMiner
for logfile in (select member name

from v$logfile
) loop

begin
sys.dbms_logmnr.remove_logfile(logfile.name);

exception
when OTHERS then

dbms_output.put_line(’ORA-01290’);
end;
sys.dbms_logmnr.add_logfile(logfile.name);
dbms_output.put_line(’logfile: ’ || logfile.name || ’ added’);

end loop;

dbms_output.PUT_LINE(’Starting LogMiner: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

sys.dbms_logmnr.start_logmnr(options =>
sys.dbms_logmnr.dict_from_online_catalog
+ sys.dbms_logmnr.committed_data_only
+ sys.dbms_logmnr.no_rowid_in_stmt);

dbms_output.PUT_LINE(’LogMiner started: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

end startLogMiner;

procedure queryLogMiner(t1 varchar2, t2 varchar2, user varchar2,
stmtfound out number) is

outfile utl_file.file_type;
begin

190

dbms_output.PUT_LINE(’Querying LogMiner View: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

-- outfile := utl_file.fopen(’/tmp ’,’out.sql’,’W’,256);
stmtfound := 0;
for statement in (select SQL_REDO, TIMESTAMP, RS_ID, SSN

from V$LOGMNR_CONTENTS
where TIMESTAMP > t1
AND TIMESTAMP <= t2
AND SEG_OWNER = user
ORDER BY TIMESTAMP ASC

)
loop

dbms_output.put_line(statement.TIMESTAMP || ’:’
|| statement.RS_ID || ’:’
|| statement.SSN || ’: ’
|| statement.SQL_REDO);

stmtfound := stmtfound + 1;
-- utl_file.put_line(outfile,statement.SQL_REDO,true);

end loop;

-- utl_file.fclose(outfile);
dbms_output.PUT_LINE(’Query finished: ’ ||

to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

end queryLogMiner;

procedure closeLogMiner is
begin

dbms_output.PUT_LINE(’Closing LogMiner: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

sys.dbms_logmnr.end_logmnr();

dbms_output.PUT_LINE(’LogMiner closed: ’ ||
to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));

end closeLogMiner;

191

procedure insertIntoTestTable is
begin

insert into CONSTABLE values (’Gianni’, 32);
dbms_output.PUT_LINE(’Row inserted: ’ ||

to_char(sysdate, ’DD-MON-YYYY HH24:MI:SS’));
commit;

end insertIntoTestTable;

procedure test1(elapsedTime out number, stmtfound out number,
user varchar2) is

t1 timestamp;
t2 timestamp;
tStart timestamp;
tEnd timestamp;
secFromMinutes number;
seconds number;
result varchar2(6);
interval INTERVAL DAY(0) TO SECOND(3);

begin
t1 := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
sys.dbms_lock.sleep(3);
insertIntoTestTable;
sys.dbms_lock.sleep(3);
t2 := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
startLogMinerCMine(to_char(t1,’DD-MON-YYYY HH24:MI:SS’),

to_char(t2,’DD-MON-YYYY HH24:MI:SS’));
queryLogMiner(to_char(t1,’DD-MON-YYYY HH24:MI:SS’),

to_char(t2,’DD-MON-YYYY HH24:MI:SS’),
user, stmtfound);

tStart := t2;
tEnd := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
interval := (tEnd - tStart);
seconds := extract(second from interval);
secFromMinutes := 60 * extract(minute from interval);
elapsedTime := seconds + secFromMinutes;

192

if stmtfound != 1 then
result := ’ERROR’;

else
result := ’OK’;

end if;
dbms_output.PUT_LINE(result || ’, Elapsed time: ’

|| to_char(interval,’hh:mm:ss’) || ’ sec’);
closeLogMiner;

end test1;

procedure test2(elapsedTime out number, stmtfound out number,
user varchar2) is

t1 timestamp;
t2 timestamp;
tStart timestamp;
tEnd timestamp;
secFromMinutes number;
seconds number;
result varchar2(6);
interval INTERVAL DAY(0) TO SECOND(3);

begin
t1 := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
sys.dbms_lock.sleep(3);
insertIntoTestTable;
sys.dbms_lock.sleep(3);
t2 := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
startLogMiner();
queryLogMiner(to_char(t1,’DD-MON-YYYY HH24:MI:SS’),

to_char(t2,’DD-MON-YYYY HH24:MI:SS’),
user, stmtfound);

tStart := t2;
tEnd := to_timestamp(sysdate,’DD-MON-YYYY HH24:MI:SS’);
interval := (tEnd - tStart);
seconds := extract(second from interval);
secFromMinutes := 60 * extract(minute from interval);
elapsedTime := seconds + secFromMinutes;

193

if stmtfound != 1 then
result := ’ERROR’;

else
result := ’OK’;

end if;
dbms_output.PUT_LINE(result || ’, Elapsed time: ’

|| to_char(interval,’hh:mm:ss’) || ’ sec’);
closeLogMiner;

end test2;

procedure test1n(user varchar2, times number) is
avgtime number;
aggrtime number;
onetime number;
counter number(2);
stmtfound number;
result varchar2(6);

begin
counter := 0;
aggrtime := 0;
stmtfound := 1;
while counter < times and stmtfound = 1 loop

test1(onetime, stmtfound, user);
aggrtime := aggrtime + onetime;
counter := counter + 1;
result := ’OK’;
sys.dbms_lock.sleep(3);

end loop;
if stmtfound != 1 then

result := ’ERROR’;
end if;
avgtime := round(aggrtime / times, 2);
dbms_output.PUT_LINE(result || ’:’ || counter

|| ’, Average query time: ’ || to_char(avgtime));
end test1n;

procedure test2n(user varchar2, times number) is

194

avgtime number;
aggrtime number;
onetime number;
counter number(2);
stmtfound number;
result varchar2(6);

begin
counter := 0;
aggrtime := 0;
stmtfound := 1;
while counter < times and stmtfound = 1 loop

test2(onetime, stmtfound, user);
aggrtime := aggrtime + onetime;
counter := counter + 1;
result := ’OK’;
sys.dbms_lock.sleep(3);

end loop;
if stmtfound != 1 then

result := ’ERROR’;
end if;
avgtime := round(aggrtime / times, 2);
dbms_output.PUT_LINE(result || ’:’ || counter

|| ’, Average query time: ’ || to_char(avgtime));
end test2n;

--one time only procedure
begin

execute immediate
’ALTER SESSION SET nls_date_format = "DD-MON-YYYY HH24:MI:SS"’;

end LogMinerUtils_pkg;
/

Bibliography

[1] Cgsi repository.
http://castor.web.cern.ch/castor/cgi-bin/cvsweb/cvsweb.cgi/CGSI_GSOAP/.

[2] The constanza project web page.
http://pucciani.web.cern.ch/pucciani/constanza/.

[3] Cool doxygen documentation.
http://lcgapp.cern.ch/doxygen/.

[4] The cool project.
http://lcgapp.cern.ch/project/CondDB/.

[5] Coral, common relational abstraction layer.
http://pool.cern.ch/coral/.

[6] Csim.
http://www.csim.com/.

[7] The egee project, enabling grid for e-science.
http://www.eu-egee.org/.

[8] Egee user and application portal.
http://egeena4.lal.in2p3.fr/.

[9] Emulab - network emulation testbed.
http://www.emulab.net/.

[10] Enhydra octpus: Jdbc data transormations.
http://www.enhydra.org/tech/octopus/.

[11] European datagrid project.
http://eu-datagrid.web.cern.ch/eu-datagrid.

http://castor.web.cern.ch/castor/cgi-bin/cvsweb/cvsweb.cgi/CGSI_GSOAP/
http://pucciani.web.cern.ch/pucciani/constanza/
http://lcgapp.cern.ch/doxygen/
http://lcgapp.cern.ch/project/CondDB/
http://pool.cern.ch/coral/
http://www.csim.com/
http://www.eu-egee.org/
http://egeena4.lal.in2p3.fr/
http://www.emulab.net/
http://www.enhydra.org/tech/octopus/
http://eu-datagrid.web.cern.ch/eu-datagrid

196

[12] glite file transfer service.
http://www.gridpp.ac.uk/wiki/EGEE_File_Transfer_Service.

[13] Glite, lighweight middleware for grid computing.
http://glite.web.cern.ch/glite/.

[14] The globus alliance. http://www.globus.org.

[15] The globus toolkit.
http://www.globus.org/toolkit.

[16] The gram project.
http://dev.globus.org/wiki/GRAM.

[17] The grid security infrastructure.
http://www.globus.org/security/.

[18] Gt 4.0 drs: User guide.
http://www.globus.org/toolkit/docs/4.0/techpreview/datarep/.

[19] Gt 4.0 gridftp.
http://www.globus.org/toolkit/docs/4.0/data/gridftp/.

[20] Gt information services: Monitoring & discovery system (mds).
http://www.globus.org/toolkit/mds/.

[21] Ibm db2 replication.
http://www-306.ibm.com/software/data/db2/.

[22] Lcg-3d service setup, policy proposals, best practices.
https://twiki.cern.ch/twiki/bin/view/PSSGroup/ServiceDocs.

[23] The lex & yacc page.
http://dinosaur.compilertools.net/.

[24] The magic application.
http://wwwmagic.mppmu.mpg.de/introduction/.

[25] Models of networked analysis at regional centres for lhc experiments.
http://monarc.web.cern.ch/MONARC/.

[26] Myproxy, credential management service.
http://grid.ncsa.uiuc.edu/myproxy/.

http://www.gridpp.ac.uk/wiki/EGEE_File_Transfer_Service
http://glite.web.cern.ch/glite/
http://www.globus.org/toolkit
http://dev.globus.org/wiki/GRAM
http://www.globus.org/security/
http://www.globus.org/toolkit/docs/4.0/techpreview/datarep/
http://www.globus.org/toolkit/docs/4.0/data/gridftp/
http://www.globus.org/toolkit/mds/
http://www-306.ibm.com/software/data/db2/
https://twiki.cern.ch/twiki/bin/view/PSSGroup/ServiceDocs
http://dinosaur.compilertools.net/
http://wwwmagic.mppmu.mpg.de/introduction/
http://monarc.web.cern.ch/MONARC/
http://grid.ncsa.uiuc.edu/myproxy/

Bibliography 197

[27] Nordugrid, grid solutions for wide area computing and data handiling.
http://www.nordugrid.org/.

[28] Octopus for atlas.
http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Octopus/.

[29] Ogsa-dai.
http://www.ogsadai.org.uk/index.php.

[30] Open grid forum.
http://www.ggf.org/.

[31] Open science grid.
http://www.opensciencegrid.org/.

[32] Openldap.
http://www.openldap.org/.

[33] Oracle real application cluster.
www.oracle.com/technology/products/database/clustering/index.html.

[34] Oracle streams - feature overview.
http://download.oracle.com/docs/.

[35] Overview of materialized views.
http://download.oracle.com/docs/.

[36] The planck@egee project web site.
wwwas.oat.ts.astro.it/planck-egee.

[37] Relational grid monitoring architecture.
http://www.r-gma.org/index.html.

[38] Replication (sql server 2000): Snapshot replication.
http://msdn2.microsoft.com/en-us/library/aa256286.aspx.

[39] Rfc-2459, internet x.509 public key infrastructure certificate and crl profile.
http://www.ietf.org/rfc/rfc2459.txt.

[40] Using logminer to analyze redo log files.
http://download.oracle.com/docs/.

http://www.nordugrid.org/
http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Octopus/
http://www.ogsadai.org.uk/index.php
http://www.ggf.org/
http://www.opensciencegrid.org/
http://www.openldap.org/
www.oracle.com/technology/products/database/clustering/index.html
http://download.oracle.com/docs/
http://download.oracle.com/docs/
wwwas.oat.ts.astro.it/planck-egee
http://www.r-gma.org/index.html
http://msdn2.microsoft.com/en-us/library/aa256286.aspx
http://www.ietf.org/rfc/rfc2459.txt
http://download.oracle.com/docs/

198

[41] Worldwide lhc computing grid.
http://lcg.web.cern.ch/LCG/.

[42] Workshop on grid data replication, consistency and requirements.
http://www.pi.infn.it/constanza/workshop/, 26 May 2006.

[43] Domenici A., Donno F., Pucciani G., and Stockinger H. Relaxed data con-
sistency with constanza. In Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid06), Singapore, 2006.

[44] Domenici A., Donno F., Pucciani G., Stockinger H., and Stockinger K. Replica
consistency in a data grid. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, Volume 534(Issues 1-22), 2004.

[45] Bakker B. Log for c++.
http://log4cpp.sourceforge.net/.

[46] Nielsen H.F. Barton J.J., Thatte S. Soap messages with attachments, w3c note
11 december 2000.
http://www.w3.org/TR/SOAP-attachments.

[47] Goodman N. Bernstein P.A. The failure and recovery problem for replicated
databases. In In Proc of the 2nd Symp. on Principles of Distributed Computing
(PODC),, 1983.

[48] Sciolla C. Implementazione e valutazione di un sistema di trasferimento file
basato su soap in ambiente grid. Master’s thesis, Universitá di Pisa, Facoltá di
Ingegneria, 2007.

[49] Dantressangle P. Chen Y., Berry D. Transaction-based grid database replication.
In In Proc. of the UK e-Science All Hands Meeting 2007, 2007.

[50] The CMS Collaboration. Cms computing, software and analysis challenge in
2006 (csa06) summary, 7 march 2007.
cms.cern.ch/iCMS/.

[51] Skeen D. Nonblocking commit protocols. In In Proc. Of ACM SIGMOD Int.
Conf. on Management of Data, 1981.

[52] Codd E.F. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377 – 387, 1970.

http://lcg.web.cern.ch/LCG/
http://www.pi.infn.it/constanza/workshop/
http://log4cpp.sourceforge.net/
http://www.w3.org/TR/SOAP-attachments
cms.cern.ch/iCMS/

Bibliography 199

[53] Bell W. et al. Optorsim - a grid simulator for studying dynamic data replication
strategies. Int. Journal of High Performance Computing Applications, 17(5),
2003.

[54] Burke S. et al. Glite 3 user guide.
https://edms.cern.ch/file/722398/1.1/gLite-3-UserGuide.pdf,
2007.

[55] Cederqvist P. et al. Version management with cvs.
http://ximbiot.com/cvs/manual/.

[56] Duellmann D. et al. Models for replica synchronisation and consistency in a
data grid. In In Proc. of the 10th IEEE Symposium on High Performance and
Distributed Computing (HPDC), 2001.

[57] Duellmann D. et al. Lcg 3d project status and production plans. In In Proc. of
International Conference on Computing in High Energy and Nuclear Physics,
TIFR, Mumbai, India, 2006.

[58] Gervasi O. et al. A grid molecular simulator for e-science, book chapter, lncs
volume 3470. Lecture Notes In Computer Science, 3470:16 – 22, 2005.

[59] Gray J. et al. The dangers of replication and a solution. In In Proc of the 1996
ACM SIGMOD International Conference on Management of Data, pages 173 –
182, 1996.

[60] Holliday J. et al. Epidemic algorithms for replicated databases. IEEE Transac-
tions on Knowledge and Data Engineering, 15(5):1218 – 1238, 2003.

[61] Kosyakov S. et al. Frontier: High performance database access using standard
web components in a scalable multi-tier architecture. In In Proc. of Interna-
tional Conference on Computing in High Energy and Nuclear Physics, (CHEP
’04), Interlaken, Switzerland, 27 Sep - 1 Oct 2004, 2004.

[62] Nedim Alpdemir M. et al. Ogsa-dqp: A service-based distributed query proces-
sor for the grid. In In Proc. of UK e-Science All Hands Meeting Nottingham.
EPSRC, 2003.

[63] Terry D.B. et al. Session guarantees for weakly consistent replicated data. In In
Proc of the Third International Conference on Parallel and Distributed Infor-
mation Systems (PDIS 94), Austin, Texas, September 28-30, pages 140 – 149.
IEEE Computer Society, 1994.

https://edms.cern.ch/file/722398/1.1/gLite-3-UserGuide.pdf
http://ximbiot.com/cvs/manual/

200

[64] Mattern F. Virtual time and global states of distributed systems. In Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pages
120 – 131, 1989.

[65] Pacini F. Job description language how to.
http://www.infn.it/workload-grid/docs/.

[66] Casanova H. Distributed computing research issues in grid computing. ACM
SIGAct News, 33(3):50 – 70, 2002.

[67] Stockinger H. Defining the grid: A snapshot on the current view. Journal of
Supercomputing, 42(1):3 – 17, 2007.

[68] Yu H. and Vahdat A. Design and evaluation of a conit-based continuous consis-
tency model for replicated services. ACM Transactions on Computer Systems
(TOCS), 20(3):239 – 282, 2002.

[69] Foster I. and Kesselman C. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufman, 1998.

[70] Foster I., Kesselman C., Nick J., and Tuecke S. The physiology of the grid: An
open grid services architecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum, 2002.

[71] Papadopulos I. Pool: the lcg persistency framework. IEEE Nuclear Science
Symposium, Portland, Oregon, 2003.

[72] Gray J. and Reuter A. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1st edition, 1993.

[73] Haas L. and Lin E. Ibm federated database technology.
http://www.ibm.com/developerworks/db2/.

[74] Ciriello M. Integrazione della grid security infrastructure in un servizio di con-
sistenza. Master’s thesis, Universitá di Pisa, Facoltá di Ingegneria, 2006.

[75] Ozsu M.T. and Valduriez P. Principles of distributed database systems.
Prentice-Hall, Inc., 1991.

[76] Cottingham N.W. and Greenwood A.D. An Introduction to the Standard Model
of Particle Physics. Cambridge University Press, 1999.

http://www.infn.it/workload-grid/docs/
http://www.ibm.com/developerworks/db2/

Bibliography 201

[77] Alsberg P. and Day J. A principle for resilient sharing of distributed resrources.
In In Proc. Of the 2nd Int. Conf. on Software Engg., San Francisco, CA., pp.
562 - 570, 1976.

[78] Bernstein P.A. and Goodman N. An algorithm for concurrency control and
recovery in replicated distributed databases. ACM Transactions on Database
Systems, 9:596 – 615, 1984.

[79] Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency Control and Re-
covery in Database Systems. Addison Wesley, 1987.

[80] Brun R. and Rademakers F. Root: An object oriented analysis framework. In
In Proc. of the 5th International Workshop On New Computing Techniques In
Physics Research, EPFL Lausanne (Switzerland), 1996.

[81] Jih-Sheng Chang R-Shiung Chang. Adaptable replica consistency service for
data grids. In In Proc. of the 3rd International Conference on Information Tech-
nology: New Generations (ITNG’06), 2006.

[82] Jain R.K. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[83] Susarla S. and Carter J. Middleware support for locality-aware wide area repli-
cation. Technical Report UUCS-04-017, School of Computing, University of
Utah.

[84] Susarla S. and Carter J. Flexible consistency for wide-area peer replication. In
In Proc. of the 25th Annual International Conference on Distributed Computing
Systems (ICDCS), 2005.

[85] Goel S. Taniar D. Concurrency control issues in grid databases. Future Gener-
ation Computer Systems, 23(1), 2007.

[86] Gallivan K. Van Engelen R.A. The gsoap toolkit for web services and peer-to-
peer computing networks. In In Proc. of the 2nd IEEE International Symposium
on Cluster Computing and the Grid (CCGrid2002), pages 128 – 135, 2002.

[87] ATLAS working group. Atlas computing, technical design report.
http://doc.cern.ch/archive/electronic/cern/, 2005.

http://doc.cern.ch/archive/electronic/cern/

202

[88] Breitbart Y. and Korth H.F. Replication and consistency: being lazy helps some-
times. In In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 173 – 184, 1997.

[89] Saito Y. and Shapiro M. Optimistic replication. ACM Computing Surveys,
37(1):42 – 81, 2005.

[90] Zhiwei Xu Yuzhong Sun. Grid replication coherence protocol. In In Proc. of
18th International Parallel and Distributed Processing Symposium (IPDPS’04)
- Workshop 13, 2004.

	Introduction
	Structure and contents overview

	I Foundations
	Consistency in centralised and distributed databases
	Concepts and definitions
	Recoverability
	Serializability
	Consistency preservation

	Techniques used in centralised databases
	Locking schedulers
	Basic 2PL
	Variations of 2PL
	Tree locking (TL)

	Non-locking schedulers
	Timestamp ordering (TO)
	Serialisation graph testing (SGT)
	Certifiers
	Integrated schedulers
	Thomas' write rule (TWR)

	Multiversion concurrency control (MV)

	Distributed Databases, concepts and consistency mechanisms
	Concurrency Control in DDBMS
	Primary site 2PL
	Distributed 2PL (D2PL)

	Reliability in DDBMS
	Two-Phase Commit Protocol
	Three-Phase Commit Protocol

	Lazy approaches in replicated databases

	Replication and consistency in wide area data stores
	Data Replication
	Snapshot or Static Replication

	Replica synchronisation techniques
	Optimistic replication
	Single-master vs multi-master
	Content-transfer vs log-based
	Push-based vs Pull-based
	Consistency guarantees
	Conflict management in multi-master systems

	SWARM and its composable consistency model
	Composable Consistency options
	Replication in SWARM
	Implementation of composable consistency

	TACT
	Oracle Streams
	Bi-directional synchronisation
	Conflict resolution in Oracle Streams

	Requirements from Particle Physics
	Particle Physics at CERN: the LHC experiments
	The ATLAS experiment
	The ATLAS Computing Model
	Conditions Data
	The COOL API
	Folderset arrangement
	Basic COOL capabilities

	Data Storage and Distribution
	The LCG-3D project
	Oracle Streams for Tier-0 to Tier-1 replication
	Using FroNTier/Squid for distributed caching
	Consistency issues in FroNTier/Squid

	Applications managed by the LCG-3D replicated environment

	Grid Computing
	Grids as a model for collaborative computations
	The EGEE Project
	Applications

	What is a middleware and what is it made of
	The gLite middleware
	Security
	Information Service
	Workload Management
	Data Management

	Data Management in the Globus Toolkit
	Data Management Services
	File Transfers
	Replica Location
	Data Replication

	Service Oriented Architectures and the Grid
	Integration of databases into the Grid with OGSA-DAI
	OGSA-DAI Distributed Query Processing

	Replica consistency in Grid computing
	Issues in designing a Replica Consistency Service
	Scalability
	Security
	Replica Location
	Efficient file transfer
	SE heterogeneity
	Disconnected nodes
	Metadata Consistency

	Previous and current efforts in Grid replica consistency

	II System Details
	CONStanza, the Replica Consistency Service for Data Grids
	Domain analysis
	Requirements
	Functional Requirements
	Non-functional Requirements
	Use Case Model
	Actors
	Use cases description
	Automatic DB update with single-master asynchronous log-based push mode protocol
	Update file with single-master asynchronous file replacement push mode protocol

	Analysis
	Analysis classes
	Use case realisation
	Automatic database update with single master asynchronous log-based push mode protocol
	File synchronisation with asynchronous single master push based protocol

	Design and Implementation
	Nodes and network configuration
	Subsystems decomposition
	Subsystems in details
	GRCScore
	IGRCS-Admin
	IGRCS-User
	IGRCS-Internal
	DefOpsContainer
	GRCScore
	UpdateOperation

	Communication subsystems
	Security subsystems
	Configuration subsystems
	LRCScore
	DBUpdater
	Database Replica Update
	Oracle Log Mining
	DBWatcher
	Monitoring of the Oracle Master Database
	SQL Translator

	CONStanza in action: Oracle to MySQL synchronisation

	CONStanza, OGSA and OGSA-DAI

	Performance Analysis
	Testbed description
	Response variables
	Factors and parameters
	Experimental design
	Experimental results and analysis
	Response time for automatic database synchronisation: yAutUpdT
	Computation of effects
	Allocation of variation

	Time needed to create an update file: yLogGenT
	Time needed to translate an update file: yTranslT
	Time needed to notify the GRCS: yGRCSNotT
	Time needed to retrieve an update file: yFilecpT
	Time needed to apply an update file: yDBupdT
	Sums of partial times: ysumsT

	Conclusions of Performance Analysis

	CONStanza and Oracle Streams for Conditions Database Replication
	Testbed setup
	Streams setup
	CONStanza setup

	Testing COOL insertions and retrievals

	Conclusions and Future Work
	Future Work
	Application to Biomedical databases
	Multi-master protocols
	Full support of the COOL API
	An OGSA implementation of the RCS

	Acknoweledgements
	Appendix Configuration files
	GRCS
	LRCS

	Appendix SQL Translator syntax
	Appendix LogMiner Utility Package

