
UNIVERSITÀ DI PISA

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Dipartimento di Ingegneria dell’informazione

INCREASING RESILIENCE OF A
PUBLISH-SUBSCRIBE SYSTEM

Relatori Candidato

Prof. Gianluca Dini Angelica Lo Duca

Ing. Alessio Vecchio

Anno Accademico 2006-2007

To my wonderful family.

Abstract

Existing publish-subscribe systems focus on functionality and routing and

does not provide any guarantee in terms of security and fault tolerance. This

work extends a particular publish-subscribe system, REDS (REcongurable

Dispatching System), adding specific mechanisms to provide resilience. Se-

curity is provided through the concepts of secure path and access control.

Fault tolerance is guaranteed increasing the number of links connecting two

neighbors. Using these concepts, we illustrate the new architecture of REDS,

called SEC-REDS, in which we have added new components, like the Security

Manager and the Backup Connections Manager.

i

Acknowledgments

I would like to thank my advisor Prof. Gianluca Dini for trusting, encour-

aging, and supporting me all throughout my thesis. With advices and lively

discussions, he has contributed a lot to the development of this work.

I am deeply grateful to Ing. Alessio Vecchio for his support and guidance

especially in the past year.

I also would to thank Prof. Gianpaolo Cugola of Politecnico of Milano and

Prof. Gianpietro Picco of University of Trento, because they have allowed us

to study and extend REDS.

Last, but not the least, I would like to express my gratitude to Andrea Vigna,

who has supported and encouraged me during difficulties.

Grazie di cuore a tutti!

Pisa, december 2007

ii

Contents

1 Publish-Subscribe systems 1

1.1 Introduction . 1

1.2 Pub-sub systems design space 4

1.2.1 Content-based routing 5

1.3 State of the art . 7

1.3.1 SIENA . 7

1.3.2 REDS . 7

1.4 Security issues and requirements for Pub-sub systems 9

1.4.1 Generic issues . 10

1.4.2 Confidentiality . 12

1.4.3 Availability . 13

1.4.4 Trust . 13

1.5 Fault tolerance in publish-subscribe systems 15

1.5.1 Replication of links in a tree ENS 17

1.5.2 A double link between brokers 18

2 Infrastructure security 20

2.1 Introduction . 20

iii

CONTENTS iv

2.2 Secure Path . 22

2.3 Group . 26

2.4 Certificate request . 29

2.4.1 Managing untrusted connections 31

2.5 Access Control . 32

2.5.1 Message content . 38

2.6 REDS extensions . 41

2.6.1 The Security Manager 42

2.6.2 Trust . 45

2.6.3 Connection Policy . 45

2.6.4 Access Control Strategy 46

2.7 Security issues provided by SEC-REDS 47

3 Network redundancy 50

3.1 Introduction . 50

3.2 SEC-REDS extensions . 53

3.2.1 The Active Backup Connections 53

3.2.2 The On Demand Backup Connections 58

4 SEC-REDS implementation 61

4.1 Introduction . 61

4.2 The SecurityManager . 65

4.3 The Backup Connections Manager 73

A A brief description of XACML 74

A.1 The architecture . 74

CONTENTS v

A.2 A simple example . 78

B A simple case of study 83

C Setting up a secure and robust broker 87

Chapter 1

Publish-Subscribe systems

Ma sendo l’intento mio scrivere cosa utile a chi la

intende, mi è parso più conveniente andare drieto

alla verità effettuale della cosa che alla immagina-

zione di essa.

Niccolo’ Machiavelli (1469 - 1527)

Italian philosopher

1.1 Introduction

Publish-subscribe ([1], [2], [3], [4]) (here after called pub-sub) is a commu-

nication paradigm that supports dynamic, many to many communications

in a distributed environment. It provides an asynchronous mechanism to

exchange messages between publishers (senders) and subscribers (receivers).

Subscribers express their interest in one or many classes of messages and

they receive only that belong to these classes, whitout knowing any thing

1

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 2

about the senders originated them. This decoupling between publishers and

subscribers allows a great scalability and a more dynamic network topology.

Publishing a message is said event , while delivering it event notification.

This automatic delivery of messages is achieved through a third entity, called

Event Notication Service or Dispatching Network , which receives events pro-

ducted by the publishers and sends them to subscribers. The Event Notifica-

tion Service (ENS, for short) represents the middleware and has to provide

all the functions publishers and subscribers can use to subscribe, publish

or remove their messages. For instance, instead of requiring publishers to

identify destination addresses for their messages (potentially requiring mul-

tiple messages to multiple destinations), an ENS network can handle message

routing in a way that avoids unnecessary message replications.

This event-based mechanism allows a decoupling between publishers and

subscribers in the sense of:

• time decoupling: it is not necessary that both publishers and sub-

scribers are active at the same time;

• space decoupling: publishers do not know neither subscribers iden-

tity nor their number, and vice versa.

• synchronization decoupling: publishers can produce events without

waiting that someone receives them. Events are stored by the Event

Notification Service, which notifies them to subscribers, while they are

doing other operations.

Figure 1.1 shows a simple pub-sub system where subscribers S1, S2 and

S3 send subscriptions f1, f2 and f3 respectively to some hosts in the ENS

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 3

PUBLISH
SUBSCRIBE
NETWORK

Subscriber S1

Subscriber S2

Subscriber S2

Publisher P1

Publisher P2

d

d

d

f1

f2

f3

Figure 1.1: A publish-subscribe system

network. Publisher P1 sends a datagram d to some entry point of the net-

work. Message d matches f1 and f2 but not f3 thus ENS sends d to S1 and

S2. Note that the publisher only sends d into the network once and need

know anything about the subscribers or subscription functions.

The earliest publish-subscribe systems used subject-based subscription (

[5]). In such systems, every message is labeled by the publisher as belonging

to one of a fixed set of subjects (also known as groups, channels, or topics).

Subscribers subscribe to all the messages within a particular subject or set

of subjects. A significant restriction with subject-based publish-subscribe is

that the selectivity of subscriptions is limited to the predefined subjects. An

emerging alternative to subject-based systems is content-based subscription

systems ([6], [7], [8]). These systems support an event schema defining

the type of information contained in each event (message). With content-

based subscription, subscribers have the added flexibility of choosing filtering

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 4

criteria along multiple dimensions, without requiring definition of subjects.

1.2 Pub-sub systems design space

Existing publish-subscribe middleware differs along several dimensions (

[9]):

• the format of messages: Messages can be untyped sequences of

values like tuples, or untyped, record-like, messages or sequences of

fields, each with a name and a value or, finally, typed objects;

• the expressivity of the subscription language (filters): The ex-

pressivity of the subscription language allows one to distinguish be-

tween Subject-based, in which the set of subjects is determined a priori

(e.g. give me all the temperature events), and Content-based, in which

subscriptions contain expressions (message filters) that allow clients to

filter messages based on their content (e.g.: give me only the tempera-

ture events greater than ten grades);

• the architecture of the dispatcher: it can be centralized or dis-

tributed. In the first case, a single component is in charge of collecting

subscriptions and forward messages to subscribers, while in the latter

one, a set of message brokers organized in an overlay network cooperate

to collect subscriptions and route messages. The topology of the over-

lay network and the routing strategy adopted may vary, but typically,

a tree overlay and subscription forwarding are used;

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 5

• the routing strategy (in presence of a distributed dispatcher):

it can be based on message forwarding or subscription forwarding on

a tree. In the first case, every broker stores only subscriptions coming

from directly connected clients, messages are forwarded from broker to

broker and delivered to clients only if they are subscribed. In the second

case, every broker forwards subscriptions to the others, subscriptions

are never sent twice over the same link and messages follow the routes

laid by subscriptions;

• the forwarding strategy: when a subscriber subscribes to a partic-

ular message (called filter), the broker adds it into a table, the sub-

scription table. When that broker receives a message, it compares it

with all the filters contained in the subscription table to determine to

which subscribers the message must be delivered. The efficiency of

this process may vary, depending on the complexity of the subscription

language, but also on the forwarding algorithm chosen, which greatly

influences the overall performance of the system.

1.2.1 Content-based routing

Content-based routing (CBR, [10], [11]) differs from classical routing in

that messages are addressed based on their content instead of their desti-

nation. In conventional systems, the sender explicitly species the intended

message recipients using a unicast or multicast address. Instead, in CBR the

sender simply injects the message in the network, which determines how to

route it according to the nodes interests. They identify the relevant classes of

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 6

messages based on their content, e.g., using key-value pairs or regular expres-

sions. Therefore, in CBR it is the receiver that determines message delivery,

not the sender.

Although it enables multi-point communication, CBR is not simply multi-

cast. In network-level (e.g., IP) or application-level (e.g., topic-based publish-

subscribe) multicast, the address of the multicast groups (or topics) used by

the application must be defined a priori and made globally known or avail-

able. Moreover, a client joined to a given group receives all the messages

addressed to that group, and only those. If the messages are to be received

from multiple groups, the client must join all of them. Indeed, messages are

conceptually partitioned in classes, and the binding between a message and

its class is established by the sender. In contrast, in CBR message consumers

define their own message classes; these select only the desired messages, need

not be known to other clients, and can be arbitrarily overlapping.

CBR fosters a form of implicit communication that breaks the coupling

between senders and receivers. Senders no longer need to determine the

address of communication parties. Similarly, receivers do not know who is

the sender of a message, unless this information is somehow encoded in the

message itself.

The sharp decoupling induced by this form of communication enables

one to easily add, remove, or change brokers or clients at run-time with little

impact on the overall architecture.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 7

1.3 State of the art

1.3.1 SIENA

SIENA (Scalable Internet Event Notification Architectures [12], [13], [14],

[15], [16]) is a research project which realizes a generic scalable pub-sub event

notification service. It’s based on the content based networking.

Given that the primary purpose of an event notification service is to

support notification selection and delivery, the challenge SIENA deals with

is maximizing expressiveness in the selection mechanism without sacrificing

scalability in the delivery mechanism. Expressiveness refers to the ability

of the Event Notification Service to provide a powerful data model with

which to capture information about events, to express filters and patterns

on notifications of interest, and to use that data model as the basis for

optimizing notification delivery, while scalability is the ability of the ENS

to accommodate any growth in the future, be it expected or not.

1.3.2 REDS

REDS (REconfigurable Dispatching System [17]) is a publish-subscribe

middleware designed to tolerate dynamic reconfigurations of the dispatching

infrastructure. Its highly modular design decouples the management of re-

configuration from the other issues, and in general empowers developers with

a high degree of flexibility. In fact REDS provides a modular architecture

whose components can be easily changed to adapt to different deployment

scenarios.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 8

It is organized as:

1. a collection of peers, called clients , which publish and subscribe mes-

sages,

2. the dispatcher , which is responsible for collecting subscriptions and

forwarding messages from publishers to subscribers. The dispatcher

is realized as a distributed set of brokers interconnected in a overlay

network, cooperatively routing the messages and subscriptions issued

by the clients connected to them.

REDS is a framework (in the object-oriented sense) of Java interfaces and

classes, which define:

1. a client API , enabling access to the publish-subscribe services;

2. A broker API , enabling access to the components inside the broker.

To support dynamic reconfiguration of the dispatching network, REDS

brokers are structured in two layers: Overlay and Routing , which are inde-

pendent.

The overlay layer is in charge of managing the topology of the overlay

dispatching network. It offers services to build the overlay network and

rearrange it based on input from upper layers.

The routing layer implements the main routing process by registering

with the overlay component to be notified when subscriptions, messages and

replies arrive from neighbors.

Hereafter REDS architecture is considered and extended. Why do we

have preferred REDS to other pub-sub systems?

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 9

• Many scientific publications exist about REDS, that is REDS is object

of interest for many researchers.

• The software is publicly available.

• Its developers are Italian and one of them has been a project partner

of our Department.

1.4 Security issues and requirements for Pub-

sub systems

In a wide-area pub-sub network, the pub-sub service must handle informa-

tion dissemination across distinct authoritative domains, heterogeneous plat-

forms and a large, dynamic population of publishers and subscribers. Such

an environment raises serious security and trust concerns. This includes ac-

cess control to the pub-sub infrastructure (and the data it transports), as

well as the need to establish mutual trust between producers and consumers

of data.

The security requirements [18] [19] [20] for a pub-sub system can be di-

vided into the requirements for a particular application involving publishers

and subscribers, and the requirements for the pub-sub infra structure:

• The application, comprising the publishers and subscribers. Publish-

ers and subscribers may not trust each other, and may not trust the

pub-sub network.

• The infrastructure, consisting of the pub-sub network that provides

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 10

services to the application. The infrastructure may not trust publishers

and subscribers. Components of the infrastructure may not necessarily

trust each other.

For example, providing a mechanism that defines who has what access

to what information is mostly an application-level concern. It requires a

definition of identity, authorization and access control within the pub-sub

infrastructure. In the meantime, controlling who is able to change the sub-

scription database maintained by the pub-sub service and restricting channel

utilization are infrastructure-level protection issues.

1.4.1 Generic issues

The most important security issues are:

1. Authentication: it establishes the identity of the originator of a mes-

sage. End-to-end authentication can be implemented outside of the

pub-sub domain. If a public key infrastructure exists independent of

the pub-sub network, end-to-end authentication can be accomplished

by having publishers sign messages using their private keys. The sub-

scribers can then verify a publishers identity by verifying the digital

signatures attached to the message. The signing and verification oper-

ations occur outside of the pub-sub domain, and they can be adminis-

tered independently.

2. Information integrity: it establishes that a message is not modified

by an unauthorized node (a client or a broker) during its delivery. The

standard means to provide information integrity is by using digital

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 11

signatures. A digital signature, when signed on the message digest

with the senders private key, provides that the message content has

not been changed since it is signed, and the message indeed originated

from the sender. The provision of digital signatures can be largely

independent of the pub-sub infrastructure.

3. Subscription integrity: it establishes that a subscription is not mod-

ified by a broker, that is, if a client C subscribes to a message A, the

broker cannot change this subscription, for example specifying that C

subscribes to a message B. This is a traditional access-control issue that

can be solved with traditional means providing proper authentication

and rights management.

4. Service integrity: it guarantees that messages are delivered correctly

to right clients. A malicious broker could insert bogus subscriptions

and act as a bogus subscriber to neighboring brokers. Moreover, it can

ignore the routing algorithm entirely and route messages to arbitrary

destinations or drop them completely.

5. User anonymity: it specifies that the source of a message (a pub-

lisher or a subscriber) cannot be recognized through that message. A

publisher has to preserve his anonymity, without the Event Notifica-

tion Service or the subscribers can know who has originated that event.

Also a subscriber has to preserve his anonymity.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 12

1.4.2 Confidentiality

Pub-sub systems introduce three novel confidentiality issues :

• Information confidentiality. When information being published

contains sensitive content, publishers and subscribers may wish to keep

information secret from the pub-sub infrastructure. The requirement

of confidentiality against the infrastructure is in a fundamental conflict

with the pub-sub model. By definition, the pub-sub network routes in-

formation based on dynamic evaluations of information content against

user subscriptions. Keeping the information private from the routing

hosts may hinder such evaluations and hence routing.

• Subscription confidentiality. User subscriptions can reveal sensitive

information about the user, in which case the subscriber may wish to

keep the subscriptions private.

• Publications confidentiality. In some applications publications have

to be kept secret from those who are not legitimate subscribers. Pub-

lications confidentiality can be considered independent of the pub-sub

infrastructure. For example, the publisher can distribute a group key

to the subscribers using some out-of-band channel and encrypt the in-

formation content with the key. This ensures that only the subscribers

with the right key can read the message. The drawback of this scheme

is obvious: setting up a group key a priori, in essence, transforms the

communication model into a traditional multicast model, and therefore

minimizes the benefits of publish and subscribe. Alternatively, publish-

ers can trust the infrastructure to maintain publication confidentiality.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 13

Publishers send messages into the pub-sub system, which ensures that

only registered users receive them.

1.4.3 Availability

As in other communication systems, denial of service attacks remain as

a significant risk for pub-sub systems. In fact, malicious publications and

subscriptions can be used to overload the system. In the general case, denial

of service attacks are impossible to prevent. However, certain measure can be

taken to minimize the probability of a wide spread denial of service attack.

For example, a technique based on a limited number of publications by every

publisher can be adopted.

1.4.4 Trust

Trust in pub-sub systems cannot be associated with specific producers and

consumers, because one of the most important purposes of these systems is

decoupling the two parts. This imposes the question of how the mutual trust

between publishers and subscribers can be established. The obvious approach

is to delegate some of the aspects of trust interaction to the pub-sub service.

For instance, access control and secured delivery can be added to the pub-sub

infrastructure. Unfortunately, this often implies that the infrastructure as a

whole is trusted, and this is not the best solution to the problem. Another

approach could be to split up publishers and subscribers in groups of trust. In

this case, publishers belonging to a group have to trust only with subscribers

and publishers belonging to the same group and not with those belonging to

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 14

R

US T

Y ZX

Scope

Single
component

Figure 1.2: An scope graph.

the other groups. This is achieved through scoping.

Let consider the example of Figure 1.2, where R,S,T and U represent bro-

kers, while X,Y and Z clients (in the figure a client is called simple com-

ponent). The arrows represent the visibility, i.e. R sees T and U but not

S, while T sees R and the clients Y and Z, and so on. Thus, a notification

published by Z is delivered to Y and to any other consumers in T and U if

their subscription matches. Also, it is visible in R if it matches the output

interface of T or U, but it is not visible in S.

To guarantee that only clients belonging to a scope can produce and read

messages from that scope, security services have to be implemented. These

services base on the concept of group, described later.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 15

A

C

GFED

B

P S

Figure 1.3: A standard ENS.

1.5 Fault tolerance in publish-subscribe sys-

tems

In general, a publish-subscribe system, as a generic distributed system, is

not free of failures. In fact, hardware, software or all the dispatching network

could crash. If we consider a simple ENS, it does not provide any guarantee

in terms of fault tolerance. The fault tolerance is the capability of the system

to guarantee that operations (like messages delivery) will continue even in

the presence of faults.

Let consider the example of Figure 1.3. The ENS is made of the brokers

A,B,C,D,E,F and G, the publisher P and the subscriber S. Let suppose that

S subscribes to messages of the type published by P, so it will receive them.

In normal conditions, the delivering is correct, and the messages go from P

to S, passing through the path composed by D,B,A,C and G. But, if the link

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 16

between A and C drops, no path can be established from P to S, so S won’t

receive the messages. This situation brings to catastrophic consequences

if P and S constitute a critic system. The previous example shows that

publish-subscribe systems should maintain availability even at low levels of

hardware/software/network reliability.

Fault tolerance, that should not involve users or system administrators,

is achieved by:

• data recovery : it is the process of recovering data from damaged, failed,

corrupted or inaccessible storage media. In order to provide data re-

covery, brokers should have a log file, in which they should store all the

operations they make. This log file should be stored on a persistent

storage media like a tape. Thus when a broker crashes, all its history

can be recovered from the log file.

• replication of brokers : each broker could have a twin so all the infor-

mation sent to it should be sent also to its twin. If it crashes, the twin

could replace it. The mechanism could be extended so a broker could

have many twins.

• replication of links : each broker is connected to its neighbors through

many links, so if one of them drops, traffic goes on the others.

The rest of the chapter focuses on the third possibility, that is the repli-

cation of links.

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 17

A

C

GFED

B

P S

LINK OF BACKUP

LINK OF BACKUP LINK OF BACKUP

Figure 1.4: A tree with links of backup.

1.5.1 Replication of links in a tree ENS

Let suppose that the ENS is composed by brokers sorted to form a tree

(see [21]), as the Figure 1.3 shows. If the link between two brokers drops,

the connectivity of the tree is compromised. However a publish-subscribe

system could offer a dynamic reconfiguration of the network (see [22], [23]),

that allows the dispatching network to reconfigure dynamically if a broker

departs from it. However, this mechanism does not resolve the problem,

if a link does not drop, but it is overloaded. In this case, the dynamic

reconfiguration of the network does not work, because no link drops.

To resolve the problem, that is to allow the dispatching system to work

even in the presence of overload, a new architecture could be provided. In

a standard tree every broker is connected to its sons and to its parent. The

new architecture extends the connectivity, so a broker can be connected also

to its brothers through a link of backup, as the Figure 1.4 shows. A broker

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 18

A

C

GFED

B

P S

LINK FAILURE

MESSAGE

Figure 1.5: A link failure. Although the link between A and C drops, the
message originated by P arrives to S.

sends messages that it receives both on the standard links (those connecting

it to its sons and its parent) and on the links of backup. The receiver broker

checks the received messages. If all those coming from the link of backup are

also received from a standard link,it drops them, so it sends to its neighbors

only the copy of the messages coming from the standard links. But, if there

a message, that is not received from a standard link, as the Figure 1.5 shows,

the broker can send to its neighbors that coming from the link of backup.

The link of backup has realized a form of redundancy.

1.5.2 A double link between brokers

The previous mechanism does not work when the topology of the ENS is

not a tree. To resolve the problem, a new architecture can be provided.

As the Figure 1.6 suggests, two brokers can be connected through two

connections, a normal one and a backup one. Normally, the traffic, wanting

CHAPTER 1. PUBLISH-SUBSCRIBE SYSTEMS 19

A B

LINK OF HIGH PERFORMACE

LINK OF LOW PERFORMACE

Figure 1.6: A double link connection.

specific services (like security, a high throughput and so on) passes over the

high performance link, while the standard traffic goes on the other link. If the

low performance link drops, the service is not provided, because the traffic

on it is not necessary, but if the high performance link drops, the traffic on

it, is redirected over the link of low performance. However, if that traffic

needs security guarantees, also the link of low performance must offer them.

This can be achieved using standard techniques of confidentiality, integrity

and so on.

Chapter 2

Infrastructure security

Everything should made as simple as possible,but

not simpler.

Albert Einstein (1879 - 1955)

German physicist

2.1 Introduction

In the previous chapter, two kinds of security have been presented: infras-

tructure and application. Hereafter infrastructure security is analyzed, that

is security for brokers network.

In general, the dispatching network is composed of brokers. In the basic

case (when there is no security), all these brokers trust each other. So a ma-

licious broker can join the network with the same rights of the other brokers.

Note that in this context the rights represent the capability of a broker to

inject into the network publications and subscriptions. This means that the

20

CHAPTER 2. INFRASTRUCTURE SECURITY 21

A B

P S

Figure 2.1: A dispatching network made of two brokers.

malicious broker can send to the others bogus publications/subscriptions. To

understand the seriousness of the problem, let consider an example. Let sup-

pose that the dispatching network is used as the infrastructure for a sensor

network that monitors the temperature of a wood, and let suppose that the

publishers are sensors of temperature, while there is only a subscriber, which

is a computer that elaborates the received data, calculating the average tem-

perature. If the temperature exceeds an established threshold, some counter

measure is taken. If a malicious broker joins the network, it can inject bogus

publications. So the subscriber receives those and could calculate a wrong

value. This example shows that the problem does not concern only the bro-

kers, but also the clients (a client is a publisher or a subscriber). In fact,

there is no need for an adversary to build up a malicious broker to join the

network and then inject wrong publications, because it can simply act as a

publisher of false publications, as there is no control on clients.

CHAPTER 2. INFRASTRUCTURE SECURITY 22

The previous example shows the need of a secure architecture for the

dispatching network, that:

• allows a broker to authenticate its neighbors (that is, brokers or clients

directly connected with it),

• gives a subscriber the guarantee that it does not receive informations

coming from bogus publishers, and a publisher the guarantee that its

publications are not received also by malicious subscribers,

• gives a client the guarantee that the message delivery is secure, that is

messages are not read or modified by an adversary during the rounting

process.

In order to provide this mechanism, a generic publish-subscribe system

model must be extended with the concepts of:

• secure path, and

• access control.

2.2 Secure Path

In general a broker A (or a client) wanting to connect to another broker B

must know the URL of B. The broker A could establish a connection to B re-

lying on a standard protocol, like TCP or UDP. However, A could have more

complex needs, that is it could wish some guarantees in terms of security. In

this case A could establish a connection using a secure protocol like SSL. In

order to use the SSL protocol, A must present to B a certificate, that allows

CHAPTER 2. INFRASTRUCTURE SECURITY 23

it to authenticate itself to B. But also B must present a certificate to A, to

authenticate itself. This mechanism relies on the mutual authentication of A

and B.

The certificate sent from A to B and viceversa, is a standard certificate

(like a X509Certificate), signed by a Certification Authority , that is not fur-

ther specified in this context. It is made of all the informations used to

identify a broker, like the subject, the organization and so on.

However, the authentication provided by SSL is not sufficient to authen-

ticate a neighbor, in a publish-subscribe context. In fact, if the neighbor

presents a certificate, a specific protocol like SSL does not check the subject

of the certificate, it simply verifies whether it is valid or not. Instead, in

a dispatching network a more complex test could be needed. Let suppose

that a pub-sub system is used by a bank. An adversary could have a valid

certificate, signed by a generic CA, so it could join the bank and receive

all the information. This example shows that after having authenticated a

neighbor, a second phase is needed, that is authorization. Each broker can

store locally the list of only accepted certificates, that is an access control

list . So although an adversary has a certificate, certainly it is not stored

by the brokers of the bank, and it will not be accepted as trusted neighbor.

However, if a broker does not contain a certificate in its local list, it may ask

the dispatching network whether they have it. This procedure is described

later.

Summarizing, a broker could wish to establish a connection with another

broker, having some guarantees in terms of security. A such connection is

called secure connection. In order to establish a secure connection, both the

CHAPTER 2. INFRASTRUCTURE SECURITY 24

BrokerNeighbor

SECURE CONNECTION
ESTABLISHED

CHECK WHETHER THE
RECEIVED CERTIFICATE IS

CONTAINED IN THE
LOCAL TRUSTED
CERTIFICATES LIST

CERTIFICATES LIST

SSL
CONNECTION

Figure 2.2: How a secure connection is established.

neighbors must pass two phases:

• Authentication, in which each neighbor provides to the other a certifi-

cate, signed by a generic CA. This certificate is analyzed by the receiver,

which checks whether the certificate is valid or not, expired or not. If

the certificate is valid and not expired, it is further analyzed in the

second phase.

• Authorization, in which the broker checks whether the previous cer-

tificate is contained in the local access control list of certificates. If

this phase is passed a secure connection is established between the two

peers. However, if this phase is not passed a specific strategy can be

adopted, specified by the connection policy , described later.

The Figure 2.2 shows what happens when a secure connection is opened.

Firstly there is the negoziation of the link (e.g. SSL) parameters; then the

authentication phase begins through the certificates. Each peer authenticates

CHAPTER 2. INFRASTRUCTURE SECURITY 25

itself sending its certificate to the other. If this phase is successful, each peer

(only if it is a broker, a client does not further check the certificate) checks

if its local access control list of certificates contains the received one. If the

list of each neighbor contains the received certificate, the neighbor passes the

authorization phase, and a secure connection is established between the two

peers.

The concept of secure connection suggests the division of brokers and

clients in trusted and untrusted. . Conceptually, a broker considers trusted

another broker if it can assume that the informations received from that

neighbor are not bogus. In practice, a broker (or client) is considered trusted

by another broker if it is connected to it through a secure connection (like

SSL), while it is considered untrusted if it is connected through a standard

connection (like TCP or UDP).

Using the concept of trusted neighbor, we can give a new definition of

secure connection. A connection is considered secure if all the messages pass-

ing on it cannot be read or modified by an unauthorized source, that is a

node (a client or a broker) different from the two directly connected by that

link. In our context, a secure connection is established between two brokers

trusting each other. So a message passing on a secure connection cannot be

read or modified by an unauthorized source. A chain of secure connections

going from a publisher to a subscriber constitues a secure path. Let con-

sider the example of Figure 2.3. The secure links between two neighbors are

trusted, so a path exists from the subscriber to the publisher. This path is

secure, because it is made by a chain of secure connections. In this case, the

publisher has the guarantee that an untrusted third part cannot receive its

CHAPTER 2. INFRASTRUCTURE SECURITY 26

publisher

subscriber

Figure 2.3: A secure-path example.

publications. At the same time, the subscriber knows that the publications

it receives do not come from an untrusted publisher.

2.3 Group

In this paragraph we introduce the concept of group. Let consider the

example of Figure 2.4. If the broker A trusts the broker B and the broker C,

but not E, and if B and C trust D, and D trusts B and C but not F, a group

made of A,B,C,D is built up.

Thus, a group is a collection of trusted brokers, in which every member of

the group can reach the other members through a secure path. The concept

of group is linked to that of scoping . Scoping implies that a broker is not

able to see all the network, but it has a partial view of it. Let consider again

the Figure 2.4. The broker E does not know that beyond A there are B,C

and D, in the sense that if a publisher attached to E publishes a message,

CHAPTER 2. INFRASTRUCTURE SECURITY 27

A

B

D

C

FE

UNTRUSTED
LINK

UNTRUSTED
LINK

Figure 2.4: A group example: the cloud shows a group, made by A,B,C and
D. The links beteween A and E, and D and F are untrusted.

D

B

A

C

E

GF

H

Figure 2.5: Isolated groups. A,B,C and D constitute a group and E,F and
G form another group. The two groups communicate through the broker
H, which is considered untrusted by both C and F so the two groups can’t
exchange secure informations.

CHAPTER 2. INFRASTRUCTURE SECURITY 28

Cardiology Pneumatology

Surgery

Figure 2.6: Hospital reparts. Conceptually the three reparts are independent
each other. However, general informations, that is untrusted informations are
delivered to all of them.

secure subscribers attached to A,B,C and D do not receive it. Note that

a client is secure if it is connected to the broker with a secure connection.

Only subscribers attached to F or unsecure ones attached to A,B,C or D can

read the message. This suggests that many isolated groups may exist, as the

Figure 2.5 shows.

The presence of many groups can be an advantage or a disadvantage,

according to the points of view. Many separated groups are useful when the

network is divided into areas, like reparts of an hospital, in which the general

information must be received by all the subscribers, while particular ones

must be received only by a repart rather than another. This is shown in

Figure 2.6. However, the presence of many isolated group could constitute

also a problem. A trusted subscriber belonging to a group will not receive

informations coming from a publisher belonging to another group. This could

CHAPTER 2. INFRASTRUCTURE SECURITY 29

P GROUP A

GROUP B

S

S

Figure 2.7: A mobile subscriber. The subscriber firstly attaches to group A,
and secondly to group B.

seem right, but it is not. In fact, let consider the example of Figure 2.7. If a

mobile subscriber attaches firstly to a broker belonging to the group A, it will

receive informations from the publisher P, which belongs to the same group

(here we are talking about secure clients), but if it latter moves and attaches

to a broker belonging to the group B, it will not receive informations coming

from P.

2.4 Certificate request

Let suppose that a client C wants to connect to a broker B through a

secure connection. So it must present a Certificate. Let further suppose that

the access control list of certificates of B does not contain that presented by

C. In this case, B may simply refuse the connection request. However, it may

ask the trusted brokers if someone in its local access control list of certificates

CHAPTER 2. INFRASTRUCTURE SECURITY 30

B

C

D

E

F
A

CERTIFICATE
REQUEST FROM B

CERTIFICATE
REQUEST FROM B

CERTIFICATE
REQUEST FROM D

CERTIFICATE
REQUEST FROM C

CERTIFICATE
REQUEST FROM C

CERTIFICATE
REQUEST FROM E

Figure 2.8: Certificate request flooding

contains that certificate. In this case B may accept the connection request of

C. In order to provide this mechanism, when a broker receives a certificate

that it does not know, it sends a CERTIFICATE_REQUEST, containing that

certificate, to its trusted neighbors (only if they are brokers). When a neigh-

bor receives a such message, it checks whether it contains that certificate in

its local list. If the answer is positive, it builds a CERTIFICATE_REPLY to

the sender, which can accept the certificate as trusted and so the connec-

tion request. However,if a neighbor does not know that certificate, it sends

a CERTIFICATE_REQUEST to its trusted neighbors, except that from which

it has received the request. In order to avoid loops, if a neighbor receives

twice or many times the same request it drops it and does not send it to its

neighbors. The Figure 2.8 shows a certificate request flooding.

The broker A sends the request to B and C. B sends it to C and D, but

C drops it because it has already received the request from A. C sends the

CHAPTER 2. INFRASTRUCTURE SECURITY 31

request to B and E, but B drops it and so on until the request arrives to F.

Let suppose that the broker F of the previous figure knows the certificate, so

it sends a CERTIFICATE_REPLY to the neighbor from which it has received the

message. In order to send the message to A, the reply must contain the chain

of brokers from F to A. To explain this, let consider the example shown in

the Figure 2.9, in which the brokers A,B,C and D are shown. When a broker

sends a CERTIFICATE_REQUEST to its neighbors, it adds its node id to it (this

operation is called push). So when the request arrives to the last broker, it

contains the chain of brokers from A to D. A broker can establish to which

neighbor it must send the CERTIFICATE_REPLY, making a pop in the stack of

node id contained in the message. Obviously, also the CERTIFICATE_REPLY

must contain that stack. If the source of the CERTIFICATE_REQUEST (i.e. A in

the example) does not receive any answer in a time at least equal to the RTT

of the network, it considers the certificate untrusted, so it can simply apply

the specific connection policy, described later to the new neighbor (that is,

the neighbor asking for the connection).

2.4.1 Managing untrusted connections

In the previous paragraphs, we have said that if a broker wants to open a

secure connection towards another broker, it must pass both the authentica-

tion test and the authorization test. But, what happens if a neighbor does

not pass at least one of those tests? In this case, the connection cannot be

secure, so the neighbor cannot be considered trusted.

In order to manage those situations, each broker maintains a local policy,

CHAPTER 2. INFRASTRUCTURE SECURITY 32

A B C D

CERTIFICATE REQUEST CERTIFICATE REQUESTCERTIFICATE REQUEST

Push(A) Push(C)Push(B)

CERTIFICATE REPLY CERTIFICATE REPLY CERTIFICATE REPLY

A = Pop() C = Pop()B = Pop()

Figure 2.9: Certificate reply forwarding.

called connection policy, which establishes what must be done when a neigh-

bor does not pass the authentication test or the authorization test or both of

them. Many connection policies could be adopted. For example, the broker

could simply refuse the connection (so the connection is closed) or it could

accept that connection as untrusted.

2.5 Access Control

In the previous paragraphs, we have analyzed the concept of secure path,

which has allowed us the division between trusted and untrusted neighbors.

In this paragraph we consider trusted neighbors so the access control refers

only to the trusted part of the dispatching network. In particular, messages

coming from a trusted client (that is a trusted publisher or subscriber) can

submitted to access control : each broker stores an access control policy so

when it receives a message, it checks whether that message is consistent

CHAPTER 2. INFRASTRUCTURE SECURITY 33

A

B

P

Publisher

Subscriber

Subscriber

Broker

Figure 2.10: An example of bogus subscriber.

with its access rights. Only in this case, the client is allowed to publish or

subscribe to that message.

Conceptually, a client wanting to connect to a broker must send it a tuple

(S,A,R), in which it specifies that the subject S wants to perform the action

A on the resource R. In particular, the subject is the same client, the action

is publish or subscribe and the resource is the type of message. The broker

compares the received tuple (S,A,R) with its local access control policy and

if there is a match, the client is allowed to perform the asked operation on

the asked resource.

However a problem arises. Let consider the example of Figure 2.10, where

two subscribers and a publisher are showed. Let suppose that the local policy

of the broker specifies that ”only the subscriber A can receive the publications

of P”. So when A subscribes, it sends to the broker the tuple (A, subscribe,

Messages of P) and then it will receive the messages. The subscriber B,

CHAPTER 2. INFRASTRUCTURE SECURITY 34

A B

C D

Connection Node ID

1 B

2 C

3 E

4 F

TABLE OF CONNECTIONS
OF BROKER A

Connection 1

Connection 2

Node ID Access Rigths

Subscriber E (SE ,RE ,AE)

Subscriber F (SF ,RF ,AF)

TABLE OF ACCESS RIGHTS
OF BROKER A

E

F

Figure 2.11: Broker A stores a table of connections, in which it stores for
each connection the node id of the neighbor, and a table of access rights, in
which for each client it stores its access rights.

also connected through a secure connection, subscribes sending the tuple (B,

subscribe, Messages of P) so it will not receive any message. But if B is a

malicious subscriber, it can send a bogus tuple (A, subscribe, Messages of

P), as there is no control that the three elements of the tuple are true.

To resolve this problem, different strategies can be adopted. A simple

solution is shown in the Figure 2.11: each node (that is a broker or a client)

is characterized by a node id, that is unique in the whole network. For every

connection each broker stores the node id of the neighbor so when it receives

a message it is able to determine the node id of the sender of that message.

Furthermore, the broker stores in a table for each node id which are the

access rights, so when it receives a message, the broker determines the node

id of the sender and checks if the tuple (S,R,A) contained in the message

is substantial with the access rights stored in the table for that node id. If

CHAPTER 2. INFRASTRUCTURE SECURITY 35

asked operation
(S,R,A)

public key k,
access rights(S,R,A)

MESSAGE

Signed with k‐1 AUTHORIZATIONS CERTIFICATE

Signed with the key
of the Certification Authority

Figure 2.12: Message format.

the test is positive, the client is allowed to perform the asked operations.

However, this solution supposes that the broker knows the access rights of

all clients.

As alternative, we can introduce the concept of Authorizations Certificate.

When a client wants to perform an action on a resource, it must present an

Authorizations Certificate, signed by a Certification Authority not specified

in this context. The Authorizations Certificate authorizes a subject to per-

form an action on a resource. Thus the Authorizations Certificate gives the

client some particular access rights. In particular, the format of the message

sent by the client is shown in the Figure 2.12. The message is composed of

two parts, the Authorizations Certificate and the tuple (S,R,A), that speci-

fies the asked operation. The Authorizations Certificate contains the public

key of the sender and its access rights and it is signed by a generic CA. Op-

tionally, it can also contain a content, described later. The tuple (S,R,A)

CHAPTER 2. INFRASTRUCTURE SECURITY 36

contained in the message is signed with the private key of the sender, whose

corresponding public key is contained in the Authorizations Certificte. So

a binding is created between the Authorizations Certificate and the asked

operations. When a broker receives a such message, it controls that the

Authorizations Certificate is valid, then it takes the public key from that

certificate and uses it to decript the tuple (S,R,A) contained in the same

message. Then the broker checks that the asked operations contained in the

tuple are substantial with those specified in the Authorizations Certificate.

If all these tests are passed, the broker accepts the subscription/publication

contained in the message.

Summarizing, access control is achieved through two mechanisms:

• the local policy, stored by each broker, and

• the Authorizations Certificate, contained in the message sent by the

client.

When a broker receives a message containing the Authorizations Certificate

it calculates the logic and between the local policy and the policy specified in

the Authorizations Certificate. The result gives the access rights of the client.

In order to understand the mechanism, let consider the following example.

Let suppose that the local policy of a broker is made of two rules:

• allow all the clients to subscribe to a message of type XXXX,

• deny all publishers to publish messages of type YYYY.

Let further suppose that a subscriber wants to send a subscription to the

previous broker and its Authorizations Certificate is: Allow this client to

CHAPTER 2. INFRASTRUCTURE SECURITY 37

subscribe to messages of type XXXX. In this case, when the broker receives a

such message, it checks the policy contained in the Authorizations Certificate

and compares it with its local policy, making a logic and . In the example

the broker calculates the logic and between allow all the clients to subscribe

to a message of type XXXX (given by its local policy) and Allow this client

to subscribe to messages of type XXXX (given by the Authorizations Certifi-

cate). The result, obviously, is Allow this client to subscribe to messages of

type XXXX.

Furthermore, the mechanism of access control can be extendend. Infact,

a publisher can send to the broker a message with new rules, in which it

specifies which subscribers can receive that message. The broker adds these

rules into its policy and floods them to its secure neighbors, that update their

policy and flood them to their neighbors and so on. These rules are combined

with the existing ones according to the specific combining algorithm specified

by the local policy configuration file.

Let consider the example of Figure 2.13. Let suppose that the brokers of

the network are all trusted. The publisher publishes a message with a new

rule. The broker directly connected to it, receives the message and update

its local policy. Then it sends an message of update to its secure neighbors

(brokers). These brokers update their policy with the new rule and then

forward the message to their secure neighbors, which finally update their

policy. So the network is updated.

If a new trusted broker attaches to the dispatching network, the directly

connected trusted broker floods to it all the new rules so it can update its

policy. The introduction of this mechanism makes the system very flexible.

CHAPTER 2. INFRASTRUCTURE SECURITY 38

Flood rule

Publisher Message with rule

Update local policy

Flood rule

Flood rule

Update local policy

Update local policy

Update local policy

Figure 2.13: Rules flooding example

Let suppose that a subscriber tries to subscribe to a message of type A and let

suppose that the dispatching network has no rule that allows that subscriber

to subscribe. In this case, the subscriber request is moved into a temporary

queue. When a publisher sends to the network a rule that allows all clients

to access to the message of type A, that subscriber is removed from that

temporary queue and is allowed to perform the asked operation.

2.5.1 Message content

As already said, optionally a message can have a content, that is not

signed with the private key whose corresponding public key is contained in

the Authorizations Certificate. In particular, only publications can have a

content. The tuple (S,R,A) specifies the subject, the resource and the action

corresponding to that publisher and in particular the resource represents only

the heading of the publication. For example, the resource of a publication

CHAPTER 2. INFRASTRUCTURE SECURITY 39

Teacher

Student I

Student IIStudent III

Figure 2.14: A teacher-students pub-sub system.

may be the temperature, and the content the effective value of it. So the

resource contained in the tuple (S,R,A) is used only to identify the topic of

the message, and the content represents the effective value of that topic. Here

a problem arises. Given a set of subscribers with different access rights and

needs and a publisher which publishes messages with content, we want to

develop the following strategy: each subscriber receives only the part of that

publication which it can receive, that is to which it has access rights. This

mechanism corresponds to associate to a message content different views.

In general, the content of a message can be composed of many parts, and

a publisher can specify which category of subscribers can read each part. Let

consider the example of Figure 2.14. Let suppose that a teacher (publisher)

publishes messages about phylosophy to his students (subscribers) and let

suppose that students are divided in three categories (I, II and III). Let fur-

ther suppose that students receive informations about phylosophy according

CHAPTER 2. INFRASTRUCTURE SECURITY 40

(S = teacher, R =
phylosophy, A =

publish)

Authorizations
Certificate

Message Content

Table of visibility

Category Visibility

I Socrates

II Socrates ,
I. Kant

III Socrates,
I.Kant,

S.Kierkegaard

TABLE OF VISIBILITY

M
E
S
S
A
G
E

MESSAGE CONTENT

Socrates . Socrates was a
greek phylosopher….

I.Kant. Kant was born in
1724, he lived at the end of

the Enlightenment…

S.Kierkegaard. Kierkegaard
never married because…

Figure 2.15: The message composed by the teacher.

to which category they belong. The teacher composes a message (shown in

the Figure 2.15), in which the subject is himself, the action is publish and

the resource (the topic of the message) is phylosophy. He also specifies the

content of the message, and its visibility rules. Students belonging to the

first category can see only information about Socrates, those belonging to

the second category both information about Socrates and Immanuel Kant,

those belonging to the third category all information. In order to provide

this mechanism, the message contains a table of visibility, in which for each

category, its visibility is specified.

When a broker receives a such message, it firstly analyzes if the tuple

(S,R,A) matches that specified in the Authorizations Certificate. Then the

broker delivers it to subscribers having access rights to that message (that

is, subscribers allowed to read phylosophy messages). The Figure 2.16 shows

the message delivering. Note that the last broker of the chain removes all

CHAPTER 2. INFRASTRUCTURE SECURITY 41

Teacher Student I

(S,R,A) AC

ToV

MC (S,I.K,S.K)

(S,R,A) AC

ToV

MC (S,I.K,S.K)

(S,R,A) AC

ToV

MC (S,I.K,S.K)

Socrates

Figure 2.16: Message delivering. The student I (belonging to first category)
will receive only information about Socrates.

the additional information (like the Authorizations Certificate, the table of

visibility and the parts of the content for which the client has not access

rights) carried out by the message, and sends to the client only those of

interest.

2.6 REDS extensions

The standard REDS broker architecture does not provide any strategy to

establish a secure path and access control. So we have extended this basic

architecture to allow security guarantees.

In the new architecture of REDS, all the security aspects are managed by

a new component, the Security Manager . Note that a component is a software

object that is in charge of something and interacts with other components.

CHAPTER 2. INFRASTRUCTURE SECURITY 42

Router

Overlay

Transport Topology
Manager

Routing Strategy Reply Manager

Figure 2.17: The standard REDS architecture. The Router is made of two
sub-components, the Routing Strategy and the Reply Manager, while the
Overlay is made of the Transport and the Topology Manager.

2.6.1 The Security Manager

The standard broker architecture is made by two components: the Over-

lay, and the Router (see Figure 2.17 for details). The former manages the

topology of the dispatching network, while the latter provides a mechanism

for the delivering of the messages. This basic architecture has been extended.

In the new architecture another component is added, the Security Man-

ager, which is also the central component of this new architecture. It is in

charge of security aspects, but in general it does not affect the Router and

the Overlay components. Infact it is not a new layer in the REDS broker

architecture, it is simply a new component so also in the new architecture the

two old layers, the routing and the overlay, are mantained. The relationship

among these components is shown in the Figure 2.18. The Security Man-

CHAPTER 2. INFRASTRUCTURE SECURITY 43

Routing Security
ManagerOverlay

Transport Layer

IP layer

Datalink layer

Physical layer

Figure 2.18: The OSI stack. The Security Manager, as the Routing and the
Overlay, works at the application layer.

ager, as the other two components (i.e. the Router and the Overlay), works

at the application layer of the OSI stack. It’s consulted by the Overlay or

by the Router, according to the specific operation. For example, the Trans-

port, which is a sub-component of the Overlay, asks the Security Manager

to check whether a neighbor can be accepted as trusted or not. This means

that the Security Manager maintains the local policy for trustworthyness.

Furthermore, the Routing Strategy, which is a sub-component of the Router,

consults the Security Manager to know if a message can be delivered to a

particular subscriber. This means that the Security Manager maintains also

the local policy for access control.

Summarizing, when a broker B1 tries to open a new connection with a

broker B2, it must pass two tests to become an effective neighbor of B2:

• the topology test, and

CHAPTER 2. INFRASTRUCTURE SECURITY 44

Security Manager

Trust Connection
Policy

Access
Control
Strategy

Figure 2.19: The Security Manager sub-components.

• the security test.

The topology test is mandatory and is made by the Topology Manager,

a component provided by the basic REDS architecture. The security test is

mandatory only if a neighbor wants to open a secure connection and estab-

lishes whether a neighbor can be considered trusted or not and in this last

case what strategy must be applied.

As the Security Manager is in charge of many tasks, it is logic to di-

vide it in many sub-components. Note that a sub-component is a software

object that performs an action or many actions and interacts with other

sub-components, but it cannot interact with a component. In practice, a

component can be made of sub-components, but it is not necessary. As the

Figure 2.19 shows, the Security Manager if made of the following components:

• the Trust and the Connection Policy, linked to the concept of secure

path, and

CHAPTER 2. INFRASTRUCTURE SECURITY 45

• the Access Control Strategy, linked to the concept of access control.

2.6.2 Trust

The Trust component is in charge of maintening the access control list of

certificates. In particular, it specifies the type of this access control list.

In the actual version of SEC-REDS two types of access control list of

certificates have been implemented:

• the Subject Based Trust, in which the access control list of certificates

stores only subjects of certificates. In this case, there is a match between

the certificate received from the neighbor and the local access control

list if there is a match between the subject of the received certificate and

one of the subjects stored in the local access control list of certificates.

• the Certificate Based Trust, in which the access control list of certifi-

cates stores certificates. In this case, there is a match between the

certificate received from the neighbor and the local access control list

if there is a match between the received certificate and one of the cer-

tificates stored in the local access control list of certificates.

2.6.3 Connection Policy

The Connection Policy component, as its name suggests, is in charge of

managing the connection policy, stored in the broker.

In the actual version of SEC-REDS two types of connection policy have

been implemented:

CHAPTER 2. INFRASTRUCTURE SECURITY 46

• the Brutal Close Connection Policy, in which a connection is closed if

at least one between the authentication test and the authorizations test

is not passed.

• the Untrusted Degrade Connection Policy, in which a connection is

degraded to untrusted if at least one between the authentication test

and the authorizations test is not passed.

2.6.4 Access Control Strategy

To manage the access control, the Security Manager delegates to a new

sub-component this task. The sub-component is the Access Control Strat-

egy. In order to provide access control, the Access Control Strategy employs

XACML, so the architecture of a broker has been extended with the elements

to support XACML (e.g. the PDP), as the Figure 2.20 shows. In particular,

the broker stores the policy into a configuration file (e.g. policy.xml). The

XACML system receives as input a tuple composed by a subject S, an action

A and a resource R. This tuple specifies that the subject S wants to perform

the action A on the resource R. The XACML system asks the PDP (Policy

Decision Point), if that subject can perform that action on that resource,

and communicates the answer to the Access Control Strategy, which makes

something, according to the local strategy.

In order to provide access control at the second level (that is, a message

sent by a client contains its access rights through an Authorizations Certifi-

cate), a client can compose special messages, the XACML Messageswhich

contain the Authorizations Certificate.

CHAPTER 2. INFRASTRUCTURE SECURITY 47

XACML
system

Configuration
File for local

policy

Access Control Strategy

Figure 2.20: The Access Control Strategy.

2.7 Security issues provided by SEC-REDS

In the previous chapter a set of security issues for pub-sub systems has been

analyzed. Here after we specify which of them are satisfied by SEC-REDS.

• Authentication. A client can authenticate the broker and viceversa to

which it is attached through the certificate provided by it during the

negotiation of parameters. Also two brokers directly connected can

authenticate each other using a such certificate. But the authentica-

tion property is stronger; in fact, it allows a client to authenticate the

identity of the originator of a message, that is for a subscriber to au-

thenticate publishers. This can be achieved considering the concept of

secure path. A secure path is made of secure connections, each of them

has been established authenticating the neighbors. Thus, as the mes-

sage comes from a secure path, a subscriber can consider the originator

of the message (that is a publisher) as reliable.

CHAPTER 2. INFRASTRUCTURE SECURITY 48

• Information integrity . This property is again provided by concept of

the secure connection, established between two peers. In fact, it guar-

antees that messages passing on it are not modified by an unauthorized

source (i.e. SSL provides it). As a subscriber and a publisher are con-

nected through a secure path and as a secure path is made of a chain

of secure connections, that separately provide information integrity, we

can conclude that this property is satisfied.

• Service integrity. Every broker is classified as trusted or not. An un-

trusted broker can’t access to or insert trusted informations, so the

service integrity is guaranteed.

• Information confidentiality . This property is again provided by the con-

cept of the secure connection, established between two peers. In fact, it

guarantees that messages passing on it are not read by an unauthorized

source (i.e. SSL provides it). As a subscriber and a publisher are con-

nected through a secure path and as a secure path is made of a chain

of secure connections, that separately provide information integrity, we

can conclude that this property is satisfied.

• Subscription/Publication confidentiality. If the publisher/subscriber is

trusted, untrusted neighbors don’t know that it exists, because neighter

trusted subscribers receive untrusted informations nor trusted publica-

tions are delivered to untrusted subscribers.

• User anonimity. It is not provided.

• Availability. It is not provided. In fact, Denial of Service may occur.

CHAPTER 2. INFRASTRUCTURE SECURITY 49

Note that all these security aspects are been analyzed considering the dis-

patching network as trusted. If this hypotesis is not applicable, the previous

analysis is not valid.

Chapter 3

Network redundancy

Quicquid praecipies, esto breuis, ut cito dicta perci-

piant animi dociles teneantque fideles. Omne supe-

ruacuum pleno de pectore manat.

Qualunque cosa tu ti proponga di insegnare sii breve,

per modo che la mente apprenda subito senza fatica

e ritenga fedelmente ciò che hai detto: tutto il super-

fluo trabocca dall’animo pieno.

Quintus Horatii Flacci (65 a.C. - 8 a.C)

Latin poet

3.1 Introduction

In the previous chapter we have analyzed security aspects, in terms of

confidentiality, integrity and access control. In this chapter we will develop a

strategy to build a robust pub-sub system, that is a tolerant failure system.

50

CHAPTER 3. NETWORK REDUNDANCY 51

B1 B2Internet

DEFAULT CONNECTION

Satellite

Figure 3.1: A backup connection example. The two brokers are connected
with a standard connection (Internet) and a backup connection (through
satellite).

A broker (or a client) may connect to another broker through many con-

nections. In this case, one of them is considered of default, the others of

backup, as shown in Figure 3.1.

Usually traffic is delivered using the default connection, but if something

happens on it (e.g. interrupted, closed, overloaded connection) traffic goes on

the first backup available connection. In order to provide this mechanism,

many strategies can be adopted. A simple strategy consists in setting up

many connections (all active), of which one is considered of default, the

others of backup. This simply mechanism, however, wastes a lot of resources

to mantain active many connections (e.g. in terms of bandwidth). In contrast

this strategy is very simple, because when the default connection drops, one

among the backup connections is elected as default. However this strategy

is very simple, so a more complex mechanism must be developed.

CHAPTER 3. NETWORK REDUNDANCY 52

Default Connection Internet

Backup Connection Satellite

Number of
tentatives

4

Timeout 3 sec.

CONFIGURATION FILE

Figure 3.2: A backup configuration file (backup strategy).

In general a connection (default or backup) is established between two

peers (neighbors), in particular one of them asks for the connection (i.e. tries

to open the connection invoking the method open()) and the other listens

to. The former is called master , the latter slave. This mechanism is implicit

in REDS. Furthermore it is the master that establishes whether it must

open a backup connection or not and specifies which actions the slave must

perform in order to set up a such connection. In order to do it, the master

must have a configuration file, that specifies which actions it must perform.

Let consider again the Figure 3.1. Let suppose that B1 is the master and

B2 the slave. Let further suppose that B1 has a configuration file (shown

in Figure 3.2), in which it is specified that normally the two brokers are

connected through the Internet connection, but if this drops, four tentatives

are made to restore it. If all these tentatives fail, B1 tries to open a backup

connection, using the satellite. Periodically, it checks whether the default

CHAPTER 3. NETWORK REDUNDANCY 53

connection is restored. If the answer is affirmative, the backup connection is

closed (as it is more expensive), and traffic goes on the default connection.

As the example suggests, the two brokers have different importance, in fact

the master decides what must be done and informs the slave of that.

3.2 SEC-REDS extensions

In order to provide fault tolerance, that is based on backup connections

between two brokers, another component is added to the REDS architecture,

that is the Backup Connections Manager , which works at the transport layer

(as shown in Figure 3.3), manages all the connections of backup and notifies

the transports if something happens (e.g. passing from a SSL connection to

a TCP connection). Note that as the Backup Connections Manager works at

the transport layer, the upper layers are not aware of the existence of backup

connections. Furthermore they are not informed if traffic goes on a default

connection or on a backup one.

The actual version of SEC-REDS provides two strategies to manage

backup connections:

• the Active Backup Connections, and

• the On Demand Backup Connections.

3.2.1 The Active Backup Connections

In this simple strategy the Backup Connections Manager mantains for

each neighbor the list of all the available connections. Among those, one

CHAPTER 3. NETWORK REDUNDANCY 54

Routing layer

Topology Manager

Backup Connections Manager

Transport

Figure 3.3: SEC-REDS architecture. Between the Transport and the Topol-
ogy Manager a new component is added, the Backup Connections Manager.

is of default and the others are of backup, as shown if Figure 3.5. All the

connections are active, in the sense that they waste resources, but only one

(that of default) is used to deliver messages. In particular, each connection

is identified by a connection ID, which must be unique for a neighbor, but

in general it is unique in the whole ENS. So each neighbor (identified by

a neighbor id) can set up many connections, each of them identified by a

connection id. A neighbor id is unique in the whole network, but also a

connection id is unique in the whole network.

A neighbor (master) can open a connection towards another neighbor

(slave) invoking the method openLink(String url), in which it specifies

the url of the slave. The first connection opened is considered of default.

If that method is invoked again on the same url, a backup connection is

created. If that method is invoked many times, many backup connections

are opened. The Figure 3.4 shows the effect of invoking many times the

CHAPTER 3. NETWORK REDUNDANCY 55

MASTER SLAVE

openLink(url) – connection 2

CONFIRM_OPEN

CONFIRM_OPEN

CONFIRM_OPEN

Neighbor Set

MASTER
connection 1

openLink(url) – connection 1

openLink(url) – connection 3

Backup
Neighbor Set

MASTER
connection 2

Backup
Neighbor Set

MASTER
connection 2
connection 3

Neighbor Set

SLAVE
connection 1

Backup
Neighbor Set

SLAVE
connection 2

Backup
Neighbor Set

SLAVE
connection 2
connection 3

Figure 3.4: The effect of calling many times the method openLink(url) on
the same url. After the first call, both the master and the slave add the
neighbor in the neighbor set (which mantains the list of all neighbors). After
the other calls, both the master and the slave add the neighbor in the list of
backup neighbor set (which mantains the list of all backup connections).

method openLink(String url). If the default connection drops, one of the

backup connections (i.e. usually the first available) is elected new default

connection, so traffic goes on it. If the old default connection is restored, it

is added as backup connection.

A broker may wish to change its default connection towards another bro-

ker. In this case, the previous mechanism must be extended. Let consider

the example shown in the Figure 3.6. The broker B1 is connected to B2

through three connections, A (default), B and C (backup). Let suppose that

B1 wants to set the default connection to C. In order to perform a such ac-

tion, it must inform B2 so also B2 can set the default connection to C. As

shown in the Figure 3.7, B1 sends a messsage to B2, containing the request

to change the default connection. Note that this message is delivered using

CHAPTER 3. NETWORK REDUNDANCY 56

B1 B2

B3

A default connection

B backup connection
C backup connection

D default connection

Neighbor B2

Connection Type

A default

B backup

C backup

Neighbor B3

Connection Type

D default

Figure 3.5: The tables show the lists of connections of broker B1. B1 is con-
nected to B2 through the default connection A and the backup connections
B and C. Furthermore, it is connected to B3 through the default connection
D.

B1 B2

A DEFAULT

B BACKUP
C BACKUP

Connection type

A Default

B Backup

C Backup

Figure 3.6: The two brokers are connected through three connections, A
(default), B and C (backup).

CHAPTER 3. NETWORK REDUNDANCY 57

Broker B1 Broker B2

SET_DEFAULT_CONNECTION

CONFIRM_DEFAULT_CONNECTION

Figure 3.7: In order to change the default connection, B1 sends to B2 a
message, set default connection, in which it specifies which connection must
become the new default connection. B2 replies with a confirm default con-
nection message.

the old default connection (A). When B2 receives a such message, it checks

whether it can accept C as new default connection or not. If the answer

if affirmative, it sends B1 another message (a confirm default connection).

Eventually, C becomes the new default connection.

In order to set a default connection, a broker must invoke the method

setDefaultConnection(neighborID,connectionID), in which it specifies

the neighbor id and the new default connection (identified by an id). The

effect of this call is to change the default connection for the neighbor identified

by the neighborID to that specified by the connectionID.

CHAPTER 3. NETWORK REDUNDANCY 58

MASTER SLAVE

Backup Strategy

openLink(defaultURL)

openLink(defaultURL)

openLink(defaultURL)

openLink(defaultURL)

openLink(defaultURL)

openLink(backupURL)

openLink(defaultURL)

CONFIRM_OPEN

CONFIRM_OPEN

CONFIRM_OPEN

LINK DEAD

timeout

Remove
the backup
connection

Remove
the backup
connection

Figure 3.8: The On Demand Backup Connections mechanism.

3.2.2 The On Demand Backup Connections

The mechanism described in the previous paragraph is very simple. In

particular, it does not work well when a system has not many resource.

Let consider a sensor pub-sub system, in which each broker is a sensor. Let

suppose that this system is used to measure glaciers temperature. Let further

suppose that each sensor is put in a glacier. In general a sensor has limited

resources (i.e. battery) so the previous strategy (many active connections,

of which only one is of default) is not the best solution, as sensors cannot

be removed from their place when their batteries die. Resources will have to

last any more.

In order to satisfy a such need, another strategy is adopted, that is the

On Demand Backup Connections. The previous mechanism (Active Backup

Connections) is weakly asymmetric, as the master and the slave execute the

same actions (however the master opens the connection). The new mecha-

CHAPTER 3. NETWORK REDUNDANCY 59

nism (On Demand Backup Connections) is strongly asymmetric, as the mas-

ter and the slave execute different actions. The master mantains a backup

strategy (that is a configuration file, like that shown in the Figure 3.2), in

which its backup policy is specified. Note that the slave has not a backup

strategy. To explain the mechanisms, let consider the Figure 3.8. The master

tries to open the default connection towards the slave, invoking the method

openLink(defaultUrl), the slave receives a such request and accepts it. As

effect, the two neighbors are linked. If the connection drops, the slave simply

notes it and closes the connection. In contrast, the master takes from the

backup strategy what it must do. Let suppose that the backup strategy is

that shown in the Figure 3.2. So it tries to restore the default connection.

If this tentative is successful, the master does not execute other actions, but

if it fails, the master retries for other three times. If all those tentatives fail,

the master tries to open a backup connection (the satellite of the figure),

invoking the method openLink(backupUrl). Let suppose that this tentative

is successful. In this case a new connection is established. Note that the slave

is not aware of the strategy adopted by the master. It is also not aware that

the new established connection is a backup connection. When the backup

connection is established, the master starts a timer. When the timeout goes

off, the master tries to restore the default connection. If this tentative fails,

it starts a new timer, when the timeout goes off, it retries to restore the

default connection and so on. If the tentative is successful, the master closes

the backup connection. When the slave accepts a new connection from the

same neighbor, it closes the old, as it was of backup, and sets up the new (the

default). The effect is that master and slave are linked through the default

CHAPTER 3. NETWORK REDUNDANCY 60

MASTER SLAVE
openLink(defaultURL)

setDefaultConnection(newDefaultURL)

CLOSE DEFAULT URLCLOSE DEFAULT URL

Figure 3.9: Changing a default connection using the On Demand Backup
Connections mechanism.

connection.

As the Active Backup Connections mechanism, also the On Demand

Backup Connections one allows a neighbor to change its default connec-

tion towards another neighbor. This can be achieved invoking the method

setDefaultConnection(newDefaultURL). The mechanism is showed in the

Figure 3.9. Firstly the master opens a default connection towards the slave,

invoking the method openLink(defaultURL). A connection is established

between the two peers. If the master wants to change its default connection,

it invokes the method setDefaultConnection(newDefaultURL), specifying

the new default URL. As effect of this call, both the master and the slave

close the old default connection, and they remain linked through the new

default connection.

Chapter 4

SEC-REDS implementation

Tutte le cose nel loro complesso sono migliori delle

superiori prese da sole.

Sant’Agostino (354-430)

Christian philosopher

4.1 Introduction

As said in the previous chapter the standard REDS architecture has been

extendend. The standard REDS provides a generic implementation of the

routing and overlay layers (called GenericRouter and GenericOverlay, re-

spectively), which don’t consider the security aspects. So, the first step

towards a security architecture is to extend this basic service, with a Secure

Router and a Secure Overlay. This is shown respectively in the Figures 4.3

and 4.4.

The pink components (the term component refers, as already said, to

a software object that is in charge of something and interacts with other

61

CHAPTER 4. SEC-REDS IMPLEMENTATION 62

components. It can be made of sub-components) shown in the figures are

not provided with the basic REDS architecture and are been implemented

in its extension. The figures don’t show the sub-components of each layer

(like the TopologyManager or theRoutingStrategy), but, obviously, also those

are been extended in the new architecture to support security. The only

component described in the next lines is the Transport , because it is more

complex than the others.

The Transport components provided with REDS are the UDP and TCP.

In the new architecture a SecureTransport is added, as shown in the Figure

4.5. A particular implementation of the SecureTransport is also provided,

that is the SSLTransport, which gives the clients many security guarantees,

like integrity and confidentiality of information. In order to provide both

standard and secure connections, another component is added, the Com-

plexTransport, that manages them. So a secure broker must implement a

ComplexTranport object in order to provide both standard and secure con-

nections.

Also the client API has been extended to support security. In the specific

case (as illustrated in the Figure 4.6), the DispatchingService interface has

been extended with the SSLDispatchingService, which, as the name suggests,

provides the SSL service.

If a client wants to open a secure connection, it must create a SSLDis-

patchingService object, and it must specify the url of the broker to which

it wants to connect. In particular, it must present a certificate, that in the

specific case is provided from command line (following the standard specifi-

cations of the JVM).

CHAPTER 4. SEC-REDS IMPLEMENTATION 63

In a REDS environment, a subscriber sends to the ENS particular mes-

sages, called filters. A filter is a message sent by a subscriber that specifies

to which type of messages it wants to subscribe. Thus clients are classified

on the basis of their filters. The standard REDS architecture provides a

generic interface, called Filter , that can be implemented according to the

specific needs. REDS provides a TextFilter and a PTreeFilter. In the new

architecture a new Filter is added, the XACMLFilter, that is checked by the

Access Control Strategy of every broker. The interface Filter and its imple-

mentations is showed in the Figure 4.1. The XACMLFilter takes as input an

Authorization Certificate, that is made of the tuple (subject,action,resource).

This tuple is submitted to the XACML system of every broker through the

Access Control Strategy.

In a REDS environment, a publisher sends to the ENS messages, each

of them having a specific topic. The interface Message represents this con-

cept, and the REDS architecture provides two implementations of it, the

TextMessage and the PTreeMessage. Note the duality with the Filter imple-

mentations. In the new architecture, a new implementation is provided, the

XACMLMessage, which is submitted to access control. The Message inter-

face and its implementations are showed in the Figure 4.2. As the XACML-

Filter, also the XACMLMessage takes as input an Authorizations Certificate,

that contains the tuple (subject,action,resource), which determines who is

the publisher, which action it wants to execute and which is the resource it

wants to publish. Thus the resource is the topic of the message. Indeed,

an XACMLMessage can have also a content, that can be specified using the

method setContent(). If a publisher wants to establish a private access con-

CHAPTER 4. SEC-REDS IMPLEMENTATION 64

<<interface>>
Filter

XACMLFilter

TextFilter

PTreeFilter

Figure 4.1: The Filter.

CHAPTER 4. SEC-REDS IMPLEMENTATION 65

<<interface>>
Message

XACMLMessage

TextMessage

PTreeMessage

Figure 4.2: The Message.

trol policy on its message, it can invoke the method setRule(), that allows it

to establish which subscribers can receive its messages.

4.2 The SecurityManager

As discussed in the last chapter, the Security Manager is the main com-

ponent of the new architecture. The security extension of REDS provides

a generic interface called SecurityManager, and a specific implementation,

the GenericSecurityManager. This is shown in the Figure 4.7. In order to

support the security test, two components are implemented: the Trust and

the ConnectionPolicy. The former, as described previously, specifies whether

CHAPTER 4. SEC-REDS IMPLEMENTATION 66

<<interface>>
Router

GenericRouter SecureRouter

Figure 4.3: The Router. The Router interface is implemented by the Gener-
icRouter (provided by REDS), which provides the basic services, and by the
SecureRouter (extended by the new architecture), which provides security
guarantees.

<<interface>>
Overlay

GenericOverlay SecureOverlay

Figure 4.4: The Overlay. The Overlay interface is implemented by the
GenericOverlay (provided by REDS), which provides the basic services, and
by the SecureOverlay (extended by the new architecture), which provides
security guarantees. The figure doesn’t show the sub-components of the
overlay layer, like the TopologyManager.

CHAPTER 4. SEC-REDS IMPLEMENTATION 67

<<interface>>
Transport

+openLink(in url:String,out nodeDescriptor:NodeDescriptor)
+closeLink(in closedNeighbor:NodeDescriptor)
+addLinkOpenedListener(in listener:LinkOpenedListener)
+linkClosedListener(in listener:LinkClosedListener)
+addLinkDeadListener(in listener:LinkDeadListener)
+send(in subject:String,in payload:Serializable,
 in receiver:NodeDescriptor)
+sendAll(subject:String,in payload:Serializable)
+sendAllExcept(in subject:String,in payload:Serializable,
 in excluded:NodeDescriptor)
+addPacketListener(in listener:PacketListener)
+start()
+stop()
+getURL(out url:String)
+setBeaconing(in b:boolean)
+isBeaconing(out flag:boolean)
+setNodeDescriptor(in nodeDescriptor:NodeDescriptor)
+getNodeDescriptor(out nodeDescriptor:NodeDescriptor)

TCPUDP

<<interface>>
SecureTransport

+addSecureLinkOpenedListener(in listener:SecureLinkOpenedListener)
+setSecurityManager(in securityManager:SecurityManager)
+getSecurityManager(out securityManager:SecurityManager)
+getPacketListeners(out packetListeners:Map)

SSL

ComplexTransport
+openSecureLink(in url:String,out nodeDescriptor:NodeDescriptor)
+closeSecureLink(in closedNeighbor:NodeDescriptor)
+addSecureLinkOpenedListener(in listener:SecureLinkOpenedListener)
+secureSend(in subject:String,in payload:Serializable,
 in receiver:NodeDescriptor)
+secureSendAll(in subject:String,in payload:Serializable)
+secureSendAllExcept(in subject:String,in payload:Serializable,
 in excluded:NodeDescriptor)
+getTransport(out transport:Transport)
+getSecureTransport(out secureTransport:SecureTransport)

Figure 4.5: The Transport. To the standard Transports (UDP and TCP),
the SSL transport is added. It’s a SecureTransport. The last defines an
interface that in the future could be extended by another type of protocol.
The figure shows also The ComplexTransport component, which contains a
Transport and a SecureTransport object. It’s used to manage both standard
and secure connections.

CHAPTER 4. SEC-REDS IMPLEMENTATION 68

<<interface>>
DispatchingService

+open()
+close()
+getID(out nodeDescriptor:NodeDescriptor)
+getNextMessage(out message:Message)
+getNextMessage(in timeout:long,out message:Message)
+getNextMessage(in filter:Filter,out message:Message)
+hasMoreMessages(out flag:boolean)
+hasMoreMessages(in filter:Filter,out flag:boolean)
+subscribe(in filter:Filter)
+unsubscribe(in filter:Filter)
+unsubscribeAll()
+publish(in message:Message)
+isOpened(out flag:boolean)
+reply(in message:Message,in messageID:MessageID)
+getNextReply(in messageID:MessageID)
+getNextReply()
+getNextReply(in timeout:long,out message:Message)
+hasMoreReplies(out flag:boolean)
+hasMoreReplies(in messageID:MessageID,out flag:boolean)
+getAllReplies(in messageID:MessageID,out replies:Replies)

TCPDispatchingService UDPDispatchingService SSLDispatchingService

Figure 4.6: The DispatchingService. It’s the client API. To the old ar-
chitecture, the SSLDispatchingService component is added (in pink), which
allows the client to open and communicate over a secure link.

CHAPTER 4. SEC-REDS IMPLEMENTATION 69

a certificate presented by a neighbor can be considered trusted or not. In

our specific distribution of SEC-REDS, two strategies exist:

• the SubjectBasedTrust, according to which the broker stores the list of

characteristics that the certificate must have. In the specific case, the

only characteristic is the subject, and

• the CertificateBasedTrust, in which the broker stores the list of valid

certificates.

Figure 4.8 shows it.

If the certificate presented by the neighbor is not valid, the local con-

nection policy is applied. Our specific implementation provides two types of

connection policy:

• BrutalCloseConnectionPolicy, in which the connection is closed, with-

out sending a message to the rejected client, and

• UntrustedDegradeConnectionPolicy, which degrades the neighbor to

untrusted.

Figure 4.9 explains it.

To manage the access control , a new component is developed, the Ac-

cessControlStrategy , which directly interacts with the SecurityManager. As

example, a generic AccessControlStrategy is realized, that, simply, applies

the policy to messages/filters. The policy is stored into a configuration file.

Figure 4.10 shows this component.

CHAPTER 4. SEC-REDS IMPLEMENTATION 70

<<interface>>
SecurityManager

+setOverlay(in overlay:SecureOverlay)
+getOverlay(out overlay:SecureOverlay)
+getID(out nodeDescriptor:NodeDescriptor)
+isTrusted(in nodeDescrptor:NodeDescriptor,
 out flag:boolean)
+isTrusted(in certificate:Certificate,out flagq:boolean)
+setTrust(in t:Trust)
+getTrust(out t:Trust)
+setConnectionPolicy(in cp:ConnectionPolicy)
+getConnectionPolicy(out cp:ConnectionPolicy)
+applyPolicy(in obj:Object)
+addDegradedNeighbor(in neighbor:NodeDescriptor)
+removeDegradedNeighbor(in neighbor:NodeDescriptor)
+isDegraded(in nodeDescriptor:NodeDescriptor,
 out flag:boolean)
+setAccessControlStrategy(in acs:AccessControlStrategy)
+getAccessControlStrategy(out acs:AccessControlStrategy)
+evaluate(in obj:Object,out flag:boolean)
+addRuleToPolicy(in rule:String)
+floodRule(in rule:String,in except:NodeDescriptor)
+getRuleSet(out ruleSet:Set)
+addRejectedClient(in object:Object)
+checkRejectedClients()

GenericSecurityManager

Figure 4.7: The SecurityManager. The SecurityManager is the central
component of the new architecture. It interacts with the Trust, Connec-
tionPolicy and AccessControlStrategy objects, so it manages all the security
aspects. The new architecture without the SecurityManager is like a sea
without water.

CHAPTER 4. SEC-REDS IMPLEMENTATION 71

<<interface>>
Trust

+isTrusted(in certificate:Certificate,out flag:boolean)
+addAccepted(in obj:Object)
+removeAccepted(in obj:Object)
+getAccepted(out objectsList:Object[])

SubjectBasedTrust CertificateBasedTrust

Figure 4.8: The Trust. This component interacts with the SecurityManager
and establishes if a neighbor can be considered trusted. In the actual version
of our implementation two strategies of trustworthiness are provided. These
are shown in the figure.

<<interface>>
ConnectionPolicy

+applyPolicy(in obj:Object)
+addDegradedNeighbor(in neighbor:NodeDescriptor)
+removeDegradedNeighbor(in neighbor:NodeDescriptor)
+containsNeighbor(in nodeDescriptor:NodeDescriptor)

BrutalCloseConnectionPolicy UntrustedDegradeConnectionPolicy

Figure 4.9: The ConnectionPolicy. This component interacts with the
SecurityManager and establishes what strategy must be adopted if a neighbor
can’t be considered trusted. In the actual version of our implementation two
strategies of trustworthiness are provided. These are shown in the figure.

CHAPTER 4. SEC-REDS IMPLEMENTATION 72

AccessControlStrategy
+evaluate(in object:Object,out flag:boolean)
+addRuleToPolicy(in rule:String)
+updatePDP()
+getRuleSet(out ruleSet:Set)

AbstractAccessControlStrategy
+setupSubjects(in subject:String,in group:String,
 out subjects:Set): static
+setupResource(in resource:String,out resources:Set)
+setupAction(in actionType:String,out action:Set)

GenericAccessControlStrategy

Figure 4.10: The AccessControlStrategy. This component interacts with
the SecurityManager and manages all the access control. To the basic inter-
face, an abstract class is added, the AbstractAccessControlStrategy, which
defines basic operations, like building a subject, a resource, or an action.
Then a GenericAccessControlStrategy is realized.

CHAPTER 4. SEC-REDS IMPLEMENTATION 73

<<interface>>
BackupConnectionsManager

+addBackupConnection(in n:NodeDescriptor,
 in p:Proxy)
+removeBackupConnection(in n:NodeDescriptor,
 in p:Proxy)
+getPreferredBackupConnection(in n:NodeDescriptor,
 out p:Proxy)
+removePreferredBackupConnection(in n:NodeDescriptor)
+hasBackupConnections(in n:NodeDescriptor,
 out b:boolean)
+removeBackupConnections(n:NodeDescriptor)
+getBackupConnections(in n:NodeDescriptor,
 out l:List)
+addNeighbor(in n:NodeDescriptor)
+removeNeighbor(in n:NodeDescriptor)
+contains(in n:NodeDescriptor,out b:boolean)
+addTransport(in t:Transport)
+removeTransport(in t:Transport)
+contains(in t:Transport,out b:boolean)
+updateTransport(in p:Proxy)
+getAllBackupConnectionIDs(in n:NodeDescriptor,
 out l:List)

ActiveBackupConnectionsManager OnDemandBackupConnectionsManager

Figure 4.11: The BackupConnectionsManager.

4.3 The Backup Connections Manager

In order to support redundancy another component is added, that is the

BackupConnectionManager, which works at the Transport layers and man-

ages all the backup connections. It is shown in the Figure 4.11.

The actual version of SEC-REDS provides two implementations of the

BackupConnectionsManager, the ActiveBackupConnectionsManager and the

OnDemandBackupConnectionsManager. Those have been explained in the

previous chapter.

Appendix A

A brief description of XACML

Tutto ciò che può essere detto, può essere detto

chiaramente.

Ludwig Wittgenstein (1889 - 1951)

Austrian philosopher

A.1 The architecture

XACML [24] defines a general policy language used to protect resources

as well as an access decision language.

Every enterprise has a need to secure resources accessed by employees,

partners, and customers. For example, browser based access to portals which

aggregate resources (web pages, applications, services, etc.) are typical in to-

day’s enterprises. Clients send requests to servers for resources, but before a

server can return that resource it must determine if the requester is autho-

rized to use the resource. This is where XACML fits in. XACML provides

74

APPENDIX A. A BRIEF DESCRIPTION OF XACML 75

a policy language which allows administrators to define the access control

requirements for their application resources. The language and schema sup-

port include data types, functions, and combining logic which allow complex

(or simple) rules to be defined. XACML also includes an access decision

language used to represent the runtime request for a resource. When a pol-

icy is located which protects a resource, functions compare attributes in the

request against attributes contained in the policy rules ultimately yielding a

permit or deny decision.

Let consider the Figure A.1, that shows the evaluation process of a request

sent by a client. The client sends a request (1) made of a tuple composed by a

subject, a resource and an action. The subject identifies the originator of the

request (e.g. John Smith), the resource represents the object that the subject

wants to access (e.g. a file on a server), and the action specifies what the

subject wants to do with that resource (e.g. download that file). The request

is sent to the Server Policy Enforcement Point or simply Policy Enforcement

Point (PEP, for short), which is the system entity that performs access con-

trol, by making decision requests and enforcing authorization decisions. The

PEP sends the request to the Policy Information Point (PIP) (2), which is

the system entity that takes from the received tuple the list of attributes.

In fact, each member of the tuple (subject,resource,action) can have one or

more attributes, characterizing that specific member. An attribute is made

of predicates, that are statements about attributes whose truth can be eval-

uated. Then the PIP sends to the PEP the list of the obtained attributes.

The PEP sends the request made of the tuple (subject,resource,action) and

its attributes to the Policy Decision Point (PDP) (3), that is the system en-

APPENDIX A. A BRIEF DESCRIPTION OF XACML 76

SERVER POLICY
ENFORCEMENT

POINT

Policy Decision
Point

(1)

(6)

(5)

(4)

(3)

(2)
Request(subject,
resource,action)

Policy Information
Point

Subject, Resource,
Environment Attributes

XACML

Requested resource,
Action,

Requestor attributes

Policy Store

XACML

User

Figure A.1: XACML Architecture

tity that evaluates applicable policy and renders an authorization decision,

which is the result of evaluating applicable policy. In particular, it consults

the Policy Store (4), that maintains the access control policy and then it

establishes whether the request can be accepted or not. The result of the

decision can be Permit or Deny. Finally, it sends the result to the PEP (5),

which communicates it to the user (6).

The XACML architecture is complete so an administrator can install it

on its server. The only thing he must specify is the access control policy,

which obviously may vary from a system to another.

An administrator creates policies in the XACML language. XACML

defines three top-level policy elements: <Rule>, <Policy> and <PolicySet>.

The <Rule> element contains a boolean expression that can be evaluated in

isolation, but that is not intended to be accessed in isolation by a PDP.

In particular, it is evaluated in a policy. A <Rule> is composed by three

APPENDIX A. A BRIEF DESCRIPTION OF XACML 77

fundamental elements, the <Subject>,the <Resource> and the <Action>.

Through those elements, you can specify to which the rule must be applied.

The rule has an effect, that is Permit or Deny.

The <Policy> element contains a set of <Rule> elements and a specified

procedure for combining the results of their evaluation. In fact, more rules

could result applicable to the same tuple (subject,resource,action). In this

case, the procedure for combining the result specifies which rule must be

applied. The procedure could be first applicable (the first rule found in the

list is applied) or permit overrides (if a rule whose result is Permit is found, it

is applied, independently from the other results). The <Policy> is the basic

unit of policy used by the PDP, and so it is intended to form the basis of an

authorization decision. A <Policy> can have also a <Target>, that specifies

the set of requests, a policy is intended to evaluate. A <Target> is made

of by three fundamental elements, the <Subject>, the <Resource> and the

<Action>. Thus a policy using the target concept can establish a first level of

visibility. In fact, among all the requests, only those matching with the target

are further analyzed by that policy. Then, if among all the rules making the

policy, at least one is found, a standard result (Permit or Deny) is provided,

but if no rule is found, the result is Not Applicable. The <PolicySet> element

contains a set of <Policy> or other <PolicySet> elements and a specified

procedure for combining the results of their evaluation. It is the standard

means for combining separate policies into a single combined policy.

If a client wants to build a request, he must create a request. This can

be achieved using the XACML language. He creates a <Request> element,

in which he can simply specify the tuple (subject, resource, action).

APPENDIX A. A BRIEF DESCRIPTION OF XACML 78

A.2 A simple example

Let consider the following example, in which a client tries to access to

the server Sample Server. The action it wants to perform is of login. The

XACML request is the following:

<?xml version="1.0" encoding="UTF-8" ?>

<Request>

<Resource>

<Attribute

AttributeId=

"urn:oasis:names:tc:xacml:1.0:

resource:resource-id"

DataType=

"http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>Sample Server</AttributeValue>

</Attribute>

</Resource>

<Action>

<Attribute

AttributeId="Server Action"

DataType=

"http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>login</AttributeValue>

</Attribute>

</Action>

APPENDIX A. A BRIEF DESCRIPTION OF XACML 79

</Request>

The previous example specifies that a generic client wants to access the

resource Simple Server to execute the action of login. In particular, both

for the resource and the action he specifies attributes, characterized by an

attribute value and an attribute id. Let suppose now that the server policy

is the following:

<Policy PolicyId="SamplePolicy"

RuleCombiningAlgId=

"urn:oasis:names:tc:xacml:1.0:

rule-combining-algorithm:first-applicable">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<Resource>

<ResourceMatch

MatchId=

"urn:oasis:names:tc:xacml:1.0:

function:string-equal">

<AttributeValue

DataType=

"http://www.w3.org/2001/XMLSchema#string">

APPENDIX A. A BRIEF DESCRIPTION OF XACML 80

SampleServer

</AttributeValue>

<ResourceAttributeDesignator

DataType=

"http://www.w3.org/2001/XMLSchema#string"

AttributeId=

"urn:oasis:names:tc:xacml:1.0:

resource:resource-id"/>

</ResourceMatch>

</Resource>

</Resources>

<Actions>

<AnyAction/>

</Actions>

</Target>

<Rule

RuleId="LoginRule" Effect="Permit">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<AnyResource/>

</Resources>

APPENDIX A. A BRIEF DESCRIPTION OF XACML 81

<Actions>

<Action>

<ActionMatch

MatchId=

"urn:oasis:names:tc:xacml:1.0:

function:string-equal">

<AttributeValue

DataType=

"http://www.w3.org/2001/XMLSchema#string">

login

</AttributeValue>

<ActionAttributeDesignator

DataType=

"http://www.w3.org/2001/XMLSchema#string

AttributeId="Server Action"/>

</ActionMatch>

</Action>

</Actions>

</Target>

</Rule>

<Rule RuleId="FinalRule" Effect="Deny" />

</Policy>

APPENDIX A. A BRIEF DESCRIPTION OF XACML 82

As we can see from the code, this policy applies only to clients that want

to access to Sample Server. The first rule establishes that a client that wants

to login to the server, can perform this action, while the second rule is applied

to all the other clients, that want to perform other actions. In this case, they

can’t do them.

When the client sends the request to the server, this evaluates it and

produces the result:

<Response>

<Result>

<Decision>Permit</Decision>

<Status>

<StatusCode Value=

"urn:oasis:names:tc:xacml:

1.0:status:ok" />

</Status>

</Result>

>/Response>

As expected, the server allows the client to login.

Appendix B

A simple case of study

Example is the school of mankind, and they will

learn at no other.

Edmund Burk (1729 - 1797)

Irish philosopher

Let suppose that a patient wants to send his data to his physician and let

suppose that he suffers of angina pectoris. Periodically, he sends his healthy

conditions to his physician. But let suppose also that all the cardiologists

wants to collect information about angina pectoris, without knowing the

patient identity. An access control strategy can be used.

The patient, here named John Patient, can act as a publisher so he can

define the following code:

KeyStoreData ksd = new KeyStoreData();

ksd.setKeystore("Patient","JKS","123456".toCharArray());

ksd.setRecord("patient","123456".toCharArray());

83

APPENDIX B. A SIMPLE CASE OF STUDY 84

ksd.setSignature(null,"MD5withRSA");

XACMLMessage message = new XACMLMessage("John Patient",

null,"angina pectoris","publish",ksd);

String[] data = new String[3];

data[0] = "Name:John,Surname:Patient,born:4/2/1948,

country:Italy";

data[1] = "type of illness:steady angina";

data[2] = "number of pills in a day: if needed,

type of pill:Carvasin 10mg";

MessageContent mc = new MessageContent(data);

int[] cVis = {0};

mc.addMember("Andrew Smith", null);

mc.addMember("cardiologists",cVis);

message.setMessageContent(mc);

message.setRule("AllowAllCardiologists",

null,"angina pectoris" ,

"subscribe","cardiologists", "Permit");

DispatchingService es =

new SSLDispatchingService(dsAddr, dsPort);

es.open() throws Exception;

es.publish(message);

APPENDIX B. A SIMPLE CASE OF STUDY 85

John Patient must present to the dispatching network an Authorizations

Certificate. This certificate is recovered from his local Key Store (a Java

Object in which local certificates are stored). In particular, he creates a

KeyStoreData object, that contains all the data necessary to recover the

Authorizations Certificate from the key store. the which in this case al-

lows him to publish his publications. Then he creates a XACMLMessage, in

which he specifies the asked operations (S,R,A) and the Authorizations Cer-

tificate (which will be recovered directly from the local key store). Then

he create a MessageContent object, which contains the content of the mes-

sage (in the example, he suffers of a type of angina, called steady angina

and he must take a pill, named Carvasin 10mg only if needed) and the

table of visibility. To add a member to that table, he uses the method

addMember(String member, int[] visibility), in which the vector vis-

ibility specifies the fields of the message content seen by that member. If

it is null, all fields are available. Then he sets a rule for the message: he

allows all the cardiologists to subscribe to his message. Finally he creates a

SSLDispatchingService object and publishes the message.

Note that all cardiologists will receive the message, but with different

visibilities. In fact, Andrew Smith will receive all the information, while a

generic cardiologist only those about healthy conditions.

A generic cardiologists wanting to receive these informations, must present

to the dispatching network a valid AuthorizationsCertificate, that classi-

fies him as belonging to the cardiologists group. Then, he simply subscribes.

DispatchingService es =

APPENDIX B. A SIMPLE CASE OF STUDY 86

new SSLDispatchingService(dsAddr, dsPort);

es.open();

KeyStoreData ksd = new KeyStoreData();

ksd.setKeystore("Cardiologist","JKS","123456".toCharArray());

ksd.setRecord("cardiologist","123456".toCharArray());

ksd.setSignature(null,"MD5withRSA");

es.subscribe(new XACMLFilter("Mark Cardiologist",

"cardiologists","angina pectoris","subscribe", ksd));

XACMLMessage m = (XACMLMessage)es.getNextMessage();

If the cardiologist is Andrew Physician he will receive the whole informa-

tion.

Appendix C

Setting up a secure and robust

broker

If a man will begin with certainties, he shall end

in doubt; but if he will be content to begin with

doubts, he shall end in certainties.

Francis Bacon (1561 - 1626)

English philosopher

This appendix explains how a secure and robust broker could be built

up. Note that in this context the term object and the term component have

the same meaning. Firstly, the Overlay level is built up, setting up the

Transport:

int TCPport = 8080;

int SSLport = 8081;

Transport normalTransport = new TCPTransport(TCPport);

87

APPENDIX C. SETTING UP A SECURE AND ROBUST BROKER 88

SecureTransport secureTransprt = new SSLTransport(SSLport);

ComplexTransport transport =

new ComplexTransport(normalTransport,secureTransport);

In the example, two Transport are created, the TCPTransport, which

listens at the port 8080, and the SSLTransport, which listens at the port

8081. Than the two Transport objects are joined using a ComplexTransport

object, which manages them.

As next step, the TopologyManager component is created.

SecureTopologyManager topolMgr = new

SecureLSTreeTopologyManager(transport);

In the example, a SecureLSTreeTopologyManager is created, passing the

Transport as parameter. This specific TopologyManager is an extension in

terms of security of the LSTreeTopologyManager provided by the standard

REDS architecture.

Now the overlay components are created, so the Overlay object can be

created.

SecureOverlay overlay =

new SecureOverlay(topolMgr,transport);

The example shows the creation of a SecureOverlay object, that is an

extension in terms of security of the Overlay provided by the standard REDS

architecture.

After having created the Overlay level, the SecurityManager and the

BackupConnectionsManager can be created.

APPENDIX C. SETTING UP A SECURE AND ROBUST BROKER 89

SecurityManager secMgr =

new GenericSecurityManager(overlay);

BackupConnectionsManager bcm = new

OnDemandBackupConnectionsManager(secMgr);

transport.setBackupConnectionsManager(bcm);

The example employs a OnDemandBackupConnectionsManager. Then the

Routing layer can be built up.

SecureRoutingStrategy routingStrategy = new

SecureSubscriptionForwardingRoutingStrategy();

Reconfigurator reconf =

new DeferredUnsubscriptionReconfigurator();

SubscriptionTable subscriptionTable =

new GenericTable();

SecureReplyManager replyMgr = new

SecureImmediateForwardReplyManager();

ReplyTable replyTbl = new HashReplyTable();

SecureRouter router =

APPENDIX C. SETTING UP A SECURE AND ROBUST BROKER 90

new SecureRouter(secMgr,overlay);

The RoutingStrategy is created. The example shows the creation of

a SecureSubscriptionForwardingRoutingStrategy, that is an extension

in terms of security of the SubscriptionForwardingRoutingStrategy pro-

vided by the standard REDS architecture. Then the Reconfigurator object

is built up, using the DeferredUnsubscriptionReconfigurator, implemen-

tation. Then the SubscriptionTable is created, using the GenericTable

implementation. Also the ReplyManager and the ReplyTable are created.

Note that the SecureReplyManager is an extension in terms of security of

the ReplyManager provided by the standard REDS architecture. Finally the

Router is created. The example shows the creation of a SecureRouter ob-

ject, that is an extension in terms of security of the Router provided by the

standard REDS architecture.

All those components must be joined, with the following strategy:

secureTransport.setSecurityManager(secMgr);

routingStrategy.setSecurityManager(secMgr);

routingStrategy.setOverlay(overlay);

reconf.setOverlay(overlay);

reconf.setRouter(router);

replyMgr.setReplyTable(replyTbl);

replyMgr.setSecurityManager(secMgr);

APPENDIX C. SETTING UP A SECURE AND ROBUST BROKER 91

router.setSubscriptionTable(subscriptionTable);

router.setRoutingStrategy(routingStrategy);

router.setReplyManager(replyMgr);

router.setReplyTable(replyTbl);

As next step, all the security components (excluded the SecurityManager

already defined) must be created.

Trust trust = new SubjectBasedTrust();

trust.addAccepted("John Patient");

The Trust object is created, using the SubjectBasedTrust implementa-

tion, in which you can specify the list of accepted subjects. In the example

all the certificates in which John Patient is the subject, are considered as

trusted. Then the ConnectionPolicy object is created.

ConnectionPolicy cp =

new UntrustedDegradeConnectionPolicy();

The example shows the use of the UntrustedDegradeConnectionPolicy,

in which a neighbor is degraded to untrusted, if its certificate is not considered

valid by the Trust object.

Eventually the ConnectionPolicy and the Trust components are joined

to the SecurityManager:

secMgr.setTrust(trust);

secMgr.setConnectionPolicy(cp);

APPENDIX C. SETTING UP A SECURE AND ROBUST BROKER 92

If you want to link a broker towards another broker, you simply invoke

the following method:

String url = "reds-ssl:127.0.0.1:8081";

overlay.addNeighbor(url);

In this case, the broker tries to open a ssl connection towards the neighbor

whose url is specified by the string url.

If you want to add a backup connection, you can invoke the following

methods:

String defaultURL = "reds-ssl:155.34.10.3:8081";

BackupStrategy bs =

new BackupStrategy(defaultURL,neighbor);

bs.setTimeout(10000);

bs.setTentatives(2);

String backupURL = "reds-tcp:155.34.10.3:8080";

bs.addBackupConnection(backupURL);

bcm.addMasterBackupConnection(bs);

Firstly, the BackupStrategy is created, in which the default url and the

neighbor are specified. The example shows that the timeout is 10 sec. and

the number of tentatives 2. A backup connection is added, that is speci-

fied by the string backup url. Finally, the BackupStrategy is added to the

BackupConnectionsManager.

Bibliography

[1] G. Muhl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems.

2006.

[2] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. The many faces of publish/subscribe. In Computing

Surveys, volume 35. ACM, june 2003.

[3] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[4] Luca Rossellini. Progettazione e realizzazione di un sistema publish-

subscribe con architettura cross-layer per reti ad-hoc. Master’s thesis,

University of Pisa, march 2003.

[5] Computer and Information Sciences, volume 2869/2003. Springer Berlin

/ Heidelberg, 2003.

[6] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Match-

ing events in a content-based subscription system. In Proceedings of the

18th ACM Symp. on Principles of Distributed Computing, pages 53–61.

ACM, 1999.

93

BIBLIOGRAPHY 94

[7] G. Picco, G. Cugola, and A. Murphy. Efficient content-based event

dispatching in presence of topological reconguration. In Proc. of the 23rd

Int. Conf. on Distributed Computing Systems, pages 234–243. ACM,

May 2003.

[8] E. Yoneki and J. Bacon. An adaptive approach to content-based sub-

scription in mobile ad hoc net-works. MP2P-colocated with IEEE PER-

COM, 2004.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a

wide-area event notication service. In ACM Trans. on Computer Sys-

tems, volume 19, pages 332–383, August 2001.

[10] L. Mottola, G. Cugola, and G. Picco. A self-repairing tree overlay en-

abling content-based routing in mobile ad hoc networks. In Technical

report, Politecnico di Milano, 2006.

[11] E. Yoneki and J. Bacon. Content-based routing with on-demand multi-

cast. In Proc. of the 3rd Int. Workshop on Wireless Ad Hoc Networking.

WWAN-colocated with IEEE ICDCS, 2004.

[12] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design

and evaluation of a wide-area event notification service. ACM Transac-

tions on Computer Systems, 19(3):332–383, aug 2001.

[13] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.

Achieving scalability and expressiveness in an internet-scale event noti-

fication service. In Proceedings of the Nineteenth Annual ACM Sympo-

BIBLIOGRAPHY 95

sium on Principles of Distributed Computing, pages 219–227, Portland,

Oregon, jul 2000.

[14] Antonio Carzaniga, David R. Rosenblum, and Alexander L. Wolf. Chal-

lenges for distributed event services:scalability vs. expressiveness. In

Engineering Distributed Objects ’99, Los Angeles, California, may 1999.

[15] Antonio Carzaniga. Architectures for an Event Notification Service Scal-

able to Wide-area Networks. PhD thesis, Politecnico di Milano, Milano,

Italy, dec 1998.

[16] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-

sign of a scalable event notification service: Interface and architecture.

Technical Report CU-CS-863-98, Department of Computer Science, Uni-

versity of Colorado, aug 1998.

[17] Gianpaolo Cugola and Gian Pietro Picco. Reds: a reconfigurable dis-

patching system. In SEM ’06: Proceedings of the 6th international work-

shop on Software engineering and middleware, pages 9–16, New York,

NY, USA, 2006. ACM Press.

[18] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander L. Wolf.

Security issues and requirements for internet-scale publish-subscribe sys-

tems. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual

Hawaii International Conference on, pages 3940–3947, 2002.

[19] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Muhl.

Security aspects in publish/subscribe systems. IEE Seminar Digests,

2004(918):44–49, 2004.

BIBLIOGRAPHY 96

[20] Lukasz Opyrchal and Atul Prakash. Secure distribution of events in

content-based publish subscribe systems. In SSYM’01: Proceedings

of the 10th conference on USENIX Security Symposium, pages 21–21,

Berkeley, CA, USA, 2001. USENIX Association.

[21] D. Frey and A. Murphy. Maintaining publish-subscribe overlay tree in

large scale dynamic networks. Technical report, Politecnico di Milano,

www.elet.polimi.it/upload/frey, 2005. Submitted for publication.

[22] G. Cugola, G. Picco, and A. Murphy. Towards dynamic reconguration

of distributed publish-subscribe systems. In SEM02: Proc. of the 3rd

Int. Workshop on Software Engineering and Middleware, volume LNCS

2596, pages 187–202. Springer, May 2002.

[23] G. Cugola, D. Frey, A. Murphy, and G. Picco. Minimizing the recongu-

ration overhead in content-based publish-subscribe. In Proc. of the ACM

Symp. on Applied Computing (SAC), pages 1134 –1140. ACM, 2004.

[24] Entrust Inc. Tim Moses, editor. eXtensible Access Control Markup Lan-

guage (XACML) Version 2.0, 2005.

Index

Access Control, 32, 69

Access Control List, 23

Access Control Policy, 32

Access Control Strategy, 46, 69

Active Backup Connections, 53

Application, 9

Authentication, 10, 47

Authorization, 23

Authorizations Certificate, 35

Availability, 13

Backup connection, 50

Backup Connections Manager, 53, 73

Broker API, 8

Certificate, 22

Certificate request, 29

Certification Authority, 23

Client, 8

Client API, 8

Confidentiality, 12

Connection Policy, 24, 45, 69

Content Based Routing, 5

Content-based systems, 3

Default connection, 50

Dispatcher, 8

Dispatching Network, 2

event, 2

event notification, 2

Event Notication Service, 2

Fault tolerance, 15

Filter, 4, 5, 63

Group, 26

Information confidentiality, 12, 48

Information integrity, 48

Infrastructure, 9, 20

Logic and, 37

Master, 52

Message, 4, 63

Message forwarding, 5

97

INDEX 98

middleware, 2

On Demand Backup Connections, 58

Overlay, 8, 61

Publish-subscribe, 1

Publisher, 1

REDS, 7

Router, 8, 61

Routing strategy, 5

Scope, 26

SEC-REDS, 41, 53, 61

Secure Connection, 23

Secure Path, 25

Security Manager, 41, 42, 65

Security Test, 44

Service integrity, 11

SIENA, 7

Slave, 52

space decoupling, 2

subject-based subscription, 3

Subscriber, 1

Subscription confidentiality, 12

Subscription forwarding, 5

Subscription Table, 5

synchronization decoupling, 2

time decoupling, 2

Topology Test, 44

Transport, 62

Trust, 13, 45, 65

Trusted neighobr, 25

Untrusted neighbor, 25

X509Certificate, 23

XACML, 46, 74

XACML Message, 46

