
Università degli Studi di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

Master Degree Thesis

Development of a

Stochastic Simulator for Biological Systems

Based on the Calculus of Looping Sequences

Candidate

Guido Scatena

Advisor

Dr. Antonio Cisternino

Advisor

Dr. Paolo Milazzo

Opponent

Dr. Laura Semini

Academic Year 2006/2007

”The story so far :
In the beginning the Universe was created.
This has made a lot of people very angry and been
widely regarded as a bad move. . . ”

The Restaurant at the End of the Universe
Douglas Adams

iv

Abstract

Molecular Biology produces a huge amount of data concerning the behavior of the

single constituents of living organisms. Nevertheless, this reductionism view is not

sufficient to gain a deep comprehension of how such components interact together

at the system level, generating the set of complex behavior we observe in nature.

This is the main motivation of the rising of one of the most interesting and recent

applications of computer science: Computational Systems Biology, a new science

integrating experimental activity and mathematical modeling in order to study the

organization principles and the dynamic behavior of biological systems.

Among the formalisms that either have been applied to or have been inspired by

biological systems there are automata based models, rewrite systems, and process

calculi.

Here we consider a formalism based on term rewriting called Calculus of Looping

Sequences (CLS) aimed to model chemical and biological systems. In order to quan-

titatively simulate biological systems a stochastic extension of CLS has been de-

veloped; it allows to express rule schemata with the simplicity of notation of term

rewriting and has some semantic means which are common in process calculi.

In this thesis we carry out the study of the implementation of a stochastic sim-

ulator for the CLS formalism. We propose an extension of Gillespie’s stochastic

simulation algorithm that handles rule schemata with rate functions, and we present

an efficient bottom–up, pre–processing based, CLS pattern matching algorithm.

A simulator implementing the ideas introduced in this thesis, has been developed

in F#, a multi–paradigm programming language for .NET framework modeled on

OCaml. Although F# is a research project, still under continuous development,

it has a product quality performance. It merges seamlessly the object oriented,

the functional and the imperative programming paradigms, allowing to exploit the

performance, the portability and the tools of .NET framework.

vi ABSTRACT

Contents

List of Figures xi

Listings xiii

Introduction xv

0.1 Definitions and Motivations . xv

0.2 Contributions . xviii

0.3 Related Works . xviii

0.4 Published Software . xviii

0.5 Structure of the Thesis . xviii

I BACKGROUND 1

1 Background 3

1.1 Introduction to Computational System Biology 3

1.1.1 Actors . 3

1.1.2 Biochemical reaction networks 5

1.1.3 Genetic Regulatory Networks 9

1.2 Notions of Probability Theory . 10

1.3 Simulation of Biological Systems . 12

1.3.1 Deterministic Simulation . 13

1.3.2 Stochastic Simulation . 13

1.3.3 Comparison of the Two Models of Simulation 16

1.4 Notions of Combinatorics . 19

1.5 Rule Based Systems and Term Rewriting Systems 20

viii CONTENTS

II METHODS 23

2 Stochastic Calculus of Looping Sequences 25

2.1 Calculus of Looping Sequences . 25

2.1.1 Syntax . 26

2.1.2 Semantics . 29

2.2 Stochastic Calculus of Looping Sequences 30

2.2.1 Semantics of Stochastic CLS 32

2.2.2 Stochastic Simulation . 33

3 Development of a Stochastic Simulator for CLS 37

3.1 Problems . 37

3.1.1 Goals . 37

3.1.2 Faced Problems . 38

3.2 Design . 39

3.2.1 Choices . 39

3.2.2 Architecture . 43

3.3 Implementation . 46

3.3.1 Data Structures . 46

3.3.2 Search of Matches Algorithm 51

3.3.3 Gillespie’s Algorithm Extension to Deal with Rule Schemata 63

3.3.4 Compilation and Execution of C# Code in the Rate Functions 70

III RESULTS 85

4 Use Cases 87

4.1 Lotka–Volterra . 87

4.2 Brussellator . 89

4.3 Sorbitol Dehydrogenase (SDH) . 91

4.4 Lactose Operon in Escherichia coli 93

4.5 Quorum Sensing in Pseudomas aeruginosa 104

4.5.1 Stiffness Evidence . 112

CONTENTS ix

5 Benchmarks 115

5.0.2 Naive vs Pre–processing Algorithm Benchmarks 116

5.0.3 Memoization Pattern Benchmarks 120

5.0.4 Optimized Updating Procedure Benchmarks 122

6 Conclusion 125

6.1 Summary . 125

6.1.1 Software Development Details 125

6.2 Future Developments . 126

6.2.1 Improvement of Performance 126

6.2.2 Supports Simulations of CLS Variants 126

6.2.3 Improvement of the User Interface 127

A User Manual 131

A.1 License . 131

A.2 System Requirements . 131

A.3 Usage . 131

A.3.1 Format of the Input file . 131

A.3.2 Description of the User Interface 133

A.4 Known limitations . 134

A.4.1 Multiple Term Variables not on the Top Level of Compartments134

A.4.2 Number of Occurrences of Reactants 134

A.5 Guide to Released Source Files . 134

Bibliography 139

x CONTENTS

List of Figures

1.1 Procaryotic and eucaryotic cells . 4

1.2 Polymeric chain. 6

1.3 Structure of a protein. 6

1.4 Catalyzed reaction. 6

1.5 Dynamic of energy in a chemical reaction. 7

1.6 Example of reversible reaction expressed by Kohn’s formalism. . . . 9

1.7 Flowchart of Stochastic Simulation Algorithms. 16

1.8 Deterministic and stochastic simulations 18

2.1 Example of CLS terms . 27

3.1 Logical architecture of a Monte Carlo simulator. 44

3.11 Schematic of how to extend the matchset of rule schemata. 68

3.12 Rate functions dynamic code generation, compilation and execution. 71

3.2 View of the architecture of the developed simulator. 72

3.3 Comparison between the abstract syntax tree and of the optimized

tree of a pattern of CLS. 73

3.4 View of inheritance of data structures 74

3.5 Update hash procedure . 75

3.6 Notion of subtree occurrence required in CLS pattern matching. . . 76

3.7 Example of Hoffmann and O’Donnel algorithm. 77

3.8 Example of pre–processing data structures for CLS pattern matching . 78

3.9 Example of NFA sequences matcher. 79

3.10 Local changes to subject tree after a rule application. 80

4.1 Lotka Volterra simulation results. 88

xii LIST OF FIGURES

4.2 Simulation result of Brussellator . 90

4.3 Simulation result of Sorbitol Dehydrogenase. 92

4.4 Example of complexity in cellular networks of Escerichia coli. 94

4.5 The lactose operon. 95

4.6 The regulation process of lactose degradation in Escerichia coli. . . . 96

4.7 Result of simulation of the regulation process of lactose operon in

Escherichia coli in absence of lactose. 99

4.8 Results of simulation of the regulation process of lactose operon in

Escherichia coli when lactose is present in the environment. 100

4.9 Zoom on the results of simulation of the regulation process of lactose

operon in Escherichia coli when lactose is present in the environment. 101

4.10 Zoom on the results of simulation of the regulation process of lactose

operon in Escherichia coli when lactose is present in the environment. 102

4.11 Schematic description of the las system in Pseudomas aeruginosa. . 105

4.12 Result of simulation of quorum sensing in Pseudomas aeruginosa with

one bacteria. 108

4.13 Result of simulation of quorum sensing in Pseudomas aeruginosa with

five bacteria. 109

4.14 Result of simulation of quorum sensing in Pseudomas aeruginosa with

twenty bacteria. 110

4.15 Result of simulation of quorum sensing in Pseudomas aeruginosa with

one hundred bacteria. 111

4.16 Evidence of stiffness in Gillespie’s SSA in Pseudomas aeruginosa sim-

ulation. 113

4.17 Evidence of stiffness in Gillespie’s SSA in Pseudomas aeruginosa sim-

ulation: zoom. 114

5.1 Benchmark result of simulation with the developed algorithm. 117

5.2 Benchmark result of hybrid vs pure pre–processing algorithm. 119

5.3 Benchmark result of simulation whit use of memoization pattern. . . 121

5.4 Benchmark result of simulation with use of optimized updating pro-

cedure. 123

5.5 Benchmark of performance gain obtained with use of optimized up-

dating procedure. 124

LIST OF FIGURES xiii

6.1 Interaction diagram of the use of the simulator as reverse engineering

tool . 129

6.2 Example of MIM diagrams. 130

A.1 Overview of the simulator user interface. 137

xiv LIST OF FIGURES

Index of Listings

3.1 Procedure to keep consistent the hash chain in Compartments. . . . 50

3.2 Procedure to update term attributes after a local changes. 61

3.3 Memoization pattern example. 62

3.4 Example of coding of CLS in CLIPS. 64

3.5 Gillespie’s stochastic simulation algorithm. 81

3.6 Gillespie’s algorithm with variables and rate functions. 82

3.7 Dynamic rate function evaluator . 83

A.1 Syntax of input files in BNF. 136

A.2 Example input file for SCLSm (Quorum Sensing Example). 138

xvi INDEX OF LISTINGS

Introduction

0.1 Definitions and Motivations

Molecular Biology studies produce a huge amount of data concerning the behavior

of the single constituents of living organisms. With the help of Bio Informatics,

organizing and analyzing such data, we are assisting to an increase of the under-

standing of the functional behavior of such constituents. Nevertheless, this is not

sufficient to gain a deep comprehension of how such components interact together

at the system level, generating the set of complex behavior we observe in nature. In

fact the new international scientific panorama is characterized by the convergence of

many disciplines helped by Computer Science like qualifying factor. The change of

the research paradigm in Biology from the reductionist approach to the systemic one

imposes a similar adaptation also to the Computer Science technologies of reference.

This is the main motivation of the rising of one of the most interesting and recent

applications of computer science: the Computational Systems Biology, a new science

integrating experimental activity and mathematical modeling in order to study the

organization principles and the dynamic behavior of biological systems (see [58] for

an introduction to the field).

Mathematical and computational techniques are central in this approach to

Biology, as they provide the capability of describing formally living systems and

studying their properties. Clearly, a correct choice of the abstraction level of such

description is fundamental in order to grasp the key principles without getting lost

in the details (see [98, 57, 23] for an introduction to the art of modeling biological

systems).

The great challenge of system biology is to understand whether models, orig-

inally developed for describing systems of interacting components, can be applied

for modeling and analyzing biological systems. This could offer to biologist very

useful simulation and verification tools that could replace expensive experiments in

vitro or guide the experiments by making prediction on their possible results. Such

xviii INTRODUCTION

tools could help biologist to better understand of both qualitative and quantitative

evolution of complex biological systems, such as pathways and networks of proteins

and this is also essential for testing the effect of medicines or enzymes and for char-

acterize regulators factors (see [30] for example). Biologists could make in silico1

experiments that has an edge over conventional experimental Biology in terms of

cost, ease and speed; he could also experiments the interaction between new artificial

element and known disease causes. Moreover, unknow constants can be found using

these instruments as tools for reverse engineering.

In computational systems biology many different modeling techniques are used

in order to capture the intrinsic dynamics of biological systems. These modeling

techniques are very different, both in the spirit and in the mathematics they use.

Some of them are based on the well known instrument of differential equations and

therefore they represent phenomena as continuous and deterministic (see [49, 41] for

a survey). On the other side we find stochastic and discrete models, that are usually

simulated with Gillespies algorithm [44], tailored for simulating (exactly) chemical

reactions. In the middle, we find hybrid approaches like the Chemical Langevin

Equation (see [45]), a stochastic differential equation that bridges partially these

two opposite formalisms.

The parallel between Biology and Computer Science can be seen quite easy:

the biology is the study of biological systems, complex interactive systems regarding

living organisms, can take advantage of tools and methods created by Computer Sci-

ence, that studies complex interactive systems. For example genetic networks can be

seen as calculation networks in which the computation it is forwarded by proteins,

produced through an elaborated process of genetic expression (see Section 1.1.3).

Thus biology can take advanced of languages developed for describing complex par-

allel computer systems for deriving languages describing complex parallel biological

systems.

1Performed on computer or via computer simulation

DEFINITIONS AND MOTIVATIONS xix

Like Philips and Cardelli says [61, 68]:

”in many ways, biological systems are like massively parallel, highly

complex, error-prone computer systems”.

In summary the goals of biological simulation by Computational System Biology

are :

- generate knowledge through simulations to discover not known or not measur-

able in vitro parameters (reverse engineering approach);

- allow the development of new artificial elements to make interact with the

known disease causes in order to alter negatives behaviors.

The main difficulties are instead :

- corrected formulation of the biologic dynamics, which are for their nature

subordinates to molecular noise;

- efficient algorithms, computational equipped for the complexity of the dynam-

ics of the considered systems.

Among the formalisms that either have been applied to or have been inspired

by biological systems there are automata-based models [13, 73], rewrite systems

[32, 86], and process calculi [85, 87, 28, 23].

A new formalism, called Calculus of Looping Sequences (CLS for short), for de-

scribing biological systems and their evolution, has been developed [16, 77, 17, 19,

21]. CLS is based on term rewriting and has some features, such as a commutative

parallel composition operator, and some semantic means, such as bisimulations [20],

which are common in process calculi. This permits to combine the simplicity of no-

tation of rewriting systems with the advantage of a form of compositionality. More-

over, the CLS formalism is extended with a stochastic semantics in the Stochastic

Calculus of Looping Sequence (SCLS).

Cellular pathways mainly consist of protein–protein interaction, where proteins

can be located either inside, outside or on the surface of a membrane. The Stochastic

Calculus of Looping Sequence, allowing dealing directly with proteins wherever they

are located, is suitable to describe microbiological systems and their evolution. Sys-

tems are represented by terms. The evolution of a term is made by a set of rewrite

rules enriched with stochastic rates representing the speed of the activities described

by the rules, and can be simulated automatically.

xx INTRODUCTION

0.2 Contributions

We present the study of the implementation of a simulator for the stochastic version

of CLS; a formalisms for describing biological systems, that allows to express rule

schemata, that are rules with typed variables and rate functions which value depends

on the instantiation of variables.

We have extended the Gillespie’s stochastic simulation algorithm to take account

of rule schemata and we have developed an efficient pattern matching algorithm.

This algorithm is based on the bottom up approach proposed in the seminar paper

of Hoffmann and O’Donnel [50] and has some important characteristics for efficiency

like good response to local changes in the simulation state.

We have developed a simulator in which the ideas proposed in this thesis has

been implemented.

0.3 Related Works

All the work of this thesis start from the papers by Barbuti et al. [18, 19, 77].

This is framed in a wider picture in which we find the intense activities of many

research groups about systems biology. In this within many formalisms have been

developed, that either have been applied to or have been inspired by biological

systems.

A wide range of software tools aim to carry out simulations exists, among which

we can cite as an example [81].

0.4 Published Software

To show the ideas proposed in this thesis we have developed a software simulator,

called SCLSm (Stochastic CLS Machine), that can be found on

http://www.di.unipi.it/~milazzo/biosims/

0.5 Structure of the Thesis

The thesis is structured as follows

- In Chapter 1 we give some notions of Biology and System Biology (1.1), of

probabilistic theory (1.2), of combinatorics (1.4) and of the simulation of bio-

logical system (1.3), that will be assumed in the rest of the thesis.

http://www.di.unipi.it/~milazzo/biosims/

STRUCTURE OF THE THESIS xxi

- In Chapter 2 we introduce the Calculus of Looping Sequences, a formalism

based on term rewriting suitable for describing qualitative aspects of biological

and biochemical systems.

- In Chapter 3 we present all the issues we have found in the development

and implementation of a stochastic simulator for CLS. We present an efficient

pattern matching algorithm for CLS pattern matching and an extension of the

Gillespie’s stochastic simulation algorithm that deals with rule schemata.

- In Chapter 4 we look at some simulation results that prove that the developed

simulator has a correct behavior, and in Chapter 5 show through benchmarks

that the ideas proposed for the implementation are valid.

- Finally, we give some conclusions and discussions about further works in Chap-

ter 6.

In Appendix A there are an overview of the software developed with the instruc-

tion to use.

xxii INTRODUCTION

Part I

BACKGROUND

Chapter 1

Background

In this chapter we briefly introduce some notions of Biology and System Biology

(1.1), of probabilistic theory (1.2), of combinatorics (1.4) and about the simulation

of biological system (1.3).

1.1 Introduction to Computational System Biology

1.1.1 Actors

The central unit of System Biology are cells. There are two basic classifications

of cell: procaryotic and eucaryotic (see Figure:1.1). The distinguishing feature be-

tween the two types is that eucaryotic cell possesses a membrane-enclosed nucleus

and a procaryotic cell, usually small and relatively simple, does not. Procaryotes

are considered representative of the first types of cell to arise in biological evolution,

and include for instance almost all bacteria. Eucaryotic cells, are generally larger

and more complex, expressing an advanced evolution, and include fungi, algae and

multicellular plants and animals. In eucaryotic cells, different biological functions

are segregated in discrete regions withing a cell, often in membrane-limited struc-

tures. Sub cellular structures which have distinct organizational features are called

organelles. In contrast, procaryotic cells have only a single cellular membrane and

thus no membranous organelles. Moreover one molecular difference between the

two types of cells is noticeable in their genetic material: procaryotes have a single

chromosome, while eucaryotes possess more than one chromosome.

Excluding small molecules, like water and minerals, there are essentially the

following classes of molecules that interacts inside cells.

Nucleic Acids : DNA and RNA. deoxribonucleic acid (DNA) and ribonucleid

acid (RNA) are polymeric chains (see Figure 1.2), more precisely they are

4 1. BACKGROUND

Figure 1.1: Procaryotic and eucaryotic cells; are indicated some examples of or-
ganelles .

chains of five nucleotides: adenine, cytosine, guanine, thymine, and uracil.

The nucleotides are simple organic molecules constituted from a sugar, a phos-

phate group, and a nitrogenous base. DNA stores the genetic information,

while RNA participates in the process of extraction of this information, being

the bridge molecule in the mechanism of construction of proteins from DNA.

In eucaryiotic the DNA is placed in the nucleus and is shaped as double helix,

while in procaryotic it is placed directly in the cytoplasm and it is circular.

Proteins. Proteins are sequences made up from about twenty different amino acids,

that fold up in peculiar three dimensional shape (see Figure 1.3) that is de-

termined according some energetically stability; this shape is most often the

conformation requiring the least amount of energy to maintain and can be more

or less stable. In this complex three dimensional shape is something possible

to identify places where chemical interaction with other molecules can occur.

This places are called interaction sites, and are usually the basic entities in

the abstract description of the behavior of a protein. An eucaryotic or pro-

caryotic cell contains thousand of different proteins; the genetic information

contained in chromosomes determines the protein composition of an organism.

The best-known role of proteins in the cell is their duty as enzymes, which

catalyze chemical reactions, even if some of these have function of transport,

storage and cellular structure.

Enzymes. Are proteins that behave as very effective catalyst, and are responsible

1.1. INTRODUCTION TO COMPUTATIONAL SYSTEM BIOLOGY 5

for thousand of coordinated chemical reactions involved in biological processes

of living systems. Like any catalyst, an enzyme accelerates the rate of reac-

tion by lowering the energy of activation required for the reaction to occur

(see Figure 1.4). Moreover, as a catalyst, an enzyme is not destroyed in the

reaction and therefore remains unchanged and is reusable after the reaction is

occurred. Enzymes are usually highly specific catalysts that accelerate only

one or a few chemical reactions. Enzymes effect most of the reactions involved

in metabolism and catabolism as well as DNA replication, DNA repair, and

RNA synthesis. Also in the external membrane of a cell there are enzymes

responsible for transporting some molecules from the outside to the inside and

vice-versa.

Lipids. Lipids have mainly a structural function. In particular, cellular mem-

branes are constituted by a double layer of phospholipids (a class of lipids),

whose structure gives to membranes unique properties, like the ability to self-

assemble, to merge one into the other, and to contain interface proteins in

their surface.

Carbohydrates. These are sugars, involved mainly in the energetic cycle of the

cell. They are often linked into complex structures, some of them having with

tree-like shapes.

These classes of molecules can be seen as the basic of some different abstract machine

[27]. A common feature of these abstract machines is that the interactions among

the substances involved form complex networks, whose structure is one of the main

responsible of the cellular dynamics. These networks show an highly non-linear be-

havior, induced by the presence of several feedback and feed-forward loops. Another

property of these networks is redundancy; for instance, many genes can encode the

same protein, though they are expressed in different conditions. Moreover important

characterizing features are modularity and structural stability. All these properties

are responsible, for instance, of the amazing robustness exhibited by living beings

in resisting and adapting to perturbations of the environment [58].

1.1.2 Biochemical reaction networks

Biochemical reactions are chemical reactions involving mainly proteins. As in a cell

there are several thousands of different proteins, the number of different reactions

that can happen concurrently is very high. Depicting a diagram of such interaction

6 1. BACKGROUND

Figure 1.2: A polymeric chain is formed by amino acids.

Figure 1.3: Schematic views of the three dimensional structure of protein.

Figure 1.4: Catalyzed reaction by effect of an enzyme. On the left we can see that
the enzyme acts like a catalyst doing like placeholder for reactants and
remaining unchanged after the reaction has occurred. On the right we
can see how the presence of enzyme reduce the activation energy of the
reaction.

1.1. INTRODUCTION TO COMPUTATIONAL SYSTEM BIOLOGY 7

Figure 1.5: Dynamic of energy in a chemical reaction; we can see how the evolution
of the reaction always follows dynamically the way that requires less
energy.

capabilities, we obtain a complex network having all the characteristics mentioned

at the end of the previous section.

The fundamental empirical law governing reaction rates in biochemistry is the

law of mass action. This states that for a reaction in a homogeneous medium, the

reaction rate will be proportional to the concentrations of the individual reactants

involved. A chemical reaction is usually represented by the following notation:

`1R1 + . . .+ `kRk
k

k−1

`p1P1 + . . .+ `pkPk

where R1, . . . , Rk, P1, . . . , Pk, are molecules, `1, . . . , `k, `p1, . . . , `pk are their stoichio-

metric coefficients; Ri are the reactants, Pi are the products and k and k−1 are the

kinetic constants that are related to the kinetic model adopted and representing its

basic expected frequency. The equation above states that combining an appropriate

number of reactants we can obtain the products. The use of the symbol
 denotes

that the reaction is reversible (i.e. it can occur in both directions). Irreversible

reactions are denoted by the single arrow →.

Example 1.1. Given the simple reaction

2A
k

k−1

B

8 1. BACKGROUND

the rate of the production of molecule B for the law of mass action is:

dB+

dt
= k[A]2

and the rate of destruction of B is:

dB−
dt

= k−1[B]

where [A], [B] are the concentrations (i.e. moles over volume unit) of the respective

molecules.

In general, the rate of a reaction is:

k[S1]`1 · · · [Sρ]`ρ

where S1, . . . , Sρ are all the distinct molecular reactants of the reaction.

The rate of a reaction is usually expressed in moles ·s−1 (it is a speed), therefore

the measure unit of the kinetic constant is moles−(L−1) · s−1, where we denote with

L the sum of the stoichiometric coefficients, that is the total number of reactant

molecules.

The interactions between elements always follows the way that needs less energy

to happen (see Figure1.5). In fact to make a reaction occur it is necessary to

overcome its activation energy. It is necessary that the collision between two or

more molecules happens; they must be opportunely oriented, endowed of a minimum

of energy such to exceed the repulsive electric forces generated from their electron

cloud. This quantity of energy is the activation energy of the reaction. If the energy

is enough, the involved molecules (reactants) can get so close each other to be able

to reorganize their own bounds into new compounds (products of the reaction).

The activation energy allows the molecules that collide to form the so–called

activated complex or state of transition, whose existence is extremely short (∼ 10−15

seconds); from this state it is possible that the original bounds are reformed or that

products are originated. Also exists multi-state reactions in which the passage from

reactants to products implies the formation of more transition states; in these cases

the activation energy required is the highest of each intermediate transition state

activation energy.

In case of reversible reactions, in which the speed of the inverse reactions are

similar, can happen that the system reaches a dynamic equilibrium. In case of

dynamic equilibrium the system is not static (there are continuously reactions and

1.1. INTRODUCTION TO COMPUTATIONAL SYSTEM BIOLOGY 9

Figure 1.6: Example of reversible reaction expressed by Kohn’s formalism.

inverse reactions) but the properties of the system, the amount of the molecular

populations, do not change.

A different way to represent biochemical reactions uses a graphical notation.

One of the most renown is the one developed by Kohn [63, 64], using different kind

of arrows and having an implicit representation of complexes (see Figure 1.6), or by

Kitano in [59]; see [65] for a comparison of these two formalism.

1.1.3 Genetic Regulatory Networks

We had seen that DNA contains instructions for the biological development of a

cellular form of life, RNA carries information from DNA to sites of protein synthesis

in the cell and provides amino acids for the development of new proteins, proteins

perform activities of several kinds in the cell. Schematically we have this flux of

information:

DNA
transcription−−−−−−−−−−→ RNA translation−−−−−−−−→ Protein

in which transcription and translation are the activities of performing a “copy” of

a portion of DNA into a mRNA (RNA messenger) molecule, and of building a new

protein by following the information found on the mRNA and by using the amino

acids provided by tRNA molecules (RNA transfer). This process is known as the

Central Dogma of Molecular Biology.

Even if the central dogma in molecular biology states that DNA is transcribed

into RNA, which is then translated into proteins, the flow of information, however,

goes also in the other direction: proteins interact with the DNA transcription mech-

anism in order to regulate it. DNA is composed by several (thousand of) genes, each

encoding a different protein. Genes are roughly composed by two regions: the regu-

latory region and the coding one. The coding region stores the information needed

to build the coded protein using the genetic code to associate triples of nucleotides

10 1. BACKGROUND

to amino acids. The regulatory region, usually found upstream of the coding part

of the gene and called promoter, is involved in the mechanisms that control the ex-

pression of the gene itself. The regulation is performed by dedicated proteins, called

transcription factors, that bind to specific small sequences of the promoter, called

transcription factors binding sites. There are basically two different kinds of tran-

scription factors, the enhancers, increasing or enabling the expression of the coded

protein, and the repressors, having a negative control function. Transcription fac-

tors act on DNA in complex ways, often combining in complexes before the binding

or during it. Also binding sites, like interaction sites on proteins, can be exposed or

covered, both by the effect of a bound factor or by conformational properties of the

DNA strand, though this last form of regulation is not well understood yet.

1.2 Notions of Probability Theory

A probability distribution is a function which assigns to every interval of the real

numbers a probability P (I), so that Kolmogorov axioms are satisfied, namely:

- for any interval I it holds P (I) ≥ 0

- P (IR) = 1

- for any set of pairwise disjoint intervals I1, I2, . . . it holds P (I1 ∪ I2 ∪ . . .) =∑
P (Ii)

A random variable on a real domain is a variable whose value is randomly de-

termined. Every random variable gives rise to a probability distribution, and this

distribution contains most of the important information about the variable. If X is

a random variable, the corresponding probability distribution assigns to the interval

[a, b] the probability P (a ≤ X ≤ b), i.e. the probability that the variable X will take

a value in the interval [a, b]. The probability distribution of the variable X can be

uniquely described by its cumulative distribution function F (x), which is defined by

F (x) = P (X ≤ x)

for any x ∈ IR.

A distribution is called discrete if its cumulative distribution function consists of

a sequence of finite jumps, which means that it belongs to a discrete random variable

X: a variable which can only attain values from a certain finite or countable set.

1.2. NOTIONS OF PROBABILITY THEORY 11

A distribution is called continuous if its cumulative distribution function is con-

tinuous, which means that it belongs to a random variable X for which P (X = x) =

0 for all x ∈ R.

Most of the continuous distribution functions can be expressed by a probability

density function: a non-negative Lebesgue integrable function f defined on the real

numbers such that

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx

for all a and b.

The support of a distribution is the smallest closed set whose complement has

probability zero.

An important continuous probability distribution function is the exponential dis-

tribution, which is often used to model the time between independent events that

happen at a constant average rate. The distribution is supported on the interval

[0,∞). The probability density function of an exponential distribution has the form

f(x, λ) =
{
λe−λx x ≥ 0

0 x < 0

where λ > 0 is a parameter of the distribution, often called the rate parameter.

The cumulative distribution function, instead, is given by

F (x, λ) =
{

1− e−λx x ≥ 0
0 x < 0

The exponential distribution is used to model Poisson processes, which are sit-

uations in which an object initially in state A can change to state B with constant

probability per unit time λ. The time at which the state actually changes is described

by an exponential random variable with parameter λ. Therefore, the integral from

0 to T over f is the probability that the object is in state B at time T .

In real-world scenarios, the assumption of a constant rate (or probability per

unit time) is rarely satisfied. For example, the rate of incoming phone calls differs

according to the time of day. But if we focus on a time interval during which the

rate is roughly constant, such as from 2 to 4 p.m. during work days, the exponential

distribution can be used as a good approximate model for the time until the next

phone call arrives.

The mean or expected value of an exponentially distributed random variable X

with rate parameter λ is given by

E[X] =
1
λ

12 1. BACKGROUND

In light of the example given above, this makes sense: if you receive phone calls

at an average rate of 2 per hour, then you can expect to wait half an hour for every

call.

1.3 Simulation of Biological Systems

In general terms the problem of the simulation of a biological system can be formal-

ized in the following way:

Definition 1.2 (Biological System Simulation Problem). in a fixed volume

V , containing a mixture uniform distributed of N species that can interact through

M reaction channels, knowing the molecule number of every species to the time t0,

we want to know the number of molecules to the time t1.

From [44] by Gillespie

”There are two formalisms for mathematically describing the time be-

havior of a spatially homogeneous chemical system: the deterministic ap-

proach regards the time evolution as a continuous, wholly predictable pro-

cess which is governed by a set of coupled, ordinary differential equations

(the reaction-rate equations); the stochastic approach regards the time

evolution as a kind of random-walk process which is governed by a single

differential-difference equation (the master equation). Fairly simple ki-

netic theory arguments show that the stochastic formulation of chemical

kinetics has a firmer physical basis than the deterministic formulation,

but unfortunately the stochastic master equation is often mathematically

intractable. There is, however, a way to make exact numerical calcula-

tions within the framework of the stochastic formulation without having

to deal with the master equation directly.”

Traditionally this kind of systems are studied by deterministic simulation sys-

tems based on differential equation; unfortunately the biologicals systems they are

characterized by two type of noise: intrinsic noise due to the same nature of the reac-

tions, extrinsic due to the conditions of the external atmosphere (see [22, 80, 9] and

[75] for a survey on the evidence of the stochasticity nature of biological systems).

This causes that in the chemical reactions in general, and in genetic regulatory net-

works (that are systems of enzymatic reactions) in particular, the knowledge of the

1.3. SIMULATION OF BIOLOGICAL SYSTEMS 13

molecular mechanisms is not sufficient to predict with certainty the future of a cellu-

lar population through deterministic simulation. Like the launch of a dice: it is not

possible to know with certainty the result; for practical purposes can be useful seen

it as random phenomenon and to reason on probabilities of a stochastic system.

1.3.1 Deterministic Simulation

In the classical setting, the amount of a chemical substance is generally regarded as a

concentration, thus expressed in units like moles per liter. This is probably a heritage

of the experimental study of chemical reactions in beakers of water. Conventionally,

the concentration of a chemical species X is denoted [X]. The law of mass action

kinetics states that the rate of a chemical reaction is directly proportional to the

product of the effective concentrations of each participating molecule. Basically,

it is proportional to the concentration of reactants involved raised to the power of

their stoichiometry. If we consider all the reactions involved, we can write a system

of differential equations giving the speed of change of the concentration of each

molecule. To write the equation for X, we simply have to sum the rate law terms

of the different equations involving X, multiplying by +1 all the terms coming from

equations where X is a product and by −1 the terms corresponding to equations

where X is a reactant. Once we have this set of equations, we can analyze it. For

instance, we can solve it numerically for given initial conditions, we can study its

equilibrium points, or we can analyze its dependence on parameters, looking for

bifurcation points and chaotic regions (see [92]).

1.3.2 Stochastic Simulation

Stochastic Simulation of Chemical Reactions by Gillespie’s Algorithm

The Gillespie’s direct method (also know as stochastic simulation algorithm, SSA

in short), proposed in [44], is an algorithm that generates a trajectory in the state

space (that is one possible solution) statistically correct of a stochastic equation

(the master equation). The direct method is a variant of the dynamic method of

Monte Carlo (more precisely of the kinetic Monte Carlo [29, 107]) that, contrarily

to the traditional methods, that are continues and deterministic and capable only to

simulate the interaction of million molecules, allows a discrete, stochastic simulation,

of systems with little number of reactants subordinates to molecular trouble; in fact

each reaction is explicitly simulated and the molecular trouble is modeled through

the stochastic behavior.

14 1. BACKGROUND

In [44] Gillespie gives a stochastic formulation of chemical kinetics that is based

on the theory of collisions and that assumes a stochastic reaction constant cµ for

each considered chemical reaction Rµ. The reaction constant cµ is such that cµdt is

the probability that a particular combination of reactant molecules of Rµ will reacts

in an infinitesimal time interval dt.

The probability that a reaction Rµ will occur in the whole solution in the time in-

terval dt is given by cµdt multiplied by the number of distinct Rµ molecular reactant

combinations. For instance, the reaction

R1 : S1 + S2 → 2S1 (1.1)

will occur in a solution with X1 molecules S1 and X2 molecules S2 with probability

X1X2c1dt. Instead, the inverse reaction

R2 : 2S1 → S1 + S2 (1.2)

will occur with probability X1(X1−1)
2! c2dt. The number of distinct Rµ molecular

reactant combinations is denoted by Gillespie with hµ, hence, the probability of Rµ
to occur in dt (denoted with aµdt) is

aµdt = hµcµdt .

Now, assuming that S1, . . . , Sn are the only molecules that may appear in a

chemical solution, a state of the simulation is a tuple (X1, . . . , Xn) representing a

solution containing Xi molecules Si for each i in 1, . . . , n. Given a state (X1, . . . , Xn),

a set of reactions R1, . . . , RM , and a value t representing the current time, the

algorithm of Gillespie performs two steps:

1. The time t+ τ at which the next reaction will occur is randomly chosen with

τ exponentially distributed with parameter
∑M

ν=1 aν ;

2. The reaction Rµ that has to occur at time t + τ is randomly chosen with

probability aµdt.

The function Pg(τ, µ)dt represents the probability that the next reaction will occur

in the solution in the infinitesimal time interval (t + τ, t + τ + dt) and will be Rµ.

The two steps of the algorithm imply

Pg(τ, µ)dt = P 0
g (τ) · aµdt

1.3. SIMULATION OF BIOLOGICAL SYSTEMS 15

where P 0
g (τ) corresponds to the probability that no reaction occurs in the time

interval (t, t+ τ). Since P 0
g (τ) is defined as

P 0
g (τ) = exp

(
−

M∑
ν=1

aντ

)

we have, for 0 ≤ τ <∞,

Pg(τ, µ)dt = exp

(
−

M∑
ν=1

aντ

)
· aµdt .

Finally, the two steps of the algorithm can be implemented in accordance with
Pg(τ, µ) by choosing τ and µ as follows:

τ =

(
1∑M

ν=1 aν

)
ln
(

1
r1

)
µ = the integer for which

µ−1∑
ν=1

aν < r2

M∑
ν=1

aν ≤
µ∑
ν=1

aν

where r1, r2 ∈ [0, 1] are two real values generated by a random number generator.
After the execution of the two steps, the clock has to be updated to t + τ and
the state has to be modified by subtracting the molecular reactants and adding the
molecular products of Rµ.

See Listing 3.5 for the code of Gillespie algorithm.

Weak Points and Alternatives

Although the Gillespie’s algorithm solves the Master Equation exactly, it requires
substantial amount of computational effort to simulate a complex system. Three
situations cause an increase of computational effort in the Gillespie’s algorithm.
These conditions decrease the step time of each iteration thus forcing the algorithm
to run for larger number of iterations to simulate a given experiment. The conditions
are as follows:

- increase in the number of possible reactions,

- increase in the number of molecules of the species,

- faster rate of the reactions.

These factors cause great disparities in the timescale of reaction channels in the
system (see Paragraph 4.5.1 for a concrete example of this phenomenon). In fact,
in order to maintain the exactness of the simulation, the size of τ proportionally
decreases with respect to the arising of the complexity of the system. In other
words, the algorithm requires shorter time steps to capture the fast dynamics of the
system. Thus, the difference in the time–scales between different reaction channels
may cause substantial computational difficulties.

Since the development of the direct method in [44], many variants of the stochastic
algorithm have been proposed in order to improve performance (see Figure 1.7). For

16 1. BACKGROUND

SSA

Direct method
(Gillespie 1976)

Optimized direct method

First-reaction
(Gillespie 1976)

Next-reaction
(Gibson & Bruck 2000)

Modified direct
(Cao et al. 2004)

Just-in-time (Moleculizer)
(Lok & Brent, 2005)

Sorting direct
(McCollum et al. 2006)

Tau-leaping

Explicit tau-leaping
(Gillespie 2001)

Binomial tau-leaping
(Chatterjee, et al. 2005)

Optimized tau-leaping
(Cao, Gillespie, Petzold 2005)

Stiff system methods

Implicit tau-leaping
(Rathinam, Petzold, Cao, Gillespie 2001)

Trapezoidal implicit tau-leaping
(Cao & Petzold 2005)

Slow-scale SSA
(Cao, Gillespie, Petzold 2005)

Adaptive methods

Adaptive tau-leaping
(Cao, Gillespie, Petzold 2007)

Multiscale methods

The frontier of SSA research…

Exact methods

Figure 1.7: Flowchart of Stochastic Simulation Algorithms (from [84]).

example while direct method is an exact procedure, the Tau-Leaping Method, de-
veloped by Gillespie [46, 26], is an approximation taking larger time leaps. More
than one reactions are executed in the time interval τ ; the order in which they
are executed is not important. Although the procedure for computing τ is more
complicated and therefore more time consuming, with this method the larger leaps
result in fewer steps which imply faster, but approximated, simulations. The critical
point in this algorithm is taking sufficiently large τ values to improve efficiency while
keeping it small enough that the propensity functions do not appreciably change in
the interval.

1.3.3 Comparison of the Two Models of Simulation

The stochastic model of simulation is always valid when the deterministic one is, and
is valid also when the deterministic one is not. Moreover it has the characteristic of
being discrete in the time and in the amounts of the populations, and therefore being
more realistic. Another characteristic that makes stochastic simulation more realistic
is that it introduces variations between different runs; in contrast the deterministic
simulation will always follow the same identical trajectory in the states space.

The main defect of stochastic model of simulation is to be computational ex-
pensive as it simulates every reaction explicitly. See the following example and
Figure 1.8 for a comparison between the two models of simulation.

Example 1.3. By executing the same simulation by the two simulation methods we

1.3. SIMULATION OF BIOLOGICAL SYSTEMS 17

can obtain very different behavior, especially when we consider populations made
of a small number of molecules. We have the following set of evolution rules, also
known as the Lotka-Volterra systems (see [44]).

A
k1→ 2A

A+B
k2→ 2B

B
k3→ ∅

This system of equations aims to model a simple prey-predator dynamics, where A
(wolf) is the prey and B (rabbit) is the predator.

Deterministic and stochastic simulations of these rules, with k1 = 1 and k2 = k3 =
0.1, starting from the same state with 10B and 4A, give two very different results (see
Figure 1.8). The main cause of this difference is that the deterministic simulation
consider the amount of each reactants as a continuous value. This cause that a
certain population is still present, and contribute to reactions, even if are present
in number less than one, carrying to a not realistic behavior (0.6 rabbit will never
produce 0.3 child !!)

Figure 1.8: A comparison between the deterministic model and the stochastic one.
On the left we can see the simulation made by deterministic simulator
(from [23]) whereas the other two plot on the right are made by two
runs of the developed stochastic simulator. We can see how in the
deterministic simulator a population can exist even if have less than one
member. We can also see how different runs of stochastic simulator can
give different results although the deterministic simulator give always
same behavior. The first graph it is obtained by a simulator based on
differential equations, whereas the other two graphs are made by the
stochastic simulator that we have developed.

In summary the two methodologies are compared in the following table.

18 1. BACKGROUND

Deterministic Simulation Stochastic Simulation
Time continue discrete
Space continue discrete
Application correct for millions always correct

of molecules in a isolated
environment

Complexity low high
(each possible reaction
is explicitly simulated)

In summary, in chemical systems formed by living cells, the small numbers of
molecules of a few reactant species can results in dynamical behavior that is discrete
and stochastic, rather than continuous and deterministic. By discrete, we mean the
integer-valued nature of small molecular populations, which makes their represen-
tation by real-valued (continuous) variables inappropriate. By stochastic, we mean
the random behavior that arises from the lack of total predictability in molecular
dynamics.

1.4 Notions of Combinatorics

As we have seen in the previous Section, the probability that a reaction Rµ will occur
in a solution is necessary to know the number of distinct Rµ molecular reactant
combinations and then we have to deal with combinatorics.

To count the number of occurrences of the set of reactants `1R1 + . . .+ `kRk in
a solution in which each reactants Ri is present in number pi ≥ `i, it is necessary to
calculate the number of simple combinations, computing

∏k
i=1

(
pi
`i

)
where

(
n
k

)
is the

binomial coefficient. This coefficient can be computed by the Newton’s generalized
binomial theorem as(

n
k

)
=

n!
k! (n− k)!

=
1
k!

k−1∏
r=0

(n− r) =
n(n− 1)(n− 2) . . . (n− (k − 1))

k!

Example 1.4. Having a solution like (with + we indicate the presence of elements
in a uniform distributed solution)

100A+ 2B + 60C + 40D + E

and a reaction that requires in its left hand side the presence of the following set of
reactants

50A+B + C +D + E

the number of occurrences of the reactants in the solutions is computed as follows(
100
50

)
∗
(

2
1

)
∗
(

60
1

)
∗
(

40
30

)
∗
(

1
1

)
= 9.381946092840906 ∗ 1029

that is: the reaction can happens in v 9 ∗ 1029 different ways.

Note that this combinatorics calculations require to handle very big numbers (for
example 30! = 26525285981219105863630848 ∗ 107) and the calculation of factorials
are very expensive.

1.5. RULE BASED SYSTEMS AND TERM REWRITING SYSTEMS 19

1.5 Rule Based Systems and Term Rewriting Systems

Rule Based Systems

Rule based systems (also called production systems) are often used as a natural way
to express models with a certain behavior. In fact, they are often used like notation
to formally specify as productions (= rules) the allowable behaviors of a system,
just as a grammar is intended to define the legal sentences in a language. In fact,
in contrast to a procedural computation, in which knowledge about the problem
domain is mixed in with instructions about the flow of control, a rule based engine
model allows a more complete separation of the knowledge (in the rules) from the
control (the inference engine).

The basic structure of a rule based systems (and their associated interpreter)
is quite simple. In its most essential form a production system consists of two
interacting data structures, connected through a simple processing cycle :

- A working memory consisting of a collection of symbolic data items called
working memory elements.

- A production memory consisting of condition-action rules called productions,
whose conditions describe configurations of element that might appear in work-
ing memory and whose actions specify modifications to the contents of working
memory.

Production memory and working memory are related through the recognize-act cy-
cle. This consists of three distinct stages:

1. The match process, which finds productions whose conditions match against
the current state of working memory; the same rule may match against memory
in different ways, each such mapping is called instantiation.

2. The conflict resolution process, which selects one or more of the instantiated
productions for applications.

3. The act process which applies the instantiated actions of the selected rules,
thus modifying the contents of working memory.

The basic recognize-act process operates in cycles, with one or more rules being
selected and applied, the new constants of memory leading another set of rules to
be applied, and so on. This cycling continues until no rules are matched or until an
explicit halt command is encountered. It starts with a rule-base, which contains all of
the appropriate knowledge encoded into If–Then rules, and a working memory, which
may or may not initially contain any data, assertions or initially known information.
The system examines all the rule conditions (if) and determines a subset, the conflict
set1, of the rules whose conditions are satisfied based on the working memory. Of
this conflict set, one of those rules is triggered (fired). Which one is chosen is based
on a conflict resolution strategy. When the rule is fired, any actions specified in

1Conflict set is also called agenda in the within of production systems

20 1. BACKGROUND

its then clause are carried out. These actions can modify the working memory, the
rule-base itself, or do just about anything else the system programmer decides to
include. This loop of firing rules and performing actions continues until one of two
conditions are met: there are no more rules whose conditions are satisfied or a rule
is fired whose action specifies the program should terminate.

Term Rewriting Systems

Term rewriting systems are a subclass of rule based systems where the state and the
rule are made of trees. Tree terms are states of an abstract machine, while rewriting
rules are state transforming functions. Like in productions systems, in this frame-
work a computations simply are sequence of rewrites. Term rewriting systems have
numerous practical applications like formal reasoning tool (as for example crypto-
graphic protocol analysis, hardware design verification), theorem proving, computer
algebra, language optimization etc... See [51, 34, 14, 60] for a widen look on this
field.

Part II

METHODS

Chapter 2

Stochastic Calculus of Looping
Sequences

In this chapter we introduce the Calculus of Looping Sequences (CLS), a formalism
based on term rewriting suitable for describing qualitative aspects of biological and
biochemical systems.

Being a formalism based on the rewriting of terms, we start introducing the
syntax of its valid terms (2.1.1) and the semantics on which the calculation is for-
warded (2.1.2).

We then examine the stochastic extension of CLS, namely the Stochastic Calculus
of Looping Sequences (2.2), that is useful in order to quantitatively simulate these
systems. We present how the CLS semantics is extended (2.2.1) and how the
stochastic semantics can be simulated (2.2.2).

Finally in (2.2.2) we give a brief discussion about the applications of CLS in
biological modeling.

2.1 Calculus of Looping Sequences

In this chapter we recall the formalism for the description of biological systems
based on term rewriting that allows describing (at least) proteins, DNA fragments,
membranes and macromolecules in general. We want not ignoring the physical
structure of these elements keeping the syntax and the semantics of the formalism
as simple as possible.

CLS is based on term rewriting, and hence a CLS model consists of a term and
a set of rewrite rules. The term represents the structure of the modeled system, and
the rewrite rules represent the ways in which it can evolves.

The kind of structures that most frequently appear in cellular components is
probably the sequence. A DNA fragment, for instance, is a sequence of nucleic
acids, and it can be seen, at a higher level of abstraction, also as a sequence of
genes. Proteins are sequences of amino acids, and they can be seen also as sequences
of interaction sites. Membrane, instead, are essentially closed surfaces interspersed
with proteins and molecules of various kinds, hence we can see them abstractly as
closed circular sequences whose elements or subsequences describe the entities that

24 2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES

are placed in the membrane surface. Finally, there are usually many components
in a biological system, some of which may be contained in some membranes, and
membranes may be nested in various ways, thus forming a hierarchical structure
that may change over time.

In the rest of the chapter we examine in details the CLS formalism that is based
on term rewriting and which tries to fulfill these requirements.

2.1.1 Syntax

We start with defining the syntax of valid terms.
As already said before, we have to define terms able to describe (i) sequences, (ii)

which may be closed and may contain something, and (iii) which may be juxtaposed
to other sequences in the system. For each of these three points we define an operator
in the grammar of terms. Moreover, we assume a possibly infinite alphabet of
elements E ranged over by a, b, c, . . . to be used as the building blocks of terms, and
a neutral element ε representing the empty term. Terms of the calculus are defined
as follows.

Definition 2.1 (Terms). Terms T and Sequences S of CLS are given by the
following grammar:

T ::= S
∣∣ (

S
)L cT ∣∣ T |T

S ::= ε
∣∣ a

∣∣ S · S

where a is a generic element of E . We denote with T the infinite set of terms, and
with S the infinite set of sequences.

Terms include the elements in the alphabet E and the empty term ε. Moreover,
the following operators can be used to build more complex terms:

- Sequencing (or concatenation) · : creates a ordinated sequence whose ele-
ments are elements of the alphabet E or in its turn sequences.

- Looping and Containment
()L c : creates a closed circular sequence of the

sequence to which it is applied. The operator is called looping because, as
we shall see, it is always possible to rotate the representation of the circular
sequence. Also represents the containment of the second term to which it is
applied into the membrane made by the looping sequence. Note that either
the membrane or its content con be ε.

- Parallel composition | : represents the juxtaposition of the two terms to
which it is applied.

A term can be a sequence, or a looping sequence containing a term, or the parallel
composition of two terms.

Brackets can be used to indicate the order of application of the operators, and
we assume

()L c to have the precedence over | . In Figure 2.1 we show some
examples of CLS terms and their visual representation.

2.1. CALCULUS OF LOOPING SEQUENCES 25

Figure 2.1: (i) represents
(
a · b · c

)L;

(ii) represents
(
a · b · c

)L c (d · e)L;

(iii) represents
(
a · b · c

)L c (
(
d · e

)L | f · g).

On terms and sequences is defined the notion of structural congruence: it is a re-
lation used to consider as equal terms that are syntactically different but representing
the same process, usually states associativity and commutativity of operators.

Definition 2.2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, respec-
tively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
(
S1

)L cT ≡T (S2

)L cT
T1 |T2 ≡T T2 |T1 T1 | (T2 |T3) ≡T (T1 |T2) |T3 T | ε ≡T T(

ε
)L c ε ≡ ε (

S1 · S2

)L cT ≡T (S2 · S1

)L cT
Rules of the structural congruence state the associativity of · and | , the commu-

tativity of the latter and the neutral role of ε. Moreover, axiom
(
S1 · S2

)L cT ≡T(
S2 · S1

)L cT says that elementary sequences in a looping can rotate. We remark
that we have

(
ε
)L cT 6≡ T if T 6≡ ε, hence

(
ε
)L does not play a neutral role if it is

not empty. In the following, for simplicity, we will use ≡ in place of ≡T or ≡S .
Now we define rewrite rules, which can be used to describe the evolution of terms.

Roughly, a rewrite rule is a triple consisting of two terms and one condition to be
satisfied. The two terms describe what term the rule can be applied to and the term
obtained after the application of the rule, respectively, and the condition must be
satisfied before applying the rule.

In order to allow a rule to be applied to a wider range of terms, we introduce
typed variables in the terms of a rule. This allows to express rule schemata, instead
of single rules.

Patterns in CLS include three different types of variables: two are associated with
the two different syntactic categories of terms and sequences, and one is associated
with single alphabet elements. We assume a set of term variables TV ranged over
by X,Y, Z, . . ., a set of sequence variables SV ranged over by x̃, ỹ, z̃, . . ., and a set
of element variables X ranged over by x, y, z, All these sets are possibly infinite
and pairwise disjoint. We denote by V the set of all variables, V = TV ∪ SV ∪ X .

26 2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES

Definition 2.3 (Patterns). Patterns P and sequence patterns SP of CLS are given
by the following grammar:

P ::= SP
∣∣ (

SP
)L cT ∣∣ T |T

∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E , and X, x̃ and x are generic elements of TV, SV
and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns.

To obtain a ground term from a pattern we introduce the concept of instanti-
ation. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV , x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P, with Pσ we denote
the term obtained by replacing each occurrence of each variable X ∈ V appearing
in P with the corresponding term σ(X). With Σ we denote the set of all the pos-
sible instantiations and, given P ∈ P, with V ar(P) we denote the set of variables
appearing in P . Finally, we define a function occ : E × T → IN such that occ(a, T)
returns the number of the elements a syntactically occurring in the term T .

Now we define rewrite rules; that are defined essentially as pairs of terms, in
which the first term describes the portion of the system in which the event modeled
by the rule may occur, and the second term describes how that portion of the system
changes when the event occurs. In the terms of a rewrite rule we allow the use of
variables. As a consequence, a rule will be applicable to all terms which can be
obtained by properly instantiating its variables.

Definition 2.4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ PP , P1 6≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with < the infinite set of all the possible rewrite rules. We say
that a rewrite rule is ground if V ar(P1) = V ar(P2) = ∅, and a set of rewrite rules
R ∈ Re is ground if all the rewrite rules it contains are ground.

A rewrite rule (P1, P2) states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the ground term
P2σ. Rule application is the mechanism of evolution of CLS terms.

2.1.2 Semantics

We define the semantics of CLS as a transition system, in which states corresponds
to terms, and transitions corresponds to rule applications.

The semantics of CLS is defined by resorting to the notion of contexts.

Definition 2.5 (Contexts). Contexts C are given by the following grammar:

C ::= �
∣∣ C |T ∣∣ T | C

∣∣ (
S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

2.2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES 27

By definition, every context contains a single �. Let us assume C,C ′ ∈ C. With
C[T] we denote the term obtained by replacing � with T in C; with C[C ′] we denote
the context composition, whose result is the context obtained by replacing � with
C ′ in C. The structural congruence relation can be easily extended to contexts,
namely C ≡ C ′ if and only if C[ε] ≡ C ′[ε].

A rewrite rule T 7→ T ′ states that a ground term Tσ, obtained by instantiating
variables in T by some instantiation function σ, can be transformed into the ground
term T ′σ. The rewrite rules can be applied to terms only if they occur in a legal
context.

Note that the general form of rewrite rules does not allows to have sequences as
contexts. A rewrite rule introducing a parallel composition on the right hand side
(as in a 7→ b | c) applied to an element of a sequence (for example m · a ·m) would
result in a syntactically incorrect term (in this case m · (b | c) ·m).

To modify a sequence, the whole sequence must appears in the left hand side of
the rule. For example, rule a · b · c 7→ a | b · c represents the separation of a from the
sequence a · b · c. Such a rule, however, can be applied only on the exact sequence
a · b · c. Variables in the left hand side of the rule allow the application of the rule to
a class of sequences. For example, rule a · x̃ 7→ a | x̃ can be applied to any sequence
starting with element a, and hence, the term a · b can be rewritten as a | b, and the
term a · b · c can be rewritten as a | b · c.

The reduction semantics of CLS is defined as a transition system as follows.

Definition 2.6 (Reduction Semantics). Given a finite set of rewrite rules R,
the reduction semantics of CLS is the least relation closed with respect to ≡ and
satisfying the following inference rule:

T 7→ T ′ ∈ R Tσ 6≡ ε σ ∈ Σ C ∈ C
C[Tσ]→ C[T ′σ]

A model in CLS is given by a term describing the initial state of the modeled
system and by a set of rewrite rules describing all the possible events that may occur
in the system. That is :

Definition 2.7 (CLS Model). A SCLS model is a pair (T0,R) where T0 it is the
starting state of the systems, and R is a finite set of rule schema.

2.2 Stochastic Calculus of Looping Sequences

To focus on quantitative aspects of our formalism, in particular, to model speed of
activities, it has been developed a stochastic extension of CLS, called Stochastic
Calculus of Looping Sequence (SCLS for short), that incorporate the stochastic
framework developed by Gillespie in [44]. Rates are associated with rewrite rules in
order to model the speed of the described activities. Therefore, transitions derived
in SCLS are driven by a rate that models the parameter of an exponential distribu-
tion and characterizes the stochastic behavior of the transition. The choice of the
next rule to be applied and of the time of its application is based on the classical
Gillespies algorithm [44].

28 2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES

We now introduce the concept of an enriched form of rewrite rule: the rewrite
rule schema. Differently to a rewrite rule, a rule schema has a rate function instead
of a rate constant. This corresponds to express an infinite set of rule, each of which
has a possible different rate constant obtained applying the rate function to the
instantiation of the variables in the rule that brings from the rule with variable to
correspondent ground rule.

Definition 2.8 (Stochastic Rewrite Rule Schema). A stochastic rewrite rule

schema is a triple (P, P ′, f), denoted with P
f7→P ′, where P, P ′ ∈ P, P 6≡ ε and such

that V ar(P ′) ⊆ V ar(P), and f : Σ→ IR≥0 is the rewriting rate function.

Patterns of a stochastic rewrite rule schema may contain variables. The rewriting
rate function may depend on the instantiations of the variables appearing in the left
hand side term of the schema. By instantiating the variables, a stochastic ground
rewrite rule with a rewriting rate constant is obtained.

Definition 2.9 (Stochastic Ground Rewrite Rule). Given a stochastic rewrite
rule schema R = (T, T ′, f) and an instantiation σ ∈ Σ, the ground rewrite rule
derived from R and σ is a triple (Tg, Tg′, p), denoted Tg

p7→ Tg′, where Tg = Tσ,
Tg′ = T ′σ, and p = f(σ) is the rewriting rate constant.

Example 2.10. Let us assume a function occ : E × T → IN such that occ(a, T)
returns the number of elements a syntactically occurring in the term T . Consider
the rewrite rule schema R = (a |

(
c · x̃

)L
, b |
(
x̃
)L
, f(σ) = occ(c, σ(x̃)) + 1) and the

instantiation σ(x̃) = b · c. We obtain a stochastic ground rewrite rule (a |
(
c · b ·

c
)L
, b |
(
b · c

)L
, p), where p = f(σ) = occ(c, b · c) + 1 = 2.

Definition 2.11 (Applicable Ground Rewrite Rules). Given a rewrite rule

schema R = T
f7→T ′ and a term T0 ∈ T , the set of ground rewrite rules derived from

R and applicable to T0 is defined as

AR(R, T0) = {Tg p7→ Tg′ | ∃σ ∈ Σ, C ∈ C. T g = Tσ, Tg′ = T ′σ, T0 ≡ C[Tg], p = f(σ)}.

Given a finite set of rewrite rule schemata R and a term T0 ∈ T , the set of ground
rewrite rules derived from R and applicable to T0 is the set:

AR(R, T0) =
⋃
R∈R

AR(R, T0).

In the following we will need also to know from which context each reactant
has been extracted, hence we define the multiset of extracted reactants of T as
the multiset of all the pairs (T ′, C) where T ′ 6≡ ε is a reactant in T and C is
the context such that C[T ′] ≡ T . In the definition we use the auxiliary function
◦ : C × (IN×T ×C) 7→ (IN×T ×C) defined as C ◦ (i, T, C ′) = (i, T, C[C ′]) extended
to multisets of triples over IN× T × C in the obvious way.

2.2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES 29

Definition 2.12 (Multiset of Extracted Reactants). Given a term T ∈ T , the
multiset of reactants extracted from T is defined as

ext(T) =
{

(T ′, C)|(n, T ′, C) ∈ ext`(0, T)
}

where ext` is given by the following recursive definition:

ext`(i, S) = {(i, S,�)}

ext`(i,
(
S
)L) = {(i,

(
S
)L
,�)}

ext`(i,
(
S
)L cT ′) = {(i,

(
S
)L cT ′,�)} ∪

(
S
)L c� ◦ ext`(i+ 1, T ′)

ext`(i, T1 |T2) = T2 |� ◦ ext`(i, T1) ∪ T1 |� ◦ ext`(i, T2)
∪ {(i, T e1 |T e2 , Ce1 [Ce2]) | (i, T ej , Cej) ∈ ext`(i, Tj), j ∈ {1, 2}}

Given a term T ∈ T , ext(T) extracts from T the multiset of reactants to which a
rewrite rule could be applied. Each element of the multiset contains also the context
from which each reactant is extracted. Because a reactant is an occurrence of a sub
term in T , we have, for example, ext(a | a) = {(a, a |�), (a, a |�), (a | a,�)}, where
the two (a, a |�)-elements correspond to the two reactants a in a | a. The function
ext makes use of the function ext` in order to separate reactants obtained at different
levels of containment (which cannot be mixed).

Example 2.13. Let T be a |
(
b
)L c c, then

ext`(0, T) = {(0, a,� |
(
b
)L c c), (0, (b)L c c, a |�), (1, c, a |

(
b
)L c�), (0, T,�)},

and
ext(T) = {(a,� |

(
b
)L c c), ((b)L c c, a |�), (c, a |

(
b
)L c�), (T,�)}. Note that ext`

avoids (a | c, C) to be extracted from T , for any context C.

2.2.1 Semantics of Stochastic CLS

The ext function computes the multiset of reactants of a term. We use such a
function to compute the application rate of a ground rewrite rule. In particular, we
compute the application cardinality of the rule, that is the number of reactants in
the term in which the rule is applied that are equivalent to the left–hand side of the
rule. This value will be multiplied by the kinetic constant of the reaction to obtain
the application rate.

Definition 2.14 (Application Cardinality). Given a ground rewrite rule R =
T2

c7→T2 and two terms T, Tr ∈ T , the application cardinality of rule R leading from
T to Tr, AC(R, T, Tr), is defined as follows:

AC(R, T, Tr) = |
{

(T ′, C) ∈ ext(T) such that T ′ ≡ T1 ∧ C[T2] ≡ Tr
}
|.

As already mentioned, given a term T , a ground rewrite rule can be applied
to different reactants of T . Hence, according to the reactants to which the rule is
applied, the rewrite of T may result in different terms. For any reachable term, the
application cardinality counts the number of reactants leading to it.

30 2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES

Example 2.15. Consider the ground rewrite rule R = a
c7→ b and term T =

a | a |
(
m
)L c a. The left part of the rule, consisting of the single element a, is con-

tained three times in the set ext(T), however the application of rule R in those three
points gives rise to different terms. In particular, for the two elements (a,C) where
C = a |

(
m
)L c a |� we have Tr = C[T2] = a |

(
m
)L c a | b, and hence AC(R, T, Tr) =

2. On the other hand, for the element (a,C ′), with C ′ = a | a |
(
m
)L c�, we have

T ′r = C ′[T2] = a | a |
(
m
)L c b, and hence AC(R, T, T ′r) = 1.

We now give the semantics of Stochastic CLS.

Definition 2.16 (Semantics). Given a finite set of rewrite rule schemata R, the
semantics of Stochastic CLS is the least labeled transition relation satisfying the
following inference rule:

R = T1
c7→ T2 ∈ AR(R, T) T ≡ C[T1]

T
R,c·AC(R,T,C[T2])−−−−−−−−−−−−→ C[T2]

The stochastic reduction semantics associates with each transition a rate which is
the parameter of an exponential distribution that characterizes the stochastic behav-
ior of the activity corresponding to the rewrite rule applied. The rate is obtained as
the product of the rewriting rate constant and the application cardinality of the rule.
The rewriting rate constant, obtained by instantiating the rewriting rate function of
the schema from which the ground rewrite rule derives, expresses the contribution
of the chosen instantiation, and the application cardinality expresses the number
of reactants to which the rule can be applied and which give the same result. The
higher is this value, the higher is the rate of the transition.

The stochastic reduction semantics is essentially a stochastic automaton1, that
is an automaton of which transitions are labeled with rates.

2.2.2 Stochastic Simulation

Given an SCLS model to simulate, an automaton (that is a transition system) is
given by the stochastic reduction semantics; thus we can follow a standard simu-
lation procedure that corresponds to Gillespie’s simulation algorithm for chemical
reactions [44]. Roughly speaking, the algorithm starts from the initial state of the
automaton and performs a sequence of steps by moving from state to state. At each
step a global clock variable (initially set to t0) is incremented by a random quantity
which is exponentially distributed with the exit rate of the current state s as pa-
rameter, and the next state s′ is randomly chosen with a probability proportional
to the rate of the transitions multiplied by the relative application cardinality.

However, the whole automaton describing the systems has often a huge number
of states, hence its construction for simulation is practically unfeasible. Simulations
of single evolutions of the systems, instead, can be performed without building the
whole transition system. In fact, in order to perform simulations we can follow a
procedure that corresponds to Gillespie’s simulation algorithm for chemical reactions

1More precisely is a Continuous Time Markov Chain as discussed in [77].

2.2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES 31

[44]. A state of the simulation is a pair (T, t) where T is the current term and t ∈ IR≥0

is the global clock. Assuming a finite set of rewrite rule schemata R and an initial
term T0, the initial state of the simulation is the pair (T0, 0).

Given a simulation state (T, t), from the stochastic reduction semantics, we have

a finite set of transitions starting from T , namely the set of transitions {T Rgi,ri−−−−→ Ti},
with i ∈ [1, n], where ri gives the rate of the i-th transition, and n is the number
of transitions starting from T . Note that different transitions can be labeled by the
same rewrite rule. Now, a simulation step transforms the state (T, t) into (Ti, t+ τ)
where τ is exponentially distributed with parameter E =

∑n
i=1 ri and i is chosen

with probability ri
E .

CLS as an Abstraction for Biomolecular Systems

An abstraction is a mapping from a real–world domain to a mathematical domain,
that may allow to highlight some essential properties of a system while ignoring
other, complicating, ones. In [88], Regev and Shapiro show how to abstract bimolec-
ular systems as concurrent computation by identifying the bimolecular entities and
events of interest and by associating them with concepts of concurrent computation
such as concurrent processes and communications.

The use of rewrite systems, such as CLS, to describe biological systems is founded
on a different abstraction. Usually, entities (and their structures) are abstracted by
terms of the rewrite system, and events by rewriting rules.

The guidelines for the abstraction of bimolecular entities and events into CLS
are given in Table 2.1 and Table 2.2. More details about how to use CLS as an
abstraction for bimolecular systems can be found in the Chapter 4 of Ph.D. thesis
of Milazzo [77].

Biomolecular Entity CLS Term
Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)
DNA strand Sequence of elements representing genes
RNA strand Sequence of elements representing transcribed genes
Protein Sequence of elements representing domains

or single alphabet symbol
Molecular population Parallel composition of molecules
Membrane Looping sequence

Table 2.1: Guidelines for the abstraction of biomolecular entities into CLS.

32 2. STOCHASTIC CALCULUS OF LOOPING SEQUENCES

Biomolecular Event Examples of CLS Rewrite Rule
State change a 7→ b

x̃ · a · ỹ 7→ x̃ · b · ỹ
Complexation a | b 7→ c

x̃ · a · ỹ | b 7→ x̃ · c · ỹ
Decomplexation c 7→ a | b

x̃ · c · ỹ 7→ x̃ · a · ỹ | b
Catalysis c |P1 7→ c |P2

where P1 7→ P2 is the catalyzed event
State change

(
a · x̃

)L cX 7→
(
b · x̃

)L cX
on membrane
Complexation

(
a · x̃ · b · ỹ

)L cX 7→
(
c · x̃ · ỹ

)L cX
on membrane a |

(
b · x̃

)L cX 7→
(
c · x̃

)L cX(
b · x̃

)L c (a |X) 7→
(
c · x̃

)L cX
Decomplexation

(
c · x̃

)L cX 7→
(
a · b · x̃

)L cX
on membrane

(
c · x̃

)L cX 7→ a |
(
b · x̃

)L cX(
c · x̃

)L cX 7→
(
b · x̃

)L c (a |X)
Catalysis

(
c · x̃ · SP1 · ỹ

)L 7→ (
c · x̃ · SP2 · ỹ

)L
on membrane where SP1 7→ SP2 is the catalyzed event
Membrane crossing a |

(
x̃
)L cX 7→

(
x̃
)L c (a |X)(

x̃
)L c (a |X) 7→ a |

(
x̃
)L cX

x̃ · a · ỹ |
(
z̃
)L cX 7→

(
z̃
)L c (x̃ · a · ỹ |X)(

z̃
)L c (x̃ · a · ỹ |X) 7→ x̃ · a · ỹ |

(
z̃
)L cX

Catalyzed a |
(
b · x̃

)L cX 7→
(
b · x̃

)L c (a |X)
membrane crossing

(
b · x̃

)L c (a |X) 7→ a |
(
b · x̃

)L cX
x̃ · a · ỹ |

(
b · z̃

)L cX 7→
(
b · z̃

)L c (x̃ · a · ỹ |X)(
b · z̃

)L c (x̃ · a · ỹ |X) 7→ x̃ · a · ỹ |
(
b · z̃

)L cX
Membrane joining

(
x̃
)L c (a |X) 7→

(
a · x̃

)L cX(
x̃
)L c (ỹ · a · z̃ |X) 7→

(
ỹ · a · z̃ · x̃

)L cX
Catalyzed

(
b · x̃

)L c (a |X) 7→
(
a · b · x̃

)L cX
membrane joining

(
x̃
)L c (a | b |X) 7→

(
a · x̃

)L c (b |X)(
b · x̃

)L c (ỹ · a · z̃ |X) 7→
(
ỹ · a · z̃ · x̃

)L cX(
x̃
)L c (ỹ · a · z̃ | b |X) 7→

(
ỹ · a · z̃ · x̃

)L c (b |X
Membrane fusion

(
x̃
)L c (X) |

(
ỹ
)L c (Y) 7→

(
x̃ · ỹ

)L c (X |Y)
Catalyzed membrane fusion

(
a · x̃

)L c (X) |
(
b · ỹ

)L c (Y) 7→
(
a · x̃ · b · ỹ

)L c (X |Y)
Membrane division

(
x̃ · ỹ

)L c (X |Y) 7→
(
x̃
)L c (X) |

(
ỹ
)L c (Y)

Catalyzed membrane division
(
a · x̃ · b · ỹ

)L c (X |Y) 7→
(
a · x̃

)L c (X) |
(
b · ỹ

)L c (Y)

Table 2.2: Guidelines for the abstraction of biomolecular events into CLS.

Chapter 3

Development of a Stochastic
Simulator for CLS

”The software is hard” Donald Knuth

In this chapter we present all the issues we have found in the development and
implementation of a stochastic simulator for CLS. Firstly we introduce problems
that we have faced (3.1.1); we present our choices (3.2.1) and the architecture that
we have designed for this kind of simulator (3.2.2). Then we look more in details
at the data structures we used (3.3.1), at the developed algorithm for CLS pattern
matching (3.3.2) and finally at the extension of the Gillespie’s algorithm that we
have made in order to take account of rule schemata (3.3.3).

3.1 Problems

3.1.1 Goals

The main goal of the work of this thesis is the development of a stochastic simulator
for SCLS, allowing to express rule schemata through the use of typed variables and
rate functions. The simulator have therefore the goal of make efficient real–time
simulations, involving million of iterations, allowing to plot the amounts of each
element in the population together with the amounts of some user defined pattern
and to save the simulation evolution to file system, as text, html or spreadsheet.

With user defined pattern concentrations we mean that the user wants to mon-
itor the concentration of some elements in a certain position in the hierarchy of the
state term. This information it is not visible by the plot of the concentration of
single elements and thus it is necessary to express what the user wants to monitor
through SCLS patterns. Although this problem is not closely related to the simula-
tion problem we have to take care of it, delegating the counting of such patterns to
the pattern matching algorithm.

34 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Example 3.1. The rewrite rule schema

a |
(
b
)L c (X) k7→

(
b
)L c (a |X)

asserts that a membrane made of a b element can take inside some a elements
eventually present in the same solution (expressed through the parallel composition
operator). The user could wants to simulate this behavior starting in a state with a
certain number n of a, observing the speed in which the a go inside the membrane.
This in not observable if we plot simply the amount of a in the solution: it will
remains constant at its initial quantity n.

To observe the amount of a inside the membrane we can observe the value given
by the multiplication of the number of occurrences of the CLS pattern

(
b
)L c (X)

by the value given by occ(a,X)1, whereas to monitor the amount of a outside the
membrane we can observe the number of occurrences of X |

(
b
)L c (Y) multiplied by

occ(a,X).

3.1.2 Faced Problems

The first problem we have faced is the definition of a compact runtime representation
of terms and patterns of CLS. In fact the terms given by the CLS syntax grammar
(see Section 2.1.1) have a huge number of nodes and this influences the performance
of the stochastic simulation algorithm, that, as we see next, must walks each node
in the subject tree. Moreover the CLS trees, as defined by the CLS syntax, are sub-
ordinates to a complex structural congruence that is expensive to verify at runtime.
Thus we use a form of compressed representation of these trees that, in addition to
reduce the number of nodes, allows to test the structural equivalence in a simpler
and less expensive way.

Since the simulator must be able of doing real–time simulations involving millions
of iterations, ours main problem is to obtain good performance of the computation
step. Because the most expensive phase of each simulation step requires to find the
set of all possible reactions in the system, we need a clever algorithm for doing that
task. The naive algorithm, that try to unificate each pattern in each position of the
subject tree, it is not usable because requires an exponential computational cost. In
fact it demands to scan repeatedly the entire subject tree at each step.

In order to minimize the number of times in which the subject tree must be
walked, we have developed a bottom–up pattern matching algorithm, inspired by
the approach proposed by Hoffmann and O’Donnel [50], that, thanks to some data
structures produced in a pre–processing phase, succeeds to find all the possible
reactions in the term state doing a single walk of the subject tree. Moreover this
algorithm allows to preserve great part of the computation between a step and the
next one, recomputing the informations about matching only for the part of the
state that is changed by the execution of a reaction.

In summary the idea behind the algorithm is to expand the term data structure
in such way that each node is enriched with some informations about each pattern
and parts of pattern that matches at this point in the subject tree. In order to

1Where occ is the function defined in Example 2.10.

3.2. DESIGN 35

doing this, the algorithm starts from the leaves and proceeds in bottom–up way.
The matches of the leaves are computed by a nondeterministic finite automaton,
whereas the way of inferring the matches of a node from the matches of the children
are defined by a data structure (a sort of transition table) built pre–processing the
set of rules.

Since to count the number of possible reaction require to do repeatedly some
expensive combinatorics computations, we have enriched the algorithm with some
level of caching of these computations.

Finally we have expanded the standard Gillespie’s SSA in order to deal directly
with rule schemata instead of ground rules.

3.2 Design

Existent Solutions and Similar Products

Currently does not exists any simulator for CLS (except an early C++ prototype
simulator implementing a naive pattern matching algorithm with very poor perfor-
mance).

A variety of software packages specifically developed both for deterministic or
stochastic simulations are available. Among the deterministic ones we can mention
software such as DBsolve [48], GEPASI [74], KINSIM [31], MIST [40], KINSOLVER
[12], PLAS [102], ECELL [100] and Cellware [35]. Among the stochastic ones we
find for example Stochsim [42], CytoSim and PSym [5], ECell [99], MCell [4], CellIl-
lustrator [1], VirtualCell [8], SBW [6] and more can found for example in [7].

An interesting stochastic simulation software is SPiM : Stochastic π-calculus ma-
chine [81]. SPiM allow to simulate reactions expressed in pi-calculus, in real–time.
Even if it is bases on the π-calculus [78, 89], a formal language for concurrent com-
putational processes, whereas CLS is based on term rewriting, the SPiM simulator
has been taken as an example of the features that the SCLS simulator must have.

3.2.1 Choices

Programming Language

For the development of the simulator we have chosen the F# programming lan-
guage [96].

F#, a research project from Microsoft Research, is a multi-paradigm .NET lan-
guage explicitly designed to be an ML (see next paragraph) suited to the .NET
framework. It is rooted in the Core ML design, and in particular has a core lan-
guage largely compatible with that of OCaml. Although it is a research project, still
under continuous development2, it has a product quality performance (see [97]). It
merges seamlessly the object oriented, the functional and the imperative program-
ming paradigms, allowing to exploit the performance, portability and tools of the
.NET framework, without renounce to the benefits of functional programming.

2When this thesis is started the F# compiler was at the 1.1.13.8 release; in the relative small
period of this thesis work it has reaches the 1.9.2.9 version with a great number of new features and
improvements.

36 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

The first publications that introduce F# is [94] and at the moment two books
are in publication [95, 83].

Functional Programming (FP) is the oldest of the three major programming
paradigms3.

Pure functional programming views all programs as collections of functions that
accept arguments and return values. Unlike imperative and object–oriented pro-
gramming, it does not allows side effects and uses recursion instead of loops for
iteration. The functions in a functional program are very much like mathematical
functions because they do not change the state of the program. In other words, once
a value is assigned to an identifier, it never changes, so functions do not alter pa-
rameter values, and the results that functions return are completely new values. In
typical underlying implementations, once a value is assigned to an area in memory,
it does not change. To create results, functions copy values and then change the
copies, leaving the original values free to be used by other functions and eventually
to be thrown away by garbage collector (GC) when no longer needed.

In [36] Edsger W. Dijkstra pointed out that too many programmers rely on exe-
cuting a program in order to understand it. The reason is that imperative programs
lack of sufficient underlying formalisms to make guarantees about any of the most
trivial of programs. As much the debugger is an useful tool, it is disheartening to
need to use it to understand code. In contrast of this functional programs have solid
theoretical foundations and therefore can more easily make runtime guarantees. In
fact, tanks to the theory on which FP is founded, it is possible to prove various
runtime properties of programs. While most programmers would not take the time
to write proofs like Euclid’s about their programs, it is compelling to think about
creating sections of a program which are written so well that their properties are
provable and understandable (an example is well show in [82]).

One of functional languages with greater success is ML (stands for meta lan-
guage) is a general-purpose functional programming language developed by Robin
Milner et al. in the late 1970s at the University of Edinburgh. The use of ML,
thanks to the high level of abstraction, permits to reduce the difference between the
specification phase and the coding phase, writing code more quick and leading to
code that is more compact and contains fewer errors than the equivalent imperative
code. Moreover ML allow the use of pattern matching that is an useful tool when
we deals with symbolic computations.

In general terms programming functionally leads to more modular, generic,
expression-oriented, and conceptually simple code. For a survey on benefits of func-
tional programming see [15, 52].

3 The first FP language, IPL, was invented in 1955, about a year before Fortran. The second,
Lisp, was invented in 1958, a year before Cobol. Both Fortran and Cobol are imperative (or
procedural) languages, and their immediate success in scientific and business computing made
imperative programming the dominant paradigm for more than 30 years. The rise of the object-
oriented (OO) paradigm in the 1970s and the gradual maturing of OO languages ever since have
made OO programming the most popular paradigm today.

3.2. DESIGN 37

F# is a .NET language modeled on Objective Caml (OCaml)4, an object oriented
extension of ML. It was invented by Don Syme and is now the product of a team at
Microsoft Research (MSR) in Cambridge, England.

Functional programming is the best approach to solving many thorny comput-
ing problems, but pure FP is not suitable for general-purpose programming. So, FP
languages have gradually embraced aspects of the imperative and Object Oriented
paradigms, remaining true to the FP paradigm but incorporating features needed
to easily write any kind of program. F# is a natural successor on this path. With
F#, it is possible to choose whichever paradigm works best to solve problems in the
most effective way. It is possible to do pure FP (using a lot less mutable local state
and making code more clear), but it is also possible to easily combined functional,
imperative, and object-oriented styles in the same program exploiting the strengths
of each paradigm. Being modeled on Objective Caml (OCaml), like other typed
functional languages, F# is strongly typed but also uses inferred typing, so pro-
grammers do not need to spend time explicitly specifying types unless an ambiguity
exists.

Some of the most popular functional languages, including OCaml, Haskell, Lisp,
and Scheme, have traditionally been implemented using custom runtimes, which
leads to problems such as lack of interoperability. F# is a general-purpose pro-
gramming language for .NET, a general-purpose runtime. Further, F# seamlessly
integrates with the .NET Framework base class library and then tweaked and ex-
tended to mesh well technically and philosophically with .NET. It fully embraces
.NET and enables users to do everything that .NET allows. The F# compiler can
compile for all implementations of the Common Language Infrastructure (CLI), it
supports .NET generics, and it even provides for inline Intermediate Language (IL)
code. The F# compiler not only produces executables for any CLI but can also run
on any environment that has a CLI, which means F# is not limited to Windows
operating system but can run also on Linux, Apple Mac OS X, and OpenBSD.
Linguistically, F# includes:

- The standard constructs of Core ML, essentially as implemented by OCaml;

- Type inference based on an instantiation of HM(X) with subtype and operator
overloading constraints [79];

- A .NET-style nominal object model including classes, single inheritance, object
expressions, properties and nominal interfaces associated with object values;

- A dot notation, where overloading is resolved in a type-directed fashion based
on the type information available on a left- outside-in analysis of a file.

Like other .NET languages, F# derives much of its power from its reliance on .NET:

- Garbage collection;

- JIT and install-time compilation;

4F# has the same core language of OCaml: CoreML.

38 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

- Cross-language, inter operable generics, with automatic generalization (see
Section 3.3.2).

- Relatively high performance, especially for floating point;

- Concurrent GC and SMP support;

- A vast array of high-quality libraries, including Windows Forms and Managed
DirectX;

- Debuggers, CPU profilers and memory profilers;

- Portability across any Common Language Infrastructure (CLI) [54, 93] imple-
mentation, like Microsofts .NET Framework [76], Mono [106] and DotGNU
[47]

F# embraces interoperability with CLI paradigms, for example:

- F# types and code can be used directly from other CLI languages;

- F# both generates and consumes generic CLI code; for example ML poly-
morphism is compiled as CLI generics, and generic definitions from other CLI
languages can be used as polymorphic definitions to F# code;

- A simple, direct model of compilation is used, and optimization settings do
not change the binary interface of F# components;

Graphical User Interface Library As regard the graphical user interface (GUI)
of the simulator we have chosen to use the Windows Forms 2.0 library (WF). This
choice is motivated by the need of portability of the simulator on Mono (and thus on
unix machines). There are a lot of possibility in the choice of GUI library for .NET
runtime, and the most powerful and promising is Window Presentation Foundation.
Unfortunately at the time of writing of this thesis Mono do not have yet support for
WPF and therefore we have chosen WF because it seems to offer the best trade–
off between power, ease of development and portability, allowing moreover an easy
upgrade toward WPF (every element of WF has a correspondent in WPF).

The GUI is implemented by using a multi thread asynchronous model: the worker
(= the simulator) runs on a thread at full regime sending asynchronous messages to
a queue in the thread of the client (= the GUI). (The resulting interface is show in
Figure A.1 on pag. 137.)

Steps in the Development Process

The development of stochastic simulators is error prone and introduces a lot of
difficulties in the debug and in the proof of correctness. In fact the debug is made
difficult by the stochasticity of the computations: different executions of the same
simulation usually give different results. Moreover, the computation is driven from
complex data structures of great dimensions, much difficult to trace during the
execution of the program. Thus, we have divided the development process in three
steps and we have tested and debugged the software in each step. The three steps
are:

3.2. DESIGN 39

1. Data structures with SCLS semantics.

2. Simulation with naive algorithm, without variables support.

3. Simulation with pre–processing and support for typed variables.

3.2.2 Architecture

Logical Architecture of the Simulation

The logical architecture of the simulator, using Gillespie’s direct method, is the same
of any stochastic simulator that use the Monte Carlo’s method (see Figure 3.1). The
interpreter works in cycle: it repeatedly selects randomly a reaction among the pos-
sible reactions. The probability of the selection is determined from the concentration
of reactants available and from the relative probabilities of every reaction. The re-
actions and the relative probabilities will be stored in a data structure that the code
will visit repeatedly. The structure of this iterative process is not very different from
an interpreter.

Figure 3.1: Logical architecture of a Monte Carlo simulator.

Namely, like all the Monte Carlo simulation methods (see Figure 3.1), a single
step of computation of the main engine of the simulator consists of the follows
activities:

1. to determine the probability of every reaction;

2. to choose randomly a reaction in agreement with its probability;

3. to choose randomly the molecules to which applying the reaction (in the set
of possible candidates for the selected reaction);

4. to do the reaction and to update the state.

In practice, because the probability of a reaction is given by the number of
possible ways of applying the correspondent rewrite rule, the first step look for all

40 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

the possible matches of the left hand side of each rule against the system state, that
is represented by current term. This search must be exact in order to do the next
reaction according to the correct probability distribution, thus techniques based on
approximation or pruning are not usable. This is clearly the most expensive step of
the algorithm.

Analogies with other Systems

This architecture is very similar to that of production systems (see Section 1.5). In
fact in the simulator we can easy identify the main components of the architecture of
a production system: the set of rules in a SCLS model acts like production memory,
the CLS term representing the state of simulation can be seen as working memory
and the Gillespie’s procedure works as conflict resolution strategy.

Although, peculiar characteristics of SCLS are that the production memory is
static (never altered during the simulation), and that the rules works on a work-
ing memory structured as tree. Moreover the Gillespie algorithm would require a
stochastic conflict resolution strategy, that can not be found in productions systems.

In production systems, to collect production rules with matched conditions, is
used an optimized pattern matching algorithm in which rules are pre–processed and
compiled into a network of inter–related conditions. This is illustrated by the RETE
algorithm designed by Charles L. Forgy in [43] and developed in [38].

The RETE algorithm is intended to improve the speed of forward–chained rule
systems by limiting the effort required to recompute the conflict set after a rule
is fired. Its drawback is that it has high memory space requirements. It takes
advantage of two empirical observations:

- Temporal Redundancy (state–saving): the firing of a rule usually change only
few facts, and only a few rules are affected by each of those changes.

- Structural Similarity (node–sharing): the same pattern often appears in the
left–hand side of more than one rule.

The RETE algorithm uses a rooted directed acyclic graph where the nodes, with
the exception of the root, represent patterns, and paths from the root to the leaves
represent left–hand sides of rules. At each node is stored information about the facts
satisfied by the patterns of the nodes in the paths from the root up and including
this node. This information is a relation representing the possible values of the
variables occurring in the patterns in the path. The RETE algorithm keeps up to
date the informations associated with nodes in the graph.

When a fact is added or removed from working memory, a token representing
that fact is entered at the root of the graph and propagated to its leaves modifying
as appropriate the information associated with the nodes. When a fact is modified
this is expressed as a deletion of the old fact and the addition of new fact.

In other words RETE is implemented building a network of nodes everyone of
which represents one or more test found in the left hand side of a rule; the facts that
are added or removed from working memory are processed by this net of nodes. At
the base of the net are nodes representatives to an entire rule. When a fact arrives

3.2. DESIGN 41

to the base of the net, it means that all the tests of the left part of some rule are
satisfied and thus that rule comes activated and inserted, with the record containing
all the instantiations of the variable, in the set of satisfied rules (= conflict set). At
the successive step we preserve the matches already computed and only new facts
are tested against any rule left–hand side.

Architecture of the Developed Simulator To take advance of the fact that
the set of rule is static we pre–process this set building some data structures that
allow to reduce the computational effort needed for each simulation step at runtime.

This make favorable the architecture show in Figure 3.2.

Figure 3.2: View of the architecture of the developed simulator. The procedures
are indicates with rectangles whereas the data structures are indicates
with ovals.

This architecture are composed by four logic components: a preprocessing mod-
ule, a match engine, a conflict resolution module and an update engine.

- The preprocessor creates the data structures used by the match engine, from
rules given as input: they are a sort of transition table and a non deterministic
finite state automaton (NFA). The transition table, given a node, tells what
parts of patterns are matched by the node according to its type and to the
parts of patterns matched by the children. The NFA is the responsible of
unification of sequences (and looping sequences) in the state term against
sequence patterns in the rules.

- The match engine is responsible to find all matches of rule the schemata inside
the state term. In summary they will walks and enrich with some attributes
the tree of state term, starting from the leaves to the root. When the engine
meet a leaf (that is a sequence) it asks to the NFA the list of the possible
sequence patterns that can be unified with the leaf, together with the list of
all possible bindings. Going back through the nodes it infers the attributes of
a node according to the attributes of children and to the transition table, that
was build in the preprocessing phase.

42 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

- The conflict resolver selects what rule to apply, among the set of possible
reactions, according to their probabilities. The reaction to fire is selected
by an extended Gillespie’s algorithm that deals directly with rule schemata
instead of single rules. Moreover this module returns the time elapsed by the
selected reaction.

- The update engine at each step asks the match set of rule schemata to the
match engine, get the selected reaction from conflict resolution engine and
thus update the term state, incrementing the global clock by the time given
time. This cycle will continuous until, or the end time of the simulation is
reached, or a simulation step give a 4t of 0. In the latter case the simulation
is stopped as there are not any possible reactions and us they will not be any
more.

3.3 Implementation

3.3.1 Data Structures

Because CLS is a term rewriting system, we have to deal with trees. More precisely
with the abstract syntax trees of CLS terms and patterns (see Section 2.1). terms
and patterns of CLS are defined by their abstract syntax trees, build of binary op-
erators with a particular structural congruence. These trees are not suitable for
runtime representation and a more clever representation can be used. In fact these
syntax trees can be compressed finding a common representation of each structural
equivalent class of terms and grouping together subtrees that are structural equiv-
alent. That is: instead of doing trees made by the binary operators of CLS, that
must be considered equal to a certain number of structural congruent trees, we can
use trees made of an n–ary unordered parallel composition operator (corresponding
to |) and of a binary ordered operator corresponding to loop and containment
operator (

()L c). This kind of trees have as leaves sequences composed by the
an n–ary ordered sequencing (corresponding to ·) operator. In this way we can
exploit the unordered nature of the parallel composition operator (|) grouping
together subtrees that are structural equivalent, saving a great number of nodes and
simplifying the implementation of structural congruence: two term are structural
equivalent terms if have exactly the same representation. The reduction in the num-
ber of the nodes is a great advantage also for the pattern–matching algorithm that,
as we see next, must walk the entire term at each step of computation.

Example 3.2. The SCLS pattern

a · b | a · b | c · d |
(
a · x̃ · b

)L c (
(
a
)L c (X | a) |

(
a
)L c (a |X) | b)

that has the abstract syntax tree shown in Figure 3.3.a, are translated in the
tree shown in Figure 3.3.b correspondent to

(a · b)× 2 | (c · d) |
(
a · x̃ · b

)L c ((
(
a
)L c (X | a))× 2 | b)

(where n× T stands for a parallel composition T | . . . |T of length n).

3.3. IMPLEMENTATION 43

Figure 3.3: Comparison between the abstract syntax tree for the
pattern and of the optimized tree of the CLS pattern
a · b | a · b | c · d |

(
a · x̃ · b

)L c (
(
a
)L c (X | a) |

(
a
)L c (a |X) | b).

In Figure 3.4 is represented how the operators given by the syntax grammar of
CLS terms and patterns are mapped into classes. The internal nodes of our trees
trees are made of n-ary parallel composition operator (namely Compartment, instead
of the binary |) and binary looping and containment operator (namely Loop,
corresponding to

()L c) represented by classes derived from the Node abstract
class. On the leaves we find Sequences (and LoopingSequences), representing terms
made by the n-ary sequencing operator (namely Sequence, instead of the binary ·),
made by instances of classes derived form the Element class (ConstantElement,
ElementVariable of SequenceVariable). Now we give a brief description of each
category and of the data structures necessary for the simulation of CLS.

Element is an abstract class representing the components used to build the sequences,
that are the leaves of our trees. From Element abstract class are derived the
classes of ConstantElement, ElementVariable and SequenceVariable. The dif-
ference among these is that although the first represents a single elements of
E , the others represent a variable. The difference between element variables
and sequence variables is that whereas the manner can be instantiated only
with a single constant element, the latter can be instantiated with zero, one
or more constant elements.

Node is an abstract class representing the nodes of our trees. From the Node
abstract class are derived Sequence and LoopingSequence, Compartment and
Loop.

The first two represent sequences made by the sequencing operator of CLS

44 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

(·) and are implemented through an ordered list of elements. The difference
between them is that the LoopingSequence can rotate whereas the Sequence
can not. To efficiently compare different LoopingSequence we have to define
some kind of normal form of these; we have chosen to store a LoopingSequence
as the minimum of all the possible rotations in the lexicographical order.

A Loop, representing the looping and containment operator (
()L c), is com-

posed by one LoopingSequence, its membrane, and a Compartment, its con-
tent.

Compartments, representing the parallel composition operator of SCLS (|),
are composed by a multiset of Node. Due to the unordered nature of compartment
operator we can have advantage holding grouped sons that are equivalents ac-
cording to the structural congruence of CLS. This is implemented through
an hash table in which the key are computed on the nodes and have associ-
ated a number of repetition (a 64 bit integer value). In order to group to-
gether CLS terms that are equivalent according to the structural congruence
of CLS we have defined an appropriate procedure to compute the hash key
of a term. This procedure respects the order of elements into the sequences,
not grouping together sequences with the same set of elements in different or-
der, whereas groups together compartments with the same multiset of nodes,
even if in different order. In other words the hash function is commutative
for Compartments although is not commutative for Sequences and Loops. For
more details relatively to the implementation of the compartment as hash ta-
ble, and to the problems introduced by having to maintain consistent the chain
of hash, see next section.

Figure 3.4: View of inheritance of data structures

So, in order to describe an model of SCLS (see Definition 2.7) it is necessary to
define the following data structures:

Rule A rule of CLS is implemented by a class that is characterized by a name, a
left hand side and a right hand side (that are CLS patterns) and by a rate
function that, given a instantiation of the variables on the rule (a binding),
return a float value (see Section 3.3.4). Moreover we store some additional
informations, as for example if the rule is voidable; a rule is voidable if its left

3.3. IMPLEMENTATION 45

hand side can be instantiated to ε. In case of voidable rule we must exclude
empty bindings from its matches because of the Tσ 6≡ ε condition imposed by
CLS semantics (see Definition 2.6).

Model A model of CLS is implemented by a class containing a set of rules and a
term representing the state of the simulation.

The Model class is enriched by some additional information. As example we
store a data structure that manages the translation of string identifier in integer
identifier. In fact, given an instance of the simulation problem (term + rules),
the set of identifier is fixed (do not grows during computation); this allows
to map the set of string identifier in a set of integer identifier that are more
efficient to handle. Moreover we store in instances of Model informations about
the patterns that the user want to monitor; although this problem is not closely
related to the simulation problem we need to store these patterns because we
delegate the count of such patterns to the pattern matching algorithm.

Moreover, in order to handle instantiations of variables we have defined the following
structures

Binding A Binding represents an instantiation that map variable identifiers to
appropriate nodes in which they are instantiated.

Match A Match represents the concept of context as defined in Definition 2.5; that
is an occurrence of a rule left hand side pattern in the term. Thus a Match
is composed by a rule identifier, a reference to some node inside of the term
and the list of bindings that concur the match of the pattern in the specific
location in the term. In the implementation we have chosen to group together
different instantiations of variable of a rule, representing a single occurrence
of the rule pattern, in a single match (see Section 3.3.2).

Implementation of Compartments as Hash Tables As we already seen, we
have implemented compartments with hash tables. An hash table is a data structure
often used to implement associative arrays, sets and caches. It can uses any data type
as index, supports efficient addition of new entries, and the time spent searching for
the required data is independent from the number of items stored (©(k)). However,
in the very rare worst-case, the lookup time can be ©(n). It works by transforming
the key using a hash function into a hash codes, a number that is used as index of
an array to locate the desired location (bucket) where the values should be.

Therefore the first step to use an hash table is to define the hash function: this
function transforms the data type used by index in an integer that is used as index
of an array. Ideally, different keys should be always translated into different indexes,
but practically, is often used a data type that is greater of the integer data type
that we use as index; thus the perfect hash function can not exist if we use certain
data types as key. This is our case, in fact we try to compress in a space given by
a 32 bit integer values a pairs made by a 32 bit integer value (the hash code the
child) and a 64 bit integer value (the number of repetitions of the child). If two
keys hash to the same index, because the correspondent records cannot be stored

46 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

in the same location, we must use one collision resolution techniques, among which
the most popular and simplest are chaining. In the chained hash table technique,
each slot in the array references to a linked list of inserted records that collide to the
same slot. The insertion requires to find the correct slot, and to append the value
to the end of the list in that slot; the deletion requires to search the list and to do
removal.

The use of hash table to implement the compartment has the advantage of being
able to group structurally equivalent (as ≡ in Definition 2.2) terms in constant time;
in fact this avoids to compare each son with each other. The way of doing this in
F# is to implements the IStructuralHash5 interface using a

Dictionary < > (HashIdentity.Structural)

The use of hash table to implement trees presents also some disvantages. In
fact a good hash function must return exactly the same value regardless of any
changes that are made to the object. But this requirement is not respected in the
case of naive implementation of trees with hash table. In fact, if we implement
the compartments with hash table we have to deal with the following inconvenient:
given a compartment, if a child, or one of the descendants subtree, is modified, we
have that their hash code changes, leading to a inconsistent state. The compartment
that contains this son will be stored, modified, in a bucket assigned on the base of
hash code that has been calculated before the modification. In practice this causes
that the son will not more accessible: if we try to access the value associated with
the modified child, we will compute its hash code, that will be different to that one
with the child was added (when it was not yet modified).

In order to avoid this situation it is necessary that each modification at a node
is executed with a procedure that takes care to maintain consistent the overhanging
chain of the hash codes (see Figure 3.5 and Listing 3.1). In particular when we mod-
ify a node is necessary, before removing it, to remove its parent to its grandfather (the
parent of parent), continuing so until the root of the term is caught up (Figure 3.5.a).
Only at this time it is possible to modify the node locally (Figure 3.5.b). Finally
it is necessary to add the node (modified) to its father, its father to its grandfather
and so on till the root (Figure 3.5.c).

Although the cost of this update procedure, if it is worth the assumption that
the number of accesses to a term is smaller of the number of modifications, continues
to remain convenient to maintain an hash structure respect to a sequential access
structure (based on exhaustive comparison) like for example a list.

3.3.2 Search of Matches Algorithm

Because a SCLS rewrite rule is a triple (Pi, Pii, f) that can be applied to a term T ,
if there exists a sub term of T that is structurally equivalent to a term that can be
obtained from Pi through a valid instantiation of its variables, we have to deal with

5 When we use a Dictionary < >() we use hashing on reference, considering different all the
objects that are not the same instance; when we use it with HashIdentity.Structural we use the
structural hashing defined implementing the IStructuralHash.

3.3. IMPLEMENTATION 47

Listing 3.1: Procedure to keep consistent the hash chain in Compartments.� �
/// remove the path from th i s node to the root o f term
member c . removeUp(pa r en t o f pa r en t : Node opt ion) =

i f pa r en t o f pa r en t . IsSome
then
match pa r en t o f pa r en t . Value with

| : ? Compartment as cc −> cc . RemoveChild (c . parent . Value , 1L)
| −> (f a i l w i t h ” runtime e r r o r ”)

/// add the path from th i s node to the root o f term
member c . addUp(pa r en t o f pa r en t : Node opt ion) =

i f pa r en t o f pa r en t . IsSome
then

match pa r en t o f pa r en t . Value with
| : ? Compartment as cc −> cc . AddChild (c . parent . Value , 1L)
| −> (f a i l w i t h ” runtime e r r o r ”)

/// add occurrence number o f g iven ch i l d to ch i l d r en
member c . AddChild ((node , occ) : (Node∗ i n t64)) : un i t =

l e t pa r en t o f pa r en t =
match c . parent with

| None −> None
| Some(p) −> p . parent

c . removeUp(pa r en t o f pa r en t)
match node with

/// i f we want to add a compartment then add i t s ch i l d r en d i r e c t l y
| : ? Compartment as comp −>

f o r subChild in comp . ch i l d r en do
c . AddChild (subChild .Key , subChild . Value ∗ occ)

done
| −>

/// check i f the compartment a l ready have t h i s ch i l d
l e t ok , value = c . ch i l d r en . TryGetValue (node)
/// i f so then only increments the number o f r e p e t i t i o n s
i f ok

then (c . ch i l d r en . [node]<− (value + occ))
/// e l s e add as f r e s h
e l s e (c . ch i l d r en .Add(node , occ))

node . parent <− Some(c :> Node)

/// remove a ch i l d from ch i l d r en
member c . RemoveChild (node , occ) : (Node∗ i n t64) : un i t =

l e t pa r en t o f pa r en t =
match c . parent with

| None −> None
| Some(p) −> p . parent

c . removeUp(pa r en t o f pa r en t)
/// check i f the compartment conta ins that ch i l d
l e t ok , value = c . ch i l d r en . TryGetValue (ch i l d)
i f ok

then
/// i f so , check the number o f occourrence o f that ch i l d
/// i f t ry to remove equa l s or more than how many ch i l d are present ;

then remove the ch i l d
i f (va lue <= times)

then (c . ch i l d r en . Remove(ch i l d) |> i gnore)
/// e l s e only decrement i t occourrence ’ s counter
e l s e (c . ch i l d r en . [c h i l d] <− value− t imes)

c . addUp(pa r en t o f pa r en t)
/// e l s e do nothing (there are nothing to remove)� �

48 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Figure 3.5: Example of update hash procedure; we remove S0 and add S1 and S2.
We destroy the hash chain before the modification of the interested
node (a). Then we local modify that node (b), and finally the hash
chain is updated (c).

the following problem: given a pattern find all its occurrences in a term within the
corresponding valid instantiations of the variables.

This is the most expensive task in each computation step, that is repeated mil-
lions of times during a simulation. Thus, an efficient realization of the search for
matches phase is the main issue in the implementation of simulator.

The Problem of Subtree Pattern Matching

The problem of subtree pattern matching regards the detection of the occurrences
of a pattern tree P of m vertexes as a subtree of a subject tree P of n vertexes, with
m ≤ n. Since the seminar paper of Hoffmann and O’Donnell [50], this problem
has been studied by many authors, rendering the literature on this problem rather
abundant with many definitions of the problem itself; a recent good reference is the
book of Valiente [101].

We introduce the tree matching as follow :

Definition 3.3 (Tree Matching Problem). A matching problem on trees consists
of a finite set of patterns p1, . . . , pk in a subject tree t in S. A solution to a matching
problem is a list of all the pairs (n, i, b), where n is a node, pi matches at n with
variable bound according to the binding b.

All method for tree pattern matching should be compared with the naive algo-
rithm (based on a simple form of unification), which merely tries every pattern at
every position in the subject tree.

The general notion of this problem on unordered tree has been shown to belong
to NP-Complete class (for detail see [56, 90, 108]).

The subtree pattern matching can be classified according to the characteristics
of input trees :

- we can have ordered or unordered trees; in first case two trees are the same
only if they have the same children in the same order, whereas in the second
case the order among children is not important;

3.3. IMPLEMENTATION 49

- we have k-ary tree with k bounded if each node has a number of child that is
in a set that is fixed; we have k-ary trees with k unbounded if the number of
children (the number of operator with different arity) are not a priori bounded;

- we can have rooted or unrooted trees (tree with a root node or without, or
with more than one root nodes);

- we can have labeled trees, if each node has associated an identifier, or with
unlabeled trees;

- we can have to deal with the presence of logical variable in the pattern trees
or we can have to find only constant trees;

- we can have to deal with different notions of occurrence (see next section).

Moreover the pattern matching algorithm can be used to find exact matches (also
called isomorphisms) or approximate matches, that is to try all the subtrees that are
similar enough to some patterns, according to some notion of similarity (for example
a distance measure given by the sum of the costs of deletion, insertion and relabel
operations on tree nodes necessary to obtain the term form the pattern).

This differentiation in the characteristics of the problem implies that does not
exist an efficient and sufficiently general algorithm that succeeds in dealing with all
these typologies of problems. Instead, there are a lot of papers that propose algo-
rithms that solves some instances of the problem very efficiently, taking advantage
of the assumptions on the input problem instances. For example we can mention
[25, 67, 69, 70, 71].

Subtree Pattern Matching in CLS

The main difficulties that we find in classifying CLS in one of the classes proposed
in literature are the following.

Arity of the Operators All works proposed in the literature analyze instances of
the problem were, given an input, we have to deal with a finite alphabet of
operator with fixed finite arity. In CLS pattern matching, instead, given an
input problem we can have to deal with an infinite set of operators with finite
arity. In fact, as we seen in the previous section, since we use a representation
of the abstract syntax tree of terms in which a node corresponding to a parallel
composition operator may have an arbitrary number of children, we have to
consider such an operator not as a single binary operator but as a set of
operator, each with different arity. Hence we have to deal with an infinite set
of operator with finite arity as

E = {
()L c , | 1, | 2, | 3, . . . , | i, . . .}

where with | n we mean a parallel operator with fixed arity of n.

Also when we know the instance of the problem to simulate we can not limit
a priori the set of operators with different arity that we will need in order to
make the simulation.

50 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Figure 3.6: Example of notion of subtree occurrence required in CLS pattern match-
ing. a) is the pattern tree, b) is the subject tree; in c) is shown a valid
instantiation of the rules whereas the instantiation in d) is not. This be-
cause Y must be bound to all the children of the relative compartment
that are not required to match a constant sequence.

Notion of Occurrences Most of papers that study the tree pattern matching
problem propose algorithms that deals with a restricted notion of pattern oc-
currence in the subject tree: a pattern match on a node n in the subject tree
if the root r of the pattern has the same label of n and there is a one-to-one
map of each child of r to a child of n in the subject tree (there is not any child
of n that is not mapped to some child of r) and so on recursively. In other
words it is like to require that there exists a bijective function that map each
child of the root of the pattern to each child of the node in which it match,
and so on till the leaves. If a node p of the pattern match to a node n of the
subject tree then all the children of n match with a child of p, thus there are
not nodes in the subtree of n that are not involved in the match.

Unfortunately in the case of CLS pattern matching must deals with an hybrid
notion of occurrence. Although for the looping and containment operator
(
()L c) we have to deal with the the notion of occurrence just defined, for

the parallel composition operator (|) we have to deal with a relaxed notion
of occurrence. A parallel composition pattern node p will match at a node n
in the subject tree if each child of p match with a child of n, even if there are
child of n that do not match any child of p. An example is show in Figure 3.6

Semi Ordered Trees For parallel composition operator (|) operator we have
to deal with unordered trees, although for looping and containment (

()L c)
operator we have to deal with ordered trees6.

In summary the instance of pattern matching problem that we have to consider
is exact pattern matching on

- semi ordered (ordered for loop but unordered with compartment)

- k-ary with k not bounded

6The sequencing operator (·) is here not considered because the sequences are the leaves of
our trees.

3.3. IMPLEMENTATION 51

- rooted

- labeled

trees, finding subtree occurrences with typed variables.
Moreover an important characteristic in the simulation of SCLS is that the set

of pattern tree is static.
In order to take advantage of this we have developed a bottom–up, pre–processing

based, algorithm, inspired by the idea of [50]. We introduce the algorithmic idea in
the next section and then we look at how that idea is adapted to the case of CLS.

Our main goal is to develop an algorithm that has the same advantages of RETE
[43, 39] (see Section 1.5) (state–saving and node–sharing) and that takes advantage
of assumptions on CLS terms.

The Bottom–up Algorithm

To find all the possible matches of the left side of the rules, we have implemented an
extension of the bottom–up algorithm of Hoffmann and O’Donnell [50] (which takes
advantage itself of ideas of the algorithms for multi–pattern matching on string based
on pre–processing [10, 62, 24]). The basic idea is to exploit that the set of patterns
is static doing a pre–processing phase; in this way, at match time, we succeed in
walk the tree of the term a single time, in order to find all possible matches (thus
with linear cost in the number of nodes in the subject tree).

In [50] are proposed two algorithmic ideas for solving tree pattern matching. The
bottom-up approach, that find matches traversing the tree from the leaves to the
root, is a generalization of the Knuth–Morris–Pratt [62] string matching algorithm.
The top-down approach reduces tree matching to string matching problem and it is
based on creation of some automata, that allow to solve the problem starting from
the root to the leaves.

Between the bottom–up and the top–down approach, proposed in [50], we have
chosen the first because it is characterized by faster matching and better response
to local changes, even if it has exponential preprocessing time. The top–down ap-
proach instead has better preprocessing times but worse update behavior. How an
algorithm for pattern matching responses to local changes is very important, in fact
in applications of tree replacement, as CLS (term rewriting), the same set of rules is
used many times (as more than 106) and each replacement causes a local change in
the subject tree. So our pattern–matching technique can spend much time in pre–
processing of rules (being a fixed set the pre–processing phase is executed only one
time) and should be able to respond incrementally to local changes in the subject
avoiding to repeatedly scanning of the entire tree.

As presented in [50], the key idea of the bottom-up matching algorithm is to
enumerate and then find all patterns and all parts of patterns which match at each
point in the subject tree. We assume to have a fixed set E of operators bi with
fixed arity qi. Let n be a node in the subject labeled with the q-ary symbol b, and
suppose we wish to compute the set M of all those pattern subtrees, other than
node variable (v), which match at n. (Since v matches anywhere, we always have a
match of v.) Suppose we have already computed such sets for each of the sons of n,

52 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

and call these sets, from left to right, M1 . . .Mq. Then M contains v plus exactly
those pattern subtrees b(t1 . . . tq) such that t, is in M , for 1 ≤ i ≤ q. Therefore we
could compute M by forming trees b(t1 . . . tq) for all combinations (t1 . . . tq), where
the ti are chosen from Mi, and then asking whether each candidate for membership
in M is a sub pattern. Once we have assigned these sets to each node in the subject
tree, we have essentially solved the matching problem, since each match is signaled
by the presence of a complete pattern in some set.

Note that there can be only finitely many such sets M , because both the set
of sub patterns and the set of operator are bounded. Thus we could pre–compute
these sets, code them by some enumeration, and then construct tables. Given a
node symbol b and the codes of the Mi, these tables give the code for M . In the
case of a q-ary symbol b, we would have a q-dimensional matrix for that symbol.

Given such tables, the matching algorithm becomes trivial: it traverses the sub-
ject tree in postorder and assigns to each node n the code c representing the set of
partial matches at n as discussed. The tables consist of arrays, one for each alphabet
symbol. If a node n is labeled with the q-ary symbol b, the q-dimensional array for
b is used. The code c at n is the value indexed by the tuple (c1 . . . cq) where ci, is the
code assigned to the i-th son of n (from the left). If the set represented by c contains
the i-th pattern, then the pair (n, i) is added to the solution. Indicating with s the
size of subject tree and with m the number of matches founds, the matching time
of this algorithm is clearly ©(s) for computing all codes plus ©(m) for listing the
solution.

An example of application of this algorithm is shown in Figure 3.7 (from [50]).

There is some similarity between bottom-up matching and formal parsing meth-
ods such as LR(k) parsing. In both cases a finite number of possible configurations
are precomputed, and tables are formed to drive the parsing/matching process. As
with LR(k) parsing, our tables will sometimes be very large. When a local change
is made to a subject tree, matching codes must be recomputed for the changed por-
tion and some ancestors of the changed portion. In [50] is shown that the number
of ancestors whose codes must be recomputed is bounded by the largest height of a
pattern.

In summary the bottom–up algorithm consist in two phases :

- Preprocessing time: Scan the rules enumerating all pattern subtrees and build-
ing some transition matrices. For each operator with arity q we have a q–
dimensional matrix that, given the codes of pattern subtrees of each child
match, give the codes of pattern subtrees that match the node with which the
operator is associated.

- Match time: Starting from the leaves, scan and enrich with attributes each
node of the subject tree according to the type of the node and the relative
transition matrix. Each node that has the code of the top–level of some pattern
has a match of the corresponding rule.

3.3. IMPLEMENTATION 53

Figure 3.7: Example of Hoffmann and O’Donnel algorithm applied to the prob-
lem in which the patterns are shown in a); The alphabet E of opera-
tors is a, b, c , where a is binary and b and c are nullary symbols.
In b) are shown the possible sets of pattern subtrees. Thus,
assigning a 4 to some node n of a subject tree indicates
that all the members of Set 4 matches at n. In par-
ticular, p2 matches. Assigning 5 implies a match of p1.
c) are shown the tables for a,b, and c. For instance, the entry at (3, 2)
in the table for a is 5, because at the left son we have a match of both
a(v, v) and v, and at the right son of b and of v. For the nullary sym-
bols b and c the tables are 0-dimensional, consisting of one entry each.
d) shows the complete assignment of sub pattern codes when using the
bottom–up algorithm with these tables. Note that p1 matches at the
node with code 5 and p2 at the node with code 4.

54 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Figure 3.8: Example of pre–processing data structure generated for the Lotka sim-
ulation. In a) are shown the rewrite rules. In b) are shown the
corresponding sub–patterns enumeration and in c) the corresponding
transition table. In d) are shown the attributes computed for a term
A× 1000 |B × 1000; the attributes of the root node are the codes cor-
responding to the full match of rule R0, R1 and R2.

The Bottom Up Algorithm Applied to CLS Pattern Matching

The main differences between proposed tree matching algorithm and the case of CLS
are the following

- The children of CLS parallel operator are not ordered ; therefore the transition
matrices can’t be used as they are defined.

- The number of operators with different arity (the cardinality of the operators
alphabet), that are fixed in proposed algorithm, are not bounded a priori in
CLS. (This causes that the set M described before is not bounded and thus
that we can not reason on sets of parts of patterns, but on single parts of
patterns.)

Therefore it is necessary to modify the notion of transition matrix so that the
parallel operator requires the presence of an arbitrary number of sons which can
be taken in any order. Thus the algorithm applied to CLS works in this way. In
pre–processing phase it scan the set of rules building an enumeration of all the full
patterns (entire left hand sides of rules) and part of patterns (subtrees of left hand
side of rules) building a set of transitions; these transition, describing what parts
of pattern are matched by a node according to its type and the set of parts of
pattern matched by the children, are merged in a transition table. (For example
for a compartment node of a pattern the transition table will ask the set of parts
of patterns the must be matched by the children, in any order, to match this part
of pattern.) Moreover in the pre–processing phase an NFA that match each leaves
pattern are build. At runtime, at each step of simulation, the algorithm walk the
subject tree and, using the NFA and the transition table, enriches each node with
a set of attributes that tell what parts of patterns are matched by the node. The
presence of the code of a sub pattern that is also the root of a left hand side of a rule
means that the rule has a match on this node. In order to take account of variables
we build the binding of variables of a match while we compute these attributes.

See Figure 3.8 for an example of application of the pre–processing pattern match-
ing algorithm applied at the case of CLS.

3.3. IMPLEMENTATION 55

We now look more in details at the necessary data structures and the procedures;
these are all grouped in the Engine class.

Data Structures In order to implement the algorithm proposed by [50], we need
to define the data structures representing a subtree of some pattern (that we call
SubPattern), the data structure correspondent to the transition matrices of the Hoff-
mann’s algorithm, (the TransitionTable), and the Attribute with which we enrich
the the term tree.

Sub Pattern This data structure groups together all the information regarding a
sub tree of the left hand side pattern of some rule. These are an integer identi-
fier code, a reference to the node that is the root of the correspondent subtree,
and a set of rule identifiers that indicates for which rules the subpattern is also
a full pattern (that is if the root of the correspondent subtree is also the root
of a left hand side of some rule). If this set is not empty, a node matches the
left hand side of some rule.

Transitions and Transition Table In a Transition record we store all informa-
tions regarding one possible way of inferring an attribute for a node according
from its type, the attributes of children and possibly required term variables.
From the set of all Transitions is made a data structure corresponding to a the
transition matrices entry of the Hoffmann’s algorithm: the TransitionTable.
It associates each operator with a set of possible transitions; these are made
of an array of required children attributes (together with the number of times
in which they are required), an array of variables to bind and a go–to entry;
that is the identifier of the subpattern inferred if all the required conditions
are satisfied. (See Figure 3.8.b)

Attribute In the Attribute data structure we store all informations that we need
for enrich the term tree. Namely they are the follow :

- a subpattern identifier that indicates which subpattern match the node
that is attributed;

- an array of references to the children involved by the transition that has
created this attribute; this array will be useful when we are in front of
the problem of removing only the attributes involved by a certain rule
match;

- a list of bindings (in compressed way as see Section 3.3.2);

- an integer value representing the number of times in which the attributed
node satisfies the subpattern indexed by subpattern identifier field;

- an array of variables bound by the transition that has generated this
attribute;

- a boolean field that indicates if the transition that has generated this
attributes has left not binded some children in the sub tree of the node.
If so the attribute can not be used to inhering the match of some node of
type looping and compartment. (As we have seen in Section 3.3.2 a match

56 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

of a part of pattern rooted in a node of type looping and containment
requires that there are not nodes not bound in the subtree of the matched
node in the subject tree.)

Procedures

Pre–processing Phase This phase is executed by the constructor of the Engine
object.

First of all we merge the patterns of the left hand sides of the rules with the
pattern that the user want to monitor. This is because, even if these patterns
are not related with the simulation problem we must know also their matchset
in order to plot their evolution.

Then we build the transition table for each operator (namely for Loop and
Compartment). In order to do this we iterate through the array of patterns
executing a procedure that traverse each note in the pattern tree. Given a
node such a procedure generates the corresponding description of the sub pat-
tern that the node represents, and, in the case in which the node is not a
leaf, the corresponding transition table entry. (See Figure 3.8.b and 3.8.c)
Each sub pattern is accumulated in a list through a procedure. This proce-
dure adds the informations build for the subtree of the node to these already
computed, according to some logic of sharing of sub patterns among different
rules. The same logic of node–sharing is followed by the procedure that store
of the transition table entries.

Match Phase We attribute the term tree, starting from the leaves (= sequences)
using a non deterministic finite automaton (see Section 3.3.2); given such at-
tributes on the leaves, we compute the attribute of each node in bottom–up
way.

That computation is different according to the type of the node. For Loop
nodes we look at all the possible transitions in the transition table for Loop
operator; for each of these we look at the required attributes in the attributes
list of the membrane and content, and, if we find these, we simply assign to
the current node the attributes given by the goto field of the transition. For
Compartments we act in a more complex way, in fact we have to find the
required attributes for each transition among the attributes of children.

The complexity of this phase is high for two reason: the first is the unordered
nature of the required attributes and of the children, and the second is the
fact that a single required attribute (meant with a fixed number of times
in which must be matched) can be satisfied by some different children and,
symmetrically, that a single child (meant with a certain number of repetitions)
can satisfy different required attributes. Moreover for each possible way of take
the required attributes we have to bind the children that are not required to
match some attribute to eventually required term variables. In the simplest
implementation we store all these attribute in a separate table indexed by the
node instance.

3.3. IMPLEMENTATION 57

While we go back from the leaves to the root of term, when we infer an attribute
corresponding to the top–level of a pattern we add a match, regarding the
corresponding rule, to the matchset. (See Figure 3.8.d). In this way we walk
the tree one time in order to know all the possible reactions.

Matching of Sequences by NFA

We have chosen that the leaves of our attribute tree are the Sequences, and thus
we need an unification procedure that, in order to assign attribute to these leaves,
compute the unification between Sequences and Sequence patterns.

In order to carry out this task we have implemented a nondeterministic finite
automaton (NFA)7. An NFA is a finite state machine where for each pair of state
and input symbol there may be several possible next states; it is non-deterministic
in that, for any input symbol, its next state is not uniquely determined, but may be
any one of several possible states. The implementation keeps a set data structure of
all states in which the machine might currently be. On the consumption of the last
input symbol, if one of these active states is a final state, the machine accepts the
input.

We use NFA for doing unification. Namely, given a sequence, we want to know
all the possible pairs (pattern code , binding) regarding all the sequence patterns
that can be unified with that sequence. More in details we have to unify an or-
dered list of Elements with a set of ordered list of Elements, ElementsVariables and
SequenceVariables; the Elements unify only with the same Element, the Element-
Variable unify only with exactly one of any Element, the SequenceVariable unify
with an ordered list of zero or more Elements.

Example 3.4. If we have the following sequence pattern within the left hand side
of a rule

a ·x̃ · ỹ · z · x̃ · ỹ· d ·x̃ · ỹ · z · x̃ · ỹ· a

the solutions of unification, against the following ground sequence

a · d · a

are

{(z = d, x̃ = ε, ỹ = d · d · d · d · d · d),
(z = d, x̃ = d, ỹ = d · d · d),
(z = d, x̃ = d · d, ỹ = d · d),
(z = d, x̃ = d · d · d, ỹ = d),

(z = d, x̃ = d · d · d · d, ỹ = ε) }

7Nondeterministic finite automaton were introduced by Michael O. Rabin and Dana Scott in
1959.

58 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

The constructor of the NFA takes an array containing all the patterns of all the
sequences that appear in the rules. Given such an array it generates an NFA for each
sequence and then it merges them in a single automaton, sharing common states
and transitions among different patterns.

As regard the variables, the NFA transitions are built in way that the bindings
are created when the variable is met for the first time, and are stored within each
active state. At the time in which the transition to match an already seen variable is
created, it is built in way that the transition is executed only if the next n symbols
in the input sequence are the same of the n symbols sequence that are bond to the
variable, in the binding associated with the state from which the transition starts.

In other words, in the match phase, if we are on i–th position on input sequence
and we have a transition that requires to match an already seen variable var, we
do a lookahead of n symbols, where n are the number of elements of the sequence
bound to the variable var in the binding associated with current state. If we succeed
in comparing the lookahead with the list of elements bound to the variable then we
activate the arriving state for the i + n position on input sequence. In order to
do this we use an array of sets of pairs (active state , active binding), one for each
position in the input sequence.

The difference between ElementVariables and SequenceVariable is that the firsts
are constrained to be bound to one and only one Element of input sequence, whereas
the seconds can be skipped (bound to ε) and thus has a loop in the binding state
that allows to bind more than one Element (see for example the transitions on states
2, 3, 4 and 5 in Figure 3.9 for details).

Figure 3.9: The NFA built for matching the a.x̃.ỹ.z.x̃.ỹ.a sequence pattern. With >
var on the transition arrows we mean that any read Element are bound
to the variable identifier. With var we mean that the transition can be
done if the next n symbols in the input sequence are the same of the
sequence, of n symbols, bound to var int the binding associated with
start state. Constant elements are indicated between quotes.

The NFA match phase is very similar to a standard driver of NFA: it starts on
starting state, reads a symbol from the input sequence and makes all the possible
transitions. They activate all the arrival states withing possibly created bindings.
At the end of the input sequence, if there are some active states that are also final

3.3. IMPLEMENTATION 59

states, it signals the matches of the relative sequence patterns with correspondent
binding.

Regarding of the classic unification problem, we have in addition the problem of
the management of the looping sequences; in fact they can be rotated, and, according
to the definition of structural congruence of the CLS (see Definition 2.2), they must
be considered equal to each of all their possible rotations. The solution is to test
each rotation of a looping sequence against the NFA.

The NFA performance is enhanced by the use of memoization pattern like dis-
cussed in the next section.

The Term Updating Procedure

Even if the main goal of the developed pattern–matching algorithm is to allow the
search of matches in the term with linear cost, it have also an important feature that
allow to improve the efficiency of every step of the simulation. We can do like expert
systems that takes advantage of state–saving, preserving, between an iteration and
the next one, the informations that are not modified by an application of a rule. In
fact, between an iteration of our simulator and the next one, we need to re–compute
only the attributes of the modified part of the tree. More precisely if we modify a
generic node n we need to re–compute the attributes regarding the modified children
of n (at the worst case all the subtree rooted in n) and the attributes of the nodes
on the path from root of tree to n (see Listing 3.2). This concurs to preserve all
the remaining attributes from a iteration to the next, improving the performance in
way depending on the complexity of the tree. The boost is quite oblivious but are
not inferiorly limited and in the worst case, that is the case of each rule is applied
to the root of the term involving all the children on the root, we do not have any
speed up.

Figure 3.10: Local changes to subject tree after a rule application on node n. The
attributes that need to be recomputed are these of n, of its subtrees
and of the nodes on the path from n to the root of the term.

Further Optimizations

Here we present some further optimization ideas that improve the performance of
the CLS pattern matching engine.

60 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Listing 3.2: Procedure to update term attributes after a local changes. The proce-
dure can be expanded to store the list of nodes with removed attributes,
in order to remove also the matches related to touched nodes.� �

member x . update (m: Match) =

l e t r ec RemoveUp(n : Node) =
i f n . parent . IsSome

then RemoveUp(n . parent . Value)
x . t a b l e . Remove(n) |> i gno r e

l e t r e c RemoveDown(n : Node) =
match n with

| : ? Compartment as comp −>
f o r keyVal in comp . c h i l d r e n do

RemoveDown(keyVal . Key)
x . t a b l e . Remove(keyVal . Key) |> i gno r e

done
| : ? Loop as loop −>

RemoveDown(loop . content :> Node)
x . t a b l e . Remove(loop . membrane) |> i gno r e
x . t a b l e . Remove(loop) |> i gno r e

| −>() /// we are on l e a f s
x . t a b l e . Remove(n) |> i gno r e

/// remove the a t t r i b u t e s o f the node
x . t a b l e . Remove(m. where) |> i gno r e

/// remove the a t t r i b u t e s o f the nodes on the path
/// from the node to the root o f the term
RemoveUp(m. where)

/// remove the a t t r i b u t e s o f the nodes on the subt r e e s
/// o f the invo lved c h i l d r e n
f o r c h i l d in m. i n v o l v e d c h i l d r e n do

RemoveDown(c h i l d)
done� �

3.3. IMPLEMENTATION 61

Using Compressed Information About Term Variable Bindings To im-
prove efficiency, it is useful to store the information about all possible bindings in a
compressed way, expanding it only when need.

Given a transition that can give an attribute for a node n, it requires that some
attributes are present among the attributes of some child of n. If the transition needs
also some variables of type term, each of these can be bound to one of the power
set8 of the set of children that are not required to satisfy some required subtrees.
The cardinality of the power set grows exponentially (for example with 10 sons the
number of possible bindings is 210). Moreover a big part of these binding will be
not valid to the upper level; a match of a loop and compartment operator does not
allows that some node in the subtree of the matched node to be unbounded. Thus
it is profit to store only the binding in which the term variable are bond to all the
remaining children, and explode this information only when is required: namely
when we have term variables in the top–level of a rule.

In other words we observe that any time that a term variable, in the bottom–up
inference algorithm, pass up through a Loop, the term variable are always forced to
be bound to the maximum part of remaining children. Thus, with the exception of
the case in which a term variable is present at top–level of a rule, we can consider
that a term variable is always bound to all the children not required to make a
transition. (see Figure 3.6). When (and only when) we have a term variable at the
top level of a rule we choose what binding has associated exploding the power set
and randomly taking one of these.

Attribute Table as Direct Acyclic Graph We can do more node sharing com-
pressing the attribute table tree in a direct acyclic graph form.

A direct acyclic graph (DAG) is a directed graph that not contains cycles. This
means that if there is a route from node A to node B, there is no way back.

It is possible to group together the node in the subject tree in classes of structural
equivalence taking advantage of a simple observation: each node in a class will have
always the same attribute set. So, if two node are in the same class of structural
equivalence, they have the same subtree and thus satisfy the same sub patterns and
have the same set of attributes. This means that various instances of sub patterns
within the subject tree have the same set of attributes. Thus we can share that list,
obtaining node–sharing in the subject tree.

This optimization leads to use less memory and also to faster access to match
set, even if it requires a more complex management of the addition and remotion of
the attributes based on a reference counter.

Memoization pattern

Cause of the high quantity of computation repeated from a step to another, we have
made extensive use of memoization pattern. It is a form of computation caching that
allow to compute the results only at the first time we meet an instance of input; at
the successive times we avoid the computation returning the cached result. Here is
an example

8Given a set S its power set is the set of all subsets of S.

62 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Listing 3.3: Memoization pattern example.� �
l e t memoize f =

l e t cache = Dict ionary< , >()
fun x −>

l e t ok , r e s = cache . TryGetValue (x)
i f ok then r e s
e l s e l e t r e s = f x

cache . [x] <− r e s
r e s� �

In the previous example the generic type of memoize is automatically computed:
(’a -> ’b) -> (’a -> ’b). This makes the code short and clear. This is known
as automatic generalization, and is a key part of type inference and succinct coding
in all typed functional languages.

For preventing that the size of the cache can grow up unbounded (causing mem-
ory overflow) it is possible to add a private size limit field. When try to add a new
element, first check the actual size of the cache; if it is lower than size limit we can
remove an element from the cache according some policies (for example least recently
used). If the cost of the computation of the results that we cache are significant, we
still have a performance gain.

This kind of caching is used for example in the expensive computation of factori-
als: given a model, therefore a fixed set of rule, we have to compute at each iteration
the factorials of each number of repetitions of each reactants of each rule. Because
the rule set are fixed, at each step are required the same factorials independently
from the reagent amount that is found in the current state.

This kind of caching is also used by the computation of attributes of leaves, by
the NFA. Because we will test some Sequences repeatedly, we cache these results
retrieving according to the structural congruence of sequences.

Alternatives

We now examine some alternatives for implementing pattern matching for CLS.

Using ML pattern matching An examined option would been to compile
the CLS pattern matching in ML pattern matching. Unfortunately the following
differences between the two notions of patterns make this approach unfeasible.

- The patterns of ML are composed of ordered operators; pattern of CLS are
composed by the compartment operator whose sons are not ordered (see Section 3.3.2).

- The patterns of ML are composed of a finite set of operator of finite arity;
pattern the CLS are instead composed from operators with an unbounded
number of children.

Using Expert Systems Shell It would also been possible to use the inference
engine of some existent production systems implementing RETE like as example

3.3. IMPLEMENTATION 63

CLIPS [2]. We would generate CLIPS code from CLS input file and then run it by
CLIPS engine. If fact it is possible to express CLS terms like CLIPS fact and CLS
rule (on terms) as CLIPS rule (on facts). See Listing 3.3.2 for an example of coding
CLS into CLIPS.

Unfortunately there are some disvantages that makes also this way unfeasible :

- A production system is apt to medium case of some inter related facts. This
do not take advantage of the assumptions on the domains of CLS; instead,
using an ad–hoc algorithm can exploit the tree structure of CLS term and
the characteristic of abstract syntax CLS trees (like we have seen in 3.3.2),
improving the performance.

- Production systems, created mainly in within of artificial intelligence, do not
offer enough control on the conflict resolution strategy. In fact all analyzed ex-
pert systems offers a fixed set of resolution strategy (like depth, breath etc. . .),
whereas we need to take control of all the conflict set and select which rule to
apply regarding Gillespie’s random procedure. This is the main impediment
in the use of an already built production system inference engine.

3.3.3 Gillespie’s Algorithm Extension to Deal with Rule Schemata

The Gillespie’s direct method algorithm, as defined in [44] does not deals with vari-
ables and rate functions: each reaction is expressed by a ground rule with kinetic
constant. We need instead to select a reaction among match set rule schemata; thus
we have to deal with non ground rules with rate functions.

As we have seen in Section 2.2.1, in the papers of Barbuti et al. and in the
Ph.D. thesis of Milazzo, at each step, the rule to be applied is chosen randomly with
a probability that depends on an actual application rate. Such actual rate is the
value obtained by the rate function multiplied by the number of possible positions
(= context) in the term where the rule can be applied. The actual application rate is
used also as the parameter of an exponential distribution to determine the quantity
of time spent by the occurrence of the described event.

More precisely, at each step a set of applicable ground rewrite rules AR(R, T)
is computed which contains all the ground rules that can be applied to T and that
are obtained by instantiating variables in the rules in R. In each of these ground
rules we have r = f(σ), where f is the rate function of the rewrite rule from which
it was instantiated by means of an instantiation function σ. By the finiteness of R
and of T we have that AR(R, T) is a finite set of ground rewrite rules. For each
ground rule R in AR(R, T) and for each possible term T ′ that can be obtained by
the application R, the number of different application positions in T where R can be
applied producing T ′ is computed. Such a number, called the application cardinality
of R leading from T to T ′, is denoted as AC(R, T, T ′), and is the number that must
be multiplied by the rate constant of R to obtain the actual application rate.

In other words, from the set of rules with variables are computed all the possible
ground rules with the relative constant kinetic rate (obtained from the instantiation
of variables that leads to this ground rule). Given that set we can use the standard
Gillespie’s algorithm as we do not have variables anymore.

64 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Listing 3.4: Example of coding of CLS in CLIPS.
We can see the encoding in CLIP of term

(
a
)L c (b | c |

(
b
)L c (c)) and

of rewrite rule
(
x̃
)L c (X)→ x̃ |X� �

///DEFINITIONS OF FACT TEMPLATE
deftemplate ELEMENT

(s l o t id (type symbols))
de f template COMPARTMENT

(m u l t i s l o t c h i l d r e n (type f a c t r e f))
de f template SEQUENCE

(m u l t i s l o t c h i l d r e n s (type f a c t r e f))
de f template LOOP

(
s l o t membrane (type f a c t r e f)
s l o t content (type f a c t r e f)

)
///DEFINITION OF STARTING WORKING MEMORY
/// (= encoding o f a term in c l i p s ’ s f a c t s)
0 : (a s s e r t (ELEMENT (id ”b”)))
1 : (a s s e r t (ELEMENT (id ”c”)))
2 : (a s s e r t (LOOP (membrane 0 1)))
3 : (a s s e r t (ELEMENT (id ”b”)))
4 : (a s s e r t (ELEMENT (id ”c”)))
5 : (a s s e r t (COMPARTMENT (c h i l d r e n 2 3 4)))
6 : (a s s e r t (ELEMENT (id ”a”)))
7 : (a s s e r t (LOOP (membrane 6 content 5)))
8 : (a s s e r t (COMPARTMENT (c h i l d r e n 6 5)))
///DEFINITION OF RULES
(d e f r u l e R1
(? r e f <− LOOP (membrane ?x content ?X))
=>
(r e t r a c t ? r e f)
(a s s e r t (COMPARTMENT ?x ?X))
)� �

3.3. IMPLEMENTATION 65

This approach is in practice not feasible because such set of ground rules is too
large and must be recomputed at each step. In the implementation is therefore
necessary to find directly the patterns with variables inside the term; where we have
a match we have found a contexts of application of the rule schemata. Given the
list of contexts in which each rule schemata is applicable, we have to choose directly
from this list which rule and in which context has to be applied.

We now examine how to count occurrences of a rule with variable inside a term
and then we present an extension of Gillespie’s algorithm that deals with variables
and rate functions. See Listings numbered 3.5 and 3.6 for the various version of
Gillespie’s algorithm.

Counting Occurrences of Rule Schemata Whereas in case of ground rules the
count of occurrences of reactants in a solution is made as described in Section 1.4,
making use of the product of binomial coefficients, dealing with variables we must
fix how the variables influences this calculation. The naive approach is to multiply
the product of the binomial coefficient by the number of the possible bindings of
variables. Unfortunately this solution is a wrong interpretation of rule schemata.
In fact, as shown in the following example, a rule can match in a node with some
different bindings but the count of occurrences of that rule in that node is one. This
is caused by the fact that all the different bindings, that allow a rule to match in a
node, generate the same ground term as left hand side of the rule. Thus is necessary
to group in a list these different bindings, concurring to a single match.

Example 3.5. Given the rule

a · x̃ | a · ỹ k7→ b

in which the left hand side pattern represents a set of reactants. In the term

a · b | a · c

there is only one combination of the reactants that can be obtained with different
instantiation of variables. In fact the all the possible binding are

σ1 = {x̃ = b , ỹ = c} σ2 = {x̃ = c , ỹ = b}

both of them give the following ground rule

a · b | a · c k7→ b

But we must be aware of the fact that, even if different bindings of a match of a
rule generate through instantiation the same left hand side, this is not true for the
right hand side of the rule (and also for the value obtained from the rate function
as we see next).

Example 3.6. Given the rule

a · x̃ | a · ỹ k7→ b | x̃

an the same term of the previous example even if the number of times in which the
reactants are present in the solution is one, the instantiation of the right hand side
of the rule gives two different right hand side: b | b and b | c.

66 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Thus we must introduce the stochastic component also in the selection of the
binding. That is: we store each match with all the possible bindings counting it as
a single occurrence of the reactants; then, when we have chosen an occurrence, the
binding used to obtain rate constant from rate function and to obtain the right hand
side of the rule are chosen randomly among the possible different bindings. These
bindings gives the same occurrence of the reactants thus are considered equivalents
and selected randomly.

Figure 3.11: Schematic of how to extend the matchset of rule schemata in order to
apply correctly the Gillespie’s SSA.

Application of Gillespie’s SSA to Matchset of Rule Schemata In order to
do this we execute the following steps (see Figure 3.11).

1. Given an array containing a list of matches for each rule, we enrich each match
with the value given by the rate function of the rule applied with one of any
of the possible bindings for that match. Practically this is obtained using the
F# library function map9 whit a function that transforms each list of matches
in a list of pairs (match, value of rate function).

2. In order to obtain a rate value for each rule schema, we do the summation of
all the rate values associated with the matches. Practically this is obtained
using the F# library function fold left10 on each list of matches.

3. Now, having all rates as constants, like the Gillespie’s SSA selects a possible
reaction, we select randomly and execute a match of a rule schema. We get
a random number from 0 to the summation of the rate of each schema. This
number is used to select a rule schema with a probability proportional to its
rate. Similarly this number is also used to select a match among those of the
chosen schema, with a probability proportional to the rates computed in 1).
Given the selected match, we choose randomly what binding to use, among
the set of its possible bindings.

As we have discussed in previous paragraph, different bindings originate the same
ground left hand side; thus they must be considered as a single occurrence of the
rule schema. But there is an inconvenient: even if different possible bindings give

9map : (’a -> ’b) -> ’a list -> ’b list
10fold left : (’b -> ’a -> ’b) -> ’b -> ’a list -> ’b

3.3. IMPLEMENTATION 67

the same ground left hand side, it is possible that they give different ground right
hand side and different value of rate function.

Example 3.7. If we have

f(b) = if occ(c,X) = 1 then 1 else 0

and the rule

a |X f(b)+17→ a | a |X

applied to term
a | b | c

we can bind X to b or c or b | c or ε, for the same instance of the rule, originating
different value of rate function. In fact in the values can be 0 or 1.

This represents a defect of the CLS formalism; in fact the value of arbitrary rate
functions computed on possible different bindings can give different value. Thus in
the implementation of the simulator we assume that the rate functions are defined
in such way that they give the same value for all the bindings that give the same
ground term as instantiation of the left hand side of the correspondent rule. With
this assumption on the rate functions we can always select the first binding.

This ambiguity can be avoided using a variant of CLS called CLS+ (see Section 6.2.2).

3.3.4 Compilation and Execution of C# Code in the Rate Functions

As regards the definition of rate functions of the SCLS rules (see Section 2.4) we
have chosen to allow the user to write rate functions in the simulation input file by
using the C# [53]11 programming language.

In this way we have the following advantages :

- such a programming language is Turing complete, and the users can use all the
.NET library function. Moreover it is possible to develop a library of additional
helper functions and then use it: we should simply register the library in the
.NET Global Assembly Cache and then call it in the rate function source. As
example we have developed a function that counts the occurrence of certain
elements inside certain variable’s instantiations; this function, called occ, has
the same semantics of that seen in the Example 2.10 (see Section 4.4 for an
use example).

- we can use the dynamic features of .NET rendering the implementation very
simple. In fact the CodeDom and the Reflection, features of .NET infrastruc-
ture, give you the ability to dynamically build C# code into a string, compile
it in memory, and run it, by program.

11We would have intentional to use F#, that have a lighter syntax, but the corresponding Code-
Dom it is not still mature.

68 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

That is (see Figure 3.12 and Listing 3.7 for details).
We take the rate function source and put it into a the code of a class definition:

this class has a method that take the given binding and execute the (pre–processed12)
source of the user specified rate function.

A different class is compiled for each rule and an its instance is placed into the
rule.

At the time in which we need to evaluate the rate function we need only to call
the method using as parameter the selected instantiation (= a binding) of the rule.

Figure 3.12: Rate functions dynamic code generation, compilation and execution.

12For example we replace the call to abs in Math.abs and give the access to the scope of some
helper function like occ seen in Example 2.10 .

3.3. IMPLEMENTATION 69

Listing 3.5: Gillespie’s stochastic simulation algorithm.� �
/// Main s imulat ion ’ s procedure
l e t Simulate (s t a r t c l o c k : f l o a t , s t o p c l o c k : f l o a t , model : Model)

=
l e t mutable c l o ck = s t a r t c l o c k
whi l e (c l o ck < s t o p c l o c k) do

/// get the s e t o f a p p l i c a b l e r e a c t i o n s
l e t matchset = get matches model . term model . r u l e s
/// s e l e c t one o f the se accord ing to G i l l e s p i e ’ s SSA
l e t (tau , r u l e , m) = G i l l e s p i e (matchset , model . r u l e s)
i f (tau > 0)

/// there i s s e l e c t e d some r e a c t i o n ;
/// apply the r e a c t i o n and spend the employed time
then model . term . r e p l a c e (

m,
((model . r u l e s) . (ruleNumber)) . l e f t ,
((model . r u l e s) . (ruleNumber)) . r i g h t

)
/// there are not any p o s s i b l e r e a c t i o n s and
/// there w i l l not even more (s imu la t i on can be

stopped)
e l s e break

c l o ck <− ! c l o ck + tau
done

/// G i l l e s p i e ’ s SSA
/// r u l e s i s the array o f p o s s i b l e r e a c t i o n s
/// matchset i s the array o f l i s t o f matches f o r each r u l e
and G i l l e s p i e (matchset : Match array , r u l e s : r u l e s array) =

l e t par = count par matchset r u l e s
l e t (tau : f l o a t) =

i f (par = 0)
then 0
e l s e − l og (rnd . NextDouble ()) / par

l e t ru le ,m = getRuleAndMatch (rnd . NextDouble () , matchset)
(tau , ru le , m)

/// compute the summation from i=0 to r u l e s . Lenght
/// o f (matchset . [i] . Lenght ∗ r u l e s . [i] . k i n e t i c)
and count par matchset r u l e s =

l e t i = r e f −1
l e t f = fun acc r u l e −> i := ! i + 1 ; acc + (r u l e . k i n e t i c ∗

matchset . [i] . Lenght)
Array . f o l d l e f t f r u l e s� �

70 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Listing 3.6: Gillespie’s algorithm with variables and rate functions.� �
l e t Simulate (s t a r t c l o c k : f l o a t , s t op c l o ck : f l o a t , model : Model) =

l e t mutable c l o ck = s t a r t c l o c k
l e t mutable s imulate = true
whi le (c l o ck < s t op c l o ck) && simulate do

l e t matchset = get matches model . term model . r u l e s
l e t (tau , ruleNumber , matchNumber , augmented matchset) = G i l l e s p i e (matchSet , model

. r u l e s)
i f (tau > 0)

then
l e t se l ec ted match = getNthMatchFromAumentedMatchList (matchNumber , (

augmented matchset . [ruleNumber]))
l e t l e f t h and s i d e , r i gh t hand s i d e =

i f (((model . r u l e s) . (ruleNumber))) . IsGround
then (((model . r u l e s) . (ruleNumber)) . l e f t) , (((model . r u l e s) . (

ruleNumber)) . r i gh t)
e l s e

l e t bindings number = rnd . Next (se l e c ted match .
b i n d l i s t . Length − 1)

l e t s e l e c t e d b i nd = L i s t . nth se l ec ted match . b i n d l i s t
bindings number

Node . in s tant ia teNode ((((model . r u l e s) . (ruleNumber)) .
l e f t :> Node) , s e l e c t ed b ind ,

Node . in s tant ia teNode ((((model . r u l e s) . (ruleNumber)) .
r i gh t :> Node) , s e l e c t e d b i nd)

model . term . Replace (
se l ec ted match . where ,
l e f t h and s i d e ,
r i gh t hand s i d e

)
e l s e s imulate <− f a l s e

c l o ck := ! c l ock + tau

and G i l l e s p i e ((matchset : ResizeArray<Match> array) , (r u l e s : SCLS . Rule array)) =
l e t augmented matchset , par = countPar ra t e func t i on (matchset , r u l e s)
l e t (tau : f l o a t) = i f (par = double 0) then double 0 e l s e − l og (rnd . NextDouble ()) /

par
l e t (r : f l o a t) = rnd . NextDouble ()
l e t ruleNumber , matchNumber = getRuleNumberFromMatchNumber (r , augmented matchset)
(tau , ruleNumber , matchNumber , augmented matchset)

and getRuleNumberFromMatchNumber ((absoluteMatchNumber : f l o a t) , (augmented matchset : (
ResizeArray<(Match ∗ f l o a t)> ∗ f l o a t) array)) : i n t ∗ f l o a t =
l e t acc = r e f 0 .0
l e t index = Array . f i nd i ndex (

fun (a , b) −>
(acc := ! acc + b) ;
i f absoluteMatchNumber <= ! acc then acc :=! acc−b ; t rue e l s e

f a l s e
) augmented matchset

(index , absoluteMatchNumber − ! acc)

and countPar ra t e func t i on ((matchset : ResizeArray<Match> array) , (r u l e s : SCLS . Rule array))
=
l e t m =

at t r ibu ta t matchs e t matchset
|> Array .map (fun l −> (l , c omput e a c c f o r a t t r i bu t a t ed mat ch l i s t l))

l e t par = Array . f o l d l e f t (fun acc (m, f) −> acc + f) 0 .0 m
m, par

and att r ibute match =
fun (m: Match) −>

/// a s s o c i a t e at each match the ra t e func t i on o f the ru l e
/// computed on the f i r s t b ind ings
m, (r u l e s . [m. r u l e i d]) . getRate ((L i s t . hd m. b i n d l i s t)) ∗ f l o a t m. r e p e t i t i o n s

and a t t r i b u t e ma t ch l i s t =
fun (ml : ResizeArray<Match>) −>
ResizeArray .map att r ibute match ml

and at t r i bu ta t e match s e t matchset =
Array .map a t t r i b u t e ma t ch l i s t matchset

and comput e a c c f o r a t t r i bu t a t ed mat ch l i s t =
fun (aml : ResizeArray<(Match ∗ f l o a t)>) −>
ResizeArray . f o l d l e f t (fun (acc : f l o a t) (m: Match , f : f l o a t) −> acc + f) 0 .0 aml� �

3.3. IMPLEMENTATION 71

Listing 3.7: Dynamic rate function evaluator� �
pub l i c c l a s s CSharpCodeExpressionEvaluator

{
pub l i c ob j e c t myobj = nu l l ;
pub l i c ArrayList er rorMessages ;

pub l i c CSharpCodeExpressionEvaluator ()
{

errorMessages = new ArrayList () ;
}
pub l i c bool i n i t (s t r i n g expr)
{

Environment . CurrentDirectory =
System . AppDomain . CurrentDomain . BaseDirectory ;

Microso f t . CSharp . CSharpCodeProvider cp =
new Microso f t . CSharp . CSharpCodeProvider () ;

System .CodeDom. Compiler . CompilerParameters cpar =
new System .CodeDom. Compiler . CompilerParameters () ;

cpar . GenerateInMemory = true ;
cpar . GenerateExecutable = f a l s e ;
cpar . ReferencedAssembl ies .Add(” system . d l l ”) ;
cpar . ReferencedAssembl ies .Add(” s c l s . d l l ”) ;
s t r i n g s r c =
@”us ing System ;

us ing SCLSm;
us ing SCLSm. Occurrences ;
us ing SCLSm.SCLS ;
c l a s s myclass
{

pub l i c myclass () {}
pub l i c s t a t i c double eva l (b ind ings b)
{

re turn (” + expr + ”) ; ” +
@”}

} ” ;
System .CodeDom. Compiler . Compi lerResults cr =

cp . CompileAssemblyFromSource (cpar , s r c) ;
f o r each (System .CodeDom. Compiler . CompilerError ce in cr . Errors)

{ errorMessages .Add(ce . ErrorText) ; }
i f (c r . Errors . Count == 0 && cr . CompiledAssembly != nu l l)
{

Type ObjType = cr . CompiledAssembly . GetType (”myclass ”) ;
t ry
{

i f (ObjType != nu l l)
{

myobj = Act ivator . Create Instance (ObjType) ;
}

}
catch (Exception ex)
{

errorMessages .Add(ex . Message) ;
}
re turn true ;

}
e l s e

re turn f a l s e ;
}
pub l i c double evalRateFunction (SCLSm.SCLS . b ind ings binding)
{

double va l = 0 . 0 ;
Object [] myParams = new Object [1] { binding } ;
i f (myobj != nu l l)
{

System . Re f l e c t i on . MethodInfo evalMethod =
myobj . GetType () . GetMethod (” eva l ”) ;

va l = (double) evalMethod . Invoke (myobj , myParams) ;
}
re turn va l ;

}
}� �

72 3. DEVELOPMENT OF A STOCHASTIC SIMULATOR FOR CLS

Part III

RESULTS

Chapter 4

Use Cases

In this chapter we present some simulation results obtained with the developed
simulator.

To test the correctness of the engine we have ran some well known examples
without variables, just simulated with other simulator, like Lotka-Volterra (4.1) and
Brussellator (4.2). Moreover, to compare the results of simulation with experimental
data obtained by biologists, we have simulated the reactions related to the activity
of the Sorbytol Dehydrogenase enzyme in the calf eye (4.3).

To test the correctness of stochastic algorithm with variables, rate functions and
rule schemata we have run more complex examples like the genetic regulation process
of lactose operon in Escherichia coli (4.4) and the quorum sensing phenomenon in
Pseudomas aeruginosa (4.5).

4.1 Lotka–Volterra

The Lotka–Volterra equations, also known as the predator-prey equations, are a
pair of first order, non-linear, differential equations frequently used to describe the
dynamics of biological systems in which two species interact, one a predator and one
its prey. They were proposed independently by Alfred J. Lotka in 1925 and Vito
Volterra in 1926.

The following Stochastic CLS rules model the dynamic of the system:

Y1
k17→ Y1 |Y1

Y1 |Y2
k27→ Y2 |Y2

Y2
k37→ ε

where k1 = 10, k2 = 0.1 and k3 = 10. In Figure 4.1 we show two simulation run
where in both the initial term contains the parallel composition of 100 Y1 and 100
Y2.

76 4. USE CASES

Figure 4.1: Two runs of Lotka Volterra simulation. The time is expressed in sec-
onds. We can see as the simulations evolve like attended and how the
stochasticity of simulation algorithm makes two successive run to follow
different trajectory.

4.2. BRUSSELLATOR 77

4.2 Brussellator

The Brussellator is a model of enzymatic chemical reaction.
The following Stochastic CLS rules model the dynamic system :

X
k17→ X |Y

Y1
k27→ Y2

Y1 |Y1 |Y2
k37→ Y1 |Y1 |Y1

Y1
k47→ ε

where k1 = 5000, k2 = 50,k3 = 0.00005 and k4 = 5 . In Figure 4.2 we show the
result of a simulation where the initial term is1 X |Y1 × 1000 |Y2 × 2000

Figure 4.2: Simulation result of Brussellator

1 Where n× T stands for a parallel composition T | . . . |T of length n

78 4. USE CASES

4.3 Sorbitol Dehydrogenase (SDH)

A more complex example is that related to the activity of the sorbytol dehydrogenase
enzyme in the calf eye [72] that has already studied, with different techniques, in [16,
18]. The enzyme sorbytol dehydrogenase (SDH) catalyzes the reversible oxidation of
Sorbitol and other polyalcohols to the corresponding keto–sugars (the accumulation
of sorbytol in the calf eye has been proposed as the primary event in the development
of sugar cataract in the calf). The rewrite rules modeling the reactions are shown
in the following scheme:

E |NADH
k1

k2
ENADH ENADH |F

k3

k4
ENAD+ |S

ENAD+ k5

k6
E |NAD+ E

k7→ ε

where E represents the enzyme sorbitol dehydrogenase, S and F represent sorbitol
and fructose, respectively, NADH represents the nicotinamide adenine dinucleotide
and NAD+ is the oxidized form of NADH; k1, . . . , k7 are the kinetic constants.
Note that the enzyme degradation is modeled by the transformation of E into ε.

In Figure 4.3 is show the result of simulating that system with k1 = 0.0000062,
k2 = 33,k3 = 0.00005, k3 = 0.000000002, k4 = 227, k5 = 50,k6 = 0.0000006 and
k7 = 0.0019 starting with term

E × 210 |F × (4 ∗ 1011) |NADH × (16 ∗ 107)

Figure 4.3: Simulation result of Sorbitol Dehydrogenase.

4.4. LACTOSE OPERON IN ESCHERICHIA COLI 79

Figure 4.4: Example of complexity in networks of Escerichia coli. Regulatory in-
teractions are indicated by dashed lines. Transcript interactions are
based on operon structures and ribosomal RNA interactions. Proteome
interactions include an average of 6-7 protein–protein interactions as
well as protein–DNA, protein–RNA, and protein–membrane interac-
tions. Metabolic interactions include biochemical transformations and
regulatory among metabolites, RNA, and protein. Protein number en-
compass differences in folding, size, and covalent modifications (note
that not all proteins are necessarily present at the same time).

The results are the same of with those described in [17], that in its turn are the
in agreement with experimental results.

4.4 Lactose Operon in Escherichia coli

The Escherichia Coli is one of the simplest bacteria and thus one of the most studied.
Although its relative simplicity, if compared with other organisms, the simulation of
the interactions among its component is not oblivious and involves a great number
of interrelated circuits (see Figure 4.4).

In this section a Stochastic CLS model of the regulation process of the lac-
tose operon in Escherichia coli (E. coli) is presented. We use our simulator of the
Stochastic CLS to analyze the gene regulation process in different situations.

Gene Regulation Process As most bacteria, E.coli reacts to changes in its en-
vironment through changes in the kinds of enzymes it produces. In order to save
energy, bacteria do not synthesize degradative enzymes unless the substrates for
these enzymes are present in the environment. For example, E. coli does not syn-
thesize the enzymes that degrade lactose unless lactose is in the environment. This
phenomenon is called enzyme induction or, more generally, gene regulation since it
is obtained by controlling the transcription of some genes into the corresponding
enzymes.

80 4. USE CASES

Figure 4.5: The lactose operon.

We consider the lactose degradation example in E. coli. Two enzymes are re-
quired to start the breaking process: the lactose permease, which is incorporated
in the membrane of the bacterium and actively transports the sugar into the cell,
and the beta galactosidase, which splits lactose into glucose and galactose. The bac-
terium produces also the transacetylase enzyme, whose function is less known, but
is surely related with the usage of lactose.

The sequence of genes in the DNA of E. coli which produces the described en-
zymes, is known as the lactose operon (see Figure 4.5). It is composed by six genes:
the first three (i, p, o) regulate the production of the enzymes, and the last three
(z, y, a), called structural genes, are transcribed (when allowed) into the mRNA
for beta galactosidase, lactose permease and transacetylase, respectively.

The regulation process is as follows (see Figure 4.6): gene i encodes the lac Re-
pressor, which in the absence of lactose, binds to gene o (the operator). Transcription
of structural genes into mRNA is performed by the RNA polymerase enzyme, which
usually binds to gene p (the promoter) and scans the operon from left to right by
transcribing the three structural genes z, y and a into a single mRNA fragment.
When the lac Repressor is bound to gene o, it becomes an obstacle for the RNA
polymerase, and transcription of the structural genes is not performed. On the
other hand, when lactose is present inside the bacterium, it binds to the Repressor
and this cannot stop any more the activity of the RNA polymerase. In this case
the transcription is performed and the three enzymes for lactose degradation are
synthesized.

Stochastic CLS Model A detailed mathematical model of the regulation process
can be found in [105]. It includes information on the influence of lactose degradation
on the growth of the bacterium.

In work by Milazzo is shown a Stochastic CLS model of the gene regulation
process, with stochastic rates taken from [104]. The membrane of the bacterium is
modeled as the looping sequence

(
m
)L, where the elementary constituent m gener-

ically denotes the whole membrane surface in normal conditions. Moreover, the
lactose operon is modeled as the sequence lacI · lacP · lacO · lacZ · lacY · lacA
(lacI−A for short), in which each element corresponds to a gene. We replace lacO
with RO in the sequence when the lac Repressor is bound to gene o, and lacP with
PP when the RNA polymerase is bound to gene p. When the lac Repressor and

4.4. LACTOSE OPERON IN ESCHERICHIA COLI 81

Figure 4.6: The regulation process. In the absence of lactose (case a) the lac Re-
pressor binds to gene o and precludes the RNA polymerase from tran-
scribing genes z, y and a. When lactose is present (case b) it binds to
and inactivates the lac Repressor.

the RNA polymerase are unbound, they are modeled by the elementary constituents
repr and polym, respectively. The mRNA of the lac Repressor is modeled as the
elementary constituent Irna, a molecule of lactose as the elementary constituent
LACT , and beta galactosidase, lactose permease and transacetylase enzymes as el-
ementary constituents betagal, perm and transac, respectively. Finally, since the
three structural genes are transcribed into a single mRNA fragment (see Fig. 4.5),
such mRNA is modeled as a single elementary constituent Rna.

The initial state of the bacterium when no lactose is present in the environment
is modeled by the following term (where n × T stands for a parallel composition
T | . . . |T of length n):

Ecoli ::=
(
m
)L c (lacI−A | 30× polym | 100× repr) (4.1)

The presence of lactose in the environment is modeled by composing Ecoli in parallel
with a number of LACT elements as follows:

EcoliLact ::= Ecoli | 10000× LACT (4.2)

The transcription of the DNA, the binding of the lac Repressor to gene o, and
the interaction between lactose and the lac Repressor are modeled by the following
set of rule schemata:

lacI · x̃ 0.027−→ lacI · x̃ | Irna (S1)

Irna
0.17−→ Irna | repr (S2)

polym | x̃ · lacP · ỹ 0.17−→ x̃ · PP · ỹ (S3)

x̃ · PP · ỹ 0.017−→ polym | x̃ · lacP · ỹ (S4)

x̃ · PP · lacO · ỹ 20.07−→ polym |Rna | x̃ · lacP · lacO · ỹ (S5)

82 4. USE CASES

Rna
0.17−→ Rna | betagal | perm | transac (S6)

repr | x̃ · lacO · ỹ 1.07−→ x̃ ·RO · ỹ (S7)

x̃ ·RO · ỹ 0.017−→ repr | x̃ · lacO · ỹ (S8)

repr |LACT 0.0057−→ RLACT (S9)

RLACT
0.17−→ repr |LACT (S10)

Schemata (S1) and (S2) describe the transcription and translation of gene i into
the lac Repressor (assumed for simplicity to be performed without the participation
of the RNA polymerase). Schemata (S3) and (S4) describe the binding (and un-
binding) of the RNA polymerase to gene p. Schemata (S5) and (S6) describe the
transcription and translation of the three structural genes. Transcription of such
genes can be performed only when the sequence contains lacO instead of RO, that
is when the lac Repressor is not bound to gene o. Schemata (S7) and (S8) describe
the binding and unbinding, respectively, of the lac Repressor to gene o. Finally,
schemata (S9) and (S10) describe the binding and unbinding, respectively, of the
lactose to the lac Repressor.

The following schemata describe the behavior of the three enzymes for lactose
degradation: (

x̃
)L c (perm |X)

0.1·f17−→
(
perm · x̃

)L cX (S11)

LACT |
(
perm · x̃

)L cX 0.0001·f27−→
(
perm · x̃

)L c (LACT |X) (S12)

betagal |LACT 0.000017−→ betagal |GLU |GAL (S13)

where f1(σ) = occ(perm, σ(X)) + 1, f2(σ) = occ(perm, σ(x̃)) + 1 and occ(a, T) is
the same of Example 2.10 2 .

Schema (S11) describes the incorporation of the lactose permease in the mem-
brane of the bacterium, schema (S12) the transportation of lactose from the envi-
ronment to the interior performed by the lactose permease, and schema (S13) the
decomposition of the lactose into glucose (denoted GLU) and galactose (denoted
GAL) performed by the beta galactosidase.

The following schemata describe degradation of all the proteins and pieces of
mRNA involved in the process:

perm
0.0017→ ε (S14) betagal

0.0017→ ε (S15) transac
0.0017→ ε (S16)

repr
0.0027→ ε (S17) Irna

0.017→ ε (S18) Rna
0.017→ ε (S19)

RLACT
0.0027→ LACT (S20)

We recall that sequences are not allowed as context of application of the rules,
hence the rule derived from schema (S14) cannot be applied to perm when it is an
element of the looping sequence representing the membrane of the bacterium. This
motivates the presence of the following final schema:

(
perm · x̃

)L cX 0.001·f27−→
(
x̃
)L cX (S21)

2In this use case we can see the use of rate functions that give different value according to the
selected instantiation. The simulator accepts f1 as (occ(perm,X)+1) and f2 as (occ(perm,x)+1).

4.4. LACTOSE OPERON IN ESCHERICHIA COLI 83

Simulation Results We simulated the evolution of the bacterium in the ab-
sence of lactose (modeled by the term Ecoli of Eq. (4.1)) and in the presence of
100 molecules of lactose in the environment (modeled by the term EcoliLact of
Eq. (4.2)). The evolution of the two terms is given by the application of the set of
rewrite rule schemata {(S1), . . . , (S21)}.

In Figure 4.7 we show the results of simulation when the lactose is absent. In
this situation the lac Represson inhibits the transcription of the enzymes. In fact in
the plot is shown that those enzymes (betagal. and perm.) do not exceed amount
of some tens, whereas the lac Repressor oscillates around the thousands units.

In Figure 4.8 we show the results of the simulation when the lactose is present in
the environment. In this simulations the production of the beta galactosidase and
lactose permease enzymes start almost immediately.

We remark that the different times in the production of enzymes in the vari-
ous simulations is not significant; in fact, the amount of time elapsed before the
production of these enzymes does not depend on the presence of the lactose in the
environment, because the lactose cannot enter the bacterium until some molecule of
permease has been incorporated in the membrane.

Once some molecule of lactose permease joins the membrane, the lactose starts
entering the bacterium. In fact, the graph on Figure 4.9 and 4.10 is shown that
the number of molecules in the environment rapidly decreases. Once entered, the
lactose interacts with the lac Repressor: the lac Repressors bind to lactose (indicated
with RLAC). In this situation the production of the beta galactosidase and lactose
permease enzymes is favored and they are present in hundreds. At this stage, the
lactose is decomposed by the beta galactosidase and the production of glucose starts.

Once all the molecules of lactose have been decomposed, the number of lac
Repressors gradually increases, reaching the same values of the first simulation (see
Figure 4.7) and halting the process.

84 4. USE CASES

Figure 4.7: Result of simulation of the regulation process of lactose operon in Es-
cherichia coli in absence of lactose.

4.4. LACTOSE OPERON IN ESCHERICHIA COLI 85

Figure 4.8: Results of simulation of the regulation process of lactose operon in Es-
cherichia coli when lactose is present in the environment.

Figure 4.9: Zoom on the results of simulation of the regulation process of lactose
operon in Escherichia coli when lactose is present in the environment.

86 4. USE CASES

Figure 4.10: Zoom on the results of simulation of the regulation process of lactose
operon in Escherichia coli when lactose is present in the environment.

4.5 Quorum Sensing in Pseudomas aeruginosa

Traditionally, bacteria have been studied as independent individuals. Now, it is
recognized that many bacteria have the ability of monitoring their population density
and modulating their gene expressions according to this density. This process is
called quorum sensing. The process of quorum sensing consists in two activities, one
involving one or more diffusible small molecules (called autoinducers) and the other
involving one or more transcriptional activator proteins (R-proteins) located within
the cell. The autoinducer can cross the cellular membrane, and thus it can diffuse
either out or in bacteria.

The production of the autoinducer is regulated by the R-protein. The R-protein
by itself is not active without the corresponding autoinducer. The autoinducer
molecule can bind to the R-protein to form an autoinducer/R-protein complex, which
binds to a target of the DNA sequence enhancing the transcription of specific genes.
Usually, these genes regulate both the production of specific behavioral traits (as
we will show in the following) and the production of the autoinducer and of the
R-protein.

At low cell density, the autoinducer is synthesized at basal levels and diffuse in
the environment where it is diluted. With high cell density both the extracellular
and intracellular concentrations of the autoinducer increase until they reach thresh-
olds beyond which the autoinducer is produced autocatalytically. The autocatalytic
production results in a dramatic increase of product concentration. Quorum sens-
ing behavior is very widespread in bacteria. An example is given by the bacterium

4.5. QUORUM SENSING IN PSEUDOMAS AERUGINOSA 87

Pseudomonas aeruginosa, a prevalent human pathogen [33]. The ability of P. aerug-
inosa to infect a host mainly is based on controlling its virulence by quorum sensing.
The level of virulence expressed by isolated bacteria is very low, thus avoiding host
response. When a colony has reached a certain density, the production of virulence
factors is autoinduced by quorum sensing, and it is generally sufficient to overcome
the defenses of the host. The quorum sensing system of P. aeruginosa has two regula-
tory systems. Here we are interested in the one regulating the expression of elastase
LasB, named the las system. The two enzymes, LasB elastase and LasA elastase,
are responsible for pulmonary hemorrhages associated with P. aeruginosa infections.

A schematic description of the las system is as follows:

Figure 4.11: Schematic description of the las system in Pseudomas aeruginosa.

The autoinducer 3-oxo-C12-HSL and the transcriptional activator protein LasR
are produced at basal rates. The LasR/3-oxo-C12-HSL dimer is the activated form
of LasR. It promotes the production of itself, of the autoinducer and of the LasB
enzyme. The formation of the dimer is controlled mainly by the concentration of
the autoinducer, which is influenced by the number of bacteria.

Stochastich CLS Model Quorum sensing is a complex biological process, which
is not based on signals and receptors but only on concentration of a protein freely
crossing membranes of bacteria. Many mathematical models have been developed
for describing this challenging phenomenon [37, 55, 103]. These models consider
various aspects of the problem: the diffusion of the autoinducer, its degradation,
the percentage of up-regulated bacteria (the ones with an enhanced production of
the autoinducer), the density of bacteria and their size, etc. However, all the models
describe the process at a very abstract level. They consider that the intracellular
concentration of the autoinducer is a function of the density of the bacteria, although
modulated by other factors. Thus they start from this assumption to study the
behavior of the system with different values of parameters.

The SCLS model is based on a different approach. A single bacterium is de-
scribed by means of a set of rewrite rules modeling its internal processes. Such
rules describe also that the autoinducer can cross (in both directions) the cellular
membranes and that the autoinducer degrades at the same rate both inside and
outside cells. Differently from the mathematical models mentioned above, the SCLS
model describes the elementary processes each bacterium performs, and the quorum
sensing results from the activity of a sufficient number of bacteria.

88 4. USE CASES

We now give the SCLS model of the quorum sensing process. We do not model
the production of the LasB as it has not an active role in the regulation process.
The initial state of each bacterium is:

Bact ::=
(
m
)L c (lasO.lasR.lasI)

where the looping sequence
(
m
)L represents the bacterium membrane, lasO the

target of the DNA sequence where LasR/3-oxo- C12-HSL complex binds to for pro-
moting DNA transcription, and lasR and lasI the genes that encode LasR and the
autoinducer.

This model shows one of the advantages of using terms for describing the struc-
ture of biological systems in SCLS. In fact, in order to model a population of n
bacteria we have to describe only one bacterium, and then compose n copies of such
a description by using the parallel composition operator. In other words, we model
a population of n bacteria simply as n × Bact.

The rewrite rule schemata describing the protein/protein and protein/DNA in-
teractions in the described systems are now given. Again, we have only to give
the rules for one bacterium, and they will be applicable in all the n bacteria of the
considered population.

lasO.lasR.lasI
207→ lasO.lasR.lasI |LasR (S1)

lasO.lasR.lasI
57→ lasO.lasR.lasI |LasI (S2)

LasI
87→ LasI | 3oxo (S3)

3oxo |LasR 0.257→ 3R (S4)

3R 4007→ 3oxo |LasR (S5)

3R | lasO.lasR.lasI 0.257→ 3RO.lasR.lasI (S6)

3RO.lasR.lasI 107→ 3R | lasO.lasR.lasI (S7)

lasO.lasR.lasI
12007→ lasO.lasR.lasI |LasI (S8)

lasO.lasR.lasI
3007→ lasO.lasR.lasI |LasR (S9)(

m
)L c 3oxo |X 307→ 3oxo |

(
m
)L cX (S10)

3oxo
(
m
)L cX 17→

(
m
)L c 3oxo |X (S11)

LasI
17→ ε (S12)

LasR
17→ ε (S13)

3oxo 17→ ε (S14)

Schemata (S1) and (S2) describe the production from the DNA of proteins LasR
and LasI, respectively. For the sake of simplicity we do not model the transcription
of the DNA into mRNA. Schema (S3) describes the production of the autoinducer
3-oxo-C12-HSL, denoted 3oxo, performed by the LasI enzyme. Schemata (S4) and
(S5) describe the complexation and decomplexation of the autoinducer and the LasR

4.5. QUORUM SENSING IN PSEUDOMAS AERUGINOSA 89

protein, where the complex is denoted 3R. Schemata from (S7) to (S9) describe the
binding of the activated autoinducer to the DNA and its influence in the production
of LasR and LasI. Schemata (S10) and (S11) describe the autoinducer exiting and
entering the bacterium. The kinetic constants associated with these two schemata
give a measure of the autoinducer dilution. Finally, schemata from (S12) to (S14)
describe the degradation of proteins.

Simulation Results We simulated the behavior of a population of P. aeruginosa
by varying the number of individuals. In Figure from 4.12 to 4.15 we show how the
concentration of the autoinducer varies inside bacteria when the population is com-
posed by one, five and twenty and hundreds individuals. We show the autoinducer
concentration inside one only bacterium (the concentrations inside the others are
analogous)3. When the number of bacteria increases also the concentration of the
autoinducer in the extracellular space increases. As a consequence the concentration
of the autoinducer in the intracellular spaces increases as well and the quorum sens-
ing process starts. Note that the kinetic constants of rule schemata (S10) and (S11)
regulating the autoinducer exiting and entering the membrane cause the bacteria
to maintain the autoinducer production mostly at a basal rate when the population
size is one or five. When the population size is twenty or more the quorum sensing
starts after a few seconds thus causing a very high autocatalytic autoinducer pro-
duction. As we show in Figure 4.14 and 4.15 the amount of autoinducer grow quickly
to values of some hundreds. Increasing the ratio between kinetic constants of (S10)
and (S11) would cause the quorum sensing to be triggered when the number of indi-
viduals is bigger. As we see comparing the Figure 4.14 and4.15 the presence of high
amount of bacteria causes that the production is more quick (after twelve seconds
the simulation with 100 bacteria exceed 300 units, amount the the simulation with
20 bacteria exceed after more than thirty seconds).

The stochastic nature of SCLS allows observing fluctuations of the autoinducer
concentration which in the first two cases considered are not sufficient to trigger
quorum sensing. Moreover, our model shows the discrete behavior of the binding
between the autoinducer/R-protein complex and DNA.

3To monitor the amount of autoinducer in a single bacteria we have enriched one of these with
a fictitious element that acts as marker. Practically we have used the pattern
autoinducer inside : (loop(m)[3oxo | $t:X | signal], # (occ(3oxo,X)) + 1 #).

90 4. USE CASES

Figure 4.12: Result of simulation of quorum sensing in Pseudomas aeruginosa. Are
shown the cases of one bacteria.

Figure 4.13: Result of simulation of quorum sensing in Pseudomas aeruginosa. Are
shown the cases of five bacteria.

4.5. QUORUM SENSING IN PSEUDOMAS AERUGINOSA 91

Figure 4.14: Result of simulation of quorum sensing in Pseudomas aeruginosa. Are
shown the cases of twenty bacteria.

Figure 4.15: Result of simulation of quorum sensing in Pseudomas aeruginosa. Are
shown the cases of one hundred bacteria.

4.5.1 Stiffness Evidence

In this use case it is evident the stiffness[75] problem of the Gillespie’s SSA as we
mentioned in Section 1.3.2. Whenever the complexity of the system increases, either
through the increase of the number of possible reactions or through the a numerical

92 4. USE CASES

increase in the number of molecules in the system or an increase in the reaction rates,
the algorithm adopts small ∆τ in order to maintain the exactness of the simulation.
In other word, the algorithm requires shorter timestep to capture the fast dynamic
of the system. In evidence of this in Figure 4.16 we can see how while the simulation
go forward, or better while the complexity of the system increase, the simulated time
made by a single computation step decrease.

In Figure 4.17 we see that in the beginning of the simulation in the interval of
one unit of simulated time we make 5 000 steps, whereas to simulate then in the
same unit of simulated time we need to do 42 000 steps.

This phenomenon represent a problem regarding the time required for simula-
tions. Unfortunately this problem is independent from how much the computation
step is efficient and the only workaround is to use an enhanced SSA as discussed in
Section 1.3.2.

Figure 4.16: Evidence of stiffness in Gillespie’s SSA in Pseudomas aeruginosa sim-
ulation. Here is shows how the simulation do steps more and more
small as the simulation is left over. (in the graphs there is a point
each 1000 iterations).

4.5. QUORUM SENSING IN PSEUDOMAS AERUGINOSA 93

Figure 4.17: Evidence of stiffness in Gillespie’s SSA in Pseudomas aeruginosa sim-
ulation. The two graph shows how the same simulated times requires
a substantial different number of steps to be simulated as the simula-
tion go forward. In the graph on the top in order to simulate 1 unit
of time are necessary 5 000 steps whereas in the graph on the bottom
to simulate the same simulated time we need to do 42 000 steps. (In
the graphs there is a point each 1000 iterations.)

94 4. USE CASES

Chapter 5

Benchmarks

In this chapter we examine some benchmarks of simulation cases. Firstly we compare
the performance of the developed algorithm (based on pre–processing and bottom–
up match phase) whit the performance of the naive algorithm implemented in an
early C++ prototype (5.0.2). Then we show some benchmarks that evidence the
validity of the use of the memoization pattern (5.0.3) and of the optimized updating
procedure whit state–saving feature (5.0.4).

All the test are executed on Windows XP operating system1 on a AMD AthlonXP
2600+ @ 2000 MHz.

1Except for the comparison with C++ simulator. In fact the simulator runs only on unix systems
and thus did the benchmark of both simulator on Ubuntu 7.04 on the same machine described.

96 5. BENCHMARKS

5.0.2 Naive vs Pre–processing Algorithm Benchmarks

In Figure 5.1 we compare the performance of the C++ simulator, that use the naive
algorithm for CLS pattern matching, with the performances of the simulator with
the pre–processing algorithm with bottom–up matching (without the optimization
of the updating procedure). The use case taken in exams is that of lactose operon
in Escerichia coli2 (see Section 4.4). As we can see that the use of the developed
algorithm leads to an improve in performance of hundreds times.

5

2700

0 500 1000 1500 2000 2500 3000

p
re
 p
ro
c
e
s
s
in
g

b
a
s
e
d

n
a
iv
e

Figure 5.1: Benchmark result of simulation with the developed bottom–up pre-
processing algorithm. The upper bar corresponds to the simulation
with naive engine, whereas the lower indicates the running time of the
developed algorithm (the time is expressed in seconds). Note that there
are the times need to compute the first 1000 steps of the simulation and
thus the manner times include the preprocessing time.

2Practically the lactose operon simulation has must be rewrote to adapt to the abilities of the
prototype simulator. Then the same input are given to both simulators.

97

Note on the Performance of Chemical Simulations The performance of the
simulator is not particular exciting in the cases of Lotka, Brussellator and of SDH;
this is because this kind of simulation represent the worse case for own pattern
matching algorithm. In fact, we work on a plain term and thus we do not take
advantage of assumption on CLS trees. Moreover, in these cases, there are not vari-
ables, and thus our bottom–up simulation algorithm has too expensive overhead. In
fact if we replace the preprocessing engine with an hybrid version of the algorithm,
that uses the pre–processing algorithm only for the rules that contain variables,
whereas uses a naive constant search for ground rules, we obtain performance en-
hancements, as we show in Figure 5.2. We show also how when the complexity of
the term increases (as in lactose operon in e.c. and quorum sensing in p.a.) this is
not true anymore.

For this reason we have included in the simulation engine a boolean flag that
allows to use the pre–processing engine only for rule schemata, deals eventually
ground rules with the naive constant search algorithm3.

0.00 0.07 0.14 0.21 0.28 0.36 0.43 0.50 0.57

lotka

bruss.

sdh

lo

qsx20

hybrid 00.26,0 00.32,0 0.01.00 0.54.37 0.40.04

pure 00.45,0 00.54,0 0.01.56 0.20.52 0.17.49

lotka bruss. sdh lo qsx20

Figure 5.2: Benchmark result of hybrid vs pure pre–processing algorithm. The
time is expressed in hh.mm.ss format. We can see that for plain term
simulation, as Lotka, SDH and Brussellator, the naive algorithm with
constant search improve the performance. We see also that if the com-
plexity of the simulation term increase, as in the case of lactose operon
and quorum sensing simulations this is not true anymore.

3this feature is selectable through option menu in the GUI of the developed simulator

98 5. BENCHMARKS

5.0.3 Memoization Pattern Benchmarks

We have compared the performance of the simulation for 106 steps of simulation; as
shown in Figure 5.3 the use of memoization pattern leads to a speed–up of up to
about 2 times.

0.00 0.14 0.28 0.43 0.57 1.12 1.26

lo

sdh

bruss.

lotka

with 0.24.52 0.18.10 0.08.17 0.07.20

without 1.19.26 0.25.46 0.10.32 0.09.14

lo sdh bruss. lotka

Figure 5.3: Benchmark result of simulation whit use of memoization pattern. We
have compared 106 iterations times. The time is expressed in hh.mm.ss
format. In both the cases the optimized term updating procedure is
not used.

99

5.0.4 Optimized Updating Procedure Benchmarks

Finally we have compared the performance enhancement given by the optimization
of the updating procedure as we had see in Section 3.3.2. We can see how this
approach allows to the algorithm to scale on great instances of input problem. In
fact, as we see in Figure 5.4 and 5.5 , while the complexity of the simulated systems
increases the performance gain obtained with the optimized updating procedure
increases.

0.00

0.28

0.57

1.26

1.55

2.24

2.52

3.21

3.50

with 0.04.12 0.10.48 0.17.56

without 0.04.08 0.21.38 3.21.57

x1 x10 x100

Figure 5.4: Benchmark result of simulation with use of optimized updating proce-
dure. The use case analyzed is the simulation of quorum sensing in
Pseudomas aeruginosa. We have measured the time elapsed varying
the complexity of the simulated system; are shown the running time for
one, ten and hundreds bacteria. The time is expressed in hh.mm.ss for-
mat. We compare the time elapsed for do 106 iteration by the algorithm
without optimized updating procedure (green) against the performance
of optimized one (red). We show how the performance of the optimized
algorithm scale on bigger instances of the problem. A very similar re-
sult is obtained with the simulation case of genetic regulation process
of lactose operon in Escherichia coli.

100 5. BENCHMARKS

0,800

2,800

4,800

6,800

8,800

10,800

12,800

x1 x10 x100

Figure 5.5: Benchmark of performance gain obtained with use of optimized updat-
ing procedure. We can see how the performance gain grows with the
complexity of the simulated system. A very similar result is obtained
with the simulation case of genetic regulation process of lactose operon
in Escherichia coli.

Chapter 6

Conclusion

In this chapter we give the summary of the work of this thesis and then we analyze
some possible future developments.

6.1 Summary

We have studied the problem of the implementation of a stochastic simulator for
Calculus of Looping Sequences. We have extended the Gillespie’s SSA to take ac-
count of rule schemata with rate functions, and we have designed and implemented
an efficient algorithm for CLS pattern–matching. Moreover this algorithm has the
vantage of being apt to optimizations that, allowing to preserve great part of match-
ing information between successive steps of the computation, gives good response
to local changes in state term (state saving), an thus allow to scale on complex
simulation cases. The ideas proposed are shown to be valid by some benchmarks.

6.1.1 Software Development Details

The tools we have used to implement the simulator are

- Microsoft .NET Framework 2.0 / Mono 1.2.3 and

- FSharp Compiler v.1.9.2.9

We have developed a library contains all the data structure necessaries to rep-
resent an instance of SCLS simulation problem and the SCLS simulation engine
(scls.dll).

We have produced about 5000 lines of F# code and about 1000 lines of C# code,
that are well fused together thanks to the common intermediate language.

This development has required about 6 month of one man’s work and has allow
the experimentation of some original ideas.

This simulator is the first usable for SCLS allowing to express rule schemata.

102 6. CONCLUSION

6.2 Future Developments

The simulation machine should be formally specified, and the specification should
be proved correct with respect to the calculus (like has been done for SPiM in [82]).
More work remains, of course, both in the improvement of the performance of the
simulation algorithm and in the user interface of the simulator.

6.2.1 Improvement of Performance

A first attempt to increase the performance can be obtained increasing the node–
sharing in the pattern pre–processing procedures of the pattern matching algorithm:
both among the NFA states and among the patterns of the rules. Moreover more
work could be done to improve the representation of sequences; we can store these
in a compressed way like we do for parallel composition nodes.
Other possible ways to improve performance are :

- Using enhances SSA. Like we have mentioned in Section 1.3.2 and shown
in Section 4.5.1, the stochastic simulation through Gillespie’s SSA suffers of
intrinsic performance degradation (stiffness), independently from as it is im-
plemented. In fact, as growing of the complexity of the simulated system, in
order to maintain the exactness of the simulation the algorithm makes steps
more and more small, causing that the number of steps (and thus the amount
of ”real” time) necessaries to simulate a unit of time increases.

Thus to improve the performance in such cases it is necessary to change the
simulation algorithm, using an enhanced SSA (see Section 1.3.2). Would be
possible to use an approximated SSA or an hybrid engine (for example using
hybrid stochastic–O.D.E.1 engine [23]).

Moreover it is possible to develop a software that selects the appropriate SSA
engine according to the input problem or to the evolution of the simulation.

- Specialization of the Interpreter. Since the interpretation cycle of the sim-
ulation engine must run for many millions of times, it is possible to reduce
the instruction executed by that cycle through the specialization of the inter-
preter: given a specified problem as input we can obtaining a sort of custom
simulator and then run it (as discussed in [91]). In fact the elimination of a
small percentage of executed instructions from this cycle can be decisive for
simulations that must be run for days.

6.2.2 Supports Simulations of CLS Variants

The CLS formalism is presented in [77] with two variants: CLS+, CLLS.

- CLS+ is an extension of CLS in which the looping operator can be applied
to parallel composition of sequences. This would allows modeling membranes

1Ordinary Differential Equations

6.2. FUTURE DEVELOPMENTS 103

in more natural way, even if this will requires the definition of more complex
semantics2.

In [77] is showed that, if it is valid a simple restriction on variables of the rules,
it is possible to translate CLS+ models in CLS, by a pre–processing procedure,
preserving the semantics of the model. Thus we could develop a plug–in for
the simulator that do this translation and then execute the simulation with
the standard SCLS engine.

- In [77] the CLS formalism is extended to represents protein interaction at the
domain level. Such an extension, called Calculus of Linked Looping Sequences
(CLLS), is obtained by labellings elementary components of sequences. Two
elements with the same label are considered to be linked.

Even if the introduction of labels requires the definition of a complex type
system that guarantees the well–formedness of the CLLS terms and patterns
(propriety that must be checked at each runtime computational step), in [77]
is shown that if we verify the well–formedness of the term representing the
starting state of the simulation, and we verify a simple restriction on the rules
of a simulation case (called compartment safety), we have the guarantee that
the system will evolves in well–formed states. In fact the application of a well–
formed rule satisfying compartment safety to a well–formed term preserves the
well–formedness of the term.

Thus in order to extend the SCLS simulation to support the CLLS we should:

– expand the CLS data structures representing the elements with labels as
a syntactical informations;

– develop the pre–processing procedures charged to verify the well–formedness
of the starting term and of the set of rules.

6.2.3 Improvement of the User Interface

Firstly can offer to the user a more rich representation of the term evolution. In fact
the plot of concentrations is a representation with loss of information: the underlined
formalism deals with hierarchy of terms, that are lost in the plot of concentration.
Other suitable representations could show the evolution of nested membranes, al-
lowing for example to build some animations of the evolution of the simulation.
Another simple enhancement could allows the user to make more complex realtime
plots, as for example phase spaces. Finally a trivial extension of the interface of
the simulation can be the design of an interface that allow the user to requires the
execution of a queue of batch simulations (maybe with the possibility of state saving
by serialization).

Interface for reverse Engineering A more complex interface could allows the
user to discover some unknown constants using the simulator as reverse engineering
tool. As example the user could wants to simulate a network of reactions of which

2Moreover this formalism does not suffer the ambiguity of the value of rate function as we see
in Section 3.3.3 and in the Example 3.7.

104 6. CONCLUSION

not all the kinetic constants are known. Here the software could helps offering
the way to simulate the system with some default constants; then the user can see
the output plot and, interacting with it, express the expected behavior, known as
response of the entire system from in vitro experiments. Then the simulator can
run a battery of test varying the searched constants, in order to obtains the required
behavior. Once obtained the expected output response, we have discovered the not
known constants, without the necessity to measure these in vitro. Obliviously to
make a similar tool we need a very efficient simulator and the help of some artificial
intelligence algorithms.

MIMs Graphical Interface One of the discriminating factors for the success
of a simulation instrument is that it is easily usable for the users interested in the
systems that it simulates. To let this happens, it is necessary that the simulator
presents an interface with a formalism that is familiar to the customers. In the
case of CLS, the final user of the simulator will be biologists and chemists, and it
is absurd to think that they can express their self directly in a formalism based on
term rewriting. This problem is actually diffused in all inter–disciplinary withins;
it is necessary, even if much laborious, that persons coming from different academic
cultures succeed to find a common language that allows to understand their mutual
requirements. Like we have seen in Section 1.1.2, one of the most well designed and
rigidly defined proposals of graphical language are Kohn’s Molecular Interaction
Maps (MIMs) [11, 64, 66].

Since in the work of Milazzo is presented a way to encode Kohn MIM, a possible
enhancement of the user interface of the simulator should be the development of an
interface based on this graphical formalism. In this way the users could express the
SCLS model in a more natural way.

This can be accomplished implementing MIM thought Windows Forms Custom
Controls, building a control for each basic elements of MIM (see Figure 6.2). Given
such Controls we could implement a translator from such diagram to SCLS models,
like specified in [77].

6.2. FUTURE DEVELOPMENTS 105

Figure 6.1: Interaction diagram of the use of the simulator as reverse engineering
tool.

Figure 6.2: Example of MIM diagrams. Species in a MIM are as shown in case
from (a) to (d), and reactions are depicted as arrows like in (e). On the
bottom we can see a complete example of MIM diagram.

106 6. CONCLUSION

Appendix A

User Manual

A.1 License

All the software developed for this thesis is published at
http://www.di.unipi.it/~milazzo/biosims/ and is released under GNU G.P.L. [3].

A.2 System Requirements

- .Net 2.0 Platform. (tested on Microsoft .Net Framework 2.0 and on Mono
1.2.3)

- (F# library 1.9.2.9 installed in the GAC for the non standalone version)

A.3 Usage

A.3.1 Format of the Input file

SCLSm accepts text input file with the following sections. See A.1 for details.

Rules Here you can express the rules that controll the evolution of the system.
This section must begin with ”rules”. The syntax to express each rules is the
following:

nameoftherule : (lefthandside, righthandside, ratefunction)

where

- the name of the rule can be an alpha numeric identifier

- the left hand side and the right hand side are CLS term in which be
variables. The syntax for express variable is

$symbol : identifier

where symbol is ”e” for element variables, ”s” for sequence variables, ”t”
for term variables.

http://www.di.unipi.it/~milazzo/biosims/

108 A. USER MANUAL

- the rate function can be either a constant or a piece of C# code delimited
by a couple of # characters. Here the user can call arbitrary function,
including user defined procedure. As example we had defined the occ
function that count the occurrences of a set of constant elements inside
some variable’s instantiation. The syntax for this function is

occ(space separated constant identifiers, space separated variable identifiers)

For example occ(A,X) counts the occurrences of A in the instantiation of
X, occ(A B,X Y) counts the summation of occurrences of A in X, of B in
X, of A in Y, of B in Y.

Term Here you can express the initial configuration of the simulation. This section
must begin with ”term”. The syntax to express term are the following

- Each element it is expressed by an alpha numeric identifier.
- Sequence are builds of element separated by a ”.”
- Compartments are builds of sequences and loop separated by a ” | ”. Each

element constituent of a compartment can be followed by an ”*” and by
an integer value that indicates the number of repetition of the element,
in absence of which it is assumed as one repetition.

- Loop are builds of a sequence (looping) representing the membrane and
a compartment representing the content. The sintax are

loop(membrane)[content]

User’s Patterns User’s pattern are intended to allow the user to express patterns
that want to monitor in the plot and in the writing of outputs. This section
must begin with ”patterns”. The syntax for express these pattern is

identifier : (patter , constant or rate function)

The constant or the rate function will be used to multiply he number of oc-
currences of the pattern. This is often useful as in the following example :
LACTinside: (loop($s:x)[$t:X | LACT], # occ(LACT, X) + 1 #). This
will count the number of LACT inside of a membrane. Something, when we
have multiple instances of certain cell, is also useful to monitor some con-
centrations that regards only a single cell. This is possible adding a fictitious
element inside the interested cell as in the example of quorum sensing attached
with the software distribution.

Exclude list Here user can express what elements want to exclude from plotting.
This section must begin with ”exclude”. The syntax to express these patterns
is

identifier|ALL− identifier
It is possible to tell what identifier evolution want not to be monitored or to
tell that want to exclude ALL identifier except the identifier list that follow
the ”-”.

Note that the time scale depends on the constants of the rules; thus if is required
a plot with time scale in seconds, the constants must be appropriately scaled.

A.3. USAGE 109

A.3.2 Description of the User Interface

Main Window

The main features of the graphical user interface of the simulation are show in
Figure A.1. We now examine each of the GUI’s components.

Menu Through menus is possible to open an input file and start the simulation
or quit the application (File); to view the input file (View), to start, stop or pause
the simulation, to save the simulation’s evolution concentration to text, html or
spreadsheet, to update graph and to hide/show the graph legend (Actions); to switch
between time and iteration limit mode (Options) an to view help or about (Help).
Note that in the iteration limited simulations the sampling rate is expressed in
iteration (will sample the amounts each n iteration) whereas in the time limited
simulations the sampling rate is expressed in milliseconds (will sample the amounts
each n / 1000 time units).

Parameters Controls Through the parameters controls is possible to select the
input file describing the simulation instance (and start the simulation) and to set
the limit and the sample rate of the concentrations. In the case of timed limited
simulation we can give a stop time and each much milliseconds we want to sample
the concentrations in the simulation’s state. In case of iteration limit we can choose
after how much iteration the simulator will stop and every how much iterations the
concentrations are measured.

Graph Panel In the graph panel we will get the plot of the concentration’s evo-
lution. The curves that will plot are specified in the input file through the EXCLUDE
field. Through the interaction with this panel we can change the color, the thickness
or the symbol of the curves, zoom or pan the plot as show in Figure A.1. Clicking
on the left mouse’s button it is shown a context menu through which it is possible
to save the plot as an image, ask to show the point’s value and other options.

State Informations When a simulation is started we can see in the bottom of the
simulation’s state: the status bar show the percentage of simulation that is done.
Close to the status bar there are the indication of number of iterations and time
elapsed by the simulation.

Input File View Windows

This windows, enabled through Option menu, show the input file with highlighted
keywords.

Term Tree View Windows

This window is shown when we pause or stop the simulation. We can see the current
state’s term in a tree view. Click on a entry with right mouse’s button we can expand
or collapse the entry; by left mouse we can expands all the entries.

110 A. USER MANUAL

A.4 Known limitations

A.4.1 Multiple Term Variables not on the Top Level of Compartments

Currently the simulator allows to do simulations with rule with multiple term vari-
able if there are at the top–level of the left hand side of a rule. In details it allows
to use any number of term variable inside a rule, but, except the case in which the
variables are located in top–level of a rule, there is the following limitation: there
must not be more than one variable for level.

As example the term
X |Y

(
m
)L cX | (x̃)L c (Y | a.b |

(
ỹ.x̃.z̃

)L c (a |X))) is a valid left hand side of a rule
because the only case in which are introduced more than one variable for level are
in the top–level of the rules. Whereas(
m
)L c (X |Y | a) is not a valid left hand side of a rule because there are more than

one term variables introduced for level.
We have left this limitation because this is a tread–off between complexity of

the bottom–up inference engine and the allowed expressiveness of the rules; we not
have found any biological significant use cases that requires this feature.

In the source code this cases give a Not Yet Implemented exception1

A.4.2 Number of Occurrences of Reactants

There is the limitation of using a 64bit integer for representing the number of oc-
currence of a reaction in a solution. That is the number of that occurrence must be
represented in 64bit space. If the number of times in which the reactants of a rule
exceed that limit we will get an overflow and thus to a not correct behavior.

A.5 Guide to Released Source Files

SCLS folder

scls.fsi and scls.fs contains the definition of the data structures of the
application’s domain. Namely here we find :

nfa leaves matcher.fsi and nfa leaves matcher.fs contains the defini-
tion of the non deterministic finite state automaton that is the responsible
of compute the match of a leaf (= a ground CLS sequence or looping se-
quence) against a set of sequence patterns

preprocessing.fsi and preprocessing.fs contains the definition the data
structures necessaries to the pre–processing engine.

preprocessing engine.fsi and preprocessing engine.fs contains the en-
gine of the simulation; more in details the engine that realy on the
pre–processing of data structures for the match phase. Moreover here
is defined the extension of Gillespie’s SSA that take in account of rule
schemata with variables and rate functions.

1In the source this limitation is located in preprocessing.fs file

A.5. GUIDE TO RELEASED SOURCE FILES 111

SCLS Parser folder contains the definition of the parser of SCLS input file as defined
in Section A.3.2. This folder contains also the SCSL.atg attributated grammar
used by cocoR(see http://www.scifac.ru.ac.za/coco/) for the scanner and
parser generation.

SCLS Simulator folder contains the definition of the worker and client of the inter-
face to simulation engine.

CodeExpressionEvaluator folder contains the definition of a class that compile and
load dynamically some given C# code.

http://www.scifac.ru.ac.za/coco/

112 A. USER MANUAL

Listing A.1: Syntax of input files in BNF.� �
CHARACTERS

DIGIT = ”0123456789” .
LETTER = ”ABCDEFGHILMNOPQRSTUVZWXYKJabcdefgihlmnopqrstuvzwyxkj” .
SYMB = ”+−/ !%&=?ˆ ” .

TOKENS
Id = LETTER [{LETTER | DIGIT | SYMB}] .
Number = DIGIT [{DIGIT}] [’ . ’ DIGIT [{DIGIT}]] .

VART = ”$t : ” . // term va r i ab l e d i c h i a r a t i o n
VARS = ”$s : ” . // sequence va r i ab l e d i c h i a r a t i o n
VARE = ”$e : ” . // element va r i ab l e d i c h i a r a t i o n

RULESDIC = ” ru l e s ” .
TERMDIC = ”term” .
PATTERNDIC = ” pat te rns ” .
EXCLUDEDIC = ” exc lude ” .
CODEDELIMITER = ”#” .

COMMENTS FROM ”/∗” TO ”∗/” NESTED
COMMENTS FROM ”//” TO ’\n ’
IGNORE ’\n ’ + ’\ r ’ + ’\ t ’

PRODUCTIONS

SCLS
=

RULESDIC ru l e s
TERMDIC terms
[PATTERNDIC [pat te rns]]
[EXCLUDEDIC [[I d e n t i f i e r] { I d e n t i f i e r } | ”ALL” [”−” I d e n t i f i e r

{ I d e n t i f i e r }]]]
.

r u l e s
=

ru l e [r u l e s]
.

r u l e
=

I d e n t i f i e r
’ : ’ ’ (’ terms ’ , ’ [terms] ’ , ’

rateFormula ’) ’
.

terms
=

term [’∗ ’ Number] [’ | ’ terms]
.

term
=

sequences
| VART I d e n t i f i e r
| [” loop ”] ’ (’ [sequences] ’) ’ [enclosedTerm]
.

enclosedTerm
= ’ [’ terms ’] ’

.
sequences

=
sequence [’ . ’ sequences]
.

sequence
=

I d e n t i f i e r
| VARE I d e n t i f i e r
| VARS I d e n t i f i e r
.

pa t t e rns
=
pattern [pat te rns]
.

pattern
=
I d e n t i f i e r ’ : ’ ’ (’ terms [’ , ’ rateFormula] ’) ’
.

rateFormula
=

CODEDELIMITER ANY { ANY } CODEDELIMITER
| ANY
.

I d e n t i f i e r
= [Number] Id
.� �

A.5. GUIDE TO RELEASED SOURCE FILES 113

Figure A.1: Overview of the simulator user interface.

114 A. USER MANUAL

Listing A.2: Example input file for SCLSm (Quorum Sensing Example).� �
r u l e s
R1 : (lasO . lasR . l a s I , lasO . lasR . l a s I | lasR+ , 20)
R2 : (lasO . lasR . l a s I , lasO . lasR . l a s I | l a s I+ , 5)
R3 : (l a s I+ , l a s I+ | 3oxo , 8)
R4 : (lasR+ | 3oxo , 3R , 0 .25)
R5 : (3R , lasR+ | 3oxo , 400)
R6 : (3R| lasO . lasR . l a s I , 3RO. lasR . l a s I , 0 .25)
R7 : (3RO. lasR . l a s I , R| lasO . lasR . l a s I , 10)
R8 : (3RO. lasR . l a s I , 3RO. lasR . l a s I | lasR+ , 1200)
R9 : (3RO. lasR . l a s I , 3RO. lasR . l a s I | l a s I+ , 300)
R10 : (loop (m) [3 oxo | $t :X] , 3oxo | loop (m) [$t :X] , # 30 ∗ (occ (3 oxo ,X)) #)
R11 : (3oxo | loop (m) [$t :X] , loop (m) [3 oxo | $t :X] , 1)
R14 : (l a s I+ , , 1)
R15 : (lasR+ , , 1)
R16 : (3oxo , , 1)
term
loop (m) [lasO . lasR . l a s I | s i g n a l] | loop (m) [lasO . lasR . l a s I]∗20
pat te rns
au t o i nduc e r i n s i d e : (loop (m) [3 oxo | $t :X| s i g n a l] , # (occ (3 oxo ,X)) #)
exc lude
ALL − m� �

Bibliography

[1] CellIllustrator. See http://www.cellillustrator.com/.

[2] CLIPS. See http://www.ghg.net/clips/CLIPS.html.

[3] GNU General Public Licence. See http://www.gnu.org/copyleft/gpl.html.

[4] MCell. See http://www.mcell.psc.edu/.

[5] P–System. See http://psystems.disco.unimib.it/.

[6] SWB (System Biology Workbench). See http://sbw.sourceforge.net/.

[7] The System Biology website. See http://www.systems-biology.org.

[8] VirtualCell. See http://www.ibiblio.org/virtualcell/index.htm.

[9] J.L. Abkowitz, S.N. Catlin, and P. Guttorp. Evidence that hematopoiesis may
be stochastic in vivo. Nature Medicine, 2:190–197, 1996.

[10] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 18(6):333–340, 1975.

[11] M. I. Aladjem, S. Pasa, S. Parodi, J. N. Weinstein, Y. Pommier, and K. W.
Kohn. Molecular interaction maps–a diagrammatic graphical language for
bioregulatory networks. Science’s STKE, 2004(222):pe8, 2004.

[12] B. Aleman-Meza, H. B. Schuttler, J. Arnold, and T.R. Taha. Kinsolver: A
simulator for biochemical and gene regulatory networks. 2002.
See http://webster.cs.uga.edu/~boanerg/mams.

[13] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and
J. Schug. Hybrid modeling and simulation of biomolecular networks. LNCS,
2034 - Hybrid Systems: Computation and Control:19–32, 2001.

[14] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1999.

[15] J. Backus. Can programming be liberated from the von neumann style?: a
functional style and its algebra of programs. Commun. ACM, 21(8):613–641,
1978.

http://www.cellillustrator.com/
http://www.ghg.net/clips/CLIPS.html
http://www.gnu.org/copyleft/gpl.html
http://www.mcell.psc.edu/
http://psystems.disco.unimib.it/
http://sbw.sourceforge.net/
http://www.systems-biology.org
http://www.ibiblio.org/virtualcell/index.htm
http://webster.cs.uga.edu/~boanerg/mams

116 BIBLIOGRAPHY

[16] R. Barbuti, S. Cataudella, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. A
probabilistic model for molecular systems. Fundamenta Informaticae, 67:13–
27, 2005.

[17] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, P. Tiberi, and A. Troina.
Stochastic cls for the modeling and simulation of biological systems. Submitted
to Bioinformatics, 2007.

[18] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. An alterna-
tive to gillespie’s algorithm for simulating chemical reactions. Computational
Methods in Systems Biology (CMSB’05), 2005.

[19] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. A calculus of
looping sequences for modelling microbiological systems. Fundamenta Infor-
maticae, 72:21–35, 2006.

[20] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Bisimulations
in calculi modelling membranes. Submitted to Formal Aspects of Computing,
2007.

[21] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. The calculus of
looping sequences for modeling biological membranes. LNCS, to appear - 8th
Workshop on Membrane Computing, 2007.

[22] W. J. Blake and J. J. Collins. And the noise played on: Stochastic gene
expression and hiv-1 infection. Cell, 122, Issue 2:147–149, 2005.

[23] L. Bortolussi. Constraint-based approaches to stochastic dynamics of biological
systems. PhD thesis, Department of Mathematics and Computer Science,
University of Udine, Italy, 2007.

[24] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, 1977.

[25] J. Cai, R. Paige, and R. Tarjan. More efficient bottom-up multi-pattern match-
ing in trees. Theor. Comput. Sci., 106(1):21–60, 1992.

[26] Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the
tau-leaping simulation method. The Journal of Chemical Physics, 124, 2006.

[27] L. Cardelli. Abstract machines of systems biology. Transactions on Compu-
tational Systems Biology, III, LNBI 3737:145–168, 2005.

[28] L. Cardelli. Brane calculi. interactions of biological membranes. LNCS, 3082 -
Computational Methods in Systems Biology (CMSB’04):257–280, 2005.

[29] D.R. Cox and H.D. Miller. The theory of stochastic processes. 1965.

[30] M. Curti, P. Degano, C. Priami, and C.T. Baldari. Modelling biochemi-
cal pathways through enhanced pi-calculus. Theoretical Computer Science,
325:11–140, 2004.

BIBLIOGRAPHY 117

[31] Q. Dang and C. Frieden. New pc versions of the kinetic-simulation and fitting
programs, kinsim and fitsim. Trends Biochem. Sci., 22 (8):317, 1997.

[32] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer
Science, 325(1):69–110, 2004.

[33] C. Van Delden and B. H. Iglewski. Cell-to-cell signaling and pseudomonas
aeruginosa infections. Emerg Infect Dis, 4:551–560, 1998.

[34] N. Dershowitz and J. Jouannaud. Rewrite Systems, chapter 6, pages 243–320.
J. van Leeuwen ed., 1990.

[35] P. Dhar. Cellware, 2003.
See http://www.bii.a-star.edu.sg/sbg/cellware.

[36] E.W. Dijkstra. E. W. Dijkstra manuscripts archive. EWD1036
See http://www.cs.utexas.edu/users/EWD/.

[37] J. D. Dockery and J. P. Keener. A mathematical model for quorum sensing in
pseudomonas aeruginosa. Bulletin of Mathematical Biology, 63:95–116, 2001.

[38] R. B. Doorenbons. Production Matching for Large Learning Systems. PhD
thesis, Computer Science Departement, Carnegie Mellon University, Pittsburg,
PA, 1995.

[39] Robert B. Doorenbos. Production matching for large learning systems. Tech-
nical report, Pittsburgh, PA, USA, 2001.

[40] M. Ehlde and G. Zacchi. Mist: a user-friendly metabolic simulator. Comput.
Appl. Biosci., 11 (2):201–207, 1995.

[41] S. P. Ellner and J. Guckenheimer. Dynamic Models in Biology. Princeton
University Press, 2006.

[42] C. Firth. StochSim: a stochastic simulator of (bio)chemical reactions. PhD
thesis, University of Cambridge, 1998.

[43] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
matching problem. Artificial Intelligence, 19:17–37, 1982.

[44] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 1977.

[45] D. T. Gillespie. The chemical langevin equation. Journal Of Chemical Physics,
113, 1:297–306, 2000.

[46] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. The Journal of Chemical Physics, 115, issue 4:1716–1733,
2001.

[47] GNU. Dotgnu project. See http://dotgnu.info.

http://www.bii.a-star.edu.sg/sbg/cellware
http://www.cs.utexas.edu/users/EWD/
http://dotgnu.info

118 BIBLIOGRAPHY

[48] I. Goryanin, T.C. Hodgman, and E. Selkov. Mathematical simulation and
analysis of cellular metabolism and regulation. Bioinformatics, 15 (9):749–
758, 1999.

[49] J. W. Haefner. Modeling Biological Systems: Principles and applications.
Springer, 1996.

[50] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

[51] C. M. Hoffmann and M. J. O’Donnell. Programming with equations. ACM
Trans. Program. Lang. Syst., 4(1):83–112, 1982.

[52] J. Hughes. Why functional programming matters. pages 17–42, 1990.

[53] International ECMA. Ecma standard 334: Csharp language specification.
See http://www.ecma-international.org/publications/standards/Ecma-334.htm.

[54] International ECMA. Ecma standard 335: Common language infrastructure.
See http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[55] S. James, P. Nilsson, G. James, S. Kjelleberg, and T. Fagerstroem. Lumi-
nescence control in the marine bacterium vibrio fischeri: An analysis of the
dynamics of lux regulation. Journal of Molecular Biology, 296:1127–1137, 2000.

[56] P. Kilpeläinen. Tree matching problems with applications to structured text
databases. November 1992.

[57] H. Kitano. Foundations of System Biology. MIT Press, 2001.

[58] H. Kitano. Computational system biology. Nature, 420:206–210, 2002.

[59] H. Kitano. A graphical notation fo biochemical networks. Biosilico, 1(5):169–
176, 2003.

[60] J. W. Klop. Term rewriting systems. Handbook of Logic in Computer Science,
2:1–117, 1992.

[61] R. Knies. Making computer systems reveal biological secrets.
See http://research.microsoft.com/displayArticle.aspx?id=1673, 2007.

[62] D.E. Knuth, J.R. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323–350, 1977.

[63] K. W. Kohn. Molecular interaction map of the mammalian cell cycle control
and dna repair systems. Molecular Biology of the Cell, 10:2703–2734, 1999.

[64] K. W. Kohn. Molecular interaction maps as information organizers and sim-
ulation guides. CHAOS, 11(1):84–97, 2001.

[65] K. W. Kohn and M. I. Aladjem. Circuit diagrams for biological networks.
Molecular Systems Biology, 2006. doi: 10.1038:msb4100044.

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://research.microsoft.com/displayArticle.aspx?id=1673

BIBLIOGRAPHY 119

[66] K. W. Kohn, M. I. Aladjem, J. N. Weinstein, and Y. Pommier. Molecu-
lar interaction maps of bioregulatory networks: A general rubric for systems
biology. Molecular Biology of the Cell, 17:1–13, 2006.

[67] S. R. Kosaraju. Efficient tree pattern matching. IEEE - Foundations of Com-
puter Science, 30th Annual Symposium on, pages 178–183, 1989.

[68] L.Cardelli. Biological systems as complex system. Contribution to FP7 Ori-
entation paper on Complex Systems, 2005.

[69] H. T. Lu and W. Yang. A simple tree pattern-matching algorithm. 2000.

[70] F. Luccio, A. M. Enriquez, P. O. Rieumont, and L. Pagli. Exact rooted subtree
matching in sublinear time. Technical report, Universit di Pisa, Dipartimento
di Informatica, 2001.

[71] F. Luccio, A. M. Enriquez, P. O. Rieumont, and L. Pagli. Bottom-up subtree
isomorphism for unordered labeled trees. Technical report, Universit di Pisa,
Dipartimento di Informatica, 2004.

[72] I. Marini, L. Bucchioni, P. Borella, A. Del Corso, and U. Mura. Sorbitol
dehydrogenase from bovine lens: Purification and properties. Archives of Bio-
chemistry and Biophysics, 370:383–391, 1997.

[73] H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid petri net represen-
tation of gene regulatory network. Pacific Symposium on Biocomputing, pages
341–352, 2000.

[74] P. Mendes. Biochemistry by numbers: simulation of biochemical pathways
with gepasi 3. Trends Biochem. Sci., 22:361–363, 1997.

[75] T. C. Meng, S. S., and P. Dhar. Modeling and simulation of biological systems
with stochasticity. In silicio Biology ISB, 4, 2004.

[76] Microsoft Corporation. .NET Framework.
See http://www.microsoft.com/net/.

[77] P. Milazzo. Qualitative and Quantitative Formal Modeling of Biological Sys-
tems. PhD thesis, Department of Computer Science, University of Pisa, Italy,
April 2007.

[78] R. Milner. Communicationg and mobile systems : the pi-calculus. Cambridge
University Press, 1999.

[79] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained
types. Theor. Pract. Object Syst., 5(1):35–55, 1999.

[80] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oude-
naarden. Regulation of noise in the expression of a single gene. Nature Ge-
netics, 1:69–73, 2002.

[81] A. Phillips. The Stochastic Pi Machine (SPiM).
See http://research.microsoft.com/~aphillip/spim/.

http://www.microsoft.com/net/
http://research.microsoft.com/~aphillip/spim/

120 BIBLIOGRAPHY

[82] A. Phillips and L. Cardelli. A correct abstract machine for the stochastic pi-
calculus. BioConcur (Workshop on Concurrent Models in Molecular Biology),
Electronic Notes in Theoretical Computer Science, 2004.

[83] R. Pickering. Foundations of F#. Apress, 2007.

[84] Mario Pineda-Krch. Marios Entangled Bank, 2007.
See http://pineda-krch.com/.

[85] C. Priami, A. Regev, E.Y. Shapiro, and W. Silverman. Application of a
stochastic name-passing calculus to representation and simulation of molec-
ular processes. Information Processing Letters, 80:25–31, 2001.

[86] G. Pǎun. Membrane Computing. An Introduction. Springer, 2002.

[87] A. Regev and E. Shapiro. Cells as computation. Nature, 419:343, 2002.

[88] A. Regev and E. Shapiro. The π–calculus as an abstraction for biomolec-
ular systems. Modelling in Molecular Biology, Natural Computing Series,
Springer:219–266, 2004.

[89] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[90] D. Shasha and K. Zhang. Approximate tree pattern matching. pages 341–371,
1997.

[91] D. Stewart, H. Chaffey-Millar, G. Keller, Manuel M. T. Chakravarty, and
C. Barner-Kowollik. Generative code specialisation for high-performance
monte-carlo simulations. SCKCB07, 2007.
See http://www.cse.unsw.edu.au/~dons/polymer.html.

[92] S. H. Strogatz. Non-Linear Dynamics and Chaos, with Applications to Physics,
Biology, Chemistry and Engeneering. Perseus books, 1994.

[93] D. Syme. ILX: Extending the .NET common IL for functional language inter-
operability. Electronic Notes in Theoretical Computer Science, 59(1), 2001.

[94] D. Syme. Leveraging .net meta-programming components from fsharp: Inte-
grated queries and interoperable heterogeneous execution. In ML Workshop
(to be published), 2006.

[95] D. Syme, A Granicz, and A. Cisternino. Expert F#. Apress, 2007.

[96] D. Syme and J. Margetson. The F# website.
See http://research.microsoft.com/fsharp/.

[97] Don Syme. Introduction to f#. talk at microsoft research summer school 2006.
See http://research.microsoft.com/ero/phd/2006SummerSchool/DonSyme.ppt.

[98] Z. Szallasi, J. Stelling, and V. Periwal, editors. System Modeling in Cellular
Biology. MIT Press, 2006.

http://pineda-krch.com/
http://www.cse.unsw.edu.au/~dons/polymer.html
http://research.microsoft.com/fsharp/
http://research.microsoft.com/ero/phd/2006SummerSchool/Don Syme.ppt

BIBLIOGRAPHY 121

[99] K. Takahashi. See http://www.e-cell.org/software/e-cell-system.

[100] M. Tomita, K. Hashimoto, K. Takahasi, T. Shimizu, Y. Matsuzaki, F. Miyoshi,
K. Saito, S. Tanida, K. Yugi, J. Venter, and C. A. Hutchison. E-cell: software
environment for whole-cell simulation. Bioinformatics, 15:72–84, 1999.

[101] G. Valiente. Algorithms on Trees and Graphs. Springer-Verlag Berlin, 2002.

[102] E. O. Voit. Computational Analysis of Biochemical Systems: A Practical
Guide for Biochemists and Molecular Biologists. Cambridge University Press,
Cambridge, UK, 2000.

[103] J. P. Ward, J. R. King, A. J. Koerber, J. M. Croft, R. E. Sockett, and
P. Williams. Early development and quorum sensing in bacterial biofilms.
Journal of Mathematical Biology, 47:23–55, 2003.

[104] D. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hal-
l/CRC, 2006.

[105] P. Wonga, S. Gladney, and J.D. Keasling. Mathematical model of the lac
operon: Inducer exclusion, catabolite repression, and diauxic growth on glu-
cose and lactose. Biotechnology Progress, 13:132–143, 1997.

[106] Ximian. Mono project.
See http://www.mono-project.com/.

[107] Young and Elcock. The kinetic montecarlo method. Proceedings of the Physical
Society, 89:735, 1966.

[108] K. Zhang, R. Statman, and D. Sasha. On editing distance between unordered
labeled trees. Information Processing Letters, 42:133–139, 1992.

http://www.e-cell.org/software/e-cell-system
http://www.mono-project.com/

	List of Figures
	Listings
	Introduction
	Definitions and Motivations
	Contributions
	Related Works
	Published Software
	Structure of the Thesis

	I BACKGROUND
	Background
	Introduction to Computational System Biology
	Actors
	Biochemical reaction networks
	Genetic Regulatory Networks

	Notions of Probability Theory
	Simulation of Biological Systems
	Deterministic Simulation
	Stochastic Simulation
	Comparison of the Two Models of Simulation

	Notions of Combinatorics
	Rule Based Systems and Term Rewriting Systems

	II METHODS
	Stochastic Calculus of Looping Sequences
	Calculus of Looping Sequences
	Syntax
	Semantics

	Stochastic Calculus of Looping Sequences
	Semantics of Stochastic CLS
	Stochastic Simulation

	Development of a Stochastic Simulator for CLS
	Problems
	Goals
	Faced Problems

	Design
	Choices
	Architecture

	Implementation
	Data Structures
	Search of Matches Algorithm
	Gillespie's Algorithm Extension to Deal with Rule Schemata
	Compilation and Execution of C# Code in the Rate Functions

	III RESULTS
	Use Cases
	Lotka--Volterra
	Brussellator
	Sorbitol Dehydrogenase (SDH)
	Lactose Operon in Escherichia coli
	Quorum Sensing in Pseudomas aeruginosa
	Stiffness Evidence

	Benchmarks
	Naive vs Pre--processing Algorithm Benchmarks
	Memoization Pattern Benchmarks
	Optimized Updating Procedure Benchmarks

	Conclusion
	Summary
	Software Development Details

	Future Developments
	Improvement of Performance
	Supports Simulations of CLS Variants
	Improvement of the User Interface

	User Manual
	License
	System Requirements
	Usage
	Format of the Input file
	Description of the User Interface

	Known limitations
	Multiple Term Variables not on the Top Level of Compartments
	Number of Occurrences of Reactants

	Guide to Released Source Files

	Bibliography

