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Abstract

Several human operators control a single Unmanned Aerial Vehicle. This is not

scalable. Recently, the trend is to have a single human operator to handle a

group of Unmanned Aerial Vehicles in order to have a system able to work with

thousands of Unmanned Aerial Vehicles flying over a country. Swarm Intelligence

(the emergent, collective of social insect colonies) provides the guidelines to

design such a decentralized system. In particular, social insects are capable of

achieving several things, such as building and defending a nest, foraging for food,

taking care of the brood, allocating labor, forming bridges.

This thesis presents a framework for decentralized control of a swarm of Un-

manned Aerial Vehicles based on the artificial potential functions characterized

by attractive and repulsive properties, which are used respectively to achieve

the goal and to avoid collisions. Each vehicle of the swarm makes use of lim-

ited information from others, and furthermore it is assumed to have a simple

dynamic and to be identified as an agent. In this scheme, multiple agents in a

swam are able to reach a configuration and to maintain it, while migrating as

a group and avoiding collisions among each other. Therefore, the behaviors of

the swarm system proposed in this thesis are group migration and configuration,

and include collision avoidance.

In particular, this thesis evaluates different potential expressions in order to

determine how quickly the swarm converges to a desired direction and velocity,

and how robust the swarm is against collisions among the agents. Furthermore,

two metrics estimate which potential is the best one in a certain scenario. One

quantifies how quickly the swarm converges to the given velocity, and the second

evaluates how robust the potential is against collisions. The simulation results

show that the proposed scheme can construct a swarm system with the capability

of group migration and configuration in the presence of obstacles, by using a
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limited amount of communication.
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Riassunto

Molti operatori controllano un solo Unmanned Aerial Vehicle – Veicolo Aereo

Non Equipaggiato – rendendo il sistema di controllo non scalabile. Attualmente,

nell’ambito del controllo di questo tipo di veicoli, la tendenza é quella di gestire

un gruppo di Unmanned Aerial Vehicle tramite un solo operatore in modo da

avere un sistema in grado di operare con migliaia di Unmanned Aerial Vehicle che

volano sopra una nazione. Swarm Intelligence, basata sui cosiddetti insetti so-

ciali, fornisce le linee guida per progettare sistemi decentralizzati. In particolare,

gli insetti sociali sono in grado di perseguire diversi obiettivi, dalla costruzione e

difesa del nido, alla ricerca del cibo, al prendersi cura del nido, all’assegnazione

di squadre di operai, alla costruzione di ponti.

Questa tesi presenta un framework per il controllo decentralizzato di uno

sciame di Unmanned Aerial Vehicle basato su funzioni di potentiale artificiale

caratterizzate da proprietá attrattive e repulsive, che sono usate rispettivamente

per raggiungere l’obiettivo e per evitare le eventuali collisioni. Ciascun veicolo

dello sciame utilizza un numero limitato di informazioni degli altri veicoli, ed

inoltre é caratterizzato come un agente con dinamica molto semplice. In questo

schema, piú agenti di uno sciame sono in grado di raggiungere una configurazione

e di mantenerla, mentre migrano come gruppo ed evitano collisioni tra di loro.

Pertanto, i comportamenti del sistema a sciame proposto in questa tesi sono la

configurazione e la migrazione del gruppo, e includono la elusione di collisioni.

In particolare, questa tesi analizza diverse espressioni di potenziale per deter-

minare in quanto tempo lo sciame converge alla direzione e velocitá desiderata,

e quanto é capace lo sciame ad evitare le collisioni tra gli agenti. Inoltre, sono

state determinate due metriche che forniscono la stima del migliore potenziale in

un determinato scenario. Una metrica quantifica quanto velocemente lo sciame

converge ad una data velocitá, e la seconda analizza quanto robusto é il poten-
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ziale per evitare le collisioni. Le simulazioni mostrano che la soluzione proposta

permette di costruire un sistema a sciame in grado di gestire la migrazione e la

configurazione del gruppo in presenza di ostacoli utilizzando un numero limitato

di informazioni.
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“Data la causa, la natura opera l’effetto nel più breve modo che operar si

possa”

— Leonardo Da Vinci, (1452-1509)
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First, this research involves Swarm Intelligence, due to the high number

of its successful applications in robotics. It is based on the study of natural

collective behaviours in decentralized and self-organized systems. By using this

form of artificial intelligence, groups of Unmanned Air Vehicles are simplified

in groups of simple agents interacting locally with one another and with their

environment. Examples of collective behaviours in nature are ant colonies, bird

flocking, animal herding, bacteria molding and fish schooling.

Then, this thesis involves also the new scientific discipline called Biomimicry

(from Greek bios – life – and mimesis – imitation), also known as Biomimetrics,

due to the recent trends in the solution of engineering problems to design a new

class of Unmanned Aerial Vehicles and in the control system design. Biomimicry

studies nature’s models, taking ideas from these designs and implementing them

in another technology such as engineering or computing. The reason is that

nature has come up solutions for different problems such as foraging and survival

for food in a hostile environment, swarm behaviour, developing billions of years

of trial-and-error. Nature use evolution to solve these problems by using the

mechanism of natural selection, involving the adaptation to totally different

habits from other years. Furthermore, this new science uses nature to judge the

rightness of human solutions. Also, Biomimicry is based on the concept that

human can learn from natural world, therefore the nature is considered as a

mentor.

Some materials of this thesis have been published in the following papers:
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Contribution

The purpose of this thesis is to give a coherent understanding of swarm be-

haviours through artificial potential and to provide an insect flight model.

Outline

This dissertation is tailored for a wide audience including engineers as well as

biologists interested in swarm behaviours applied to Unmanned Aerial Vehicles

from a control theory perspective.

Chapter 1 serves as introduction to the thesis and establishes the philosophy

of the general methodologies that are used. First, we provide an overview of

the social insects in order to describe some of the natural collective behaviours.

Then, we explain why the requirements of Unamanned Aerial Vehicles can be

satisfy by nature. Next, we overview some ideas from biology applied to Un-

manned Aerial Vehicles.

Chapter 2 introduces the artificial potential method. First, we provide the

basics of the artificial potential and explain when this method is suitable. Next,

we introduce the problem statement and explain our solution with the artificial

potential function. Then, case study is described together with the results from

the numerical simulations obtained for a single goal. Therefore, our reflections

are reported with the definitions of two metrics. In addition, simulations and

results are also provided for a sequential of targets in order to show that the

swarm is able to change trajectory and maintain its alignment once a target

xviii
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is reached. The problem statement is extended to also consider the obstacles.

Finally the conclusions are reported.

Finally, Chapter 3 summarizes the results presented in the dissertation and

discusses possible extensions, in particular from a theoretical perspective.
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Chapter 1

Introduction

Evolution has already resolved many of the challenges found in nature providing

solutions characterized by having maximal performance and using minimal re-

sources. Through evolution, nature has produced effective solutions to complex

real-world problems responding to its needs in harmony with the environment.

Therefore, it has inspired humans in their desire to improve their life and led to

effective algorithms, methods, materials, structures, mechanisms and systems.

Biomimicry, also known as Biomimetics, involves copying, imitating and learn-

ing from biology. It has been applied to a number of fields from political science

to car design to computer science (e.g., cybernetics, swarm intelligence, artificial

neurons and artificial neural networks are all derived from biomimetic princi-

ples), helping humans understand related phenomena and associated principles

in order to engineer novel devices and improve their capability.

Before discussing social insects, it is important to recognize that the majority

of biological creatures are made up by a cell-based structure that offers them

the ability to grow with fault-tolerance and self-repair. It is also interesting

to observe that workable solutions found in nature pass the test of survival in

order to reach the next generation. In particular, Lowman [21] observed that the

presence of life on Earth dates back to 3.8 billion years ago; Schopf [31] noticed

that ancient bacteria, called Archea (Archaebacteria), have existed on the Earth

for at least 3.5 billion years. Notice, however, that the evolution of mega-scale

terrestrial biology failed with the extinction of creatures such as dinosaurs and

mammoths, whilst marine creatures such as whales survived.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Social Insects

Insects, part of social category, live in colonies, such as ants, bees, wasps and

termites. Each of them is self-organized, and specialized in a set of tasks, ac-

cording to its morphology, age, or change. Therefore, these organisms perform

various activities simultaneously inside the colony, displaying collective swarm

intelligence.

For example, individual termite could not build nests without the collab-

oration of the others, whilst ants allocate labor dynamically to different tasks.

Honey bees build series of parallel combs, each of them is organized in concentric

rings of brood, pollen and honey. In addition, honey bees search food sources

according to their quality and the distance from the hive. Some termites build

complex nests characterized by a cone-shaped outer walls. A swarm of tropical

termites can build complex multilevel mounds that can be five meters tall and

weigh ten tons [25]. In particular, these mounds have impressive overall rigidity,

are made from a material that is fire resistant, and contain enough rooms and

passages to house the brood and all of its food reserves. There are many other

examples of the capabilities of social insects [5] and Figure 1.1 collects some

swarms of social insects.

Social insect colonies are able to connect individual behaviour with collective

performance. Some aspects of the collective activities of social insects are self-

organized, and therefore complex collective behaviours can emerge from inter-

actions among individuals with simple behaviour [14]. Typical problems solved

by a colony include finding food, building or extending a nest, dividing labor

among individuals, feeding the brood, and responding to external challenges,

for instance. Insects solve these problems in a very flexible and robust way. In

fact they are able to adapt themselves when the environment changes (i.e., flex-

ibility), and to collaborate each other in achieving the colony task even though

some of them fail to perform their tasks. It is important to observe that a social

insect colony is a decentralized problem-solving system, comprised of many sim-

ple interacting entities. Social insects can be modeled by using self-organization

theories.

Individual ants gather together to perform complex social tasks such as aphid

farming. These farming ants protect a herd of smaller insects from predators

so they can milk them of their honeydew [16]. Also, most ant species form

invisible roadways, called ant highways, where columns of ants follow one another
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1.2. SWARM OF UNMANNED AERIAL VEHICLES 3

Figure 1.1: Swarms of Social Insects (i.e., termites, honey bees, wasps and ants)

without the aid of street signs or painted lanes. These complex behaviors are

accomplished via pheromones. In this dissertation, pheromone is not taken into

consideration. Only the self-organization is analyzed.

1.2 Swarm of Unmanned Aerial Vehicles

Common Unmanned Aerial Vehicle (UAV) requires at least two operators, one to

fly the plane and the other to mange the camera mounted on it. More commonly,

four people are needed. It is interesting to observe that in some cases the field

of view afforded to the pilot is poor, therefore when a vehicle operates in a

hostile environment, the pilot loses knowledge of location. If the situation is so

critical for one UAV, thousands of people will be necessary to control a swarm

of Unmanned Aerial Vehicles (UAVs). This situation can be improved by the

future UAVs with more autonomous flight capabilities. However, even with

such advanced UAVs, they will still require human supervision to know where

to go and to confirm sensitive actions. Therefore, further improvement of UAV
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4 CHAPTER 1. INTRODUCTION

ground control stations will be necessary as they are inadequate for controlling

and monitoring the progress of a swarm of UAVs.

Some UAVs are already capable of taking off, flying a specified path, and

landing on their own, reducing the presence of humans. UAVs should be designed

in order to leave just one person in the loop of control, be it for a single UAV or

an entire swarm of them. In order to achieve that, a system enables to support

simple controls that perform tasks without the knowledge of the entire system,

but whose combined actions exhibit complex aggregate behavior. In addition, a

swarm of UAVs should be kept as simple as possible to minimize costs, to enhance

their robustness in the field, and to perform complex tasks as a whole. Nature

has provided a template for accomplishing these requirements in social insects.

A swarm control algorithm can be created by making analogies among UAVs and

social insects. Social insects have a complex aggregate behavior despite being

simple creatures.

A swarm of UAVs can be considered as a set of N agents (typically ten or

more), which cooperate with each other to achieve some behavior and some goal,

moving in a way that appears to be well-choreographed but following simple rules

to guide their actions. The swarm achieves its goal via the interactions with all

the entities. In Ref. [20] an overview of the intelligent swarm behavior is given

as the emergent collective intelligence of groups of simple autonomous agents.

It describes some application areas for swarm intelligence such as swarm robots,

biological basis and artificial life.

1.3 Related Works

Scientists from multiple disciplines have recently begun to model biological

swarms to better understand how social animals (i.e., birds, insects, fish) inter-

act, achieve goals, and evolve [30]. Through billions of years of trial-and-error

using the mechanism of natural selection, nature has chosen specific solutions to

problems such as survival and foraging for food in a hostile environment, involv-

ing the adaptation to totally different habits. Many of these solutions involve

swarm behavior and can be used as a source of inspiration by analogy, to pro-

vide enhanced solutions in the control management of UAVs for civil [22], space

missions [1, 26], and military [24] applications.

New technologies permit the development of new vehicles with small (or mi-

cro) dimension following methods and systems found in nature, that is using
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1.3. RELATED WORKS 5

Biomimicry. Furthermore, trying to mimic natural emerging systems as swarm-

ing [15], reduces the ratio of human operators to control sophisticated UAVs. A

typical one is an Unmanned Air Vehicle (UAV) engaged in space missions for

scientific investigation, like planetary surface exploration, where the strategies to

mission and flight planning can be improved by developing biologically inspired

flight control [33, 34]. Another example is the use of UAVs in urban areas to

test concentrations of hazardous materials from biological, chemical, or nuclear

accidents.
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Chapter 2

Artificial Potential Fields

Applied to a Swarm

Artificial Potential Fields are mathematical functions, assigned to robots and

threats. A force is induced on any robot that is kept in a potential field. Each

robot moves to the positions where the potential is the least, as these are the

positions where the forces acting on the robot are minimum. Furthermore,

this approach works by associating the goal with the location of the lowest

potential and making the robots move to this point. The artificial potential

theory represents an affordable good way to navigate a swarm in an unknown

environment, requiring a low computational cost.

We present a framework for non-linear control of a swarm of agents based

on the artificial potential characterised by attractive and repulsive potentials.

This artificial potential under certain conditions is conducible to Lyapunov’s

potential. In this context, the swarm is able to reach a desired configuration

and to maintain it whilst it migrates as a group avoiding inter-agent collisions.

Therefore, the behaviors of the swarm system proposed in this study are group

migration and configuration, and include collision avoidance. In particular, we

define three potential functions specific to the problem under examinations be-

longing to three different families present in literature: a gradient, a gaussian

and a sinusoid. By examining these potentials we address the guidance problem

of a swarm of agents in order to determine how quickly the swarm converges to

a desired direction and velocity, and how robust the swarm is against collisions

amongst the agents. Furthermore we also provide two metrics that estimate

7
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8CHAPTER 2. ARTIFICIAL POTENTIAL FIELDS APPLIED TO A SWARM

which potential is the best one in a certain scenario. The former quantifies how

quickly the swarm converges to the given velocity, whilst the latter evaluates

how robust the potential is against collisions.

2.1 Role of Artificial Potential

In the past decade, the artificial potential theory have been used for path plan-

ning of autonomous mobile robot [4, 11, 12, 19, 28], where a robot is modeled as

a particle which moves inside an artificial potential field generated using attrac-

tive and repulsive potentials. The former pulls the robot to a goal configuration,

whilst the latter pushes robot away from obstacles and collisions. The negative

gradient of the generated global potential field is considered an artificial force

acting on the robot and dictating its motion. Recently, some of the studies have

extended artificial potential methods to the maneuvering of group behaviours in

a distributed swarm system composed by a large number of autonomous agents

[2].

How to select scaling parameters of the artificial potential functions related

to the attractive and repulsive forces in order to avoid the local minima re-

mains a challenge. Furthermore the potential field-based methods are oriented

heuristically and the lack of analytical design guidelines can be problematic in

applications. In Ref. [6] the attractive and repulsive functions are standard

defined, therefore the repulsive force is much larger than the attractive one. In

this particular case, when the goal is near the obstacle, the robot cannot reach

the goal because of the larger repulsive force coming from the obstacle.

Many swarm-like algorithms are based on the concept of artificial potential

fields. One characteristic of a system using artificial potential fields is the oc-

currence of local potential minima. These algorithms will fail, if the robot gets

stuck in one of the local minima. Therefore, systems using such algorithms ei-

ther try to change their potential functions in order to avoid local minima, or

define a special algorithms. A discussion of social potential fields has been done

in [27], providing guidelines to design potential fields in order to achieve certain

tasks such as a guarding behaviours for robots and bivouacing. In Ref. [32] the

authors have used and analyzed simple artificial potentials to make a group of

robots from particular shapes.

A class of attraction and repulsion functions [10, 9] extends the results on

swarm aggregations in Ref. [11]. Some theoretical results have been introduced
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on the dynamics of aggregating swarm of robots. In Ref. [8] the potential method

is used in order to maneuver group behaviors such as formation, migration and

obstacle avoidance in swarm systems. Finally, Refs. [17, 18] presents a satellite

path planning algorithm inspired by collective robotics.

2.2 Problem Statement

We assume that the swarm is a set of N agents and, for convenience, we start

with a point of mass model in which an individual agent’s motion is based on

Newton’s law [23]. Taking this model into account the equations of motion, for

the i-th agent (subscript i), are:

ẋi = vi (2.1)

v̇i =
ui

mi
(2.2)

where xi is the position, vi is the velocity, mi is the mass and ui is the total

applied force (a control law or a set of controls) for the i-th agent. Each agent

is characterized at time t = 0 by an initial position xi(0) and a start velocity

vi(0) and a target velocity v∗.

The aim of the swarm is for all agents to reach the same velocity v∗ without

colliding with any of the other agents, that is:

(xi − xj) · (xi − xj) ≥ c2
i (2.3)

where xj is the position of the j-th agent closest to the i-th agent with j 6= i,

‖xi−xj‖ is the distance of the i-th agent from the j-th agent, and c2
i is a given

constant1. The term ci represents the smallest permissible distance that has to

be observed for security reason between two agents.

The problem consists of finding a suitable control law ui(t) such that the

i-th agent reaches the velocity v∗ and the constraint of Eq. (2.3) is met along

the agent trajectory.

2.3 Solution with Artificial Potential

This section introduces a proposed control law in order to accomplish the as-

signed mission. We suppose to re-configure the swarm of agents in order to allow
1The constant c2i can be different for each agent.
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each agent to reach the desired velocity v∗. This also means, at steady-state, to

execute an alignment of the whole swarm in a given direction coincident with

that of the desired velocity. The complexity of the re-alignment problem of the

swarm increases when the distance among two or more agents is less than what

we consider the security distance ci. In order to avoid catastrophic collisions, the

control law will be able to allow each agent an evasive manoeuvre in a danger

scenario.

We observe that this problem is quite difficult to manage because there is

a high number of degrees of freedom and the complexity of the system grows

quickly with the number of agents N . In addition, the problem is not tractable

with centralized methods. Therefore, we decided to adopt a decentralized ap-

proach where each agent is responsible for its own trajectory [7].

An interesting solution to the problem of synthesizing a control law with the

above characteristics, is provided by adopting for each swarm agent an artificial

potential function Vi with the following characteristics:

Vi (vi = v∗) = 0 (2.4)

Vi > 0 , ∀ vi 6= v∗ (2.5)

Vi →∞ as ‖vi‖ → ∞ (2.6)

If the artificial potential function is based on Lyapunov’s potential concept, the

further concavity condition for Lyapunov’s direct method:

V̇i < 0 , ∀ vi 6= v∗ (2.7)

is sufficient to guarantee that the equilibrium point v∗ is globally asymptotically

stable. Therefore, this means that

V̇i = 0 when vi ≡ v∗ (2.8)

By choosing an appropriate form of the potential function Vi that uses a combi-

nation of attractive and repulsive shapes and that decreases during the motion

(see Eq. 2.7), it is possible to set an analytical form of the control law that allows

swarm to achieve the mission by keeping all the imposed constraints.

Our proposal consists of defining a (scalar) potential function Vi as follows:

Vi = Va (1 + krVr) (2.9)
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where Va is the attractive potential (i.e., it gets the system through the con-

dition vi = v∗), whereas Vr is the repulsive potential, whose goal is to avoid

catastrophic collision among agents, achieving the condition shown in Eq. (2.3).

Into Eq. (2.9), the term kr weights the relative importance of the repulsive term

with respect to the attractive term.

The first derivative of the potential function Vi expressed by Eq. (2.9) is:

V̇i = V̇a (1 + kr Vr) + kr Va V̇r (2.10)

The problem consists of selecting the attractive/repulsive potential functions in

order to guide the system through the desired final condition. The expression

of the attractive potential Va for example can be represented by a function

of parabolic type, whilst the repulsive potential Vr can be characterized by a

function with an hyperbolic trend.

2.3.1 Selection of Attractive Potential

Each swarm agent does not have the desired velocity, and therefore the control

law has to be able to decrease the error between the current velocity and the

desired velocity of each swarm agent. We define the instantaneous velocity of

the i-th agent vg as the difference between the current velocity of the i-th agent

vi and the desired velocity v∗:

vg , (vi − v∗) (2.11)

We also build a scalar function, the attractive potential, that is null once the

vector vg is null. A simple expression of the attractive potential is a quadratic

function:

Va =
1
2

vg · vg =
1
2

(vi − v∗) · (vi − v∗) =
1
2
‖vi − v∗‖2 (2.12)

Taking into account Eq. (2.12), the time-derivative of the attractive potential is:

V̇a =
∂Va

∂vi
· v̇i = (vi − v∗) · v̇i (2.13)

From Eq. (2.13) we can rewrite Eq. (2.10), after some manipulations, as

V̇i = (vi − v∗)

[
(1 + kr Vr) v̇i +

kr V̇r

2
(vi − v∗)

]
(2.14)
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We have to find a control law ui for which the inequality in Eq. (2.7) is met.

In order to do this, we consider the following expression as a potential function:

V̇i = −k (vi − v∗) · (vi − v∗) (2.15)

where k is an arbitrary positive constant. Then, equaling Eq. (2.14) and Eq. (2.15),

taking in evidence the term v̇i, and considering that the control law is the only

entity responsible for the acceleration, we obtain the control law ui:

ui

mi
= v̇i = − 2 k + kr V̇r

2 (1 + kr Vr)
(vi − v∗) (2.16)

When the repulsive potential is absent in the total potential function (Vr = V̇r ≡
0, therefore V̇i = V̇a), Eq. (2.16) is extremely simple:

ui

mi
= −k (vi − v∗) (2.17)

that is analogue to the well-known Q-guidance steering law introduced formally

by Battin [3] for rockets guidance.

2.3.2 Selection of Repulsive Potential

The control law assumes different forms according to the expression of the repul-

sive potential Vr, which goal consists of avoiding catastrophic collisions among

the agents of the swarm. For that reason, the repulsive potential Vr has to be a

simple function of the distance between two agents at each time instant. If we

define the parameter Dij as

Dij ,
[
(xi − xj) · (xi − xj)− c2

i

]2 ≥ 0 (2.18)

the distance of the j-th agent closest to the considered i-th agent, is estimated.

Considering the meaning of the term ci (specified during the description of the

problem statement) whose value is the minimum value that the distance Dij

can get, we have detailed an area that does not have to be disregarded by

any agent during its operations. Furthermore, the continuous, differentiable

function Vr = Vr(Dij) has to be chosen in order to show a maximum value in

correspondence with the condition Dij = 0 (collision event):

Vrmax , arg max
Dij

Vr ≡ Vr(Dij = 0) (2.19)

Moreover, in order to decrease, as much as possible, regions where the total

potential Vi shows a local minimum value, it is preferable to choose a function

that:
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1. is monotonically decreasing:

∂Vr

∂Dij
< 0 for Dij 6= 0 (2.20)

2. reaches a minimum value, which is equal to zero, for values of Dij large

enough:

Vrmin , arg min
Dij

Vr ≡ lim
Dij→∞

Vr = 0 (2.21)

The presence of local minima of Vi can bring the system in a configuration of

unstable equilibrium (due to the need to have a better precision in the numerical

algorithm), and therefore the system convergence to the final desired condition

can be slowed, and sometimes even inhibited. In addition, the condition ex-

pressed by Eq. (2.21) (i.e., Vr ¿ 1 when Dij À 1) attempts to convey the

important mathematical property of the repulsive potential: Vr must vanish

whenever the mutual distance is wide enough.

The repulsive potential function has to be simple enough in order to keep

down the required computational load for the calculation of the control law of

each agent, as shown in Eq. (2.16). Three functions of the repulsive potential Vr

that satisfy the conditions expressed by Eqs. (2.19)–(2.21), are discussed, and

they consider the distance Dij only for the closest j-th agent w.r.t.2 i-th agent

because the closest element is the most dangerous one.

Gradient Type

The simplest potential Vr that can be employed, is a function inversely propor-

tional to the term Dij (see Eq. (2.18)):

Vr , 1
Dp

ij

=
1

[(xi − xj) · (xi − xj)− c2
i ]

2 p (2.22)

where p ∈ N+ is a positive natural number. The time-derivative of the repulsive

potential of Eq. (2.22) is:

V̇r =
∂Vr

∂xi
· ẋi +

∂Vr

∂xj
· ẋj (2.23)

2w.r.t. means with respect to
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where

∂Vr

∂xi
= − p

D
(p+1)
ij

∂Dij

∂xi
(2.24)

∂Vr

∂xj
= − p

D
(p+1)
ij

∂Dij

∂xj
(2.25)

Taking into account that the gradients of Dij respect to xi and xj are

∂Dij

∂xi
= −∂Dij

∂xj
= 4 (xi − xj)

√
Dij (2.26)

Eqs. (2.24) and (2.25) can be rewritten as follows:

∂Vr

∂xi
= −∂Vr

∂xj
= −4 p (xi − xj)√

D
(2 p+1)
ij

(2.27)

Substituting Eq. (2.27) in Eq. (2.23), we obtain the following expression:

V̇r =
4 p√

D
(2 p+1)
ij

(xi − xj) · (vj − vi) (2.28)

After few calculations, the control law ui becomes:

ui

mi
= −

k
√

D
(2 p+1)
ij + 2 p kr (xi − xj) · (vj − vi)√

D
(2 p+1)
ij + kr

√
Dij

(vi − v∗) (2.29)

As we observe in the top graph of Figure 2.1 and taking into account Eq. (2.29),

if the relative distance between two agents became very small (Dij ¿ 1, see

Eq. (2.18)), the required control would be very large in order to avoid the catas-

trophic collision (i.e., the control energy becomes very large as Dij gets smaller,

posing limitation on the use of Eq. (2.22) because the control power is limited).

In addition, the control will be theoretically infinite when Dij → 0: this situa-

tion can be shown when the distance between two agents is exactly equal to the

security distance ci. The required control would be good for large value of Dij .

Taking into account that the control acceleration is really bounded by the

aerodynamic and propulsive characteristics of the agent, the performance of the

repulsive potential of the gradient type is not appropriate for an on-board im-

plementation. For this reason, it is necessary to use a different form of repulsive

potential that does not allow the system to reach control extreme values in case

of the danger configurations.
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Figure 2.1: Behaviour of the selected repulsive potential Vr (e.g., gradient, gaus-
sian and sinusoidal type) as a function of Dij and p.

Gaussian Type

A repulsive potential Vr that solves the problems noticed in the gradient form,

introduced firstly by Gazi and Passino in Ref. [10] and [9], is an exponential

function:

Vr , exp
(−Dp

ij

)
= exp

(
− [

(xi − xj) · (xi − xj)− c2
i

]2 p
)

(2.30)

The time-derivative of the repulsive potential of Eq. (2.30) is:

V̇r =
∂Vr

∂Dij

[
∂Dij

∂xi
· ẋi +

∂Dij

∂xj
· ẋj

]
(2.31)

where
∂Vr

∂Dij
= −pD

(p−1)
ij exp

(−Dp
ij

)
(2.32)

Substituting Eqs. (2.32) and (2.26) in Eq. (2.31), we obtain the following ex-

pression:

V̇r = 4 p

√
D

(2 p−1)
ij exp

(−Dp
ij

)
(xi − xj) · (vj − vi) (2.33)
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After few manipulations, the control law ui becomes:

ui

mi
= −

k + 2 kr p
√

D
(2 p−1)
ij exp

(−Dp
ij

)
(xi − xj) · (vj − vi)

1 + kr exp
(−Dp

ij

) (vi − v∗)

(2.34)

As we observe in the middle graph of Figure 2.1 and taking into account

Eq. (2.30) and Eq. (2.19), the maximum value of the repulsive potential is unity,

reached when the collision occurs between the agents i and j (i.e., Dij = 0).

In addition, according to Eq. (2.34), the requested control, unlike the gradient

case, always reaches a finite value.

The problem that we noticed by using a repulsive potential of gaussian type,

is tied to the fast decreasing of the potential value Vr at the increasing of Dij

(i.e., at the increasing of the distance between two agents). This behaviour,

due to the exponential form of the gaussian potential type, is clearly visible in

Figure 2.1 where we observe that the exponential function Vr vanishes essentially

when Dij > D̃ij (e.g., D̃ij = 5 when p = 1, whilst D̃ij = 2.5 decreases when

p = 2). Practically this means that two agents do not react to a possible danger

situation by starting an escape manoeuvre, until their relative distance fulfils

the condition Dij < D̃ij . In addition, the inertia of the two agents, added to

the control system constraints (i.e., the modulus of ui cannot be infinite), can

also bring the system to a catastrophic collision. It is important to observe that

this behaviour is not pointed out by using the gradient type of the repulsive

potential, particularly for large values of Dij .

Sinusoidal Type

An interesting form of the repulsive potential that contains the benefits of both

the gradient type (i.e., good results for large values of Dij ) and the gaussian

type (i.e., finite values of the requested control), uses a sinusoidal function:

Vr , sin

(
π/2

1 + Dp
ij

)
(2.35)

The time-derivative of the repulsive potential of Eq. (2.35) is given formally by

Eq. (2.31) with

∂Vr

∂Dij
= − (π/2) pD

(p−1)
ij(

1 + Dp
ij

)2 cos


 π/2

1 + Dp
ij


 (2.36)
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Substituting Eqs. (2.36) and (2.26) in Eq. (2.31), we obtain the following ex-

pression:

V̇r =
2 π p

√
D

(2 p−1)
ij(

1 + Dp
ij

)2 cos


 π/2

1 + Dp
ij


 (xi − xj) · (vj − vi) (2.37)

and the control law ui becomes:

ui

mi
= −

k + kr

π p
√

D
(2 p−1)
ij(

1 + Dp
ij

)2 cos


 π/2

1 + Dp
ij


 (xi − xj) · (vj − vi)

1 + kr sin


 π/2

1 + Dp
ij




(vi − v∗)

(2.38)

As we observe in the bottom graph of Figure 2.1, the function shown in

Eq. (2.35), satisfying all the conditions expressed by Eqs. (2.19)–(2.21), has an

upper-bound as in the gaussian type. It is also different from zero for not too

small values of Dij as in the gradient type. Furthermore, we have a lower de-

creasing of the potential value Vr at the increasing of Dij than what we observed

in the gaussian type.

2.3.3 Potential Function With Saturation

In case of the saturation of the control, the problem of the behavior of one or

more swarm agents needs to be studied, if the control ui has an upper or/and

lower limit/limits.

In general, we suppose to take into account the control law ui, expressible

from Eqs. (2.29), (2.34) and (2.38) as a desired (unbounded) value, that has

to be compared with the attainable real value. We suppose to impose to the

maximum modulus of the control vector the following limit [29]:

‖ui‖ ∈ [0, umax] (2.39)

where umax > 0 is a known value and the same for all the agents that form the

swarm. Note that the condition (2.39) allows some elements of ui to saturate,

whereas others are still in the unsaturated range (that is, less than umax).

Taking into account the condition (2.39), we can rewrite the expression of
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controller (according to the specific repulsive potential used) as:

ui =





udi if ‖udi‖ ≤ umax

umax ûdi
if ‖udi

‖ > umax

(2.40)

where ûdi
, udi

/‖udi
‖ is the unit desired control vector to either one of

Eqs. (2.29), (2.34) and (2.38).

It is interesting to observe that the presence of the saturation does not guar-

antee the stability of the system, because it is not possible to provide the re-

quested control to satisfy Eq. (2.7). Dij , the requested control from Eq. (2.29)

This is one of the most important limitation of the decentralized control based

on the artificial potential. This problem can be mitigated by choosing the gains

of the constants k and kr and the parameter p appropriately. For example, as we

observe in Figure 2.1, the slope of the function Vr = Vr(Dij) increases in relation

with the parameter p. Taking into account that the gradient of the repulsive

potential appears in the general control law Eq. (2.16), in order to avoid the

saturation of the control is opportune to use small values of p (i.e., p = {1, 2}
represents a valid choice). Another trade-off can be made with reference to the

gain k. The smaller k is, the lower the saturation.

The saturation of the control is mainly influenced by the parameter k. We

observed that small values of k inhibit the saturation usually but they produce

high convergence times. This behaviour is explained remembering that the pa-

rameter k effects the time-derivative of the artificial potential Vi (see Eq. (2.15)),

and appears in the numerator of the control law (see Eq. (2.16)).

2.4 Case Studied

In this section we present the results of some simulations obtained by using

the control laws specified in Section 2.3 in order to evaluate the validity of the

solutions and to establish which control law usually has the better of the system

reaching its goal. In particular, we simulate the behaviour of a swarm composed

of five agents (N = 5) for easy visualization. However, the results hold for any

N .

For simplicity, we suppose that all the agents have the same aerodynamic

and propulsive characteristic, as usually happens in an homogeneous swarm

of UAVs. In addition, we consider the same security distance ci = 1m and the
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Figure 2.2: Initial Scenario Configuration of the agents (at time t = 0). The
locations of the five agents are given by: i1(2.4721, 7.6085), i2(−6.4721, 4.7023),
i3(−6.4721,−4.7023), i4(2.4721,−7.6085), i5(8, 0).

same maximum control acceleration umax/mi = 10m/s2 for all the agents. These

values are compatibles with the characteristics of the existing electric powered

mini UAV, called Black Widow [13].

The results, described in this paper, concern one case particularly dangerous

in order to avoid the collision, when at the initial time t0 = 0 all the agents

fly with the same velocity (modulus equal to 10m/s) toward the same point,

i.e., the center of pentagon. For simplicity, we suppose that the agent is initially

located to the vertexes of a regular pentagon (see Figure 2.2) and all the velocity

vectors are coplanar. The problem is reduced to a bi-dimensional case, even if

the control laws are also valid in the three-dimensional space. The coordinates

of each agent are simply obtained by using the following equations:

θ = 2
π

N
for N = 1, ..., 5

r = 8

xi = rcos(iθ)

yi = rsin(iθ)

zi = 0
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In addition, we define the error vector ei(t) as the difference between the

instant velocity vector vi and the desired vector v? for the generic i-th agent:

ei(t) , vi(t)− v? (2.41)

In respect with the error definition (2.41), the convergence time tc is the mini-

mum time at which the swarm satisfies the following condition:

max
i∈[1, N ]

(ei · ei) ≤ ε for t ≥ tc (2.42)

where ε is a prescribed tolerance set to 0.05 in the simulations.

2.5 Simulations and Results: Case I

Let us consider the case where the final desired velocity has the following com-

ponents

v? = [−5, −1, 0]Tm/s

We start with the control law specified by Eq. (2.29), relative to the repulsive

potential of the gradient type. The system converges (i.e., the velocity vector of

all the agents reaches the desired value v?) in almost 2.19s by assuming p = 1,

k = 5 and kr = 1. The repulsive potential is able to produce an acceleration

that changes the trajectory of the agents and allows them to follow the security

distance.

Then, we consider the control law specified by Eq. (2.34), concerning the

repulsive potential of the gaussian type. The repulsive term of the potential

sets off with delay with respect to the previous case, but it is anyway able to

guarantee good results. The system in fact converges by assuming p = 1, k = 5

and kr = 1 in 1.93s. Another problem, observed in this case, is that the value of

Vr increases very quickly, causing the saturation of the control. Nevertheless, the

agents are successfully able to execute their evasive manoeuvres and to re-align

with the desired vector velocity v∗.

Finally, we apply with the control law specified by Eq. (2.38), referring to

the repulsive potential of the sinusoidal type. By using this repulsive potential

function, we solve the problems highlighted by the other functions, considering

that the repulsive term sets off in advance and the control increases softly. The

system converges in 2.22s by assuming p = 1, k = 5 and kr = 1.



i

i

i

i

i

i

i

i

2.5. SIMULATIONS AND RESULTS: CASE I 21

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x [m]

y
[m

]

1

2

3

4

5

Agent

desired

direction

Figure 2.3: Agents Trajectories with sinusoidal potential for Case I. Each trajec-
tory is represented by eighteenth time-steps (each of them has been calculated
at the same time t), and there is not any overlapping. For instance, the third
sample for agent i2 corresponds to the sixteenth sample for agent i1, whilst the
seventeenth sample for agent i4 is among the first two samples for agent i3.

Considering the sinusoidal control type, the trajectory followed by the agents

is shown in Figure 2.3, by which it is possible to observe that there is not

any overlapping. In addition, Figure 2.4 well describes this result indicating

the relative distances of each agent and the security distance, that it is never

overstepped. The velocity components of the agents are plotted in Figure 2.5.

Figure 2.6 shows the temporal history of the three components of the control

acceleration ui/mi for the five agents. As we observe in Figure 2.6, during the

first phase of the manoeuvre the saturation of the control is present due to the

high initial velocity of each agent. However, the system converges to the desired

condition, as confirmed from Figure 2.7 that shows the temporal history of the

total normalized potential (see Eq. (2.9)). In Figure 2.7, we also observe that

the function Vi = Vi(t) is a time-decreasing function.

2.5.1 Considerations

We simulated the ability of the swarm for re-aligning by using the three types

of repulsive potentials in order to establish which of them well reaches its aim.
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Figure 2.4: Relative Distances among agents in Case I. For each agent it is dis-
played its distance with all the other agents together with the security distance.
According to the resulted trajectory the critical distance is related to the agent
i2 with respect to the agent i3.

In the simulations, we assumed k = 5 that determines the velocity with which

the control law follows the desired velocity, as described in Eq. (2.17), therefore

the repulsive term in the control law causes a different behaviour of the agents.

The scalar function Vi has been built in order to follow the condition ex-

pressed by Eq. (2.4). For this reason, the potential has to be null once the agent

velocity vector is aligned with the desired velocity one, and hence the control

law provides a command that is proportional to the difference between the cur-

rent velocity of the i-th agent vi and the desired velocity v∗ (see Eq. (2.16)).

As a consequence, when the agent is aligned with the desired velocity vector

(vi ≡ v∗), the control becomes so small and, therefore, unsensible to the dis-

tinct coming agent and unable to avoid the collision. This inconvenient has been

anyway avoided by choosing the right value of the constant kr in the three dif-

ferent cases in order to guarantee the presence of the repulsive factor when the

distance between two agents decreases at high rate.

During the simulation we also evaluated the minimum value of the circum-

ference radius rmin , where the agents are located, from which the collision is

not verified. Table 2.1 summarizes the values of kr, k and p used during the
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Figure 2.5: Velocity components of the agents in Case I. The final velocity of
each agent reaches the desired value v?. The vertical and horizontal scales are
the same for each plot.
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Figure 2.6: Control Effort ui/mi for five agents in Case I. The vertical and
horizontal scales are the same for each plot.



i

i

i

i

i

i

i

i

24CHAPTER 2. ARTIFICIAL POTENTIAL FIELDS APPLIED TO A SWARM

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

V
i
/V

i
(t

=
0)

V1

V5

V3V2

V4

Figure 2.7: Temporal history of the artificial potential Vi for five agents in Case
I.

Parameter Repulsive potential type
gradient gaussian sinusoidal

k 5 5 5
kr 1 1 1
p 1 1 1
tc 1.7896 s 2.5216s 2.5781s

rmin 7.4 m 7.6m 7.7m

Table 2.1: Simulation Parameters.

simulations with the convergence time tc and the minimum circle radius rmin.

From Figure 2.1, it is possible to observe that the value of p allows to regulate

the velocity with which the value of Vr increases varying the parameter Dij , and

to avoid the reaching of the saturation level of the control. In addition, in order

to determine which control law offers a better behaviour than the others do,

several simulations have been done changing the radius of the circle where the

agents are located at the beginning of each simulation, determining the value

of the minimum radius for which the agents are able to perform their elusive

manoeuver without colliding.

In the last analysis, we examined the way in which the performance of the

three control laws change by varying the number of agents.
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2.6 Simulations and Results: Case II

Let us consider the case where the final desired velocities have the following

components

v?
1 = [−5, −1, 0]Tm/s

v?
2 = [1, 1, 0]Tm/s

In this case we simulate a swam that reaches a sequence of the desired ve-

locities v?
1 and v?

2. Considering the sinusoidal control type, the trajectory fol-

lowed by the agents is shown in Figure 2.8, whereas the velocity components

of the agents are plotted in Figure 2.9 and the control acceleration history in

Figure 2.10.
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Figure 2.8: Trajectories followed by the agents in Case II.

2.7 Problem Statement: Extension

In the previous sections it is explained how we found suitable control laws ui(t) in

order to allow the agent i-th to reach the velocity v∗ and to follow the constraint

of Eq.2.3. In this section we complicate the initial problem introducing another

constraint and changing the artificial potential. The added constraint represents
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are the same for each plot.
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the need of each agent to avoid obstacles presented in the scenario where the

swarm of agents is located. Imagining to have a set of M obstacles characterized

at time t=0 by an initial position xo(0) and a null velocity vo(0) = 0, the new

constraint is expressed as follows:

(xi − xo) · (xi − xo) ≥ b2
i (2.43)

where xo is the position of the o-th obstacle closest to the i-th agent with

o = 1, ..., M , ‖xi − xo‖ is the distance of the i-th agent from the o-th obstacle,

and b2
i is a given constant3. The term bi represents the smallest distance that

has to be observed between the i-th agent and the o-th obstacle.

The changed artificial potential is therefore characterized by the following

expression:

Vi = Va (1 + krVr + koVo) (2.44)

where Vo is the obstacle repulsive potential that allows each agent not to collide

with an obstacle, and the term ko weights the relative importance of the obstacle

repulsive term with respect to the attractive term.

The first derivative of the potential function Vi expressed by Eq. (2.44) is:

V̇i = V̇a (1 + kr Vr + ko Vo) + kr Va V̇r + ko Va V̇o (2.45)

Selecting Eq. (2.12) as artificial potential, and considering Eq. (2.14), after few

manipulations, we obtain the control law ui: :

ui

mi
= v̇i = − 2 k + kr V̇r + ko V̇o

2 (1 + kr Vr + ko Vo)
(vi − v∗) (2.46)

The problem consists of selecting the obstacle repulsive potential Vo functions

in order to guide the system through the desired final condition without allowing

catastrophic collisions among the agents of the swarm and the obstacles. The

new term of the artificial potential has to be a simple function of the distance

between the i-th agent and the o-th obstacle at each time instant. If we define

the parameter Bio as

Bio ,
[
(xi − xo) · (xi − xo)− b2

i

]2 ≥ 0 (2.47)

the distance of the o-th agent closest to the considered i-th agent, is estimated.

The continuous, differentiable function Vo = Vo(Bio) has to be chosen in or-

der to satisfy the same conditions expressed for the repulsive potential Vr (see

Eqs. (2.19), (2.20) and (2.21)).
3The constant b2i can be different for each agent.
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Sinusoidal Type

In the section of the repulsive potential we defined a sinusoidal function that

contains the advantages of both the gradient type and the gaussian type. The

repulsive obstacle potential Vo that can be employed, is expressed by the follow-

ing function:

Vo , sin
(

π/2
1 + Bs

io

)
(2.48)

where s ∈ N+ is a positive natural number. Considering the calculations made

for the repulsive potential of sinusoidal type, the time-derivative of the repulsive

obstacle potential of Eq. (2.48) is:

V̇o =
2 π s

√
B

(2 s−1)
io

(1 + Bs
io)

2 cos


 π/2

1 + Bs
io


 (xi − xo) · (vo − vi) (2.49)

and the control law ui becomes:

ui

mi
= − nums1 + nums2 + nums3

1 + kr sin


 π/2

1 + Dp
ij


 + ko sin


 π/2

1 + Bs
io




(vi − v∗) (2.50)

nums1 = k (2.51)

nums2 = kr

π p
√

D
(2 p−1)
ij(

1 + Dp
ij

)2 cos


 π/2

1 + Dp
ij


 (xi − xj) · (vj − vi) (2.52)

nums3 = ko

π s

√
B

(2 s−1)
io

(1 + Bs
io)

2 cos


 π/2

1 + Bs
io


 (xi − xj) · (vo − vi) (2.53)

2.7.1 Simulations

Let us consider the case where the final desired velocity has the following com-

ponents:

v? = [0, 2, 0]Tm/s

We also take into account a swarm of two agents (N = 2) and the presence of

two obstacles (M = 2) in between. We suppose that the first agent is located in

front of the second one and the velocity direction of the first agent is against the

direction of the other agent (see Figure 2.11). Choosing the parameters ko = 2,

kr = 4, k=6 and s = 2, the swarm is able to reach the desired velocity without

colliding respect to the other agents and the other obstacles (see Figure 2.12).
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Figure 2.11: Initial Scenario Configuration of the agents (at time t = 0). The
initial locations of the two agents are i1(−7, 0) and i1(7, 0), whilst the locations
of the two obstacles are io1(−1, 1) and io2(1, 1).
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2.8 Conclusions

We proposed a preliminary method for decentralized control of a swarm of ve-

hicles using artificial potential method. Two repulsive potentials found in the

literature were compared with a proposed sinusoidal approach, and simulations

were performed for some scenarios in order to prove the concept. Only the in-

formation coming from the closest agent was used in each controller. Simulation

also showed the potential capability of dealing with external obstacles. The

comparison among the different solutions was performed using the time to reach

a desired velocity and how sensitive the swarm is to inter-agent collisions.
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Chapter 3

Conclusions

In this dissertation, artificial potential fields is an effective form for defining

swarm-like algorithms. The most important contribution of this dissertation is

to show the time needed by swarm to reach a desired velocity and how robust

the swarm is to avoid collisions. Three different trial potentials are studied,

which satisfy the goals and constraints we stated: 1) swarm obtains a given

velocity and 2) does so without internal collisions. In fact, the re-alignment of

the swarm in a given direction is achieved by using a decentralized approach,

whilst the collision avoidance is obtained by taking into account the different

forms of the repulsive potential. In this implementation, the control laws are

also able to allow the generic agent to perform an escape manoeuver by using

the information related to the state of the closest agent.

The proposed control laws are able to decrease the number of requests for

each agent, and in the simplest case only need to know its current and final

state. Furthermore, the application of the artificial potential allow us to obtain

the analytical control laws, whose expressions are quite simple and compact,

enabling an easy on-board implementation with few resources. In the simulation

we calculate two metrics to determine which potential is best in a particular

situation. The two metrics are: 1) how quickly the swarm converges to the

given velocity or equivalently how responsive the swarm is to change in the

goal velocity (i.e., tc), and 2) how robust the potential is against collisions (i.e.,

rmin value). Taking into account the results of the performed simulations, we

conclude that the sinusoidal control type produces the best behaviour respect

with the other controls.

31
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3.1 Future Directions

To the authors knowledge, this thesis is one of the studies related to the swarm of

UAVs. In this dissertation, we propose a preliminary method for the decentral-

ized control of this kind of swarm, defining an artificial potential to determine

control laws enabled to allow the swarm to reach his tasks. This method is there-

fore far from being complete and exclusive. Several directions can be pursued.

Framework based on artificial potential fields. It could be interesting

to design a framework based on artificial potential fields for support different

type of collective behaviorus. Doing so, it could be possible to chose the correct

potential in order to properly manage group formation, migration and obstacle

avoidance of UAVs.

Framework based on UAVs. It could be interesting to design a framework

based on UAVs for applying the artificial potential designed in the previous

framework and opportunely changed in order to take into account the effective

aircraft dynamic model.
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