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I never even thought about
whether or not they understand
what I’m doing. . .
The emotional reaction is all
that matters as long as there’s
some feeling of communication,
it isn’t necessary that it be
understood.

John W. Coltrane



Abstract

In this thesis we propose a solution for the problem of detecting intruders in

an open set of cooperative agents. An agent can perform a finite set of ma-

neuvers and is modeled by a hybrid system whose state is a continuous and

a discrete part, representing the agents’ physical evolution and logical vari-

ables respectively. Each agent plans its behavior and chooses the appropriate

maneuver to perform following a common set of shared rules designed to en-

sure the safety of the entire system. Since the number of agents is unknown,

and since these agents have a limited knowledge of their neighborhood, they

can make decisions based only on their own position, and on the configura-

tion of a limited number of surrounding agents. Such a planning strategy is

said to be decentralized.

The expounded solution is an Intrusion Detecting System (IDS), based

on a decentralized monitoring strategy, performed by several common local

monitor modules running on–board each agent. This module tries to evalu-

ate the behavior of neighboring agents by estimating the occurrence of the

logical events described in the shared rule set. Since each monitor has a lim-

ited vision of its neighbors, in many cases it can remain uncertain about the

correctness of the monitored agent’s behavior. In order to solve this prob-

lem we developed a distributed consensus algorithm which, by introducing

communication between agents, enhances the intrusion detection capabili-

ties of single monitors. The effectiveness of our solution has been proved by

in-depth simulations and a theoretical demonstration of the convergence of

the consensus algorithm.
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Sommario

In questa tesi viene proposta una soluzione al problema dell’individuazione di

intrusi all’interno di un insieme aperto di agenti cooperativi. Un agente può

effettuare un insieme finito di manovre ed è modellato tramite un sistema

ibrido il cui stato è una combinazione di una parte continua, che rappresenta

l’evoluzione fisica dell’agente, e una parte discreta, che rappresenta le sue

variabili logiche. Ciascun agente pianifica il proprio comportamento e sceglie

la manovra appropriata da eseguire seguendo un insieme comune di regole

condivise progettate per garantire la sicurezza dell’intero sistema. Dato che

il numero di agenti è sconosciuto e che questi agenti hanno una conoscenza

limitata del loro intorno, possono prendere decisioni basandosi solamente

sulla loro configurazione e sulla posizione di un numero limitato di agenti

circostanti; una strategia di questo tipo è detta decentralizzata.

La soluzione proposta è un sistema di individuazione di intrusi (Intru-

sion Detection System), basato su una strategia di monitoraggio decentra-

lizzata, effettuata da vari moduli monitor locali installati su ogni agente.

Questo modulo cerca di valutare il comportamento degli agenti vicini sti-

mando l’occorrenza degli eventi logici descritti nell’insieme di regole. Dato

che ogni monitor ha una visione limitata dei suoi vicini, in molti casi può

rimanere incerto riguardo la correttezza del comportamento dell’agente mo-

nitorato. Per risolvere questo problema abbiamo sviluppato un algoritmo di

consenso distribuito che aumenta le capacità di decisione dei singoli monitor.

L’efficienza della nostra soluzione è stata provata sia con approfondite simu-

lazioni, sia con dimostrazioni teoriche e del tutto generali della convergenza

dell’algoritmo di consenso.
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Chapter 1

Introduction

Multi–agent systems (MAS) are more and more often employed in various

application areas to obtain secure and robust solutions. For example, collab-

orative agents may work together in robotic applications to explore places

where human presence could be unsafe. Robot teams can cooperate to patrol

a place or follow a target or even travel without collisions in an automated

transport system. Moreover, in many networked systems, sensors or other

autonomous devices can communicate to jointly monitor an environment

variable or a network parameter.

In particular, our attention is focused on decentralized control strategies

for autonomous vehicles planning their motion based only on their config-

uration and the ones of their visible neighbors. In such situations agents

may perform different tasks, but they all must follow a cooperation protocol

because a robot acting independently from the other ones could perform ma-

neuvers that might compromise the safety of the whole system. Therefore a

cooperation protocol, i.e. a set of shared decision rules, is needed to describe

behaviors and interactions between agents. For example, one of the most

studied collaborative tasks is the avoidance of collisions between robots. In

fact, several collision avoidance strategies for MAS have been presented in

the literature, with different application domains and different sets of de-

centralized rules [1, 2, 3, 4]. Two collision avoidance strategies will also be

the “running example” to which we will apply our ideas.

As a matter of fact, whenever an agent stops following the rule set,

due to spontaneous failure, tampering, or even to malicious behavior [5],

1



Chapter 1. Introduction

agents’ safety is at risk, and an automatic intrusion detection system (IDS)

is needed to find agents which are not cooperating correctly. We are not

interested in a centralized solution, because an omniscient monitor observing

the whole system may be unrealizable for scalability and security reasons. We

prefer instead a decentralized IDS which tries to identify intruders based only

on locally available information and on the knowledge of the cooperation

protocol.

A robot, an automated vehicle or a generic device can often be modeled

by a hybrid–state system [6] because we generally need a continuous sub–

state to represent physical variables like position or velocity, and a discrete

one to represent maneuvers, logic variables, etc. Therefore, a set of rules

contains, together with the description of a continuous control strategy, a

representation of the agent’s decision model, which usually can be modeled

as a discrete event driven system (DES) [7]. In our example the agent’s

decision–making process is represented by an automaton, whose states rep-

resent agent’s maneuvers, and events are expressed by mathematical condi-

tions on logical variables and neighbors’ configuration.

The literature on failure detection in DES is very rich [8, 9, 10], but while

in a DES a failure is usually represented by the reaching of an undesired

automaton state, in our setting failures correspond to agents arbitrarily

misbehaving, therefore we can not use the same diagnosis methods used for

DES. In our scenario the goal of an agent acting as a decentralized IDS is to

distinguish a faulty or malicious agent in its neighborhood from a correctly

cooperating one, whose action may be influenced by other agents out of

the monitor visibility range. We will show that it is possible to decide if a

maneuver performed by a target–agent is correct or not by estimating the

events which could have stimulated it.

In many cases the observation of a single agent is not enough to obtain

an unambiguous opinion on the behavior of a monitored agent because of

the limits that agents may have to their sensing capability. Therefore dif-

ferent agents can cooperate in the detection of a single intruder because

they may have a better “vision” of the target–agent’s neighborhood and can

make a better evaluation of the goodness of its behavior. In order to enrich

our intrusion detection method we will show also a distributed consensus

2



Chapter 1. Introduction

algorithm which largely improves a single monitor’s detection capability.

This work is organized as follows:

In Chapter 2 we will describe the system class in which we are interested,

and we will also introduce a running example that will accompany us

during the whole exposition of our method.

In Chapter 3 we will expose a theoretical IDS description by which we

will show how our decentralized IDS works.

In Chapter 4 we will describe more deeply an IDS implementation, with

particular attention on formulas and algorithms.

In Chapter 5 we will show a different application example of our intrusion–

detection method to prove its generality.

In Chapter 6 we will introduce a consensus algorithm in order to trans-

form our decentralized method in a distributed one. We will also give

a theoretical demonstration for the convergence of the algorithm.

In Appendix A we will give also some basic notes about the Multi–Agent

System Simulator used to test our IDS.

3



Chapter 2

System Description

In this chapter we will introduce a running example to make the exposition

more clear. We need a scenario where autonomous agents collaborate to

achieve a common task. Each agent musts follow a decentralized policy, and

its decisions must depend only on the relative positions of the neighbors that

it is able to “see”. The chosen example, shown in Fig. 2.1, is an automated

highway where N vehicles travel together and cooperate to avoid collisions

and to keep a smooth flowing traffic. Note that N is a time–variable quantity,

because vehicles may enter or exit from the highway without any restriction.

Let us say that each vehicle can perform four basic maneuvers:

• FAST: the vehicle heads for the center of its current lane at its maxi-

mum speed.

• SLOW: the vehicle heads for the center of its current lane and gradually

reduces its speed until it stops or it switches maneuver.

• LEFT: the vehicle performs a left turn until it reaches the bound of

Figure 2.1: A simulated 3–lane highway with a fleet of automated vehicles.
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Chapter 2. System Description

FAST SLOW LEFT RIGHT

Figure 2.2: The representations of the four possible maneuvers.

the lane at its left.

• RIGHT: the vehicle performs a right turn until it reaches the bound of

the lane at its right.

Moreover, let vehicles have different maximum speeds; we will indicate with

Vi the maximum speed of the i-th vehicle, taking value in a defined range

of allowed speeds.

A vehicle’s behavior can be described by few simple rules:

• Vehicles must occupy the rightmost free lane.

• Vehicles must overtake preceding ones when the distance between the

two vehicles is lower than a minimum defined value (Df ), and if the

lane on their left is free.

• Vehicles must brake if their distance from a preceding vehicle is lower

than Df , and if the lane on their left is occupied.

In the figures and the screenshots that will be shown in this work, we will use

the images of Fig. 2.2 to represent vehicles performing a specific maneuver.

2.1 Continuous subsystem

Each vehicle can be modeled as a hybrid–state system H, where the contin-

uous sub–state

q ∈ Q (2.1)

represents its physical variables, and the discrete sub–state represents the

currently performed maneuver. More precisely, in our example the i-th

5



Chapter 2. System Description

θi

vi

iyi

!yi" = 2

!yi" = 1

!yi" = 0

xi

Figure 2.3: A vehicle’s continuous sub–state components.

agent’s continuous sub–state is

qi =


xi
yi
θi
vi

 , (2.2)

and

Q = R3 × [0, 2π) . (2.3)

Continuous sub–state components are shown in Fig. 2.3: lane 0 is represented

by y ∈ [0, 1), lane 1 is represented by y ∈ [1, 2), etc.

The evolution of qi is driven by the equation

q̇i = f(qi, σi) , (2.4)

where the discrete sub–state σi can assume a value representing one of the

four maneuvers listed in the set

Σ =
{
FAST,SLOW, LEFT,RIGHT

}
. (2.5)

The function f in Eq. (2.4) can be defined by describing separately the free

and the forced evolution of qi:

q̇i = g(qi) + u(qi, σi) , (2.6)

where

g(qi) =


vi cos(θi)
vi sin(θi)

0
0

 , (2.7)

6



Chapter 2. System Description

and

u(qi, σi) =


0
0

ω(qi, σi)
a(qi, σi)

 . (2.8)

As shown in Eq. (2.8), control u is applied only on variables θi and vi;

functions ω and a depend on the value of σi as follows:

ω(qi,FAST) = −
(
yi − ctr(yi)

) sin(θi)
θi

vi − k vi θi (2.9)

ω(qi,SLOW) = −
(
yi − ctr(yi)

) sin(θi)
θi

vi − k vi θi (2.10)

ω(qi, LEFT) =
{
C if θi < θmax
0 otherwise

(2.11)

ω(qi,RIGHT) =
{
−C if θi > −θmax
0 otherwise

(2.12)

a(qi,FAST) =
{
A if vi < Vi
0 otherwise

(2.13)

a(qi, SLOW) =
{
−A if vi > 0
0 otherwise

(2.14)

a(qi, LEFT) =
{
A if vi < Vi
0 otherwise

(2.15)

a(qi,RIGHT) =
{
A if vi < Vi
0 otherwise

(2.16)

The variables A, C, θmax, and k are constant for the whole system, and the

function ctr(yi) of Eq. (2.9) and Eq. (2.10) returns the center of vehicle’s

current lane:

ctr(yi)
4
= byic+

1
2
L , (2.17)

where L represents the lane width.

The control function ω of Eq. (2.9) and Eq. (2.10) is obtained from the

study of the path–following problem for a kinematic model of the unicycle

[11] when the desired trajectory is an horizontal line (y = y). The solution,

with constant v, is

ω = (y − y)
sin(θ)
θ

v − k θ , (2.18)

and the convergence velocity can be controlled by the constant k. In our

case vehicles’ speed may be non–constant, and in Eq. (2.18) we substituted

7
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the term k θ with k v θ in order to make the resultant trajectory almost

constant in the range of the allowed velocities. An example of convergence

of a vehicle’s ordinate towards the center of the second lane is shown in

Fig. 2.4 and Fig. 2.5.

2.2 Continuous sub–state observability

In our example we suppose that the state q of the continuous sub–system is

fully observable and instantaneously measurable by other vehicles’ sensors,

i.e. the output of the physical layer coincides with its internal state. Of course

these sensors may have a sensing range R, i.e. they cannot measure states

of vehicles too far. Therefore we can define a measurable region, computed

starting from the state qi, as

Qmi =
{
q ∈ Q | d(qi, q) < R

}
, (2.19)

where function d expresses the distance between tho vehicles.

Furthermore the measure of a state may be obstructed by the presence

of vehicles in the observer’s line of sight (LOS), therefore we have to reduce

the set Qmi by considering the position of any neighboring vehicle which

could limit the observer’s “vision”. Let us define the observable region as

the set

Qoi =
{
q ∈ Qmi | M(Q, qi, q) = true

}
, (2.20)

where

Q =
{
q1, . . . , qN

}
(2.21)

is the time–variable and length–variable set of all the continuous sub–states

of the vehicles in the system. Function M returns true if there is not any

state of Q in the LOS from qi to q, so that agent i can measure the state of

an agent lying in q, otherwise it returns false.

The unobservable region, i.e. the part of the state space Q that cannot

be observed by the i-th agent, can consequently be defined as follows:

Qui = Q \ Qoi . (2.22)

In Fig. 2.6 is shown the process by wich a simplified version of the unob-

servable region is computed in our Multi–Agent System Simulator (MASS).
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Figure 2.4: An example of a vehicle’s continuous sub–state convergence to
the center of the lane (y = 1.5) with constant speed.
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Figure 2.5: An example of a vehicle’s continuous sub–state convergence to
the center of the lane (y = 1.5) with increasing speed.
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j

Qu
i

i

Figure 2.6: A simplified representation of an agent’s unobservable region.

We consider a bounding rectangle around each vehicle in the observer’s LOS

and trace all the four lines joining the observer’s center with the four vertices

of each rectangle. The two extern points in which such lines intersect the

center of each lane are assumed as the x–extrema of the hidden region.

In Fig. 2.7 we show the same simulation example of Fig. 2.1, but we

evidence the subjective subdivision of the state space into the observable

part Qoi and the non–observable part Qui , represented by the grey areas. The

“points of view” are those of agent 01 (Fig. 2.7.a) and agent 04 (Fig. 2.7.b).

Note 2.1. Note that in our example only the x–component and the y–

component of the vector q contribute to determine if a state is observable

by an agent or not, but in a more general condition this property might be

not valid any more. So, the regions Qoi and Qui have the same dimension of

Q, even if in our scenario we do not consider θ and v.

2.3 Hybrid system inputs and outputs

According to Eq. (2.19) and Eq. (2.20) we can define the set of observable

states by the i-th agent

Ni =
{
qj ∈ Q | qj ∈ Qoi

}
, (2.23)

and the index set of the observable agents

Ni =
{
j ∈ N | qj ∈ Ni

}
. (2.24)

Moreover, as previously shown, the i-th vehicle can make its decisions

based only on vehicles whose continuous sub–state is measurable, i.e. vehicles

11
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(a)

(b)

Figure 2.7: Two examples of simulated unobservable regions.

whose state q is contained in Ni. Therefore the hybrid system representing

the i–th vehicle can be viewed as a single system whose continuous input

and output are respectively Ni and qi, as shown in Fig. 2.8.

2.4 Discrete sub–system

The vehicles’ decision model is a system able to decide when a maneuver

transition is needed. It musts evaluate all the rules contained in the shared

collaborative policy before taking a decision and then communicate to the

continuous sub–system that a change in the control function is needed. Such

device can be easily modeled as a finite state machine (FSM), whose discrete

states represent the maneuvers described at the begin of this chapter.

Automaton events consist in mathematical conditions on the continu-

ous sub–state of agents’ neighboring vehicles and can depend also on the

automaton’s internal logical variable1

ξi ∈ Ξ . (2.25)
1More generally ξi could be also a vector of logical variables.
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logical layer

Ni

qi

physical layer

σi

Hi

Figure 2.8: An agent’s hybrid system structure with inputs and outputs.

This logical variable is used to prevent the number of discrete states from

growing too much, or e.g. to represent timers as in [3]. In our example the

logical variable ξi represents the number (0, 1, 2) of the lane where the i–th

agent is intentioned to go during a LEFT or RIGHT maneuver.

A deterministic automaton, as described by Cassandras and Lafortune

in [7], can be defined by the sixtuple

A =
{

Σ, E , δ,Γ, σ0,Σm

}
, (2.26)

where

• Σ is the set of states.

• E is the set of events associated with the transitions in A.

• δ : Σ × E → Σ is the transition function. δ(σ1, e) = σ2 means that,

when the automaton is in the state σ1 and the event e occurs, there

will be a transition to the state σ2.

• Γ : Σ → 2E is the feasible event function; Γ(σ) is the set of all events

e for which function δ(σ, e) is defined.

• σ0 is the initial state.

13
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F

L R

S

eF→L eF→R

eL→F eR→F

eS→F eF→S

eS→L

Figure 2.9: The automaton used to model the logical layer of the vehicles.

• Σm is a set of marked or desired states.

In our setting we do not need Σm because we do not have “final” or “desired”

states to mark. We added instead the logical variable ξ, updated every time

a transition occurs according to a reset law

R : Q× Σ→ Ξ . (2.27)

The automaton used to model a vehicle’s logical layer is shown in Fig. 2.9,

and is defined as follows:

Σ =
{
FAST, SLOW, LEFT,RIGHT

}
(2.28)

E =
{
eF→L, eF→R, eF→S , eS→L,
eS→F , eL→F , eR→F

}
(2.29)

σ0 = FAST (2.30)

The functions Γ and δ can be easily deduced from Fig. 2.9, whereas the
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function R is defined as

R(q, σ) =


byc+ 1 if σ = LEFT
byc − 1 if σ = RIGHT
byc otherwise

. (2.31)

The event set E for the i-th agent2 is defined as follows:

eF→Si = Fdi ∧
(
Lti ∨ ¬aln(qi) ∨ (byic = 2)

)
(2.32)

eF→Li = Fdi ∧ ¬Lti ∧ aln(qi) ∧ (byic 6= 2) (2.33)

eF→Ri = ¬Rti ∧ aln(qi) ∧ (byic 6= 0) (2.34)

eS→Fi = ¬Fdi (2.35)

eS→Li = Fdi ∧ ¬Lti ∧ aln(qi) ∧ (byic 6= 2) (2.36)

eL→Fi = Lti ∨ (byic = ξi) (2.37)

eR→Fi = Rti ∨ byic = ξi (2.38)

The expressions Fdi, Lti, and Rti, used in Eq. (2.32–2.38), are defined as

follows:

Fdi =
{
∃ qj ∈ Ni | fF (qi, qj) = true

}
(2.39)

Lti =
{
∃ qj ∈ Ni | fL(qi, qj) ∨ fB(qi, qj) = true

}
(2.40)

Rti =
{
∃ qj ∈ Ni | fR(qi, qj) = true

}
(2.41)

Finally we can define the functions fF , fL, fB, and fR, which represent the

presence of an agent j in front, on the left, at the back, or on the right of

agent i:

fF (qi, qj) = (0 < xj − xi < Df ) ∧ (byjc = bxic) (2.42)

fL(qi, qj) = (xi −Db < xj < xi +Df ) ∧ (byjc = bxic+ 1) (2.43)

fB(qi, qj) = (−Db < xj − xi < 0) ∧ (byjc = bxic) (2.44)

fR(qi, qj) = (xi −Db < xj < xi +Df ) ∧ (byjc = bxic − 1) (2.45)

The distance Df is computed as the minimum space needed by a vehicle

to get to a complete stop when running at the maximum allowed speed Vmax
in the system:

Df =
1
2
V 2
max

A
, (2.46)

2We will use the notation ei when the event e is expressed with respect to the i–th
agent. We will use this notation also for the other functions used to define the events.
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xi

Vmax ∆t Df

xi −Db x′
i

i

j

Figure 2.10: The computation of Db.

where the constant A is the one used in Eq. (2.13–2.16). The other distance

Db is computed, as shown in Fig. 2.10, as the minimum distance of vehicle

j from vehicle i such that, after vehicle i reaches lane 0, vehicle j has not to

brake even if the two vehicles run at the maximum allowed speed.

The function aln of Eq. (2.32–2.38) checks if the i–th agent is aligned

with the middle of the lane, and can be defined as

aln(qi) =
{

true if
(
(yi − byic) = 0.5

)
∧ (θi = 0)

false otherwise
(2.47)

We added this check because we do not want that a vehicle crosses multiple

lanes in succession. In Fig. 2.11 is shown a vehicle’s trajectory while crossing

two lanes, from the third one to the first one. When it reaches the second

lane, its direction θ is taken back near 0 before that the vehicle steers again

towards the first lane.

2.5 Continuous time and discrete time instants

As explained in [6] by J. Lygeros, dynamical systems can also be classified

based on the set of times over which their state evolves:

Continuous time , when the set of times is a subset of real numbers, i.e.

t ∈ R.

Discrete time , when the set of times is a subset of integer numbers, i.e.

k ∈ Z.
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Figure 2.11: A vehicle’s trajectory while crossing two lanes.
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Hybrid time , when the set of times is a subset of real numbers, but there

may be some particular discrete instants where �something of “special”

happens�.

In our system the set of times is continue but there are indeed some “special”

instants where an event occurs and there may be a discontinuity in the

control function.

When an event e occurs, we use the following notation to represent a

discrete–state transition:

σi := δ(σi, e) , (2.48)

where the function δ is described at page 13.

2.6 Hybrid system dynamics

According to what we have said so far, we can now refine the representation

of the hybrid system for a generic agent that we gave in Fig. 2.8, with the

one shown in Fig. 2.12, where the logical layer and the physical layer are

explicitly defined. The function

D : Q× 2Q × Ξ , (2.49)

represents an event detector module which, based on the agent’s state, its

neighboring agents and automaton’s internal variables, provides the occurred

event to the automaton in order to make the vehicle to instantaneously

change its current maneuver. We will say that e = null when no events are

detected.

The complete dynamics of the hybrid system can finally be described as

follows:

q̇ = g(q) + u(q, σ) , (2.50)

e = D(q,N , ξ) , (2.51)

and

σ := δ(σ, e) whenever e ∈ Γ(σ) . (2.52)

In the last equation we assumed that if e = null, then e /∈ Γ(σ), for any σ.
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Figure 2.12: A more detailed structure of the agent hybrid system.
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Chapter 3

Decentralized IDS:
Theoretical Ideas

In DES world the problem of state observability is often to reconstruct the

evolution of an automaton’s discrete state, when the sequence of occurred

events is completely or partially known [12, 13]. In these cases also the prob-

lems of control, stability, and diagnosability have been tackled in literature

[14, 15, 16, 17]. Unfortunately, in our settings, the events of the automaton

in the logical layer are almost never completely known, and what we have

to do is instead to find a technique to estimate the automaton’s internal

state σ by measuring only externally available information, i.e. the vehicle’s

continuous sub–state q.

In the ambit of continuous systems, the state–observability problem is

to reconstruct the internal state trajectory when the output of the system1

is known. Once again, we need something different, because in our case the

continuous sub–state q of the physical layer is supposed to be completely

known and measurable by any observer, while we are interested in the dis-

crete sub–state σ to understand the logical behavior of the monitored agent.

For these reasons the problem of monitoring, on which we are currently

focused, is quite different from the ones found in the literature. Our goal is

to develop a synthesis technique that allows to build a decentralized IDS for

securing the considered class of multi–agent systems without the use of any

form of centralization.
1Consider e.g. a linear system in the canonical form ẋ = Ax+Bu, where the output is

y = Cx+D and x is not directly measurable.
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In order to show clearly the structure of the IDS, we have first to give a

definition of what an intruder is:

Definition 3.1. A non–cooperative agent, or intruder, is a faulty or mali-

cious robot whose behavior arbitrarily deviates from the one imposed by the

cooperation rules.

From this definition it is easy to realize that a criterion to decide if a

target–agent i is an intruder or not is to put ourselves in its place and to

check if the measured trajectory of qi is the same as the one that we would

have chosen for ourselves.

3.1 Reputation

With the mentioned criterion every monitoring agent can assign all its neigh-

bors with a reputation, i.e. a measure of their cooperativeness. The concept

of reputation is normally employed in Peer–To–Peer (P2P) systems, and

in Mobile Ad–hoc NETworks (MANET), where a form of cooperation is

required, e.g. for establishing a message routing service that enables the

communication among all agents. In these systems — see e.g. the works of

Le Boudec [18, 19] —, each agent assigns its neighbors with a reputation

rate that depends on whether they display a collaborative behavior or not,

e.g. with respect to message forwarding.

In our scenario the reputation value with which each monitor assigns

a target–agent depends on the number of feasible neighborhoods found ex-

plaining the measured target’s behavior. The possible reputation levels are:

• correct (or cooperative): the monitor has a full vision of the i–th agent’s

neighborhood, and the measured trajectory of qi is correct, according

to that neighborhood.

• uncertain: the monitor has a partial vision of the i–th agent’s neigh-

borhood, but it exists at least a value of Ni explaining the measured

evolution of qi.

• faulty (or non–cooperative): the trajectory qi(t) is unexplainable ac-

cording to the measured neighborhood or, if the monitor has a partial
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Lt0

Rt0

Fd0

Figure 3.1: The active region of the agent 4, Qa4.

knowledge, does not exists any possible neighborhood which could ex-

plain such trajectory.

3.2 Active region

In the previous chapter we supposed that an agent is able to measure neigh-

boring agents’ states if they lay in the measurable region. Now we need to

define a subset of this region, that is the active region:

Definition 3.2. We will refer to the i-th agent’s active region as the set of

possible states q which could affect agent i’s behavior.

In other words we say that Qai is defined such that, if for agent j

qj /∈ Qai , (3.1)

then the behavior of agent i cannot be affected by the position of agent j.

Therefore, if we define

N a
i =

{
qj ∈ Ni | qj ∈ Qai

}
, (3.2)

then the expression

D(qi,Ni, ξi) = D(qi,N a
i , ξi) (3.3)

(the function D is the one shown in Fig. 2.12) musts hold for any i and at

any instant. In Fig. 3.1 an example of an agent’s active region is shown.

Note 3.1. Please note that the value of Qai depends continuously on qi, so

we can also define a function Qa : Q → 2Q, such that

Qai = Qa(qi) . (3.4)
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3.3 Monitoring strategy

Assumed that an agent plans its trajectory based only on the elements of

N a, whenever the i-th agent’s neighborhood N a
i is completely known, and

also the state qi can be measured, supposing that each monitor knows the

inner structure of H, it can compute the future trajectory of qi running a

simulation of a virtual vehicle with the same inputs as the real hybrid system.

Then, if the real trajectory of qi is the same as the simulated one, the target–

agent is said to be certainly cooperative. Otherwise, if the two trajectories

differs, it means that the monitored agent has a different behavior from the

one imposed by the rules, and it is said to be faulty or non–cooperative.

The situation is more tricky when a monitoring robot has a partial knowl-

edge of the neighborhood N a
i of agent i. In facts, as described in section 2.2,

supposing that monitor h wants to evaluate the behavior of agent i, often

it can get only a subjective estimation of N a
i . We can define the observable

part of N a
i , measured by agent h, as follows:

N̂ a
i =

{
qj ∈ Nh | qj ∈ Qa(qi)

}
. (3.5)

Since necessarily

N̂ a
i ⊆ N a

i , (3.6)

monitor h has to verify if exists at least a possible value of N a
i such that

1. Eq. (3.6) holds,

2. the estimated value of N a
i is compliant2 with the vision of vehicle h,

3. vehicle i’s behavior is “explained”.

Whenever an acceptable value of N a
i exists, agent h musts say that it is

uncertain about the i–th agent cooperativeness, because, since the monitor

has not a complete vision of vehicle i’s neighborhood, its behavior could still

be correct. When no possible values of N a
i are found it means that, even if

the monitor has not a complete vision of the i–th agent’s neighborhood, its

behavior cannot be explained in any way and therefore is considered faulty.

2E.g. each state q such that q ∈ N a
i and q /∈ N̂ a

i musts belong to Qu
h, otherwise it

should have been directly measured by monitor h.
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Figure 3.2: An example of an unknown–input observer module.

3.4 Unknown input observability

A possible solution to the monitoring problem could be a Unknown–Input

Observer (UIO) for the vehicles’ hybrid system. Let us denote with Ň a
i the

unobserved part of the set N a
i defined in Eq. (3.6):

Ň a
i = N a

i \ N̂ a
i . (3.7)

A UIO H∗i would try to reconstruct the whole set of the values of N a
i which

could have led to the measured trajectory, based only on N̂ a
i . An example

of a possible structure is shown in Fig. 3.2, where the set Ñ a
i represents all

the possible values of N a
i computed by the UIO.

Unfortunately this kind of solution is not easily approachable, because

of the complexity, the non–linearities, and the differential dynamics of the

hybrid system H. Furthermore, a direct approach for the computation of

such a UIO leads to find ad–hoc solutions for very specific cases, and lacks

of generality. Our interest is instead in a solution providing an automatic

procedure to generate all the modules of the IDS, even re–using some parts

of the vehicle’s logical layer.

3.5 Discretization of the system

First of all we must say that a discretization of the system is needed. Sup-

pose that a monitoring agent h is trying to evaluate the reputation of a

target–agent i at t = t0. If agent i detects an events at t = t0 + dt, it will

instantaneously changes its trajectory, and if agent h does not detect the

same event at the same instant, its evaluation of the target’s reputation

will not be correct. We can be certain that such mistakes are avoided if we
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suppose that all the agents take their own decisions simultaneously at de-

termined time instants, so that each monitor is able to synchronize its event

evaluation with the one of its targets.

According to this hypothesis, we can suppose that the vehicles’ contin-

uous dynamics can be discretized, and each event evaluation is made every

∆t seconds. The relations of Eq. (2.50–2.52), can be redefined as follows:

tk = t0 + k∆t (3.8)

e(tk) = D
(
q(tk),N (tk), ξ(tk−1)

)
(3.9)

σ(tk) =
{
δ
(
σ(tk−1), e(tk)

)
if e(tk) ∈ Γ

(
σ(tk−1)

)
σ(tk) otherwise

(3.10)

ξi(tk) = R
(
σ(tk), q(tk)

)
(3.11)

q(tk+1) = q(tk) + g
(
q(tk)

)
∆t+ u

(
q(tk), σ(tk)

)
∆t (3.12)

This working hypothesis can be overcomed e.g. by supposing that, when

an event occurs, it remains detectable for at least a minimum amount of

time, and by introducing opportune tolerances on the evaluation of a target–

agent’s trajectory. But the treatment of such a subject is beyond the goals

of this thesis and we hope to deal with it on future works.

3.6 Observable and unobservable events

In order to find a way to represent monitors’ uncertainty about a target–

agent’s reputation, we have to split all the events of the automaton described

in Section 2.4 into an observable and an unobservable part, based on the

instantaneous configuration of the agents around the target.

Let E be the set of all feasible events. We can define the two sets Eo and

Eu such that

E ⊆ Eo × Eu , (3.13)

and a generic event e ∈ E can be represented as

e = eo ∧ eu . (3.14)

The event eo ∈ Eo represents the observable part of e, while eu ∈ Eu rep-

resents the unobservable one. A completely observable event can be repre-

sented by

e = eo ∧ null , (3.15)
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while a completely unobservable one can be represented by

e = ε ∧ eu . (3.16)

Therefore the two events ε, and null must necessarily belong respectively to

the set Eo and to Eu in order to enable us to represent completely observable

and unobservable events3.

Note 3.2. Please note that the event subdivision shown in Eq. (3.14) is not

possible for any set of E, Eo, and Eu, because in some cases the observable

part of an event e is necessarily tied up by a logical or with the unobservable

one. In these cases we can either redefine the event set E splitting such event

into two new events, or we can decide to represent the whole event e as an

unobservable one.

3.7 Visibility projections

We can now define a suitable observation map, i.e. an operation of direct

projection from E to Eo, which extracts the observable part from each event.

We will denote with

Λe : E → Eo , (3.17)

the function defined as

Λe(eo ∧ eu) = eo . (3.18)

Moreover, it is also possible to define an inverse observation map

Λ−1
e : Eo → E , (3.19)

i.e. the inverse projection from Eo to E which provides, starting from an

observable part eo ∈ Eo, all the events in E which, projected with Λe, could

have such observable part:

Λ−1
e (eo) =

{
e ∈ E | Λe(e) = eo

}
. (3.20)

3The event ε is often used in the literature [7] to represent the occurrence of an unob-
servable event.
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Figure 3.3: The structure of a decentralized monitor module.

3.8 Monitoring system

Let us show now the theoretical structure of the proposed monitoring system,

using all the functions defined so far. Our solution is composed of three

“ingredients”:

• a local monitor,

• a classifier,

• a logic block.

In Fig. 3.3 is shown the block scheme of the local monitor. The automa-

ton Ai on the top of the figure represents the decision–making process of

the monitored agent i, which chooses its next maneuver σi based on the

occurred event ei. Simultaneously the monitor module, surrounded by the

box in dashed line, receives the target–agent’s current maneuver together

with the event observable part eoi and provides

a. the set of events êi compliant with such maneuver,

b. the set of maneuvers σ̂i compliant with the event observation.

With these estimations, a target–agent’s reputation will be not faulty if

σi(tk+1) ∈ σ̂i(tk+1) . (3.21)
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The event set êi is important because it represents an estimation of the

occurred events: since different monitors could communicate with each other,

it is useful to have such estimation at monitor’s disposal so that it can depute

some other agents to verify its hypothesis about agent i’s neighborhood.

Let us give a closer look to the monitor’s structure. The occurred event

ei is an input for the system and is filtered by the projection Λe defined

in Eq. (3.18). The so computed observable part of the event ei reaches the

second projection block Λ−1
e , defined in Eq. (3.20), which provides the set

epi of all the feasible events according to the observed part of ei. The other

input of the local monitor is the maneuver σi currently performed by the

agent i. This signal is an input for the “inverted” automaton A−1

A−1 : Q×Q → 2E , (3.22)

defined as follows:

A−1(σ1, σ2) =
{
e ∈ E | δ(σ1, e) = σ2

}
. (3.23)

The signal eσi is the set of the feasible events, according to the observed state

transition σ(tk) → σ(tk+1). This set, intersected with epi , will provide the

event set êi which represents all the feasible events according to the observed

event eoi and to the observed discrete–state transition.

3.9 The non–deterministic predictor

The module P of Fig 3.3, which is charged with forecasting the next feasible

target–agent’s maneuver, consists of a non–deterministic automaton that

can be automatically derived from the original one depicted in Fig. 2.9. The

idea is that, if monitor h cannot evaluate the whole event e, which could

provoke the transition σj → σk, and it observes the occurrence of eo, then

there are two possibilities:

a. the unobservable part eu has not occurred and there will not be a discrete

state transition,

b. the unobservable part eu has occurred and the target–agent’s automaton

Ai will change its internal state.
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σk

ej→k

σj

σk

Figure 3.4: A generic example of the procedure for building the non–
deterministic automaton P.

This uncertainty on the decision of the automaton Ai, once a partially ob-

servable event has ben detected, is represented with a non–deterministic

automaton which can be automatically built, starting from automaton A,

by following a simple procedure. For each state σ, consider the node in the

automaton’s graph representing that state: for each edge starting from there,

substitute each event with its projection through the map Λe and add also

on the node σ a self–loop assigned with the same label. A generic example

of the procedure is shown in Fig. 3.4.

3.10 Estimating the number of neighbors

At this point of our exposition is useful to note that the definition of the

automaton shown in the previous chapter can be re–formulated in order to

make evident how events depend on the number of neighbors. For example,

if we suppose that a target–agent i has not any neighboring vehicles, the

automaton becomes the one of Fig. 3.5.a, where ε is an event whose value is

always true, and where the value of the other events have to be consequently

redefined4 based on the fact that there is not any other vehicle than i —

some events have also been disabled. Moreover, if we increase the number n̂
4The new event set definition can be easily derived from Eq. (2.32–2.38) at page 15.
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F
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eF→L eF→R

eL→F eR→F

eS→F

eS→L

(b)

Figure 3.5: Two simple automata based on the hypothesis that the i-th agent
has at most 0 (a) or 1 (b) neighboring vehicles.
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q̂i(tk+1)
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(
g(qi) + ûi

)
∆t

ri(tk)

σ̂i(tk)

∆

σi(tk)
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Figure 3.6: The box diagram of a classifier module.

of estimated neighbors, the automaton becomes the one of Fig. 3.5.b, and

so on, until we reach the maximum allowed number of neighbors.

Because of this dependency we can imagine that the monitor module

shown in Fig. 3.3 can accept another numeric input representing the number

of estimated neighbors around the target–agent. Based on the value of this

input, the results of the monitoring process, i.e. σ̂i and êi, can change and it

is reasonable to ask the monitor to explain target–agent’s behavior starting

with n̂ equals to the number of visible neighbors, and successively increase

n̂ until an unobservable explanation is found or the maximum number of

neighbors physically acceptable is reached.

3.11 The classifier module

According to what we said in Section 3.3, we need to introduce a classifier

module C for computing all the feasible trajectories of the target–agent’s

continuous sub–state and deciding if the measured one is acceptable, given

the observed events. Such a module can be represented by the box diagram

of Fig. 3.6.
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Figure 3.7: A complete scheme of the supervisor.

The continuous sub–state qi(tk) previously measured and the set of ad-

missible maneuvers σ̂i(tk) are used to compute the set ûi of all the possible

continuous controls, and then the set of all the possible trajectories q̂i(tk+1).

Of course there is a bijective relation between the maneuvers in σ̂i and the

simulated evolutions in q̂i, therefore the classifier module can check if the

current measured sub–state qi(tk) is in the set of the simulated ones, and

identify the index of the maneuver performed by the target–agent at the

instant tk.

The reputation with which the monitored agent is assigned is given by

the value of the variable ri. Unfortunately whenever the monitoring agent

has not a complete vision of the target–agent’s neighborhood, the output of

the classifier is often uncertain.

3.12 Putting all together

It is now time to put together all the modules that we have described so

far. The complete scheme of our monitoring strategy is shown in Fig. 3.7.

On the top of the figure there is a part of the observed vehicle’s logical and

physical layer. It is the discrete “version” of the physical layer described in
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Section 3.5, because we supposed the synchronization between monitor and

target vehicle. On the bottom of the figure are shown the three modules of

the monitor connected with each other:

The local monitor Mh receives as inputs the observable part of the oc-

curred event, the last measured maneuver of the target vehicle, and

the estimated number of neighbors provided by the logic block.

It provides a set of admissible maneuvers, according to the event re-

ceived, and a set of possibly occurred complete events.

The classifier Ch receives as inputs the set of possible maneuvers and the

last measured continuous sub–state qi(tk+1).

It provides the maneuver performed by the monitored vehicle and the

value of its computed reputation, given the current inputs.

The logic module connects together and coordinates the two previous

modules. It receives the performed maneuver and the “transitional”

value of the monitored agent’s reputation ri. While this value is faulty,

the logic module tries to raise the number n̂i of estimated neighbors,

until it gets a possible explanation or it reach the maximum number

of neighbors physically allowed by the system.

Finally let us describe how data flow through the modules of the mon-

itoring sytem in order to make our ideas a bit more clear about all the

information paths. At the instant k + 1 a new event occurs and its observ-

able part reaches the local monitor module Mh. At this point the input

σi(tk) is still unknown (see Fig. 3.3) and the set êi(tk) is unusable. The set

σ̂i(tk), containing all the possible maneuvers that the target–agent could

have performed, reaches the classifier module Ch. This module checks if the

detected maneuver is contained in the set of the expected ones and provides

a value of the target–agent’s reputation. The value of ri is passed to the

logic block which, starting with n̂i equal to the number of visible neighbors,

while ri = faulty, raises the value of n̂i in order to find an explanation for

the target–agent’s behavior. When — and if — a not faulty reputation is

reached, the detected maneuver σi(tk) reaches the input of the local mon-

itor Mi, and allows the update of the set eσi (tk) of the possibly occurred
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events. This set, intersected with epi (tk), represents the set of all the events

which may have been occurred and is forwarded to the outputs, together

with the reputation value, by the logical block.
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Decentralized IDS:
Implementation

The construction of the monitoring system presented in the previous chapter

can be quite cumbersome to build, since generating both a different automa-

ton and an event subdivision for each configuration of vehicles would require

a great deal of computing effort. In this chapter we will present a more effi-

cient solution which can be considered as an implementation of the theory

that we have expounded so far.

The main goal in the implementation that we will explain is to find a

way to automatically represent the monitoring agents’ uncertainty and to

describe a general algorithm by which it is possible to decide about a target–

agent’s reputation. This goal is achieved by first doing a basic evaluation of

all the target–agent’s events based on their definition and then by refining

the evaluation based on the information about monitoring agent’s observable

region.

4.1 Event representation

In order to be able to compute the event subdivision into the observable

and unobservable part, at any time and with any vehicle configuration, we

need a particular tree representation in which all events can be defined as

the logical and of particular sub–events. Not all multi–agent systems can be

modeled with such an event representation, but we can be sure that if this

decomposition is possible, then our general monitoring strategy is applicable.
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A sub–event is a function as the ones in Eq. (2.39–2.41) at page 15. Each

sub–event musts be expressed in one of the following evaluation modes:

a. ‘OR’ mode:

∃ qj ∈ Ni | b(qi, ξi, qj) = true (4.1)

b. ‘NOR’ mode:

@ qj ∈ Ni | b(qi, ξi, qj) = true (4.2)

c. ‘SINGLE’ mode:

b(qi, ξi) = true (4.3)

Moreover, if we give a common domain and codomain for the “binary”

functions b appearing in Eq. (4.1–4.3)

b : Q×Q× Ξ→ {true, false} , (4.4)

and since Eq. (4.1) and Eq. (4.2) can be rewritten as ∨
q∈Ni

b(qi, ξi, q)

 = true (4.5)

¬ ∨
q∈Ni

b(qi, ξi, q)

 = true , (4.6)

then any sub–event can be unequivocally characterized by the couple{
b,mode

}
, (4.7)

where

mode ∈
{

OR,NOR, SINGLE
}
. (4.8)

Note 4.1. Please note that both functions like (byic = ξi) and functions like

the one in Eq. (2.42–2.45) at page 15 can be represented in the more general

form of Eq. (4.4).

Let us define a set S of all the sub–events that are necessary to model the

system, and let us denote with S(e) all the sub–events needed to represent

the event e. Such an event can be evaluated as

e =
∧

s∈S(e)

s . (4.9)
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Figure 4.1: An example of the event tree representation.

Furthermore let us also denote with T the set of all the possible transitions

in automaton A. Each transition will be triggered by one or more events,

and if we define the set E(T ) of all the events inducing the same transition

T ∈ T , then

T =
∨

e∈E(T )

e , (4.10)

and therefore

T =
∨

e∈E(T )

 ∧
s∈S(e)

s

 . (4.11)

Since not all events can be expressed in the form of Eq. (4.9), in some cases

we may need to split or join them, but since Eq. (4.11) is the Disjunctive

Normal Form (DNF) for the expression of T , given a general logical combi-

nation of sub–events, such a representation is always possible. An example

of the event tree organization is shown in Fig. 4.1.

In order to avoid ambiguity in the automaton definition, it is useful to

compute the invariant event for all its states.

Definition 4.1. Let us define the invariant event for the state σ as follows:

Inv(σ) = e ⇐⇒ δ(σ, e) = σ . (4.12)

Such an event, if it has not been explicitly described, can be computed
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Figure 4.2: The resulted automaton for agent i after that the events were
decomposed as requested.

starting from the event in Γ(σ) as

Inv(σ) = ¬

 ∨
e∈Γ(σ)

e

 . (4.13)

To continue our running example, we can now transform the automaton

shown in Fig. 2.9 at page 14 as in the form that we have just described:

the result for the i–th agent is shown in Fig. 4.2, while in Table 4.1–4.3 all

the events and sub–events are defined1. Please refer to Eq. (2.42–2.45) at

page 15 and Eq. (2.47) at page 16 for the definitions of the functions used in
1Please remember that we use the notation ai for any event or sub–event a when it is

expressed with respect to the i–th agent.
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Transition Event Sub–events

F → F
ai si,1 ∧ si,2
bi si,1 ∧ si,8
ci si,1 ∧ si,13

F → S
di si,0 ∧ si,2 ∧ si,12

ei si,0 ∧ si,6 ∧ si,12

fi si,0 ∧ si,13

F → L gi si,0 ∧ si,3 ∧ si,7 ∧ si,12

F → R hi si,1 ∧ si,5 ∧ si,9 ∧ si,12

S → F ii si,1

S → S
di si,0 ∧ si,2 ∧ si,12

ei si,0 ∧ si,6 ∧ si,12

fi si,0 ∧ si,13

S → L gi si,0 ∧ si,3 ∧ si,7 ∧ si,12

L→ F
ji si,2
ki si,10

L→ L li si,3 ∧ si,11

R→ F
mi si,4
ni si,10

R→ R oi si,5 ∧ si,11

Table 4.1: The redefinition of the automaton events for the i–th vehicle.

Table 4.2. The reset rule R, by which the variable ξi is updated, is defined

in Eq. (2.31) at page 15.

4.2 Omniscient event evaluation

Given the event definition of the previous section, let us show how an agent’s

event detector should take its decisions. First of all it has to evaluate all the

sub–events of Table 4.2 and then use their value to evaluate all the feasible

events. When an event is true, if it is not the invariant one, the event detector

musts communicate to the vehicle’s automaton that a maneuver switch is

needed. The procedure by which the i–th agent evaluates a sub–event s is

described in Algorithm 4.1.
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Sub–event Function b mode
si,0 fF OR
si,1 fF NOR
si,2 fL ∨ fB OR
si,3 fL ∨ fB NOR
si,4 fR OR
si,5 fR NOR
si,6 byic = 2 SINGLE
si,7 byic < 2 SINGLE
si,8 byic = 0 SINGLE
si,9 byic > 0 SINGLE
si,10 byic = ξi SINGLE
si,11 byic 6= ξi SINGLE
si,12 aln SINGLE
si,13 ¬aln SINGLE

Table 4.2: All the sub–events for the i–th vehicle as they are defined in the
MASS simulator.

Sub–event Meaning
si,0 Someone is in front of agent i
si,1 Nobody is in front of agent i
si,2 Someone is on the left of agent i
si,3 Nobody is on the left of agent i
si,4 Someone is on the right of agent i
si,5 Nobody is on the right of agent i
si,6 Agent i is on the maximum lane
si,7 Agent i is not on the maximum lane
si,8 Agent i is on the minimum lane
si,9 Agent i is not on the minimum lane
si,10 Agent i is on its target lane
si,11 Agent i is not on its target lane
si,12 Agent i is aligned with the center of the lane
si,13 Agent i is not aligned with the center of the lane

Table 4.3: The “meaning” of all the sub–events defined in Table 4.2.
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Algorithm 4.1 Omniscient evaluation of the sub–event si.
Inputs: s =

{
b,mode

}
, qi, ξi, Ni

Outputs: the value of s

1: if mode = SINGLE then
2: return b(qi, ξi) / this is the simplest case

3: end if

4: value ← false / we start with false

5: for all q ∈ N a
i do

6: if b(qi, ξi, q) = true then
7: value ← true / at least one state q verifies the condition

8: break the loop / therefore we can exit from the loop

9: end if
10: end for

11: if mode = NOR then
12: value ← ¬(value) / NOR means not OR

13: end if

14: return value

4.3 Estimation of ξ

In section 2.2, we supposed that the continuous sub–state of a target vehicle

i is completely measurable by each monitoring agent which is able to “see”

i. We did not make any hypothesis on ξi, and that is because this variable is

stored inside the target–agent’s automaton and cannot be measured in any

way. However, it can be estimated exploiting the fact that the reset law R is

known to all the monitors and the state qi is measurable. Therefore, when-

ever monitor h detects a maneuver transition of vehicle i, it can compute

R(qi, σi) and update its estimation of the target–agent’s variable ξ at the

same instant in which the target–agent updates its own value. We will say

that a monitoring agent h has “locked” a target–agent i when there has been

a maneuver transition for agent i, and its variable ξi has been estimated.

4.4 3–level logic

In order to represent the uncertainty of a vehicle monitoring another one,

we use a 3–level logic in which event and sub–event values can be
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• true,

• uncertain,

• false.

We can also redefine the logical operators ∧, ∨, and ¬ in order to make them

to work also on this value set. The truth tables of these operators are shown

in Tables 4.4–4.6.

4.5 Non–omniscient event evaluation

With these new value set and the redefined operators we can now model the

decision–making process of a monitor h which has to evaluate an event for

a target vehicle i, whose neighborhood is not completely known. This eval-

uation is based only on the definition of the events and will be subsequently

refined using the information about monitoring agent’s visibility.

Since the evaluation mode of a sub–event s can be OR, NOR, and SIN-

GLE, the uncertainty of the monitor depends also on this value:

• if the evaluation mode of s is SINGLE, then, since both the target–

agent’s state qi and its logic variable ξi are known2, then the sub–event

is completely computable by the monitor.

• If the evaluation mode of s is OR, it means that monitor h has to

compute the binary function b associated with s for all the visible

agents’ state qj ∈ Ni. But monitor h cannot know precisely the value

of agent i’s neighborhood Ni, it can only get an estimated value N̂h,i,
as shown in Eq. (3.5) at page 23. Therefore, even after computing the

value of b for each qj ∈ N̂h,i, in some cases it cannot be certain of the

value of the sub–event si. Such estimated value will be

a. true if it exists at least an agent’s state q for which the function

b is true,

b. uncertain otherwise, because the monitor cannot exclude that a

hidden agent’s state q, such that q ∈ Ni but q /∈ Nh, may verify

the condition b = true.
2Let us suppose that monitor h has locked its target.
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a b a ∧ b
true true true

true false false

true uncertain uncertain

false false false

false uncertain false

uncertain uncertain uncertain

Table 4.4: The truth table of the logical operator ∧ over the new domain.

a b a ∨ b
true true true

true false true

true uncertain true

false false false

false uncertain uncertain

uncertain uncertain uncertain

Table 4.5: The truth table of the logical operator ∨ over the new domain.

a ¬a
true false

false true

uncertain uncertain

Table 4.6: The truth table of the logical operator ¬ over the new domain.
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• If the evaluation mode is NOR, the monitor’s behavior is the same as

in the previous case, but the final values are different. The estimated

value of s will be

a. false if it exists at least an agent’s state q for which the function

b is true,

b. uncertain otherwise.

The non–omniscient evaluation of a sub–event si by monitor h is shown in

Algorithm 4.2.

Algorithm 4.2 Non–omniscient evaluation of the sub–event si.
Inputs: s = {b,mode}, qi, ξi, Nh
Outputs: the estimated value of si

1: if mode = SINGLE then
2: return b(qi, ξi) / this is the simplest case

3: end if

4: active ← Qa(qi) / compute target–agent’s active region

5: value ← uncertain / we start with an uncertain value

6: for all q ∈ Nh do
7: if qi /∈ active then
8: continue with next q / consider only states inside the active region

9: end if
10: if b(qi, ξi, q) = true then
11: value ← true / at least one state q verifies the condition

12: break the loop / therefore we can exit from the loop

13: end if
14: end for

15: if mode = NOR then
16: value ← ¬(value) / NOR means not OR

17: end if

18: return value

The evaluating strategy we have expounded so far is based only on the

‘mode’ attribute of the sub–events and does not take into consideration the

monitor’s observable region the mutual configuration of target and moni-

tor. In the next sections, we will expose a method for refining these non–

omniscient monitor’s predictions using the information about observability.

44



Chapter 4. Decentralized IDS: Implementation

Lt0

Rt0

Fd0

Figure 4.3: An application example of the indicator function Υ.

4.6 Indicator function

Let us define a function Υ which applies to all the binary functions as the

ones of Eq. (4.4). The set B of all this kind of functions can be denoted as

B = (Q×Q× Ξ){true,false} , (4.14)

then the function

Υ : Q× B → 2Q (4.15)

can be defined as follows:

Υ(qi, ξi, b) =
{
q ∈ Q | b(qi, ξi, q) = true

}
, (4.16)

where b ∈ B. An application example of the indicator function Υ is shown in

Fig. 4.3, from which it is also easy to understand how the active region Qa

can be computed as the union of all the values of Υ(q, ξ, b) for any sub–event

and for any value of ξ.

Note 4.2. Please note that in general the region Υ(qi, b) has the same di-

mensions as the state space Q, even if on the shown figures is represented

as a 2–dimensional region.

4.7 Prediction refinement

Let us suppose that monitor h computed the set σ̂i of the possible maneuvers

that the target–agent i can perform according to the estimated events. It

computed the set êi of all possible events which could trigger that maneuver

transitions. This set can be further refined by making hypothesis about the
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target–agent’s neighborhood and then doing a sort of compatibility verifi-

cation with the monitor’s current vision. In particular, since the function Υ

has been defined, the monitor can use it to make some hypothesis about the

presence or the absence — or in general about the value of qj — of other

hidden vehicles around the target–agent.

Whenever an uncertain transition is detected, the monitor can visit the

event–representation tree and control which events of E(T ) have an uncertain

value and which ones are false3. For each uncertain event e, there will be a

set of true sub–events in S(e) and a set of uncertain ones4. Now, for each

uncertain sub–event s, the monitor can pose the question: “what should be

the value of a hidden vehicle’s state qj in order to make the sub–event s

true?”. The indicator function can provide an answer: given a sub–event

s =
{
q,mode

}
, where mode is e.g. OR, and given a target–agent i, the

values q which make the sub–event true are the ones in the set5

q̂j = Υ(qi, ξi, b) . (4.17)

Now let us consider the observable and unobservable regions Qoh and Quh,

defined in Eq. (2.20–2.22) at page 8: given the sub–event s and these regions,

the values of qj inside the set

q̂oj = q̂j ∩Qoh (4.18)

are not possible, because the monitoring agent h is able to see all the vehicles

whose state is in Qoh. Therefore if it had existed a vehicle j such that qj ∈
q̂oj , then the sub–event s should have been evaluated as true by monitor h

instead of uncertain. Then we can conclude that the only possible values for

a hypothetical state qj are the ones in the set

q̂uj = q̂j \ Qoh . (4.19)

Whenever the evaluation mode is NOR, the line of reasoning is quite similar:

according with what we previously said, q̂j now represents the region where

a hidden vehicle should not be so that the sub–event s can be true. But the
3If one of them was true, then the transition T should be true.
4If a sub–event was false, then the whole event should be false.
5Please note that the set q̂j is necessary a subset of Qa

i .
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monitoring agent h is able to measure all the vehicles inside Qoh, and if it

had existed a vehicle j such that qj ∈ q̂oj , then the sub–event s should have

been false instead of uncertain. Therefore the interested region is q̂uj , i.e. the

monitoring agent makes hypothesis only about its unobservable region.

Now let us consider the case in which, after computing q̂uj , this quantity

is an empty set. If q̂uj = ∅ it means that there is not any hidden position

in which a vehicle’s state qj could lay in order to make the condition b to

be true. Therefore if the evaluation mode of s is OR, then the real value of

the sub–event is false, whereas if the evaluation mode of s is NOR, then the

real value of the sub–event is true. The whole procedure provides a refined

value of all uncertain events before the detection of the next target–agent’s

maneuver and can be summed up in Algorithm. 4.3.

Algorithm 4.3 Prediction refinement for the uncertain events ei.
Inputs: e, qi, ξi, Qoh
Outputs: the refined estimated value of ei

1: for all s ∈ S(e) do

2: if valueof(si) = true then
3: continue with next s / refinement is only for uncertain values

4: end if

5: q̂[ s ]← Υ(qi, ξi, b) / compute all the possible values of hidden states

6: q̂[ s ]← q̂[ s ] \ Qoh / refine the possible values based on Qo
h

7: if q̂[ s ] = ∅ then
8: if mode = OR then
9: valueof(si) ← false / the value of si is false

10: return false / the value of ei becomes immediatly false

11: else
12: valueof(si) ← true / the value of si is true, then also

13: end if the value of ei might change

14: end if

15: end for

16: return valueof(ei) / the updated value of ei
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4.8 Hypothesis formulation

In the previous sections we said that whenever a monitor remains uncer-

tain about a target–agent’s reputation, it can formulate some hypothesis on

the eventual presence or absence of other vehicles around target, which the

monitor is not able to see. These hypothesis consist in an set of values that

a vehicle’s state qj could assume in order to verify the conditions defined in

the set of possibly occurred events and sub–events. These values are com-

puted in Algorithm 4.3, where we denoted with q̂[ s ] the hypothesis about

sub–event s. Of course such hypothesis types depend also on the ‘mode’

attribute of s:

• If mode = OR, the hypothesis could be enunciated as “I suppose that

there is a vehicle j such that qj ∈ q̂”.

• If mode = NOR, the hypothesis could be enunciated as “I suppose

that there is not a vehicle j such that qj ∈ q̂”.

Hypothesis formulation represents the farthest goal that a single mon-

itoring agent is able to accomplish on its own. In the next chapters, after

giving some simulation results for the monitoring strategy, we will illustrate

a consensus algorithm, by which many monitors can communicate with each

other and reach a shared common decision about a target–agent’s reputa-

tion.

4.9 Reputation assignment

Once that all the sub–events in S have been estimated for the target–agent

i, the monitor can evaluate also all the events, based on their definition of

Table 4.1 and the operators of Tables 4.4–4.6: the value of an event will be

the logical and of all its sub–events, whereas the value of a transition will

be the logical or of all its events. At the end of this procedure, monitor h

has a complete estimation of the values of the target–agent’s events. If at

least one of the transitions has a true value, the monitor has a precise idea of

which should be the target–agent’s future behavior, otherwise if one or more

transitions have an uncertain value, then monitor h can expect that agent
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i will perform a limited set of maneuvers, i.e. the maneuvers corresponding

to the feasible transitions (see Algorithm 4.4).

Algorithm 4.4 Non–omniscient evaluation of the i–th agent’s possible fu-
ture maneuvers.
Inputs: σi, qi, ξi, Nh
Outputs: all the possible next maneuvers

1: maneuvers ← ∅ / an initial empty set

2: for all T ∈ T do
3: σ+ ← T (σi) / get the destination state of T

4: if valueof(Ti) = true then
5: return {σ+} / T is the only certain transition

6: else if valueof(Ti) = uncertain then
7: maneuvers ← maneuvers ∪ {σ+} / T is a possible transition

8: end if
9: end for

10: return maneuvers

After that monitor h computed the set σ̂i of all possible maneuvers that

agent i can perform according to the rule set, it has to check if the next

detected maneuver is inside σ̂ and decide for agent i’s reputation. Two cases

can present themselves:

1. The set of admissible maneuvers is composed of only a value σ∗, so if

the detected maneuver is equal to σ∗, then the target’s reputation is

correct, otherwise is faulty.

2. The set of admissible maneuvers is made of more than one value, so if

the detected maneuver is not among them, then the target’s reputation

is faulty, otherwise it is uncertain, because even if the monitor has

estimated a set of “good” maneuvers, it cannot know with certainty

which is the correct one.

4.10 Simulation results

In this section we will show some simulation results in order to prove the

effectiveness of our method. In the following figures each vehicle has its iden-

tification number printed on its top, and the monitoring vehicle is marked

by a light blue circle. The target–agent is marked
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a. with a green circle when the monitor is certain that the target–agent’s

behavior is cooperative,

b. with a yellow circle when the monitor is uncertain about the target–

agent’s behavior,

c. with a red circle when the monitor is certain that the target–agent’s

behavior is uncooperative.

We represented also with red and green rectangles the regions in which

a monitoring agent estimates respectively the presence or the absence of

another vehicle.

Note 4.3. Please note that, although we can only show 2–dimensional re-

gions with our graphical representation, all the monitoring vehicle’s hypoth-

esis are generally about the whole 4–dimensional state. The fact that in our

example only x–component and y–component contribute in the computation

of the events is only for chance.

In Fig. 4.4.a is shown a frame of a simulated video with 3 monitors and

a target–agent, while in Fig. 4.5 are shown the same frames of 4.4 in which

has been highlighted the target–agent’s active region.

Agent 0’s behavior is faulty because it should return on the first lane

instead of running on the second one, since there is not any vehicle on

its right. Agents 1–3 are monitoring agent 0 without communicating with

each other. The simulation results are shown in Fig. 4.4.b, 4.4.c, and 4.4.d,

representing respectively the “point of view” of agent 1, 2, and 3. It is easy

to note that only agent 3 is able to detect the agent 0’s faulty behavior, while

agents 1 and 2 remain uncertain about the agent 0’s reputation6.

This is the limit of the decentralized method: only if a monitor has a

complete view of the target–agent’s neighborhood it can be sure about its

reputation. Mathematically the sufficient condition for monitor h is

Qai ⊂ Qoh . (4.20)
6While observing these simulation screenshots please bear in mind that all vehicles

are considered as points, so a vehicle is inside a region only if its center do. For example
vehicle 3 is not considered inside the red region of Fig. 4.4.c.
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(a)

(b)

(c)

(d)

Figure 4.4: A 3–lane highway simulation where 3 agents monitor a faulty
one.
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Qa
0

(a)

(b)

(c)

(d)

Figure 4.5: A 3–lane highway simulation where 3 agents monitor a faulty
one.
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(a)

(b)

Figure 4.6: A 3–lane highway simulation where agent 0 monitors all its visible
neighbors.

Of course this condition is only sufficient, because in cases as the one of

Fig. 4.4.d the monitor can detect a faulty behavior even without a complete

knowledge of target–agent’s neighborhood. As we said before, this limit can

be overtaken only with a distributed monitoring algorithm in which several

monitoring agents collaborate to obtain a common shared opinion about a

target–agent’s reputation.

In Fig. 4.6 is shown another example of the monitoring system applied

to a 3–lane automated highway in which vehicle 0 monitors all its visible

neighbors and make hypothesis about their neighborhoods7.

7Please refer to Fig. 2.6 at page 11 to remind how the observable region is computed
in this simulation.
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Crossing–Street Example

In this chapter we will show another application example of the decentralized

monitoring strategy. This example regards a system in which several robots

run on a street never changing their direction. Each robot can only accelerate

and brake and the streets on which robots are running can intersect with

each other. The task for which all the robots collaborate is to avoid collisions.

An example of robot configuration is shown in Fig. 5.1.

5.1 System description

The system dynamics are almost the same as in the highway example pre-

viously described, except for the robot direction θi which remains constant

for the whole evolution. The rules that the robots must follow are very sim-

ple: a robot musts brake if its trajectory intersect the one of another robot

which has precedence over the first. The precedence rule is computed in the

“european way”, i.e. a robot b, coming from the right side with respect to a

robot a’s point of view, has precedence over a.

The maneuvers that each robot can perform are the following:

• FAST: the robot increases its speed until it reaches the maximum al-

lowed speed.

• SLOW: the robot decreases its speed until it stops.

The ‘slow’ maneuver is represented in the following figures with a red triangle

in front of the robots.
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Figure 5.1: A screenshot of a simulated system with robots running on cross-
ing streets.
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F S

eS→F

eF→S

Figure 5.2: The automaton representation used for this second example.

5.2 Automaton definition

The event set E for the i-th agent is defined as follows:

eF→Si = Fdi (5.1)

eS→Fi = ¬Fdi (5.2)

The expression Fdi is defined as

Fdi =
{
∃ qj ∈ Ni | fP (qi, qj) = true

}
, (5.3)

where

fP (qi, qj) =
{
d(qi, qj) < D

}
∧
{
p(qi, qj)× vi · ẑ > 0

}
∧

{
(θ̂i × θ̂j) · ẑ > 0

}
∧
{

(θ̂i · θ̂j) > 0
}
.

(5.4)

The distance d is the euclidean distance and is computed as

d(qi, qj) =
√

(xi − xj)2 + (yi − yj)2 , (5.5)

while the vector p is the “position vector” which expresses the relative po-

sition of robot j with respect to the position of robot i:

p(qi, qj) =

 xj − xi
yj − yi

0

 . (5.6)

Moreover, D is a system constant, and with ẑ and θ̂i we mean the versors

representing the z axis direction, and the i–th agent’s direction.

Note 5.1. In this system the logical variable ξ is not used.
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5.3 Simulation results

In our simulation, the regions expressed by Υ(qi, fP ) and the unobservable

regions, due to the complexity of calculus, have been hardly approximated

with an union of 4–D cuboids, and in the next screenshots these region have

been projected onto the x–y plane for representability reasons.

In Fig. 5.3 and Fig. 5.4 are shown the screenshots of a simulation in

which robot 0 monitors all its visible neighbors. In the sub–figures (a) is

represented the real evolution of the system, while in the sub–figure (b) is

represented the point of view of the monitoring robot. Once again it is easy

to realize that a monitor, if it works alone, can detect very few faults and

in many cases it remains uncertain about target–agents’ reputation1.

1To represent the reputation with which each target agent is assigned we use the same
conventions (green, yellow, and red circles) as in the previous chapter.
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(a)

(b)

Figure 5.3: A monitoring simulation of the crossing–street system.
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(a)

(b)

Figure 5.4: A monitoring simulation of the crossing–street system.
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Chapter 6

From Decentralized to
Distributed IDS

In this chapter we will show how the decentralized IDS can be enriched by

introducing communication. We will make monitors to communicate with

each other implementing a consensus algorithm. A consensus algorithm [20],

[21] is a strategy by which several networked agents reach a common shared

opinion about a certain value, starting from many individual initial estima-

tions.

6.1 Shared information

In our scenario the shared information is an object that we called recon-

structed neighborhood. The estimated i–th agent’s neighborhood will be de-

noted by Ωi.

Note 6.1. In Eq. (2.23) at page 11 we already defined the set Ni which

contains all the neighboring–agents’ sub–state q. In this chapter we will give

to the neighborhood a new wider meaning.

Let us define more clearly what a reconstructed neighborhood Ωi is.

Each monitor, if it has not estimated a certain transition, puts together all

its uncertain events and for each of them it builds a hypothesis k associated

with each event. Each event e is made of a list of sub–events S(e): some of

them will be true, while the others will be uncertain1. Each uncertain sub–

event s corresponds to a supposition (see Section 4.8) about the existence
1No sub–events could be false because otherwise the whole event would be false.
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(mode = OR) or the non–existence (mode = NOR) of a robot j such that

qj ∈ q̂[ s ]. The reconstructed neighborhood Ωi is a collection of all these

pieces of information about the target–agent’s behavior. Ωi is an object

containing two sets:

1. The set N̂ a
i of all the visible target–agent’s neighbors whose state q

lies inside Qai , defined in Eq. (3.5) at page 23.

2. The set Ki of all the hypothesis that monitor h makes about the events

occurred to agent i.

A hypothesis k ∈ Ki is a set composed of three objects:

1. A numerical id associated to the probably occurred event ei.

2. A set of sub–hypothesis Lk corresponding to all the sub–events in S(e)

that have been evaluated as uncertain and have an ‘OR’ evaluation

mode.

3. An estimated “negative” region Q−k , where monitor h supposes that

there are not robot.

A sub–hypothesis l ∈ Lk is in its turn a set composed of two objects:

1. A numerical id associated to the probably occurred sub–event si.

2. An estimated “positive” region Q+
l , computed as Υ(qi, ξi, b), where

monitor h supposes that there should be a robot.

When a certain event is detected, the set Ωi is composed of an empty hy-

pothesis object which contains only the id of the detected event.

The method for building the reconstructed neighborhood Ωi is shown in

Algorithm 6.1, where the quantity q̂[ · ] is the array shown in Algorithm 4.3

and the quantity N̂ a
i is defined in Eq. (3.5) at page 23.

6.2 Communication model

Let us represent the communication capabilities of the monitors in our sys-

tem with a non–oriented graph Gc(V,E) [22, 23], where V is the set of all the

nodes (or vertices) and E is the set of all the edges connecting two different

nodes. An example of a non–oriented graph is shown in Fig. 6.1.
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Algorithm 6.1 The building strategy of Ωi.

Inputs: E , q̂[ · ], N̂ a
i

Outputs: Ωi

1: Ki ← ∅ / an initial empty set of hypothesis

2: for all e ∈ E do

3: if valueof(ei) = uncertain then
4: Lk ← ∅ / an initial empty set of sub–hypothesis

5: Q−k ← ∅ / an initial empty “negative” region

6: for all s ∈ S(e) do
7: if valueof(si) = uncertain then
8: if modeof(s) = NOR then
9: Q−k ← Q

−
k ∪ q̂[ s ] / there should not be any robot here

10: else if modeof(s) = OR then
11: l← {id(s), q̂[ s ]} / build the sub–hypothesis

12: Lk ← Lk ∪ l / update the sub–hypothesis list

13: end if
14: end if
15: end for
16: k ← {id(e),Lk,Q−k } / build the hypothesis

17: Ki ← Ki ∪ k / update the hypothesis list

18: else if valueof(ei) = true then
19: k ← {id(e), ∅, ∅} / we do not need nor sub–hypothesis, nor Q−k
20: Ki ← {k} / k is the only hypothesis

21: Ωi ← {N̂ a
i ,Ki}

22: return Ωi / we can exit from the algorithm

23: end if

24: end for

25: Ωi ← {N̂ a
i ,Ki}

26: return Ωi
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1 2

3

6

4

5

7

Figure 6.1: A connected communication graph.

Definition 6.1. The distance d(i, j) between node i and node j is defined

as the shortest path length2 in graph Gc between the two nodes [24]. If a

path connecting the two nodes does not exists, then d(i, i) =∞. It also holds

d(i, i) = 0, ∀i ∈ V .

In our system agent i, represented by the graph node i, is able to com-

municate with all the agents represented by the nodes of its communication

neighborhood Vi(1), where

Vi(p) =
{
j ∈ V | d(i, j) ≤ p

}
. (6.1)

Supposing that the i–th vehicle is able to communicate whit all the sur-

rounding vehicle whose euclidean distance from i is less than a determined

maximum value Dc, then agent i’s communication neighborhood can be

expressed by

N c
i (1) =

{
qj | d(qi, qj) ≤ Dc

}
, (6.2)

and

N c
i (p) =

{
qj | d(qi, qj) ≤ pDc

}
. (6.3)

6.3 Consensus algorithm

Assuming that a merging operation between different reconstructed neigh-

borhoods is defined, the consensus algorithm used in our IDS is quite simple:
2This is also known as the geodesic distance.
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at each consensus step n, each monitor broadcasts its reconstructed neigh-

borhood Ωi(n) to all the monitors with which it is able to communicate. At

the same time it receives their reconstructed neighborhoods, and updates

its estimation merging it with the received ones. This procedure is repeated

for a finite number of steps, i.e. it ends at a certain step n = n.

The number of consensus steps n can be chosen considering that after

p steps the information broadcasted by agent i reaches all the nodes in

Vi(p) and therefore, all the agents whose state q is inside N c
i (p) i.e. they

are distant less than pDc from agent i. In Section 6.6 we will prove that

the minimum number of consensus steps needed for the shared estimation

to converge depends on the communication graph diameter3.

6.4 Merging operation

We will describe how the merging between two reconstructed neighborhoods

of agent i is made by monitoring agents. Let the two neighborhoods be

Ωi,1 =
{
N̂ a
i,1,Ki,1

}
, (6.4)

and

Ωi,2 =
{
N̂ a
i,2,Ki,2

}
. (6.5)

The lists N̂ a
i,1 and N̂ a

i,2 of the measured states can be simply joined together4,

while for the hypothesis set we need a procedure a bit less simple:

a. We start from one of the two hypothesis set, e.g. Ki,1.

b. For each hypothesis of Ki,2 we have to find the corresponding hypothesis

in Ki,1 and intersect the two “negative” regions. We have to do the same

thing for each couple of sub–hypothesis and their “positive” regions.

c. For each state q ∈ N̂ a
i,2 we have to check if it refutes one of the hypothesis

or if it verifies one of the sub–hypothesis of Ki,1.

3From [25]: �A graph’s diameter is the largest number of vertices which must be traversed
in order to travel from one vertex to another when paths which backtrack, detour, or loop are
excluded from consideration�. The graph of Fig. 6.1 e.g. has diameter 4.

4We suppose that monitors does not lie.
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d. Each refuted hypothesis and each verified sub–hypothesis have to be re-

moved from their own list.

e. Whenever we obtain a complete verification of a hypothesis, we must

remove all the other ones from the list.

In Algorithm 6.2 we describe more precisely the procedure. We denoted by

‘�’ the merging operation.

6.5 Reputation

Once the reconstructed neighborhood Ωi has been generated, the reputation

value with which the target agent i is assigned can be obtained as follows:

• ri = faulty if the hypothesis set Ki is empty.

• ri = correct if

a. the hypothesis set Ki is composed of only one element k∗,

b. the “negative” region Q−k∗ is empty,

c. and the sub–hypothesis set Lk∗ is empty.

• ri = uncertain otherwise.

6.6 Consensus convergence theorem

Now we will prove that a more general version of the consensus algorithm

described in the previous sections can converge to a shared common value,

which consists in the simultaneous merge of all the agents’ initial recon-

structed neighborhoods.

Suppose that a time–invariant and non–oriented graph Gc represents

how the N agents of a system can communicate with each other. Suppose

also that each agent can compute its initial estimation ξi(0) of a generic

value ξ̃ ∈ Ξ, and that a generic commutative and associative operator

� : Ξ× Ξ→ Ξ (6.6)

is defined.
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Algorithm 6.2 Merging operation between two reconstructed neighbor-
hoods.
Inputs: Ωi,1, Ωi,2

Outputs: Ωi = Ωi,1 � Ωi,2

1: Ki ← Ki,1 / start with a hypothesis set

2: for all k′ ∈ Ki,2 do
3: k ← lookfor(k′, Ki) / find the corresponding hypothesis

4: if ∃ k then
5: Q−k ← Q

−
k �Q

−
k′ / refine the “negative” region Q−k

6: for all l′ ∈ Lk′ do
7: l← lookfor(l′, Lk) / find the corresponding sub–hypothesis

8: if ∃ l then
9: Q+

l ← Q
+
l �Q

+
l′ / refine the “positive” region Q+

l

10: end if
11: end for
12: end if
13: end for

14: for all q ∈ N̂ a
i,2 do

15: for all k ∈ Ki do

16: if q ∈ Q−k then
17: Ki ← Ki \ k / the hypothesis k was false

18: continue whith next k
19: end if

20: for all l ∈ Lk do
21: if q ∈ Q+

l then
22: Lk ← Lk \ l / the sub–hypothesis l was true

23: end if
24: end for

25: if Lk = ∅ and Q−k = ∅ then
26: Ki ← {k} / the hypothesis k has been verified:

27: break the 2 nested loops we found a certain event

28: end if

29: end for
30: end for

31: N̂ a
i = N̂ a

i,1 ∪ N̂ a
i,2 / merge the list of measured states

32: Ωi = {N̂ a
i ,Ki} / build the new reconstructed neighborhood

33: return Ωi
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Definition 6.2. Let us define a distributed consensus algorithm by which

each agent can merge its estimation with the one of its neighbors at each

consensus step n:

ξi(n+ 1) =
⊙

j∈Vi(1)

ξj(n) , (6.7)

where the set Vi(·) is the one defined in Eq. (6.1).

Definition 6.3. Let us also say that if the equation

ξ � ξ = ξ (6.8)

holds ∀ξ ∈ Ξ, then the operator � is said to be self–invariant.

Lemma 6.1. If � is associative, commutative, and self–invariant, the ex-

pression

ξi(n) =
⊙

j∈Vi(n)

ξj(0) (6.9)

holds for any i and n.

Proof. Lemma 6.1 can be proved by logical induction. Consider the evolution

of the i-th agent estimation starting from its initial estimation ξi(0): from

Eq. (6.7) we get

ξi(1) =
⊙

j∈Vi(1)

ξj(0) ∀i ∈ N . (6.10)

Now assume that Eq. (6.9) holds for a certain value of n. Then from Eq. (6.7)

and Eq. (6.8) we obtain

ξi(n+ 1) =
⊙

j∈Vi(1)

 ⊙
m∈Vj(n)

ξm(0)

 =
⊙

m∈Vi(n+1)

ξm(0) , (6.11)

where the last equivalence holds if � is commutative, associative, and self–

invariant.

Since Eq. (6.9) holds for n = 0, as shown in Eq. (6.10), the general

expression for ξi(n) in Eq. (6.9) can be obtained by induction. �

Now we are ready to give the main result in Theorem 6.1.
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1 2 3

Figure 6.2: A simple 3–node communication graph.

Theorem 6.1. If � is commutative, associative, and self–invariant, then,

for any set of initial conditions and for any connected graph, the distributed

consensus algorithm of Eq. 6.7 converges to a unique network decision on

the estimation of ξ̃ in a finite number n of consensus steps. Furthermore the

shared network decision is equal to the centralized computation

ξ∗ =
⊙
i∈N

ξi(0) , (6.12)

and the minimum number of consensus steps needed is

n ≤ max
i,j∈N

d(i, j) , (6.13)

i.e. n is not greater than the diameter of the communication graph Gc.

Proof. Theorem 6.1 can be proved by observing that, if

n = max
i,j∈N

d(i, j) , (6.14)

then, since graph Gc is connected,

Vi(n) = V ∀n ≥ n , (6.15)

and for Lemma 6.1 and Eq. (6.12) we obtain

ξi(n) =
⊙

j∈Vi(n)

ξj(0) =
⊙
j∈N

ξj(0) = ξ∗ , (6.16)

for any i ∈ V , and for any n ≥ n, as requested. �

Note 6.2. If � is commutative and associative, but not self–invariant, then

it may exist a set of initial condition, and a connected graph for which con-

vergence is not reached in n steps. Let us consider the example of Fig. 6.2

in which Ξ ⊆ R, and � ≡ +, and let the initial conditions be the following

ones:

ξ1(0) = 1 , ξ2(0) = 2 , ξ3(0) = 3 . (6.17)
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From Eq. (6.13) we obtain n ≤ 2; furthermore, from the definition of the

consensus algorithm in Eq. (6.7),

ξ1(2) = ξ1(1) + ξ2(1) =
(
ξ1(0) + ξ2(0)

)
+
(
ξ1(0) + ξ2(0) + ξ3(0)

)
(6.18)

and

ξ3(2) = ξ3(1) + ξ2(1) =
(
ξ3(0) + ξ2(0)

)
+
(
ξ1(0) + ξ2(0) + ξ3(0)

)
. (6.19)

Bearing in mind Eq. (6.17), it’s easy to find out that ξ1(2) 6= ξ3(2), and

convergence is not reached in n ≤ 2 steps.

In our system, the algorithm by which the reconstructed neighborhoods

are updated is made of logical unions and intersection. Therefore it is

straightforward to realize that the operation described in Algorithm 6.2

is commutative, associative, and self–invariant. Thus Theorem 6.1 can be

used also in our scenario, where ξ is the reconstructed neighborhood and �
is the operation described in Algorithm 6.2.

6.7 Simulation results

We will show now some evolution example of the consensus algorithm with

different vehicle configurations. We defined a function µ which expresses the

“amount” of uncertainty in a given reconstructed neighborhood Ωi. This

function is useful to show how monitors’ uncertainty decreases at each con-

sensus step, while they merge their knowledge together.

Note 6.3. The reconstructed neighborhood object is composed of a set of

measured states and a set of hypothesis. In all the following examples the

neighborhoods are composed of only one hypothesis, but this is only for

chance.

Example 6.1. Six vehicles are configured as shown in Fig. 6.3.a, and the

communication distance Dc has been chosen such that vehicles can commu-

nicate as shown in Fig. 6.3.b. Vehicles 2, 3, 4, and 5 are monitoring vehicle

1. Vehicle 0 prevents vehicle 1 from turning right on the first lane, so ve-

hicle 1’s behavior is correct. Furthermore since the 4 monitoring vehicles, if

communicating together, have a complete vision of vehicle 1’s active region
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Qai , they are able to obtain a certain opinion on its reputation level. Each

vehicle has its initial subjective vision, shown in Fig. 6.4. The communica-

tion graph’s diameter is 3, so we expect that the consensus algorithm will

converge in at most 3 steps, and that all vehicles get the same estimation

Ω∗1 = Ω1,2(0)� Ω1,3(0)� Ω1,4(0)� Ω1,5(0) , (6.20)

shown in Fig. 6.3.c.

The consensus algorithm steps are shown in Fig. 6.5–6.8. In Fig. 6.9–6.11

are shown respectively the reputation value r1 with which vehicle 1 is as-

signed, the uncertainty measure µ of each monitor’s reconstructed neighbor-

hood, and the communication overhead, i.e. the size in bytes of the message

sent by each monitor. It is interesting to see how all these values converge

to the same result in at most 3 consensus steps.
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(a)
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(b)

Ω∗
1

(c)

Figure 6.3: Vehicle configuration (a), communication graph (b), and central-
ized monitoring result Ω∗1 (c) for Example 6.1.
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(b)

(c)

(d)

Figure 6.4: Vehicles’ initial estimations — Example 6.1.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.5: Consensus step 0 (initial conditions) — Example 6.1.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.6: Consensus step 1 — Example 6.1.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.7: Consensus step 2 — Example 6.1.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.8: Consensus step 3 — Example 6.1.
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Figure 6.9: Reputation values — Example 6.1.
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Figure 6.10: Uncertainty measure µ — Example 6.1.
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Figure 6.11: Communication overhead — Example 6.1.
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(a)
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Ω∗
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(c)

Figure 6.12: Vehicle configuration (a), communication graph (b), and cen-
tralized monitoring result Ω∗1 (c) for Example 6.2.

Example 6.2. Five vehicles are configured as shown in Fig. 6.12.a, and

the communication graph is the same as in Example 6.1. Vehicles 2, 3, 4,

and 5 are monitoring vehicle 1, but this time it does not exists a Vehicle 0

preventing vehicle 1 from turning right on the first lane. Therefore vehicle

1’s behavior is faulty. Once again the consensus is reached in 3 steps. The

initial estimations, the consensus evolution and all the results are shown in

Fig. 6.13–6.20.
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(a)

(b)

(c)

(d)

Figure 6.13: Vehicles’ initial estimations — Example 6.2.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.14: Consensus step 0 (initial conditions) — Example 6.2.
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3 Ω1,3
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Figure 6.15: Consensus step 1 — Example 6.2.
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4 Ω1,4

3 Ω1,3

2 Ω1,2

5 Ω1,5

Figure 6.16: Consensus step 2 — Example 6.2.
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Figure 6.17: Consensus step 3 — Example 6.2.
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Figure 6.18: Reputation values — Example 6.2.
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Figure 6.19: Uncertainty measure µ — Example 6.2.
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Figure 6.20: Communication overhead — Example 6.2.
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(a)
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Ω∗
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(c)

Figure 6.21: Vehicle configuration (a), communication graph (b), and cen-
tralized monitoring result Ω∗1 (c) for Example 6.3.

Example 6.3. Four vehicles are configured as shown in Fig. 6.21.a, and the

communication graph is the same as in Example 6.1, except for vehicle 5

that in this Example does not exists. Vehicles 2, 3, and 4 are monitoring

vehicle 1, and since it does not exists a Vehicle 0 preventing vehicle 1 from

turning right on the first lane, vehicle 1’s behavior is faulty again. Since the

diameter of the graph of Fig. 6.21.b is now 2, we expect that all the values

converge in at most two consensus steps. Let us note that this time the region

observable by all the monitors together does not include all the target–

agent’s active region Qa1, therefore we expect that all the monitors get to an

uncertain evaluation of target–agent’s reputation r1. The initial estimations,

the consensus evolution and all the results are shown in Fig. 6.22–6.28.
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(a)

(b)

(c)

Figure 6.22: Vehicles’ initial estimations — Example 6.3.

88



Chapter 6. From Decentralized to Distributed IDS

4 Ω1,4

3 Ω1,3

2 Ω1,2

Figure 6.23: Consensus step 0 (initial conditions) — Example 6.3.
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Figure 6.24: Consensus step 1 — Example 6.3.
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Figure 6.25: Consensus step 2 — Example 6.3.
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Figure 6.26: Reputation values — Example 6.3.
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Figure 6.27: Uncertainty measure µ — Example 6.3.
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Figure 6.28: Communication overhead — Example 6.3.
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Chapter 7

Conclusions

Our attention was focused on collaborative multi–agent systems in which

each agent plans its behavior based on a decentralized policy, i.e. consider

only its locally available pieces of information.

We described a theoretical strategy for a decentralized IDS which is not

an ad–hoc solution, but instead is independent from the collaborative policy

used in the system. We also described a more efficient implementation of the

IDS strategy and we developed a very flexible simulator in C++ which is

able to prove the effectiveness of our method.

Moreover, we improved the presented IDS by adding a distributed algo-

rithm based on consensus and we also proved the effectiveness of the solution

by a general consensus convergence theorem and by in-depth simulations.
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Publications

The ideas exposed in this thesis have been summed up and developed in the

following papers:

[1] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi, “Decen-

tralized intrusion detection for secure cooperative multi–agent systems,”

in Proc. IEEE Int. Conf. on Decision and Control, 2007, (accepted).

[2] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi, “Local

monitor implementation for decentralized intrusion detection in secure

multi–agent systems,” 3rd IEEE Conference on Automation Science and

Engineering, 2007, in press.

[3] A. Fagiolini, M. Pellinacci, G. Valenti, G.Dini, and A. Bicchi, “Consensus–

based distributed intrusion detection for multi–robot systems,” IEEE In-

ternational Conference on Robotics and Automation, 2008, (submitted).
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Appendix A

Multi–Agent System
Simulator

The Multi–Agent System Simulator (MASS) is a software simulator devel-

oped by us in order to evaluate the effectiveness of our IDS by reproducing

attacks of several kinds. Specifically, the MASS is entirely written in C++.

A.1 Smulator overview

The MASS has been developed such that each module of the IDS is repre-

sented by a particular object in the code. Therefore the MASS can be con-

sidered as a quite faithful reproduction of our proposed monitoring strategy.

A simple scheme of the MASS structure is shown in Fig. A.1. The en-

vironment is the main object which contains the whole system and which

let us access its variables. Inside the environment object there is a vector

of vehicles, which on their turn are composed of a physical layer, a logical

layer, and a monitor layer. The physical layer and the logical layer have been

described in the previous chapters. The monitor layer is a container for a

list of local monitors, each of them is able to monitor a single neighboring

vehicle and is instantiated or deleted as soon as a new vehicle appears or

disappears from monitor layer’s view.

A.2 Brief class description

Area. This class represents a region of an N-dimensional space, composed

of a list of Rectangle objects. Also a few basic mathematical operations
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Physical–layer

Logical–layer

Monitor–layer

Vehicle 1

· · ·

Channel

Physical–layer

Logical–layer

Monitor–layer

Physical–layer

Logical–layer

Monitor–layer

Environment

Vehicle 2 Vehicle n

Figure A.1: A simple scheme of the MASS structure.

are defined:

• intersection,

• union,

• subtraction,

• membership.

Automaton. This class represents the automaton, which is a fundamental

block of the decision–making process installed on–board all robotic

agents. The automaton is characterized by a set of discrete states and

a tree data structure made of a set of transitions, events, and sub-

events.

Channel. This template represents a wireless channel, used by the agents

of the system to communicate with each other. The Channel class

provides a few basic communication services as broadcast/reception of

packets. In addition, it gives a wide range of options in terms of how

the channel musts work (communication range, reception probability,

and so on).

Configuration. This class provides an object able to read a configuration

file and store the contained information into its fields.
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Environment. This class represents the scenario where the simulation is

set. An Environment object contains the set of simulated vehicles, the

Channel class, and provides a collection of methods to stimulate the

evolution of the system and save the simulation outputs.

Event. This class represents the mathematical condition which, if verified,

induce the automaton to change its logical state. A few methods to

evaluate and reset the logical value of the Event are provided.

ExtValue. This class represents an extended boolean type which can as-

sume three logical values:

• true,

• false,

• uncertain.

Some basic logical operation are also defined.

Failure. This class represent a kind of failure by which a vehicle is affected.

The failure can be a physical or logical one, and the list of broken

vehicles can be defined in the configuration file.

Hypothesis. This class represents a hypothesis that a monitor make on a

target agent’s neighborhood. A Hypothesis object contains

• the id of the probably occurred event,

• a List of SubHypothesis,

• a “negative” Area object representing a region where there should

not be any neighboring vehicle.

Image. This is one of the main output class. An Image object is able to

generate and save png images representing

• the omniscient vision of all vehicles,

• the subjective vision of a particular observer,

• the target–agent’s reconstructed neighborhood.
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List. This template represents a list of ‘T’ type elements. Such template

provides several typical operations on lists:

• look for,

• head insertion,

• head extraction,

• tail insertion,

• appending,

• joining,

• element deletion,

• list deletion,

• element updating,

• sorting.

Logger. This class is used for logging. A global Logger object is instantiated

in the MASS and used like a log server. It creates a log file at each

simulation steps and it saves there all the received log messages.

Message. This template represents a radio message in which is sent a ‘T’

type object. Agents communicate with each other by exchanging this

kind of message objects.

Monitor. This class represents the local monitor component. When instan-

tiated, a Monitor object focuses its attention on a target vehicle and

observes its behavior estimating its currently performed maneuver and

its occurred events.

MonitorLayer. This class represents a module, installed on–board each

vehicle, containing and managing all the Monitor objects, since a single

Monitor is able to observe only one target. It provides a few methods

e.g. for

• adding a monitoring activity for a recently appeared vehicle,

• interrogating a Monitor about a target–agent’s reputation,

• getting a target–agent’s estimated Neighborhood.
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Neighborhood. This class represents the target–agent’s neighborhood. Such

neighborhood is estimated by the Monitor and is exchanged with

neighoboring agents under the working hypothesis of virtuous com-

munication. An object of this type is composed of:

• the target–agent’s state,

• a set of measured states inside the target–agent’s active region,

• a set of Hypothesis objects.

Output. This class is used to save the simulation results to an ASCII file.

It is also able to organize output data into tab–separated columns in

order to be easily imported in Matlab.

PhysicalLayer. This class represents the physical structure and the dy-

namics of a vehicle. A PhysicalLayer object, calling the provided meth-

ods, can be controlled like a continuous system.

Rectangle. This class represents a cuboid in a N–dimentional continuous

space. The cuboids represented by this class are those whose edges are

parallel to the direction of one of the orthonormal basis vectors. Each

edge can be projected onto the direction of the basis vector with which

it is aligned, and can be represented by the two bounds of its projec-

tion. Some basic operations are provided, like intersection, overlapping

test, etc.

Reputation. This class represents a target–agent’s reputation. In particu-

lar, a reputation level can take one of the following values:

• faulty,

• uncertain,

• correct,

• unset.

ReputationManager. This class represents the reputation manager. This

is a component of the local IDS embedded on the agent’s architecture.

This class provides operations that allow the agent to determine the
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reputation of all its neighboring agents. Specifically, an object of this

type bases its reputation evaluation on information supplied by the

MonitorLayer object. Moreover, the ReputationManager object exe-

cutes the consensus algorithm communicating with the neighboring

agents.

State. This class represents a vehicle’s continuous n–dimentional state.

SubEvent. This class represents the most elementary part of an Event,

and provides the same evaluation methods as the Event class.

Transition. This class represents a discrete state transition in the Automa-

ton. A Transition contains a set of Events, and it occurs only when at

least one of these events occurs. This class provides all the evaluation

methods as the Event and SubEvent class.

Vector. This template represents a vector of elements of type ‘T’. Such tem-

plate provides almost all vector typical updating, reading and sorting

operations.

Vehicle. This class represents the whole vehicle. A Vehicle object contains

and stimulates

• a PhysicalLayer object,

• an Automaton object,

• a ReputationManager object,

• a MonitorLayer object.
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