
Università di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea specialistica in Informatica

Tesi di laurea

Topological
Calculus of Looping Sequences

Giovanni Pardini

Relatori Controrelatore

Prof. Roberto Barbuti Prof. Francesca Levi

Dott. Paolo Milazzo

Anno Accademico 2006/2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14694404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Riassunto

Il Calculus of Looping Sequences (CLS) permette la descrizione dei sistemi biologici

e della loro evoluzione. Nell’ambito del lavoro di tesi è stata sviluppata una

estensione del CLS, chiamata Topological CLS (TCLS), dove ad ogni oggetto del

sistema biologico sono associate una precisa posizione e dimensioni nello spazio.

Gli oggetti possono muoversi autonomamente e le loro posizioni determinano se

una specifica reazione può avvenire, cioè se la regola di riscrittura che modella

tale reazione può essere applicata. Inoltre, alle regole di riscrittura è associato

un parametro che ne specifica la velocità di reazione. Infine, dato che gli oggetti

occupano un preciso spazio, possono venirsi a creare dei conflitti, che sono risolti

assumendo un meccanismo di spinte tra di essi.

Il Topological CLS è stato quindi utilizzato per modellare il ciclo cellulare e

simulare la proliferazione delle cellule in uno spazio limitato.

Summary

The Calculus of Looping Sequences (CLS) enables the description of biological

systems and their evolution. The work for the thesis has developed an extension to

CLS, called Topological CLS (TCLS), where each object of the biological system

has associated a definite position and dimensions in space. Objects are able to move

autonomously, and their positions determine whether or not a specific reaction

could happen, i.e. whether or not the rewrite rule that models that reaction can be

applied. Also, each rewrite rule has associated with it a parameter specifying its

reaction rate. Conflicts that may arise between objects, as they occupy a non-null

space, are resolved by assuming that they push each other when they become be

too close.

The Topological CLS has been used for modelling cell cycle and simulating cell

proliferation in a limited space.

Contents

Riassunto i

Summary iii

1 Introduction 1

1.1 Including space and time . 2

1.2 Related calculi . 3

1.3 Structure of the thesis . 4

2 The Calculus of Looping Sequences 5

2.1 The Calculus of Looping Sequences 5

2.1.1 Specifying interactions . 8

2.1.2 Rewrite rules . 9

2.2 Stochastic CLS . 10

3 Including spatiality 17

3.1 Definition of the calculus . 17

3.2 Specifying interactions . 21

3.2.1 Patterns . 22

3.2.2 Rewrite rules . 23

3.3 Informal semantics . 25

3.3.1 Transition system . 26

3.3.2 Resolving physical overlaps 29

3.4 Representing movement . 30

vi CONTENTS

4 Formal semantics 33

4.1 Support definitions . 33

4.2 Formal semantics . 37

4.3 Arranging objects . 40

4.3.1 The algorithm . 42

4.4 Mean number of reactions . 44

5 Modelling cell cycle 47

5.1 The cell . 47

5.1.1 Cell cycle . 48

5.2 The model . 49

5.2.1 Description . 50

5.3 Formalization . 51

5.3.1 Rewrite rules . 52

5.3.2 Extending the model . 53

5.4 Simulation . 55

5.4.1 Results . 56

6 Conclusions 61

Bibliography 63

Chapter 1

Introduction

Traditionally, the study of biological systems has involved the development of

mathematical models, often based on differential equations, which permit the

description and analysis of their behaviour. The use of abstract models has many

advantages such as, for example, it allows the development of simulators which, in

turn, may reduce the need for laboratory experiments.

However, as the complexity of the system increases, mathematical models

become more difficult both in the specification and in the analysis [30]. Moreover,

they may not be well-suited for modelling particular systems: for example, using

differential equations for modelling the variation in concentrations of reactants in a

solution is sufficiently accurate only when the number of reactants is high, whereas

becomes less accurate when their number is low. This is because the number of

reactants is abstracted as a continuous variable.

Recently, new approaches for the modelling of biological processes have been

proposed, which involve the use of modelling formalisms coming from Computer

Science. Many formalism developed for modelling and analysing interactive and

communicating systems have been applied to Biology [24], as they allow for a finer

specification of their behaviour than traditional models. Among these, there are:

the π-calculus [13, 31, 27, 26], automata-based models [3, 18] and rewrite systems

[14, 23] In particular, these formalisms have the ability to overcome some of the

limitations of traditional models: for example, they allow to represent faithfully

even systems comprising a small number of components, and among which complex

interactions take place. At the same time, new formalisms specifically developed

2 Introduction

for modelling biological systems have emerged [11, 26, 29]. Their uses comprise:

• the development of simulators, which allow biologists to test rapidly new

hypoteses about mechanisms underlying biological processes (e.g.: SPiM [2],

BioSPI [1]);

• the analysis of the systems and the verification of their properties by using

formal means of Computer Science (for example, probabilistic model checking

[17]).

Among the formalisms expressly developed for modelling microbiological pro-

cesses is the Calculus of Looping Sequences (CLS) [9, 10, 19]. CLS is based on term

rewriting and, as such, a model is composed of a term and a set of rewrite rules,

which describe its evolution. CLS terms are either linear sequences of symbols, or

looping sequences, i.e. close circular sequences containing other terms, or they are

the parallel of two terms. Looping sequences can be used for modelling membranes.

CLS allows representing interactions which involve elements on the membranes

and, as such, is more expressive than other calculi which consider membranes

as atomic objects. As for other biology-oriented calculi, CLS has been extended

to Stochastic CLS [19, 7] in order to also allow the modelling of quantitative

aspects of biological system; this involves, in particular, the description of speeds

associated with different kinds of reaction.

1.1 Including space and time

As the thesis goal, there has been developed an extension of CLS, called Topological

CLS, which introduces space and time into CLS. In particular, every object

comprised within the system has a position and dimensions in space and can move

autonomously during the passage of time. It is also possible to constrain rule

application according to the exact positions and dimensions of the involved objects;

for instance, it is possible to express that a rule is applicable only if the objects

are within a certain distance. Objects are represented as hard-spheres with a

containment hierarchy among them. Conflicts among objects may arise, when two

(or more) objects overlap or when an object is positioned beyond the bounds of

1.2 Related calculi 3

the containing object; this problem is addressed by assuming that objects push

each other if they occur to be too close, or if an object is beyond the bounds of

the containing sphere. Moreover, in a similar way to Stochastic CLS, each TCLS

reaction has associated a parameter specifying its rate which, intuitively, models

its ease to occur when the reaction is applicable.

The ability to represent explicitly the position of elements and their movement

is useful for modelling those biological processes where knowing the positions of

the elements is decisive for accurately describing their evolution.

As an example application, the calculus has been used to model cell cycle, this

being the sequence of events that lead up to the division of a cell into two daughter

cells, and simulate the proliferation of cells in a limited space.

1.2 Related calculi

As far as we know, there is currently only one other formalism that deals with

space and time and that has been specifically developed for modelling biological

systems. SpacePI [16] is a recently proposed formalism, which extends π-calculus

[20] with space and time. A position in a continous space (such as R2) is associated

with every process, and each process can move autonomously according to its

movement function. Processes do not have dimensions, as they do not occupy any

space. Time is advanced by discrete steps of fixed duration. Each process moves

uniformly during each interval, and can act during it; if a process executes an

action, then its movement may change, changing direction and/or speed.

As for the π-calculus, processes may communicate by a synchronization on

a channel name, where a process does a send action and the other does its

corresponding receive action. However, unlike the original calculus, each send or

receive action has associated a parameter r which specifies its interaction radius.

Besides those actions, there is also an action which permits to delay a process

until a certain time.

The semantics of the calculus states that a synchronization between two

processes may occur only if their distance is less than the sum of the radii of their

complementary actions. Moreover, every communication happens as soon as it

becomes applicable, i.e. as soon as they are close enough. In every time interval

4 Introduction

there could occur an unlimited number of communications.

1.3 Structure of the thesis

The thesis is organized as follows:

• Chapter 2 introduces the Calculus of Looping Sequences, which is the calculus

from which the Topological CLS is derived, and its stochastic extension,

namely Stochastic CLS;

• In Chapter 3 the Topological CLS is defined, and its semantics is explained

informally;

• Chapter 4 explains the formal semantics of the calculus;

• Chapter 5 shows an application of the calculus to the modelling of cell cycle,

which makes it possible to represent and simulate the proliferation of cells in

a limited space;

• Chapter 6 contains the conclusions on the work carried out.

Chapter 2

The Calculus of Looping

Sequences

This chapter introduces the Calculus of Looping Sequences (CLS), which is the

calculus from which the Topological CLS is derived. It is also presented the

Stochastic CLS, which is another extension of CLS that uses stochastic rates

for representing different reaction speeds, in order to allow the modelling of

quantitative aspects of biological systems.

2.1 The Calculus of Looping Sequences

The Calculus of Looping Sequence [9, 10, 19] can be used to model biological

systems and their evolution. CLS is based on term rewriting, hence a CLS model

is composed of a term, which describes the biological system, and a set of rewrite

rules, modelling its evolution. In the definition of the syntax, which follows, is

assumed a possibly infinite alphabet E of symbols ranged over by a, b, c,

Definition 2.1.1 (Terms). Terms T and Sequences S of CLS are given by the

following grammar:

T ::= S
∣∣ (

S
)L cT

∣∣ T |T

S ::= ε
∣∣ a

∣∣ S · S

where a is a generic element of E. T denotes the infinite set of terms, and S
denotes the infinite set of sequences.

6 The Calculus of Looping Sequences

The elements of E can be used to build sequences, by using sequencing operator

·. An empty sequence is denoted by ε. A term can either be a simple sequence S,

a looping sequence
(
S
)L

containing a term T , or the parallel of two terms. The

containment operator c allows representing compartments; in fact, the looping

sequence usually models membranes from the biological system. Also, since

membranes are circular, the elements on a looping sequence are assumed to

constitute a close circular sequence and, thus, they can “rotate”.

Next follows the definition of the structural congruence between terms, that is

used to identify the terms that conceptually represent the same biological system,

even though they are syntactically different.

Definition 2.1.2 (Structural congruence). The structural congruence is the least

congruence relation on terms satisfying the following axioms:

S1 · (S2 · S3) ≡ (S1 · S2) · S3 (2.1)

S · ε ≡ ε · S ≡ S (2.2)

T1 | (T2 | T3) ≡ (T1 | T2) | T3 (2.3)

T1 | T2 ≡ T2 | T1 (2.4)

T | ε ≡ T (2.5)

(S1 · S2)
L cT ≡ (S2 · S1)

L cT (2.6)

(ε)L c ε ≡ ε (2.7)

Axioms 2.1 and 2.3 express, respectively, associativity of sequencing operator

and associativity of parallel operator between terms. Axioms 2.2, 2.5 and 2.7

indicate the neutral role of ε: the first is with respect to the sequencing operator,

while the second is with respect to parallel operator. Axiom 2.4 states the

commutativity of the parallel operator. Finally, axiom 2.6 indicates that the

symbols of a looping sequence can rotate.

Example 2.1.1. The following are some example CLS terms (all three of them

are graphically represented in figure 2.1):

T1 =
(
a · b · c

)L

T2 =
(
a · b · c

)L c
(
d · e

)L c ε

T3 =
(
a · b · c

)L c (f · g |
(
d · e

)L c ε)

2.1 The Calculus of Looping Sequences 7

(a) (b) (c)

Figure 2.1: A graphical representation of some example terms.

Term T1 (figure 2.1(a)) models an empty membrane, composed of the elements

a, b, c. Term T2 (figure 2.1(b)) represents the same membrane as of T1, but which

contains another looping sequence composed of d, e. In the last term T3 (figure

2.1(c)), there is also a simple sequence f · g inside the outer looping sequence.

Definition 2.1.3 (Context). Contexts C are derived from the following grammar:

C ::= � | S |
(
S
)L cC | C | T | T | C

where T ∈ T and S ∈ S. � denotes the empty context. The set of all contexts is

denoted by C.

A context C can be composed with a term T , producing a term C[T] obtained

by replacing the only � appearing in C with the term T .

Example 2.1.2. Consider the following term T and context C:

T = c |
(
c
)L c d

C =
(
a · a

)L c (b | �)

then, context C can be composed with T , yielding the term:

C[T] =
(
a · a

)L c
(
b | c |

(
c
)L c d

)
.

8 The Calculus of Looping Sequences

2.1.1 Specifying interactions

The evolution of a system is described by a set of rewrite rules, representing

reactions among elements of the system. Each rule is composed of a pair of terms,

with the intuitive meaning that, if the first term occurs in the system, then it can

be replaced by the second term.

Precisely, each rewrite rule is composed of a pair of patterns, that are terms

with variables. The following sets of variables are assumed, each representing a

different kind of variable:

• TV , the set of term variables, ranged over by X, Y, Z, . . .;

• SV , the set of sequence variables, ranged over by x̃, ỹ, z̃, . . .;

• X , the set of element variables, ranged over by x, y, z,

All these sets are assumed to be pairwise disjoint and possibly infinite. The set of

all variables is denoted by V ; i.e. V = TV ∪ SV ∪ X .

Definition 2.1.4 (Patterns). Patterns P and sequence patterns SP of CLS are

given by the following grammar:

P ::= SP
∣∣ (

SP
)L cP

∣∣ P |P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E , and X, x̃ and x are generic elements of TV, SV

and X , respectively. The infinite set of patterns is denoted with P .

Given a pattern P , the set of all variables appearing in it is denoted by Var(P).

It is also assumed that structural congruence relation is extended to patterns.

A term can be obtained from a pattern by instantiating the variables appearing

in it, with terms, sequences or symbols. The binds between variables and their

values are described by an instantiation function, whose definition follows.

Definition 2.1.5 (Instantiation function). An instantiation function for variables

in V is a partial function σ : V → T ∪ S ∪ E that respects the type of variables;

thus it is such that:

∀X ∈ TV, x̃ ∈ SV, x ∈ X . σ(X) ∈ T , σ(x̃) ∈ S, σ(x) ∈ E .

2.1 The Calculus of Looping Sequences 9

The set of all instantiation function for V is denoted by Σ.

The application of an instantiation function σ to a pattern P , written as Pσ,

is obtained by replacing each occurence of each variable v ∈ Var(P) with σ(v).

Example 2.1.3. Let σ be an instantiation function such that:

σ(x̃) = a · a

σ(X) =
(
c
)L c d

then, its application to pattern P = b |
(
a · x̃

)L cX yields the term:

Pσ = b |
(
a · a · a

)L c
(
c
)L c d

2.1.2 Rewrite rules

Definition 2.1.6 (Rewrite Rule). A rewrite rule is a pair of patterns (P1, P2),

usually written as

P1 7→ P2

where P1, P2 ∈ P, P1 6≡ ε and such that V ar(P2) ⊆ V ar(P1).

A rewrite rule which does not contain any variable, i.e. such that V ar(P1) =

V ar(P2) = ∅, is said to be ground.

A rewrite rule (P1, P2) states that a term P1σ, obtained by instantiating

variables in P1 by some instantiation function σ, can be transformed into the

ground term P2σ. A rewrite rule is applicable to a term T only if the left part of a

ground rewrite rule, obtained by instantiating it, can be “matched” by a subterm

of T . Specifically, there needs to be a context C such that C[P1σ] ≡ T .

The application of rewrite rules to terms allows the system to evolve. The

semantics of the calculus is given as a transition system, in which states correspond

to terms, and in which each transition represents the application of a rewrite rule

to a term.

Definition 2.1.7 (Semantics). Given a set of rewrite rules R, the semantics of

CLS is the least transition relation → on terms closed under ≡, and satisfying the

following inference rule:

P1 7→P2 ∈ R P1σ 6≡ ε σ ∈ Σ C ∈ C
C[P1σ] −→ C[P2σ]

10 The Calculus of Looping Sequences

Example 2.1.4. Let R be a set containing only the following rewrite rules:

a |
(
b · x̃

)L cX 7→
(
b · x̃

)L c (X | a) (2.8)(
b · x̃

)L c (X | a) 7→ a |
(
b · x̃

)L cX (2.9)

c | a 7→ e (2.10)

Let the term T = a |
(
b·b

)L c c denote the initial system. It may evolve, by applying

rule 2.8, to term T2 =
(
b · b

)L c (a | c). Then, both rules 2.9 and 2.10 can be applied

to T2: the first yields back term T1 while the second yields term T3 =
(
b · b

)L c e,

to which no rule can be applied anymore.

2.2 Stochastic CLS

Stochastic CLS [19, 7] incorporates in CLS the stochastic framework developed by

Gillespie [15], in order to allow the modelling of quantitative aspects of biological

systems.

The syntax of SCLS is the same as that of CLS, while rewrite rules are enriched

with stochastic rates: these stochastic rates model the speeds of the reactions

described by each rule. Precisely, as in Gillepie’s algorithm, given a biological

system and a specific reaction (with associated a certain constant, derived from

its kinetic constant), the application rate of the reaction occurring in the system

is computed by multiplying its constant by the number of possible combinations

of reactants occurring in the system. Then, the time which passes between two

occurrences of the considered reaction is modelled by an exponential distribution,

whose parameter is the computed application rate.

Given a rule that can be applied to a term T , the application rate of the

reaction modelled by the rule depends on the number of different ways in which

the rule can be applied to T , that conceptually represents the number of different

reactants among which the reaction could occur. In order to give the semantics of

the calculus, the following definitions are needed.

Definition 2.2.1 (Stochastic Rewrite Rule Schema). A rewrite rule schema is a

triple (P1, P2, f), denoted with P1
f7→P2, where P1, P2 ∈ P, P1 6≡ ε and such that

V ar(P2) ⊆ V ar(P1), and f : Σ → IR≥0 is the rewriting rate function.

2.2 Stochastic CLS 11

As it can be noted, each stochastic rewrite rule schema is enriched with a

rewriting rate function f , instead of a simple constant k ∈ R. This is because

application rate of a rewrite rule may depend on the particular instantiation of the

variables appearing in it. For instance, the binding of a molecule b with a molecule

a on a membrane can be represented by the following rule:

b |
(
a · x̃

)L cX
k7→

(
c · x̃

)L cX

Intuitively, b can react with any a-element occurring on the membrane, hence

the application rate depends on the number of occurrences of a-elements on the

membrane. Therefore, the rewriting rate function is introduced for computing

the application rate depending on the particular instantiation of the rule (that is,

depending on σ).

Given an instantiation function σ, a stochastic rewrite rule schema can be turned

into a stochastic ground rewrite rule by instantiating its patterns and replacing

the rewrite rate function f with its actual value c = f(σ) (called rewriting rate

constant).

Definition 2.2.2 (Stochastic Ground Rewrite Rule). Given a stochastic rewrite

rule schema R = (P1, P2, f) and an instantiation function σ ∈ Σ, the ground

rewrite rule derived from R and σ is a triple (T1, T2, c), denoted as T1
c7→T2, where

T1 = P1σ, T2 = P2σ, and c = f(σ) is the rewriting rate constant.

Example 2.2.1. Consider the following rewrite rule schema:

R : a |
(
c · x̃

)L c ε
f7→ b |

(
x̃
)L c ε

where the rewriting rate function f is defined as:

f(σ) = 1 + occ(c, σ(x̃))

and where, in turn, the function occ : E ×S → IN counts the number of occurrences

of a symbol in a sequence.

Given an instantiation function σ such that σ(x̃) = b · c, the ground rewrite

rule obtained from R is:

a |
(
c · b · c

)L c ε
27→ b |

(
b · c

)L c ε .

where its rewriting rate constant is f(σ) = 2.

12 The Calculus of Looping Sequences

The following definition computes the set of all ground rules, deriving from a

given set of rule schemata, that can be applied to a given term.

Definition 2.2.3 (Applicable Ground Rewrite Rules). Given a rewrite rule schema

R = P1
f7→P2 and a term T ∈ T , the set of ground rewrite rules derived from R

and applicable to T is defined as

AR(R, T) = { T1
c7→ T2 | ∃σ ∈ Σ, C ∈ C.

T1 = P1σ, T2 = P2σ, T ≡ C[T1], c = f(σ) }
(2.11)

Given a finite set of rewrite rule schemata R and a term T ∈ T , the set of ground

rewrite rules derived from R and applicable to T is:

AR(R, T) =
⋃

R∈R

AR(R, T)

Function ext(T), defined in the following, computes the number of different

ways in which a ground rule can be applied to a term T . Precisely, it computes

the multiset of extracted reactants of T , which is the multiset of all the pairs

(T ′, C) where T ′ 6≡ ε is a reactant in T and C is the context from which T ′ is

extracted, i.e. such that C[T ′] ≡ T . The definition uses the auxiliary function

◦ : C × (IN× T × C) 7→ (IN× T × C) defined as:

C ◦ (i, T, C ′) = (i, T, C[C ′])

and extended to multisets of triples over IN× T × C.

Definition 2.2.4 (Multiset of Extracted Reactants). Given a term T ∈ T , the

multiset of reactants extracted from T is defined as

ext(T) = {(T ′, C)|(n, T ′, C) ∈ ext`(0, T)}

2.2 Stochastic CLS 13

where ext` is given by the following recursive definition:

ext`(i, S) = {(i, S,�)}

ext`(i,
(
S
)L

) = {(i,
(
S
)L

, �)}

ext`(i,
(
S
)L cT ′) = {(i,

(
S
)L cT ′, �)} ∪

(
S
)L c� ◦ ext`(i + 1, T ′)

ext`(i, T1 |T2) = T2 |� ◦ ext`(i, T1) ∪ T1 |� ◦ ext`(i, T2)

∪ {(i, T e
1 |T e

2 , Ce
1 [C

e
2]) | (i, T e

j , Ce
j) ∈ ext`(i, Tj), j ∈ {1, 2}}

Function ext(T) determines all the possible reactants (subterms) of T to which

a rewrite rule could be applied, along with the contexts from which they are

extracted.

Example 2.2.2. Let T be the following term:

T = a |
(
b
)L c c

then, in order to compute the multiset of extracted reactants of T it is needed to

compute ext`(0, T), which gives the following set of triples:

ext`(0, T) = { (0, a,� |
(
b
)L c c),

(0,
(
b
)L c c, a |�),

(1, c, a |
(
b
)L c�),

(0, T, �) } .

The obtained set ext(T) is:

ext(T) = { (a, � |
(
b
)L c c),

(
(
b
)L c c, a |�),

(c, a |
(
b
)L c�),

(T, �) } .

Next is defined the application cardinality of a rule which counts, given a

ground rule R and two terms T, Tr, the number of possible reactants of T to which

rule R could be applied, and which lead to the same term Tr.

14 The Calculus of Looping Sequences

Definition 2.2.5 (Application Cardinality). Given a ground rewrite rule R =

T1
c7→T2 and two terms T, Tr ∈ T , the application cardinality of rule R leading

from T to Tr, AC(R, T, Tr), is defined as follows:

AC(R, T, Tr) = # {(T ′, C) ∈ ext(T) such that T ′ ≡ T1 ∧ C[T2] ≡ Tr} .

Example 2.2.3. Consider the ground rewrite rule R : a
c7→ b and the term

T = a | a |
(
m

)L c a. Rule R can be applied to T in three different ways, which

correspond to the following pairs contained in ext(T):

(a, C1) = (a, � | a |
(
m

)L c a) with multiplicity 2;

(a, C2) = (a, a | a |
(
m

)L c�) with multiplicity 1.

The first tuple is relative to the application of the rule to one of the two external

a-element, while the second is relative to the application to the a-element inside

the looping sequence.

The following two terms can be reached from the two rule applications described

above (where element b represents the right part of the rule):

Tr1 = C1[b]= a |
(
m

)L c a | b

Tr2 = C2[b]= a | a |
(
m

)L c b

which correspond, respectively, to the first and the second application of the rule,

as described previously. Finally, the application cardinalities are:

AC(R, T, Tr1) = 2

AC(R, T, Tr2) = 1

Definition 2.2.6 (Semantics). Given a finite set of rewrite rule schemata R, the

semantics of Stochastic CLS is the least labelled transition relation satisfying the

following inference rule:

R = T1
c7→ T2 ∈ AR(R, T) T ≡ C[T1]

T
R,c·AC(R,T,C[T2])−−−−−−−−−−→ C[T2]

The semantics of Stochastic CLS constructs a transition system in which states

are represented by terms, and where each transition represents the application of a

2.2 Stochastic CLS 15

(ground) rewrite rule to some reactants in T . Each transition has associated a pair,

composed of (i) the ground rule applied and (ii) a rate, obtained multiplying the

rewriting rate constant of the ground rule by its application cardinality. That rate

corresponds to the parameter of an exponential distribution, which characterizes

the speed of the reaction described by the application of the rewrite rule. Finally,

the transition graph obtained by applying the semantics to a given term T can be

transformed into a Continuous–time Markov Chain (CTMC) [33].

Example 2.2.4. Let R be the following set of ground rewrite rules:

R1 : a
c17→ b

R2 : a | a c27→ d

Considering term T = a | a |
(
m

)L c a as initial state, the CTMC obtained is shown

in figure 2.2, where terms T1, . . . , T7 are:

T1 =
(
m

)L c a | d T2 =
(
m

)L c b | d

T3 = a | a |
(
m

)L c b T4 = a | b |
(
m

)L c b

T5 = b | b |
(
m

)L c b T6 = a | b |
(
m

)L c a

T7 = b | b |
(
m

)L c a

Figure 2.2: Continuous-time Markov Chain from example 2.2.4.

Chapter 3

Including spatiality

This chapter introduces the Topological Calculus of Looping Sequences, that has

been developed as the thesis goal. The TCLS is based on CLS, and extends it

by representing objects as spheres in space. The objects can move autonomously,

within the container membrane, and are able to react when they get close to each

other. At first, the calculus syntax and its supporting definitions are presented,

and finally the semantics is explained informally.

3.1 Definition of the calculus

In TCLS, every object (simple sequence or looping sequence) of the system is

represented as a sphere in the continuous space Rn, with a precisely defined

position, that can move autonomously during time passage and can react when

particular conditions are met (for example, when two reactants are within a certain

distance)1.

Containment operator · c · naturally defines a containment hierarchy among

spheres, with the constraint that an inner sphere cannot be positioned beyond the

bounds of the containing sphere. Also, object are modelled as hard-spheres, hence

there cannot be any overlap among the spheres.

TCLS syntax extends the one of CLS by associating a triple d = 〈p, r, m〉 with

each term representing a simple sequence (S) or a looping sequence (S)L . The

1In the following, it is assumed a norm ‖·‖ on Rn.

18 Including spatiality

triple is composed of:

• the centre p of the sphere, relative to the centre of the containing sphere (if

it exists) or to the global coordinate system;

• the radius r of the sphere, which needs to be greater than 0 (this will ensure

that there cannot be two sphere located in the same position);

• the movement function m, which describes the autonomous motion of the

object during time passage.

Definition 3.1.1 (Syntax). Terms T and sequences S of the calculus are defined

by the following grammar:

T ::= λ | (S)d | (S)Ld cT | T | T (3.1)

S ::= ε | a | S · S (3.2)

where d ≡ 〈p, r, m〉, p ∈ Rn, r ∈ R+, m : Rn×R∪ {∞}×R×R → Rn and a ∈ E .

As for CLS, it is assumed an alphabet E of symbols, ranged over by a, b, c, . . .,

and used for forming sequences. The term λ denotes the empty term, while ε

denotes the empty sequence (it is worth noting that in the original CLS ε is used

for denoting both the empty sequence and the empty term).

The set of all terms is denoted by T , and the set of all sequences is denoted by

S. Finally, M denotes the set of all movement functions.

Example 3.1.1. Let T1 be the following term (defined over space R2)

T1 = (a)〈(1,2),0.5,m1〉 | (b · c · d)L〈(4,3),2,m2〉 c (a)〈(−1,0),0.5,m3〉

As illustrated in figure 3.1, term T is composed of two top-level elements:

• a simple sequence (a) with center in (1, 2), radius 0.5 and movement function

m1;

• a looping sequence (b · c · d)L with center in (4, 3), radius 2 and movement

function m2;

3.1 Definition of the calculus 19

Figure 3.1: Graphical representation of the term from example 3.1.1

• another sequence (a), contained in the looping sequence, with the same

radius and movement function as the outer sequence, and whose position

(relative to the center of the container) is (−1, 0).

Some syntactically different terms conceptually define the same biological

system, so a congruence relation on terms needs to be defined.

Definition 3.1.2 (Structural congruence). The structural congruence is the least

congruence relation on term satisfying the following axioms:

S1 · (S2 · S3) ≡ (S1 · S2) · S3 (3.3)

S · ε ≡ ε · S ≡ S (3.4)

T1 | (T2 | T3) ≡ (T1 | T2) | T3 (3.5)

T1 | T2 ≡ T2 | T1 (3.6)

T | λ ≡ T (3.7)

(S1 · S2)
L
d cT ≡ (S2 · S1)

L
d cT (3.8)

Axiom 3.3 and 3.5 express, respectively, associativity of the sequencing operator

and associativity of parallel operator between terms. Axiom 3.4 indicates the

neutral role of ε with respect to sequencing, while 3.7 expresses the neutral role

of λ with respect to parallel operator. Axiom 3.6 states the commutativity of

20 Including spatiality

the parallel operator. Finally, axiom 3.8 indicates that the symbols of a looping

sequence can rotate.

As previously indicated, not all of the terms derived from the grammar are

valid, since an object cannot exceed the limits of the sphere in which it is contained,

and cannot overlap with sibling objects. This intuition is captured by the notion

of well-formedness, defined next.

Definition 3.1.3 (Well-formed terms). The set of well-formed terms is defined

as:

Twf = {T ∈ T | ∃ l, I. 〈T, l〉 → I}

where relation 〈·, ·〉 → · ⊆ T × R+ × (Rn × R+) is defined by the following set of

inference rules2:

〈λ, l〉 → ∅
(3.9)

〈(S)〈p,r,m〉, l〉 → {(p, r)}
‖p‖+ r ≤ l (3.10)

〈T, r〉 → I

〈(S)L〈p,r,m〉 cT, l〉 → {(p, r)}
‖p‖+ r ≤ l (3.11)

〈T1, l〉 → I1 〈T2, l〉 → I2

〈T1 | T2, l〉 → I1 ∪ I2

∀ (p1, r1) ∈ I1, (p2, r2) ∈ I2.

‖p1 − p2‖ ≥ r1 + r2

(3.12)

Example 3.1.2. The term T1 from example 3.1.1 is well-formed. The following is

an example of a not well-formed term:

T2 = (e)〈(4.5,3.5),1,m4〉 | (b · c · d)L〈(2.5,2.5),2,m2〉 c (a)〈(−1,−1.5),0.5,m3〉

The term, as shown in figure 3.2, is not well-formed because (i) the two sibling

objects (e) and (b · c · d)L overlap, and also because (ii) object (a) is beyond the

limits of the containing looping sequence.

In order to give the semantics of the calculus, as for CLS, we need the definition

of contexts, i.e. terms with a “hole”.

2In the definition, ‖p1 − p2‖ represents the distance between p1 and p2.

3.2 Specifying interactions 21

Figure 3.2: The not well-formed term from example 3.1.2, with the collisions

highlighted.

Definition 3.1.4 (Context). Contexts C are derived from the following grammar:

C ::= � | (S)d | (S)Ld cC | C | T | T | C

where T ∈ T and S ∈ S. The set of all contexts is denoted by C. A context C can

be composed with a term T , producing a term C[T] obtained by filling the hole of

C with the term T .

Definition 3.1.5 (Structural congruence over contexts). Two contexts C1, C2 ∈ C
are structurally congruent if and only if, given e ∈ E such that it does not appear

in C1 nor C2:

C1[e] ≡ C2[e]

3.2 Specifying interactions

Rewrite rules allow to specify how the system evolves, due to the interactions

among elements of the biological system. Before formally defining rewrite rules,

the definitions of patterns and instantiation functions are needed.

22 Including spatiality

3.2.1 Patterns

Intuitively, patterns are simply terms with variables. Four types of variable are

present in the calculus:

• position variables, ranged over by u, v, . . . and contained in set PV ;

• term variables, ranged over by X, Y, Z, . . . and contained in set TV ;

• sequence variables, ranged over by x̃, ỹ, z̃, . . . and contained in set SV ;

• element variables, ranged over by x, y, z, . . . and contained in set X .

All of the sets of variables are pairwise disjoint and possibly infinite. The sets

TV , SV and X are the same sets defined in CLS, while the set PV is new.

Moreover, V denotes the set of all term, sequence and element variables, that is:

V = TV ∪ SV ∪ X .

Besides the instantiation function σ for variables in V (the same as for CLS),

another instantiation function for position variables in PV is needed. Both

definitions follow.

Definition 3.2.1 (Instantiation function for V). An instantiation function for

variables in V is a partial function σ : V → Twf ∪ S ∪ E that respects the type of

variables; thus it is such that:

∀X ∈ TV, x̃ ∈ SV, x ∈ X . σ(X) ∈ Twf , σ(x̃) ∈ S, σ(x) ∈ E .

The set of all instantiation functions for V is denoted by Σ.

Definition 3.2.2 (Instantiation function for positions). An instantiation function

for position variables is a partial function τ : PV → Pos, where Pos = {〈p, r〉 | p ∈
Rn, r ∈ R+}. The set of all instantiation functions for positions is denoted by T.

Definition 3.2.3 (Patterns). Left patterns PL, right patterns PR, located patterns

P and sequence patterns PS are defined by the following grammar:

PL ::= λ | (PS)u | (PS)Lu cPL | PL | PL | X

PR ::= λ | (PS)〈f,m〉 | (PS)L〈f,m〉 cPR | PR | PR | X

P ::= λ | (PS)d | (PS)Ld cP | P | P | X

PS ::= ε | a | PS · PS | x | x̃

3.2 Specifying interactions 23

where u ∈ PV , d ∈ Pos×M, f : T → Pos.

Given a pattern P , the set of all variables appearing in it is denoted with Var(P).

Instantiation functions for position variables may be applied to left and right

patterns, producing located patterns, according to the following definitions.

Definition 3.2.4. An instantiation function τ ∈ T can be applied to a left pattern

PL, giving an infinite set of patterns P :

λτ = {λ}

(PS)uτ = {(PS)〈τ(u),m〉 : m ∈M}

((PS)Lu cPL)τ = {(PS)L〈τ(u),m〉 cP : P ∈ PLτ, m ∈M}

(PL | P ′
L)τ = {P | P ′ : P ∈ PLτ, P ′ ∈ P ′

Lτ}

Xτ = {X}

Definition 3.2.5. An instantiation function τ ∈ T can be applied to a right

pattern PR, giving a pattern P :

λτ = λ

(PS)〈f,m〉τ = (PS)〈f(τ),m〉

((PS)L〈f,m〉 cPR)τ = (PS)L〈f(τ),m〉 cPRτ

(PR | P ′
R)τ = PRτ | P ′

Rτ

Xτ = X

Finally, an instantiation function σ may be applied to a located pattern P ,

giving the term obtained by instantiating its variables; i.e. giving the term in which

each each occurrence of each variable v ∈ V is replaced by σ(v). The application

of σ to a pattern is written as Pσ.

3.2.2 Rewrite rules

Definition 3.2.6 (Rewrite Rule). A rewrite rule is a 5-tuple (fc, PL, PR, k, f),

usually written as

[fc] PL
k,f7→ PR

where fc : T → {tt, ff}, k ∈ R+, f : Σ → N and Var(PR) ⊆ Var(PL).

24 Including spatiality

The semantic meaning of a rewrite rule is that, given a term T representing

the system at a certain time, if T contains a subterm that can be “matched” with

the left part of the rule, then T may be rewritten to another term similar to T ,

but where the matched subterm is replaced with a “target” term derived from the

right pattern.

The rewrite rule, besides left and right patterns, is formed by a function fc

that specifies its application constraints, that is whether or not the rule can be

applied to specific matching objects (by checking their positions and/or radii).

There is also a parameter k that specifies the rate of the reaction modelled by this

rule, and a function f that counts the number of different ways that the rule can

be applied to a given matching subterm, producing the same target term.

Specifically, there needs to be a position instantiation function τ and an

instantiation function σ such that (where T ′ is the matching subterm of T):

P ∈ PLτ (3.13)

T ′ = Pσ (3.14)

The function τ , that conceptually carries the binds between position variables

appearing in left pattern of the rule and the exact positions and radii of the objects

of T that matched, is then used for evaluating fc. Hence, fc uses the actual position

and radii of matched objects for determining if the rule can be applied (i.e. its

value is tt) or not.

Example 3.2.1. Let T be the following term (graphically represented in figure

3.3):

T = (a)〈(2,4),0.5,m1〉 | (b)〈(2,1),0.5,m2〉 | (b)〈(3.5,4),0.5,m2〉

and R the following rewrite rule:

R1 : [fc] (a)u | (b)v
k1,17→ (c)〈u,m3〉

where fC checks if the distance between the two reactants (a) and (b) is less than

2; formally:

fc(τ) = tt ⇔ τ(u) = 〈p1, r1〉, τ(v) = 〈p2, r2〉, ‖p1 − p2‖ ≤ 2

3.3 Informal semantics 25

Figure 3.3: Graphical representation of the term from example 3.2.1

Intuitively, the rule can be applied only to the objects (a)〈(2,4),0.5,m1〉 and

(b)〈(3.5,4),0.5,m2〉. In fact, in such case, the instantiation function τ1 is such that

τ1(u) = 〈(2, 4), 0.5〉

τ1(v) = 〈(3.5, 4), 0.5〉

and it satisfies the constraint function fc(τ1) = tt. The other possible instantiation

function τ2, that also matches two objects of the system, would be

τ2(u) = 〈(2, 4), 0.5〉

τ2(v) = 〈(2, 1), 0.5〉

but τ2 does not satisfy the constraint, indeed fc(τ1) = ff .

3.3 Informal semantics

Given a term T representing the initial system, and assuming a set of rewrite rules

R, the system evolves executing a sequence of steps, where each step is composed

of two distinct phases:

1. a first phase where, considering a small time interval δt, at most one reaction

among the ones available, is executed;

26 Including spatiality

2. a second phase in which time passes, for a duration equal to δt; this involves

moving all the objects to their new positions according to their movement

functions.

After applying a rewrite rule, it may happen that the obtained term is not well-

formed, i.e. two (or more) objects may overlap or some objects may not be correctly

contained in a looping sequence. The same situation can happen after moving the

objects. This problem is resolved by executing, as a last operation within both

phases, a “rearrangement” of the objects of the system. The rearrangement is

done by an algorithm, which may fail in determining a well-formed term: if such

is the case when trying to apply a rule to a group of objects, then it is assumed

that that group of objects cannot react (so the rule cannot be applied).

The length of the time interval δt depends on the number of ways all the rewrite

rules in R could be applied to specific objects in the current state. Nevertheless,

its maximum length is fixed to ∆t = 1/N , where N is an arbitrary value such that

(kR denotes the rate associated with reaction R):

∀R ∈ R. 0 < kR/N ≤ 1

The value kR/N conceptually represents the probability that a reaction of kind R,

among some specific objects in the system, happens in a time interval of length

∆t.

It is worth noting that the choice of N may, indirectly, affect the precision in

representing movement; in fact, the bigger the time interval ∆t is, the bigger the

covered distance will usually be in every single phase of movement (unless, for

example, the object does not move).

3.3.1 Transition system

The semantics is given as a Probabilistic Transition System [28, 21], where two

kinds of state are present, representing the two phases forming each step:

• 〈T, t〉, that represents the system at time t, and is associated with the first

phase; from this state only a state of the second kind can be reached, and

the probabilities associated with the transitions are computed from the rates

of the rewrite rules;

3.3 Informal semantics 27

• 〈T, t, δt〉, that is associated with the second phase, and which means that

the current time t must be advanced to t + δt, updating the positions of all

the objects according to their movement functions. From this state, a state

in the form 〈T ′, t + δt〉 will be reached.

An example transition system is presented in figure 3.4

Figure 3.4: An example transition system.

The length of time interval δt, that corresponds to the amount of time in

which the objects can only move before trying another reaction, is calcolated as

δt = ∆t/m, where m is the total number of reactions that can occur in current

state.

Counting allowed reactions

Counting the number of allowed reactions involves determining every group of

objects that matches the left part of the rule. Unfortunately, this is not enough

when the rule models a reaction between an element on a looping sequence and

28 Including spatiality

another object (either internal or external). Such situation is tipically modelled by

a rule similar to the following:

[fc] (b)u | (a · x̃)Lv cX
k,f7→ (c · x̃)L〈v,m〉 cX

The example rule models a situation where an object (b) can react with an element

a on the membrane, transforming it to c. Intuitively, if a membrane contains more

than one element a, the reaction could happen between b and any element a on

the membrane; that is, the number of different reactions is given by the number of

a-elements on the membrane. For example, given the following term:

T = (b)〈p,r,m〉 | (a · a · a)L〈p′,r′,m′〉 cλ

and supposing that the constraints in fc are satisfied, then there is only one way

in which T can match the left part of the rule; this happens with the following

instantiation functions τ and σ:

τ(u) = 〈p, r〉

τ(v) = 〈p′, r′〉

σ(x̃) = a · a

σ(X) = λ

This problem is resolved by introducing a function f : Σ → N associated with

each rewrite rule, that counts, given an instantiation function σ, the number of

conceptually different reactions that can occur. For the previous example, this

function would have been defined as

f(σ) = 1 + occ(a, σ(x̃))

where function occ : E × S → N counts the number of occurrences of a symbol in

a sequence.

Calculating reaction probabilities

In the same way as the length of time interval δt is determined by the number of

reactions allowed m, also the probability of executing a reaction among a specific

3.3 Informal semantics 29

group of objects in time interval δt is determined from m. In fact, the probability

that a specific group of objects, matching the left part of a rewrite rule R, reacts

in a time interval δt is:

kR/N

m
n .

The value n ∈ N is obtained by evaluating the function f associated with the

rewrite rule, and as such it counts the number of conceptually different reactions

that this application of the rule describes. Finally, unless all of the probabilities

kR/N equals 1, there must be also a non-null probability of executing no reaction

in the time interval δt. This probability is the sum of the probabilities of not

executing each possible reaction.

It must be noted that, given a term T , there may be different rule applications

that reduce to a same term T ′. As such, the probabilities associated with each

transition from a state 〈T, t〉 to a state 〈T ′, t, δt〉 must be calculated as the sum of

the probabilities of all the different rule applications that lead up to T ′ from T .

Indeed, a reaction could also lead up to term T , and as such its probability must

be added to the one of executing no reactions.

3.3.2 Resolving physical overlaps

As previously indicated, during system evolution it may be needed to rearrange

the objects because some of them collide. This rearrangement is done by the

function DeepArrange, that takes a term (which may not be well-formed) and

tries to compute a well-formed term based on it. If a well-formed term cannot be

obtained, then the special value ⊥ is returned.

Definition 3.3.1. Function DeepArrange : T → Twf ∪{⊥}, where ⊥6∈ T , is such

that

DeepArrange(T) =

{
T ′ if T →∞ T ′

⊥ otherwise

30 Including spatiality

where relation →r is defined by:

T → I T ′ = Arrange(I, r) T ′ 6=⊥
T →r T ′ (3.15)

(S)d → {(S)d} (3.16)

T →r T ′ T ′ 6=⊥
(S)L〈p,r,m〉 cT → {(S)L〈p,r,m〉 cT ′}

(3.17)

T1 → I1 T2 → I2

T1 | T2 → I1] I2

(3.18)

The function DeepArrange simply walks down the containment hierarchy among

objects and calls, for each looping sequence, the function Arrange (see section 4.3)

with the multiset of all the parallel terms contained in the looping sequence and its

radius (which indicates the available space). Arrange may fail, returning ⊥, hence

a well-formed term is obtained only if the objects inside all looping sequences can

be successfully rearranged by function Arrange.

If there is not any conflict among the objects contained in set I, and between

those objects and the container, then function Arrange is assumed to return a term

representing the parallel of all the terms in I; that is, Arrange does not move any

object if there is not any conflict. This implies that DeepArrange, when applied to

a well-formed term T ∈ Twf , returns a well-formed term T ′ structurally congruent

to it, i.e. such that T ′ ≡ T .

3.4 Representing movement

To each object of the calculus, either a simple sequence or a looping sequence, is

associated a movement function that determines the autonomous movement of the

object while time passes. A movement function m : Rn×R∪{∞}×R+×R+ → Rn

calculates a destination position p′ as:

p′ = m(p, l, t, δt)

where p is the current position of the object, t is the current time and l is the

radius of the containing looping sequence, that constrains the possible destination

3.4 Representing movement 31

positions; δt is the amount of time that needs to pass after t.

Every movement function must satisfy the following property, that states that

a movement function must never yield a destination position that causes the object

to be beyond the limits of the containing membrane.

Property 3.4.1. Let m ∈ M be a movement function associated with an object

with radius r. Then:

∀p, l, t, δt. p′ = m(p, l, t, δt), ‖p‖+ r ≤ l ⇒ ‖p′‖+ r ≤ l (3.19)

Example 3.4.1 (Brownian motion). Brownian motion [32] identifies the irregular

and random movement, that can be observed for small particles immersed in a

fluid. This motion is due to the continuos collisions between the much smaller

molecules of the fluid and the particle observed: considered individually, the effect

of every single collision on the position of the particle observed is negligible but,

as a whole, it becomes visible.

From physics, if the kind of fluid and temperature are known, and assuming

that the particle is a small sphere with a certain radius, then the expected distance

r covered by the particle in a small time interval t can be calculated as:

r =
√

2 D t

D =
kB T

6 π η R

where kB is the Boltzmann constant. D, the diffusion coefficient, depends on:

• T , the current temperature;

• η, a constant that caracterizes the kind of fluid (but also depends on T);

• R, the radius of the particle.

The Brownian motion can hence be modelled by a movement function m1 that

depends only on current position p, and can return, with equal probability, every

position p′ whose distance from p is equal to r. It is worth noting that if some

values needed for calculating the distance r with above formulae are unknown, then

an estimated value may also be used; such value may be obtained, for example, by

experimenting.

32 Including spatiality

From an implementation point of view, first an angle α is chosen randomly,

with equal probability in the interval [0, 2π), and then the resulting position is

obtained moving from p along the direction given by angle α for a distance of r. If

the new position would be beyond the limits of the containing membrane, then,

for example, the distance covered could be the limited by maximum allowed along

the direction chosen.

Chapter 4

Formal semantics

This chapter presents, along with some supporting definitions, the formal semantics

of the calculus.

4.1 Support definitions

The evolution of a term representing a biological system is described by a proba-

bilistic transition system [28, 21], which is constructed according to a set of rewrite

rules R. For constructing the transition graph, given the term T representing the

system at a certain time, it is initially needed to determine which rewrite rules are

applicable, and how. This is done by the following functions.

Definition 4.1.1 (Applicable Rewrite Rules). Given a rewrite rule R : [fc] PL
k,f7→

PR and a term T , all the groud rules applicable to term T , along with the context

in which they can be applied, are contained in the following set of pairs:

AR(R, T) = { (T1
k,n7→ T2, C) |

∃τ ∈ T, σ ∈ Σ, C ∈ C.

P1 ∈ PLτ, P2 = PRτ, fc(τ) = tt,

T1 = P1σ, T1 6≡ λ, T2 = P2σ,

T ≡ C[T1], n = f(σ),

DeepArrange(C[T2]) 6=⊥ }

(4.1)

34 Formal semantics

The definition is extended to a set of rewrite rules R

AR(R, T) =
⋃

R∈R

(R, AR(R, T))

Function AR(R, T) takes as arguments a rule R and a term T , and computes a

set of pairs formed by (i) a ground rule, i.e. an instantiation of the original rewrite

rule, and (ii) a context. The left and right parts of the ground rule are obtained

by instantiating the corresponding patterns of the original rewrite rule; the ground

rule also carries, instead of the function f , the actual value got by its evaluation

over the instantiation function σ. The context identifies where the left part of the

rule occurs inside T .

A tuple can be contained in AR(R, T) only if the left part of the rewrite rule,

once instantiated, is not congruent to λ (T1 6≡ λ). This effectively forbids rewrite

rules in which the left part is empty, i.e. rules that could create objects from

nothing. Also, each tuple is contained in it only if a well-formed term can be

obtained after the application of the ground rule in its relative context; that is

DeepArrange(C[T2]) 6=⊥.

Example 4.1.1. Let R be a set of rewrite rules containing only the following

rewrite rules:

R1 : [fc] (a)u
k1,17→ (a)〈u,m〉

R2 : [f ′c] (a)u | (b)v
k2,17→ (c)〈u,m′′〉

for some rates r1 and r2, and where function f , for both rules, is the constant

function f(σ) = 1 (for clarity, they are denoted by 1). Consider also the following

term, (where m, m′ are given movement functions):

T =
(
(a)〈(1,1),0.3,m〉 | (a)〈(3,0),0.3,m〉

)
| (b)〈(3,3),0.3,m′〉

Intuitively, supposing that objects are close enough for reacting, each rule can be

applied in two different ways to T .

Rule R1 can be instantiated in two ways, while being applicable to T , giving

the following ground rules:

Rg1 = (a)〈(1,1),0.3,m〉
k1,17→ (a)〈(1,1),0.3,m〉

Rg2 = (a)〈(3,0),0.3,m〉
k1,17→ (a)〈(3,0),0.3,m〉

4.1 Support definitions 35

A context in which the ground rule Rg1 can be applied is:

C1 = (� | (a)〈(3,0),0.3,m〉) | (b)〈(3,3),0.3,m′〉

but it can also be applied in all other contexts that are structurally congruent to

C1 such as, for instance:

C2 = � | ((a)〈(3,0),0.3,m〉 | (b)〈(3,3),0.3,m′〉)

C3 = ((a)〈(3,0),0.3,m〉 | �) | (b)〈(3,3),0.3,m′〉

...

Let all these structurally congruent contexts be denoted by C1, · · · , C12. For the

other ground rule Rg2, there are another 12 syntactically different (but structurally

congruent) contexts, one of which is the following:

C13 = (� | (a)〈(1,1),0.3,m〉) | (b)〈(3,3),0.3,m′〉

The other contexts congruent to C13 are denoted by C14, · · · , C24.

To sum up, AR(R1, T) corresponds to the following set:

AR1 = AR(R1, T) = { (Rg1, C1), (Rg1, C2), . . . , (Rg1, C12),

(Rg2, C13), (Rg2, C14), . . . , (Rg2, C24) }

Similarly, considering rewrite rule R2, we obtain the following two ground rules:

Rg3 = (a)〈(1,1),0.3,m〉 | (b)〈(3,3),0.3,m′〉
k2,17→ (c)〈(1,1),0.3,m′′〉

Rg4 = (a)〈(3,0),0.3,m〉 | (b)〈(3,3),0.3,m′〉
k2,17→ (c)〈(3,0),0.3,m′′〉

Rg3 can be applied to the following context C25, while Rg4 can be applied to C27:

C25 = � | (a)〈(3,0),0.3,m〉

C27 = (a)〈(1,1),0.3,m〉 | �

There are also two other contexts: C26 congruent to C25, and C28 congruent to

C27. The set AR(R2, T) obtained is:

AR2 = AR(R2, T) = { (Rg3, C25), (Rg3, C26),

(Rg4, C27), (Rg4, C28) }

36 Formal semantics

and, finally, the set AR(R, T) is constructed prepending, to each tuple from sets

AR1 and AR2, the rewrite rule from which that tuple derives; that is:

AR(R, T) = {R1} × AR1 ∪ {R2} × AR2

Definition 4.1.2. The subset BT of AR(R, T) contains only one tuple (R,Rg, C)

for each tuple of AR(R, T) with the rewrite rule R, the same ground rule Rg and

with a context structurally congruent to C. Formally, BT is such that:

∀(R,Rg, C) ∈ AR(R, T).

∃!(R,Rg, C
′) ∈ BT . C ′ ≡ C

Example 4.1.2. Going on with previous example (4.1.1), a possible set BT , for

the given set of rewrite rules, is:

BT = { (R1, Rg1, C1), (R1, Rg2, C13),

(R2, Rg3, C25), (R2, Rg4, C27) }

Definition 4.1.3. Given the set BT and a well-formed term Tr ∈ Twf , the function

g(BT , T r) computes the set of all and only tuples of BT whose rules (and contexts)

lead to term Tr; formally:

g(BT , T r) = {(R, T1
k,n7→ T2, C) ∈ BT | DeepArrange(C[T2]) ≡ Tr}

Finally, the total number of reactions allowed in state T can be computed. Its

value is simply the sum, over all ground rules appearing in tuples of set BT , of the

value n associated with each ground rule; in fact, value n represents the number

of ways the reaction modelled by that ground rule can conceptually occur in the

left part of the ground rule.

Definition 4.1.4. Given a term T and a set BT , constructed from a set of rewrite

rules R, the total number of different reactions that can occur in T is:

mBT
=

∑
(R,T1

k,n7→T2,C)∈BT

n

4.2 Formal semantics 37

4.2 Formal semantics

The following definitions compute the probabilities that will be used for constructing

the probabilistic transition system. It is assumed the value N ∈ R+, which can be

chosen arbitrarly and must be such that:

∀R ∈ R. 0 < kR/N ≤ 1

where kR denotes the rate associated to rewrite rule R. Value N also determines

the maximum length of the time interval which is advanced after each step, which

is ∆t = 1/N .

Definition 4.2.1 (Probabilities). Let p be the probability of executing no reaction

in the next time interval δt = ∆t/mBT
, i.e.:

p = 1−
∑

(R,T1
k,n7→T2,C)∈BT

k/N

mBT

n

Given two terms T and Tr, the probability of reaching state Tr from T is:

P (T → Tr) =
∑

(R,T1
k,n7→T2,C)∈g(BT ,T r)

k/N

mBT

n +

p if T ≡ Tr;

0 otherwise.
(4.2)

Intuitively, if T 6≡ Tr, the probability P (T → Tr) is calculated as the sum

of all the probabilities coming from each rule application which lead to the same

term Tr. If Tr would have been congruent to T , then the probability P (T → T)

would also have included p, the one of not executing any reaction.

Example 4.2.1. Continuing with the ongoing example, the number of different

reactions allowed in state T is mBT
= 4. The probability P (T → Tr) can be

computed for each term Tr reachable from T . All the terms reachable from T are

obtained by at least one rule application, among those described by each tuple in

BT . Hence, the reachable terms are:

Tr1 =
(
(a)〈(1,1),0.3,m〉 | (a)〈(3,0),0.3,m〉

)
| (b)〈(3,3),0.3,m′〉 by (R1, Rg1, C1) ∈ BT ;

Tr2 =
(
(a)〈(3,0),0.3,m〉 | (a)〈(1,1),0.3,m〉

)
| (b)〈(3,3),0.3,m′〉 by (R1, Rg2, C13) ∈ BT ;

Tr3 = (c)〈(1,1),0.3,m′′〉 | (a)〈(3,0),0.3,m〉 by (R2, Rg3, C25) ∈ BT ;

Tr4 = (a)〈(1,1),0.3,m〉 | (c)〈(3,0),0.3,m′′〉 by (R2, Rg4, C27) ∈ BT .

38 Formal semantics

It is important to point out that terms Tr1 and Tr2 are structurally congruent

(Tr1 ≡ Tr2), and they are also structurally congruent to initial term T . Finally,

the probabilities of reaching each of the above terms from T are:

q1 = P (T → Tr1) = P (T → Tr2) =
k1/N

4
· 1 +

k1/N

4
· 1 + p

q2 = P (T → Tr3) =
k2/N

4
· 1

q3 = P (T → Tr4) =
k2/N

4
· 1

As it can be seen, since Tr1, T r2 ≡ T , probability q1 includes the probability p of

executing no reaction, whose value is:

p = 1−
(

2 · k1/N

4
+ 2 · k2/N

4

)
Semantics is given by a probabilistic transition system [28, 21], in which states

are represented as tuples in the form 〈T, t〉 or 〈T, t, δt〉; in both cases, T denotes

the congruence class (with respect to ≡) containing all term structurally congruent

to T .

Definition 4.2.2 (Semantics). Given a set of rewrite rules R, the semantics of

TCLS is the least relation satisfying the following inference rules:

(R, T1
k,n7→ T2, C) ∈ BT Tr ≡ DeepArrange(C[T2]) Tr 6≡ T

q = P (T → Tr) δt = 1/N
mBT

〈T, t〉 q−→ 〈Tr, t, δt〉
(4.3)

q = P (T → T) δt = 1/N
mBT

〈T, t〉 q−→ 〈T, t, δt〉
(4.4)

〈T, t, δt〉 ∞−→ T ′ T ′′ ≡ DeepArrange(T ′) T ′′ 6=⊥

〈T, t, δt〉 1−→ 〈T ′′, t + δt〉
(4.5)

〈T, t, δt〉 ∞−→ T ′ DeepArrange(T ′) =⊥

〈T, t, δt〉 1−→ 〈T, t + δt〉
(4.6)

4.2 Formal semantics 39

and where relation
l−→, used in inference rules 4.5 and 4.6, is the least relation

satisfying:

p′ = m(p, l, t, δt)

〈(S)〈p,r,m〉, t, δt〉
l−→ (S)〈p′,r,m〉

(4.7)

p′ = m(p, l, t, δt) 〈T, t, δt〉 r−→ T ′

〈(S)L〈p,r,m〉 cT, t, δt〉 l−→ (S)L〈p′,r,m〉 cT ′
(4.8)

〈T1, t, δt〉
l−→ T ′

1 〈T2, t, δt〉
l−→ T ′

2

〈T1 | T2, t, δt〉
l−→ T ′

1 | T ′
2

(4.9)

As it has already been explained in section 3.3, the semantics of the calculus

builds a probabilistic transition system, in which two kinds of state appear:

• 〈T, t〉: this state represents the phase in which at most one rewrite rule,

among those available in state T , can be applied to T ; transitions exiting

from this state are derived from inference rules 4.3 and 4.4, and each of them

represents the application of at most one rewrite rule.

• 〈T, t, δt〉: this kind of state is reached by every transition exiting from a

state 〈T, t〉; next transition, derived from rule 4.5 or 4.6, represents time

advancement and entailed movement of objects.

From rule 4.3 it can be derived one transition for each tuple in BT . Given

a tuple in BT , representing a rule application that leads up to term Tr (which

cannot be congruent to T), it can be derived a transition to Tr with probability

q = P (T → Tr). It could happen that the same transition could be derived in

different ways, when different tuples of BT represent applications that lead up

to the same term Tr. It is worth pointing out that DeepArrange(C[T2]), in the

premises of the rule, can never yield ⊥, because every tuple in AR(R, T) (which is

a superset of BT) is such that DeepArrange(C[T2]) 6=⊥ (see 4.1).

Rule 4.4 is used to derive the transition representing the situation in which

no reaction occurs in the time interval. Its probability is calculated as P (T → T)

and, as such, by definition 4.2 its value is the sum of p and of all the probabilities

coming from any rule application which leads to T .

40 Formal semantics

Rules 4.5 and 4.6, which are used to advance time by interval δt and moving

objects, use relation
l−→ defined by inference rules 4.7, 4.8, 4.9. Intuitively, these

three rules are used to compute new positions for all objects, by applying their

own movement function to their own positions: the obtained term (which may not

be well-formed) is denoted by T ′ in rule preconditions. Function DeepArrange is

applied to T ′ in order to rearrange the objects and obtain a well-formed term from

it. If function succeeds returning a well-formed term T ′′, then T ′′ will represent

the state of the system at advanced time t + δt; otherwise, for this time interval,

objects are kept in their positions.

Example 4.2.2. Continuing with previous example, figure 4.1 shows the initial

fragment of transition graph originated from state 〈T, 0〉, which represents term T

(from example 4.1.1) at time t = 0. There are three transitions exiting from state

〈T, 0〉, each one derived from a different tuple of BT . Their probabilities, q1, q2, q3,

are the ones calculated previously (example 4.2.1).

Figure 4.1: An example transition system.

4.3 Arranging objects

The Arrange algorithm is used to arrange all the objects contained in a looping

sequence, in order to avoid collisions. Formally, Arrange takes two parameters:

1. a multiset I of terms, each of them corresponding to a single object (a simple

sequence or a looping sequence) contained in the looping sequence;

2. a value l ∈ R representing the radius of the looping sequence in which the

objects I are contained.

4.3 Arranging objects 41

In the following, it is assumed that p1, . . . , pk denote the initial positions of the

objects, r1, . . . , rk denote their radii and l is the radius of the container.

The problem is modelled by assuming an instant velocity associated with each

object, whose direction and speed depends on the instant position of every object.

Intuitively, these velocity are calculated considering the overlaps between each pair

of objects and the collisions between each object and the containing membrane, so

as to reduce the amount of conflicts. Precisely, given an object, the velocity it is

subjected to is calculated as follows:

• for each other object it overlaps with, it is assumed a velocity directed

opposite to the other object (the objects are trying to increase their distance)

and whose magnitude is proportional to the length of the overlap; as such,

the velocities due to a collision between two objects have the same magnitude

for both of them.

• if the object collides with the border of the containing membrane, then

a velocity directed towards the centre of the membrane is assumed; its

magnitude will be proportional to the amount of the collision.

The conditions intuitively presented above can be modelled by the following

system of differential equations, where xi(t) denotes the position of object i at

time t:

dx1

dt
=

k∑
j=2

(
s1j

x1 − xj

‖x1 − xj‖

)
− u1

x1

‖x1‖
...

dxi

dt
=

k∑
j=1
j 6=i

(
sij

xi − xj

‖xi − xj‖

)
− ui

xi

‖xi‖

...

dxk

dt
=

k−1∑
j=1

(
skj

xk − xj

‖xk − xj‖

)
− uk

xk

‖xk‖

(4.10)

and where sij is the length of the overlap between the two objects i and j, and ui

is the amount of collision between an object i and its containing membrane. Their

42 Formal semantics

values are defined by:

sij = max{0, ri + rj − ‖xi − xj‖} (4.11)

ui = max{0, ri + ‖xi‖ − l} (4.12)

4.3.1 The algorithm

The Arrange algorithm is composed of two phases:

1. the objects are positioned in their initial positions, then their movement

is simulated according to the system of differential equations 4.10; the

simulation terminates when the objects stop moving, that is when the speed

of each object becomes smaller than a constant value ε > 0;

2. the arrangement obtained is checked to determine if there is still some

collision: if there are none then the algorithm terminates returning the new

arrangement, otherwise the algorithm fails returning the special value ⊥.

It is important to note that, during algorithm execution, it may happen that some

velocities cannot be calculated. This happens in the following two situations:

1. two objects are in the same position;

2. an object bigger than the container is in its centre.

In the first case, the objects are moved along a fixed arbitrary direction. The

second can simply be avoided by checking, before staring the algorithm, that the

radius of every object is less than the one of the containing membrane since, if

there is one, it can never be fully contained. Finally, it is worth noting that the

second case can only happen if the contained object is bigger than the container;

in fact, if it would be smaller, it would not collide with the container (because it is

positioned in the centre of the container).

Example 4.3.1. Figure 4.2(a) shows two objects, whose centres are denoted by

x1 and x2, that are contained in a bigger object (only partially shown). Object

x2 overlaps only with object x2, and the amount of collision is s12, while object

4.3 Arranging objects 43

(a) (b)

Figure 4.2: (a) An illustration of the not well-formed term from example 4.3.1,

with highlighted the lengths of the two collisions; (b) the velocities associated with

the objects.

x1 also collides with the containing membrane, and in this case the amount of

collision is u1.

In figure 4.2(b) are shown the resulting velocities, v1 and v2, to which the

objects are subjected to. As it can be noted, velocity v1 derives from the sum of

two velocities, the one due to the overlap with sibling object x2, and the one due

to collision with the containing membrane.

Example 4.3.2. This example shows a particular case in which the algorithm fails

in finding a valid arrangement of the objects. The objects are initially positioned

over the same line, as illustrated in figure 4.3(a). During the execution of the

algorithm, the objects are moved only along the line so, since there is not enough

space to put them side-by-side along the line, the algorithm eventually stops

returning failure. This behaviour is correct, and an arrangement like the one

shown in figure 4.3(b) could only be obtained if at least one of the object was

not exactly positioned over the same line as the other objects. Finally, it’s useful

noting that, if the objects move (for example, by Brownian motion), then this case

is extremely rare; also, the movement avoids that the objects may remain blocked

forever.

44 Formal semantics

(a) (b)

Figure 4.3: (a) A particular case in which the algorithm fails in finding a valid

arrangement of the objects (from example 4.3.2), because the objects are positioned

along the same line; (b) a possible arrangement that can be obtained only if not all

the objects are along the same line.

4.4 Mean number of reactions

In this section, it will be shown that, for particular types of rewrite rules and when

objects do not move, the mean number of reactions occurring in one time unit is

equal to:

kµ nRµ

where kµ denotes the rate of the raction and nRµ denotes the number of ways the

reaction can occur in the system. Specifically, it is assumed that:

1. The set of rewrite rules is such that, when a rule can be applied to a term,

then the resulting term is the same (or at least structurally congruent to it);

that is, even if a rule is applicated to the term representing the system, the

system itself does not change. Formally, the set of rewrite rules R must be

such that:

∀
(
[fc] PL

k,f7→ PR

)
∈ R.

∀τ ∈ T, σ ∈ Σ, T ∈ Twf . T ∈ (PLτ)σ ⇒ (PRτ)σ ≡ T

The rewrite rules contained in R are denoted by R1, . . . RM .

4.4 Mean number of reactions 45

2. Each object in system T does not move, that is its movement function m0 is

such that:

∀p, l, t, δt. m0(p, l, t, δt) = p

The transition graph obtained for term T , since at each step the term repre-

senting the system is always the same, is:

〈T, 0〉 1−−−−→ 〈T, 0, δt〉 1−−−−→ 〈T, 1δt〉 1−−−−→ 〈T, 1δt, δt〉 1−−−−→ 〈T, 2δt〉 · · ·

At each step, time is always advanced by the same amount δt = ∆t
mBT

.

Given a state 〈T, iδt〉 and a rule Rµ, the probability that rule Rµ will be

applied in the next time interval δt is independant of the exact time iδt considered.

Its value can be calculated as the sum of the probabilities deriving from each

application of Rµ, each of one is described by a tuple in BT . Hence, its value,

denoted by pµ, is equal to:

pµ =
∑

(Rµ,T1
k,n7→T2,C)∈BT

kµ/N

mBT

n

Let Yt be a random variable representing the reaction occurred at time t, for

t ∈ {0, 1δt, 2δt, 3δt, . . .}, defined as:

Yt =

µ if at time t reaction Rµ occurs, µ ∈ {1, . . . ,M}

0 if no reaction occurs at time t

The probability of executing a given reaction Rµ is independent of time, and equals

to pµ defined earlier; that is P (Yt = µ) = pµ.

Let Xµ be another random variable representing the number of reactions of

type Rµ which occur in one time unit. Xµ can be seen as counting the number of

successes in a sequence of independent success/failure experiment, in which the

outcomes of each experiment in the sequence represent the execution, or not, of

reaction Rµ at that step. Thus, Xµ follows a binomial distribution, whose success

probability is pµ and whose number of experiments is N mBT
, because each time

unit consists of such number of steps.

Finally, the mean number of reactions of type Rµ occurring in one time unit,

is represented as the expected value of Xµ, which is:

E[Xµ] = N mBT
pµ = kµ nRµ

46 Formal semantics

where nRµ denotes the number of different ways in which a reaction of type Rµ

can occur:

nRµ =
∑

(Rµ,T1
k,n7→T2,C)∈BT

n .

Chapter 5

Modelling cell cycle

This chapter shows the use of the Topological CLS to model the cell cycle in the

eukaryote cells, this being the sequence of events which leads to the duplication of

a mother cell into two sister cells. The model has been used for simulating, using

a prototypical simulator, the proliferation of cells in a limited space.

5.1 The cell

Cells represent the main units of which living beings are made. Cells have an

independent life and are able to undertake many activities, like, for example,

undertaking metabolic processes (e.g. production of proteins) and responding to

external stimuli. The instructions required to execute these activities are contained

within the chromosomes (which are constituted by DNA molecules), and whose

number may vary among different types of cells. Most cells are also able to

reproduce themselves by a cell division, in which a mother cell generates two

daughter cells.

Cells are separated from the external world by the cell membrane, that enables

the interaction with other cells by allowing messages to pass through itself. Within

the membrane there are several organelles scattered in the cytoplasm, whose

characteristics depend on the cell type. In particular, there are two cell types:

• Prokaryotic cells: they form only unicellular beings, and are the simplest

ones; their internal structure is characterized by the absence of a nucleus

48 Modelling cell cycle

(the genetic material lies around in the cytoplasm).

• Eukaryotic cells : they have a complex internal structure; in particular, there

is a nucleus containing the chromosomes, which form the genetic material

(figure 5.1).

Figure 5.1: An eukaryotic cell.

5.1.1 Cell cycle

Cell cycle [5] represents the sequence of phases which happen within the cell,

leading to its division into two daughter cells, structurally alike to the mother cell.

Customarily, cell cycle repeats for every generated cell but, in particular cases,

the cell may decide to stop the process in a permanent or temporary way. For

example, the process may be stopped temporarily in the event of unfavourable

ambient conditions.

Cell cycle comprises the following two phases:

1. interphase, is the period of time between two subsequent divisions, when a

cell grows and duplicates its internal structures (in particular, this phase

includes the replication of chromosomes);

2. mitosis phase (M), when the nuclear division occurs and the division of the

cell membrane (cytokinesis) generates two cells, both with their own nuclei.

The mitosis phase is briefer than the interphase.

5.2 The model 49

Interphase itself consists of 3 phases:

1. G1 phase: the cell grows in size until it reaches the necessary size to start

the division. During this phase the cell may stop its cell cycle entering a

quiescent G0 phase, in which it may remain indefinitely or temporarily;

2. S phase (synthesis): during this period DNA, which is inside chromosomes,

is duplicated; in particular from every chromosome there will originate two

brother chromosomes;

3. G2 phase: period of preparation for the following mitosis phase (M).

The duration of the various phases is not fixed, and in particular the G1 phase

is the one which may involve the most variability among the different cell types.

Moreover, the mitosis phase is usually quite short in respect to the complete cell

cycle. Finally, with respect to size, eucariotic cells usually range from 10µm to

100µm ([5]).

5.2 The model

The model of cell cycle that has been developed represents every cell as a membrane

which contains the nucleus, which, in turn, contains the chromosomes. Only the

characteristic elements involved in cell division have been covered, as they are

useful for illustrating cell proliferation. This excludes the other components of the

cell that do not have a central role in the process of replication.

The model describes the replication and proliferation of cells developing on a

plain substrate, of limited size, and where the cells continue to duplicate as long as

there is some space available. The objects are represented, therefore, as circles in

space R2. When the cells occupy all the available space, they enter the quiescent

phase (G0 phase), stopping the cell cycle. They could re-enter into the cell cycle if

some space becomes free, e.g. by removing some cells.

Different lengths of cell cycle characterize different kinds of cells. For simplicity,

the model has been made assuming a total length of cell cycle process of about 24

hours, so partitioned (figure 5.2): G1 phase 9h, S phase 8h, G2 phase 4h, M phase

3h. The cell may also potentially enter into quiescent phase G0 after 7h. from

50 Modelling cell cycle

the beginning of G1 phase. The length of the various phases have been estimated

according to their common relative lengths ([5]).

Figure 5.2: The phases that compose cell cycle.

5.2.1 Description

Cell membrane is modelled by a looping sequence (m)L , where the elementary

constituent m denotes the whole membrane. Inside it, there is the nucleus, modelled

by the looping sequence (n)L or (nd)
L . The two symbols n and nd provide the

ability to distinguish two different states in which the nucleus may be: n indicates

that the nucleus has not yet started the duplication process, while nd indicates

that it is about to divide itself. The nd status is kept during the entire phase of

duplication of the chromosomes, until the division of the nucleus.

Finally, inside the nucleus there are the chromosomes, modelled as simple

sequences of the form (cr·g1·g2·g3), where the gis represent generic genes. Different

chromosomes may have different number of genes. A duplicated chromosome is

represented in a similar way to a normal chromosome, except that the first element

of the sequence is cr2, and therefore it is in the form (cr2 · g1 · g2 · g3).

During system evolution, cells may change their size. In particular in the model

cells have three different sizes, depending on their state, which have been chosen

according to the usual size of an eukariotic cell. In detail:

5.3 Formalization 51

• one cell in G1 phase of its cell cycle, for which the duplication process has

not yet started, has a size of 10µm;

• when a cell begins the duplication process, therefore near the end of the G1

phase, its size grows to 14µm;

• after the division, that is at the end of M phase, the two sister cells have a

size of 7µm; this size grows during the first part of the G1 phase up to 10µm.

To simplify the model, the nucleus always keeps the same size of 3µm, even after

nuclear division. Chromosome size is 0.1µm (their position and size are not relevant

for the purposes of the model).

In regard to object movement, only the whole cells are subject to Brownian

motion, denoted by the movement function m1 (see example 3.4.1). The nucleus

and the chromosomes are, by contrast, considered motionless: as the purpose of the

model is to underline the proliferation of cells in a limited space, it is unimportant

to know their exact positions inside the cell and representing their movement. The

Brownian motion of the cells, which is very small, is by contrast useful in order to

obtain new placements of cells, which permit the growth of cells previously stopped

because of lack of space. Also, Brownian motion avoids that system evolution

could stop completely when situations analogous to that shown in example 4.3.2

occur.

For the nucleus and the chromosomes, as it is assumed that they do not move,

the movement function associated with them, denoted by m0, is such that:

∀p, l, t, δt. m0(p, l, t, δt) = p .

5.3 Formalization

The initial state of the biological system is described by the following term:

T = (b)L〈(0,0),50,m0〉 c (m)L〈(0,0),10,m1〉 c (n)L〈(0,−6),3,m0〉 c
((cr · g1 · g2 · g3)〈(−1,0),0.1,m0〉 | (cr · g4 · g5)〈(−1,0),0.1,m0〉)

(5.1)

Looping sequence (b)L , in which the single cell is contained, allows the repre-

sentation of the limited space within which the proliferation may take place. In

particular the available space corresponds to a circle with a 50µm radius.

52 Modelling cell cycle

Looping sequence (m)L represents the single cell positioned in (0, 0) and with a

radius of 10µm, which indicates that it is in the G1 phase and has not yet started

the duplication process. Inside it there is the nucleus (n)L , which contains, in

turn, two chromosomes: (cr · g1 · g2 · g3) and (cr · g4 · g5).

5.3.1 Rewrite rules

The evolotion of the system is modelled by the following rewrite rules:

R1 : [r = 7] (m)L〈p,r〉 cX
0.337→ (m)L〈p,10,m1〉 cX

R2 : [r = 10] (m)L〈p,r〉 cX
0.257→ (m)L〈p,14,m1〉 cX

R3 : [r = 14] (m)L〈p,r〉 c (n)Lu cX
0.57→ (m)L〈p,r,m1〉 c (nd)

L
〈u,m0〉 cX

R4 : (nd)
L
u c ((cr · x̃)v | X)

0.1257→ (nd)
L
u c ((cr2 · x̃)v | X)

R5 : (nd)
L
〈(x,y),r〉 c ((cr2 · x̃1)v1 | (cr2 · x̃k)vk

)
0.177→

(n)L〈(x−3,y),r,m0〉 c ((cr · x̃1)〈v1,m0〉 | (cr · x̃k)〈vk,m0〉) |
(n)L〈(x+3,y),r,m0〉 c ((cr · x̃1)〈v1,m0〉 | (cr · x̃k)〈vk,m0〉)

R6 : (m)L〈(x,y),r〉 c ((n)Lu cX | (n)Lv cY)
17→

((m)L〈(x−5,y),7,m1〉 c (n)L〈u,m0〉 cX) |
((m)L〈(x+5,y),7,m1〉 c (n)L〈v,m0〉 cY)

The rates associated to each rewrite rule are expressed assuming a 1 hour time

unit and a value of N = 1, so ∆t = 1.

The first three rules model phase G1 of cell cycle, rule R4 models phase S

and the last two rules model phases G2 and M . The rates associated with the

rules express the expected number of reactions occurring in each time interval ∆t,

when the rule is applicable. As such, a rule with rate r occurs, on average, every

∆t/r = 1/r hours (as long as it is applicable).

Rule R1 models the first part of phase G1, in which the cell grows after being

created from its parent cell in phase M . R1 can be applied only to a cell whose

radius is 7, and increases it to 10. Its rate is 0.33, which means that this growth is

expected to last for about 3 hours.

Rule R2 also increases the radius of the cell, this time from 10 to 14. The growth

to 14 means that the division process has started, and the cell will eventually

5.3 Formalization 53

divide. It is expected to last for about 4 hours. A cell blocked in phase G0, that

cannot grow, is represented by a cell to which neither rule R1 nor R2 can be applied

but only because there is not enough space for the bigger cell.

The application of rule R3 signals the start of the division process for the

nucleus, hence it represents the last part of phase G1, from which the cell reaches

phase S. The rule states that if the cell contains exactly one nucleus in its normal

state (n)L , then the nucleus may change state becoming (nd)
L . Its expected

duration is about 2h.

Rule R4 models chromosome replication which happens during phase S of cell

cycle. In particular, it states that if a nucleus (nd)
L that has started replication

contains a simple sequence such as (cr · x̃) then that sequence may become (cr2 · x̃).

(cr2 · x̃) models the replicated chromosome. The associated rate is 0.125, meaning

an expected duration of about 8 hours.

The next rule, R5, models the division of the nucleus into two nuclei. This

happens only when all chromosomes have been replicated. In fact, in order to be

applicable, the nucleus must contain exactly two duplicated chromosomes1. The

two nuclei obtained are like (n)L , which means that they are not going to replicate

further before cell division. This rule represents phase G2 and the initial part of

phase M , and as such its rate is 0.17, meaning an expected duration of 6 hours.

Finally, rule R6 models cytokinesis, which takes place as the last operation

during phase M , and from which two daughter cells originate. The rule states that

if the cell contains two nuclei, then two distinct, smaller, looping sequences (m)L

(with radius 7) can be obtained, both of which include only one of the two nuclei.

This process is expected to last for about 1 hour.

5.3.2 Extending the model

In the model presented, nuclei inside the cells do not move, and their division

occurs in a single step. Actually, the division of a nucleus into two nuclei involves

the following steps:

1. after the chromosomes have been duplicated, the nuclear membrane dissolves;

1If nucleus would have had a different number of chromosomes, then that number of chromo-

somes would have appeared in the rule.

54 Modelling cell cycle

2. each duplicated chromosome is divided into two chromatid (single chromo-

somes, i.e. not duplicated), then each of two brother chromatids moves

towards opposite positions of the cell;

3. a nuclear membrane is created around each group of single chromosomes,

thus originating two distinct nuclei.

Finally, the process continues with the citokinesis.

As an example, the model can be extended by associating a motion to the

nuclei. In particular, after nuclear division (modelled by rule R5), each nucleus

starts moving towards opposite positions of the cell. Then cytokinesis (modelled

by rule R6) only happen when the two nuclei are sufficiently distant.

This behaviour can be modelled by associating a different movement function

to the nuclei which generated with rule R5, and by constraining the applicability

of rule R6 according to the positions of the nuclei. The movement functions for

the nuclei, denoted by mW and mE, model a linear motion, with constant speed v,

directed towards, repectively, the two opposite positions qW and qE inside the cell

(figure 5.3), defined as:

qW = (−l + 4, 0)

qE = (l − 4, 0)

where l = 14 is the radius of the container membrane. The distance between qW

and qE is 20, while the distance from the membrane, for both positions, is 4. The

updated rules are:

R′
5 : (nd)

L
〈(x,y),r〉 c ((cr2 · x̃1)v1 | (cr2 · x̃k)vk

)
0.177→

(n)L〈(x−3,y),r,mW 〉 c ((cr · x̃1)〈v1,m0〉 | (cr · x̃k)〈vk,m0〉) |
(n)L〈(x+3,y),r,mE〉 c ((cr · x̃1)〈v1,m0〉 | (cr · x̃k)〈vk,m0〉)

R′
6 : [‖p1 − p2‖ ≥ 19]

(m)L〈(x,y),r〉 c ((n)L〈p1,r1〉 cX | (n)L〈p2,r2〉 cY)
r67→

((m)L〈(x−5,y),7,m1〉 c (n)L〈u,m0〉 cX) |
((m)L〈(x+5,y),7,m1〉 c (n)L〈v,m0〉 cY)

Constraint for rule R′
6 specifies that it becomes applicable as soon as the distance

between the nuclei becomes greater than 19.

5.4 Simulation 55

Figure 5.3: The movement function for the nuclei.

The following function, used for defining mW and mE, computes the new

position reached from position p after a δt-long time interval, assuming a constant

velocity directed towards position q.

m′(p, q, δt) =

q if v δt ≤ ‖q − p‖

v δt
q − p

‖q − p‖
if v δt > ‖q − p‖

where v denotes the constant speed of the motion. Finally, functions mW and mE

can be defined as:

mE(p, l, t, δt) = m′(p, qE, δt)

mW (p, l, t, δt) = m′(p, qW , δt)

Finally, it is useful to point out that the rate r6 for rule R′
6 has to be increased

from the value 1 of rule R6, since it does no more include the time spent while

nuclei are moving. Therefore, the speed of the nuclei v and the rate of rule r6

must be chosen such that the expected time spent from the division of the nucleus

to the citokinesis is still 1 hour, which is the time that R6 was expected to last for.

5.4 Simulation

The TCLS model of cell cycle, presented in the previous section, has been used

to simulate, using a prototypical simulator, the evolution of the biological system

56 Modelling cell cycle

represented by term T from 5.1. The simulator is able to give a graphical represen-

tation of any well-formed term, and as such it has been used to obtain a graphical

representation of the biological system after each simulation step (that is, after

each time advancement).

Figure 5.4 shows the evolution of the system at certain times during the

beginning of the simulation. In particular, figure 5.4(a) shows the initial status.

The outer circle represents the limiting membrane, which contains a single circle

representing the only cell. Inside the cell there is the nucleus, within which the two

chromosomes can be found. The next figure (5.4(b)) shows the cell when it has

already increased its radius to 14 and it has just replicated one of its chromosomes.

Cell, nucleus and chromosomes are painted in different colours to highlight these

changes: the bigger cell is red; the nuclues that has started its division process is

orange; normal chromosomes are red; duplicated chromosomes are blue. Figure

5.4(c) represents the system when mitosis has just happened; the two nuclei are

painted green, indicating their normal state (i.e. they are not going to replicate

again during this cycle). Figure 5.4(d) shows the two daughter cells the have been

generated, hence the first cell cycle is completed. Cell cycle then recommences for

both cells, and in the last two figures (5.4(e) and 5.4(f)), the right cell can be seen

growing and starting its replication process, while the other cell has not grown yet.

5.4.1 Results

The graph in figure 5.5 shows how the number of cells increases as time passes.

This simulation shows a slow proliferation during the first 75 hours, then almost

constant growth is achieved, until it completely stops after about 140 hours.

Figure 5.6(a) shows the graphical representation of the system near time 102.

It can be seen that the space available is almost full and, intuitively, there are

8 cells which cannot grow because there is no room for expansion. These cells,

whose cycle is blocked because the space for growing is not sufficient, can easily

re-enter the cycle as some space is freed, as it will happen when other cells divide.

For example, in figure 5.6(b), the cell indicated by the arrow is one of the cells

that were blocked from time 102. At time 107, as the bigger central cell divides,

the pointed cell eventually re-enters cell cycle (figure 5.6(c)), when it grows and

5.4 Simulation 57

(a) t = 0 (b) t = 6h

(c) t = 15h (d) t = 16h

(e) t = 20h (f) t = 25.667h

Figure 5.4: The graphical representation of the system at certain times during

the beginning of the simulation.

58 Modelling cell cycle

0 24 48 72 96 120 144

0

2

4

6

8

10

12

14

16

18

20

22

24

Figure 5.5: A graph showing the number of cells in the system as time passes.

starts the division process.

Cell proliferation definitely stops at time 141 (figure 5.6(d)) when the cell cycle

of all cells is blocked because they cannot grow. As it is capable of being noted, in

this case there are 9 cells that have not yet reached the normal size, but their size

is still the one obtained just after division.

5.4 Simulation 59

(a) t = 102h (b) t = 107h

(c) t = 108h (d) t = 141h

Figure 5.6: The graphical representation of the system at certain times during

simulation.

Chapter 6

Conclusions

This thesis has presented the Topological Calculus of Looping Sequences (TCLS),

an extension of the CLS that deals explicitly with space and time, and allows a

faithful representation of those biological processes where knowing the position of

the elements plays a central role in describing their dynamics. In particular, every

object described in TCLS is represented as a hard-sphere with a definite position

in space. Objects may also move autonomously as time passes and they are able

to react when given conditions involving their positions are satisfied; for instance,

an object contained inside a membrane may react with the membrane itself only

when it is sufficiently close to it. Since objects are represented as hard-spheres,

conflicts among them may arise and these are resolved by assuming that objects

push each other if they occur to be too close.

Topological CLS, as for CLS, is based on term rewriting, so its models are

described by a term, representing the biological system, and a set of rewrite

rules for modelling reactions. Each rewrite rule is also enriched with a parameter

specifying its rate, which represents the speed of the reaction described by the rule.

The semantics of the calculus has been given by a Probabilistic Transition System,

in which each state represents the status of the biological system at a certain time.

Finally, as an example application, a TCLS model of cell cycle has been

presented and this has been used for simulating the proliferation of cells in a

limited space.

As a future work, it would be useful to develop an efficient and complete

simulator of TCLS which would make it possible to describe systems in its full

62 Conclusions

syntax. Nevertheless, to obtain an efficient simulator, it is likely to be necessary

to restrict the permitted movement functions and to restrict the type of functions

which constrain rule application; this would permit the limitation of the space in

which the object may have some effect during a time interval of a certain length.

Another approach could be considered for the development of a simulator for

TCLS, which involves the use of a multi-agent system to simulate the evolution

of the biological system. This approach has been already studied in the Orion

Framework [4], which permits the simulation of metabolic pathways. A multi-agent

system consists of computational units, called agents, which are autonomous and

independent from one another but able to interact among themselves. The Orion

Framework is based on Hermes [12], an agent-based middleware. In Orion, each

molecule composing the system is represented as an agent; moreover, there is also

an agent representing the environment (a three-dimensional space) within which

the molecules can move. A reaction between an enzyme and a metabolite is then

represented by an interaction between the two agents involved, while the movement

of a molecule involves an interaction with the agent representing the environment.

A simulator for TCLS could construct, given a term and a set of rewrite rules, a

group of agents, where each agents simulates a portion of the system (for instance,

it could represent a looping sequence, either with or without the contained objects).

The workflow of each agent would be determined by the interaction capabilities of

the portion of the system it simulates, i.e. it would be determined by the given set

of rewrite rules. In this way, we could hence obtain a simulator for TCLS which

exploits the inherent scalability of an agent-based approach.

Another interesting aspect to be investigated involves the ability to abstract

some portions of the system if knowing the exact positions of the objects is

unnecessary. This may involve developing an extension of TCLS which deeply

integrates SCLS; for example, this would allow to abstract the content of a looping

sequence as a SCLS term, hence avoiding the need to represent exactly, during

time passage, the position and movement of the objects contained.

Bibliography

[1] The BioSPI Project. http://www.wisdom.weizmann.ac.il/∼biospi/.

[2] The Stochastic Pi Machine (SPiM). http://research.microsoft.com/

∼aphillip/spim/.

[3] R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin,

and J. Schug. Hybrid Modeling and Simulation of Biomolecular Networks.

Lecture Notes in Computer Science, 2034:19–32, 2001.

[4] M. Angeletti, A. Baldoncini, N. Cannata, F. Corradini, R. Culmone, C. For-

cato, M. Mattioni, E. Merelli, , and R. Piergallini. Orion: A spatial multi agent

system framework for computational cellular dynamics of metabolic pathways.

In Bioinformatics ITalian Society (BITS), Lecture Notes in Computer Science,

pages 234–270, 2006.

[5] C. J. Avers. Molecular Cell Biology. Addison-Wesley, 1986.

[6] P. Baldi. Calcolo delle probabilità e statistica. McGraw-Hill, second edition,

1998.

[7] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, P. Tiberi, and A. Troina.

Stochastic Calculus of Looping Sequences for the Modeling and Simulation of

Cellular Pathways.

[8] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. An Alternative

to Gillespie’s Algorithm for Simulating Chemical Reactions. In Computational

Methods in Systems Biology, 2005.

http://www.wisdom.weizmann.ac.il/~biospi/
http://research.microsoft.com/~aphillip/spim/
http://research.microsoft.com/~aphillip/spim/

64 BIBLIOGRAPHY

[9] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. A Calculus

of Looping Sequence for Modelling Microbiological Systems. Fundamenta

Informaticae, 72(1-3):21–35, 2006.

[10] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Bisimulation

Congruences in the Calculus of Looping Sequences. In International Collo-

quium on Theoretical Aspects of Computing, volume 4281 of Lecture Notes in

Computer Science, pages 93–107. Springer, 2006.

[11] L. Cardelli. Brane Calculi. Interactions of Biological Membranes. Lecture

Notes in Computer Science, 3082:257–280, 2005.

[12] F. Corradini and E. Merelli. Hermes: Agent-Based Middleware for Mobile

Computing. In Formal Methods for Mobile Computing, Lecture Notes in

Computer Science, pages 234–270, 2005.

[13] M. Curti, P. Degano, C. Priami, and C. T. Baldari. Modelling biochemical

pathways through enhanced π-calculus. Theor. Comput. Sci., 325(1):111–140,

2004.

[14] V. Danos and C. Laneve. Formal molecular biology. Theor. Comput. Sci.,

325(1):69–110, 2004.

[15] D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions.

The Journal of Phisical Chemistry, 81(25), 1977.

[16] M. John, R. Ewald, and A. M. Uhrmacher. A Spatial Extension to the

π-Calculus. To appear, 2007.

[17] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model

Checking with PRISM: A Hybrid Approach. International Journal on Software

Tools for Technology Transfer (STTT), 6(2):128–142, 2004. http://www.

prismmodelchecker.org/.

[18] H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri Net Repre-

sentation of Gene Regulatory Network. Pacific Symposium on Biocomputing,

pages 341–352, 2000.

http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/

BIBLIOGRAPHY 65

[19] P. Milazzo. Qualitative and Quantitative Formal Modeling of Biological

Systems. PhD thesis, Università di Pisa, 2007.

[20] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, 1999.

[21] G. E. Monahan. A Survey of Partially Observable Markov Decision Processes:

Theory, Models, and Algorithms. Management Science, 28(1):1–16, 1982.

[22] X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process

Algebras. In Proceedings of the Real-Time: Theory and Practice, REX

Workshop, 1991.

[23] G. Paun. Membrane Computing: An Introduction. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2002.

[24] D. Prandi, C. Priami, and P. Quaglia. Process Calculi in a Biological Context.

Bulletin of the EATCS, 85:53–69, 2005.

[25] C. Priami. Stochastic π-Calculus. The Computer Journal, 38(7):578–589,

1995.

[26] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. Lecture

Notes in Computer Science, 3082:20–33, 2005.

[27] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic

name-passing calculus to representation and simulation of molecular processes.

Information Processing Letters, 80(1):25–31, October 2001.

[28] M. O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–245,

1963.

[29] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAm-

bients: an abstraction for biological compartments. Theor. Comput. Sci.,

325(1):141–167, 2004.

[30] A. Regev and E. Y. Shapiro. Cells as Computation. In CMSB ’03: Proceedings

of the First International Workshop on Computational Methods in Systems

Biology, pages 1–3, London, UK, 2003. Springer-Verlag.

66 BIBLIOGRAPHY

[31] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of

biochemical processes using the pi-calculus process algebra. Pacific Symposium

on Biocomputing, pages 459–470, 2001.

[32] S. Rosati. Fisica generale. Casa editrice Ambrosiana, second edition, 1994.

[33] S. Ross. Stochastic Processes. John–Wiley, 1983.

[34] D. P. Tolle and N. L. Novère. Particle-Based Stochastic Simulation in Systems

Biology. Current Bioinformatics, 2006.

	Title
	Riassunto
	Summary
	Contents
	Introduction
	Including space and time
	Related calculi
	Structure of the thesis

	The Calculus of Looping Sequences
	The Calculus of Looping Sequences
	Specifying interactions
	Rewrite rules

	Stochastic CLS

	Including spatiality
	Definition of the calculus
	Specifying interactions
	Patterns
	Rewrite rules

	Informal semantics
	Transition system
	Resolving physical overlaps

	Representing movement

	Formal semantics
	Support definitions
	Formal semantics
	Arranging objects
	The algorithm

	Mean number of reactions

	Modelling cell cycle
	The cell
	Cell cycle

	The model
	Description

	Formalization
	Rewrite rules
	Extending the model

	Simulation
	Results

	Conclusions
	Bibliography

