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SUMMARY 

 

The end-of-life management of post-consumer plastic materials plays an 

important role in the development of sustainable polymer products. Over 

the last few years the growing effort to find environmentally more 

friendly solutions led to the support of biodegradable materials as an 

alternative to poly(hydrocarbon) (PE, PP, PS). In parallel PE, PP, PS full-

carbon backbone thermoplastic polymers have been re-engineered by 

addition of pro-oxidants able to promote the carbon backbone oxidation 

eventually followed by backbone breakdown. 

The major strategies in order to overcome the intrinsic recalcitrance of 

polyolefins to biological attack have been focused on the introduction of  

functional groups and chemical components (pro-oxidants) able to 

promote the formation of free radicals at carbon backbone susceptible to 

uptake oxygen with the formation of hydroperoxides. These last give raise 

to a free radical chain reaction leading to an abiotic, thermally and/or 

photophysical assisted breakdown of the polymer backbone with 

formation of oxidized groups. The oxidized fragments are vulnerable to 

microorganisms leading to a biotic phase with digestion of the chain 

fragments to CO2, H2O and cell biomass. 

The production and consumption of plastics, in the last decade has 

recorded a remarkable increase in the scientific and industrial interest in 

environmentally degradable polymers and relevant plastic items (EDPs). 

Since the ultimate fate of EDPs has to be their conversion by 

microorganisms into metabolites such as CO2, H2O and new cell biomass 

(i.e. mineralization). The requirement of two steps, abiotic and biotic, in 

the degradation mechanism of oxo-biodegradable plastic items has 

recently inspired the definition and approval by the American Society for 



 X

Testing and Materials (ASTM) of a Standard Guide ASTM D6954-04 

“Standard guide for exposing and testing plastics that degrade in the 

environment by a combination of oxidation and biodegradation”. 

Analogous initiative was undertaken soon after the approval in 2002 of 

the EN 13432 norm on “Requirements for packaging recoverable through 

composting and biodegradation – Test scheme and evaluation criteria for 

the final acceptance of packaging” by British Standard Institute (BSI) as 

it was considered too discriminatory toward large consume plastic 

commodities. The norm BSI 8472 is in progress and when approved 

should give the input for an extend approval to EC- Countries. 

 

The new strategic vision aiming at reengineering polymeric formulations 

based on well known biostable full carbon backbone polymers convertible 

to eco-compatible plastic items imply the following steps: 
 Abiotic treatment meant to promote and assist the oxidative 

degradation under different environmental conditions. 

 Biotic digestion of the oxidized polymer fragments. 

 Assessment of ultimate environmental fate of the analyzed samples and 

their impact on toxicity. 

Abiotic degradation studies, carried out under different test conditions, 

were performed in order to establish the role of pro-oxidant additives in 

enhancing the rate and extent of oxidation and evaluation of full-carbon 

backbone chain scissions as a prerequisite to promote the attack by 

microorganisms and finally to end up with biodegradation. 

The propensity to oxidation in terms of rate and extent was found to be 

dependant upon the following abiotic parameters: 

1) Type and amount of pro-oxidant. 

2) Temperature at which the samples are exposed. 

3) Outdoor exposure, time, temperature and light dose. 
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4) Exposure under static or dynamic conditions in oven in air atmosphere 

at controlled temperatures. 

5) Exposure in air environment at controlled humidity level. 

Combined effects, were also found to be dependent upon the cross-action 

of abiotic parameters and structural characteristics of the analyzed 

samples. Poly(ethylene) (LDPE, LLDPE, HDPE), Poly(propylene) (PP, 

BOPP), Poly(styrene) (HIPS, CPS).  

Thermal oxidation was particularly effective in the case of PE and PP 

samples, whereas only minor effects were ascertained in the case of PS. 

The rate and extent of oxidation of PE/PP samples were positively 

affected by both temperature and oxygen partial pressure, whereas a slight 

drop in rate and extent of oxidation was found to be associated to the 

humidity level in the case of PE, but not in the case of PP samples. On the 

other hand, sunlight outdoor exposure (3 months late spring/early 

summer) resulted less efficient in promoting oxidation of the analyzed 

LLDPE samples. This behavior can be attributed in a first instance to the 

ambient temperature monitored during the test that was in any case below 

35°C. On the contrary, thermal degradation behavior of samples 

previously submitted to outdoor sunlight exposure appeared to be 

different from that exhibited by the pristine samples submitted only to 

thermal degradation tests. The absence of induction phases in the 

oxidation processes of light exposed samples was evident during the tests. 

These observations may suggest that the initiation of the oxidation 

process, as promoted by light irradiation, positively affected the rate of 

oxidation once the samples were submitted to a thermal treatment. It can 

be therefore suggested that the combination of UV radiation and 

temperature was capable to promote oxidative degradation of the tested 

LLDPE samples containing pro-oxidant additives. In particular, the level 

of oxidation, is promoting the increase of the amount of the solvent 
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extractable fraction as well as a significant decrease of the relevant 

molecular weight that was found to correlate with the extent of oxidation 

(carbonyl index), as determined by FT-IR spectroscopy. This holds true 

particularly in the case of PP and PE samples, thus providing evidence on 

the statistical random scission of the polymer chains, according to Norrish 

I and/or Norrish II, which was accompanied by the formation of 

substantial amounts of low molecular weight fractions extractable by 

different solvents. On the contrary, in the case of PS samples, the random 

chain scissions does not seems to occur in spite of the presence of tertiary 

carbon atoms in the main chain in 1-3 positions. Instead sub-terminal 

oxidation and relevant release of oxidized polyaromatic moieties might be 

the main degradation mechanism occurring for the outdoor exposed  PS 

samples.  

In addition, GPC determinations showed that the molecular weights of 

solvent extractable fractions from abiotically degraded PE and PP 

samples are fairly low (0.4-1.9kD) and compatible with their potential 

vulnerability by natural occurring microorganisms. The results obtained 

during thermal and photo degradation tests are therefore demonstrating 

that the polyolefin matrices can be effectively oxidized by using pro-

oxidant additives based on transition metal organic salts, as well as that 

the rate and extent of the oxidation processes is depending upon the 

environmental conditions.  

A study was undertaken on the oxo-biodegradable materials preparation 

of LDPE/alkali lignin (AL) blends in abscnce or presence of pro-oxidant 

additives. The obtained results, even within the limits of the number of 

the samples investigated, are therefore ultizing natural auto-oxidazable 

and biodegradable components. This may represent an useful intriguing 

implementation in affecting the propensity to oxo-degradation of the re-

engineered polyolefins composites. 
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The biodegradation propensity of abiotically pre-aged (thermal and 

outdoor exposed) and pristine polyolefin samples have been ascertained 

in aqueous and soil burial conditions as aimed at establishing the 

mineralization rate and extent of several polymeric materials, as well as to 

ascertain the progress of polymer oxidation and degradation of full carbon 

backbone polymers by natural occurring microorganisms. The microbial 

consumption of oxidized fractions present in abiotically degraded PE and 

PP films was confirmed by the decrease (30-35%) in the COi values of 

the films submitted to the biodegradation test with respect to the starting 

pre-treated samples. The microbial degradation and assimilation was 

particularly effective in the case of solvent extracted fractions from PE 

and PP degraded samples. Nevertheless the higher propensity to microbial 

assimilation of linear oxidized fractions coming from PE with respect to 

fairly high branched PP fractions was observed in accordance to the role 

of sterical effects of side chains in refraining the microbial attacks. 

During soil burial respirometric tests it was also ascertained the potential 

for the ultimate biodegradability of polyolefins (LLDPE, PP and PS) 

previously exposed to abiotic degradation tests (thermal and/or outdoor). 

Finally it has been interestingly found that single soil borne microbial 

species are capable to promote the oxidation of pro-oxidant loaded 

LLDPE samples once the process has been initiated by relatively mild 

degrading conditions to which the samples have been exposed, such as 

those related to a few months outdoor exposure. The information 

pertaining the level of thermal and photo-oxidation required to achieve an 

effective and sustained biodegradation of full-carbon backbone polymers 

is critical for the design of polyolefin-based products and predicting their 

environmental fate. The research activity undertaken during the present 

PhD thesis provides important information with respect to synergistic 

effects of microbial/enzymatic attack and physical-chemical parameters in 
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promoting the degradation of partially oxidized full-carbon backbone 

polymers, thus allowing for a better design of oxo-biodegradable 

materials to be really and ultimately biodegraded under different natural 

environments. 
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1. INTRODUCTION 

Synthetic and semi-synthetic polymeric materials were developed for 

their versatility, easy processability, durability and resistance to all forms 

of degradation as promoted by physical, chemical and biological means or 

combinations thereof. Enhanced durability is achieved when required by 

including stabilizing additives and by processing under conditions that 

maximize the maintenance of molecular weight and functionality during 

fabrication and under subsequent service conditions. Macromolecular 

materials have been widely accepted for their costs, effectiveness to 

provide large variety of items including comfort and quality of life both in 

modern industrial societies and in developing countries. Moreover the 

demand in the next two decades for polymeric materials is expected to 

increase by two to three fold primarily as a consequence of an increase in 

plastics consumption in developing countries, with an annual growth rate 

worldwide of 7-10%. It was estimated a worldwide demand of plastics of 

about 200 million tons in 2000, 275 million tons have been indeed 

produced in 2010 [1]. 

Plastics are ubiquitous because the commercially available plastic items 

and commodities span a very wide range of useful properties and hence 

applications. It is commonly claimed that approximately more than one 

third of all commodity plastics are used for packaging purposes. The main 

reasons being associated to peculiar characteristics of plastic materials. 

They are inexpensive, easy to fabricate, strong, tough, and stretchy, have 

good barrier properties and are re-usable and recyclable, among other 

characteristics. The polyethylene (PE) shopping bag is an example of a 

common plastic article that is used in very large quantities because it 

provides exactly what it is supposed to do at very low cost. It has 

supplanted the alternatives, e.g., the brown paper bag, almost completely 

at check out stations because it has overall superior properties and, most 
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importantly, it is much less of environmental burden relevant to 

production and transport [2]. One criticism that is leveled at commodity 

plastics in short lived applications, however, is that they persist too long 

after they are used and discarded. It has been therefore estimated that they 

accumulate in the environment at a rate of 25 million tons per year. In 

general it has been suggested that the environmental pollution of these 

materials that often has been claimed as “White Pollution” can be 

attributable to the excessive and improper use, as well as to the lack of 

degradability of the post-consume items. The banning or taxing of PE 

shopping bags and analogous products is not the answer, however, 

because consumer requirements need to met, and there is no acceptable 

substitute: innovative technology is required. 

 

Figure 1. Typology of plastic shares in packaging market. 
 

1.1. Waste Disposal Issues and Legislative Background 

The greatest environmental pressure for the packaging chain comes from 

legislation. According to the European Environmental Agency, packaging 

waste is the major and growing waste stream [3]. Its amounts have 
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increased in most European countries despite the agreed objective of 

waste prevention. The rapid growth of specific waste, such as plastic 

waste, requires a pertaining accurate plastic waste management and 

recycling with the help of finding appropriate environmentally sound 

technologies. Although disposal in landfill is set to decrease over the next 

ten years, the technology is not yet available for the recovery of all the 

products that at present go into landfill and a major objective is to reduce 

the volume of active landfills. Landfill is normally composed of 

alternating layers of mixed domestic wastes, some of which are 

biodegradable and of soil to protect the surrounding environment from 

gaseous emissions and percolate due to putrefaction of the organic waste. 

The prevention in the use of soil leads to a desirable reduction in landfill 

as waste disposal strategy, thus stimulating the development of more 

environmentally acceptable technological solutions [4]. 

Generally, all the plastics will degrade and biodegrade, but time is too 

long with respect to the waste disposal requirements, due to their 

chemical characteristics and fabrication conditions. Scheme 1 represents 

the options of plastic waste recovery in solid waste management stream. 

In a ideal situation all the plastic would be collected or re-used or 

recycled or submitted to incineration by energy recovering. The 

reprocessing of industrial wastes organic material, contrary to that 

occurring, for waste items such as glass and metals that can be recycled 

into products with similar properties to primary materials, does not is 

general apply to plastic items. The energy recovery by incineration to 

obtain high caloric value is ecologically acceptable way of utilising 

carbon-based polymer wastes, but there is the possibility of toxic 

emission from some chlorinated polymers, particularly PVC which may 

produce dioxins during combustion [5].  



PhD Thesis – Muniyasamy Sudhakar 

 4

 
Scheme 1. Options of plastic waste management. 

 

On the other hand, the increase of the waste, plastics have to be regarded 

as resources to be re-used or biodegraded at the end of their service life in 

order to mitigate their negative environmental impact. The reprocessing 

of individual polymers in mechanical recycling generally leads to the 

production of downgrade products. Consequently recycled mixed plastics 

are normally unsuitable for secondary applications. In particular, 

reprocessed polyolefins each time leads to a loss of mechanical and 

physical properties due to free radical oxidation and peroxide formation. 

Furthermore, reprocessing itself requires almost one third of oil-based 

energy for secondary based products (example PE). By considering that 

the energy utilized during reprocessing has to be added to the energy 

spent in transportation and waste treatment, and the additives used to 

provide a serviceable product, the ecological benefits of recycling is 

frequently lost. However, all the plastics can be pyrolysed to give fuels, 
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petrochemical feedstocks and in a few selected cases monomers [6]. In 

the meantime, growing importance of municipal composting, there is an 

increasing interest in polymeric materials that can be converted to the so-

called compostable plastics ending, however, to a “bioincineration” 

without any energy or matter reserve. They can be polymers from either 

renewable or petrochemicals feedstocks. Biological recycling should be 

considered as an alternative to the more traditional recycling procedures 

and this has stimulated researches around the world to modify existing 

polymers or to synthesize new polymers that can be returned to the 

biological cycle after use, wherever possible to convert at least part of the 

carbon of the plastic waste into cell biomass. 

 

1.2. Importance of Polyolefins and Waste Disposal Problems  

Among the numerous applications of commodity thermoplastics, 

polyolefins occupy a major role in films for packaging and agriculture 

purposes. Polyethylene (PE) and polypropylene (PP) are commonly used 

in these areas because of their low cost, easy processability and good 

mechanical properties. Mainly, the use of plastics in agriculture is 

increased 2-3 fold due to the necessity of a increasing yields of produces, 

earlier harvests, less reliance on herbicides and pesticides, better 

protection of food products and more efficient water conservation [7]. 

Plastic films can improve products quality and yield by mitigating 

extreme weather changes, optimizing growth conditions, extending the 

growing season and reducing plant diseases. Almost half of this amount is 

used in protected cultivation (greenhouses, mulching, small tunnels, 

temporary coverings of structures for fruit trees, etc.). The vast majority 

of the protected cultivations area covered by plastic materials is 

dominated by the use of plastic made out of polyethylene (PE) [8]. In 

particular, low-density polyethylene (LDPE) is the most widely used 
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polyethylene grade, due to its relatively good mechanical and optical 

properties, combined with a competitive market price. A major concern 

bound to the plastic waste disposal after use in packaging and agriculture 

segments, is represented by the collection, and clearing problems and the 

final disposal problems are recognized as real-life situations where 

biodegradability would be a very useful property. Unfortunately 

polyolefins (and most other man-made polymers) are recalcitrant to 

biodegradation. Specifically for the case of agricultural plastic wastes, 

one of the alternative ways of disposal is represented by in situ 

biodegradation, upon post harvesting of the culture. Biodegradation has to 

do with specially designed polymeric materials. Most experts and 

acceptable standards [9] define a fully biodegradable polymer and hence 

derived plastic, as a polymer (plastic) that is completely converted by 

microorganisms to carbon dioxide, water, minerals and biomass (or in the 

case of anaerobic biodegradation, carbon dioxide, methane and humic 

material) without leaving any potentially harmful substances. Definitions 

given by the standardizations bodies (eg, ISO, ASTM, CEN etc.,), 

establish that the biodegradation processes of materials must proceed at 

specified rate in test conditions up to completion in proper time, without 

any accumulation of constituents with unknown fate and risk. 

 

1.3. Environmentally Degradable Polymers and Plastics  

Environmentally degradable plastics (EDPs), based on the term rather 

than on a specific definition, can be considered to include a wide group of 

natural and synthetic polymeric materials that undergo chemical change 

under the influence of environmental factors. The chemical change must 

be followed by complete microbial assimilation of degradation products 

resulting in carbon dioxide and water [10, 11]. The process of EDPs 

degradation comprises two phases, fragmentation and mineralization 



Introduction 

 7

(Scheme 2). During the initial phase, disintegration is significantly 

associated with the deterioration in physical properties, such as 

discoloration, embrittlement and fragmentation. The second phase is 

assumed to be the ultimate conversion of plastic fragments, after being 

broken down to molecular sizes, to CO2, water, cell biomass (aerobic 

conditions), and CH4, CO2 and cell biomass in the case of anaerobic 

conditions. The EDPs degradation and assimilation must be complete and 

occur at a sufficiently rapid rate so as to avoid accumulation of materials 

in the environment [12, 13].  

Scheme 2. Environmental degradation and biodegradation of EDPs.  

 

EDPs can be synthesized from renewable or non-renewable feedstocks. 

Examples of EDPs from renewable feedstocks are cellulose, starch, starch 

esters, collagen, viscose, cellulose acetate, polyhydroxy alkanoates, 

polylactic acid etc, whereas from non-renewable feedstocks are 

poly(vinyl alcohol) (PVA), poly(-caprolactone) (PCL), aliphatic-
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aromatic copolyesters, blends of starch and biodegradable polyesters etc. 

Renewable feedstocks used for EDPs production can be simple natural 

compounds (such as amino acids, sugar, resources of vegetal, aquatic, and 

animal origins) or can be derivatives from natural compounds that have 

undergone chemical transformation to give appropriate building blocks 

for EDPs. EDPs can also be produced from non-renewable feedstocks, 

most commonly from natural oil and gas. EDPs are often used as blends 

or composites in which two or more biodegradable materials are 

combined to provide optimal performance while maintaining or 

enhancing complete biodegradability [10, 14].  

The formulation of environmentally sound degradable polymers and 

plastics will constitute a key for the management of plastic waste [15]. 

The competition with the presently adopted technologies such as burial in 

landfill sites, incineration with energy recovery and mechanical or 

chemical recycling is expected to be strengthen, even though one may 

predict that all of them will coexist with an appreciable decrease of 

landfilling practice and the introduction of the new concept of prevention 

that should help to rationalize the production and management of plastic 

waste. The technologies based on recycling including also the energy 

recovery by incineration will be flanked by the increasing option of 

environmentally degradable plastics. 

These should be designed to replace the conventional commodity plastics 

in those segments in which recycling is difficult and labor-intensive with 

hence a heavy penalization on the cost-performance of “recycled” items.  

The global vision of environmental protection and sustainability [16], and 

criteria for the future industrial development, are to be connected with a 

number of actions all over the world aimed at providing adequate 

solutions and suggestions for minimizing the negative impact of the 

increasing production and consumption of polymeric materials and 
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plastics. This holds particularly true in the case of merceological 

segments such as packaging, kitchenware, detergency, and disposables 

that all together may reach levels of 40-50% of the worldwide plastic 

manufacturing. As a consequence of that new vision in the production and 

consumption of plastics, in the last decade remarkable increase in the 

scientific and industrial interest in EDPs can be envisaged. 

 

1.3.1. Definitions 

The American Society for Testing and Materials (ASTM) and the 

International Organization for Standardization (ISO) define: 

a) Degradation as “An irreversible process leading to a significant 

change of the structure of a material, typically characterized by a loss of 

properties(e.g. integrity, molecular weight, structure or mechanical 

strength) and/or fragmentation. Degradation is affected by environmental 

conditions and proceeds over a period of time comprising one or more 

steps” [17, 18]. According to the ASTM definition [19],  

b) Biodegradable plastic is “A degradable plastic in which the 

degradation results from the action of naturally occurring 

microorganisms such as bacteria, fungi and algae”  

Two principal types of commercially viable biodegradable plastics have 

been developed and are finding a variety of applications in many 

mercantile segments and consumer products: 

1) Oxo-biodegradable polymers and hence relevant plastic items, for 

which degradation is the result of oxidative and cell mediated phenomena, 

either simultaneously or successively; 

2) Hydro-biodegradable polymers and hence relevant plastic items, for 

which degradation is the result of hydrolytic and cell-mediated 

phenomena, either simultaneously or successively. 
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Both types of biodegradable polymers feature a two-stage sequential 

molar mass reduction in the environment with the first stage being 

basically abiotic (Scheme 3). 

Since the objective is to reduce the amount of plastic with minimum 

effect on the environment, the second stage is bioassimilation of the 

molecular fragments that are generated in the first stage [14]. 

Abiotic mechanisms are generally regarded as too slow by themselves to 

be adequate in a variety of disposal environments.  

 
Scheme 3. General features of environmentally degradable polymeric 

materials and plastics. 
 

There are several applications in which really quite rapid degradation of 

plastics after use is required. For example, plastics that end of in water or 

sewage treatment systems are an example of situations in which they need 

to loose integrity relatively so as to avoid plugging pumps, filters and the 

like. Hydrolytically unstable biodegradable plastics can provide an 
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answer here. In many other uses (e.g., food packaging) however, 

hydrolytic instability is a disadvantage. Overall stability is required 

during shelf storage and use but this should be followed by relatively 

rapid abiotic degradation within a specific time, depending on the 

disposal environment. The avoidance of the accumulation of plastic 

fragments requires that these be consumed through biodegradation by 

microorganisms in virtually all disposal environments. Effective 

biodegradation of such residues can be achieved when originally 

hydrophobic plastics acquire water wettable (hydrophilic) surfaces and a 

relatively low molecular weight so that there is a significant number of 

molecular ends accessible at the surface. The science and technology of 

the development of oxo-biodegradable plastics can meet these criteria.  

 

1.4. Oxo-Biodegradation of Full Carbon-Backbone Polymers  

Of the current worldwide production of synthetic polymers, nearly 90% is 

represented by full carbon-backbone macromolecular systems (polyvinyls 

and polyvinylidenics [20], and 35-45 % production is for one time user 

items (disposables and packaging). Therefore it is reasonable to envisage 

a dramatic environmental impact attributable to the accumulation of 

plastic litter and other plastic waste from discarded full carbon-backbone 

polymers, which are conventionally recalcitrant to physical, chemical and 

biological degradation processes. In contrast to the “hydro-

biodegradation” process of natural and synthetic polymers containing 

hetero atoms in the main chain (polysaccharides, proteins, polyesters, 

polyamides, polyethers), the mechanism of biodegradation of full-carbon-

backbone polymers requires an initial oxidation step, mediated or not by 

enzymes, followed by fragmentation, again mediated or not by enzymes, 

with substantial reduction in molecular weight. The functional fragments 

then become vulnerable to microorganisms present in different 
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environments, with production (under aerobic conditions) of carbon 

dioxide, water, and cell biomass. Scheme 3 outlines the general features 

of environmentally degradable polymeric materials, which are classified 

as hydro-biodegradables and oxo-biodegradables. Typical examples of 

the so called oxo-biodegradable polymers are represented by 

poly(ethylene), poly(vinyl alcohol) [21], natural rubber [poly (cis 1,4 

isoprene)] and lignin (a natural complex heteropolymer) [22]. 

 

1.4.1. Natural rubber (cis-polyisoprene) 

Full carbon-backbone polymers are normally associated with synthetic 

polymers obtained by the polymerization of vinyl compounds with a few 

cases of naturally occurring polymers. The most studied and best 

understood of these last is natural cis-poly(isoprene) (Natural rubber, NR) 

(Scheme 4), identical to synthetic counterpart (UR). NR was one of the 

earliest industrial polymers to be developed commercially and it was 

recognized to be degraded in the environment even before it reached the 

industrialized countries. In addition, rubber latex products were rapidly 

attacked by microorganisms leading to more general loss of mechanical 

properties and to eventual bioassimilation in the soil environment. 

The synthetic polyolefins are more environmentally stable than polydiene 

rubbers, that are less resistant to environmental stress than that might can 

be expected on the basis of formal structures. The abiotic peroxidation of 

NR occurs at ambient temperature as long oxygen is present in the 

system. A similar mechanism of oxidation occurs in synthetic polyolefins 

generating free radicals due to heat/light in the polymer chains, which 

immediately reacts with oxygen to form peroxides and hydroperoxides 

groups. However, oxo-biodegradation also proceeds in parallel in 

microbially active environments. It has been demonstrated experimentally 

[23,24], that pure strains of bacteria (in particular actinomycetes) and 
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fungi cause up to 55% loss of mass of rubber sheets in 70 days. The 

actinomycete, Nocardia (sp. St835A) was found by Tsuchii and co 

workers [25] to be particularly effective in degrading NR gloves in the 

absence of any other source of carbon. A mass loss of 75% was achieved 

in two weeks and the same strain in laboratory bioreactors led to complete 

degradation of NR in 45 days [26]. 

 

 
Scheme 4. Structure of cis-polyisoprene (natural rubber, NR) 

 

Ikram and co-workers [27] have shown that in normal soils at 25°C, NR 

gloves showed 54% loss of thickness after 4 weeks and 94% mass loss 

after 48 weeks. Commercial nitrile and neoprene rubbers showed 

insignificant loss in this time and plasticized PVC showed a smaller mass 

loss (11.6%) due to the biodegradation of the plasticizer and not to the 

biodegradation of the polymer itself. Bacterial populations on the NR 

gloves (12317 cell/mg) were higher than for fungi (441 cell/mg), which 

were in turn significantly higher than actinomycetes (297 cell/mg). 

Nevertheless, Heisey and Papadatos [28] isolated 10 actinomycetes 

(seven strains of Steptomycetes, two strains of Amycolatopsis and one 

stain of Nocardia) from soil that reduced the mass of NR gloves from 10-

18% in 6 weeks. Steinbuchel and co-workers [29], using rubbers as the 

sole source of carbon, found that NR and IR (synthetic polyisoprene 

rubber) biodegrade at a similar rate in the presence of Pseudomonas 

aeruginosa. NR gloves were 26% mineralized in 6 week compared with 

21% for IR gloves. This slight difference may well have been due to the 

difference in the antioxidants used in the formulation, although these were 
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not identified. It is clear, however that, contrary to the views of some 

environmentalists [30], there is no intrinsic difference between natural 

and synthetic polymers provided the same structure and comparable 

molecular weight. It has been pointed out that some actinomycetes can 

utilize CO2 as a source of carbon [31]. It is therefore necessary to equate 

microbial growth and associated formation of protein to loss of weight of 

the substrate. Delort ad co-workers[32] have shown that loss of 

carboxylic acids formed during abiotic peroxidation of PE correlates with 

the formation of protein and polysaccharides, almost certainly associated 

with the cross-linked bacterial cell wall structure. Nocardia and P. 

aeruginosa [29,33], were shown to break the cis-poly(isoprene) chain by 

an oxidative mechanism since aldehyde groups were found to accumulate 

during microbial degradation. This is always the first product formed 

during the abiotic peroxidation of cis-poly(isoprene) and the evidence 

suggests that bacteria initiate a radical-chain peroxidation (Scheme 5).  

 
Scheme 5. Suggested biodegradation mechanism of NR [34] 
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1.4.2. Lignin 

Lignin is another example of natural polymer that, like cis-poly(isoprene), 

cannot biodegrade by a hydrolytic process, but biodegrades slowly by the 

oxidative attack due to extracellular peroxidases produced by fungi and 

actinomycetes [35]. Lignin is a cross-linked polymer containing benzene 

rings (Scheme 6). it is formed in chemical association with cellulose 

(lignocellulose) and constitutes the tough cell wall structure of plants. The 

aromatic structures contain alkoxy and hydrocarbon substituents that link 

the basic unit below into a macromolecular structure through carbon-

carbon and carbon-oxygen bonds. Both chemical and physical properties 

of lignin resemble those of the synthetic phenol-formaldehyde (PF) resin. 

Like the PF resin, lignin provides physical, chemical and biological 

protection to the growing plant wood, straw and husks etc. Lignin, due to 

its physical (hydrophobic) and chemical inertness, does not readily 

degrade abiotically of biotically and when it does occur, the lignin tends 

to accumulate. However, lignin does biodegrade slowly under composting 

conditions. Lignin in grass and straw were found to biodegrade to the 

extent of 17-53% in 100 days. In laboratory studies, thermophilic 

composting grass straw showed 45% degradation in 45 days but the 

process is slowing down at more extended times. A number of 

peroxidases have been isolated that remove lignin from ligno-celluloses 

without affecting cellulose itself. Manganese Peroxidase (MnP) in 

particular has been implicated as an important enzymes formed by white 

rot fungus during deligninfication of kraft pulps [36].  

The chemical degradation of lignin is occurring during the pulping and 

bleaching process due to the reaction of chemicals including sodium 

hydroxide, sodium sulphide, chlorine dioxine and oxygen or ozone [37]. 

However, vast amounts of lignin derivatives from pulping and bleaching 

process where chemical degradation of lignin happen are created and 
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these compounds are a threat to the environment if not treated 

intelligently. Consequently, biodegradation of lignin in the environment is 

not only a scientific research interest but also a necessary solution to the 

environmental threat created by the pulp and paper industry. 
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Scheme 6. Lignin structure 

 

Until now, white-rot fungi are the only organisms able to mineralize 

lignin efficiently to carbon dioxide and water through a process initially 

catalyzed by extracellular enzyme [38]. Researches on the lignin 

biodegradation and white-rot fungi is an interdisciplinary scientific 

projects. It is also a systematic research concerning basic research and 

applied research. The basic research includes degradation of lignin by 

white-rot and litter-decomposing fungi, production, properties of 

ligninolytic and cellulosolytic enzymes and catalytic mechanisms of 

peroxidases secreted by white-rot fungi. The applied researches cover the 

following main research scope: 

1) Use of fungi to treat wood chips to decrease chemical or energy 

consumption in pulping and to remove pitch (extractives) from wood 

chips for biopulping. 
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2) Degradation of polycyclic aromatic hydrocarbons by litter-

decomposing fungi in soil. 

3)   Removal of organic material from soil contaminated with dioxins and 

dibenzofurans. 

4)   Degradation of lignin and lignocellulose in compost [39]. 

Interestingly, in the nature, white-rot fungi posses the unique ability to 

degrade lignin completely to carbon dioxide, while this is not their end 

purpose. White-rot fungi degrade lignin in order to have an access to the 

cellulose molecule which is a carbon source for them. Only recently, 

investigators began to understand the mechanism by which degradation of 

lignin is accomplished.  

The lignin degradation enzyme system of white-rot fungi is extracullular 

and has relatively low substrate specificity. Two enzymes i.e. peroxidases 

and hydrogen peroxide secreted by the fungi catalyze reactions of the 

highly reactive and non-specific free radicals, resulting in the 

depolymerization and degradation of lignin. Consequently, though lignin 

is naturally a highly oxidized polymer, it can eventually be completely 

oxidized to carbon dioxide by white-rot fungi. 

Furthermore, 14C-labelled techniques had been used to better 

understanding the new features in lignin biodegradation [40-42]. These 

results may give explanation to the questions that have puzzled 

researchers for many years. 

Besides white-rot fungi, there are many genera of actinomycetes and 

eubacteria which can degrade extracted lignin. Many bacterial strains, 

especially actinomycetes, can solubilize and modify the lignin structure 

extensively, but their ability to mineralize lignin is limited. Although 

aerobic microorganisms are primarily lignin degraders in most 

environments, it has been shown that anaerobic rumen microorganisms 

are cabable of degrading plant fibre cell walls [43, 44]. It has been 
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reviewed the anaerobic microbial degradation of lignin compounds and 

concluded that the intermediate metabolic products called oligolignols, 

released during aerobic degradation, may be partially degraded to CO2 

and CH4 by anaerobic microorganisms. 

 

1.4.3. Poly(vinyl alcohol) (PVA) 

Among the synthetic full carbon backbone polymers, PVA can be 

considered as truly biodegradable. Several microbial strains responsible 

of PVA oxidation and assimilation have been isolated. 

The major biodegradation mechanism of PVA in aqueous media is 

represented by the oxidative random cleavage of the polymer chains, the 

initial step being associated with the specific oxidation of methylene 

carbon bearing the hydroxyl group, as mediated by Oxidase- and 

Dehydrogenase types enzymes, to give β-hydroxy ketone as well as 1,3-

diketone moieties. The latter groups are susceptible to carbon-carbon 

bond cleavage promoted by specific β-diketone hydrolase, leading to the 

formation of carbonyl and methyl ketone end groups. [45, 46]. The 

ultimate biochemical fate of partially hydrolyzed PVA samples has been 

recently described by using Pseudomonas vesicularis PD strain, a specific 

PVA assimilating bacterium [47]. This bacterium metabolites PVA by a 

Secondary Alcohol Oxidase (SAO) throughout the oxidation of the 

hydroxyl groups followed by hydrolysis of the formed β-diketones by a 

specific hydrolase (-Diketone Hydrolase, BDH). Both enzymes are 

extracellular, and the polymer are cleaved by repeated enzyme-mediated 

reactions outside the cell into small fragments, which are further 

incorporated and assimilated inside the bacterial cytoplasm and 

metabolized up to carbon dioxide (Scheme 7,). The initial oxidation step 

of PVA macromolecules can also be promoted by ligninolytic enzymes 

(lignin peroxidase [Lip] and laccase) produced by white-rot fungal 
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species such as Phanerocheate crysporium [48, 49]. The monoelctronic 

enzymatic oxidation reaction leads to formation of free radicals along 

with the formation of carbonyl groups as well as double bonds, thus 

increasing the macromolecules unsaturation [48].  

 
 

Scheme 7. Biodegradation pathway of partially acetylated PVA [49] 
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1.4.4. Oxidation, degradation and biodegradation of poly(ethylene) 

(PE) 

Since the synthesis and during all the following manufacturing processes, 

as well as during their shell life (use and disposal), polyolefins are 

sensitive to oxidative degradation. In fact, the presence of sensitizing 

“impurities” capable to promote the oxidation of macromolecules can be 

recognized during the compounding and processing of polyolefins based 

plastic items. 

For instance, it has been stated that carbonyl [50, 51] and hydroperoxide 

groups [50, 52-55] represent the major sensitizing impurities formed 

during the processing of PE. At this stage, chemical structure of 

polyolefins is considered to play the most important role in influencing 

the oxidative degradation process, whereas during use and disposal steps, 

the oxidation of both PP and PE appear to be mainly affected by structural 

parameters such as the degree of polymerization, chain conformation, 

degree of cristallinity and geometry [56]. 

In the case of PE, the poor reactivity of non-polar C-C and C-H bonds 

strong constrains to the degradation processes by free radical pose 

reactions. These are generally initiated by bond-breaking processes 

promoted by energy input in the form of heat, radiation or mechanical 

stress. Of course, the susceptibility of bond scission is depending upon the 

bond energy, therefore the initial radical reactions in PE are mostly 

restricted to the defects of the chemical primary structure such as tertiary 

carbon atoms at branching sites and double bonds. Afterwards, a 

secondary complex series of radical reactions may lead to the total 

degradation of the polymer chains throughout further bond scissions, 

recombinations and substitutions. 

The overall sequence of reactions that are at the basis of PE, and more in 

general of polyolefins oxidation, have been traced during several decades 
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of active studies producing an huge amount of original papers and 

reviews. 

In accordance it has been widely accepted that the starting point of the 

degradation process can be mainly recognized in the homolytic bond 

cleavage in the carbon backbone as occurring during the polymer 

processing, , in response to  shear stresses during extrusion [57]. In the 

presence of oxygen, like in most of the industrial processes, the carbon-

centered radical is converted to a peroxy radical which is thought to be 

further converted to hydroperoxide radical by hydrogen abstraction from  

a vicinal methylene groups. 

The high reactivity of hydroperoxide groups when exposed under both 

heat and/or UV radiations promote a further series of reactions leading to 

chain scission (molar mass reduction) and formation of several different 

oxidized groups. 

In the overall peroxidation process of PE, the hydroperoxide groups 

decomposition is therefore considered as the rate-determining step [56]. 

This starts a radical chain reaction  among oxygen and C-H bonds in the 

polymer chains, where hydroperoxides are the key intermediates, in fact 

their formation and decomposition promote an autoaccelerating cycle of 

interlocking reactions [58]. 

Even though this chapter is not aimed at reviewing the paramount 

literature on the polyolefins degradation, a general overview on the 

mechanism of PE oxidation and kinetics thereof could be useful for a 

better understanding of the ultimate environmental fate of PE. 

In this connection, the basic mechanism proposed by Bolland and Gee 

[59] that comprises the classic steps consisting of 1) Initiation, 2) Chain 

propagation, 3) Termination and 4) Evolution of alkoxy radicals, can be 

considered as actually valid. In the case of conventional polyolefins it can 

be described as a several step branching, promoted by free radical chain 
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reactions, the slowest of which is the homolytic cleavage of 

hydroperoxide groups attached to the main-chain carbon atoms, as shown 

in Scheme 8. 

As already mentioned, the key intermediates in the proposed mechanism 

are hydroperoxides, whose decomposition give further free radical groups 

and most of the deriving oxidation products. 

Many of the kinetic studies of thermal oxidation of polyolefins are 

relative to the polymers in the melt state. In order to identify the reactions 

that promote the oxidative degradation, several investigations have been 

also carried out in polymer solution. Nevertheless, by considering that the 

practical use of polyolefin is in the solid state, several studies have been 

devoted to the kinetics of thermal and photooxidation of polymer films 

and sheets. In accordance, different oxidation products have been 

identified and several parameters capable to influence the oxidation 

processes, such as oxygen pressure, temperature, sample thickness, have 

been considered in the investigations. 

 

1. Initiation                                         RH  +  heat/shear stress      R  +  H 

            R  +  O2     RO2 

2. Propagation                                     RO2  +  RH      ROOH  +  R 

                           ROOH  + heat and/or UV light    RO  +  OH 

3. Termination                                    2 R  R-R 

                           R + OH      ROH 

                           RO + R      ROR 

4.  Evolution of  alkoxy peroxide      RO    ketones, alcohols, acids, esters  

 

Scheme 8. Polyolefin oxidation mechanism. 

 

From an analytical point of view, the FT-IR spectroscopy is considered 

one of the most powerful technique to be used in the kinetic studies of 
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thermal and photooxidation of polyolefins, particularly polyethylene, in 

the solid state (films and sheets). Considerable changes can be easily 

monitored in various regions of the FT-IR absorption spectra during the 

thermal and photo exposure of PE films. In particular, the formation of 

associated hydroperoxides whose maximum absorption band is recorded 

between 3400 and 3200 cm-1, as well as the absorption increase in the 

carbonyl region (1650-1850 cm-1) are currently utilized to evaluate the 

rate and extent of the oxidative degradation of polyeolefins. In the mean 

time, also the absorbance variation of peaks related to vibrations of the 

double bonds, as well as the single carbon-oxygen absorption band, may 

provide valuable information on the mechanism and oxidation products 

formation during thermal and photo exposure of PP and PE films. 

Under not-limiting oxygen concentrations during primary initiations it 

can be assumed that all the macroradicals as they are produced (e.g. by 

shear stresses) they are oxidized to peroxy radicals and by intra- or 

intermolecular hydrogen abstraction converted to hydroperoxides. A 

fairly complex series of chain reactions involving 

formation/decomposition of peroxy radicals and more frequently 

hydroperoxides, constitutes the propagation step leading to oxidized 

products formation and chain scissions. It has been estimated that, in 

oxidized solid polyethylene, more than 80% of the oxygen-containing 

products are represented by carbon chains bearing carbonyl and carboxyl 

groups [56]. Carbonyl groups along the carbon backbone are produced by 

hydroxyl radicals and hydroperoxides decomposition implying their 

conversion to alkoxy macroradicals. These last peroxy radicals may be 

transformed via hydrogen  abstraction to produce a carbonyl group and a 

chain-end radical throughout chain scission (Scheme 9). Accordingly, it 

has been ascertained a straightforward relationship between the amount of 

chain scission and the number of carbonyl groups. For this reason, 
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quantitative FT-IR analysis can be currently and effectively used for 

monitoring and predicting the rate and extent of oxidative degradation of 

polyethylene. 

 

 
Scheme 9. Hydrogen abstraction and chain scission in PE. 

 

As a consequence of the radical oxidation processes and relevant chain 

scissions, a fairly high number of degradation products containing 

functional groups, have been recorded in several investigations. In 

particular, two different classes represented by low-medium molecular 

weight fractions and volatile intermediates, respectively can be detected  

in kinetic studies of thermal and photooxidation of PE. As a consequence, 

the oxidation processes of PE and in particular of low density 

polyethylene (LDPE) can be effectively also monitored by gravimetric 

analysis showing the weight variation as a function of the thermal aging 

time and temperature [60]. In a case study, carried out on a LDPE sample 
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containing thermal pro-degradant additives, the time profile of weight 

variation was showing a sigmoid profile [60], thus accounting for the 

exponential accumulation of oxidized low-medium molecular weight 

fractions followed by the progressive weight decrease as a consequence 

of the loss of volatile intermediates. 

The formation of , low-medium molecular weight products containing 

carbonyl and hydroxyl groups has been identified in various studies [61]. 

It has been also ascertained that the relative amounts of these products 

account for at least 80% of products containing  carbonyl and carboxyl 

groups [56]. Carboxylic acids tend to accumulate particularly during 

prolonged exposure times, being other oxidized products such as alcohols, 

ketones and aldehydes susceptible to further oxidation to carboxylic 

acids. In classic studies most of the low molecular weight degradation 

products from both thermally and photo-oxidized  PE have been isolated 

and identified by solid phase extraction coupled with gaschromatography 

mass-spectrometry [62-64]. Accordingly, several semi-volatile 

compounds including alkanes, alkenes, ketones, aldehydes, alcohols, 

mono- and dicarboxylic acids, lactones, keto-acids and esters have been 

identified. In addition, fast volatile organic products (C2-C6), even 

though in a very small proportion, have been also detected. Among these 

acetaldehyde represents the most abundant component [56, 65]. 

 Monocarboxylic and dicarboxylic acids have been found to be the most 

abundant products  during prolonged aging under aerobic conditions.  

Primary alcohol and aldehydes derived from hydroperoxide 

decomposition are susceptible to be further oxidized during thermal 

aging. Also the photolytical cleavage of keto groups through Norrish I & 

II mechanisms may lead to the formation of carboxylic groups. 

The presence of fairly large amounts of carboxylic groups suggests the 

severe breakdown of PE matrix. This may be qualitatively evidenced by 
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the FT-IR spectra of PE samples recorded after different times of thermal 

treatment by monitoring the variation of both shape and intensity of the 

broad absorption band in the range 3600-2800 cm-1 typically associated to 

aliphatic carboxylic acids. 

Due to the relative stability to thermal oxidation in opposition to the 

instability to photo-oxidation, keto groups are considered as typically 

associated to the thermal degradation processes of PE. 

Other products, recognizable in the volatile and semi-volatile fractions of 

oxidized PE, such as keto-acids have been identified during low 

temperature thermal degradation [66], whereas lactones are usually 

generated under very  severe conditions or when extensive degradation  is 

taking place. 

Nevertheless, since almost the totality of the oxidation products results 

from the decomposition of polymer hydroperoxides, they are formed and 

trapped within the bulk, and only small fractions can escape thereof. 

In this connection, it has been suggested that also the estimation of the 

fractions exctractable with organic solvents might provide useful 

information on the level of the oxidative degradation of PE as well, and 

allowing for the determination of the amount of low-medium molecular 

weight oxidized components. Further information about the either statistic 

or sequential formation of functional groups can be achieved by the 

assessment of extent of oxidation of soluble and precipitated fractions, as 

well as by their molecular weight distribution. Oxidized PE fractions, 

soluble in a thrichlorobenzene-methanol solution, showed  the largest 

amount of oxidized functional groups present on relatively low molecular 

weight chain, whereas a substantial  portion of the polymer was 

represented by macromolecules characterized by a low level of oxidation 

[56]. 
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In a recent study [60], the amount of extractable fraction from thermally 

oxidized LDPE samples containing pro-oxidant additives, have been 

evaluated as a function of the level of polymer matrix oxidation as 

assessed by the COi (Figure 2). 

In this study, it has been evidenced that the amount of acetone extractable 

fractions is positively correlated to the level of oxidation induced by the 

thermal treatment in oven, thus reaching fairly high amount 

corresponding to 25-30% of the original weight of the analyzed sample at 

a COi value around 5 (Figure 2). The acetone extracted fractions resulted 

to be characterized by low molecular weight (0.90-1.50 kDa), and a high 

level of oxidation , as demonstrated by NMR and FT-IR analysis. 

Furthermore it was also observed that the progress of the oxidation level, 

as related to the COi, increased the quantity of soluble fractions 

characterized progressively by lower molecular weight values.  
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Figure 2. Percentage of fractions extractable with acetone and relevant 
molecular weight in thermally treated LDPE film containing a 
pro-oxidant at various level of oxidation as determined by 
carbonyl index (COi). 
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The large amount of different oxidation products, as well as their relative 

concentration, accounts for the occurrence of a  substantial number of 

interrelating elementary reactions and consequently of rather complex 

oxidation kinetics. In spite of the interest  for these complex series of  

chain reactions that has attracted a great deal of attention over the past 50 

years, only a little agreement on the kinetic models and values of specific 

rate constants has been achieved by both theoretical and experimental 

approaches. One of the most controversial fact is the basic hypothesis 

whether the oxidation mechanism should be considered as an 

homogeneous phenomenon or a heterogeneous process involving the 

spreading of degradation from localised sites. This latter interpretation is 

taking into account the semi-crystalline nature of solid polyolefins, where 

amorphous regions, more prone to oxygen diffusion and hence oxidation, 

coexist with crystalline regions that appear more impervious to oxidation 

processes. 

Even though of this chapter is not intended to review this topic, some 

basic and simplified information on kinetic oxidation processes could be 

useful to predict the ultimate oxo-biodegradation propensity of 

polyethylene. In particular the effect of physical parameters such as aging 

time, temperature and radiation intensity may provide the basic factors 

affording for a following extensive biodegradation step. 

Indeed, one of the most important feature allowing for a prediction of the 

oxidative behavior of polyolefin based films is needing the correlation 

between the experimental kinetics of oxidation with the chemical 

reactions meant to occur in the polymer bulk. 

In several studies, it has been ascertained that the early stage of thermo-

oxidative degradation of polyethylene as monitored by the formation of 

carbonyl groups is apparently in agreement with a typical self-accelerated 

mechanism [67]. 
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Nevertheless, in order to simplify the real mechanism, it has been 

suggested that the kinetic data should be treated by employing some basic 

assumptions, which are however compatible with the general scheme of 

reactions previously described. In particular, it has to be considered  that:  

1) Only the reactions of macroradicals (R*) and peroxymacroradicals 

(RO2*) are the rate detemining steps.  

2) The macroradical concentration may reach a steady state after a short 

initial step.  

3) The hydrocarbon concentration (e.g. the sites of possible oxidation) 

should be considered as costant. 

4) The decomposition of polymer hydroperoxides is unimolecolar or 

pseudo-unimolecolar. 

5) During the propagation step the only recations of R* is the oxygen 

uptake, whilst macroperoxyradicals promote hydrogen abstraction. 

6) The termination rate constant of step is independent of the type of the 

radicals. 

In addition the not-limiting concentration of oxygen could be also 

considered. In fact, it has been repeatedly reported that limited oxygen 

concentration may shift the chain scissions (e.g. molecular weight 

decrease) toward the cross-linking reactions through radical chain 

termination, thus inducing the apparent molecular weight increase [68]. 

The kinetics of carbonyl and hydroperoxide group formation reported in 

the literature to describe the thermal oxidation of low density  PE are 

currently the object of a deep revision  by many researchers, with some of 

them even disputing their validity. It is however accepted that the overall 

mechanism is complicated and the proposed kinetics does not yield a 

satisfactory model to account for many of the experimental data obtained 

from the thermal degradation studies of unstabilized, as well as stabilized 

solid LDPE samples. In particular it has been suggested that the main 
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source of discrepancy and conflicting interpretations may rise from the 

preferential fitting of the experimental results to power laws such as: 

[Carbonyl] = h·tb t= aging time, h = rate costant of polymer oxidation, b= 

rate constant of aging . These attempts were reported in early studies 

suggesting that the oxygen absorption, carbonyl group formation and 

hydroperoxide concentration were increasing according to a quadratic or a 

biquadratic law in thermally aged solid polyolefin [69]. 

Indeed, more recently, it has been suggested that the formation of 

associated carbonyl groups and associated hydroperoxides may occur 

according to autoaccelerating kinetics in the early stages of the process, 

thus resembling the exponential type. When the oxidation on the contrary 

is proceeding to prolonged aging times, the increase of hydroperoxides 

and associated carbonyl groups are thougth to fit in a better mode a linear 

increase with time (i.e. constant rate) [67]. 

Other studies, carried out by spotting several FT-IR measurements over 

an LPDE film surface, have also suggested, that in this case the thermal 

oxidation can be considered as a fairly homogeneous process, rather than 

to proceed according to a heterogeneous mechanism that should be 

expected to occur by considering the semy-crystalline nature of the 

polymer [69]. 

Several studies also suggested that the initiation of thermal oxidation of 

polyolefins and in particular LDPE, at moderate temperatures (60-80°C) 

is promoted to the largest extent by the oxidation products (free and 

associated hydroperoxides, carbonyl groups) initially formed  onto the 

surface layers [69, 70]. These products can diffuse more or less rapidly, 

depending upon their molar mass into the bulk, where they may induce, 

especially in the amorphous regions, further oxidation chains. Hence, it 

does appear that the thermal oxidative degradation may spread rather 

slowly from the surface within the whole solid sample according to a 
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complex behavior typical of both homogeneous and heterogeneous 

processes [69]. It is worth noting, however, that the above mentioned 

behavior can be considered as valid in the case of fairly high (80°C) 

temperature, whereas at lower oxidation temperature the effect of sample 

thickness, as barrier to diffusion, is prevalent. In other words, at lower 

temperature the oxidation rate was found to increase with the sample 

thickness, thus indicating the preferential oxidation of the surface layers 

in accordance with the activation energy of oxygen diffusion (40 kJ mol-1) 

[71, 72]. Even though also the rate of diffusion of the initiation products 

from the surface layers into the bulk is likely to affect the procees [70]. 

Despite the relatively good interpretation of the experimental data as in 

agreement  with an homogeneous model of thermal oxidation of solid 

LDPE, some evidences such as the leveling-off of the hydroperoxides, 

could be better interpretated according with the heterogeneous nature of 

semy-crystalline LDPE. The proposed model has been therefore based on 

the spreading of the initiation products from amorphous domains, after 

they reached a maximum amount, to other adjacent amorphous domains 

until the whole solid polymer be oxidized, when the spreading rate is a 

function of the oxidation time [73].  

In conclusion, it has been suggested that in the case of LDPE there is an 

exponential-type increase in the early stages of the oxidation process, 

followed by a linear increase at the later stages. However, the 

heterogeneous oxidation model and the corresponding kinetics developed 

for LDPE are thought to be also valid for other polyethylenes, including 

LLDPE, as well as Ziegler and Phillips-type HDPEs. The differences in 

the oxidative processes among the different PE polyethylene types seems 

therefore to concern mainly with the rate of oxidation, which seem to be 

most heavily affected by the nature of the PE. In this respect, polymer 

density/crystallinity as well as the manufacturing process are important. 
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Indeed, the increasing density and hence crystallinity degree lead to 

decreasing rates of oxidation spreading. The catalyst residues appear to be 

even important. If small amounts of Ti-catalyst residues have only a 

slightly accelerating effect, Cr-catalyst residues increase considerably the 

rate of spreading from one amorphous domain to the next of the polymer 

bulk [74]. 

 

1.4.4.1. Oxo-biodegradable polyethylenes 

The feasibility of producing environmentally degradable and low cost 

plastic items from polyolefins is dating back to the last decades of the 20th 

century. In this period, in fact, the potential abiotic degradability and 

eventually the ultimate biodegradability started to be considered as a 

positive attribute for several applications, particularly in packaging and 

agricultural market segments [75, 76]. 

On the other hand, in the meantime the recalcitrance of commercial high 

molecular weight polyolefins to environmental degradation and 

biodegradation was generally accepted. This was in particular recognized 

by observing the extremely low degradation rate of polyethylene in 

natural environments. It was therefore assumed that the resistance of PE 

to biological attack resides in its peculiar structural features, as well as in 

the presence of antioxidants and UV stabilizers that refrain 

macromolecules from abiotic oxidation and following fragmentation to 

oxygenated moieties . High molecular weight, hydrophobicity and lacking 

of functional groups recognizable by microbial (i.e. hydrolytical) 

enzymes represents structural parameters which greatly hamper the action 

of microorganisms. In solid PE items, macromolecules are densely 

aligned in semycrystalline structures, so very limited free chain ends are 

available for enzymatic oxidation eventually only at the surface. The slow 

rate of biodegradation can be at least partially attributed also to the 
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presence of antioxidants. In accordance, it was observed that antioxidants 

free polyethylene films were at least susceptible to bio-erosion, whereas 

under the same conditions control films containing the antioxidant 

resulted completely inert to the action of microorganisms [77, 78]. 

Taking into account these evidences, major strategies to enhance the 

environmental degradation and biodegradation of PE have been 

(historycally) focused on copolymerisation with functional monomers 

including carbon monoxide [79], blending or grafting with functional 

polymers and compounds respectively, and ultimately addition of pro-

oxidant additives. 

 

1.4.4.1.1. Copolymerisation 

Copolymerisation has been traditionally carried out in order to introduce 

UV-absorbing groups capable to enhance the photo-oxidation process. In 

this connection carbonyl groups can be incorporated into the PE main 

chains by the copolymerization of ethylene with carbon monoxide [80, 

81], or in the side chain as by copolymerization with vinyl ketones which 

are commercialized under the Ecolyte® trade name [82, 83]. In this last 

case it has been demonstrated that a great variety of side chains may be 

attained when the copolymerization is carried out at high pressures, 

conditioning as a result of the so-called “backbiting” mechanism in 

polyethylene [84]. Moreover, it has been also demonstrated that side 

chain carbonyl groups are more photoactive than those contained in the 

main chains because of the higher quantum yields for the formation in the 

solid phase of free radicals by both Norrish Type I and II processes. 

Additionally ethylene copolymers containing side chain acyl groups can 

be used as masterbatches in order to induce photodegradation of PE, thus 

allowing to control under a certain extent the degradation rates. This 

strategy is the basis of commercial Ecolyte process. 
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Even though, these materials usually have no induction periods and can 

be used mainly in short term applications didn’t find so far any substantial 

commercial exploitation. 

 

1.4.4.1.2. Prodegradant systems. 

More recently, a strategy has been introduced as aimed at using pro-

oxidant additives for a controlled oxidative breakdown of 

polyhydrocarbons into fragments vulnerable to microorganism. This is 

based on  the use of pro-oxidants additives and it has been suggested that 

this alternative may provide a more efficient control of the shelf life,  

service life and degradation rate of the reengineered polyolefins in several 

applications [57].  

 Organic salts of transition metals 

Most of these compounds are based on organic salts of transition metals  

active in “one electrontransfer” process between two oxidation states. 

Several polymer soluble metal carboxylates and acetylacetonates of Co3+, 

Fe3+ and Mn+3are very effective photo-prooxidants capable to initiate the 

degradation process through the metal salts photolysis and/or thermolysis 

to give the reduced form of the metal ion and a free radical under UV 

irradiation [FeX3, h > FeX2 + X*]. The anion radical promote a fast 

hydrogen abstraction from the polymer and the relevant formation of 

hydroperoxide. Afterward the general radical oxidation mechanisms of 

the polyeolefins is thought to proceed being enhanced by the usual redox 

reactions between hydroperoxides and metal ions [FeX2, + ROOH > RO* 

+ FeX2OH]. 

In an other case the properties of many metal complexes containing 

sulphur as a ligand play an opposite role acting either as photo or thermal 

stabilizer and as sensitizer after an induction period. Dithiocarbamates 

and dithiophosphates (Scheme 10) are the principal representatives of this 



Introduction 

 35

class of additives that exert the antioxidant effect by decomposing 

hydroperoxides by an ionic mechanism [85, 86]. After that, however, the 

ligand is destroyed, thus releasing free transition metal ions which start to 

behave as pro-oxidant according to the above cited mechanism. Hence 

antioxidant and photosensitizer properties are both present in the same 

compound. 

 
Scheme 10. Structural formulas of dithiocarbamates and dithiophosphates 
 

This evidence constituted the basis of the development of a well known 

class of photodegradable polyethylenes having a defined and controlled 

induction period initially started by Scott and further refined in 

collaboration with Gilead in order to finely control the lifetime before the 

photooxidation commences. This has been accomplished by using two 

component systems in which the length of the induction period is 

controlled by one metal thiolate and the rate of photooxidation by a 

second [87, 88]. The most representatives of this class of “delayed action” 

photosensitizer are the Fe(III) dithiocarbamates and dithiophosphates. 

The so-called “Scott-Gilead” technology led to the commercialization of 

several photodegradable polyethylenes especially devoted to applications 

in agricultural segments, such as mulching films, which requires a well 

defined induction period before the starting of the photodegradation 

process.  

A different system, even constituted by a combination of a photosensitizer 

and a photoantioxidant was developed by Allen, by using anthraquinone 

and Tinuvin 770, respectively [89]. 

Photodegradable PE samples produced according to the Scott-Gilead 

technology have been extensive tested under both photo and thermal 
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exposure, as aimed at establishing the mechanism of polymer degradation 

and the effect of different type of pro-oxidants and additives. 

In a case study, three different photodegradable PE samples containing 

iron dimethyldithiocarbamate (sample SG1), iron dimethyldithiocarbamte 

and 0.8% carbon (sample SG2) and iron dimethyldithiocarbamate and 

nichel dibuthyldithiocarbamate (sample SG3) were submitted to UV 

irradiation between 280 and 359 nm, both at room temperature  and at 

50°C for 300 h, in comparison with an additive-free LDPE film. The 

oxidative degradation of samples was also studied during 5 weeks under 

thermal aging at 80°C [90]. Degradation rate was assessed by  monitoring  

molecular weight changes and structural analysis of the degradation 

products. 

Depending upon type and combination of photo pro-degradants, different 

oxidative behaviours were recorded during  UV exposure . In particular, it 

was ascertained that Mw and Mn of the samples additivated with iron 

dimethyldithiocarbamate (sample SG1) only decreased after a few hours 

of UV irradiation. Longer induction times were instead observed in the 

samples containing both iron and nichel dimethyldithiocarbamates. In 

addition, molecular weight analyses were also suggesting that the 

scissions of main chains was the dominant process, whereas cross-linking 

resulted in a fairly low extent. A complex behaviour was also observed by 

submitting the UV exposed samples to thermal aging. For instance, iron 

dimethyldithiocarbamate was inducing the drop of both Mw and Mn 

during both  UV irradiation and under following  thermal exposure. On 

the contrary, the same catalyst was promoting a slight increase of the 

molecular weight when the SG1 LDPE samples were submitted to 

thermal degradation only (Table 1). 

Different degradation products were also recorded. Dicarboxylic acids 

were found as the main components in the photoexposed samples, whilst 
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mono and dicarboxylic acids, as well as ketones and ketoacids were 

recorded in higher relative amounts in post thermally oxidized specimens 

with respect to the analogous sample submitted only to UV exposure. 

 

Table 1. Molecular weight analysis of iron dimethyldithiocarbamate 
containing LDPE samples submitted to different aging 
treatment [90] 

 
Sample aging Mw Mn ID 
 kD kD  
none 190.0 32.7 5.9 
UV 100 hours 52.3 6.0 8.8 
UV 100 hours + 80°C 5 weeks 23.1 4.8 4.8 
80°C 5 weeks 202.0 49.8 4.4 
 

The strategy to control the life time of polyolefin under UV irradiation by 

mixing a photo-antioxidant and a photosensitizer constituted the basis of 

the studies performed by Acosta and co-workers [91]. In particular the 

feasibility to obtain life time controlled photodegradable polyethylene, 

was investigated by connecting photostabilizer and photosensitizer 

moieties in the same compound. Sterically hindered piperidine or ortho-

hydroxy-benzophenone were assayed as photostabilizer moieties, whereas 

benzophenone was chosen as photosensitizer. Two types of additives 

were then synthesized in which the stabilizer component was a substituted 

benzophenone or the hindered piperidine (Scheme 11). 

The synthesized compounds were tested in comparison with mixtures of 

benzophenone with well known commercial photostabilizers with similar 

structures such as Tinuvin 770 and Cyasorb 531 (Scheme 12). 
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Scheme 11. Structural formulas of mixed photosensitizers and 

photostabilizers based on and substituted benzophenone or 
hindered piperidine. 
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Tinuvin 770 Bis(2,2,6,6,-tetramethyl-4-piperidyl)sebacate
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O

O C8H17
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Cyasorb 531 2-hydroxy-4-octyloxy benzophenone  
 

Scheme 12. Structural formula of commercial photostabilizers 

 

In order to compare the activity of the synthesized compounds, HDPE 

additivated samples were exposed to both thermal degradation at 110°C 

and UV-exposure and the oxidation rates monitored by the evaluation of 

non-volatile carbonyl groups by FT-IR spectroscopy [91]. 
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The recorded embrittlement times, during the photodegradation tests, that 

were arbitrarily fixed at a concentration of 0.06 carbonyl units, were 

found to be depending upon the concentration of the additives in the 

HDPE films, as well as by their chemical structure and in particular by 

the number of methylene groups of the alkyl substituent. It was therefore 

observed that in the case of coupled chromophores system the 

photosensitizing effect played by benzophenone was dominant by 

increasing the concentration from 0.05 to 0.25 %, with corresponding 

decrease of the time of embrittlement. In addition the photoactivation was 

greater than that of benzophenone itself. 

A more complex behaviour was observed in the case of the systems 

bearing the hindered pyridine as photostabilizer moiety. At  a methylenes 

residues number as low as 4 in the aliphatic bridging chains  a small 

increase in stabilization was observed with the  increasing of the additive 

concentration, by contrast that photostabilization and photosensitizing 

effects were effectively competing. Whilst, by increasing the length of the 

aliphatic chains, the photosensitizing effect became dominant especially 

at low concentration. Whereas, the photostabilisation effect was higher at 

higher concentration in the case of systems bearing long aliphatic chains. 

Very different behaviours were indeed recorded during the thermal 

degradation tests in oven. In this case the coupled chromophores systems 

even with different alkyl chain lengths turned to be powerful thermal pro-

oxidants at very low concentration (0.05%), whereas the systems coupling 

benzophenone and hindered piperidine the thermal antioxidation was 

preavailing and icreased with increasing concentration and the alkyl 

chains length. 

The reported investigation is therefore suggesting that antioxidant/pro-

oxidant properties where constrained in the same compound can be 

modulated by the type of additive, the final concentration in the 
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polyolefin films, as well as by their chemical structures. For instance in 

coupled chromophore systems of aromatic ketones residues, the 

photosensitizing properties of benzophenone moiety were dominating 

over the stabilizing effect played by 2-hydroxybenzophenone, very likely 

because the influence of the excited state properties by hydroxyl group 

with consequence on the proton transfer rate. On the other hand the 

systems including benzophenone and hindered pyridine behave 

principally as thermal stabilizer, the antioxidant effect being increased by 

the concentration and the alkyl chains length which allows for a more 

effective compatibilization  and hence dispersion into the polymer matrix. 

 Transition metal carboxylates pro-oxidant additives. 

An other class of pro-oxidant additives is represented by compounds 

capable to induce the oxodegradative process of polyolefins by absorbing 

energy as heat. Also this class of additives is based on the activity exerted 

by transition metal ions typically added to the final product in the form of 

fatty acid salts  or acetylacetonate complexes. The most employed cations 

are Mn2+ [92] and Co2+ [93]. Instead of Fe3+ complexes which play  a 

major role in photo-oxidation processes, Mn2+ and Co2+ are needed to 

accelerate the radical chain reactions of polyolefin oxidation through the 

formation and decomposition of hydroperoxides and peroxides as induced 

by energy (heat and/or light) absorption.  

The mechanism of oxidative degradation of polyethylene catalysed by 

transition metal ions has been recognized as a sequence of free radical 

chain reactions [94, 95]. As a typical example, cobalt stearate in carbon 

chain polymers containing when exposed to energy absorption is 

susceptible to transfer one electron in the 3d cobalt subshell of atoms 

leading to the formation of carboxylic acid free radicals that easily 

decarboxylates to form alkyl radicals. These latter does react with carbon 

backbone macromolecules, thus promoting the formation of 
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macroradicals especially in the presence of tertiary carbon atoms, 

susceptible to produce hydroperoxides in the presence of oxygen (Scheme 

13). 

(RCOO)3MeIII h
(RCOO)2MeII  +  RCOO R +  CO2

- CH2 - CH2 - CH2 -
R

- CH2 - CH - CH2 -
 + O2 - CH2 - CH - CH2 -

OO

- CH2 - CH - CH2 -
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+  PH P - CH2 - CH - CH2 -
OOH
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OOH  + O2 - CH2 - COOH - CH2 - C- O-CH2 -

O
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Scheme 13. Radical chain reactions in polyolefins catalyzed by metal 
carboxylates 

 

Nowadays, several prooxidant formulations are sold under different trade 

marks.Master batches marketed. containing either photo- or thermal or 

both pro-oxidants constituted by organic ligands with transition metal 

ions. 

The effectiveness of Cobalt stearate in promoting the accelerated thermal 

oxidation of LDPE films has been also recently confirmed [96]. Indeed, 

an huge increase of Melt Flow Index (MFI) as a consequence of massive 

chain scissions was observed after 100 hours thermal ageing at 70°C of 

LDPE films containing 0.1-0.3% Cobalt stearate. Significant decay of 

mechanical properties, such as elongation at break, and MFI increase 

were also recorded when the same films were submitted to UV exposure. 

In accordance, cobalt stearate can be considered to be effective in 

promoting both photo and thermal oxidation of LDPE. Nevertheless, 

largest degree of oxidation were observed during the thermal aging, thus 

suggesting once more that Cobalt organic salts are more suitable thermal 

pro-oxidants for polyolefins.  
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In addition, rate and extent of oxidative degradation were positively 

correlated with the content of Cobalt stearate. 

The effectiveness of Cobalt organic complexes has been also investigated 

either as a function of the type of organic ligand, as well as of the aging 

conditions (photo or thermal exposure). It is known, in fact, that the 

catalytic activity is depending upon the valence and ionic bonding, as 

well as on the possibility to be intimately miscible blending with polymer 

chains at molecular level [97]. 

In other studies, the effect of carboxylate chain lengths (laurate, palmitate 

and stearate) as organic ligands for Cobalt ions as photo-sensitizers was 

investigated. LDPE films containing 0.05-0.2% of each type of cobalt 

carboxylates were prepared and tested under UV exposure, by using FT-

IR spectroscopy, mechanical testing and molecular weight determinations 

as analytical tools [98]. It were therefore monitored  to show that the 

oxidative degradation increased with the increase of the chain lengths of 

carboxylates residue. Therefore, beside the content of cobalt, during the 

photo exposure higher levels of degradation as detected by the MFI 

assessment were obtained with cobalt stearate, followed by palmitate and 

laurate. It was therefore suggested that the efficacy of Cobalt metal 

complexes in affecting the rate and extent of photo-oxidation of LDPE 

films is related to the length of carboxylate residues. This feature can be 

attributed either to the higher thermal stability of stearate during the 

LDPE processing, as well as to the better miscibility of longer 

carboxylate groups within the LDPE matrix. 

Taking into account the intrinsic capability of carboxylic acid polymers, 

such as Ethylene-co-Acrylic Acid (EAA), as well as those of styrene 

based polymers in inducing the photo/thermal oxidation of polyethylene, 

the capability to accelerate the oxidative degradation of LDPE films as 

mediated by synergistic effect of cobalt/polymeric complexes has been 
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investigated. In particular a cobalt complex with styrene-co-maleate 

copolymer (CSMA) was prepared with the aim of having in the same 

compound the pro-oxidant activity of transition metal ions, the capability 

of hydrogen abstraction from acidic groups by peroxy radicals, as well as 

the light absorbing cromophores of styrene [98]. The synthesized 

cobalt/polymer complex (CSMA), was tested as pro-oxidant in LDPE 

films in comparison with cobalt stearate during thermal degradation tests 

at 70°C and photodegradation tests carried out by exposing the test films 

to light in the 280 - 350 nm wavelength range. 

Despite its theoretical capability to promote the radical oxidation of 

LDPE matrix, the CSMA additive did not induce any larger degradation 

of LDPE films neither after 100 h thermal aging or 600 h UV exposure, 

with respect to that recorded in the case of a not-additivated control. On 

the contrary, films containing Cobalt stearate pro-oxidant underwent to an 

extensive oxo-degradation under both thermal and UV-exposure under  

analogous conditions. It was also suggested by MFI determination that 

crosslinking side reactions may occur in the case of UV exposed LDPE 

films containing CSMA Cobalt Complex. 

Cobalt stearate, was found to promote the fragmentation of LDPE films 

even in soil burial tests carried out at ambient temperature for 12 months, 

whereas pro-oxidant free LDPE- and LDPE containing CSMA did not 

exhibit any physical changes within the same environmental and 

timeframe conditions. 

The collected results were indeed showing the inability to induce the 

oxidation of LDPE by CSMA complex, although it was containing three 

different components each individually capable of initiating polyolefin 

degradation. It was therefore suggested that in spite of oxidation number 

and ionic bonding of Cobalt ions in CSMA complex, equivalent to the 

situation in Cobalt stearate, the ineffectiveness of the CSMA complex 
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might be attributed to the inherent crosslinked structure of CSMA 

hindering the Cobalt ion availability in single electron transfer reaction 

connected also to the intimate blending of CSMA with PE chains at 

molecular level during the processing. On the contrary, Cobalt stearate, 

was shown to maintain its redox activity, due to the intimate miscibility 

with PE which appears to be a key factor for photo and thermal 

degradation initiation by pro-oxidant additives. 

In the case of Manganese stearate, the effectiveness in promoting the 

oxidation process of polyolefin matrix as a function of aging conditions 

has been also evidenced [90]. In particular, Mn organic salts were found 

to induce a fast and substantial drop in the LDPE molecular weight when 

submitted to thermal aging. By contrast, if the same samples were 

preliminary exposed to UV irradiation no longer promotion of oxidation 

occurred during the following heat exposure step. This behavior was 

attributed to the deactivation of Mn stearate catalyst by UV irradiation 

[90]. 

 Aromatic ketones. 

Aromatic ketones (Scheme 14), such as benzophenone, represents active 

photoinitiators for several polymers. Since the early ninetysixties, it was 

established that benzoin and benzophenone can be used to sensitize the 

formation of singlet oxygen through different steps including light 

absorption by carbonyl groups. Norrish type II cleavage involving n-* 

excited states of carbonyl groups and formation of singlet oxygen 

molecules by quenching of the n-* triplet state of carbonyl groups is 

taking place [99]. 

Recently, the role of benzyl has been investigated as photo-prooxidant for 

LDPE films in combination or not with cobalt stearate under exposure to 

sun light, artificial wheatering and thermal aging [100, 101].  
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Scheme 14. Aromatic ketones as photosensitizers 

 

During this latter aging test, benzyl did not induce any appreciable 

increase in the level of oxidation, as determined by carbonyl index 

assessment, with respect to the control film even after 1000 h of heating 

at 70°C in air. Only minor variation in the oxidation levels were indeed 

appreciated in LDPE films containing benzyl only during natural and UV 

weathering tests. On the contrary the effectiveness of cobalt stearate alone 

or in combination with benzyl in promoting the oxidation and 

fragmentation of LDPE films was observed during both thermal and light 

exposure treatments. 

These observations are apparently in contrast with previous studies 

showing the effectiveness of aromatic ketones in inducing photo and 

thermal degradation of HDPE [91]. However, the inability of benzyl 

alone, even though containing two keto groups, to promote the oxidative 

degradation of LDPE, can be tentatively explained by considering the 

mechanism of photo-initiation induced by aromatic ketones [102] 

(Scheme 15). 

It has been suggested that the rate constants of formation and termination 

by recombination of aromatic ketone radicals as sketched in b and d 

reactions, respectively (Scheme 15) are depending upon the polymer 

structure. In the presence of highly branched LDPE the reaction with the 

polymer chains is much faster than linear polyethylene such as HDPE, 

because of the higher stability of the resulting macroradicals R*, thus 

accelerating also the termination reaction. In addition, it has been also 

proposed a relatively fast recombination of aromatic ketone free radicals 
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leading to resonance stabilized oxetane ring structures. Therefore the 

above mentioned features might explain why benzyl alone does not 

promote the degradation of LDPE. 

 
Scheme 15. Photooxidation of polyolefins when exposed to the light in 

the presence of aromatic ketones 
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 Polymeric additives 

The feasibility to enhance or at least to control the effect of metal 

complexes (e.g. pro-oxidant catalyst) on the rate and extent of polyolefin 

oxidation, by employing polymeric additives, constitutes an other topic 

which has been investigated for the preparation of oxo-degradable full 

carbon backbone polymers. 

Polymeric additives, based on matrices of synthetic and natural origin, 

have been used and their role has been investigated. It is known that the 

most frequently used pro-oxidants are aliphatic salts of transition metals 

such as Zn, Cu, Ag, Co, Ni, Fe, Mn, Cr [103]. Usually, the final 

formulation of pro-oxidant additives also contains an auto-oxidable 

substance such as unsaturated or polyunsaturated compounds. These last 

materials are thought to facilitate the oxidation of less reactive saturated 

carbon chain polymers, being very prone to auto-oxidation. In addition, 

they may improve the mechanical properties of environmentally 

degradable polyolefins. As an example, styrene-butadiene (SB) 

copolymers have been extensively utilized in polyethylene/starch blends 

with the aim to compensate the deterioration of mechanical properties 

provoked by the addition of the natural filler [104]. 

In a case study, methylmethacrylate-butadiene-styrene copolymer (MBS) 

has been investigated as autooxidable compound capable to accelerate the 

thermal oxidation of LDPE containing cobalt stearate as pro-oxidant 

catalyst [105]. Ethylene-acrylic acid  copolymer (EAA) was utilized as 

compatibilizer and plasticizer for the preparation of LDPE/starch blends 

[105]. 

It was indeed ascertained, during thermal degradation tests, that the 

addition of small amounts (2.5-5.0% by weight) of MBS to LDPE films 

additivated with Co-stearate (0.1% by weight) greatly enhanced the film 

degradation. In particular, both the rate and extent of oxidation, as 
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determined by the carbonyl index, were increased by increasing the 

amount of MSB used in the preparation of LDPE blends, thus obtaining 

materials that were heavily disintegrated in short time at 70°C. 

As a degradation polymeric promoter, partially oxidized polyethylene 

(OPE) has also been recently utilized and tested in the preparation and 

characterization of photo-degradable LDPE films [106]. Films containing 

different amounts (0.5-5% by weight) OPE were prepared by blown 

extrusion, by using a thermally preoxidized (100°C for 12 h) LDPE 

sample containing 0.1% cobalt stearate as pro-oxidant. LDPE films 

containing OPE were exposed to UV-B irradiation up to 600 h in 

comparison with an additive-free sample. During the aging test, the 

effectiveness of OPE to promote the oxidative degradation of the virgin 

LDPE matrix was ascertained by monitoring of different parameters such 

as MFI, intrinsic viscosity and carbonyl index. A relationship between the 

amount of OPE and the extent of degradation of LDPE film samples was 

then established. It was therefore suggested by the authors that the 

initiation of photooxidation might be attributed to the presence of 

oxidized functional groups, particularly carbonyl groups, present in OPE. 

These groups were thought to promote the oxidation of virgin LDPE 

polymer matrix in accordance with Norrish type I and II reactions, 

involving the oxidative cleavage of macromolecular chains after UV 

absorption by carbonyl chromophores. In spite of these suggestions, it can 

not be excluded at all also the activity exerted by the residual content of 

cobalt stearate in an active state coming from OPE. In this connection, it 

has to be evidenced that the specimens containing the highest amount of 

OPE, which is corresponding to a 0.5% theoretical content of CS, 

underwent a notably lower extent of photo-oxidation, as assessed by 

Carbonyl index, with respect to LDPE films additivated with 0.5% CS 
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based on the same resin batch and photo-aged under the same conditions 

and time frame [101]. 

 

1.4.4.1.3. Blending and modification with biodegradable polymers and 

additives. 

Another strategy to address the environmental degradation of polyolefins 

comes from the preparation of blends with heteropolymers bearing 

functional groups susceptible to photo-oxidation. Among these 

styrene/maleic anhydride copolymers (SMAn) have been ones of the most 

investigated [107]. In particular, the effect of decanol grafted onto SMAn 

(DSMAn) utilized for the preparation of LLDPE blends in the presence of 

LLDPE grafted with glycidyl methacrylate (LLDPE-g-GMA), was 

studied with the aim to assess the propensity to photodegradation, and to 

understand the mechanism of the process [108]. During the preparation 

(e.g. blow extrusion) of LLDPE-based films containing 20-40 weight % 

DSMAn and 5-15% LLDPE-g-GMA a reactive processing has been 

thought to occur leading to a crosslinking of the reactive polymers 

(Scheme 16). 

In accordance, the resulting blends are containing an hydrophilic 

component with a carboxylic acid and ester carbonyl group in the side 

chain, being theoretically more susceptible to environmental degradation 

as mediated prevailingly by photo-oxidation. It has been therefore 

ascertained that such type of polymers bearing carboxyl groups in the side 

chains undergo chain scission by Norrish Type II reaction (Scheme 17) 

[109]. 
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Scheme 16. Scheme of the reactive blending of LLDPE, ESMA and 

LLDPE-g-GMA [108]. 
 

DSMA/LLDPE blends compatibilized or not with LLDPE-g-GMA were 

submitted to aging test carried out either in a Xenon arc lamp 

weatherometer and in outdoor exposure to direct sunlight. In both cases 

the films undergo an embrittlement in shorter times in the case of 

compatibilized sample. It was therefore suggested that DSMAn induces 

photooxidation in the blends and the effect can be intensified by the 

addition of LLDPE-g-GMA as compatibilizer. The results also indicated 

that the photooxidation takes place first in DSMAn phase and the radical 

herein produced can migrate to the LLDPE phase, thus inducing the 

oxidative cleavage of the full carbon backbone. It was therefore 

hypotesized that a mechanism of radical transport across the phase 

boundaries is responsible for the initiation of oxidation in LLDPE phase. 
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This type of radical transfer from one phase to an other has been 

evidenced in blends of poly(styrene) and poly(vinyl acetate) [110, 111]. 
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Scheme 17. Norrish I and II mechanisms of photophysical breakdown 
of oxidized polyethylene. 

 

Pal and co-workers therefore hypothesized that DSMAn deriving radicals, 

once produced in the first stage of photo-degradation, migrated to the 

LLDPE phase, thus reacting with atmospheric oxygen to produce unstable 

hydroperoxyde groups capable to undergo a further decomposition (by 

light absorption) with the generation of carbonyl groups in the main 

chain. As a result the further degradation leading to a relatively fast chain 

scissions and fragmentation of the blend was thought to occur according 

Norrish I and II type reactions (Scheme 17). 
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Since the original idea from Griffin to blend polyethylene with starch, a 

vast research activity was devoted to produce blends and composites of 

polyolefins (PE, PP, PS) with natural polymers, as well as to modify and 

grafting them with the aim of enhancing the compatibility with functional 

polymers and eventually with the environmental acceptance. 

The partial replacement of synthetic polymers with renewable resources, 

jointly with the hypothetical stimulation of the full carbon backbone 

polymer degradation and biodegradation, constituted the guiding ideas of 

this strategy. In fact, once the natural components are consumed by 

microorganisms, pores and voids formation, increasing the surface area, 

are thought to make the synthetic matrix more vulnerable to either abiotic 

(e.g. oxygen) and biotic degrading agents.  

One of the major problems encountered in the blends preparation has 

been undoubtedly the very poor compatibility between hydrophobic 

polyeolefins and polar natural polymers. Hence several technologies, 

have been developed to improve the compatibility between natural 

polymers and polyolefins. The use of coupling agents such as maleic 

anhydride, methacrylic anhydride and maleimide, starch gelatinization 

and the use of compatibilizers, represents only a part of the approaches 

employed in order to mix high amount (more than 30-40% by weight) of 

natural polymers with polyethylene. In accordance an enormous amount 

of contributions has been produced, whose critical revision is not in the 

aims of this thesis. 

Nevertheless, it is important to note that the interest of this topic is still 

very high and that a well definite borderline between other strategies such 

as those using pro-oxidant additives does not exist. As an example, since 

from 1988 a process involving the use starch, an unsaturated polymer as 

compatibilizer and a pro-oxidant was patented by Griffin [112]. 
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Moreover, several articles dealing with the blending of polyethylene with 

lignin and with biodegradable aliphatic polyesters from both natural and 

synthetic origin have been published. Nonetheless, most of the 

commercial available environmentally degradable polyethylenes are still 

based on the original ideas developed by Guillet [83], Scott [87] and 

Griffin[113] in the 1970s.  

In the following paragraphs the results obtained on the environmental fate 

of pristine and degradable polyethylenes belonging to above cited classes 

will be reviewed. 

 

1.4.4.2. Biodegradation of pro-oxidant-free polyethylene by natural 

occurring microorganisms 

The contemplation of the inherent capabilities of microorganisms to 

promote the biodegradation and eventually the utilization of polyethylene 

(PE) as carbon source seems to be more controversial nowadays that in 

fairly recent past years. Conflicting results have been indeed obtained that 

are suggesting from one side the ability of specific microbial strains to 

degrade high molecular weight PE, whilst many studies are yet claiming 

the inertness to biological attack of this polyolefin and structurally alike 

polymers also when exposed to very physical-mechanical stressing and 

active microbial consortia such as those applying to composting 

windrows. Degradation of PE by microorganisms has been generally 

monitored in terms of microbial growth, biometry (e.g. biochemical 

oxygen demand or carbon dioxide emission, including 14CO2 generation 

from radio-labelled samples), sample weight loss, mechanical properties, 

variation of structural features (e.g. molecular weight, spectroscopic 

features, mechanical properties). 
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 Biodegradation of polyethylene by bacteria 

Preliminary investigations are dating back to the early 1960s. At that 

time, the increase of microbial cell numbers was taken as an indication of 

PE assimilation by bacteria in comparison with low molar mass paraffins 

[114]. From these studies it was suggested that several bacteria can utilize 

as carbon source low molecular mass PE fractions of MW slightly below 

5000 (DPn ~ 180), whereas no microbial activity was detected on higher 

Mw fractions. Potts and co-workers assessed that linear paraffin with Mw 

below 700 (C50H102) were utilized by different microorganisms [115]. 

Similar results were obtained later by Albertsson and Banhidi that 

recorded the utilization of short oligomeric fraction of HDPE by 

microorganisms after 2 years biodegradation experiments [116]. 

Indeed, it can be suggested from a theoretical point of view that since PE 

is a nominally straight-chain hydrocarbon, it should be metabolized 

according to the biochemical pathways holding true for linear alkanes 

(Scheme 18). On the other hand, it has been established that there is a 

molecular weight upper limit for the utilization of n-alkanes as a carbon 

source by microorganisms. Haines and Alexander established that linear 

hydrocarbons with more than 44 carbon atoms (tetracontane) cannot be 

metabolized by soil micro-organisms [117]. More recently in a study 

carried out by using single bacterial strains [118] this dimensional limit 

has been extended to 720 Dalton corresponding to an hydrocarbon chain 

constituted by 50 carbon atoms. In any case these limits are thought to be 

related to the bacterial metabolism of n-alkanes that needs the 

accessibility to methyl chain ends by extra cellular oxidizing enzymes to 

start the biodegradation process. 
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Scheme 18. Microbial oxidation pathways of n-alkanes. 

 

The first step is known as hydroxylation (-oxidation) which give rise to 

the corresponding primary alcohols which are further enzymatically 

oxidized to aldehyde and hence to carboxylic acids. The resulting 

carboxylated n-alkanes can be metabolized according to the -oxidation 

process in analogy with the catabolism of fatty acids. Thus, the rate and 

eventually the ultimate extent of biodegradation of solid n-alkanes can be 

strongly affected by the availability of CH3 chain ends susceptible to 

enzymatic oxidation. It follows that the number of chain ends present at 

the surface of a solid n-alkane decreases with the molecular weight 

increase and hence with extremely low values in the case of high 

molecular weight polyethylene. 

On the other hand, it can not be at least hypothetically ruled out that 

oxidizing biological processes other than the -oxidation of terminal 

methyl groups, such as the random chain cleavage as mediated by 

dehydrogenation/oxidation leading to carbonyl groups, might play an 

important role in the biodegradation of PE. 

Taking into account these suggestions Kawai and her collaborators tried 

to establish a numerical simulation model for the biodegradability of PE 
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starting from experimental data relevant to the biodegradation of PE-wax 

having Mw 2900 (C200) and Mn 1100 (C71), respectively [119, 120]. 

The computational model for the numerical simulation was set up 

regarding two main factors:  

a). Sample weight loss due to -oxidation. 

b). Fast consumptions of low molecular weight fractions. 

Both factors were substantiated by experimental data.  

In particular the increase of both Mw and Mn of PE wax was observed 

after cultivation as an indication of the microbial consumption, in the 

meanwhile the time profile of molecular weight variation suggested the 

fast assimilation of the lower Mw fractions, as well as the gradual 

decrease of assimilation rates with increase in molecular weight. By 

applying the numerical model, which was validated by experimental 

results, to the biodegradation of PE, the authors provide suggestions 

supporting the terminal oxidation and -oxidation as the main processes 

involved in the microbial degradation of PE. In addition, by using this 

approach it was possible to distinguish between the process of 

biodegradation as mediated by bacteria such as Sphingomonas or 

Aspergillus sp. and Penicillium sp. fungi. It was therefore evidenced that 

bacteria exhibited higher biodegradation rates that were attributed to the 

higher affinity toward PE of Gram-negative bacteria cell walls with 

respect to the more hydrophilic chitin walls of fungi [120]. Sphingomonas 

species were thought to metabolize PE wax, preferentially with Mw 

below 2000, throughout primary terminal oxidation followed by -

oxidation with enzymatic systems located in the cell membrane fraction, 

thus suggesting for the transport of oxidized PE wax into the periplasmic 

space through outer membranes [121]. 

Regarding the capabilities of single microbial species to attack PE as 

carbon substrate, only a few reports are so far available. Nevertheless, in 
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the recent years evidences in the occurrence of soil microorganisms 

directly involved in the biodegradation processes of PE have been 

reported by Ohtake and collaborators [122, 123]. These researchers 

claimed their assumption by analyzing LDPE films and bottles buried in 

soil for many (up to 32) years, thus being negligible when exposed if any 

to physical degrading factors such as heat and light. They found 

discoloration and traces of microbial growth, as well as significant 

molecular weight decrease in the portion of LDPE items directly exposed 

to soil contact, whereas other portion less contaminated by soil did not 

showed any appreciable traces of degradation. In addition, the 

microscopic FT-IR spectroscopic analysis clearly evidenced that the 

degraded and microbial colonized part of LDPE mulch films were 

characterized by the presence of intense absorption bands relevant to -

C=C- double bonds, carbonyl and hydroxyl groups [122]. Furthermore, 

starting from various specimen as microbial inoculum, including soil 

adherent to LDPE scattered films and surrounding vegetable soil samples, 

the authors isolated and identified three different Bacillus species (B. 

circulans, B. brevies, B. sphaericus) clearly involved in the 

biodegradation processes of LDPE. As a confirmation, the isolated strains 

were tested in pure culture supplemented with outdoor weathered 

antioxidant-free LDPE powder as sole carbon source. Even though 

neither molecular weight analysis and biometry (e.g. carbon dioxide) 

evaluation were performed, FT-IR characterization confirmed the 

formation of hydroxyl groups as an evidence of the microbial attack. 

Much more convincing were the SEM pictures collected after the lysis of 

the bacterial cells adhering to the oxidized portions of LDPE, which 

revealed the presence of “body footh print” as degraded portion of the 

polymer matrix in the correspondence of bacterial cells (Figure 3) [123]. 
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Figure 3. SEM pictures of Bacillus cells and relevant “body footh 

prints” on LDPE sample [123]. 
 

A fungal strain, identified as Penicillium simplicissimum YK capable to 

growth in the presence of high molecular weight PE as sole carbon source 

was isolated from soil and leafage samples [124]. The fungal strain 

growth was tested in the presence of untreated PE, UV-irradiated and PE 

treated with hot nitric acid as carbon sources. The course of PE samples 

degradation was examined by molecular weight analysis (HT-GPC) and 

FT-IR spectroscopy. It was therefore recognized that the isolated fungal 

strain utilized PE fractions in the molecular weight range of 4,000 up to 

28,000 of untreated sample. Indeed, P. simplicissimum YK exhibited 

higher growth in the presence of UV irradiated than untreated PE, in 

addition when the fungus was grown in the presence of PE treated with 

nitric acid a significant decrease of the starting molecular weight 

(100,000) was recorded. It is interesting to note that FT-IR 

characterization clearly showed a marked reduction after the fungal 

cultivation in the intensity of carbonyl and double bond absorption band 

resulting from the pre-ageing of PE by UV irradiation and nitric acid 

treatment, respectively. These results are confirming the increasing 

susceptibility to biodegradation of PE containing functional groups, and 

at the same time evidenced the occurrence in natural environments of 

microorganisms capable to metabolize at least partially high molecular 

weight virgin PE samples. This latter suggestion was evidenced by 
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Wasserbauer et al [125]. They found that PE which was extracted to 

remove antioxidants can be oxidized by Pseudomonas putida with the 

production of CO2, thus suggesting that the oxidation of the polyolefin 

was induced by monooxygenase hydroxylation enzymes produced by the 

bacterial cells. 

Other investigation as aimed at finding microorganisms capable of 

degrading high molecular weight PE provided the isolation of a strain of 

Rhodococcus ruber after an enrichment procedure carried out on soil 

samples collected from PE waste burial sites [126]. Due to the high cell 

hydrophobic character the bacterial strain was recognized to be able to 

heavily colonize PE surface by biofilm formation and degrading up to 8% 

mass of the starting material in a few weeks of incubation. Indeed, the 

formation of bacterial biofilm is considered as a positive feature to make 

microorganisms capable to be assimilated as carbon source non-soluble 

substrate. In the same investigation was in fact ascertained that the 

addition of small concentration of mineral oil enhanced either the biofilm 

formation as well as the extent of PE weight loss. The same authors also 

suggested that the biofilm development by R. ruber cells is increased 

under carbon-starved culture condition such as that containing PE as sole 

carbon source. The increased hydrophobic interaction between the 

bacterial cells and PE surface were therefore considered as positively able 

to improve the biodegradation of the synthetic polymer [127]. 

The significance of microbial biofilm formation as a factor to enable 

microorganisms to efficiently utilize solid hydrophobic substrates such as 

PE films, enhancing their enzymatic activity, has been recently confirmed 

in a study carried out in the presence of dual cultures of Penicillium 

frequentans and Bacillus mycoides [128]. Both the fungal and bacterial 

strains were isolated after 2-4 years soil buried PE pieces and cultivated 

in the presence of either intact or thermally oxidized PE as sole carbon 
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source. It was recognized that efficient biodegradation of both unmodified 

and thermally treated samples, as recorded by sample weight loss (7%) 

with concomitant CO2 emissions was appreciable only after the micelyum 

of P. frequentans was colonized by the B. mycoides cells to form a packed 

biofilm at the PE surface. On the contrary each microorganism when 

tested in axenic mode did not provide any significant PE biodegradation. 

It is also interesting to note that both P. frequentans and B. mycoides are 

recognized as hydrocarbon degrading microorganisms, being alkane 

monoxygenase the enzymatic system found in the genomes of several 

Bacillus spp. 

An other bacterial strain was selected from a group of bacterial isolated 

from soil samples collected from a PE waste disposal site after an 

enrichment technique by using intermediate size PE oligomres in the form 

of liquid waxes. The microorganisms was identified as a thermophilic 

Brevibacillus borstelensis strain [129]. The selected strain was found to 

be able to utilize PE as sole carbon source. Nevertheless, the higher 

biodegradation process as recorded by either 17% sample mass loss and 

34% molecular weight decrease was achieved by combining UV 

irradiation followed by 3 months incubation with B. borstelensis at 50°C. 

Indeed, it has been repeatedly suggested that oxidized fragments formed 

during thermal or photo-oxidation of PE can be readily assimilated by 

various microorganisms. In some cases this “preferential” utilization as 

carbon source has been found to induce a little increase of the average 

molecular weight, such as in the case of the investigation carried out by 

Albertsson et al in the presence of Arthrobacter paraffineus [130]. One of 

the most important issue rising from this indication is strictly correlated to 

the occurrence of further biodegradation process once the oxidized 

fragments of PE have been depleted by microorganisms. In the case of the 

studies carried out with Brevibacillus borstelensis it was indeed observed 
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that the biodegradation step last for 30 days during which a fast 

consumption of carbonyl-containing intermediates was recorded. 

Consequently, two consecutive 30 day incubation steps in the presence of 

the isolated strain, were carried out on the same PE sample with the aim 

of assessing if the microorganism would have been able to metabolize full 

carbon backbone; that was significantly deprived of carbonyl groups. The 

obtained results, even though not supported by FT-IR characterization, 

showed that the PE biodegradation rate (e.g. weight loss and Mw 

decrease) was almost the same during the two 30 day incubation steps, 

thus suggesting that the assimilation of carbonyl bearing fragments might 

have induced further degradation of full carbon backbone. In conclusion 

the reported study was claiming that B. borstelensis is capable of 

degrading fairly high molecular weight PE either in a pre-oxidized or 

untreated form. 

Even though the few reports regarding single microorganism capability to 

efficiently attack virgin (e.g. untreated PE), at the end of this paragraph, 

some remarks can be drawn. First of all it has to be mentioned the 

renewed interest in recent years in the search of effective microorganisms 

for biodegradation studies of recalcitrant or poorly degradable synthetic 

polymers. In addition some general features regarding the physiology of 

the isolated species can be highlighted. In particular most of them have 

been recognized as alkane-degrading species and were isolated from PE 

contaminated soil sites, whereas many are also producing oxidizing 

enzymes such as the monooxygenase-cytochrome P450 system of R. 

ruber. The biofilm formation has been also considered as a positive factor 

helping the viability of microorganisms as well as their degradative 

efficiency. In this latter case a suggestion regarding the modification of 

environmentally degradable polyethylene to be colonized by biofilm-

forming microorganisms should be taken into account. 
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 Biodegradation of polyethylene by ligninolytic microorganisms 

and related enzymes 

Since early studies by Lee et al. [131] a great interest in the exploitation 

of lignin-degrading microorganisms for biodegradation of polyethylene 

and other synthetic polymers has been recognized. In their study Lee et 

al. evidenced the role of the Streptomyces species in the significant 

reduction, after a few days of incubation, of average molecular weight of 

thermally treated LLDPE containing transition metal ions (Fe, Zn, Ni 

and/or Mn), lipids and 6% starch. In the case of Streptomyces species (S. 

basidius, S. setonii and S. viridosporus) the presence of extracellular 

enzymes capable to directly attack the polyethylene matrix was 

ascertained [132, 133]. The investigations were carried out in the 

presence of the culture filtrates of each actinomycete species, thus 

evidencing the presence of active enzymes capable of promoting a further 

oxidation of thermally aged PE/starch containing pro-oxidant agents. In 

particular, the presence of primary and secondary alcohols functionalities 

in the PE chains was evidenced that was accompanied by significant 

decrease of mechanical properties (tensile strength, percent elongation 

and strain energy) and molecular weight. It was also evidenced that the 

most effective species was S. viridosporus and the nature of ligninolytic 

systems in the bacterial culture filtrates. On the contrary the ligninolytic 

fungus Phanerochaete crysosporium did not exhibit any degrading 

activity even in the presence of heat (70°C) or UV pretreated samples. In 

this regard, conflicting results were however obtained by Nishida and 

collaborators that reported the degradation of high molecular weight 

polyethylene membrane by lignin degrading fungi, including P. 

chrysosporium [134]. The reported studies were carried out with as aimed 

at establishing the effectiveness of well known lignin-degrading fungi 

such as P. chrysosporium and Trametes versicolor with respect to a new 
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white-rot strain (IZU-154) capable to biodegrade nylon membrane under 

ligninolytic cultural conditions [135]. Comprehensive studies were also 

undertaken to establish the effects of cultural conditions in terms of both 

source and concentration of carbon and nitrogen substrates, as well as to 

evaluate the effects played by different ligninolytic enzymes, manganese 

peroxidase (MnP) and laccase [136, 137]. Among the tested fungi, the 

nylon degrading white rot strain IZU-154 and P. chrysosporium were the 

most effective, thus promoting the 100% relative elongation decrease of 

PE membrane (HIPORE 1100, Asahi Kasei) after 4 days incubation under 

carbon and nitrogen sources starvation conditions. It is well known that 

fungal ligninolytic activity can be considered as a secondary metabolic 

activity which is stimulated under nutritional carbon and/or nitrogen 

limitations [138]. In accordance Nishida et al firstly suggested that the PE 

membranes degradation was strictly related to the ligninolytic activity of 

the investigated fungi. During the course of their studies they also 

demonstrated the role of MnP. The secretion of oxidative lignin-

degrading enzymes laccase, MnP and lignin peroxidase (LigP) was 

checked during the treatment of PE membranes with the selected fungi, 

thus recording the production of laccase and MnP only. Further 

investigations, carried out by isolating and purifying MnP from fungal 

cultures, finally suggested that in the case of P.chrysosporium and white-

rot IZU-154 strain the most effective enzyme in the oxidation and 

biodegradation of PE was MnP, an heme oxidoreductase acting on a 

peroxide as acceptor. This finding inspired new investigations as aimed at 

ascertaining the enzymatic degradation of PE membranes, as well as the 

better conditions in terms of co-factors and co-substrate. As expected a 

positive effect was exerted by the addition of Mn(II) salts in the 

incubation medium, whereas the effects of other transition metal salts 

such as FeSO4, ZnSO4 and CuSO4 were negligible. It was also ascertained 
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that PE degradation occurred in malonate buffered media, whilst in 

acetate buffer MnP was ineffective most likely because Mn(III) generated 

from Mn(II) is salified by this last buffering solution that hinders the 

propensity of Mn (III) to enter in the electron transfer process at the basis 

of CH2 bond oxidation. This observation was therefore suggesting that 

Mn(III) is directly involved in the PE oxidation. Indeed in further studies 

Nishida and collaborators reported that Mn(III) was generated by the oxo-

reductase activity of MnP, also evidencing that the presence of 

unsaturated fatty acid or Tween 80 surfactant improved the PE membrane 

degradation by the radicals generated from the peroxidation of these latter 

substrates [136]. 

An other lignin-degrading enzymatic system that has been investigated 

for the biodegradation of PE is represented by laccase. Laccase was 

found to be the only secreted oxidizing enzyme by Trametes versicolor 

when growth on PE membranes, even though it was less effective with 

respect to other ligninolytic fungi [134]. Laccases are multicopper 

polymeric oxidases of broad specificity produced by plant and fungi, that 

carry out one-electron oxidation of phenolic and related compounds, and 

reduce O2 to water. The oxidizing activity toward non-phenolic 

compound is strictly related to the laccase redox potential. In this 

connection it has been repeatedly observed that the non-phenolic 

compound oxidation, including non-phenolic lignin residues, by laccases 

can greatly increase by the presence of redox mediators such as 2,2’-

azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) or 1-

hydroxybenzotriazole (HBT) [128, 129]. In accordance Nishida and 

collaborators investigated the ability of T. versicolor laccase to degrade 

PE membrane with and without the addition of HBT [139]. The complete 

failure of relative elongation as witnessed by the PE membrane 

disintegration (Figure 4) and the dramatic Mw drop from 242 kDa to 28.3 
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kDa was recorded in a few days, thus also evidencing that the addition of 

0.2 mM HBT greatly enhanced the laccase activity. This latter 

observation was therefore suggesting that the radicals coming from the 

laccase-mediated oxidation of HBT can strongly contribute to the PE 

degradation. Indeed, it is well known that the redox potential is one of the 

most important factor in lignin degradation, because the most 

predominant structures in lignin are non-phenolic subunits which are 

characterized by high redox potential. In addition, the dimension of the 

enzymes involved in lignin oxidation, being either LigP, or MnP or 

laccase, too large to provide an effective penetration and oxidation of 

polymeric systems such as unaltered wood. For these reason veratryl 

cation, Mn(III) and HBT represents helpful radical mediators for LigP, 

MnP and laccase, respectively. 

 

 
Figure 4. PE membrane disintegration by laccase, A untreated 

control, B PE membrane after 5 days laccase/HBT system 
treatment [139]. 

 

Lignin degrading fungi such as P. chrysosporium have been utilized in 

order to test the biodegradability of PE/lignin blends [140] in which the 

natural polymer would be expected to act as an initiator of radical 

reactions [141]. The fungus was grown under cultural conditions suitable 

for the optimal production of lignolytic enzymes in the presence of 

antioxidant-free LDPE blended with 10-30% (w/w) beech wood lignin. 
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Under the adopted conditions significant degradation of LDPE/lignin 

blend was observed as evolution of neat CO2, as well as decay of tensile 

strength. By assessing the structural features (e.g. FT-IR spectroscopic 

characteristics and molecular weight) of solvent extractable fractions, 

coming from the samples after biodegradation it was observed that they 

were almost represented by heavily oxidized low molecular weight PE 

intermediates. In particular the presence of diene, carbonyl hydroxyl 

groups, and hydroperoxide radicals was detected, thus suggesting that the 

radical oxidation of lignin in the blends could activate the 

degradation/biodegradation of the polyolefin counterpart. It was also 

supposed that the lignin component may affect the environmental 

degradation of polyolefins during outdoor exposure by initiating the 

catalytic oxidation of the full carbon backbone polymers as mediated by 

light and/or by lignin-degrading microorganisms. 

 

1.4.5. Oxidation, degradation and biodegradation of poly(propylene) 

(PP) 

The general oxidation process described in Scheme 8 is typical for all 

polyolefins, but polypropylene, because of the “tertiary” carbon breaks 

down with some additional specific reactions. Because of the greater 

reactivity of the tertiary carbons, polypropylene is intrinsically lest stable 

and all commercial polypropylenes need to be stabilized against oxidation 

to render them processable.  

As with polyethylene the compounds formed from the oxidative 

breakdown of polypropylene have been determined by mass spectrometry 

and FTIR and the physical effects are similar – reduction in molecular 

weight, formation of carbonyl groups and loss of physical properties. 

Another interesting discovery is that oxidation can be transferred via 
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infectious species, which means that degradation can “migrate” from one 

layer of a multi-layer film to another [142] 

The initiation of PP photooxidation occurs by the abstraction of hydrogen 

atom, preferably methyne hydrogen, by free radical produced impurities 

such as hydroperoxide formed during processing.  Various studies 

showed that the photo and thermal initators such as iron carboxylates, 

cobalt carboxylates and manganese stearate can accelerate the 

photodegradation of PP and PE [143-145]. 

The most probable mechanism of PP degradation is induced by heat or 

light and undergo an electron transfer with formation of free radicals. 

These alkyl free radicals abstract tertiary hydrogen from PP and form 

propyl macroradicals. These propylmacro radicals reacts with oxygen and 

generate peroxy macroradicals, which are converted to hydroperoxide. 

Alkoxy radicals formation from the decomposition of hydroperoxide is an 

important step because the resulting macroradicals leads to main chain 

scission with formation of carbonyl groups. Finally, the keto groups 

undergo Norish type I and type II reactions and liberate, as a consequence 

of chain scission, different kinds of products such as aldehydes, 

carboxylic acids, esters, lactones, peracids and peresters [146] 

Evidence about the biodegradation of PP came from the increasing 

concentrations of the methylene chloride extractable products from the 

incubated PP, together with the contemporary weight loss of the sample 

[147]. Spectral analysis revealed that the extraction products were mainly 

hydrocarbons. As such metabolites were absent in the extracts obtained 

either from the uninoculated controls or from cultures grown without 

polypropylene, we confirmed that microbial attack of the polymer 

occurred. The finding that enzymatic attack of polyethylene occurs [77, 

148] like enzymatic attack of trypsin on poly(ether urethane) [149] 

suggests that synthetic polymers may be recognized by natural metabolic 
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machineries and then transformed into lower-molecular-weight 

compounds. Polypropylene was more susceptible than high-density 

polyethylene to microbial attack in neat and sterilised samples. The higher 

weight losses of sterilised samples with lower intrinsic viscosity 

suggested that chain scission and radio-oxidized functional groups were 

important units in the biodegradation of polymers [150]. It is well 

suggested that the well-known metabolic flexibility and adaptability of 

microorganisms and mycelia can result in the biodegradation of isotactic 

polypropylene and polyethylene, two macromolecules that supposedly are 

highly recalcitrant to biological metabolism.  

1.4.6. Oxidation, degradation and biodegradation of poly(styrene) 

(PS) 

1.4.6.1. Thermal and photo-oxidation of Crystal Poly(styrene) (CPS) 

Heat or irradiation at short wavelengths may cause the formation of 

macroradicals by hydrogen abstraction mainly from tertiary carbon atom 

of the PS backbone. Tertiary polystyryl radicals have been therefore 

repeatedly identified by ESR spectroscopy. Once formed, the 

macroradicals in the presence of oxygen are converted to peroxyradicals 

and furthermore to hydroperoxy group by hydrogen abstraction from the 

polymer chain. The decomposition of hydroperoxy groups, either by 

photolysis or thermolysis, leads to the formation of alkoxy macroradicals 

that may react in several ways (Scheme 19): 

a. Formation of hydroxyl group by hydrogen atom abstraction 

b. -Scission of the macroradicals. 

Two types of scissions have been hypothesized: 
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i) Scission at the C-Ph ring bond 

ii) Scission of the C-CH2 bond. 

CH CH2 CH CH2CH2

C CH2 CH CH2CH2 C CH2 CH CH2CH2

O-O

C CH2 CH CH2CH2

O-OH

Chain reaction

PS-H

PS 

PS

H/h

+

H/h
C CH2 CH CH2CH2

O 

C CH2 CH

O

C CH2 CHCH2

O Low molecular weight
degradation products

Hydroperoxide decomposition with chain reaction
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H/h

+

+
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O2
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Benzene  

Scheme 19. Thermal and photo-oxidation mechanisms of PS. 
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In the first case the bond scission may produce a phenyl radical that has 

been considered as the precursor of benzene whose formation has been 

found in several studies of thermal and photoxidation of PS. The C-CH2 

bond scission leads to an acetophenone type end group. A complex series 

of reactions are thought to be involve these groups, leading to the 

formation of several low molecular weight degradation products 

including acetophenone, benzaldehyde, benzoic acid, formic acid, acetic 

acid, benzene, dibenzoylmethane, benzoic anhydride produced by a 

depolymerization mechanism [151, 152]. 

It has been also suggested that most of the oxidation reactions are 

confined to the very surface layers of solid PS leading to the appreciation 

of weight losses, whereas the polymer chain scissions could be fairly 

limited. 

It has however hypothesized that hydroperoxides might also decompose 

without chain scission, thus producing a carbonyl group along the main 

chain and phenol as low molecular weight oxidation product (Scheme 

20). 

High-impact polystyrene (HIPS) consists of a blend of PS and 

polybutadiene in low content (2-8 mol%) where polybutadiene is 

introduced before the free radical polymerization of styrene. In the case of 

HIPS the abiotic radical degradation leading to oxidation and chain 

scission are thought to occur primarily at two sites namely the styrene-

butadiene phase boundary and in the olefin blocks.  

 

 



Introduction 

 71

OH

Hydroperoxide decomposition without chain scission

CH2

CH

CH2

CCH2

O O
H

CH2

CH

CH2

CCH2

O

+

 

Scheme 20. Hyroperoxide decomposition in oxidized PS without 
macromolecule chain scission 

1.4.6.2. Thermal and photo-oxidation of High Impact poly(styrene) 

(HIPS) 

In accordance, aging of HIPS, as known from the literature, proceeds as a 

two-phase oxidation, in which the rate depending upon the content of the 

polybutadiene (PB) component . 

Nevertheless, hydroperoxidation, at least during photoexposure, does 

occur primarily in the polybutadiene nodules, essentially in the  position 

to the double bonds (Scheme 21) [153]. In any case, breakage of the 

olefin-styrene boundary linkage usually leads to benzyl radicals that can 

be further oxidized to hydroperoxides. Furthermore the decomposition of 

the hydroperoxides at the chain ends is producing acetophenone. 

Phenylpropene or stilbene end groups can also be formed whose 

decomposition further release acetophenone as degradation product 

(Scheme 22) [153]. 
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Scheme 21. Thermal and photo-oxidation mechanisms of HIPS in the 
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Scheme 22. Thermal and photo-oxidation mechanisms of HIPS in the 
PS blocks. 

 

1.4.6.3. Biodegradation of polystyrene (PS) by natural occurring 

microorganisms 

The thermal and photo-oxidation of styrenic polymers has attracted the 

attention of the academic research since mid sixthies of the last century 

[154]. In several studies the formation of hydroperoxides as a 

consequence of the photo-irradiation and thermal degradation in air has 

been established [155-158]. Afterwards, many secondary reactions 

including photolysis, decomposition by energy transfer and 

intramolecular decomposition of hydroperoxides may lead to the 
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polymer chain scissions as well as to the production of low molecular 

weight intermediates. The radical chain scission of PS has been also 

established in thermal degradation studies carried out under nitrogen 

atmosphere, thus continuing through the -scission of the macroradicals 

(e.g. unzipping depolymerization) at the ceiling temperature [159]. 

In photooxidized PS, aromatic and aliphatic ketones, peroxyesters, 

volatile products such as water, carbon dioxide, benzaldehyde and 

acetophenone, have been detected. The oxidation of the aromatic ring has 

been also suggested. In addition, benzoic acid, methyl benzoate and 

styrene have been found in the solvent extract of the photooxidized PS by 

HPLC analysis [151]. 

Benzene, toluene, ethyl benzene dimethyl benzene, styrene, distyrene and 

tristyrene have been recognized as the major low molecular weight 

degradation products of thermally treated PS under both air and nitrogen 

atmosphere, even though on a ppm scale concentration [159]. 

It is however interesting to note that no indications are reported in the 

literature regarding the generation of recalcitrant polynuclear aromatic 

pollutants (PAC) like antracene, fenantrene, pyrene etc. 

Most of these compounds can be found in the Volatile Organic 

Compounds (VOCs) in the gaseous emissions of industrial and municipal 

solid waste (MSW) treatment processes. In this connection, recently it has 

been hypothesized that styrene in VOC from aerobic biological treated 

MSW, often occurring at relatively high temperatures, could be derived 

from polystyrene [160]. It is however worth noting that either benzene 

and substituted benzene, as well as styrene constitute the naturally 
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occurring aromatic hydrocarbons, the latter compound being formed by 

the enzymatic decarboxylation of cinnamic acid [161]. 

On the other hand, an huge amount of information are available on the 

microbial degradation of benzene-related hydrocarbons. As is the case of 

aliphatic hydrocarbons, aerobic biodegradation of aromatic hydrocarbons 

involves the participation of molecular oxygen as a direct reactant as well 

as the terminal electron acceptor. In addition, many important aromatic 

hydrocarbons can sustain the growth of bacteria when they are present as 

the sole source of carbon and energy.  

1.4.6.3.1. Biodegradation of aromatic hydrocarbons 

 Biodegradation of Benzene 

The reaction that is common to all pathways leading to the  mineralization 

of aromatic substrates is the cleavage of the benzene ring. Molecular 

oxygen serves like a reactant in two steps in the pathways for benzene 

catabolism. In each of these reactions, both atoms from molecular oxygen 

become incorporated into the substrate. Enzymes that catalyze such 

reactions are identified as dioxygenases [162].  

Ring cleavage and subsequent bacterial metabolism of benzene requires 

that the aromatic ring be destabilized, that is partial loss of its resonance 

energy (140-160 KJ/mol), then more reactive. This is accomplished by a 

dioxygenase-catalyzed reaction between benzene and molecular oxygen, 

that lead to the formation of benzene dihydrodiol (i.e., cis -1,2-

dihydroxycyclohexa-3,5-diene) [163, 164]. Aromaticity is restored by a 

dehydrogenase-catalyzed conversion of benzene dihydrodiol to catechol 

(1,2-dihydroxybenzene), which is the ring cleavage substrate. The 
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reactions pathway leading to catechol form benzene is shown in Scheme 

23. 

 

Scheme 23. Oxidation of benzene to catechol 

Catechol is susceptible to be catabolized by ring cleavage, in which the 

aromatic ring is broken-up by further oxidation. Ring cleavage can occur 

by either one of two pathways. The ortho-cleavage pathway, in which the 

aromatic ring is split between the two carbon atoms bearing hydroxyl 

groups, or the meta-cleavage pathway, in which the ring is broken 

between a hydroxylated carbon atom and an adjacent unsubstituted 

carbon atom [164]. Each of these ring-cleavage reactions is catalyzed by a 

dioxygenase. The subsequent metabolic pathways are quite different, but 

they both lead to tricarboxylic acid (TCA) cycle intermediates (acetate 

and succinate) or to substrates that can be easily converted to TCA cycle 

intermediates (pyruvate and acetaldehyde). The ortho-cleavage pathway 

(also called the -ketoadipate pathway) is shown in Scheme 24, and the 

meta-cleavage pathway is represented in Scheme 25. 
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Scheme 24. Ortho- cleavage pathway for catabolism of catechol. 
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Scheme 25.  Meta- cleavage pathway for catechol catabolism. 

 Biodegradation of alkylbenzenes 

Alkyl-substituted benzenes, such as toluene, ethylbenzene, and the 

xylenes, are common environmental contaminants. These compounds can 

serve as the sole sources of carbon and energy for a variety of bacteria, 

including members of the Pseudomonas , Achromobacter, and Nocardia 

genera [165]. Metabolism of alkylbenzenes may be initiated by oxidation 

of either the alkyl side chain or the aromatic ring. Growth of 

Pseudomonas aeruginosa on toluene is an example of a catabolic 

pathway that is initiated by side-chain oxidation [163, 165]. In a 
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monooxygenase-catalyzed reaction, toluene is converted to benzyl 

alcohol, which is further oxidized to benzoic acid by dehydrogenation. 

Benzoic acid is the substrate for insertion of oxygen into the aromatic 

ring, leading to production of catechol. The reactions leading to catechol 

are shown in Scheme 26. Catechol cleavage proceeds as was described 

above. 

 

Scheme 26. Oxidation of toluene to catechol by Psuedomonas 
aeruginosa. 

Oxidation of toluene and ethylbenzene by Pseudomonas putida provides 

an example of the other pathway by which alkyl-substituted benzenes are 

degraded. Initiation occurs by dioxygenase-catalyzed ring hydroxylation, 

leading to 3- or 4-methylcatechols (or the analogous ethylcatechols) [163, 

165] (Scheme 27). The alkylcatechols are further oxidized by meta-

cleavage. Similar pathways for toluene oxidation are observed in 

Pseudomonas mildenbergii, Achromobacter sp., and Nocardia corallina. 

The reactions involved are outlined in Scheme 27. 
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Scheme 27. Toluene metabolism by P. putida : Ring hydroxylation 
pathway. 

 Biodegradation of styrene  

Other than benzene and alkylbenzenes, also styrene can be metabolized 

by microorganisms. In the literature several original papers on the 

biodegradation of styrene by Pseudomonas putida, P. fluorescens, 

Xanthobacter sp. and Rhodococcus rhodochrous can be found along with 

studies concerning the genetic and the key enzymes such as styrene 

monooxygenase, epoxystyrene isomerase and phenylcetaldehyde 

dehydrogenase involved in the bacterial metabolism of styrene [166, 167 

168, 169, 170, 171]. 

It has been repeatedly supposed that styrene is oxidized to styrene oxide 

by the styrene monooxygenase and subsequently isomerized to 

phenylacetaldehyde by the specific isomerase. This latter compound can 

be therefore metabolized in the bacterial cells trough the general pathway 

of aromatic hydrocarbons biodegradation [170].These studies have been 
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recently contributed to the development of a biofiltration reactor 

inoculated with a P. putida styrene degrading strain for the treatment of 

VOCs in industrial waste gases. A styrene removal efficiency of 75% in a 

few days has achieved at loading rates corresponding to 100 g/ m3, 

without observing any accumulation of intermediate products, thus 

confirming the final mineralization of the aromatic compound [172]. 
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2. OBJECTIVES 

 

The durable properties of plastics such as those based on polyolefins 

make them the ideal material for a large number of applications including 

agriculture, packaging and disposables items and it accounts for 60% 

share among all the plastics consumption. 

However, as the concern on environmental preservation is growing, this 

kind of material represents a relevant drawback due to their recalcitrance 

to microbial attack and hence tend to accumulate in the environment. In 

this regard, a great deal of research activity on the environmentally 

degradable polymeric materials and plastics (EDPs) based on re-

engineered polyolefins is meeting an increasing attention to overwhelm 

the criticism that is leveled at commodity plastics in many short-lived 

applications. In fact they may persist in the environment too long once 

they are used and discarded in a controlled or uncontrolled manner.  

The major strategies in order to overcome the intrinsic recalcitrance of 

polyolefins (PE, PP and PS) to biological attack were focused on the 

introduction of functional groups by copolymerization or substances 

capable to promote the formation of free radical precursors (e.g. 

hydroperoxides) by photophysical and thermal exposure leading to a 

fragmentation of the polymer backbone into oxidized lower molar mass 

fragments (abiotic step). This step will be followed by microbial attack of 

the oxidized and fragmented products (biotic step). In accordance, these 

materials are identified and classified as oxo-biodegradable polymers and 

plastics for which degradation is the result of oxidative and cell-mediated 

phenomena, either simultaneously and/or successively. 

The present study has been focused on the mechanism of physical-

chemical processes (abiotic) that promote as ultimate stage the 

biodegradation  of full carbon backbone polymers, thus transforming 
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these polymers in eco-compatible materials. In particular, the 

investigations undertaken in the present PhD thesis work was the 

evaluation of the rate of biodegradation of oxidized and degraded oxo-

biodegradable polyolefin samples (PE, PP, PS) under aqueous, soil and 

compost conditions. Based on these criteria polyolefin (PE, PP and PS) 

film samples formulated with different pro-oxidant (type and content) 

based on transition metal organic salts able to promote oxidative 

degradation/biodegradation by abiotic and/or biotic actions have been 

ascertained into three tiers. 

Tier 1 Acceleration of samples aging in standard tests for both thermal 

and photo-oxidation processes and determination of the degree of abiotic 

degradation. 

Tier 2 Monitoring of the biodegradation of the pre-treated samples in 

respirometric apparatus. 

Tier 3 Assessment of interactions between polymeric materials and 

microbes and of any toxicity effect of the metabolized polymer fragments. 

 

The following studies have been focused to understand the 

degradation and biodegradation mechanism of full carbon backbone 

polymeric materials and relevant plastic items and approaching the 

minimization of the problems ongoing during plastic waste disposal 

under natural environmental conditions. 
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3. EXPERIMENTAL 

 
3.1 Reagents and Solvents 

The reagents and solvents employed in the experiments and their 

respective source provider are listed below. Potassium hydroxide (KOH) 

pellets, technical grade; Hydrochloric acid (HCl) volumetric standard, 

0.1N, analytical grade; Barium chloride (BaCl2), technical grade; Acetone 

(C3H6O) HPLC grade; Chloroform (CHCl3) HPLC grade; Ethanol 

absolute (C2H5OH); o-Xylene chromasolv plus (C8H10) for HPLC 98%; 

Dichloromethane (DCM) analytical grade; Tetrahydrofuran (THF) 

analytical grade; Di-potassium monohydrogen phosphate (K2HPO4); 

Potassium dihydrogen phosphate (KH2PO4); Ammonium nitrate 

(NH4NO3); Magnesium sulphate (MgSO4·7H2O); Manganese sulphate 

(MnSO4·H2O); Calcium chloride (CaCl2); Zinc chloride (ZnCl2); 

Potassium dichromate (K2Cr2O7), Sulphuric acid (H2SO4) d= 1,84 g/l; 

Potassium sulphate (K2SO4); Mohr salt soultion (FeSO4(NH4)2·6H2O); 

Phenolphthalein indicator; were from Carlo Erba chemicals Ltd. Sodium 

fluoride (NaF); Diphenyl alanine indicator; Dimethyl sulfoxide (DMSO) 

from J.T. Baker; and poly(1,4-cis-isoprene) [CH2CH=C(CH3)CH2]n, as 

natural rubber was purchased from Aldrich. 

Potato Dextrose Agar (PDA); Bacto agar; Yeast extract; Nutrient broth; 

were purchased from Difco laboratories, USA.  

 
3.2. Test Materials. Origin, Treatment  

The environmental fate of the following polymeric materials has been 

investigated. 

 

3.2.1. Full carbon backbone polymeric materials 

The following test materials were used for abiotic degradation and 

biodegradation studies.  
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 Low Density Polyethylene (LDPE) 

Riblene® FL20R I. 3114931 pellets having 2.2 MFI and 0.921 g/cm3 

density was supplied by Polimeri Europa, Mantova-Italy. 

 

 Linear Low Density polyethylene (LLDPE) 

LLDPE films containing different types of pro-oxidants additives and 

control films were supplied by Ciba Chemicals Italy. In Table 3.1 the 

composition and characteristics features of LLDPE films submitted to 

oxo-biodegradation studies, are reported. 

 
Table 3.1. Linear Low Density Polyethylene (LLDPE) films submitted to oxo-

biodegradation studies. 
Test Sample a) code Thickness 

(µm) 
LLDPE Dowlex NG 5056-G + 
Research productb) 

LLDPE-TD1 11.7 

LLDPE Dowlex NG 5056-G +  
Envirocare AG1000c) 

LLDPE-TD2 10.3 

LLDPE Dowlex NG 5056-G  
not additivatedd) 

LLDPE-TD0 8.8 

a) Samples stored at 4°C in the dark; b), c) Pro-oxidant additivated and d) not 
additivated. 
 

 High Density Polyethylene (HDPE) 

Untreated and thermally degraded HDPE samples with degradable plastic 

additives (Table 3.2) were kindly by Symphony Polymers UK. 

 

 Totally Degradable Plastic Additives (TDPA®) 

TDPA® DCP 579, is a proprietary formulation containing pro-degradants, 

stabilizers and fillers in PE resin matrix developed by Environmental 

Technologies Inc., Vancouver, Canada. 
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Table 3.2. High Density Polyethylene (HDPE) films submitted to oxo-
biodegradation studies. 

Test Sample a) code Shape 
HDPE  HUA Film 
HDPE + d2w additivated HT1 Fragment 

a) samples stored at 4°C in dark. 

 

 Polystyrene (PS) 

Crystal and High Impact Poly(styrene) based (CPS/HIPS) blown extruded 

film samples incorporating different EPI pro-oxidant additives and the 

corresponding additive-free control film have been investigated (Table 

3.3).  
 

Table 3.3. Polystyrene (PS) films submitted to oxo-biodegradation 
studies. 

Test Sample a) code Thickness 
(µm) 

PS film withTDPA additive 1 PS-TD1 10-30 
PS film withTDPA additive 2 PS-TD2 10-30 
PS film without additive (control) PS-TD0 10-30 
a) samples stored at 4°C 

 

 Polypropylene (PP) 

Different PP based films containing different types of proprietary pro-

oxidant additives and the corresponding additives-free samples have been 

also investigated. The PP films were received as such and in the form of 

pre-aged (e.g. abiotically oxidized and fragmented) as well. Samples are 

listed in Table 3.4. 

 

Table 3.4. Polypropylene (PP) submitted to oxo-biodegradation studies. 

Test Sample a) code Thickness 
(µm) 

Shape 

PP film withTDPA additive 1 PP-TD1 30-40 Film 
PP film with TDPA additive 2 PP-TD2 n.d. Fragments 

a) samples stored at 4°C; n.d – not detectable 
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3.2.2. Oxo-biodegradable natural polymers 

 Alkali Lignin 

Alkali lignin (AL) is a type of lignin produced by acid treatment of the 

black liquor of wood extraction with soda process with acid. The AL 

material with low sulphonate content used in this study was purchased 

from Aldrich as a fine powder having 60 kD Mw and 10 kD Mn (Figure 

3.1). 

 

H3CO

OH

H (or lignin)

CH3

SHH3C
CH3lignin

H3C OH

 
Figure 3.1. Schematic representation of lignin structure 

 

 Natural Rubber 

Poly(1,4-cis-isoprene) (PIP) (38 kD Mw, 350 poise viscosity at 37°C), 

from natural rubber was purchased from Aldrich, and used as a reference 

material for oxidative degradable polymer. Raw synthetic PIP latex 

rubber (NR) does not contain any non-rubber constituents, except 

antioxidants, that are usually added during the manufacture to prevent 

ageing of the materials. For many commercial applications, raw rubber is 

subjected to a vulcanization process in which the PIP chains are cross 

linked either by heating in the presence of sulfur, as in case of tires, or by 

irradiation and peroxidation, as in case of NR latex gloves. Therefore, 

further substances are added in these two cases. To extract antioxidants 

from NR, the material was treated with acetone as follows: 3 g of NR 
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were extracted with 100 ml of acetone for 2 days at room temperature. 

During this period acetone was repeatedly (approximately 3-5 times) 

replaced by fresh acetone until no colored substances were extracted from 

NR. [173]. The purified material was coated onto teflon membranes and 

left to dry and subsequently used as reference material in soil burial 

biodegradation tests. 

 

 Pine Nut Shells Lignin (PNSL)  

Local production of pine nut shells deriving from the pine forests located 

in the Regional Natural Park of San Rossore-Migliarino Massaciuccoli 

(SRMM), Tuscany-Italy, constitute the source of pine seed shells as an 

useful waste to be converted to valuable raw material. 

The pine nut shells have been grinded in fine powder and chemically 

treated to separate lignin from the other components (cellulosics & 

terpenics). 

To extract the lignin component from PNS, the extraction procedure 

reported in Figure 3.2 was utiized. [174-176]. 

 

 Wheat Straw 

A wheat straw (WS) sample was obtained from, the Agriculture Faculty, 

of the University of Pisa. Italy. Basically, WS contains three main 

constituents namely cellulose, hemicellulose and lignin, which undergoes 

different enzyme mediated degradation and biodegradation by uptake of 

water or oxygen. Accordingly, WS has been exploited as reference 

materials in biodegradation tests, being representative of different 

hydrolytic and oxidative biochemical pathway. 
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Figure 3.2. Flow sheet of the extraction procedure of lignin (PNSL) 

from pine nut shells. 
 

Before to use the material was finely chopped and submitted to 

purification by 24 hours soaking in cold water. After removing excess 

water, the material was pasteurized at 120°C ,1 atm, for 30 minutes, and 
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dried at 60°C until they reached constant weight. After drying WS sample 

was grinded into tiny pieces before to be used in soil burial 

biodegradation tests (Figure 3.3). 

 

 
Figure 3.3. Wheat straw (WS) sample for soil burial biodegradation 

tests a) collected WS b) chopped. 
 

3.2.3. Natural, synthetic and hybrid hydro-biodegradable polymeric 
materials 

 

 Cellulose Filter Paper 

An ashless Whatman 42 grade cellulose filter paper sample(CFP) was 

employed as positive control material in biodegradation studies. 

 Poly(lactic acid) (PLA) plastic items 

A disposable plastic cup made from PLA polymeric material, collected 

from commercial source (retail shop) Pisa, Italy was used in 

biodegradability testing under soil burial conditions. 

 Ecoflex plastic items 

A plastic bag made by the synthetic polyester Ecoflex® was kindly 

supplied by BASF, Germany. Ecoflex is an aliphatic-aromatic 

copolyester based on terephthalic acid, adipic acid, 1,4-butanediol and 

modular units . The mechanical properties of Ecoflex are comparable 

with those of  low density poly(ethylene) and the most common 
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processing methods for Ecoflex is the film extrusion using the 

conventional blown film lines for LDPE. 

Ecoflex based plastic bag was employed in the soil burial biodegradation 

test to compare the biodegradation behaviour of oxo-biodegradable 

polymeric materials.  

 Mater-Bi based plastic items 

Trade names Mater-Bi containing biodegradable starch-based hybrid 

blend polymeric material was supplied Novamont, Italy. A commercial 

plastic bag made with Mater-Bi was also employed in soil burial 

biodegradation tests in order to analyze and bring a comparison with the 

biodegradability of oxo-biodegradable polymeric materials.  

 

3.2.4. Polymeric composites 

Two different series of polymeric composites represented by Ecoflex 

synthetic polyester mixed with pine seed lignin (Ecoflex/PNSL) and 

LDPE mixed with alkali lignin (LDPE/AL) have been formulated and 

processed by melting procedures. 

 

3.2.4.1. Preparation of lignin (PNSL)/Ecoflex® composites 

The lignin fraction from pine seed shells (PNSL), was blended in the melt 

with Ecoflex® FBX 7011 pellets. It has a mass density of 1.25 – 1.27 

g/cm3. According to the DSC testing, its Glass Transition Temperature 

(Tg) and Melting Temperature (Tm) is -30oC and 117oC, respectively. 

The following calculation was done before Brabender processing. 

Mass density of PNSL 0.75g/cm3; Mass density of Ecoflex FBX 7011 

1.25 - 1.27g/cm3; Volume of the Brabender 44 cm3. 
  

                           MpDf + MfDp =44DpDf                               (Eq. 1) 
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Vp. (Volume of Ecoflex); Vf. (Volume of Fillers); Mp. (Mass of Ecoflex); Mf. (Mass of 

Fillers); Dp. (Density of Ecoflex); Df. (Density of PNSL). 

The final weights needed for the Brabender processing was summarized 

in Table 3.5. according to the Eq. 1. 

 

Table 3.5. Composition of Ecoflex/PNSL composites 

Ecoflex/PNSL Code 
Weight ratios Weight for Brabender  

(w/w) (g)  
100/0 55/0 E100 

90/10 46.44/5.16 E90 

80/20 38.84/9.71 E80 

70/30 32.08/13.75 E70 

60/40 26.06/17.37 E60 
 

Before processing, both Ecoflex and lignin filler powder were dried in 

oven at 60°C for 48 h. PNSL with Ecoflex® composites were prepared in 

a torque rheometer W50 EHT roller blades connected to a Plastograph 

Can-Bus Brabender under the following processing conditions: The 

polyester was added into the Brabender at 150°C with a rotor speed of 50 

rpm and residential time of 2 min. Subsequently, the PNSL filler was 

added and the processing temperature was set at 140°C with a rotor speed 

of 75 rpm and residential time of 6 min. Finally, the composites mixture 

was collected and cut into pellets for the hot compression moulding.  

The homogenous mixtures of Ecoflex® and lignin filler pellets were 

compressed into thin film by using a P200E Collin type laboratory hot 

compression moulding equipment. One portion of 1.2 g of pellets were 

placed between two teflon coated stainless steel plates. The plates were 
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set into the hot compression moulding machine with both upper and lower 

plate heated at 140°C for 4 min under 90 bar compression. After heating, 

the samples were cooled by circulating water at ambient temperature for 4 

min at 90 bar compression. The two plates containing the composite films 

were then transferred into a -20°C refrigerator for several minutes. 

Finally, the thin films were collected and the thickness of the films ranged 

from 130-150 µm was measured by micron metrology.  

 

3.2.4.2. Alkali Lignin/LDPE/pro-oxidant additives (LDPE/AL/P) blends 

Antioxidant-free LDPE: Riblene FL20R I. 3114931 – (LDPE) supplied 

by Polimeri Europa, having 2.2 MFI and 0.921 g/cm3 density, has been 

utilized as continuous matrix for the preparation of blends with alkali 

lignin (AL) with and without the addition of EPI-TDPA DCP 579 master 

batch (P) pro-oxidant system. 

LDPE was melt blended with the other components in a torque rheometer 

W50 EHT roller blades connected to a Plastograph Can-Bus Brabender 

having a mixing head with a volumetry capacity of 50 cm3. Prior to 

mixing all the components were dried in oven at 60°C for 12 h. Mixing 

was performed at 160°C, rotor speed 30 rpm and 10 min residence time. 

The composition of the blends, as prepared according to the [Eq. 1] 

calculation are reported in Table 3.6. 

Immediately after the melt blending all the samples (0.7 g) were hot 

pressed in thin sheet into a Collin P 200E under the following conditions: 

160°C temperature, 150 bar compression, 3 min residence time, 

subsequently, the films were cooled to ambient temperature for 5 min 

maintaining the same pressure of the isothermal step. 

 

 

 



Experimental 

 95

Table 3.6. Composition of the LDPE/AL blends submitted to 
compression molding. 

 

code AL LDPE P AL thickness 
 (g) (g) (g) % (m) 
AL0 0.0 40.0 0.0 0.0 46-52 
AL1 0.4 39.6 0.0 1 46-48 
AL3 1.2 38.8 0.0 3 42-46 
AL5 2.0 38.0 0.0 5 52-55 
AL1/P 0.4 38.4 1.2 1 46-52 
AL3/P 1.2 37.6 1.2 3 56-58 
AL5/P 2.0 36.8 1.2 5 42-49 
AL0/P 0.0 38.8 1.2 0 40-43 

 

 

3.3. Abiotic Degradation Experiments 

The following section describe the test methods utilized for abiotic 

degradation (photo, thermal), which influence the oxidation process of 

full carbon backbone polymers. 

 

3.3.1. Thermal degradation tests in static oven  

Thermal oxidations of test samples were carried out at different 

temperatures in the 28°C - 65°C range in 5.4 l  mini incubators (Falc 

Instruments s.r.l., Italy) having 15x18x19 inner dimension. Test sample 

films (2 x 4 cm dimension) were placed in plastic holders allowing for 

direct exposure with the local environmental conditions. At time intervals 

of thermal aging, the samples were analyzed by using FT-IR 

spectroscopy. The FT-IR spectra were recorded in the same spot region 

during analysis (Figure 3.4). 
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Figure 3.4. Plastic holder for FT-IR analysis used during the ageing 

tests in outdoor exposure and/or heating in oven. 
 

3.3.2. Thermal degradation test in air-ventilated oven  

Approximately 20x30 cm specimen of each film samples corresponding 

to 1.5 g were placed in glass Petri dishes (Figure 3.5) and were submitted 

to thermal degradation at 65°C under constant air flow in a STF-F120Lt 

oven having 45x32x45cm inner dimension (Falc Instruments s.r.l., Italy). 

At regular time intervals the samples were analysed by FT-IR 

spectroscopy by recording relevant spectra from different regions of each 

test specimen. Sample weight variation was also recorded in an analytical 

balance during the ageing test. 

 
Figure 3.5. Test sample assemblage in glass Petri dishes for thermal 

aging in air ventilated oven 
 

3.3.3. Thermal degradation test with relative humidity 

Degradation test was carried out in 4 litre closed glass vessels under 

constant relative humidity (RH) as generated by 75% saturated NaCl 
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solution at 55°C. Test samples films were placed in plastic holders 

allowing direct contact to the environmental conditions (Figure 3.6). At 

time intervals the test samples were withdrawn, conditioned at room 

temperature in a desiccator and analyzed by FT-IR spectroscopy and 

recording the FT-IR spectra on the same spot region. 

 
 

Figure 3.6. Schematic representation of thermal degradation tests at 
75% relative humidity. 

 

3.3.4. Sunlight exposure degradation tests 

The tests were carried out in accordance with ASTM D5272-08 standard 

practice for outdoor exposure testing of photodegradable plastics [177]. 

Each sample (7 x 7 cm dimension) was allocated in a stainless steel rack 

exposed at 30° in the south-west direction in outdoor conditions (Figure 

3.7). During the exposure time, the minimum and maximum temperatures 

were recorded daily. At time intervals, the samples were analysed by FT-

IR spectroscopy by taking relevant spectra from 5 different regions of 

each test specimen. 
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Figure 3.7. Set up used for outdoor exposure degradation of plastic 

film test specimens. 
 

3.3.5. Thermal degradation test of LLDPE films after outdoor 
exposure treatment, in oven under static conditions and air-
ventilated oven at different temperatures.  

Outdoor exposed LLDPE film samples were also submitted to further 

thermal treatments at various temperatures (45, 55 and 65°C) in order to 

verify if, after the outdoor exposure, the reached level of oxidation could 

be further increased by thermal treatment carried out in the dark in oven 

under static conditions. Data of oxidation level in air-ventilated oven were 

collected only at 65°C. At time intervals, test specimens were analysed by 

FT-IR spectroscopy and recording the FT-IR spectra on the same spot 

region thus allowing a comparative monitoring of the progress of the 

carbonyl group formation. 
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3.3.6. Degradation tests at ambient temperature of pristine and 
abiotically pre-aged test samples.  

Degradation tests were carried out at room temperature as aimed at 

establishing the rate and the extent of oxidative degradation of pristine 

abiotically pre-aged test materials once maintained under normal 

environmental conditions. The test film samples relevant to the pristine, 

outdoor exposed and thermally aged having different level of oxidation 

were exposed to room temperature in the dark, while monitoring the 

progress of oxidation by FT-IR spectroscopy. 

 

3.4. Biodegradation Tests 

The following biodegradation experiments were carried out under both 

aqueous and solid media conditions.  

 

3.4.1. Respirometric biodegradation tests in aqueous medium 

Aerobic biodegradation tests were carried out in aqueous medium by 

using as respirometric apparatus 300 ml Erlenmeyer flasks, containing 

100 ml of mineral salt medium having the following composition per liter 

of distilled water: KH2PO4 85 mg, K2HPO4 218 mg, Na2HPO4 334 mg, 

(NH4)2SO4 10 mg, NH4NO3 10 mg, CaCl2 36 mg, MgSO4·7H2O 23 mg, 

and FeCl·6H2O 0.3 mg, pH 7.4±0.2. Each flask was equipped with 

silicone rubber stoppers hanging 40 ml capacity plastic vials filled with 

CO2 absorbing 0.05 N KOH solutions (Figure 3.8). 
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Figure 3.8. Schematic representation of aqueous medium 
Biodegradation tests 

 

The microbial inoculum was prepared by cultivating 1 ml of a forest soil 

suspension (1g/10 ml 0.9% NaCl solution) in 300 ml mineral salt medium 

containing 100 mg of the sample fraction of thermally oxidized LDPE-

TDPA sample as sole carbon and energy source. This soil culture was 

used as microbial source in 10% by volume ratio to inoculate each test 

flask once the stationary phase, as determined by the optical density at 

660 nm in a UV/Vis410 Jasco spectrophotometer, was reached. All the 

test materials were supplied to the microbial cultures as sole carbon 

sources at approximately 0.1 % by weight concentration level.  

Test flasks were incubated at room temperature (25°C) in the dark on a 

rotatory shaker (120 rpm). All the runs were carried out in triplicate. 

Every 5 -7 days CO2 absorbers, containing 20 ml of N KOH solution were 

retrieved and replaced with fresh KOH solution in known aliquots. The 
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retrieved KOH solutions were back-titrated with 0.1 N HCl and the 

amount of adsorbed CO2 was computed. 

The head space of flasks was sufficiently large to provide the cultures 

with oxygen; moreover the flasks and vials were opened weekly so that 

the head-space air could be refreshed. Gas-tight sealing of the vessels was 

necessary to prevent water evaporation during the long incubation. At the 

end of the test all the test materials were withdrawn from aqueous 

cultures, carefully washed  and characterized by gravimetric analysis (e.g. 

weight variation), FT-IR spectroscopy and thermal analysis (TGA and 

DSC).  

 

3.4.2. Respirometric biodegradation tests in soil medium 

Soil burial biodegradation tests were carried out in cylindrical glass 

vessels (Biometer Flask 500 ml capacity) containing a multilayer 

substrate in which defined amounts of forest sandy soil (20 g) were 

placed (Figure 3.9). Soil samples sieved at 0.6 mm, mixed with 10 g 

perlite and supplemented with 10 ml of 0.1% (NH4)2HPO4 solution, were 

sandwiched between two layers of 15 g perlite wetted with 15 ml of 

distilled water. Accordingly perlite was used to ensure satisfactory 

incubation conditions, whereas soil samples were used mainly as 

microbial inoculum. This arrangement guarantees more favorable and 

reliable signal-to-noise ratio resulting in improved test accuracy, 

particularly when limited carbon dioxide emissions are expected from the 

test samples [178]. 
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Figure 3.9. Schematic & real Biometer flask set up for simulated soil 
burial biodegradation tests. 

 

Polymeric test specimens and reference materials were placed in the core 

of a soil middle layer at 20 mg/g ratios and the culture vessels were kept 

in the dark and incubated at room temperature. The CO2 evolved from 

samples and blanks was trapped in each test vessel by means of 40 ml of 

0.05 N KOH solution contained in a beaker set in the test vessel. The 

absorbing solution was back-titrated with 0.1 N HCl at time intervals by 

adding 0.5 N BaCl2 solution before the titration in one-tenth proportion 

with respect to the overall volume of the absorbing alkaline medium. 

Phenolphthalein was used as indicator. All the tests were carried out in 

triplicate. 

Every 3 months of incubation each culture was carefully aerated by 

turning up the middle soil layer, re-wetted and added with other 5 g of 

fresh soil/perlite mixture in order to mimicking the situation of a real 

agricultural soil. At the same time small fragments of the analyzed test 

samples were withdrawn from the relevant culture, carefully washed with 

distilled water an submitted to morphological, spectroscopic and thermal 

characterization in order to evaluate the progress of chemical degradation 
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of the test samples as a consequence of the incubation in an 

microbiologically active soil sample. 

 

3.4.3. Respirometric biodegradation tests with single fungal strain in 
aqueous medium 

The biodegradation tests were carried out in 300 ml Erlenmeyer flasks 

equipped with silicone rubber stoppers hanging 40 ml capacity plastic 

vials filled with 20ml CO2 absorbing KOH solutions (0.05 N). Each flask 

contained 100 ml mineral salt medium having the following composition 

per liter of distilled water: KH2PO4 85 mg, K2HPO4 218 mg, Na2HPO4 

334 mg, (NH4)2SO4 10 mg, NH4NO3 10 mg, CaCl2 36 mg, MgSO4.7H2O 

23 mg, MnSO4 H2O 0.021 g, CuSO4 5H2O 0.006 g, CoCl2 6H2O 0.006 g, 

pH 7.4±0.2. 

The microbial inoculum represented by single fungal strain was prepared 

by cultivating the microorganism on Potato Dextrose Agar (PDA) plates. 

A 0.5 cm agar disk taken from PDA plates was used to inoculate each test 

flask. All the test materials were supplied to the microbial cultures as sole 

carbon sources at approximately 0.05 % by weight concentration.  

Test flasks were incubated at room temperature (25°C) in the dark on a 

rotatory shaker (120 rpm). All the runs were carried out in triplicate. 

Every 7 -15 days the CO2 absorbers, containing 20 ml of 0.05 N KOH 

solution were retrieved and replaced with fresh KOH solutions in known 

aliquots. The retrieved KOH solutions were back-titrated with 0.1 N HCl 

and the amount of CO2 adsorbed was computed. 

 

3.4.4. Respirometric biodegradation tests with single fungal strains 
onto solid media under co-metabolic conditions 

Mineralization tests aimed at evaluating the capability of fungal strains to 

degrade and assimilate LLDPE samples under co-metabolic conditions 

(e.g. in the presence of an easily assimilable carbon source) have been 
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carried out onto thermally oxidized, outdoor exposed and pristine LLDPE 

specimens. 

Tests were carried out in 300 ml flasks containing 50 ml of a solid 

medium having the following composition: K2HPO4 2.2g, KH2PO4 0.8 g, 

MgSO4 7H2O 0.2 g, NH4NO3 0.25 g, MnSO4 H2O 0.021g, CuSO4 5H2O 

0.006 g, CoCl2 6H2O 0.006 g, Glucose 1.0 g, distilled water 1000 ml, 

Bacto Agar 20.0g. Each biometer flask was equipped with silicone rubber 

stoppers hanging 40 ml capacity plastic vials filled with 20 ml CO2 

absorbing KOH solutions (0.05 N). The cultures were run in triplicate and 

incubated at room temperature. Every 5 -10 days proximal CO2 absorbers, 

containing 20 ml of 0.05 N KOH solution were retrieved and replaced 

with fresh KOH solutions in known aliquots. The retrieved KOH 

solutions were back-titrated with 0.1 N HCl and the amount of CO2 

adsorbed was computed. 

Previously isolated F2 fungal strain and P. chrysosporium were utilized as 

degrading microbial species. The microbial inoculum was prepared by 

cultivating the microorganisms on Potato Dextrose Agar (PDA) plates. A 

0.5 cm agar disk taken from PDA plates was used to inoculate each test 

flask 

In all the respirometric tests, the biodegradation extent of polymeric 

materials was calculated as the percentage of the overall CO2 production 

[Theoretical CO2, (Th.CO2)] calculated on the basis of the overall organic 

carbon content of the samples. The values were corrected for the 

inoculum endogenous emissions obtained from the control (flasks 

containing all components, except polymer samples). All tests were 

conducted in triplicate, and the standard errors were calculated. Cellulose 

filter paper was used as the positive standard. 
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3.4.5. Biodegradation tests with single microbial species in agar 
plates 

The lignin degrading Phanerochaete chrysosporium ATCC 34541 strain 

purchased from Deutsche Sommlung von Mikroorganismen und 

Zellkulturen (DSMZ)and four different fungal strains isolated from LDPE 

fragments retrieved after 2 years soil burial degradation tests, were 

utilized in pure cultures. 

To isolate the fungal strains, the LDPE fragments were incubated in solid 

agar plate containing 20 ml sterilized low concentration salt agar medium 

having the following composition per liter of distilled water: K2HPO4 2.2 

g, KH2PO4 0.8 g, MgSO4 7H2O 0.2 g, NH4NO3 0.25 g, MnSO4 H2O 0.021 

g, CuSO4 5H2O 0.006 g, CoCl2 6H2O, pH 7.4. After 3 days incubation at 

25°C in the dark, single fungal colonies were identified and repeatedly 

streaked on fresh PDA (Bacto- Difco, USA) agar plates for the isolation 

in single pure culture the fungal strains.  

P. chrysosporium and four different fungal strains, isolated according to 

the above reported procedure (F1,F2, F3 and F4) were used separately in 

Petri dishes containing agar to inoculate LLDPE test specimens. 

Approximately 20 ml of agar medium having the following concentration 

per liter of distilled water : K2HPO4 2.2 g, KH2PO4 0.8 g, MgSO4 7H2O 

0.2 g, NH4NO3 0.25 g, MnSO4 H2O 0.021 g, CuSO4 5H2O 0.006 g, CoCl2 

6H2O 0.006 g, Glucose 1.0 g, distilled water 1000 ml, Bacto Agar 20.0 g, 

was poured in 9.0 cm diameter petri plates after sterilization. 

The test specimens relevant to outdoor exposed LLDPE films, were 

sterilized under UV lamp for 48 hours before to be aseptically transferred 

onto the agar surface, after that each plate was inoculated with a single 

fungal strain. Tests were carried out in triplicate.  

The effect of the microbial activity was monitored after 20, 45, 65 and 

180 days of incubation, film specimens were withdrawn from the agar 

plates and characterized by FT-IR spectroscopy and relevant 
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determination of the level of oxidation by means of Carbonyl index 

(COi). Un-inoculated control samples of outdoor exposed specimens were 

incubated aseptically under the same conditions. 

At the end of the biodegradation tests and prior to the analytical 

characterization all the sample specimens were submitted to a cleaning 

procedure carried out in order to remove any microbial components from 

the film sample surfaces. In particular, the specimen were carefully 

washed with distilled water. After that treatment, the specimens were 

suspend in distilled water (40 ml) containing 25 mg of sodiumdodecyl 

sulphate surfactant (SDS) and agitated at 120 rpm for two hours, in order 

to remove any traces of biofilm. The specimens were therefore washed 

twice with distilled water and recovered on nylon membrane having 0.45 

m porosity by vacuum filtration. Finally all the specimen were dried 

over night under vacuum in a freeze dryer apparatus. 

 

3.5. Combined Aiotic and Biotic Degradation Tests 

Studies aimed at recognize the synergistic effect of abiotic (thermal) and 

biotic (microbial active environment) conditions, were also carried out on 

pro-oxidant containing LLDPE samples in air-ventilated oven at 50°C 

kept in contact with forest soil and mature compost. Furthermore, 

experiments were carried out by evaluating thermal degradation rate and 

extent of outdoor exposed LLDPE samples after their incubation with 

single fungal strain. 

 

3.5.1. Thermal degradation test of LLDPE samples onto soil and 
mature compost at 50°C 

The degradation tests were carried out in 1 liter cylindrical vessels (Figure 

3.9) containing two layers represented by 20 g silicate (bottom layer) and 

25 g forest soil or mature compost sieved at 0.6 mm (upper layer), 

respectively.  
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The humidity level was adjusted at the 50% by weight of the used forest 

soil and mature compost samples. The test LLDPE samples were then 

placed at the surface of the natural matrices in the closed vessels. 

At time interval (2-4 days) the film specimens were withdrawn, carefully 

washed with distilled water and dried in a desiccator at room temperature 

prior to the determination of carbonyl index by FT-IR spectroscopy. The 

humidity level of soil and compost was kept at constant regime during the 

experiment. The oxidation behavior of each test sample in contact with 

soil and compost was estimated according to the calculation of carbonyl 

index. 

 

3.5.2. Thermal degradation tests of LLDPE samples previously 
incubated with single fungal strain 

The specimens withdrawn after 65 days incubation in the presence of the 

selected fungal strains were further exposed to a thermal treatment in 

static oven at medium temperatures (45°C) with the aim to ascertain the 

influence of the microbial metabolism on the propensity of the LLDPE 

matrix to be further oxidized under abiotic conditions. Test specimens 

were placed in plastic holder allowing direct contact to the ambient 

temperature. At time intervals of thermal aging the test samples were 

analyzed by FT-IR spectroscopy and recording the FT-IR spectra on the 

same spot region. 

 

3.6. Analytical Characterization 

The following analytical characterization have been undertaken to follow 

the oxidative degradation and biodegradation of the investigated 

polymeric materials as aimed at understanding their ultimate 

environmental fate. 
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3.6.1 Thermal characterization 

All the polymeric materials and film samples, before and after 

degradation and biodegradation experiments were characterized by both 

Differential Scanning Calorimetry (DSC) and Thermal Gravimetric 

Analysis (TGA). 

 Differential Scanning Calorimetry (DSC)  

The thermal analysis of of polymeric materials was carried out by a 

DSC822e (700°C) module with FRS5 sensor and operated by means of 

STARe software. Measurements were performed under nitrogen flow rate 

of 80 ml/min according to the following protocol: 

1. First heating scan from -20°C to 140°C at 10°C/min and 2 min of 

isotherm at the end; 

2. First cooling scan from 140°C to -20°C at -10°C/min  and 4 min of 

isotherm at the end; 

3. Second heating scan from -20°C to 140°C at 10°C/min. 

All the thermal transitions [Melting Temperature, ™; Glass Transition 

Temperature, (Tg); Crystallinity (%)] were taken from DSC traces 

recorded during both first and second heating. In order to assess the 

degree of crystallinity of samples, the enthalpy of fusion of100 % 

crystalline PE was taken as 293 J/g [179] In accordance, the degree of 

crystallinity of each analyzed sample was calculated as the ratio between 

the integration of the melting enthalpy of the sample referred to 293 J/g.  

 

 Thermal Gravimetric Analysis (TGA) 

TGA experiments were performed in the thermogravimetric analyzer 

series Q500 of the TA Instruments. Generally, sample amount was 

between 10-15 mg. TGA experiments were performed in the 

thermogravimetric analyzer  under nitrogen or air atmosphere at 60 

ml/min flow rate in the following conditions:  
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1. Heating from 25°C up to 610°C, heating rate 10°C/min. 

Degradation temperature onsets at 2% weight loss (TON) and residue 

weight at 600°C were recorded during the TGA courses.  

 

3.6.2. FT-IR analysis and Carbonyl index determination 

Fourier transformed infrared (FT-IR) spectroscopic characterization of the 

analyzed materials was carried out with a Jasco model 410 

spectrophotometer. The spectra were taken as an average of 16 scans with 

2 cm-1 resolution. The carbonyl index (COi) was calculated as the ratio of 

the optical density of the absorption band comprised between 1830-

1650cm-1 (carbonyl peak), and the optical density of the absorption band 

at 1463 cm-1 (CH2  scissoring vibration peak) [178].  

 

3.6.3. Gravimetric analysis  

Weight analyses of samples from degradation studies were carried out by 

recording the samples weight in an analytical laboratory balance with ± 

0.1 mg precision. Before any determinations the samples were pre-

conditioned at room temperature in a desiccator. 

 

3.6.4.  Solvent fractionation of test samples 

To analyze the low molecular weight fractions produced during the 

abiotic degradation tests, exposed samples were submitted to an 

extraction procedure by using in sequence boiling distilled water, acetone 

and dichloromethane under reflux conditions for 2 hours in a Kumagawa 

apparatus. The obtained extracts were dried to constant weight under 

vacuum and the relevant molecular weight (Mw) and molecular weight 

distribution (ID) were evaluated by means of GPC analysis . 
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3.6.5. Gel content determination 

The determination was carried out in accordance with ASTM D2765 - 

01(2006) Standard test methods for determination of gel content and 

swell ratio of crosslinked ethylene plastics [180]. Gel content was 

evaluated as the percentage of insoluble material after extraction [Eq. 2] 

in a Kumagawa extractor for 13 hours in boiling o-xylene solvent using 

Whatman cellulose extraction thimbles. After extraction, the material was 

dried in a vacuum oven until constant weight. For each sample, four 

replicates were used for statistical validation. 
Gel content (%) = Sample Wt after Extraction /Initial Sample Wt * 100 [Eq.2] 

 

3.6.6. Gel Permeation Chromatography (GPC) 

Molecular weight (Mw) and molecular weight distribution (ID) of the PS 

based samples and solvent extracted fractions from PE based samples 

have been analyzed by gel permeation chromatography (GPC) 

determinations with a Jasco PU-1580 liquid chromatograph equipped 

with a Jasco 830RI refractive index detector and Perkin Elmer LC-75 UV 

Vis detector, using a PLgel guard column and two PLgel Mesopore (30 

cm, 10 mm) columns. Chloroform was used as mobile phase at 1 ml/min 

flow rate. Relative calibration has been obtained by analyzing 

monodisperse polystyrene standards. 

 

3.6.7. Scanning Electron Microscopy (SEM) 

The surface morphologies of analyzed polymeric films were recorded by 

using a JEOL (JSM-5600LV) scanning electron microscope (SEM) at the 

required magnification and with accelerating voltage of 14kV. The film 

samples were sputtered with gold before SEM observation.  
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3.6.8. Organic carbon determination  

The amount of organic carbon in the test samples was determined 

according to an oxidation procedure. Approximately 60 mg of samples 

were put in a 100 ml round bottom flask. 20 ml of 2N K2Cr2O7 were then 

added, followed by the drop wise addition of 20 ml concentrated H2SO4. 

The mixture was then heated until complete dissolution of the test sample. 

After cooling the overall volume of the mixture was adjusted to 100 ml 

with distilled water. 25 ml of test solution were put in a beaker, diluted up 

to 100 ml of distilled water and back titrated with 0.2 N 

(NH4)2Fe(SO4)2·6H20 solution (Mohr solution), after the addition of a 

few drops of diphenylamine (0.5 % in H2SO4) and 3.5 g NaF. A blank run 

without any organic substrate was carried in parallel. The organic carbon 

content was expressed from the following calculation. 

Organic carbon (%) = (a-b)·N·0.012/ Wt·100 [Eq. 3] 

Where: 
a – volume of Mohr solution used in the titration of the test solution 
b – volume of Mohr solution used in the titration of the blank solution 
N- normality of Mohr solution 
Wt – weight of the test sample in grams 
 

 

3.6.9. Carbon dioxide determination and evaluation of the degree of 
biodegradation in respirometric tests. 

The evaluation of the degree of biodegradation in the respirometric tests 

is based on the determination of CO2 in the headspace of the culture 

vessels (biometer flask). CO2  evolved inside a sealed biometer as a 

consequence of the microbial assimilation of the test sample, is trapped 

by an absorber containing alkaline solution and measured by back 

titration with HCl solution. At specific times, biometers were opened and 

aliquots of 10 ml of 0.05 N KOH, containing soluble inorganic carbon, 

were transferred to a beaker. To this solution, a volume of 1 ml of 0.5 N 

BaCl2 was added to precipitate K2CO3 as insoluble BaCO3. In this way, 
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KOH was back titrated by using 0.1N HCL up to phenolphthalein end 

point. Subsequently, biometer was recharged with a fresh KOH solution 

and immediately closed. This cycle of procedure was repeated 

periodically up to the end of experiment. The above procedure is based on 

the following reactions: 

Carbon dioxide uptake by KOH solution 

CO2 + 2 KOH K2CO3 (soluble) + H2O  [Eq. 4] 

Insoluble barium carbonate formation 

K2CO3 + BaCl2 BaCO3 (insoluble) + 2 KCl [Eq. 5] 

To determine complete or ultimate aerobic biodegradability 

(mineralization to CO2), it is necessary to know the initial amount of 

organic carbon (TOC) in the sample and the relevant theoretical amount 

of CO2 (ThCO2). 

It is possible to estimate the Th.CO2 of the test plastic sample, knowing 

the amount of TOC as illustrated by Equations 6- 7. 

CS = TOCS * WtS                        [Eq. 6] 

Where CS is the amount of carbon in the sample, TOCS the relative 

amount of total organic carbon in the sample at time 0 and WtS the weight 

of sample. As to evolve 44 g of CO2 it is needed 12 g of carbon (C), 

Equation 7 calculates the amount of ThCO2. 

ThCO2 = CS * 44/12 = TOCS * WS * 3.67  [Eq. 7] 

The extension of biodegradation defined as mineralization percent is 

calculated by subtracting the accumulated CO2 content evolved into the 

biometers of sample (CO2)S from that of blank (CO2)B. The difference 

found is divided by the theoretical amount of CO2 (ThCO2) as calculated 

on the basis of the carbon content of the test sample (Eq. 8) 

Biodegradation (%) = 100*[(CO2)S - (CO2)B]/ThCO2 [Eq. 8] 
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3.6.10. Arrhenius plot 

In order to estimate the time required for the beginning of oxidation and 

fragmentation of the polymer matrix of oxo-biodegradable full carbon 

backbone samples, a diagram corresponding to Arrhenius plot was drawn 

for each test samples. The diagram was drawn by plotting (ordinate axis) 

the log of time corresponding to a certain COi values and the reverse of 

absolute temperature (°K) (abscissa axis) corresponding to the same COi 

values as recorded at three different temperature (e.g. 45, 55, and 65°C). 

According to the straight line so far obtained the time required for starting 

oxidation process at 35°C was calculated for each oxo-biodegradable full 

carbon backbone samples. 
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4. RESULTS AND DISCUSSION 

Since the ultimate environmental fate of “degradable” polyethylenes has 

to be considered as the results of the combining action of abiotic factors 

and microorganisms, the definition of “oxo-biodegradable” materials in 

keeping with the processes of biodegradation of lignin and natural rubber 

was suggested [57]. 

The requirement of two steps, abiotic and biotic, in the degradation 

mechanism of oxo-biodegradable plastic items has recently inspired the 

definition and approval of Standard Guide ASTM D6954-04 “Standard 

guide for exposing and testing plastics that degrade in the environment by 

a combination of oxidation and biodegradation”[181]. 

This Standard Guide provides a framework to assess and compare the 

degree of degradation attainable under controlled thermal and photo-

oxidation tests with the degree of biodegradation and ecological impacts 

in defined disposable environments after abiotic degradation. In 

accordance the ASTM D6954-04 guide is divided in three Tiers: 

i) Accelerate aging in standard tests for both thermal and photo-

oxidation processes and determination of the degree of abiotic 

degradation (Tier 1), 

ii) Measuring biodegradation (Tier 2), 

iii) Assessing the ecological impact after this last processes (Tier 3). 

In order to exploit the Tier 1, the Standard Guide suggests to use test 

conditions for thermal or photo-oxidation likely to occur in application 

and disposal environment for which the test material is committed. In 

other words, accelerated oxidation should be carried out at temperatures 

and humidity ranges typical of test material application and disposal 

environment. 

The evaluation of the extent and rate of degrdative oxidation of re-

engineered polyolefins containing pro-oxidants, represents indeed a 
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powerful tool to predict their potential ultimate biodegradation. Several 

studies have been therefore carried out  with the aim of investigating the 

mechanisms of photo and thermal oxidation of polyolefins containing 

pro-oxidant additives. Nevertheless, most of these studies have been 

carried out under strictly controlled laboratory conditions, as well as 

under extreme accelerating stressing conditions that can not be considered 

as representative of the natural environments. In particular, only a few 

investigations have been carried out by assessing the synergic effects of 

temperature, humidity and/or sunlight exposure that usually are jointly 

operative in outdoor exposure conditions. 

In any case, by considering the general mechanisms of radical oxidation 

of full carbon backbone polymers, the following parameters can be 

currently monitored  during the abiotic degradation step sketched for a 

material designed to undergo oxo-biodegradation: 1) Weight variation;  

2) Carbonyl index (COi); 3) Wettability; 4) Molecular weight variation; 

5) Fractionation by solvent extraction. 

 In particular, gravimetric analysis can be effectively used to appreciate 

the weight variation as a consequence of the oxygen uptake during the 

early stage of oxidation, as well as the weight loss due to the 

volatilization of low molecular weight fragments at prolonged stage of 

thermal and photo degradation. 

An other powerful tool for the quantitative and qualitative evaluation of 

the oxidation processes is constituted by the carbonyl index (COi) as 

determined by FT-IR spectroscopy. It has been repeatedly reported that 

the most of the degradation intermediates of polyolefin peroxidation are 

bearing carbonyl groups, therefore their concentration, as determined by 

COi can be used to monitor the progress of degradation [69]. In general 

these determinations are carried out on test films by  recording the ratio of 

the optical density of the carbonyl absorption band at 1640 - 1840 cm-1 
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range and the optical density of the absorption band at 1463 cm-1 [(CH2 in 

plane bending vibrations (scissoring)]. In addition, FT-IR analyses 

provide also information on the presence during the oxygen uptake phase 

of carbonyl groups present in different moieties such as carboxylic acids 

(1712 cm-1), ketones (1723 cm-1), aldehydes (1730 cm-1) and lactones 

(1780 cm-1) [182]. 

The determination of wettability of film surfaces during the degradation 

tests by contact angle measurements, may provide useful information 

about the increasing polarity of the film surfaces as a consequence of 

oxidation and formation of functional groups. These information are also 

useful in order to predict the feasibility of microbial attack of polyolefins, 

by taking into account that one of the reason that have been suggested to 

explain the intrinsic recalcitrance of PE to biodegradation is the 

hydrophobic character hindering the adhesion of microbial cells. 

In terms of potential ultimate biodegradation (e.g. conversion to CO2 and 

H2O, and cell biomass, mineralization), the assessment of molecular 

weight variation is a fundamental task. Indeed, it is suggested that from a 

theoretical point of view, PE in force of its structure as a straight chain 

hydrocarbon, should be metabolized according to the biochemical 

pathway of linear alkanes. On the other hand, it has been established that 

there is a dimensional limit (i.e molecular weight) for the n-alkanes 

utilization as carbon source by microorganisms. In this connection, 

Haines and Alexander established that linear hydrocarbons with more 

than 44 (tetratetracontane) carbon atoms can not be metabolized by soil 

microorganisms [117]. More recently, in a study carried out with single 

bacterial strains, this dimensional limit has been moved up to 0.72 kDa 

corresponding to 60 carbon atoms chain length [118]. 

Other information about the relationship between the level of oxidation as 

reached during the abiotic stage of degradation of “degradable” 
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polyolefins, the molecular weight reduction as well as the potential to be 

ultimately biodegraded in the environment can be effectively achieved by 

fractionation of pre-aged specimens submitted to solvent extraction. This 

practice may also provide, especially if carried out by using solvents with 

different polarity, additional information on the relative amount of 

different classes (e.g. carboxylates, alkanes etc.) of degradation products 

deriving from peroxidation and cleavage of macromolecular chains 

characterized by a full carbon backbone. 

By taking into account these consideration, during the research activity 

carried out in the present PhD thesis, the oxidative behaviours of different 

synthetic polyolefin matrices (PE, PP, PS) containing pro-oxidant 

additives have been investigated under different test conditions as a 

meaningful task aimed at understanding the mechanism and extent of 

abiotic degradation. As a case study, also the preparation and degradation 

behaviour of LDPE matrix containing lignin have been undertaken. 

Finally, the ultimate environmental fate as mediated by complex 

microbial population or single microbial species of all the analyzed 

polymeric materials has been investigated in comparative biodegradation 

tests carried out by analyzing hydro-biodegradable polymers such as 

synthetic and semi-synthetic polyesters claimed as biodegradable [183]. 

 

4.1. Abiotic Degradation Tests & Characterization of Degraded 

Samples 

In a series of degradation tests, the effect of different abiotic factors such 

as heat, light irradiation and their combination, have been investigated in 

order to ascertain the propensity to environmental degradation of re-

engineered polyolefin plastic items. In these studies, also the structural 

parameters of the analyzed polymeric materials have been taken into 

consideration. In this connection different polymeric materials 
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represented by different PE grades (LDPE, HDPE, LLDPE), PP and PS 

have been utilized, by considering the different content and type of 

tertiary carbon atoms in the main chain. 

During the tests the progress of the degradation process taking place in 

the polymer matrix has been monitored by FT-IR spectroscopy (e.g. COi 

determination), thermal analysis by using differential scanning 

calorimetry (DSC) and thermal gravimetric analyses (TGA). The analysis 

were performed as aimed at evaluating the effect of the different abiotic 

test conditions to promote chain scission of the polyolefin matrix, as well 

as to analyze the structural characterization of the low molecular weight 

intermediates. 

 

4.1.1. Thermal degradation test in static oven at different 

temperatures of PE, PS and PP based film samples 

The oxidation propensity of polyolefin (PE, PP, PS) samples containing 

pro-oxidant additives, as induced by heat was assayed in static oven at 

different temperatures in the 28 – 65°C range. The indicated temperatures 

were selected with an intention of mimicking the thermophilic phase of a 

composting process and agriculture field conditions. 

The oxidation kinetics of the thermally aged polyolefin samples were 

recorded by means of COi evaluation by FT-IR spectroscopy. In this 

regard, the carbonyl index (COi) of PE and PP samples was calculated on 

the basis of the relative intensities of the carbonyl absorption band 

between 1650 and 1830 cm-1 to that of methylene scissoring bending at 

1465 cm-1. In the case of PS based samples, COi values were evaluated by 

the ratio of the optical density of the carbonyl region absorption band 

between 1690 and 1800 cm-1 and the overtone band at 1940 cm-1 of the 

aromatic ring. The COi determinations were therefore used to compare 
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the thermal oxidation propensity of different test samples under various 

temperature conditions. 

The characteristics of the samples analyzed in thermal degradation tests at 

different temperatures in static oven are reported in Table 4.1. 

 

Table 4.1. Test samples relevant to static oven experiment at different 
temperatures. 

Test Samples Code Description 

LLDPE LLDPE-TD1 LLDPE + TD1 pro-oxidant  
LLDPE-TD2 LLDPE + TD2 pro-oxidant  
LLDPE-TD0 LLDPE + no additivated (control) 

PP PP-TD1 PP + TDPA1 additive 
PP-TD2 PP + TDPA2 additive 

PS PS-TD1 PS + TDPA3 additive 
PS-TD2 PS+ TDPA4 additive 
PS-TD0 PS + no additivated (control) 

 

In the case of LLDPE, three different blown films represented by two 

samples additivated with pro-oxidant systems and one pro-oxidant free 

control were submitted to thermal aging in station oven at 45, 55 and 

65°C, thus recording the COi profiles sketched in Figures 4.1 and 4.2. 

LLDPE-TD1 sample was susceptible to undergo a significant oxidation 

under all the temperatures used in the thermal degradation test (Figure 

4.1). In particular, the polymer matrix oxidation was shown to start after 

18 days at 65°C, 40 days at 55°C and 80 days at 45°C, respectively. As 

expected, longer induction times were recorded at lower temperatures 

(Figure 4.1). In any case a fairly high oxidation was achieved in relatively 

short times. The film sample started also to fragment when COi 

approached 0.30 value. It is however worth noting that the level of 
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oxidation after 170 days of thermal aging was lower at 45°C with respect 

to the values recorded at 55 and 65°C (Figure 4.1). 

 
Figure 4.1. COi profiles of LLDPE-TD1 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

In particular, a maximum level of oxidation corresponding to 

approximately 3.2 COi value was approached at 55 and 65° C with only 

minor increase recordable even after very long treatment period (up to 

300 days), whereas the highest COi leveled off at 2.7 in the LLDPE-TD1 

film specimen treated at 45°C for 180 days, thus approaching fairly 

higher values only at the end of test (Figure 4.1). 

In the case of LLDPE-TD2 film sample, containing a different type of 

pro-oxidant additive, the oxygen uptake started after 53 days at 65°C, 

after 87 days at 55°C and after 160 days at 45°C (Figure 4.2). Also in this 

case the highest levels of oxidation were recorded at 55 and 65°C. 

Furthermore, a marked lower formation of carbonyl groups was observed 

at 45°C. In fact at this temperature the COi profile started to increase 
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appreciably only after 160 days thermal degradation, thus approaching 

however 1.7 COi value after 300 days of thermal treatment (Figure 4.2). 

 
Figure 4.2. COi profiles of LLDPE-TD2 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

In any case, however, the lower propensity to oxidation under thermal 

treatment of LLDPE-TD2 sample, with respect to LLDPE-TD1 film, has 

been observed in the same time frame and degradation temperatures. 

LLDPE-TD0 pro-oxidant-free sample, incubated at the same temperatures 

and for the same aging time did not show any significant formation of 

carbonyl groups (data not shown). 

By using the recorded COi data of LLDPE samples, the estimation of the 

time required to reach a definite level of oxidation, as expectable in the 

correspondence of theoretical COi values attainable at 35°C, was 

calculated out by means of the Arrhenius plot [184] (Figures 4.3 a) and 

b), Table 4.2). 
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Figure 4.3. Arrhenius plot of LLDPE-TD1 (a) and LLDPE-TD2 (b) 

samples drawn according to the time required to reach 1.0 
COi value at 45, 55 and 65°C. 

 

Table 4.2. Time (days) required for reaching different level of 
oxidation at 35°C as determined by the Arrhenius plot. 

 
Sample Carbonyl index 

time 0.5 1.0 1.5 2.5 
LLDPE-TD1 (days) 300 375 400 500 
LLDPE-TD2 (days) 400 600 800 1050 

 

In particular, it has been recorded that the time required for reaching an 

appreciable level of thermal oxidation (1.0-1.5 COi values) is 

significantly higher in the case of LLDPE-TD2 sample (approximately 

600-800 days), whereas the LLDPE-TD1 can reach the same oxidation 

extent theoretically after 12-13 months exposure at 35°C under static 

conditions. 

An analogous test set up was utilized to analyze the oxidative thermal 

behaviour of two PP samples containing different pro-oxidant additives. 

The COi profiles recorded at different temperatures are reported in 

Figures 4.4 and 4.5. 

As expected even in the case of PP samples, the rate of the oxidation 

process was noticeably influenced by the temperature, thus proceeding 

much faster at 65°C. Nevertheless, even though after very prolonged 

a b 
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aging time (6 months) appreciable oxidation was observed also in the film 

sample specimens thermally treated at 45°C. 

A different oxidative behaviour, depending upon the TDPA additive used 

in the PP formulation was also recorded during this test. In particular, 

under static condition the PP-TD2 additive appeared to be more effective 

in inducing the oxidative degradation of the PP matrix as revealed by the 

shorter induction times observed under different applied temperatures. 

 
Figure 4.4. COi profiles of PP-TD1 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

It is also worth noting that the recorded COi values in the case of PP 

samples can not be considered to be fully representative of the overall 

extent of oxidation due to the complexity of the FT-IR spectra in the 

methylene vibrations region (1400 – 1500 cm-1), once the samples 

approached a fairly high fragmentation which hindered a reliable COi 

calculation. 
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Figure 4.5. COi profiles of PP-TD2 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

Finally, two PS based samples, PS-TD1 and PS-TD2 sheet specimens of 

approximately 100 m thickness, were submitted to thermal degradation 

at 45, 55, and 65°C in static oven in air atmosphere. During the aging 

time, the oxidation of the PS matrices were monitored by measuring the 

relative increase of the carbonyl absorption band by FT-IR spectroscopy. 

In particular the oxidation index (Carbonyl index – COi) was calculated 

by the ratio between the optical density of the band of the carbonyl group 

between 1690 and 1780 cm-1 and the overtone band at 1940 cm-1 of the 

aromatic ring. In addition, the overall increase of the carbonyl absorption 

band was in any case markedly lower with respect to the absorbance 

recorded in thermally oxidized LLDPE and PP systems. In accordance, 

the COi profiles reported in Figures 4.6 and 4.7 can not be compared with 

those recorded for LLDPE and PP samples at the same temperatures. In 

any case, an appreciable oxidation of both PS-based samples was 

recorded after a few days of thermal treatment. Nevertheless, the rate and 
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extent of the oxidation of PS matrix resulted less influenced by the 

adopted incubation temperature, and the overall extent of oxidation was 

shown to approach a plateau phase, at fairly limited level of carbonyl 

content and after a few days (15) of thermal aging at 65°C  (Figure 4.8). 

 

 
Figure 4.6. COi profiles of PS-TD1 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

The results collected during thermal aging tests in static oven in air 

atmosphere are therefore demonstrating that all the investigated 

polyolefin matrices can be effectively oxidized by using pro-oxidant 

additives based on transition metals. The rate and extent of the oxidation 

processes is depending upon the temperature at least in the case of 

LLDPE and PP polymeric materials, whereas a different behaviour was 

observed when PS based samples were tested. 
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Figure 4.7. COi profiles of PS-TD2 sample recorded at different 

temperatures in static oven in air atmosphere. 
 

 
Figure 4.8. Carbonyl region of FT-IR absorption spectra of PS-TD2 

sample thermally treated at 65°C in static oven in air 
atmosphere. 
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In the case of PS samples, the overall extent of polymer matrix oxidation 

was markedly lower despite the presence of easily oxidizable tertiary 

carbon atoms in 1-3 position in the main chain such as in the case of PP 

macromolecules. In addition, no significant variation of either molecular 

weight (Mw) or molecular weight distribution (ID) was recognized even 

after a prolonged (274 days) treatment was carried out under accelerated 

(forced air) condition at 65°C (Table 4.3). 

 
Table 4.3 Molecular weight analysis of original and thermally treated 

PS-TD1 and PS-TD2 samples. 
 
Test Sample Treatment Time Mw ID 
  (days) kDa  
PS-TD1 pristine 0 162.9 1.57 
PS-TD1 45°C static oven 28 162.2 1.58 
PS-TD1 55°C static oven 28 158.2 1.58 
PS-TD1 65°C static oven 28 162.1 1.57 
PS-TD1 65°C forced air oven 66 160.9 1.59 
PS-TD1 65°C forced air oven 274 161.2 2.57 
PS-TD2 pristine 0 162.9 1.57 
PS-TD2 45°C static oven 28 157.5 1.57 
PS-TD2 55°C static oven 28 159.1 1.58 
PS-TD2 65°C static oven 28 160.6 1.58 
PS-TD2 65°C forced air oven 66 162.1 1.58 
PS-TD2 65°C forced air oven 274 157.3 3.03 
 

The recorded data seem to suggest that the observed thermal oxidation of 

PS does not involve the random chain scission repeatedly established for 

LDPE and PP macromolecules [143-145], at least within the applied 

aging time. 

Finally, it has to be considered that in the case of LDPE and PP film 

samples, the recorded differences in both the rate and extent of carbonyl 

group formation could be attributed to the presence of primary anti-
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oxidant contained in the pro-oxidant master batch utilized for the film 

preparation. 

A preliminary investigation, has been also undertaken, under the adopted 

conditions, as aimed at evaluating the propensity to thermal oxidation of 

antioxidant-free low density poly(ethylene) LDPE based film samples 

containing a potential pro-oxidant systems represented by an oxo-

biodegradable natural polymers such as alkali lignin (AL) additivated or 

not with a proprietary pro-degradant master batch containing transition 

metals carboxylates. 

The effectiveness of the pro-oxidant systems represented by 1.0, 3.0 and 

5.0% by weight AL filler with and without EPI-TDPA pro-degradant (P), 

in promoting the oxidative degradation of the LDPE matrix was 

ascertained in thermal degradation tests carried out in static oven at 

different temperatures (28, 40, 50 and 60°) in the dark. Anti-oxidant free 

LDPE film was taken as a reference. 

The progress of oxidation at different temperatures (40, 50 and 60°C), as 

monitored by COi determinations, of the AL containing LDPE films are 

reported in Figures 4.9 - 4.11. 

LDPE/AL blends (AL 0-5% w/w) additivated with 3% by weight pro-

degradant master batch (P) showed a high propensity to thermal 

oxidation, whose rate and extent did not appeared to be much affected by 

the content of lignin within the investigated range of temperatures (40-

60°C). On the contrary, a marked influence on the extent of oxidation 

have been recorded as depending upon the applied temperature. It was 

evident that the highest extent of oxidation (3.5-4.1 as COi) was attained 

at 60°C (Figure 4.9), whereas at lower temperatures, the COi profiles 

approached lowest values of 2.7 and 1.4 at 50° and 40 °C, respectively, 

under the same aging time frame (Figures 4.10 and 4.11). 
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Figure 4.9. COi profiles of LDPE/AL blends containing 3% pro-

degradant and 0-5% w/w AL at 60°C in static oven in air 
atmosphere. 
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Figure 4.10. COi profiles of LDPE/AL blends containing 3% pro-

degradant and 0-5% w/w AL at 50°C in static oven in air 
atmosphere. 
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Figure 4.11. COi profiles of LDPE/AL blends containing 3% pro-

degradant and 0-5% w/w AL at 40°C in static oven in air 
atmosphere. 

 

However, the presence of lignin which is recognized to have antioxidant 

properties due to phenolic groups [185] did not appeared to affect the 

process of thermal oxidation. 

 

4.1.2. Thermal degradation test in air-ventilated oven at 65°C of PE, 
PS and PP based film samples.  

 

Thermal degradation tests under very stressing conditions were carried 

out in order to collect more information on the structural changes of the 

polymer matrices in relatively short times. In accordance, most of the 

structural investigations (e.g., weight variation, thermal analysis, isolation 

and characterization of degradation intermediates) currently used in the 

investigation of oxidative processes of polyolefins have been also 

performed. 
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The test materials analyzed under the adopted conditions were the same 

specimens previously submitted to thermal degradation at different 

temperatures in static oven (Table 4.1). 

In particular, approximately 1.5 g of each LLDPE-TD1, LLDPE-TD2 and 

LLDPE-TD0 (control) film samples were submitted to thermal 

degradation at 65°C in a oven under constant air flow (air-ventilated 

oven), thus recording the relevant COi profiles as averaged values over 5 

determinations each time (Figure 4.12). The higher propensity to thermal 

oxidation of LLDPE-TD1 sample, previously observed under thermal 

aging in oven under static conditions, was confirmed during this test. In 

particular LLDPE-TD1 film specimen was characterized by both a fairly 

short induction period, and by an higher level of oxidation corresponding 

to 5.1 COi after 150 days aging. Under the adopted test conditions a 3.5 

COi value was recorded in the case of LLDPE-TD2 film sample, even 

though after longer (4 months) incubation time (Figure 4.12). 

 
Figure 4.12. COi profiles of LLDPE film specimens at 65°C in air-

ventilated oven. 
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No significant formation of carbonyl group was observed in the control 

film sample (LLDPE-TD0). 

With respect to the test carried out at 65°C under static conditions, a 

higher level of oxidation in both LLDPE-TD1 and LLDPE-TD2 films 

was reached (Figure 4.12), thus indicating that the almost constant 

oxygen partial pressure at LLDPE sample-air interface (no oxygen 

diffusion control) is stimulating the overall oxidation process of the 

polymer matrix. 

It is worth noting that the adopted conditions in term of oxygen diffusion 

can be considered as much more comparable with the environmental 

conditions the samples are eventually experiencing with respect to the 

static oven conditions. Nevertheless, once the oxidation profiles 

approached the stationary phase no further increase was observed even 

after very long aging time (Figure 4.12). 

Indeed, the propensity of the different types of pro-oxidant contained in 

the two LLDPE based samples to induce different level of oxidation has 

to be mentioned. 

The formation within the time of different types of carbonyl groups as 

relevant to ketone, carboxyl and ester moieties was also clearly recorded 

in both the pro-oxidant containing LLDPE-TD1 and LLDPE-TD2 

samples (Figure 4.13). 

Similar results were obtained in the case of pro-oxidant additives 

containing PP samples. At 65°C in forced air oven the induction period 

for the PP matrix oxidation was shown to correspond to 25 days in the 

case of PP-TD1 and 30 days in the case of PP-TD2 film sample, 

respectively. Therefore, in contrast with the results recorded at the same 

temperature in static conditions, it seems that TD1 additive is more 

effective in promoting the thermal oxidation process under the adopted 

conditions. 
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a 

b 
Figure 4.13. Profile of FT-IR absorption band in carbonyl region of 

thermally oxidized LLDPE-TD1 (a) and LLDPE-TD2 (b) 
samples 

 

In any case fairly lower induction periods have been recorded under 

forced air condition rather than under static thermal treatment carried out 
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at the same temperature. In addition, also in the case of PP samples, 

higher levels of oxidation were reached in a fairly short time (35-48 days) 

(Figure 4.14). 

It is, however to be observed that the relevant amount of different 

carbonyl groups is significantly different in the two polyolefin matrices, 

being the corboxilyc acids strongly prevailing in the oxidized LLDPE, 

whereas an higher content of aldehyde and ester carbonyl groups were 

detected in oxidized PP matrix (Figure 4.15). 

 
Figure 4.14. FT-IR spectra of PP-TD1 specimen submitted to thermal 

degradation at 65°C in air-ventilated oven. 
 

PS based samples containing pro-oxidant systems submitted to thermal 

degradation under the same conditions showed after 5 months of thermal 

treatment only slight weight increases ranging between 0.9-1.2% and 0.7-

0.9% in PS-TD1 and PS-TD2 samples, respectively. These results were in 

accordance with the fairly limited increase of oxidation as revealed by the 
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FT-IR analysis of the same PS samples treated in static oven at the same 

temperature (65°C). 

 
Figure 4.15. Profile of FT-IR absorption band in carbonyl region of 

thermally oxidized PP-TD2 sample. 
 

At the end of the tests, the recovered test materials were submitted to 

fractionation by boiling solvent extraction in order to evaluate the 

propensity to the formation of lower molecular weight oxidized fractions, 

that were later submitted to a characterization by DSC and TGA analysis. 

In the case of PS based films, no significant amount of extractable 

fraction (e.g. low molecular weight fraction) were obtained from the 

specimens withdrawn after 135 days of thermal aging. In accordance, no 

significant variation of the molecular weight and molecular weight 

distribution as induced by the thermal degradation was recorded by SEC. 

PP-TD1 and PP-TD2 oxidized film specimens, characterized by COi 

values of 0.50 and 1.012, respectively, were submitted after 35 days aging 

time, both to solvent extraction using boiling acetone. 93.2 mg of acetone 
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extract corresponding to 29.5 % by weight of the original specimen was 

recovered from PP-TD2 oxidized film. A slight lower amount (63.6 mg 

corresponding to 19.9 % by weight) of extractable fraction was instead 

recovered from PP-TD1 oxidized film. These results seems to suggest a 

positive correlation between the amount of acetone extractable fractions 

and COi values. Similar results were obtained during the solvent 

extraction treatment of thermally aged LLDPE samples that was carried 

out by fractionating the oxidized samples with the following solvents: 

distilled water, acetone and dichloromethane (DCM), in that order. The 

results relevant to the thermally oxidized LLDPE film specimen 

fractionation are reported in Table 4.4, along with the COi values of each 

fraction as determined by FT-IR. It is worth noting that the amounts of 

the extracted fractions are depending upon the type of solvent used in the 

extraction procedure. 

Table 4.4. Solvent fractionation of thermally oxidized samples at 
65°C in air ventilated oven. 

 

Sample  aging Solvent  
 

Extractable 
fractiona)  

COi a) 

 (days) (type (%) Starting 
specimen 

Soluble 
fraction 

Residue to 
extraction 

LLDPE-TD1 118 Water 14.2 6.5 10.9 4.1 

SD b)   2.4 1.3 2.1 1.4 

LLDPE-TD1 118 Acetone 33.2 6.1 9.3 3.2 

SD b)   12.4 0.6 0.9 1.5 

LLDPE-TD1 118 DCM 32.3 5.4 9.3 3.5 
SD b)   5.3 2.2 2.2 1.9 
LLDPE-TD2 152 Water 4.5 4.2 5.7 2.3 
SD b)   1.1 0.6 1.9 0.2 
LLDPE-TD2 152 Acetone 22.9 3.4 9.0 3.0 
SD b)   6.2 0.3 1.0 0.9 
LLDPE-TD2 152 DCM 25.0 3.8 8.6 3.1 
SD b)   1.8 0.7 4.6 1.2 
a) Averaged over 5 replicates; b) Standard deviation 
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The COi of all the solvent extracted fractions and relevant residues to 

extraction have been calculated after FT-IR characterization, thus 

recording higher values with respect to the corresponding COi of film 

specimens in the case of the extractable fractions and lower values for the 

relevant residues to extraction (Table 4.4), thus demonstrating the 

formation of fairly high amount of heavily oxidized low molecular weight 

fractions. All the solvent fractions from PP and LLDPE samples were 

submitted to structural characterization with particular attention to 

molecular weight determination by GPC analysis. The recorded Mw and 

molecular weight distribution (ID) of the analyzed samples are reported in 

Tables 4.5 and 4.6. whereas the original GPC chromatograms relevant to 

LLDPE sample extracts are reported in Figures 4.16 and 4.17.  

 
Table 4.5. Molecular weight (Mw) and molecular weight distribution 

(ID) of solvent extracted fractions from oxidized PP based 
films. 

 
Sample Thermal aging Solvent Mw ID 
 (days) (type) kDa  
PP-TD1 35 Acetone 3.4 3.66 
PP-TD2 35 Acetone 1.1 2.82 
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Table 4.6. Molecular weight (Mw) and molecular weight distribution 
(ID) of solvent extracted fractions from oxidized LLDPE 
based films. 
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Figure 4.16. GPC chromatograms of solvent extracts  of thermally 

oxidized LLDPE-TD1 sample.  
 

Sample  Thermal aging Solvent  Mw ID 

 (days) (type (kD)  

LLDPE-TD1 118 Water 0.39 1.28 

118 Acetone 0.72 1.64 

118 DCM 0.74 1.58 

LLDPE-TD2 152 Water 0.40 1.39 

152 Acetone 0.87 2.11 

152 DCM 1.23 2.31 
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Figure 4.17. GPC chromatograms of solvent extracts  of thermally 

oxidized LLDPE-TD2 sample.  
 

The data recorded from GPC measurements performed on the solvent 

extracts from thermally aged LLDPE samples showed that all the types of 

extract were almost exclusively represented by low molecular weight 

fractions. It was also evident that the lowest molecular weight 

components are present in the water extracts of both samples, whereas 

fractions with similar molar mass dimensions were detected in the 

acetone and DCM extracts. Nevertheless, slight but significant differences 

were observed between the extracts obtained from the two LLDPE 

samples submitted to thermal oxidation. In particular it was evidenced 

that slight higher molecular weight fractions were extracted from LLDPE-

TD2 sample, especially in the case of DCM extracts (Table 4.6). 

FT-IR characterizations (Figure 4.18) provided some evidence of the 

higher level oxidation reached by the extractable fraction obtained from 

PP-TD1 sample, thus confirming the higher propensity of this sample to 

be oxidized under forced air conditions.  
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Figure 4.18. FT-IR spectra of PP-TD1 and PP-TD2 acetone extracts 

from film specimens submitted to thermal treatment in 
forced air oven at 65°C.  

 

The fractionation of thermally oxidized samples with boiling solvents 

confirms the fragmentation of the polymer chains, whose extent is 

correlated to the degree of oxidation as determined by the carbonyl index 

(COi). In addition, the GPC traces showed that the molecular weights of 

these fractions are fairly low (0.4-1.9kD) and compatible with their 

potential vulnerability by natural occurring microorganisms. 

All the solvent fractions from thermally aged LLDPE samples were also 

characterized by FT-IR spectroscopy. The recorded FT-IR spectra are 

reported in Figures 4.19-4.21. 

The FT-IR analysis showed that the solvent extract attainable from 

thermally aged LLDPE samples are characterized by the presence of 

oxidized carbon moieties, whose type and relevant amounts were 

depending upon the solvent used in the extraction procedure, and in a 

little extent, upon the kind of treated LLDPE sample. In particular, it was 

evident that both acetone and DCM extracts are characterized mostly by 

the presence of aliphatic ketones, (Figures 4.19, 4.20). The corresponding 

water extracts (Figure 4.21) being characterized by the presence of much 

more polar compounds, as evidenced by the appearance of strong 

absorption band in the hydroxyl regions (3300-3500 cm-1) that expands 

2500 cm-1 in agreement with the presence of carbonyl groups.. 
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Figure 4.19. FT-IR spectra of acetone extracts from thermally oxidized LLDPE-

TD1 and LLDPE-TD2 samples. 
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Figure 4.20. FT-IR spectra of dichloromethane (DCM) extracts from thermally 

oxidized LLDPE-TD1 and LLDPE-TD2 samples. 
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Figure 4.21. FT-IR spectra of distilled water extracts from thermally oxidized 

LLDPE-TD1 and LLDPE-TD2 samples. 
 

The thermally oxidized LLDPE samples were also characterized by TGA 

measurements. In both cases it was found a marked decrease of the 

thermal stability of the treated samples after 118 and 152 days of thermal 

aging, respectively (Figure 4.22). 
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Figure 4.22. TGA traces of pristine and thermally oxidized LLDPE-

TD1 and LLDPE-TD2 sample. 
 

The starting degradation temperatures (TON) of the treated samples 

resulted to be approximately 200 °C lower than that recorded for the 

relevant pristine samples. Nevertheless, the progress of thermal aging did 

not seem to induce any further appreciable decrease of the thermal 

stability of both LLDPE-TD1 and LLDPE-TD2 samples (Table 4.7). 

 

Table 4.7. Thermal properties of LLDPE-TD1 and LLDPE-TD2 
samples submitted to thermal aging at 65°C in air 
ventilated oven, as recorded by TGA analysis. 

 
Test Sample Aging time TON 

a) Residue b) COi 
 (days) (°C) (weight %)  
LLDPE-TD1 none 400.6 0.24 0.11 
 118 200.8 1.19 4.71 
 229 192.4 2.43 4.59 
LLDPE-TD2 none 422.9 1.03 0.04 
 152 206.0 3.12 3.52 
 229 218.9 2.72 3.41 
a) corresponding to 2% sample weight loss; b) recorded at 600°C 

 

From the recorded data it was clearly evident that the analyzed samples 

underwent an extensive degradation of the polymer chains with the 

formation of low molecular weight – oxidized fractions. This observation 

was confirmed by DSC analysis of the aged LLDPE samples (Figure 
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4.23, Table 4.8). In particular a marked decrease of the melting 

temperatures of the thermally oxidized specimens was observed with 

respect to the corresponding untreated (pristine) specimen. Moreover, the 

aged specimens of both LLDPE-TD1 and LLDPE-TD2 were 

characterized by a single melting peak, whereas the original samples were 

characterized by two easily distinguishable, 110 and 120°C, melting 

temperatures, as recordable during the second heating in the DSC traces 

(Figures 4.23). These observations are in contrast with previous findings 

that report in the presence of an evident shoulder in the melting peak of 

degraded PE submitted to thermal and photo-oxidation treatments [186-

190]. 

These results could be attributed to changes in crystallite sizes, molecular 

weight differences (due to chain breaking) and secondary re-

crystallization. In accordance, the crystallinity degree of the analyzed 

LLDPE samples were found to increase during the first heating of the 

DSC analysis, thus maintaining similar values to that recorded in the case 

of pristine sample during the second heating of the DSC analysis (Table 

4.8). These results, were therefore suggesting that the crystalline domains 

of the LDDPE samples were capable to reorganize as a consequence of 

the two heating steps carried out in the DSC measurements, thus 

evidencing a fairly low influence of the thermal aging on this behavior. 

It can be then suggested that the oxidation of LLDPE samples does occur 

preferably in the amorphous phase in the semicrystalline materials, thus 

leading to an enrichment of the more structural regular macromolecules 

that are prone to crystallize. 
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Figure 4.23. DSC traces (second heating) of pristine and thermally 

oxidized LLDPE-TD1 (a) and LLDPE-TD2 (b) samples. 
 

Table 4.8. DSC parameters of LLDPE-TD1 and LLDPE-TD2 
samples submitted to thermal aging at 65°C in air 
ventilated oven. 

Test sample  1st heating 2nd heating 

 Aging time Tm 
a) Crystallinity Tm 

a) Crystallinity 

 (days) (°C) (%) (°C) (%) 

LLDPE-TD1 0 115.0, 121.8 42.7 110.9, 122.3 44.7 

 118 117.4 59.1 116.8 47.4 

LLDPE-TD2 0 121.7 41.9 110.0, 121.5 44.2 

 152 118.0 51.2 115.0 47.5 

a) melting peak 

 

Thermally oxidized LLDPE-TD1 sample was also analyzed for the 

Oxidation Time Index (OIT) in a Mettler  DSC instrument in comparison 

with the pristine sample in order to establish the potential behavior to 

further oxidation after the thermal degradation. The OIT characterization 

was carried out in accordance with the ASTM D6186-06 standard 

procedure. The test sample was heated for 300 s at 200°C under nitrogen 

atmosphere, after that the test was continued in high purity oxygen 

atmosphere, thus recording the relevant heat flow (Wg-1) (Figure 4.24). 

The oxidation process started after 344 and 336 seconds in the case of 
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pristine and thermally oxidized LLDPE-TD1 sample, respectively. 

Different oxidation profiles were also observed, the thermally oxidized 

sample being oxidized at a lower rate (Figure 4.24). Nevertheless this 

analysis clearly showed that the thermally oxidized sample is susceptible 

to further oxidation, even though under very stressing condition (200°C 

temperature and pure oxygen atmosphere). 

 
Figure 4.24. OIT index profiles of pristine and thermally oxidized 

LLDPE-TD1 sample. 
 
Another important parameter to be check in order to establish the 

propensity to further oxidation and biodegradation of thermally aged 

polyolefins is the gel content. This structural feature is related to the 

degree of cross-linking as promoted by termination reaction in radical 

chain degradation mechanisms as recombination of two macroradicals. In 

accordance with Martins et al. [191] the crystallinity degree increase with 

increasing gel content. In these cases, the melting transition detected by 

DSC scan became broader proportionally to the PE cross-linking 
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increasing. It is well known that during processing and thermal aging, PE 

is subjected to different temperatures and shear stress allowing chemical 

reactions to occur. Degradation can be initiated by oxygen, shear, heat, 

catalyst, additives or any combination of these factors [192]. The gel 

content, or insoluble fraction, is produced in PE by recombination of 

macroradicals, thus leading to cross-linking. The thermal oxidation 

includes initiation, propagation, chain branching and termination steps  

[192, 193]. At the first degradation step, alkyl radicals are formed, but 

under oxygen deficient conditions not all alkyl radicals (R•) can be 

transformed into peroxide (ROO•) radicals. Depending on thermal 

conditions and the type of additive used, PE can undergo different radical 

reactions such as chain scission and chain branching, leading to cross-

linking as previously described and illustrated in the Scheme 4.1. Cross-

linking via an oxidation reaction is due to the recombination of alkyl 

radicals R• with each other, with RO• or ROO• radicals [192]. 

 

 
Scheme 4.1. General mechanism of PE cross-linking. 

 



Results & Discussion 

 148

Gel content determination was carried out in accordance with the ASTM 

D2765-01 standard procedure [194], by using o-xylene at boiling 

temperature as extracting solvent in a Kumagawa apparatus. The 

extraction procedure was carried out at reflux for 7 hours on both pristine 

and thermally degraded (229 days) LLDPE-TD1 sample, thus collecting 

2.19 % and 4.27% insoluble residue (gel), respectively. These results, 

showing only a minor increase of the gel content in the thermally 

oxidized LLDPE-TD1 sample seem to suggest that fairly low cross-

linking reactions are taking place during the thermal degradation process 

under the adopted test conditions, in keeping with the results collected by 

DSC analysis. 

 

A degradation test was carried out, as aimed at establishing if the 

oxidation process of the LLDPE matrix once initiated after heat exposure 

may proceed at lower temperature (e.g. room temperature). 

In accordance, LLDPE-TD1 and LLDPE-TD2 film specimens were 

previously maintained in static oven at 65°C and the COi oxidation levels 

determined by FT-IR spectroscopy. At time intervals, in the 

correspondence of different COi values, film specimens were withdrawn 

from the oven and kept at room temperature in the dark, while monitoring 

the progress of oxidation by FT-IR spectroscopy.  

In particular, LLDPE-TD1 specimens were withdrawn from the oven 

after 28, 38 and 53 days aging time at 65°C, thus having 0.12, 1.57 and 

2.74 COi values, respectively. LLDPE-TD2 film specimens were 

withdrawn after 49 and 57 days, thus recording for each specimen 1.18 

and 2.34 COi values, respectively (Table 4.9). 

The COi profiles recordable at room temperature of the test samples 

previously treated at 65°C in static oven for different times are reported in 

Figures 4.25 and 4.26. 



PhD Thesis – Muniyasamy Sudhakar 

 149

Table 4.9. Carbonyl index (COi) value of partially oxidized LLDPE 
film specimens before to be exposed at room temperature 
condition. 

 

Test Sample Starting oxidation level 
 Exposure time COi 
 (days)  
LLDPE-TD1 28 0.12 
 38 1.57 
 53 2.74 
LLDPE-TD2 49 1.18 
 57 2.34 

 

After a fairly long time at room temperature (120 days), the oxidation 

levels of the pre-aged films were not showing a notably increase with the 

sole exception of LLDPE-TD1 specimen having 2.74 COi at the 

beginning of the test (Table 4.9). In all the other cases only a very small 

increase (less than 0.1%) of the COi values could be detected after 

approximately 10 months maintenance in air at room temperature. 

 

 
Figure 4.25. COi profiles at room temperature of pre-oxidized at 

different level of oxidation LLDPE-TD1 test specimens. 
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Figure 4.26. COi profiles at room temperature of pre-oxidized at 

different level of oxidation LLDPE-TD2 test specimens. 
 

Within the limits of the time frame recorded in holding the pre-oxidized 

samples at room temperature, it has been observed that the oxidation 

process may proceed only when the thermal pre-oxidation level reached a 

fairly high degree of oxidation. On the contrary it seems that the oxidation 

behavior of the analyzed sample at room temperature may continue only 

at extremely low rate. 

 

4.1.3. Photodegradation tests. 

Polyolefins (PE, PP and PS) containing different pro-oxidant catalyst or 

polymeric additives (from synthetic or natural origin) and relevant not 

additivated control film samples were also submitted to outdoor exposure 

[177] with the aim to study their photo-oxidative degradation behavior 

and to compare the obtained data with those recorded during the thermal 

degradation tests. These investigations were carried out by taking into 

account that most of the analyzed samples could be utilized for 

agricultural application purposes and specifically as mulching films in the 
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case of LLDPE based samples. In addition, by considering the UV 

absorption properties of PS aromatic ring in the main chain, it was 

considered to be useful to compare the oxidative degradation propensity 

under different test conditions as represented by heat exposure in the dark 

and sun light irradiation. During the exposure time both maximum and 

average temperature were daily recorded (Figure 4.27). The progress of 

oxidation of the analyzed samples was firstly investigated by means of 

FT-IR spectroscopy and relevant calculation of Carbonyl index (COi). 

After that the characterization of the structural properties of the exposed 

samples was performed by thermal analysis (TGA and DSC), 

fractionation by solvent extraction and relevant spectroscopic and 

molecular weight analysis in accordance with the experimental protocol 

used for the characterization of thermally degraded samples. 

 
Figure 4.27. Maximum and average daily temperatures recorded during 

the outdoor exposure of the LLDPE samples. 
 

Different oxidation behaviors were detected between the two pro-oxidant 

additive loaded LLDPE film specimens. In the case of LLDPE-TD1 

sample, in fact, a plateau of the COi profile was approached after three 
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weeks of outdoor exposure, after that a new exponential step was 

observed, whereas the COi profile of LLDPE-TD2 film was maintaining a 

positive trend during the aging time, thus exhibiting an acceleration of the 

oxidation process during the last ten days of outdoor exposure (Figure 

4.28). A comparable level of oxidation was detected in the case of 

LLDPE-TD0 control film sample with respect to LLDPE-TD2 sample at 

least in the first 75 days aging. 

In any case, the levels of oxidation recorded after 93 days outdoor 

exposure of the pro-degradant loaded LLDPE film samples were fairly 

below those reached in the same time frame at 55 and 65°C even in oven 

under static conditions. It is also to be observed that comparable COi 

values (0.4) were reached by LLDPE-TD1 sample only after 90 days of 

thermal aging at 45°C, whereas under outdoor exposure it takes only 20 

days aging at significantly lower ambient temperature (Figure 4.28). 

These results were therefore suggesting that this LLDPE film does appear 

to be more susceptible to both photo- and thermal oxidation with respect 

to LLDPE-TD2 sample. 

 
(a)               (b) 

Figure 4.28. Outdoor exposed LLDPE film samples a) COi profile b) 
comparison spectra of carbonyl absorption regions after 
93days exposed.  
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A comparison of the carbonyl absorption region recorded in the FT-IR 

spectra of the analyzed samples after 93 days out door exposure is 

reported in Figure 4.28 b.  

After 93 days outdoor exposure, an appreciable formation of carbonyl 

absorption groups was observed in the test samples containing the pro-

oxidant additives, and the shape of the carbonyl band was almost identical 

(Figure 4.28b). A lower intensity of carbonyl absorption band was instead 

observed in the case of LLDPE-TD0 control film sample within the same 

aging time (Figure 4.28 b). 

4.1.3.1. Poly(styrene) samples 

The outdoor exposure test according to the ASTM D5272 Standard 

Practice has been also carried out to investigate the photo-oxidation 

behaviour of two series of PS-based cast films [PS-TD1 pro-degradant 

loaded, and PS-TD0 pro-degradant-free (control)]. During the test, both 

FT-IR spectroscopy and GPC analysis have been used in order to monitor 

the progress of the degradation behaviour of the tested samples. 

FT-IR characterization of the analysed samples revealed the formation of 

oxidized functional group (e.g. carbonyl groups at 1690-1800 cm-1 

spectral region) in the polymer chains only after 10 months exposure 

(Figure 4.29 – 4.30). 

 
Figure 4.29. FT-IR whole spectrum (a) and limited to carbonyl and 

aromatic ring spectral regions (b) of PS-TD1 sample at 
various time of outdoor exposure. 
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Figure 4.30. FT-IR whole spectrum (a) and limited to carbonyl and 

aromatic ring spectral regions (b) of PS-TD0 (control) 
sample at various time of outdoor exposure. 

 

At the end of the test (10 months outdoor exposure), the intensity of the 

absorption peaks in the carbonyl region was significantly high particularly 

in the case of PS-TD1 samples. A similar behaviour was also recorded in 

the case of PS-TD0 control sample. Moreover, in all cases a marked 

discoloration, accompanied by the fragmentation of the exposed films, 

was observed. 

It is also to worth to notice the broadening of the carbonyl absorption 

band, which might be attributed to presence of highly conjugated 

chromophores of both aliphatic and aromatic type. 

The analyzed PS-based samples were also characterized by GPC analysis 

carried out at time intervals of the outdoor exposure test. GPC 

chromatograms, as recorded both by UV (254 nm) and Refractive Index 

(RI) detectors are reported in Figures 4.31 and 4.32. 

GPC determinations, evidenced that the light irradiation seems to be 

much more efficient in initiating and stimulating the progress of the 

degradation of the PS matrix with respect to the thermal treatment, thus 

revealing a marked variation of the molecular weight and molecular 

weight distribution (Table 4.10) which was accompanied by the formation 

of significant amount of low molecular weight components in all the 

tested samples. In addition the recorded profiles of variation of molecular 
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weights in the analyzed samples does not seem to be in keeping with a 

degradation mechanism based on random chain scission of the polymer 

matrix. 

 

 
Figure 4.31. GPC chromatograms, UV detector (a), RI detector (b) of 

pristine and outdoor exposed PS-TD1 pro-degradant 
loaded sample. 

 

 
Figure 4.32. GPC chromatograms, UV detector (a), RI detector (b) of 

pristine and outdoor exposed PS-TD0 pro-degradant-free 
control sample. 

 

The results collected during the present test, even though requiring further 

confirmation, are suggesting that the two PS film samples are exhibiting 

different degradation behaviours depending upon the abiotic test 

conditions. In particular, it has been ascertained that PS cast films when 

exposed at the sun light radiation showed a marked decrease of the Mw 

with a significant production of low mass compounds. On the contrary, 

the Mw of PS blown films aged in oven under fairly stressing conditions 



Results & Discussion 

 156

(65°C) did not decrease significantly, even tough the partial oxidation of 

the polymer chains formation was suggested by the presence of carbonyl 

groups in the relevant FT-IR spectra. 

The results herewith collected are therefore suggesting that the abiotic 

degradation process of PS based samples is different to the random chain 

scission usually recorded in the case of oxo-biodegradable poly(ethylene) 

and poly(propylene) samples. 

It also worth nothing that in the GPC traces recorded on samples at the 

same concentration (0.3% w/v), one may observe a strong increase of the 

UV absorbance in the sample exposed outdoor with respect to the sample 

thermally aged in oven at 65°C (Table 4.10). 

This behaviour is indicative of the formation of conjugate structures in the 

case of the PS samples aged outdoor with exposition to sun light. 

 

Table 4.10. Molecular weight analysis (MW) of outdoor exposed PS 
samples. 

 

Test Sample Aging Time Mw ID 

 (months) kDa  
PS-TD1 0 228.1 1.85 
PS-TD1 5 151.2 2.55 
PS-TD1 10 119.6 3.64 
PS-TD1 Thermal aginga) 222.6 1.89 
PS-TD0 0 222.3 1.82 
PS-TD0 5 180.7 2.32 
PS-TD0 10 108.9 4.34 
PS-TD0 Thermal aging a) 214.4 1.90 

a) 6 months at 65°C in air ventilated oven. 
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4.1.3.2. Structural characterization of poly(ethylene) samples 

In order to evaluate the propensity of the LLDPE films, aged under 

different test conditions (outdoor exposure), to be fragmented into low 

molecular weight oxidized fractions, a solvent extraction procedure was 

carried out by using the following series of solvents: distilled water, 

acetone and dichloromethane (DCM), in that order.  

The results relevant to the thermally oxidized LLDPE film fractionations 

are reported in Table 4.11, along with the COi values of each fraction. It 

is worth noting that the amounts of the extracted fractions are depending 

upon the type of solvent used in the extraction procedure. 

 

Table 4.11. Solvent fractionation of LLDPE samples after 93 days 

outdoor exposure. 
 

Sample  Solvent Extractable 
fractiona)  

COi a) 

 (type) (%) Starting 
specimen 

Soluble 
fraction 

Residue to 
extraction 

LLDPE-TD1 Water 0.4 0.46 1.15 0.40 

LLDPE-TD1 Acetone 1.8 0.46 0.97 0.43 

LLDPE-TD1 DCM 6.9 0.46 0.73 0.41 
LLDPE-TD2 Water 0.2 0.37 0.89 0.30 
LLDPE-TD2 Acetone 0.4 0.37 1.27 0.30 
LLDPE-TD2 DCM 0.8 0.37 1.36 0.34 
a) Averaged over 5 replicates 
 

The COi of all the solvent extracted fractions and relevant residues to 

extraction have been calculated after FT-IR characterization, thus 

recording higher values with respect to the corresponding COi of film 

specimens in the case of the extractable fractions and lower values for the 

relevant residues to extraction (Table 4.11), thus demonstrating the 
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formation of fairly high amount of heavily oxidized low molecular weight 

fractions. 

All the solvent extracted fractions were submitted to structural 

characterization with particular attention to molecular weight 

determination by GPC analysis. The original GPC chromatograms are 

reported in Figure 4.33, whereas recorded Mw and molecular weight 

distribution (ID) of the analyzed samples are reported in Table 4.12. 

 

 
Figure 4.33. GPC chromatograms of solvent extracted fractions from 

outdoor exposed LLDPE-TD1 and LLDPE TD2 
specimens. 

 

The data recorded from GPC measurements performed on the solvent 

extracts from abiotically aged samples were showing that all the types of 

extract contained low molecular weight oxidized fractions. It was also 

evident that the lowest molecular weight compounds are present in the 

water extracts of both samples, whereas fractions with similar molar mass 

dimensions were detected in the acetone and DCM extracts. Nevertheless, 

slight but significant differences were observed between the extracts 

obtained form the two LLDPE samples submitted to both thermal 

oxidation and outdoor exposure. In particular it was evidenced that slight 

higher molecular weight fractions were extracted from LLDPE-TD2 

sample, especially when DCM was used as extracting solvent. 
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Table 4.12. Molecular weight (Mw) and molecular weight distribution 
(ID) of solvent extracted fractions from oxidized LLDPE 
films. 

 

Sample Outdoor 
exposure 

Solvent  Extractable 
fraction 

Mw ID 

 (days) (type) (%) (kD)  

LLDPE-TD1 93 Water 0.4 1.55 3.02 

LLDPE-TD1 93 Acetone 1.8 1.82 2.69 

LLDPE-TD1 93 DCM 6.9 1.39 2.47 

LLDPE-TD2 93 Water 0.2 0.90 2.27 

LLDPE-TD2 93 Acetone 0.4 1.18 2.14 

LLDPE-TD2 93 DCM 0.8 1.86 2.89 

 

All the solvent fractions were also characterized by FT-IR spectroscopy. 

The recorded FT-IR spectra are reported in Figures 4.34 – 4.36. 
 

  

Figure 4.34. FT-IR spectra of acetone extracts from outdoor exposed 
LLDPE-TD1 and LLDPE-TD2 samples. 
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Figure 4.35. FT-IR spectra of dichloromethane (DCM) extracts from 
outdoor exposed LLDPE-TD1 and LLDPE-TD2 samples. 

 

  

Figure 4.36. FT-IR spectra of distilled water extracts from outdoor 
exposed LLDPE-TD1 and LLDPE-TD2 samples. 

 

The FT-IR analysis showed that the solvent extracts attainable from 

abiotically aged LLDPE samples are characterized by the presence of 

oxidized carbon moieties, whose type and relevant amounts were 

depending upon the solvent used, and in a little extent, upon the kind of 

treated LLDPE sample. 

In the first case it was evident that both acetone and DCM extracts are 

characterized mostly by the presence of aliphatic ketones (Figures 4.34, 

4.35). The corresponding water extracts (Figure 4.36) being characterized 

by the presence of much more polar compounds, as evidenced by the 

appearance of strong absorption band in the hydroxyl regions (3300-3500 

cm-1). The relative intensity of OH stretching bands was also higher in the 

solvent extracts obtained from outdoor exposed samples, especially in the 

case of LLDPE-TD2 specimen, with respect to the fractions extracted 
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from heavily oxidized thermally aged specimens (see Figure 4.21 for 

comparison). It can be therefore suggested that slightly different 

mechanisms in the oxidation of the polymer chains is taking place as a 

consequence of the prevailing abiotic degradation factors (heat or light 

irradiation), as well by the kind of pro-oxidant added to the LLDPE 

matrix. 

At the end of the outdoor exposure test LLDPE-TD1 and LLDPE-TD2 

aged samples were characterized by both TGA and DSC analysis. The 

thermal stability (TGA in nitrogen atmosphere) of the analyzed samples 

was shown to be reduced as consequence of the outdoor exposure, thus 

recording in both cases a significant drop of the onset temperatures (TON) 

corresponding to 2 % weight loss in the TGA profiles, with respect to the 

corresponding temperature values observed in the case of pristine 

specimens (Figure 4.37; Table 4.13). On the other hand, only minor 

changes were recorded in the case of the melting temperature and 

crystallinity degree, as determined by DSC analysis in comparison with 

the pristine specimen (Figure 4.38; Table 4.14). 

 

 
Figure 4.37. TGA traces of pristine and outdoor exposed LLDPE-

TD1and LLDPE-TD2 specimens. 
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Table 4.13. Thermal properties of LLDPE-TD1 and LLDPE-TD2 
samples submitted to the outdoor exposure, as recorded by 
TGA analysis. 

 

Test Sample Aging time TON 
a) Residue b) COi 

 (days) (°C) (weight 
%) 

 

LLDPE-TD1 none 400.6 0.24 0.11 
 93 353.5 0.88 0.46 
LLDPE-TD2 none 422.9 1.03 0.04 
 93 304.2 1.97 0.29 
a) 2% weight loss; b) at 600°C 

 
Figure 4.38. DSC traces (second heating) of pristine and outdoor 

exposed (a) LLDPE-TD1 and (b) LLDPE-TD2. 
 

Table 4.14. DSC parameters of LLDPE-TD1 and LLDPE-TD2 
samples submitted to outdoor exposure. 

 
Test sample Aging 

time 
1st heating 2nd heating 

  Tm 
a) Cristallinity Tm 

a) Cristallinity 
 (days) (°C) (%) (°C) (%) 
LLDPE-TD1 0 115.0, 

121.8 
42.7 110.9, 

122.3 
44.7 

 93 116.0, 
121.8 

48.5 121.1 46.3 

LLDPE-TD2 0 121.7 41.9 110.0, 
121.5 

44.2 

 93 117.7, 
122.0 

52.4 121.5 47.5 

a) melting peak 
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The propensity to oxidation of the LLDPE samples containing the pro-

oxidant additives even under condition experiencing field scale situation 

was ascertained. 

The extent of oxidation reached after the outdoor exposure during the 

summer season was lower than that recorded in thermal degradation tests 

carried out in oven for the same LLDPE samples. This behavior can be 

attributed in a first instance to the ambient temperature monitored during 

the outdoor test, which were almost during the test period below 35°C. It 

can be therefore suggested that the combination of UV radiation and 

temperature was capable to promote the initiation of the oxidative 

degradation of the tested LLDPE samples containing the pro-oxidant 

additives. 

 

4.1.3.3. Thermal characterization of poly(styrene) samples 

PS samples outdoor exposed up to 10 months aging time were also 

characterized by thermal analysis (TGA and DSC) in comparison with the 

pristine samples. 

Analogously to the case of LLDPE samples the thermal stability of the 

outdoor exposed PS samples was reduced during the aging test. In this 

case however, a significant drop of the onset temperatures (TON) 

corresponding to 2 % weight loss in the TGA profiles was recorded under 

nitrogen atmosphere in both pro-degradant additivated PS-TD1 and PS-

TD0 control sample, with respect to the corresponding temperature values 

observed in the case of pristine specimens (Figure 4.39 Table 4.15). In 

any case, by considering the slope of the TGA curves a slight higher 

thermal instability, as attributable to the outdoor exposure can be 

envisaged for the pro-degradant additivated sample. By contrast, the DSC 

analysis did not revealed any substantial difference in the melting 

temperature between outdoor exposed and pristine samples, whereas a 
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slight decrease of the glass transition temperatures, during the second 

heating DSC traces was observed independent of the presence of the pro-

degradant additive (Table 4.15).  

 

 
Figure 4.39. TGA traces of PS-TD1 and PS-TD0 samples before and 

after 10 months outdoor exposure. 
 

Table 4.15. Thermal properties of PS-TD1 and PS-TD0 (control) 
samples submitted to 10 months outdoor exposure, as 
recorded by TGA analysis. 

 

Test Sample Aging time TON 
a) Residue b) Tg c) 

 (days) (°C) (weight 
%) 

(°C) 

PS-TD1 none 355.0 2.87 104.3 
 300 294.7 2.67 100.8 
PS-TD0 none 357.6 1.50 104.4 
 300 234.9 3.64 97.6 
a) 2% weight loss; b) at 600°C; c) Glass transition temperature. 

 

4.1.3.4. Thermal aging of outdoor exposed LLDPE samples 

In order to establish if the LLDPE samples once exposed to the direct sun 

light might be further oxidized by heat stress likewise what is thought to 

be occurring in real field conditions, LLDPE films with and without pro-

oxidant additives previously exposed for 93 days in sunlight were 

subjected to further thermal aging in oven at 45, 55 and 65°C for a period 
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of 200 days. The oxidation process was monitored by measuring the 

increase in the COi of the respective sample with time. 

A rapid increase was observed in the COi for both films (LLDPE-TD1 

and LLDPE-TD2) that were pre-exposed to sunlight irradiations for 93 

days and subsequently aged in oven at various temperatures (Figure 4.40). 

Interestingly, the increase in oxidation was immediate requiring little or 

no time for films to acclimatize. Also, the rates and extents of oxidation 

were proportional to the aging temperatures. A five to six-fold increase in 

oxidation was observed in films aged at 65oC within less than 20 days 

(Figure 4.40). Thereafter, a plateau was reached and the rate of oxidation 

did not change very much. Films aged at 45 and 55oC showed a similar 

trend, but the rates and extents of oxidation were considerably lower. An 

immediate and rapid increase in the COi observed in LLDPE films with 

pro-oxidant suggest that the sunlight-induced oxidation followed by a 

thermal aging at moderate temperatures had a positive synergistic effect 

on the overall oxidation of these films that contributed towards the 

deterioration of its carbon backbone. 

 

  
Figure 4.40. COi profiles of LLDPE-TD1 and LLDPE-TD2 film 

specimens submitted to thermal degradation after 93 days 
outdoor exposure. 

 

These results are in conformity with the work of other investigators. In 

this regard, it has been suggested that the overall “oxo-biodegradation 
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process” of full carbon backbone polymers is a two-stage process [11] 

that involves an abiotic oxidative degradation of polymer chains followed 

by the microbial assimilation of the oxidation products, where the 

oxidation step is a rate-determining step [57]. A previous study has also 

shown positive changes in the activation energy and susceptibility of 

LLDPE to biodegrade after photo-oxidation [195]. 

The results so far collected during the abiotic ageing of the analyzed PE, 

PP, and PS samples were suggesting the following remarks: 

1) The propensity to thermal oxidation is significantly different in the 

two types of tested LLDPE-TD samples. LLDPE-TD1 sample 

showed a faster thermal oxidation with respect to LLDPE-TD2, and 

reacheed higher oxidation levels at the end of the test within the 

range of the adopted degradation temperatures. The degradation 

products (e.g. ketone, carboxylic acids and esters) and their relevant 

amount in thermally oxidized samples seem to be affected by the test 

temperature, with a significant increase of the amount of carboxylic 

and ester groups at higher temperature with respect to ketone groups. 

2) The thermal oxidation profiles of LLDPE samples (COi profiles) 

recorded at different temperatures reached a stationary phase without 

showing considerable further increase even after very prolonged 

aging time (300 days). It does appears, therefore, that under the 

adopted conditions the level of oxidation of the analyzed samples 

cannot be improved by the exposure time at least within the extended 

time frame. 

3) The propensity to thermal oxidation of the analyzed PP samples 

showed, was depending upon the TDPA additives used in the PP 

formulations. In particular, TD2 additive appeared to be more 

effective in inducing oxidation in the PP matrix as revealed by the 

short induction times observed under different temperatures.  
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4) In the mean time, the fairly low propensity to thermal degradation of 

PS based film samples was established. The overall extent of PS 

polymer matrix oxidation was markedly lower despite the presence 

of easily oxidizable tertiary carbon atoms in 1-3 position in the main 

chain such as in the case of PP macromolecules. In addition, no 

significant variation either MW or ID even after prolonged thermal 

treatment (274 days) under forced at 65°C. The recorded data on 

thermal degradation of PS samples were suggesting that in this case 

the random chain scission is not involved.  

5) The thermal degradation test carried out on the LDPE/alkali 

lignin/pro-oxidant (LDPE/AL/P) showed high propensity to thermal 

oxidation, whose rate and extent did not appeared to be much 

affected by the content. Moreover, the presence of lignin which is 

recognised to have antioxidant properties due to phenolic groups did 

not appear to affect the thermal oxidation.  

6) The higher propensity to thermal oxidation of LLDPE-TD1 

previously observed in static oven condition has been confirmed also 

during degradation in air ventilated oven. 

7) The oxygen partial pressure is stimulating the oxidation processes of 

the analyzed samples, whose level of oxidation resulted significantly 

higher with respect to those reached for the same sample in the same 

aging time and temperature under static conditions. It is worth noting 

that the adopted conditions in term of oxygen diffusion can be 

considered as much more comparable with the environmental 

conditions the samples are eventually experiencing with respect to 

the static oven conditions. 

8) The determination of the gel content in the thermally oxidized 

sample seems to suggest that fairly low cross-linking reactions are 

tough to occur during the thermal degradation process. 
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9) The fractionation of thermally oxidized samples with boiling 

solvents confirms the fragmentation of the polymer chains, whose 

extent is correlated to the degree of oxidation as determined by 

carbonyl index (COi). In addition, the GPC determinations showed 

that the molecular weights of these fractions are fairly low (0.4-

1.9kD) and compatible with their potential vulnerability by natural 

occurring microorganisms. 

10) Within the limit of the exposure time adopted in the present thermal 

degradation test, it can be however suggested that in the case of PS 

based samples, the presence of pro-oxidant additives, at the adopted 

concentration, does not seems to promote a thermal oxidation 

process with rate and extent higher than those recorded in the case of 

a control sample without pro-oxidants. In addition, no significant 

amounts of extractable fraction (low molecular fraction) were 

obtained after thermal aging treatment.  

11) The extent of LLDPE oxidation reached after the outdoor exposure 

during the summer season was lower than that recorded in thermal 

degradation tests carried out in oven for the same LLDPE samples. 

This behaviour can be attributed in a first instance to the ambient 

temperatures monitored during the test, that were almost below 

35°C. It can be therefore suggested that the combination of UV 

radiation and temperature was capable to promote the initiation of 

the oxidative degradation of the tested LLDPE samples containing 

the pro-oxidant additives. 

12) The thermal oxidation behavior of test samples previously submitted 

to outdoor exposure appeared to be different from that exhibited by 

the pristine samples submitted only to thermal degradation. The 

absence of  induction phases in the oxidation processes of the 

analyzed samples was evident during this test. These observations 
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may suggest that the initiation of the oxidation process, as promoted 

by the light irradiation, positively affect the rate of oxidation when 

the samples are submitted to thermal degradation. 

13) The results obtained outdoor exposed PS based samples oxidation 

behaviour are therefore suggesting that the abiotic degradation 

process of PS based samples is different to the random chain scission 

usually recorded in the case of oxo-biodegradable poly(ethylene) and 

poly(propylene) samples. They showed a marked discoloration, 

accompanied by the films fragmentation. It has been also ascertained 

that PS based films when exposed at the sun light radiation showed a 

marked decrease of the Mw with a significant production of low 

mass compounds. It also worth nothing by the GPC analysis, when 

carried on samples at the same concentration (0,3% w/v), that a 

strong increase of the UV absorbance in the sample exposed outdoor 

with respect to the sample thermally aged in oven at 65°C does 

occur. This behaviour is indicative of the formation of conjugate 

structures in the case of the PS samples aged outdoor. 
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4.2. Biotic Degradation (Biodegradation) of Polyolefins (PE, PP 

and PS) Samples Recovered from Abiotic Degradation Tests. 

 

Further to the evaluation of the abiotic oxidation of “degradable” 

polyolefins, an other step to be investigated in order to envisage the 

ultimate environmental fate of these materials is the estimation of the 

extent of biodegradation under different conditions. The requirement of 

two steps, abiotic and biotic, in the degradation mechanism of  oxo-

biodegradable plastic materials has recently led to the preparation and 

approval of ASTM D6954-04 “Standard guide for exposing and testing 

plastics that degrade in the environment by a combination of oxidation 

and biodegradation” [181]. This standard provides a framework to assess 

and compare the degree of oxidation and degradation which can be 

obtained under controlled thermal and photo-oxidation tests as well as the 

degree of biodegradation and ecological impacts in defined environments 

after abiotic degradation. Evaluation scheme in ASTM D6954-04 are 

divided into three tiers relevant to: 

i) Accelerated aging in standard tests for both thermal- and photo-

oxidations and determination of the degree of abiotic degradation (Tier 1). 

ii) Measuring biodegradation (Tier 2). 

iii) Assessing the ecological impact after these processes (Tier 3). 

Test materials resulting from the abiotic oxidation attack are therefore 

exposed to appropriate disposal environments (soil, landfill, compost) in 

standard respirometric (biometric) tests in order to assess the rate and 

degree of biodegradation (Tier 2). Finally, any residues of the materials 

under test, deriving from both the abiotic oxidation stage and from the 

biodegradation tests must be submitted to ecotoxicity tests to demonstrate 

their ultimate environmental compatibility (Tier 3). In this connection, all 

the test materials previously submitted to controlled abiotic degradation 
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tests, and relevant low molecular weight fraction recovered by boiling 

solvent extraction were exposed to microbial populations pertaining 

different appropriate disposal or use environments (soil, water stream) 

under standard respirometric (biometric) test methods in order to assess 

the rate and degree of biodegradation . 

 

4.2.1. Biodegradation tests in aqueous medium. 

A preliminary investigation aimed at evaluating the biodegradation 

propensity of the analyzed LLDPE film samples LLDPE-TD1 and 

LLDPE-TD2 was carried out in a respirometric test in aqueous medium 

by using original, thermally oxidized and outdoor exposed samples as 

sole carbon source. 

The cumulative CO2 emissions profiles, expressed as average value of 

three replicates, recorded during 90 days of incubation of the pristine, 

thermally oxidized and outdoor exposed LLDPE-TD1 film specimens and 

blanks are reported in Figure 4.41. 

As expected, the higher CO2 emissions with respect to the blank were 

recorded in the culture flasks supplemented with thermally oxidized 

LLDPE-TD1 specimens having also the highest COi values. The 

biodegradation process of the thermally oxidized specimen was also 

found to start without an appreciable induction time. On the contrary no 

significant differences were recorded in the carbon dioxide production 

from original film, outdoor exposed specimens and blanks. These results 

are therefore suggesting that the level of oxidation achieved during the 

pre-aging steps is strongly influencing the biodegradation propensity of 

LLDPE samples containing prodegradant systems. 
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Figure 4.41. CO2 emissions profiles of pristine, thermally oxidized and 

outdoor exposed LLDPE-TD1 film specimens and blanks 
in aqueous medium respirometric test. 

 

 

Similar results were obtained in the case of LLDPE-TD2 film specimens 

(Figure 4.42). In this case, however, a slowest rate of CO2 cumulative 

emissions from the cultures supplemented with thermally oxidized 

LLDPE-TD2 specimens was observed. 

At the end of the test all the analysed materials were withdrawn from the 

aqueous cultures, carefully washed and characterized by gravimetric 

analysis (e.g. weight variation), FT-IR spectroscopy and thermal analysis. 
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Figure 4.42. CO2 emissions profiles of pristine, thermally oxidized and 

outdoor exposed LLDPE-TD2 film specimens and blanks 
in aqueous medium respirometric test. 

 

In the case of thermally oxidized samples, after biodegradation in aqueous 

cultures, a significant decrease of both specimen weight and relevant COi 

were recorded (Table 4.16), thus demonstrating that during the test the 

microbial population assimilated in a preferential way the oxidized 

fractions of the polyolefin samples. 

On the contrary, an increase of the COi values was detected in the case of 

outdoor exposed specimen submitted to biodegradation (Table 4.17). In 

this connection also an increase of the specimens weight was recorded 

that can be attributable either to the oxygen uptake and/or to the 

formation of microbial biofilms onto the specimens surface. 
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Table 4.16. Carbonyl index and weight assessment of thermally 
oxidized LLDPE samples submitted to biodegradation in 
aqueous medium respirometric test. 

 
Sample COi Starting 

weight 
Final weight Weight loss 

replicate Initial Final (mg) (mg) (%) 
LLDPE-TD1 4.70 3.09 113.1 86.3 11.2 
LLDPE-TD1 4.68 2.82 113.2 105.2 7.1 
LLDPE-TD1 4.71 3.46 109.3 96.1 12.1 
Average  4.69 3.15 118.9 95.9 10.1 
LLDPE-TD2 3.52 3.35 108.1 78.1 27.7 
LLDPE-TD2 3.52 2.61 117.7 78.0 33.7 
LLDPE-TD2 3.52 2.24 116.9 94.0 19.6 
Average 3.52 2.73 114.2 83.4 27.0 
 

Table 4.17. Carbonyl index and weight assessment of LLDPE outdoor 
exposed samples submitted to biodegradation in aqueous 
medium respirometric test. 

 
Sample COi Starting 

weight 
Final 

weight 
Weight loss 

replicate Initial Final (mg) (mg) (%) 
LLDPE-TD1 0.46 1.10 108.8 108.7 0.0 
LLDPE-TD1 0.46 1.05 102.2 107.4 -5.1 
LLDPE-TD1 0.46 0.69 103.8 109.8 -5.7 
Average 0.46 0.95 104.9 108.6 -3.6 
LLDPE-TD2 0.29 1.31 114.8 123.2 -7.3 
LLDPE-TD2 0.28 1.34 118.5 121.4 -2.4 
LLDPE-TD2 0.29 1.13 101.9 85.0 16.6 
Average 0.29 1.26 111.7 109.9 2.3 
 

Finally, a different behavior was observed in the case of pristine samples 

submitted to biodegradation (Table 4.18). In this latter case, no significant 

increase of the level of oxidation was detected, even though a marked 

weight increase did occur, that however could be attributed almost 

exclusively to biofilms formation onto the specimen surfaces. 
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Table 4.18. Carbonyl index and weight assessment of pristine LLDPE 
samples submitted to aqueous biodegradation test. 

 
Sample COi Starting 

weight 
Final 

weight 
Weight loss 

replicate Initial Final (mg) (mg) (%) 
LLDPE-TD1 0.11 0.01 115.2 117.5 -2.0 
LLDPE-TD1 0.11 0.01 113.1 123.9 -9.5 
LLDPE-TD1 0.11 0.01 111.9 126.2 -12.8 
Average 0.11 0.01 113.4 122.5 -8.0 
LLDPE-TD2 0.04 0.01 102.7 98.2 4.4 
LLDPE-TD2 0.04 0.01 103.1 110.5 -7.2 
LLDPE-TD2 0.04 0.01 122.3 135.5 -10.8 
Average 0.04 0.01 109.4 114.7 -4.8 
 

The recorded observations were confirmed by TGA analysis carried out 

on the test samples before and after the biodegradation process in the 

aqueous medium. In particular it was observed that the thermal stability 

of thermally oxidized LLDPE-TD1 and LLDPE-TD2 specimens 

increased after the incubation in the aqueous cultures. In accordance the 

temperatures corresponding to 2% weight loss (TON) of these two samples 

increased from 200.8 and 206.0 °C to 245.5 and 253.3 °C before and after 

biodegradation, respectively (Table 4.19, Figures 4.43, 4.44). 
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Table 4.19. Thermal properties of abiotically oxidized LLDPE-TD1 

and LLDPE-TD2 samples submitted to biodegradation in aqueous 

medium, as recorded by TGA analysis. 
 

Test Sample Abiotic 
degradation 

Biodegradation TON 
a) Residue b) COi 

   (°C) (weight %)  
LLDPE-TD1 none none 400.6 0.24 0.11 
 118 days at 65°C none 200.8 1.19 4.71 
 118 days at 65°C aqueous test 245.5 6.05 3.46 
 93 days outdoor none 353.5 0.88 0.46 
 93 days outdoor aqueous test 218.0 9.07 1.05 
 none aqueous test 403.8 2.47 0.01 
LLDPE-TD2 none none 422.9 1.03 0.04 
 152 days at 65°C none 206.0 3.12 3.52 
 152 days at 65°C aqueous test 253.3 3.82 2.61 
 93 days outdoor none 304.2 1.97 0.29 
 93 days outdoor aqueous test 226.0 2.71 1.34 
 none aqueous test 378.0 4.56 0.01 
a) 2% weight loss; b) at 600°C 

 

 
Figure 4.43. TGA traces in nitrogen atmosphere of thermally oxidized 

LLDPE-TD1 specimen before and after aqueous 
biodegradation. 
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Figure 4.44. TGA traces in nitrogen atmosphere of thermally oxidized 

LLDPE-TD2 specimen before and after aqueous 
biodegradation. 

 
On the contrary, the thermal stability of outdoor exposed samples was 

shown to decrease after the incubation in the aqueous microbial cultures. 

In accordance the TON temperatures of these samples decreased from 

353.5 and 304.2°C to 218.0 and 226.0 °C before and after biodegradation, 

respectively (Table 4.19, Figures 4.45 and 4.46). 
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Figure 4.45. TGA traces in nitrogen atmosphere of outdoor exposed 

LLDPE-TD1 specimen before and after aqueous 
biodegradation. 

 

 
Figure 4.46. TGA traces in nitrogen atmosphere of outdoor exposed 

LLDPE-TD2 specimen before and after aqueous 
biodegradation. 
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Different results were finally recorded in the case of pristine samples 

submitted to the aqueous biodegradation test. In this case, in fact, the 

thermal stability did not change significantly in the case of LLDPE-TD1 

specimens, whereas a decreased thermal stability was detected in the case 

of LLDPE-TD2 sample specimen (Table 4.19, Figures 4.47, 4.48). 

 

 

 
Figure 4.47. TGA traces in nitrogen atmosphere of original LLDPE-

TD1 sample specimen before and after aqueous 
biodegradation. 
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Figure 4.48. TGA traces in nitrogen atmosphere of original LLDPE-

TD2 sample specimen before and after aqueous 
biodegradation. 

 

All the samples submitted to the aqueous biodegradation tests were also 

analyzed by DSC, the data relevant to the melting temperatures and 

crystallinity are reported in Table 4.20. DSC traces, relevant to the second 

heating, reported in Figures 4.49-4.54 did not reveal, however, substantial 

variation in the thermal transitions before and after the incubation in 

aqueous microbial cultures. Nevertheless it was observed a slight 

decrease of the crystallinty of pristine samples submitted to the 

biodegradation test, whereas in the case of pre-oxidized sample 

specimens this parameter was found to slight increase after the incubation 

in the aqueous medium within the same incubation time (Table 4.20). 
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Table 4.20. DSC parameters of LLDPE-TD1 and LLDPE-TD2 sample 
specimens submitted to biodegradation in aqueous 
medium. 

 
Test sample Abiotic 

degradation 
Biodegradation 1st heating 2nd heating 

   Tm 
a) Crystallinity Tm 

a) Crystallinity 
   (°C) (%) (°C) (%) 
LLDPE-TD1 none none 115.0, 

121.8 
42.7 110.9, 

122.3 
44.7 

 none aqueous 114.1, 
121.1 

36.9 109.1, 
120.5 

39.5 

 118 days at 
65°C 

none 117.4 59.1 116.8 47.4 

 118 days at 
65°C 

aqueous 119.0 69.6 117.6 55.1 

 93 days 
outdoor 

none 116.0, 
121.8 

48.5 121.1 46.3 

 93 days 
outdoor 

aqueous 119.7 54.7 112.0 50.1 

LLDPE-TD2 none none 121.7 41.9 110.0, 
121.5 

44.2 

 none aqueous 120.7 39.7 120.7 39.6 
 152 days at 

65°C 
none 118.0 51.2 115.0 47.5 

 152 days at 
65°C 

aqueous 118.9 60.2 117.4 51.6 

 93 days 
outdoor 

none 117.7, 
122.0 

52.4 121.5 47.5 

 93 days 
outdoor 

aqueous 120.4 61.8 120.7, 
112 

53.7 

a) Melting peak 
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Figure 4.49. DSC traces in nitrogen atmosphere of original LLDPE-
TD1 sample before and after biodegradation respirometric 
test in aqueous medium. 

 

 
Figure 4.50. DSC traces in nitrogen atmosphere of sunlight exposed 

LLDPE-TD1 sample before and after biodegradation 
respirometric test in aqueous medium. 
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Figure 4.51. DSC traces in nitrogen atmosphere of thermally oxidised 

LLDPE-TD1 sample before and after biodegradation 
respirometric test in aqueous medium. 

 

 
Figure 4.52. DSC traces in nitrogen atmosphere of original LLDPE-

TD2 sample before and after biodegradation respirometric 
test in aqueous medium. 
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Figure 4.53. DSC traces in nitrogen atmosphere of sunlight exposed 

LLDPE-TD2 sample before and after biodegradation 
respirometric test in aqueous medium. 

 

 
Figure 4.54. DSC traces in nitrogen atmosphere of thermally oxidized 

LLDPE-TD2 sample before and after biodegradation 
respirometric test in aqueous medium. 
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During the test it was therefore observed that the mineralization of the 

pre-oxidized LLDPE samples, do experience a mineralization level 

depending upon the COi value, higher is the COi value higher is the 

mineralization extent. 

A second point to be remarked is that the LLDPE sample characterized by 

higher COi level is experiencing a drop of the oxidation level 

accompanied by an increase of thermal stability, whereas in the case of 

LLDPE samples characterized by an initial lower COi value, an increase 

of the oxygen content (COi) and a corresponding lower thermal stability 

were observed. These data, along with the slight differences recorded in 

the crystallinity degree of biodegraded samples in aqueous medium, are 

also suggesting that the microbial population present in the aqueous 

medium may stimulate directly a certain level of oxidation of the polymer 

matrix. 

In an other aqueous biodegradation test, carried out by using river water 

as microbial inoculum, the propensity to inherent biodegradability of the 

fractions extracted with boiling acetone from thermally oxidized in forced 

air convention oven at 65°C of LLDPE-TD1, PP-TD1 and PP-TD2 film 

specimens, having comparable molecular weight (1.2 kDa), was 

evaluated. 

As positive reference material Docosane, a linear aliphatic solid 

hydrocarbon with 22 carbon atoms (Mw 0.3 kDa), was used. The test was 

aimed at comparing the rate and extent of biodegradation of low 

molecular weight fractions deriving from oxidized PE and PP matrix, 

which are characterized by different molecular structures. Almost straight 

chains in the case of LLDPE and highly branched (methyl groups in 1-3 

position) in the case of PP extracts, respectively were compared. 

The mineralization profiles recorded within 73 days of incubation are 

reported in Figure 4.55. 
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A fairly high biodegradation extent approaching 50% biodegradation was 

recorded in the case of the acetone extract obtained from the thermally 

oxidized LLDPE-TD1 sample after 73 days incubation. In the same test 

period also Docosane undergoes an extensive biodegradation process, 

thus reaching approximately 40% mineralization with a positive slope in 

the biodegradation curve (Figure 4.55). 

It is worth noting that whereas the LLDPE samples not submitted to 

thermal aging, whatsoever the prior and post treatment (outdoor exposure, 

biotic degradation in aqueous medium), are characterized by a broad two 

peaks – DSC traces, whereas in the case of thermally aged either 

submitted to biodegradation test in aqueous medium, it was observed a 

single peak-DSC trace with an increase of crystallinity extent. This fact 

can be attributed to the annealing treatment undergoing in the case of 

thermal aging. 

 
Figure 4.55. Mineralization profiles of PP-TD1, PP-TD2, LLDPE-TD1 

acetone extracts and Docosane recorded in the river water 
biodegradation test. 
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On the contrary the acetone extracts obtained from the thermally oxidized 

PP-based samples were showing to approach a plateau phase after 35 days 

of incubation in the correspondence of fairly lower values of 

biodegradation. In particular the acetone extract of PP-TD2 sample 

exhibited a maximum level of biodegradation of 25%, whereas only 7% 

mineralization was recorded in the case of the acetone extract obtained 

from the thermally oxidized PP-TD1 film specimen (Figure 4.55). The 

recorded differences in the biodegradation extent of the two extracts of 

PP-based samples might be attributed to the different molecular weight as 

well as to the different degree of oxidation. In fact, lower (1.1 kDa) Mw 

and higher level of oxidation were ascertained in the case of PP-TD2 

acetone extract with respect to the same characteristic of the acetone 

extract obtained from the oxidized PP-TD1 sample. 

In any case, the lower propensity of PP acetone extracts with respect to 

the LLDPE-TD1 extract and Docosane to be assimilated by river water 

microorganisms can be attributed to the presence of low molecular 

fractions in PP sample having a fairly high branching degree that usually 

hinder the enzymatic attack of branched hydrocarbons [196]. 

 

4.2.2. Soil burial Biodegradation tests 

Soil environment can be considered as one of the most probable throwing 

away natural habitat where plastic materials, such as in the case of 

agricultural items, or indirectly after composting may ultimate their 

degradation and biodegradation processes. Consequently, soil 

biodegradation tests have been carried out as aimed at establishing the 

mineralization rate and extent of several polymeric materials, as well as to 

ascertain the progress of polymer oxidation and degradation with a 

particular attention for full carbon backbone polymeric materials. 
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In this connection, soil burial respirometric tests have been set up to 

assess the potential biodegradation of polyolefins  (LLDPE, PP and PS 

samples) previously exposed to abiotic degradation tests (thermal or 

outdoor). Moreover, the microbial assimilation (e.g. mineralization) of 

these materials was evaluated in comparison with oxo-biodegradable 

polymers from natural origin, as well as with and hydro-biodegradable 

materials of both synthetic or semi-synthetic origin. 

In a soil biodegradation test, the mineralization of the samples reported in 

Table 4.22, was evaluated. 

LLDPE samples utilized in this test were retrieved after 230 days thermal 

aging at 65°C, as well as after 3 months outdoor exposure, thus being 

characterized by different level of oxidation and polymer chain 

fragmentation (Table 4.21). The biodegradation behaviour of oxo-

biodegradable LLDPE film samples was evaluated in comparison with 

hydro-biodegradable commercial grade materials tepresented by Ecoflex 

(BASF), Mater Bi (Novamont) and poly(lactic acid) (PLA), by using 

filter paper as positive control. 
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Table 4.21. Organic carbon content and theoretical carbon dioxide 

(Th.CO2) of test film samples and reference materials analyzed in the soil 

burial respirometric test. 
 

Run Test sample Treatment Amount Organic C Th.CO2 
   (mg) (%) (mg) 

A1 LLDPE-TD1 TDa) 253.0 77.2 716.2 
A2 LLDPE-TD1 TDa) 248.3 77.2 702.9 
A3 LLDPE-TD1 TDa) 251.8 77.2 712.8 
B1 LLDPE-TD2 TDa) 251.8 n.d.c) n.d.c) 
B2 LLDPE-TD2 TDa) 254.3 n.d.c) n.d.c) 
B3 LLDPE-TD2 TDa) 254.3 n.d.c) n.d.c) 
C1 LLDPE-TD1 UV b) 258.5 n.d.c) n.d.c) 
C2 LLDPE-TD1 UV b) 255.1 n.d.c) n.d.c) 
C3 LLDPE-TD1 UV b) 260.8 n.d.c) n.d.c) 
D1 LLDPE-TD2 UV b) 250.7 n.d.c) n.d.c) 
D2 LLDPE-TD2 UV b) 249.6 n.d.c) n.d.c) 
D3 LLDPE-TD2 UV b) 247.2 n.d.c) n.d.c) 
E1 PLA none 251.5 49.7 458.3 
E2 PLA none 251.8 49.7 458.9 
E3 PLA none 249.0 49.7 453.8) 
F1 Mater Bi none 249.5 42.8 391.0 
F2 Mater Bi none 253.0 42.8 397.4 
F3 Mater Bi none 249.9 42.8 392.5 
G1 Filter paper none 251.5 43.2 398.4 
G2 Filter paper none 251.1 43.2 397.6 
G3 Filter paper none 250.5 43.2 396.8 
H1 Ecoflex none 252.0 54.7 505.4 
H2 Ecoflex none 252.4 54.7 506.2 
H3 Ecoflex none 251.9 54.7 505.2 

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure; 
c) not yet determined 
 

The average cumulative CO2 emissions detected from the test cultures 

and blanks during the incubation time are reported in Table 4.22. 
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Table 4.22. Average CO2 emissions (mg) from test materials and 
blanks recorded during the soil burial biodegradation test. 

 

Time LLDPE-
TD1 

LLDPE-
TD1 

LLDPE-
TD2 

LLDPE-
TD2 

PLA Mater 
Bi 

Ecoflex FP Blank 

days TDa) UVb) TD a) UV b)      
5 14.4 6.2 11.1 6.2 7.6 10.6 7.9 7.3 6.5 
12 41.9 28.2 34.0 28.2 29.0 34.3 30.5 33.4 27.3 
19 54.9 35.5 44.6 36.4 34.9 43.4 40.8 51.3 36.7 
26 64.2 40.8 53.1 41.9 41.4 50.5 48.7 64.8 41.9 
33 77.4 50.2 65.4 50.5 50.5 61.3 60.7 82.1 51.3 
40 90.3 59.0 78.3 59.5 59.5 75.7 72.7 100.6 61.3 
48 103.8 69.2 91.8 70.7 68.6 93.9 90.1 121.1 71.9 
56 114.1 77.7 101.2 78.3 75.4 108.5 107.1 137.6 79.5 
68 130.5 91.2 116.2 91.5 86.8 136.1 140.8 164.3 91.2 
75 143.4 102.7 128.2 104.1 97.1 159.6 168.1 185.4 103.3 
84 157.2 114.4 140.5 115.3 108.2 185.4 201.2 211.5 114.4 
93 168.1 125.0 151.1 125.8 117.3 204.7 227.3 233.2 125.3 
98 184.2 137.3 164.0 136.7 128.5 234.7 254.6 264.3 137.3 
106 195.9 148.7 177.2 147.5 138.7 266.9 296.0 305.4 147.3 
113 208.6 159.9 189.8 159.9 148.4 293.0 331.8 337.3 157.2 
126 229.0 179.1 205.8 178.7 166.4 331.0 387.0 388.1 175.2 
134 239.3 190.8 224.0 188.4 174.9 357.4 416.4 412.4 183.7 
147 251.9 204.3 242.5 200.1 185.8 389.0 454.8 441.7 196.1 
157 263.7 218.4 258.3 212.7 195.8 412.8 482.1 463.4 206.0 
168 282.7 238.9 279.5 232.1 212.5 441.0 514.1 490.4 225.1 
182 295.6 253.0 294.4 246.2 224.8 463.0 533.7 511.6 237.7 
219 320.3 275.6 319.9 269.0 243.0 494.4 570.1 542.7 255.3 
248 331.4 289.4 334.9 280.5 254.7 514.0 589.4 560.0 267.9 
276 340.8 298.8 348.1 289.6 263.8 532.2 603.2 573.2 277.0 
304 354.3 311.4 363.6 300.7 276.1 550.7 619.9 593.4 289.9 
346 368.4 326.1 378.0 313.6 288.5 571.2 639.0 612.2 303.1 
376 405.0 346.0 407.3 333.9 306.4 606.1 679.2 638.9 330.4 
406 433.2 366.9 430.2 356.7 319.9 626.4 698.0 653.8 350.6 
432 459.0 384.7 451.9 372.2 347.8 675.2 729.3 683.3 367.0 
467 490.2 411.1 473.0 390.8 373.8 705.6 767.6 710.6 392.3 
574 513.2 438.2 496.4 408.7 408.7 731.2 794.0 737.2 419.6 
634 527.3 450.5 508.7 418.9 414.5 744.8 808.1 750.4 432.2 
675 538.3 459.9 519.2 427.2 424.2 755.4 816.9 760.5 442.5 
795 560.7 481.9 540.7 446.6 444.4 784.4 838.9 785.6 466.5 

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 
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The mineralization profiles recorded within the incubation time in the 

case of the hydro-biodegradable materials, including the positive control 

(filter paper) are reported in Figure 4.56. The test conditions were 

validated by the mineralization profile observed in the case of Filter 

paper, whose biodegradation extent approached 80 % in 19 months of 

incubation, thus approaching the plateau level (Figure 4.56). Fairly high 

biodegradation extents were also recorded and reached 80% in the case of 

Mater Bi and Ecoflex samples, that were showing a typical sigmoidal 

shape of the mineralization curves strictly similar to that observed for the 

filter paper profile. On the contrary no significant  trace of mineralization 

by soil microorganisms was observed in the cultures fed with PLA 

specimens as carbon source (Figure 4.56). 

 
Figure 4.56. Mineralization profiles of hydro-biodegradable plastic 

materials and filter paper in respirometric soil burial tests. 
 

In the case of oxo-biodegradable LLDPE based LLDPE-TD1 and 

LLDPE-TD2 samples significantly higher CO2 emissions with respect to 
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the blank, as a clear indication of their utilization as carbon source by soil 

microorganisms, were recorded from the soil cultures supplemented with 

samples specimen heavily pre-oxidized by thermal treatment (Figures 

4.57 and 4.58). The net CO2 productions from thermally oxidized 

specimens were also found to further increase after 19 months of 

incubation. In accordance the approaching of a second exponential step in 

the biodegradation profile of LLDPE-TD1 sample was observed, thus 

approaching 14 % mineralization in 27 months incubation (Figure 4.59). 

The recorded behaviour of the mineralization process in soil, which is 

characterized by the presence of an exponential step since the beginning, 

followed by a prolonged dormant phase before a second exponential step 

took off, was repeatedly observed in soil burial tests carried out with 

thermally oxidized low density polyethylene (LDPE) samples [178]. 

On the contrary, the soil cultures supplemented with outdoor exposed 

specimen of both LLDPE samples, which were characterized by a fairly 

low initial level of oxidation, exhibited only minor differences in the CO2 

emissions with respect to the blanks (Figures 4.57 and 4.58), with 

corresponding very few, if any, mineralization of these samples by soil 

microorganism within the same time frame. 
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Figure 4.57. CO2 average cumulative emissions from soil cultures 

supplemented with themally oxidized and outdoor exposed 
LLDPE-TD1 specimens. 

 

 
Figure 4.58. CO2 average cumulative emissions from soil cultures 

supplemented with themally oxidized and outdoor exposed 
LLDPE-TD2 specimens. 
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Figure 4.59. Mineralization profiles of thermally oxidized LLDPE-TD1 

specimen in soil burial test. 
 
In spite of the fairly low net CO2 emissions, it is interesting to note that 

the oxidation degree, as determined by COi, of both LLDPE-TD1 and 

LLDPE-TD2 outdoor exposed specimen, increased as a consequence of 

the incubation in soil cultures (Figures 4.60 and 4.61). This trend was 

confirmed after 12 months of incubation in soil, after a dormant period 

occurred between the 3rd and 6th months (Table 4.23). These findings 

were therefore suggesting that the oxidative degradation of these 

materials once started by relatively mild abiotic treatment, such as 3 

months outdoor exposure, still proceed once they are confined in 

active microbiological environment, even at room temperature and in 

the absence of light irradiation. 
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a

b 

Figure 4.60. FT-IR spectra of outdoor exposed LLDPE-TD1 specimen 
before and after 3 (a) and 12 (b) months soil burial. 
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a

b 

Figure 4.61. FT-IR spectra of outdoor exposed LLDPE-TD2 specimen 
before and after 3 (a) and 12 (b) months soil burial. 

 

In accordance with these data, also the thermal stability, as determined by 

TGA, of the LLDPE-TD1 and LLDPE-TD2 outdoor exposed specimen, 
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withdrawn from the soil cultures after 3 months incubation, was 

significantly lower with respect to the corresponding values recorded 

before the biodegradation test (Figure 4.62; Table 4.24). Nevertheless, at 

longer incubation times (6 and 12 months) the onset temperatures (TON) 

corresponding to the beginning of thermal degradation were found to 

further increase, most likely because the assimilation of degraded LLDPE 

fractions by soil microorganisms. 

  
Figure 4.62. TGA traces of outdoor exposed LLDPE-TD1 and LLDPE-

TD2 samples submitted to biodegradation in soil.  
 

An opposite behavior was instead observed for the thermally oxidized 

samples. In that case, in fact a decrease of the COi values was recorded 

after 3 and 6 months soil burial most likely attributable to the assimilation 

of oxidized fractions by soil microorganisms (Table 4.23). As a 

consequence, a corresponding increase in thermal stability was therefore 

observed in the thermally oxidized LLDPE specimen analyzed by TGA 

after 3 months of incubation in soil cultures (Figure 4.63; Table 4.24). 

Thermally oxidized specimen were not further characterized either by 

both FT-IR spectroscopy and thermal analysis after 6 months of 

incubation in soil cultures because in the correspondence of the 12th 

month of the biodegradation tests, no noticeable fragments of the tested 

samples were recognizable, even microscopically, in the soil matrix. 
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Table 4.23. Evaluation of Carbonyl index (COi) of thermally and 
outdoor exposed LLDPE samples under soil burial 
biodegradation test. 

 

Test 
sample 

Abiotic 
aging 

COi 

  Soil burial incubation (months) 
  0 Ave 3 Ave 6 Ave 12 Ave 27 Ave 

LLDPE-TD1 TDa) 4.43  3.45  1.64  n.d  n.d  
LLDPE-TD1 TDa) 4.65 4.59 3.47 3.42 1.65 1.65 n.d - n.d - 
LLDPE-TD1 TDa) 4.70  3.35  n.d  n.d  n.d  
LLDPE-TD2 TDa) 3.43  2.96  1.64  2.39 2.39 n.d  
LLDPE-TD2 TDa) 3.25 3.41 3.10 3.03 2.13 1.91 n.d.  n.d - 
LLDPE-TD2 TDa) 3.54  3.01  1.96  n.d.  n.d  
LLDPE-TD1 UV b) 0.41  0.75  0.55  0.83  1.47  
LLDPE-TD1 UV b) 0.43 0.43 0.69 0.70 0.71 0.63 0.76 0.84 1.28 1.53 
LLDPE-TD1 UV b) 0.45  0.66  0.62  0.94  1.85  
LLDPE-TD2 UV b) 0.35  0.87  0.89  0.83  1.35  
LLDPE-TD2 UV b) 0.34 0.36 0.75 0.75 0.71 0.78 0.91 1.05 1.58 1.47 
LLDPE-TD2 UV b) 0.39  0.63  0.74  1.40  -  

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure; 
n.d. not detectable 
 

 

  
Figure 4.63. TGA traces in nitrogen atmosphere of original LLDPE-

TD1 and LLDPE-TD2 samples specimen before and after 
3 months of soil burial biodegradation test. 
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Table 4.24. Thermal properties of abiotically oxidized LLDPE-TD1 
and LLDPE-TD2 samples submitted to biodegradation in 
soil, as recorded by TGA analysis. 

 

Test Sample Abiotic  
degradation 

Soil burial 
incubation 

TON  Residue COi 

  (months) (°C) (weight %)  
LLDPE-TD1 none 0 401 0.24 0.11 
LLDPE-TD1 TD a) 0 192 2.43 4.59 
LLDPE-TD1 TD a) 3 233 22.03 3.42 
LLDPE-TD1 UV b) 0 354 0.88 0.46 
LLDPE-TD1 UV b) 3 322 9.41 0.69 
LLDPE-TD1 UV b) 6 303 16.53 0.63 
LLDPE-TD1 UV b) 12 336 27.8 0.84 
LLDPE-TD1 UV b) 27 298 6.39 1.53 
LLDPE-TD2 none 0 423 1.03 0.04 
LLDPE-TD2 TD a) 0 219 2.72 3.41 
LLDPE-TD2 TD a) 3 243 11.36 3.03 
LLDPE-TD2 UV b) 0 304 1.97 0.29 
LLDPE-TD2 UV b) 3 278 3.48 0.75 
LLDPE-TD2 UV b) 6 276 12.84 0.78 
LLDPE-TD2 UV b) 12 314 33.07 1.05 
LLDPE-TD2 UV b) 27 336 6.45 1.47 
a) After 229 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 
 

 

 

LLDPE samples submitted to biodegradation in soil were also 

characterized by DSC analysis, thus evidencing in all the analyzed 

specimens the overall increase of the degree of crystallinity during the 

progress of soil incubation (Table 4.24). On the contrary, the melting 

temperature (Tm) was not significantly affected by the incubation in the 

soil medium (Table 4.25; Figure 4.64), with the sole exception of the 

melting peak shape of LLDPE-TD2 specimen recovered after 3 months 

soil incubation (Figure 4.65).  



Results & Discussion 

 200

 

Table 4.25. DSC parameters of LLDPE-TD1 and LLDPE-TD2 pre-
aged specimens submitted to soil burial biodegradation 
tests. 

 

Test sample Abiotic 

degradation 

Soil burial 

incubation 

1st Heating 2nd Heating 

   Tm c) Crystallinity Tm c) Crystallinity 

  (months) (°C) (%) (°C) (%) 

LLDPE-TD1 none 0 115, 122 42.7 111, 122 44.7 

LLDPE-TD1 TD a) 0 117 59.1 117 d) 47.4 

LLDPE-TD1 TD a) 3 n.d. n.d. n.d. n.d. 

LLDPE-TD1 UV b) 0 116, 122 48.5 121d) 46.3 

LLDPE-TD1 UV b) 3 116, 120 56.3 113, 121 50.2 

LLDPE-TD1 UV b) 6 116 51.6 113, 121 46.5 

LLDPE-TD1 UV b) 12 116 56.6 114, 121 51.9 

LLDPE-TD1 UV b) 27 115 62.8 112, 120 53.8 

LLDPE-TD2 none 0 122 41.9 110, 122 44.2 

LLDPE-TD2 TD a) 0 118 51.2 115d) 47.5 

LLDPE-TD2 TD a) 3 119 63.8 117d) 56.1 

LLDPE-TD2 UV b) 0 118, 122 52.4 122 d) 47.5 

LLDPE-TD2 UV b) 3 116 57.0 113, 121 51.3 

LLDPE-TD2 UV b) 6 118, 123 60.8 114, 123 54.2 

LLDPE-TD2 UV b) 12 115, 122 60.0 113, 121 53.6 

LLDPE-TD2 UV b) 27 116 54.7 113, 121 50.2 

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure; c) 
Melting peak; d) Broad Peak 
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Figure 4.64. DSC traces in nitrogen atmosphere of outdoor exposed 

LLDPE-TD1 and LLDPE-TD2 samples specimen before 
and after different months of soil burial biodegradation 
test. 
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Figure 4.65. DSC traces in nitrogen atmosphere of outdoor exposed 

LLDPE-TD2 sample before and after 3 month of soil 
burial biodegradation test. 

 

During an other soil burial respirometric test, the propensity to be 

assimilated by soil microorganisms of different polymeric materials was 

also ascertained. In particular, the biodegradation behaviours of LLDPE-

TD1 and LLDPE-TD2 samples corresponding to the original untreated 

(e.g. pristine) materials, residues after acetone extraction of thermally 

oxidized specimen and specimen retrieved after thermal degradation in 

contact with soil, were compared with the soil biodegradation rate and 

extent of natural oxo-biodegradable polymeric materials. These latter 

were represented by natural rubber (NR), lignin extracted from pine seed 

shells (PNSL) and wheat straw (WS), which were utilized as potential 

reference compounds to be used in standard biodegradation tests. Most of 

these tests are, in fact, based almost exclusively on the determination of 

net evolved carbon dioxide and normally utilize hydro-biodegradable 

polymers such as cellulose and starch, as reference materials. 

Nevertheless, it has been repeatedly ascertained that the rate of 
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conversion to CO2 of a carbon substrate is depending upon its chemical 

structure and formal level of oxidation. In the case of polysaccharide, for 

instance, the huge increase in the soil respiration rate has been evidenced, 

thus leading often to the overestimation of the biodegradation extent of 

glucosidic-like materials. This holds true by considering the relationship 

between the free-energy content of a carbon substrate (expressed as the 

standard free-energy of combustion) and its propensity to conversion to 

new microbial biomass rather than mineralization to CO2, such as in the 

case of hydrocarbon materials [197]. Taking into account these 

considerations, it can be therefore suggested that standard soil 

biodegradation tests should utilize different reference materials 

representative of the two principal classes, hydro- and oxo-biodegradable, 

of carbon substrates. For that reason, cellulose or starch can be considered 

as appropriate reference materials for many hydro-biodegradable 

polymers, whereas NR and lignin should be utilized once the materials to 

be analyzed are requiring a preliminary oxidation step before to be 

utilized as carbon sources by soil microorganisms, such in the case of 

oxo-biodegradable polyolefins. 

In the reported test, other than LLDPE, outdoor exposed PS-TD1 and 

thermally treated PP-TD1 samples were analyzed as representative of 

different oxidized full carbon backbone structures. In addition, hybrid 

materials constituted by LDPE/lignin blends (LDPE/L) and 

Ecoflex/PNSL blends were also investigated. 

The average cumulative emissions recorded within 185 days of incubation 

at 28°C, from soil cultures supplemented with the analyzed polymeric 

materials and blanks are reported in Tables 4.26. 
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Table 4.26. Cumulative CO2 emissions from soil cultures 
supplemented with LLDPE materials and blanks. 

 
 Aged in soil Pristine ACE residue Blank  
Day LLDPE-

TD2  
LLDPE-

TD1  
LLDPE-

TD2  
LLDPE-

TD1  
LLDPE-
TD2(a ) 

 

LLDPE-
TD1(a ) 

5 9.7 7.9 7.9 7.0 8.8 7.9 8.8 
10 15.0 14.1 14.1 13.2 15.0 14.1 12.3 
15 21.1 19.4 20.2 21.1 22.0 19.4 17.6 
21 31.7 29.9 31.7 32.6 33.4 29.9 29.0 
27 38.7 35.2 37.0 37.8 39.6 36.1 35.2 
35 45.8 41.4 42.2 43.1 44.9 41.4 41.4 
42 49.3 44.9 44.9 46.6 48.4 44.9 44.9 
50 60.7 54.6 55.4 55.4 57.2 52.8 53.7 
60 62.5 60.7 58.1 57.2 59.8 57.2 56.3 
69 68.6 68.6 62.5 62.5 66.0 63.4 61.6 
81 77.4 78.3 70.4 69.5 72.2 70.4 67.8 
95 88.9 88.0 79.2 77.4 80.1 79.2 77.4 
110 96.8 103.8 87.1 83.6 87.1 88.9 86.2 
125 107.4 121.4 97.7 95.9 101.2 98.6 101.2 
152 120.6 145.2 117.0 126.7 119.7 123.2 118.8 
185 133.8 165.4 132.9 142.2 136.4 135.2 135.5 

(a) – Acetone extracted residue of thermally oxidized LLDPE.   

 

From the data reported in Table 4.26 it was evident that thermally aged 

LLDPE-TD1 sample only experienced a significant conversion to CO2 by 

soil microorganisms, whereas the pristine materials and the residues to 

acetone extraction showed CO2 emissions  strictly comparable to the 

blanks. In this latter case it is to remark that the extraction procedure 

selectively removed the low molecular weight oxidized fraction from 

thermally aged materials, thus hindering the microbial attack of the 

LLDPE matrix residue to the extraction. 

The higher propensity to mineralization in soil of hydro-biodegradable 

materials was confirmed by the data reported in Table 4.27. In particular 

an high extent of mineralization was ascertained in the case of filter paper 
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in a relatively short tiem of incubation. High level of CO2 emission was 

also recorded in the case of the wheat straw sample which is containing 

fairly high amount of cellulose, as well as in the case of synthetic 

polyester Ecoflex. In this latter case, however is remarkable to note that 

the addition of PNSL lignin seems to induce acceleration in the 

mineralization rate most likely because the higher surface to volume ratio 

typically induced by the presence of fairly high amount of fillers in 

immiscible hybrid materials. Significantly high levels of conversion to 

CO2 by soil microorganisms were also recorded in the case of thermally 

oxidized PP-TD1 sample, whereas photodegraded PS-TD1 sample was  

recalcitrant to the microbial attack at least within the 185 days of 

incubation. 

Table 4.27. Cumulative CO2 emissions from soil cultures 
supplemented with different oxo-biodegradable materials, 
filter paper (FP) and blanks. 

 

 

Day Ecoflex Ecoflex/ 
PNSL 

LDPE/L PP-
TD1 

PS-
TD1 

PNSL NR WS FP Blank  

5 9.7 8.8 21.1 13.2 9.7 14.1 8.8 28.2 9.7 8.8 
10 17.6 16.7 32.6 22.9 17.6 22.9 17.6 59.8 22.9 12.3 
15 24.6 25.5 40.5 31.7 23.8 30.8 25.5 84.5 40.5 17.6 
21 37.0 39.6 53.7 47.5 33.4 44.0 37.8 111.8 59.0 29.0 
27 44.0 49.3 61.6 57.2 38.7 51.0 45.8 128.5 73.9 35.2 
35 51.0 60.7 72.2 66.9 44.0 58.1 57.2 147.8 95.9 41.4 
42 55.4 70.4 79.2 71.3 46.6 62.5 65.1 162.8 110.9 44.9 
50 66.0 86.2 92.4 84.5 55.4 72.2 80.1 186.6 130.2 53.7 
60 70.4 96.8 97.7 92.4 57.2 74.8 88.0 203.3 148.7 56.3 
69 77.4 110.9 106.5 100.3 63.4 81.8 98.6 217.4 168.1 61.6 
81 88.9 130.2 117.0 110.9 72.2 89.8 112.6 234.1 198.0 67.8 
95 102.1 151.4 128.5 122.3 81.8 102.1 128.5 270.2 233.2 77.4 
110 116.2 170.7 140.8 135.5 90.6 115.3 144.3 306.2 268.4 86.2 
125 133.8 191.8 154.9 149.6 106.5 130.2 166.3 344.1 301.0 101.2 

152 173.4 219.1 173.4 169.0 128.5 172.5 200.6 382.8 342.3 118.8 
185 202.4 244.6 191.0 187.4 151.4 207.7 237.6 426.8 381.0 135.5 
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Finally, it is interesting to note that the CO2 emission profiles of NR and 

PNSL natural oxo-biodegradable materials were similar to that recorded 

in the case of LLDPE and LDPE/L based materials (Figure 4.66), thus 

revealing overall slower rates of conversion to CO2. These evidences 

were therefore suggesting that oxidized polyolefins undergoes 

biodegradation processes in soil that are involving microbial populations 

and biochemical pathways similar to those that are responsible for lignin 

and natural rubber biodegradation, as previously suggested in the case of 

untreated LDPE [34]. 
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Figure 4.66. CO2 average cumulative emissions from soil cultures 

supplemented with oxo-biodegradable materials. 
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4.3. Studies on the Interaction of Microbes and Polymeric 

Materials 

 

The final part of the research activity within the doctorate course has been 

dedicated on the investigations of the role of microorganisms in the direct 

or synergistic degradation activity that can be exerted on the structural 

properties of full carbon backbone polymers. During the biodegradation 

tests carried out in soil, it was evidenced that the analyzed oxo-

biodegradable polyolefins, particularly LLDPE samples, underwent 

further oxidation other than microbial mineralization in the case of 

heavily oxidized specimens. In accordance, investigations were carried 

out by using single microbial (e.g. fungal species) previously isolated 

from soil cultures amended with thermally oxidized LDPE samples [198]. 

The isolated strains were therefore utilized in single cultures with the aim 

to assess their capability to directly attack the polyolefin matrix. 

4.3.1. Preliminary biodegradation tests with single fungal strain in 

agar plates 

In a preliminary investigation, LLDPE sample specimens collected from 

the outdoor exposure test were submitted to a screening test undertaken in 

order to asses the effect of the microbial activity on the LLDPE samples 

characterized by a moderate level of oxidation. The specimens were 

aseptically transferred onto the agar surface in Petri dishes, after that the 

plates were inoculated with four different fungal strains (F1, F2, F3, F4) 

previously isolated from oxo-degradable LDPE fragments withdrawn 

after two years of soil burial incubation. Each outdoor exposed specimen, 

as well as the unaged specimen (control specimens of both LLDPE-TD1 

and LLDPE-TD2 samples), were inoculated separately with a single 

fungal strain and incubated under the same conditions. 
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Different growing behaviors of the selected fungal strains were thus 

recorded, as ranging between the entirely colonization of LLDPE 

specimen surface, to the growth almost exclusively concentrated onto the 

agar surface free from the LLDPE specimens (Figure 4.67 a and b). 

 

   
Figure 4.67. F2 (left picture) and F3 (right picture) fungal growth on 

the LLDPE-TD1 films pre-exposed to sunlight. The 
incubation period comprised of 20 days. 

 

In order to verify if the different growing behaviors were related to 

different metabolic activity, after 20, 45 and 65 days of incubation, the 

film specimens were withdrawn from the agar plates and characterized by 

FT-IR spectroscopy and relevant determination of the level of oxidation 

by means of carbonyl index. The recorded data evidenced an appreciable 

decrease of the COi values, thus suggesting that some of the selected 

fungal strains, particularly F2 and F4 strains, were capable to growth and 

assimilate the oxidized fractions present in the outdoor treated LLDPE 

samples (Figure 4.68). Nevertheless, in some cases also a slight increase 

of the COi value was recorded within the incubation time, thus suggesting 

that the metabolic activity of the fungal strains under the adopted test 

conditions, may affect the structural properties of the LLDPE matrix. In 

particular, as reported in Figure 4.69, the fragmentation of the LLDPE 

A B 



PhD Thesis – Muniyasamy Sudhakar 

 209

matrix in the proximity of the F2 fungal mycelium growing onto the film 

specimen was observed. 
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Figure 4.68. COi profiles of outdoor exposed LLDPE-TD1 (a) and 

LLDPE-TD2 (b) films incubated with fungal F1, F2, F3 
and F4 in agar plates.  

 

   

 
Figure 4.69. SEM micrographs of the F2 (A) mycelium growing on the 

surface of outdoor exposed LLDPE-TD2 specimens. F3 
spore-forming fungus which preferred not to colonize the 
surface (B) but grew around the periphery of the film. The 
C is a higher magnification of A, showing fungal hyphae 
colonizing the film surface.  

 

These observations have been further substantiated by the FT-IR 

characterization, carried out after the careful cleaning of the treated 

samples. The presence of absorption bands attributable to the formation of 

double bonds ( C=C 1640-1580 cm-1)within the polymer chains was 

indeed appreciated as in the case of LLDPE-TD2 specimens incubated 

with the F2 and F4 fungal strains (Figure 4.70 and 4.71). In addition, new 

A B C 
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absorption bands most likely attributable to the presence of oxidized 

functional moieties, such as hydroxyl groups, were recorded in the FT-IR 

spectra of the specimen incubated with F2 and F4 fungal strains. In this 

latter case the overall oxidation of the specimen after 65 days of 

incubation was particularly evident, thus indicating a sharp oxidizing 

metabolic activity of F4 fungal strain toward the LLDPE matrix.  

 
Figure 4.70. FT-IR spectral region of carbonyl and vinylidene groups of 

LLDPE-TD2 sunlight exposed specimen incubated in the 
presence of F2 fungal strain. 
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Figure 4.71. FT-IR spectral region of carbonyl and vinylidene groups of 

LLDPE-TD2 sunlight exposed specimen incubated in the 
presence of F4 fungal strain. 

 

The whole FT-IR spectra of the tested samples in the presence of the 

selected fungal strains recorded at the beginning and after 65 days of 

incubation are reported in Figures 4.72-4.75. 
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Figure 4.72.  FT-IR spectra of LLDPE-TD2 specimen  incubated with 

F1 strain. 
 

 
Figure 4.73. FT-IR spectra of LLDPE-TD2 specimen incubated with F3 

strain. 
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Figure 4.74. FT-IR spectra of LLDPE-TD2 specimen  incubated with 

F2 strain. 
 

 
Figure 4.75.  FT-IR spectra of LLDPE-TD2 specimen incubated with F4 

strain. 
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The reported observation was confirmed in the case of LLDPE-TD1 

outdoor exposed specimen (Figure 4.76-4.79). It was indeed observed that 

only in the FT-IR spectra of the LLDPE-TD1 specimen incubated with F4 

strain an appreciable absorption in the OH region can be detected after 60 

days of incubation (Figure 4.79). These results evidenced that within the 

tested microorganisms, those capable to a plentiful colonization of the 

film surfaces were also capable to promote a further oxidation of the 

polymer chains. 

 

 
Figure 4.76. FT-IR spectra of LLDPE-TD1 specimen incubated with F1 

strain. 
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Figure 4.77. FT-IR spectra of LLDPE-TD1 specimen incubated with F3 

strain. 
 

 
Figure 4.78. FT-IR spectra of LLDPE-TD1 specimen incubated with F2 

strain. 
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Figure 4.79. FT-IR spectra of LLDPE-TD1 specimen incubated with F4 

strain. 
 

All the tested specimen submitted to the incubation on agar plates in the 

presence of the selected fungal strains and the corresponding un-

inoculated controls were also characterized by thermal gravimentric 

analysis (TGA) and DSC at the end of the test. 

 

TGA profiles of outdoor exposed LLDPE-TD2 specimens treated with 

different fungal strains are reported in Figures 4.80-4.87 along with the 

relevant un-inoculated control incubated up to 65 days under the same 

conditions. The thermal decomposition temperatures corresponding to 2 

% weight loss and the corresponding weight residues at 600°C, calculated 

from the TGA profiles are reported in Table 4.28. 

It was ascertained, in accordance with the FT-IR characterization, that the 

thermal stability of outdoor exposed LLDPE-TD2 sample specimen 

clearly decreased as a consequence of the degrading activity of the 

selected fungal strains with respect to the un-inoculated control. It was 
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also confirmed by the TGA analysis that F2 and F4 fungal strains resulted 

the most effective in promoting the ongoing biotic degradation of the 

analyzed specimens (Table 4.28, Figures 4.80-3.87). 

TGA characterization, also confirmed that outdoor exposed LLDPE-TD1 

specimens were less prone to the fungal metabolism under the adopted 

incubation conditions. In these latter case, the thermal degradation 

profiles of the specimen withdrawn after the incubation with the selected 

microbial strains were indeed much more comparable with the 

corresponding un-inoculated controls (Figures 4.85-4.87, Table 4.28). 

 

 
Figure 4.80. TGA traces of LLDPE-TD2 specimen incubated with F1 

strain. 
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Figure 4.81. TGA traces of LLDPE-TD2 specimen incubated with F3 

strain. 
 

 
Figure 4.82. TGA traces of LLDPE-TD2 specimen incubated with F2 

strain. 
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Figure 4.83. TGA traces of LLDPE-TD2 specimen incubated with F4 

strain. 
 

 
Figure 4.84. TGA traces of LLDPE-TD1 specimen incubated with F1 

strain. 
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Figure 4.85. TGA traces of LLDPE-TD1 specimen incubated with F3 

strain. 
 

 
Figure 4.86. TGA traces of LLDPE-TD1 specimen incubated with F2 

strain. 
 



PhD Thesis – Muniyasamy Sudhakar 

 221

 
Figure 4.87. TGA traces of LLDPE-TD1 specimen incubated with F4 

strain. 
 

Table 4.28. Thermal properties of outdoor exposed LLDPE-TD1 and 
LLDPE-TD2 samples submitted to biodegradation in 
agarized medium in the presence of selected fungal strains, 
as recorded by TGA analysis. 

 

specimen LLDPE-TD2 LLDPE-TD1 
 TON  Residue at 

600°C 
TON  Residue at 

600°C 
 (°C) (%) (°C) (%) 
pristine  422.9 1.0 400.6 0.2 
UVa) 304.1 1.9 353.5 0.8 
UVa)-Control 263.8 0.7 325.8 0.3 
UVa)-F1 245.7 5.6 335.9 0.8 
UVa)-F2 227.4 7.2 327.2 1.0 
UVa)-F3 233.6 12.5 378.7 1.1 
UVa)-F4 229.5 9.4 369.5 0.9 
a) After 93 days outdoor exposure 
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4.3.2. Biodegradation respirometric test in aqueous medium in the 
presence of pure culture of F2 fungal strain 

In order to confirm the evidences relevant to the microbial oxidative 

attack of LLDPE matrix exerted particularly by F2 fungal strain, 

biodegradation tests were carried out in aqueous cultures  of the chosen 

strain, in mineral salt medium, supplemented with thermally oxidized, 

sunlight exposed and pristine specimens of LLDPE-TD1 samples as sole 

carbon and energy sources.  

The microbial inoculum represented by F2 fungal strain was prepared by 

cultivating the microorganisms on Potato Dextrose Agar (PDA) plates. A 

0.5 cm diameter agar disk, taken from PDA plates, was used to inoculate 

each test flask. All the test materials were supplied to the microbial 

cultures as sole carbon sources at approximately 0.05 % by weight 

concentration.  

Test flasks were incubated at room temperature (25°C) in the dark on a 

rotatory shaker (120 rpm).  

The average cumulative CO2 emissions profiles recorded from test 

cultures and blanks are reported in Figure 4.88. 

The attained results confirmed the capability of F2 fungal strain to 

assimilate as sole carbon source the oxidized fraction of abiotically pre-

aged LLDPE-TD1 specimens in aqueous mineral salt medium, the highest 

CO2 emissions being recorded in the fungal cultures supplemented with 

thermally oxidized specimens, thus showing a positive slope in the 

relevant profile after 160 days of incubation (Figure 4.88). The propensity 

to be assimilated as carbon source of outdoor exposed LLDPE-TD1 

specimen with respect to the thermally aged specimens by the F2 fungal 

strain was also observed, even though in a lower extent, whereas no 

appreciable differences in the overall CO2 emissions from pristine and 

blanks samples were observed (Figure 4.88). 
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Figure 4.88. Average cumulative CO2 emission from F2 fungal strain 

aqueous cultures supplemented with pristine and 
abiotically pretreated LLDPE-TD1 specimens. 

 

With respect to other biodegradation tests carried out previously within 

the present research activity, where the assimilation of the oxidized 

fraction from abiotically aged samples was usually accompanied by a 

slight decrease of the starting COi values, in this test the overall level of 

oxidation does appear to increase as a consequence of the incubation in 

the presence of F2 strain. In particular an average increase of the COi 

from 4.92 at the beginning to 5.08 after 161 days of incubation was 

observed in the case of thermally oxidized specimen. This effect was 

much more evident in the case of outdoor exposed LLDPE-TD1 

specimens, thus recording an average increase of the relevant COi from 

0.40 to 1.03 as a consequence of the incubation in F2 strain aqueous 

cultures (Table 4.29). The results collected in Table 4.29 evidenced that 

the metabolic activity of the selected fungal strain was promoting 

significant differences in the thermal stability of thermally oxidized, 

outdoor exposed and pristine LLDPE-TD1 specimens. In particular, the 
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temperatures corresponding to 2% weight loss (TON) in the thermally 

oxidized specimens increased from 192.4 to 250.2°C before and after 

biodegradation, respectively (Table 4.29, Figures 4.89). On the contrary, 

the thermal stability of outdoor exposed samples was shown to decrease 

after the incubation in the aqueous culture of F2 fungal strain. In 

accordance the TON temperatures of sample decreased from 353.5 to 

344.2°C before and after biodegradation, respectively (Table 4.30, 

Figures 4.89). Finally, in the case of pristine samples submitted to the 

aqueous culture with single F2 fungal strain that thermal stability did not 

change significantly (Table 4.30, Figure 4.90). 

 

Table 4.29. Weight variation and carbonyl index data of pristine, 
thermally oxidized and outdoor aged LLDPE-TD1 
specimens exposed to F2 fungal strain in aqueous medium. 

 
Run Test sample Aqueous biodegradation test with F2 fungus 

Initial 
weight 

Final 
weight 

Weight 
loss 

COi 

(mg) (mg) (mg) Starting Final 
A1 LLDPE-TD1_TDa) 51.6 42.4 9.2 4.78 4.74 
A2 LLDPE-TD1_TD a) 53.7 34.0 19.7 5.1 4.92 
A3 LLDPE-TD1_TD a) 57.5 37.3 20.2 5.1 5.08 

 Average 54.3 37.9 16.4 4.92 4.91 
B1 LLDPE-TD1_UV b) 61.4 59.8 1.6 0.4 1.03 
B2 LLDPE-TD1_UV b) 54.8 54.0 0.8 0.44 0.63 
B3 LLDPE-TD1_UV b) 50.8 56.5 -5.7 0.66 0.48 

 Average 55.7 56.8 -1.1 0.5 0.7 
C1 LLDPE-TD1_pristine 56.2 56.8 -0.6 0.09 0.01 
C2 LLDPE-TD1_pristine 51.7 51.7 0.0 0.01 0.01 
C3 LLDPE-TD1_pristine 54.2 56.5 -2.3 0.02 0.01 

 Average 54.0 55.0 -1.0 0.0 0.0 
a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 
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Table 4.30. TGA results of pristine, thermally oxidized and outdoor aged 
LLDPE-TD1 specimens exposed to F2 fungal strain in 
aqueous medium. 

 
LLDPE-TD1 Incubation 

time 
TON Residue at 600°C COi 

specimen (days) (°C) (%)  
pristine  0 400.6 0.24 0.11 
pristine 160 416.0 1.23 0.01 
TDa) 0 192.4 2.43 5.00 
TDa) 160 250.2 5.64 4.90 
UV b) 0 353.5 0.88 0.50 
UV b) 160 344.2 4.58 0.70 
a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 

 

  
Figure 4.89. TGA traces of thermally oxidized (a) and outdoor exposed 

(b) LLDPE-TD1 specimens before and after incubation in 
aqueous medium with F2 fungal strain.  

 

In any case, the structural changes in the polymer matrix as a 

consequence of the incubation with fungal strain, suggested by TGA 

characterization, were also evidenced by DSC analysis carried out on the 

same specimens (Table 4.31).  

Noteworthy increase of the degree of crystallinity in the second heating 

was recorded in all the abiotically aged specimens exposed to F2 fungal 

strain metabolism, most likely because the preferential assimilation of 

low molecular weight compounds formed during thermal and outdoor 

exposure (Table 4.31, Figure 4.90). On the contrary, no significant 
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differences were recorded in the case of pristine specimens before and 

after the biodegradation test. 

 
Figure 4.90. TGA traces of pristine  LLDPE-TD1 specimens before and 

after incubation in aqueous medium with F2 fungal strain.  
 

Table 4.31. DSC results of pristine, thermally oxidized and sunlight 
treated samples exposed single F2 fungal strain in aqueous 
medium. 

 

LLDPE-TD1 Incubation 
time 

1st heating 2nd heating 

specimen (days) Tmc) Cristallinity Tm c) Cristallinity 
  (°C) (%) (°C) (%) 

pristine  0 115.0, 
121.8 

42.7 110.9, 
122.3 

44.7 

pristine 160 115.9; 
121.7 

42.9 111.2; 
122.9 

44.9 

TDa) 0 118.2 54.9 115.9 52.6 
TDa) 160 117.2 59.5 116.2 55.5 
UV b) 0 116.0, 

121.8 
48.5 121.1 46.3 

UV b) 160 115.3; 
121.1 

58.0 110.6; 
121.2 

57.7 

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure; 
c) Melting peak 
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It is worth noting that the thermally oxidized samples before and after 

incubation onto F2 culture showed a single peak of melting whereas in 

the pristine and outdoor exposed samples, two distinct peaks appeared. 

As formerly commented, the aging at 65°C of the LLDPE samples 

resulted in an annealing treatment leading to an increase in the 

crystallinity level. The increase of crystallinity of the outdoor exposed 

samples with respect to the pristine specimens is not easily 

understandable. However, by considering the exposure of the samples 

during the summer season, occurring peaks of temperature might be 

considered responsible of an annealing effect (Figure 4.91). 

 

  
Figure 4.91. DSC traces of thermally oxidized (a) and outdoor exposed 

(b) LLDPE-TD1 specimens before and after incubation in 
aqueous medium with F2 fungal strain.  

 

Finally, the progress in the polymer chain degradation of abiotically pre-

aged and pristine LLDPE-TD1 sample incubated with  F2 fungal strain in 

aqueous medium was also substantiated by FT-IR analysis. The presence 

of absorption bands as attributable to oxidized functional groups were 

therefore observed particularly in thermally oxidized, as well as in 

outdoor exposed specimens after the incubation with the fungal strain 

(Figure 4.92). 
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Figure 4.92. FT-IR spectra of thermally oxidized (a) and outdoor 

exposed (b) LLDPE-TD1 specimens before and after 
incubation in aqueous medium with F2 fungal strain.  

 

The collected results were therefore substantiating that soil-borne fungal 

F2 strain is capable to assimilate as sole carbon source, the oxidized 

fractions of abiotically aged LLDPE LLDPE-TD1 samples, thus 

approaching mineralization level as depending upon the starting COi 

value. At higher COi values, a corresponding higher mineralization level 

was recorded. Some suggestions on the ongoing oxidative degradation of 

LLDPE polymer matrix as induced by the action of the selected 

microorganism were also collected. 

 

4.3.3. Mineralization test onto solid media in the presence of axenic 
cultures of isolated microorganisms under co-metabolic 
conditions. 

It is well known that the degrading activity of several microorganisms 

toward hardly metabolizable organic compounds, such as lignin, can be 

improved by the presence of small amounts of easily assimilable carbon 

substrate (e.g. glucose) while limiting other nutrients such as nitrogen or 

phosphorous compounds [199]. In this connection a mineralization test 

aimed at evaluating the capability of a fungal strain to degrade and 

assimilate LLDPE samples under co-metabolic conditions was carried out 

by using the F2 fungal strain and thermally oxidized, outdoor exposed 
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and pristine LLDPE-TD1 specimens. The microbial strain was chosen by 

considering the results attained in previous biodegradation tests. 

During the test, the CO2 productions from the test cultures were 

monitored within the time (Figure 4.93) whereas at the end the test, 

samples were submitted to structural characterizations by means of FT-IR 

spectroscopy and thermal analysis. 

Considerable differences in the CO2 emission from agar cultures were 

recorded as depending upon the LLDPE-TD1 specimen (Figure 4.93). 

The higher respiration values were indeed observed in the F2 cultures 

supplemented with abiotically pre-treated (thermally oxidized and 

outdoor exposed) specimens, whereas strictly similar CO2 emission 

profiles were recorded in cultures containing pristine specimens and 

blanks (Figure 4.93). 

 

 
Figure 4.93. Average cumulative CO2 emission from F2 fungal strain 

agar cultures supplemented with pristine and abiotically 
pre-treated (thermally and outdoor exposed) LLDPE-TD1 
specimens under co-metabolic conditions. 
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The collected results were therefore once more demonstrating that 

abiotically pre-oxidized LLDPE-TD1 specimens can be utilized as carbon 

source by fungal species isolated from soil, even under co-metabolic 

conditions represented by the presence of an easily assimilable organic 

compound such as glucose. 

After 6 months of incubation with the F2 fungal strain, LLDPE-TD1 

specimens were carefully cleaned up and characterized by means of TGA 

and DSC thermal analysis. In Table 4.32 the thermal properties as 

recorded by TGA of the test specimens before and after the incubation 

with the fungal strain, are reported. 

 

Table 4.32. Thermal properties of pristine, thermally oxidized and 
outdoor exposed LLDPE-TD1 specimens submitted to 
biodegradation in agarized medium supplemented with 
glucose in the presence of F2 selected fungal strain, as 
recorded by TGA analysis. 

 

LLDPE-TD1 Incubation 
time 

TON  Residue 
at 600°C 

COi 

specimen (days) (°C) (%)  
pristine  0 400.6 0.24 0.11 
pristine 178 381.5 1.49 0.21 
TDa) 0 192.4 2.43 4.59 
TDa) 178 74.1 21.13 3.20 
UV b) 0 353.5 0.88 0.46 
UV b) 178 235.7 3.33 0.70 

a) After 229 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 

 

The results collected in Table 4.32 evidenced that the microbial activity 

of the selected fungal strain under co-metabolic conditions was promoting 

a marked decay in the thermal stability of thermally oxidized and outdoor 

exposed LLDPE-TD1 specimens. In accordance, strong decrease of onset 

temperatures corresponding to 2% sample weight loss were observed after 

incubation with the fungal strain in the abiotically pre-treated specimens. 
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This trend was dramatic in the case of thermally oxidized specimen 

(Table 4.32, Figure 4.94), even though the effect of sample contamination 

with agar residues can not be excluded at all. 

 

 
Figure 4.94. TGA traces of thermally oxidized LLDPE-TD1 specimen 

before and after incubation on agarized medium with F2 
fungal strain. 

 

In any case, the polymer chains degradation as a consequence of the 

incubation with the fungal strain under co-metabolic conditions, 

suggested by TGA characterization, was also evidenced by the DSC 

analysis carried out on the same sample specimens (Table 4.33).  

Noteworthy increase of the degree of cristallinity was indeed recorded 

during the first heating of DSC characterization, as attributable to the 

assimilation of low molecular weight-oxidized fractions by the fungal 

strain. Nevertheless, during the second heating in the DSC 

characterization, the degree of cristallinity of thermally oxidized 

specimen was found to drop down from 47.4 to 30.6 % after the 

incubation period. This observation seems therefore to suggest that the 
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microbial activity was promoting a further oxidation and degradation of 

the polymer chains capable to hinder the crystallization behaviour after 

the first heating of the sample (Table 4.33). 

 

Table 4.33. DSC parameters of pristine, thermally oxidized and 
outdoor exposed LLDPE-TD1 specimens submitted to 
biodegradation in agarized medium in the presence of F2 
selected fungal strain. 

 

LLDPE-TD1 Incubation 
time 

1st Heating 2nd Heating 

specimen (days) Tm Cristallinity Tm Cristallinity 
  (°C) (%) (°C) (%) 
pristine  0 115.0, 

121.8 
42.7 110.9, 

122.3 
44.7 

pristine 178 113.8, 
120.6 

42.1 111.2, 
122.6 

43.4 

TDa) 0 117.4 59.1 116.8 47.4 
TDa) 178 118.3 78.8 117.1 30.6 
UV b) 0 116.0, 

121.8 
48.5 121.1 46.3 

UV b) 178 117.5, 
121.4 

55.4 111.5, 
121.4 

51.2 

a) After 229 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 
 

Finally, the progress in the polymer chains degradation of abiotically pre-

aged LLDPE-TD1 sample specimen incubated under co-metabolic 

conditions with the selected F2 strain was also substantiated by FT-IR 

analysis. The presence of strong absorption bands as attributable to 

oxidized functional groups (e.g. hydroxyl and vinyl groups) were 

therefore observed in both thermally oxidized and outdoor exposed 

specimens after the incubation with the fungal strain (Figure 4.95). 

The biodegradation test carried out onto solid medium under co-metabolic 

conditions was confirming the ability of selected fungal strains to 

assimilate as carbon source the oxidized low molecular weight fractions 

as produced during the abiotic pretreatments of LLDPE-TD1 sample. 

Furthermore, the fungal metabolism was also inducing the progress of 
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oxidative degradation of thermally oxidized and outdoor exposed 

specimens, thus confirming the occurrence of synergistic effects, as 

mediated by both physical and biochemical factors in the environmental 

degradation process of oxo-degradable LLDPE samples once exposed to 

preliminary abiotic treatments. 

 

  
Figure 4.95. FT-IR spectra of outdoor exposed (a) and thermally 

oxidized (b) LLDPE-TD1 specimen before and after 
incubation on agarized medium with F2 fungal strain. 

 

4.3.4. Biodegradation of LLDPE films in agarized medium in the 
presence of Phanerocheate chrysosporium fungal strain. 

In order to confirm the ability of the soil-borne F2 fungal strain to 

promote the oxidation of LLDPE specimens, analogous tests were carried 

out by using the lignin-degrading fungi Phanerocheate chrysosporium. 

This strain has been utilized to study the degradation of a wide variety of 

recalcitrant organic pollutants because of the powerful oxidizing 

enzymatic tool associated to lignin-degrading or wood-rotting activities 

[199]. 

The biodegradation test was carried out onto solid media under co-

metabolic conditions (e.g. in the presence of an easily assimilable carbon 

source such as glucose) by using  LLDPE-TD1 and LLDPE TD2 

thermally oxidized, outdoor exposed and pristine samples specimens. 

After 6 months of incubation on solid cultures inoculated with P. 

chrysosporium, LLDPE-TD1 and LLDPE -TD2 test specimens were 
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carefully cleaned up and characterized by means of TGA, DSC thermal 

analysis and determination of COi by FT-IR spectroscopy (Tables 4.34 

and 4.35). 

 

Table 4.34. Thermal properties of pristine, thermally oxidized and 
outdoor exposed LLDPE-TD1 specimens submitted to 
biodegradation in agarized medium in the presence of P. 
chrysosporium fungal strain, as recorded by TGA analysis 

 
Test Sample Abiotic 

degradation 
Incubation 

time  
TON  Residue 

 at 600°C 
COi 

  (days) (°C) (weight %)  
LLDPE-TD1 none  0  400.6 0.24 0.11 
LLDPE-TD1 none  180 389.9 1.25 0.20 
LLDPE-TD1 TD a) 0  192.4 2.43 5.00 
LLDPE-TD1 TD a) 180 245.07 6.041 3.54 
LLDPE-TD1 UV b) 0  353.5 0.88 0.50 
LLDPE-TD1 UV b) 180 283.6 2.31 0.72 
LLDPE-TD2 none 0  422.9 1.03 0.04 
LLDPE-TD2 none 180 424.78 1.75 0.22 
LLDPE-TD2 TD a) 0 219 2.72 3.41 
LLDPE-TD2 TD a) 180 251.44 4.815 2.80 
LLDPE-TD2 UV b) 0 304 1.97 0.29 
LLDPE-TD2 UV b) 180 236.7 2.19 1.23 
a) After 229 days at 65°C in ventilated oven; b) After 93 days outdoor exposure 

 

The results so far collected once more demonstrated that fungal species 

are able to utilize as carbon source the low molecular weight fractions 

produced during the abiotic pre-treatment of LLDPE samples additivated 

with pro-oxidants. In addition, the progress of oxidation of the samples 

submitted to outdoor exposure, as a consequence of the metabolic activity 

of P. chrysosporium, was also ascertained, thus demonstrating that a 

moderate level of oxidation in the LLDPE matrix is sufficient to induce 

further microbial attack as previously recorded in the tests carried out in 

the presence of the selected F2 fungal strain. 
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Table 4.35. DSC parameters of pristine, thermally oxidized and 
outdoor exposed LLDPE-TD1 specimens submitted to 
biodegradation in agarized medium in the presence of P. 
chrysosporium fungal strain. 

 

Test sample 
Abiotic 

Test 

Incubation 

time 
1st Heating 2nd Heating 

  (days) Tm c) Cristallinity Tm c) Cristallinity 

   (°C) (%) (°C) (%) 

LLDPE-TD1 none  0  115, 122 42.7 111, 122 44.7 

LLDPE-TD1 none  180 114, 121 42.2 111, 123 43.4 

LLDPE-TD1 TD a) 0  117 59.1 117 d) 47.4 

LLDPE-TD1 TD a) 180 116 50.1 116 50.1 

LLDPE-TD1 UV b) 0  116, 122 48.5 121d) 46.3 

LLDPE-TD1 UV b) 180 113, 125 50.2 122 49.2 

LLDPE-TD2 none 0  122 41.9 110, 122 44.2 

LLDPE-TD2 none 180 115, 118 44.1 111, 121 46.4 

LLDPE-TD2 TD a) 0 118 51.2 115d) 47.5 

LLDPE-TD2 TD a) 180 119 59.0 116 51.6 

LLDPE-TD2 UV b) 0 118, 122 52.4 122 d) 47.5 

LLDPE-TD2 UV b) 180 116.3 61.07 112, 122 55.3 

a) After 230 days at 65°C in ventilated oven; b) After 93 days outdoor exposure; c) 
Melting peak; d) Broad peak 
 

At the end of the biodegradation tests carried out in the presence of 

heterogeneous microbial populations, as well as in the presence of single 

microbial species, the following considerations can be drawn: 

1) It has been observed that the mineralization in aqueous medium of 

the pre-oxidized LLDPE samples, do experience a mineralization 

level depending upon the COi value, higher is the COi value higher 

the mineralization extent.  

2) A second point to remark is that the LLDPE sample characterized 

by higher COi level is experiencing a drop of the oxidation level 
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accompanied by an increase of thermal stability, whereas in the 

case of LLDPE samples characterized by an initial lower COi 

value, an increase of the oxygen content (COi) and a corresponding 

lower thermal stability were observed. 

3) The aqueous biodegradation carried out on the extracted fractions 

(oxidized low molecular weight) of PP and LDPE were showed a 

fairly high mineralization of straight chain compounds, such as in 

the case of LLDPE and Docosane with respect to highly branched 

PP extracts.  

4) During soil burial tests, fairly high CO2 emissions were recorded 

from the soil cultures supplemented with thermally oxidized 

specimens, whereas only negligible microbial assimilation was 

recorded in the case of outdoor exposed specimens. Indeed, the COi 

tended to increase within the time. The biodegradation degree of 

thermally oxidized LLDPE films approached 14% in 27 months of 

soil burial with a positive trend of biodegradation processes. 

5) Thermal characterizations of the oxo-biodegradable specimens 

submitted to biodegradation in soil, confirmed that a synergistic 

degradation process, as probably mediated by both abiotic process 

and microbial activity take place during the progress of the soil 

biodegradation test. 

6) The undertaken biodegradation tests clearly indicates that some 

fungal species isolated from soil buried LDPE specimens, are 

capable to be used as carbon source the oxidized products of 

LLDPE samples submitted to outdoor exposure. Moreover, the 

metabolic activity of some of the isolated fungal species, may also 

promote a further oxidation of the LLDPE polymer matrix. 
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7) Nevertheless, different behaviors were recorded depending upon 

the type of pro-oxidant utilized in the sample preparation. All the 

structural characterizations together with the oxidation profiles 

recordable at 45°C of fungal treated specimens were therefore 

suggesting that outdoor exposed LLDPE-TD2 sample is more 

susceptible to fungal metabolism. 

8) The capability of the isolatedF2 fungal strain to assimilate the 

oxidized fraction of abiotically pre-aged LLDPE-TD1 sample was 

evidenced. 

9) Some suggestions on the ongoing oxidative degradation of LLDPE 

polymer matrix as induced by the action of the selected 

microorganism were also collected 

10) The biodegradation test carried out on solid medium under co-

metabolic conditions was confirming the ability of selected fungal 

strains to assimilate as carbon source the oxidized low molecular 

weight fractions as produced during the abiotic pretreatments of 

LLDPE-TD1 sample. Furthermore, the fungal metabolism was also 

inducing the progress of oxidative degradation of thermally 

oxidized and outdoor exposed specimens, thus confirming the 

occurrence of synergistic effects, as mediated by both physical and 

biochemical factors in the environmental degradation process of 

oxo-degradable LLDPE samples once exposed to preliminary 

abiotic treatments. 
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4.3.5. Degradations tests carried out under a combination of abiotic 

and aiotic factors 

4.3.5.1. Thermal degradation test of LLDPE samples onto soil and 
mature compost at 50°C. 

In order to verify the synergistic effect exerted by either abiotic (thermal) 

and biotic (microorganisms) conditions on the rate and extent of 

oxidative degradation of LLDPE samples containing pro-oxidant 

additives, LLDPE-TD1 and LLDPE-TD2 samples were maintained in 

oven at 50°C in direct contact with wet soil and mature compost samples 

(Figure 4.96). At time interval (2-4 days) the film specimens were 

withdrawn, carefully washed with distilled water and dried in a 

desiccator at room temperature before measuring the carbonyl index by 

FT-IR spectroscopy. The humidity level of soil and compost was kept 

constant during the experiment course. The oxidation behavior of each 

test sample in contact with soil and compost was estimated according to 

the calculation of carbonyl index (COi). In the case of LLDPE-TD1 

sample, the oxidation process started after 55 days in both specimens in 

contact with soil and compost. Nevertheless the highest rate and extent 

levels of oxidation, recordable as COi degree, were exhibited by the 

LLDPE-TD1 specimen in soil contact incubation, whereas the 

corresponding specimen incubated in contact with mature compost 

experienced a noticeable lower degree of oxidation within the same time 

frame (Figure 4.96). On the contrary, appreciable oxidation level in the 

case of LLDPE-TD2 specimens were recorded only in soil cultures, 

whereas the specimen in contact with mature compost did not show any 

formation of carbonyl groups within 140 days of incubation (Figure 

4.97). 

The recorded results once more confirmed the higher propensity to 

oxidation of LLDPE-TD1 sample. Even the influence of the natural 

matrices on the oxidation process of the analyzed LLDPE samples was 



PhD Thesis – Muniyasamy Sudhakar 

 239

evidenced during the test. In particular, it can be suggested that mature 

compost most likely because of the wealthy in organic compounds 

capable to interact with pro-oxidant additives, can affect negatively the 

oxidative degradation of the LLDPE chains. 

 

 a  b 

Figure 4.96. Pictures of LLDPE-TD1 specimens after 68 days thermal 
aging in contact with soil (a) and compost (b) media. 

 
Figure 4.97. COi profiles of LLDPE samples thermally aged at 50°C in 

contact with soil and compost media. 
 

Different oxidative behaviors were then recorded during this test as 

depending upon the incubation medium (soil or compost) and LLDPE 

sample. In particular it was evidenced that under the adopted conditions 
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the LLDPE-TD1 sample showed the higher propensity to oxidation and 

the soil medium was much more effective in inducing the oxidation 

processes.  

 

4.3.5.2. Thermal degradation upon the exposure to fungal metabolic 
activity 

The specimens withdrawn after 65 days incubation in the presence of the 

selected fungal strains were further exposed to a thermal treatment in 

static oven at medium temperatures (45 and 55°C) as aimed at the 

evaluation of the influence of the microbial metabolism on the propensity 

of the LLDPE matrix to be further oxidized under abiotic conditions. The 

motivation of the adopted procedure was the purpose to mimicking the 

fate of a degradable mulching film under field scale conditions. It can be 

assumed, in fact, that after the crop season the debris of oxo-degradable 

films exposed to the sun light, can be buried in the soil, thus being 

submitted to the action of soil microorganisms. After that in 

concomitance with the soil preparation for the new crop season, some 

fragments can be further exposed to abiotic factors such as heat and light. 

In accordance, during the thermal treatment in oven at 45 and 55°C, the 

level of oxidation, as determined by COi, of the LLDPE samples 

specimen treated with each fungal strains and un-inoculated controls was 

monitored within the time. The relevant COi profiles are reported in 

Figures 4.98-4.105. 

The differences in the propensity of the tested film specimens was 

evaluated by the comparison of the best fitting as attainable from the 

experimental data, as well as on the basis of the highest level of oxidation 

recordable during the thermal treatments in oven. 

It was therefore observed that, slight but significant differences in both 

the rate and extent of oxidation of fungal treated specimen with respect to 

the relevant un-inoculated specimens can be recorded only at 45°C, 
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whereas at 55° the abiotic stress as induced by heat is predominant, thus 

not allowing to discriminate between the influence of the preliminary 

biotic treatment and the thermal stress. 

On the contrary, the COi data recorded at 45°C, once more demonstrated 

the progress of degradation of LLDPE-TD2 specimens exposed to fungal 

strains, as well as the higher effectiveness of F4 strain in promoting the 

enzymatic degradation of the polymer matrix. The sample specimen 

preliminary incubated with this fungal strain, showed the reaches the 

highes level of oxidation once thermally aged at 45°C in oven, thus 

showing an exponential trend in the COi profile with respect to the un-

inoculated control (Figure 4.101). 

 

 
Figure 4.98. COi profiles of LLDPE-TD2 specimen pretreated with F1 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 
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Figure 4.99. COi profiles of LLDPE-TD2 specimen pretreated with F2 
fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 

 

  
Figure 4.100. COi profiles of LLDPE-TD2 specimen pretreated with F3 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 

 

  
Figure 4.101. COi profiles of LLDPE-TD2 specimen pretreated with F4 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 

 

  
Figure 4.102. COi profiles of LLDPE-TD1 specimen pretreated with F1 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 
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Figure 4.103. COi profiles of LLDPE-TD1 specimen pretreated with F2 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 

 

  
Figure 4.104. COi profiles of LLDPE-TD1 specimen pretreated with F3 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 

 

  
Figure 4.105. COi profiles of LLDPE-TD1 specimen pretreated with F4 

fungal strain and relevant un-inoculated control during 
thermal aging at 45 and 55°C in static oven. 
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While both tested and control films showed a steady increase in the COi 

during the 40 day period of aging, the test sample exhibited a significantly 

higher rate and extent of oxidation throughout. By day 40, the average 

rate of increase in the COi/day for LLDPE-TD2 test films incubated with 

F4 fungal strain was 0.0096 compared to 0.0068 for the control samples, 

which represents an excess of over 20% oxidation in the test samples over 

control (Figure 4.101). 

The undertaken biodegradation tests clearly indicates that some fungal 

species isolated from soil buried LDPE specimens, are capable to growth 

on the oxidized products of LLDPE samples submitted to outdoor 

exposure as sole carbon source. Moreover, the metabolic activity of some 

of the isolated fungal species, may also promote a further oxidation of the 

LLDPE polymer matrix. 

Nevertheless, different behaviors were recorded depending upon the type 

of pro-oxidant utilized in the sample preparation. All the structural 

characterizations together with the oxidation profiles recordable at 45°C 

of fungal treated specimens were therefore suggesting that outdoor 

exposed LLDPE-TD2 sample is more susceptible to fungal metabolism. 

In order to further substantiate that the fungal metabolism may improve 

the propensity to oxidation of the LLDPE samples, a thermal degradation 

test will be carried out in static oven under relatively mild conditions 

(45°C) by treating the specimen retrieved from the fungal cultures in 

comparison with those submitted to sunlight exposure only. 
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4. CONCLUSIVE REMARKS 

The mechanisms of physico-chemical processes that promote the 

degradation of full carbon backbone polymers such as PE, PP and PS as a 

gate to the biodegradation are assessed. Such processes allow the relevant 

converted plastic items to experience at the end of their service life the 

potential for a guided oxidative breakdown to functional fragments 

vulnerable to microorganisms present in solid and aquatic environments. 

The new strategic vision aiming at reengineering polymeric formulations 

based on well known biostable full carbon backbone polymers 

convertible to eco-compatible plastic items imply the following steps: 

 Abiotic treatment meant to promote and assist the oxidative 

degradation under different environmental conditions. 

 Biodegradation experiments on oxidatively degraded semifinite and 

finite plastic items. 

 Assessment of the interactions between microorganisms and samples 

sample aimed at understanding the ultimate environmental fate of the 

analyzed samples. 

 

4.1 Abiotic Degradation of Polyolefins (PE, PP and PS) Based Film 

Samples  

 
Abiotic degradation studies, carried out under different test conditions, 

were performed in order to establish the role of pro-oxidant additives in 

enhancing the rate and extent of oxidation and evaluation of full-carbon 

backbone chain scissions as a prerequisite to promote attack by 

microorganisms and finally to end up with biodegradation. 

 

The propensity to oxidation in terms of rate and extent was found to be 

dependent upon the following abiotic parameters: 1) Type and amount of 

pro-oxidant, 2) Temperature to which the samples are exposed,  
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3) Outdoor exposure 4) Air atmosphere exposure under static or dynamic 

conditions 5) Humidity level to which the samples are exposed. 

 

Combined effects, were also found to be dependent upon the cross-action 

of abiotic parameters and structural characteristics of the analyzed 

samples (PE various grades, PP, HIPS and CPS).  

 

In accordance with the performed activities the following general 

conclusions can be drawn. 

 

 Thermal oxidation was particularly effective in the case of PE and PP 

samples loaded with pro-oxidants (prodegradant), whereas only minor 

effects were ascertained in the case of PS. The rate and extent of 

propensity to oxidation in case of the polyolefin films resulted 

PP>LDPE>LLDPE>HDPE 

 The rate and extent of oxidation of PE samples were positively 

affected by both temperature and oxygen partial pressure, whereas a 

slight drop in rate and extent of oxidation was found to be associated 

to the humidity level in the case of PE, but not in the case of PP 

samples. 

 The induction period was found to be dependent upon the type of pro-

degradant, exposure temperature and type and grade of samples 

(LDPE<LLDPE<HDPE). 

 Outdoor exposure of the samples resulted effective in promoting the 

oxidation of the analyzed samples in that order PS>PP>LLDPE 

 Substantial drops in the molecular weight were found to be correlated 

to the extent of oxidation, as determined by FT-IR spectroscopy. This 

holds true particularly in the case of PP and PE samples, thus 

providing evidence on the statistical random scission of the polymer 
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chains, according to Norrish I and/or Norrish II, which was 

accompanied by the formation of fairly high low molecular weight 

fractions extractable by different solvents. On the contrary, in the case 

of PS samples, the random chain scissions does not seems to be 

involved in spite of the presence of tertiary carbon atoms in the main 

chain in 1-3 positions. Instead sub-terminal oxidation and relevant 

release of oxidized polyaromatic moieties might be the main 

degradation mechanism of the outdoor exposed  PS samples 

 GPC determinations showed that the molecular weights of solvent 

extractable fractions from abiotically degraded PE and PP samples are 

fairly low (0.4-1.9kD) and compatible with their potential vulnerability 

by natural occurring microorganisms. 

 

4.2 Biotic Treatment of the Abiotically Treated Samples  

 

The biodegradation propensity of abiotically pre-aged (thermal and 

outdoor exposed) and pristine polyolefin (PE, PP, PS) samples have been 

ascertained in aqueous and soil burial conditions as aimed at establishing 

the mineralization rate and extent for several polymeric materials, as well 

as at ascertaining the progress of oxidation and degradation of full-carbon 

backbone polymers by natural occurring microorganisms . The following 

conclusive remarks can be drawn: 

 

 The microbial consumption of oxidized fractions present in abiotically 

degraded PE and PP films was confirmed by the decrease (30-35%) in 

the COi values of the films submitted to the biodegradation test with 

respect to the starting pretreated samples. 

 The microbial degradation and assimilation was particularly effective 

in the case of solvent extracted fractions from PE and PP degraded 
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samples. Nevertheless the higher propensity to microbial assimilation 

of linear oxidized fractions coming from PE with respect to fairly high 

branched PP fractions was observed in accordance to the sterical 

effects in refraining the enzymatic attack in the presence of highly 

branched hydrocarbons. 

 During soil burial respirometric tests it was also ascertained the 

potential for the ultimate biodegradability of polyolefins (LLDPE, PP 

and PS) previously exposed to abiotic degradation tests (thermal or 

outdoor). 

 Finally it has been found that single soil borne microbial species are 

capable to promote the oxidation of pro-oxidant loaded LLDPE 

samples once the process has been initiated by relatively mild 

degrading conditions to which the samples have been exposed, such as 

those related to a few months outdoor exposure. 

 The information pertaining to the level of thermal and photo-oxidation 

required to achieve an effective and sustained biodegradation of full-

carbon backbone polymers is critical for the design of polyolefin-based 

products and predicting their environmental fate.  

 The research activity undertaken during the present PhD thesis 

provides important information with respect to synergistic effects of 

microbial/enzymatic attack and physical-chemical parameters in 

promoting the degradation of partially oxidized full-carbon backbone 

polymers, thus allowing for a better design of oxo-biodegradable 

materials to be really and ultimately biodegraded in different natural 

environments. 
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