

Università degli Studi di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Scienze e Tecnologie Biomolecolari

Tesi di Laurea

Anno Accademico 2006-2007

Meccanismi molecolari coinvolti nell'epilettogenesi: espressione dell'importina β1 nell'ippocampo di *Mus musculus* e *Rattus* norvegicus dopo trattamento con acido kainico.

Candidato Relatore

Manuela Scali Dott. Yuri Bozzi

A.A. 2006/2007

Alla mia famiglia e a me stessa

INDICE

RIASSUNTO	6		
ABSTRACT			
1 Introduzione			
1.1 Epilessia			
1.1.1 Epilessia dei lobi temporali (TLE)	14		
1.2 Meccanismi cellulari e molecolari dell'epilettogenesi nell'uomo	16		
1.2.1 Principali alterazioni morfologiche e funzionali durante			
l'epilettogenesi nell'uomo	16		
1.2.2 Alterazioni anatomiche: danno neuronale, "sprouting" e gliosi.	17		
1.2.3 Alterazioni elettrofisiologiche	20		
1.3 Principali modelli animali di TLE			
1.3.1 Modello di epilettogenesi "post-status": acido kainico	21		
1.3.1.a Ratto	22		
1.3.1.b Topo	23		
1.3.2 Principali alterazioni morfologiche e funzionali durante			
l'epilettogenesi nei modelli animali	24		
1.3.2.a Danno neuronale e sprouting	24		
1.3.2.b Ruolo della glia	26		
1.3.2.c Alterazioni dell'espressione genica	27		
1.4 Le importine	29		
1.4.1 Struttura, funzione e meccanismo d'azione delle importine	29		
1.4.2 Importine nel sistema nervoso	31		
1.5 Scopo della Tesi	32		

2 Materiali e metodi		
2.1 Soluzioni	33	
2.2 Animali da esperimento	34	
2.3 Induzione delle crisi epilettiche negli animali	34	
2.4 Analisi comportamentale delle crisi	34	
2.5 Trattamento con MPEP	35	
2.6 Dissezione dei cervelli dagli animali	35	
2.7 Dissezione di specifiche aree del cervello dagli animali	36	
2.8 Estrazione di RNA	36	
2.9 Reazione di DNAsi	37	
2.10 Reazione di RT-PCR	37	
2.11 Analisi densitometrica delle reazioni di RT-PCR	40	
2.12 Immunoistochimica	40	
2.12.1 Fissazione e taglio al microtomo congelatore	40	
2.12.2 Anticorpi		
2.12.3 Protocollo di immunoistochimica		
2.12.3.a Marcatura singola		
2.12.3.b Marcatura doppia	42	
2.12.4 Acquisizioni al microscopio		
2.12.4.a Marcatura fluorescente	42	
2.12.4.b Marcatura con DAB	43	
2.12.5 Analisi della marcatura	43	
2.13 Analisi statistica	44	
3 Risultati	45	
3.1 Espressione dell'importina β1 durante lo stato epilettico	45	
3.1.1 mRNA	45	

	3.1.2	2. Proteina	46
	3.2	Espressione dell'importina β1 in animali epilettici cronici	48
	3.2.1	mRNA	48
	3.2.2	2. Proteina	49
	3.3	Espressione della importina β1 in topi epilettici trattati con MPEP	52
4	Discussi	one	. 55
	4.1	Breve riassunto dei risultati	55
	4.2	L'espressione della importina β1 è regolata rapidamente dall'attività epilettica	55
	4.3	Espressione dell'importina β1 nella glia durante l'epilettogenesi	58
5	Referenz	ze	. 61
Ri	ngraziame	enti	. 67