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Preface 
 

The growing interest into multi-sensor systems able to determine general attributes of a 

process under monitoring, has recently involved the qualitative analysis of liquids; various 

methodologies to develop taste sensors, often referred to as “e-tongues” have been presented in 

the literature. The common concept in the different approaches presented by various authors, 

lies in the combination of signals originated by poorly specific sensors for the characterization 

of liquids. 

The fundamental idea of this PhD work is to investigate how an adequate signal processing 

approach, applied to a mature and affordable sensor technique (voltammetry), can address the 

issue of extracting an aggregate chemical information, useful to characterize the liquid under 

measurement, and even to provide information useful for continuous monitoring and change 

detection purposes. 

Among the various application fields of such systems, there are: food and beverage quality 

tests, pollution monitoring of superficial and ground water, drinking water quality tests and 

classification, and control of water distribution networks.  

This work has been conducted in the framework of a research for innovative monitoring 

technologies for the assessment of water quality and for the fast characterisation of surface and 

ground water; nevertheless, the described methodology and the experiences gained are fully 

applicable to other areas concerning environmental monitoring, industrial control, and security. 

What makes the approach based on “taste sensors” a particularly attractive technology, is 

its capability to provide direct information about the quality of the resource, instead of the 

complex data sets coming from traditional selective laboratory measurements. Such feature 

makes this concept particularly suitable to automatic quality surveillance purposes. 

In fact, while the information coming from traditional field instrumentation, providing the 

main physical/chemical parameters, is poor to fully characterise a liquid sample, a complete 

laboratory analytical measurement is expensive and cannot provide a continuous control over 

the resource. 

The goal of this PhD activity has been to find new and better solutions to improve the 

processing of the data acquired with respect to the existent, with a specific interest into a sensor 

technique based on pulse voltammetry, which is a mature analytical technique, here used in a 

non-traditional way. Moreover, a prototype has been developed and practical measurement 

experiences have been carried out, to evaluate and improve the capabilities of the processing 

chain designed. 
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Introduction 
 

In many areas of the measurement technology the methods for getting information about a 

process are rapidly changing. Instead of measuring single parameters there is a need of 

measuring more general attributes like quality, availability, efficiency, etc. Many processes are 

complicated and many different physical as well as chemical parameters need to be measured in 

real-time. 

On that account the concepts of electronic noses and tongues have been developed and 

attract today a wide interest in different applications such as environmental monitoring. Gas 

sensor arrays (e-noses) have been until now more studied than their wet counterparts (e-

tongues). In fact, electronic noses have already been established for qualitative analysis in 

various fields in analytical chemistry, especially for the food industry and some environmental 

applications; there are also some prototypes already on the market. Similar concept; but for 

analysis in water and even food, have recently been described. The above mentioned devices 

are respectively related to the sense of smell and taste; thus, the terms electronic nose and 

electronic tongue (or even taste sensor) have been coined.  

The bio-mimetic connection of these systems is due to the way that the human sense organs 

produce signal patterns to be qualitatively interpreted by the brain. Electronic tongues and noses 

are in fact normally used to give some qualitative answers about the samples studied and only 

in special cases to predict the concentration of individual species in the sample, in a similar 

fashion to what traditional analytical chemistry usually does. 

 The proposed approach allows an original monitoring method, based on distributed low 

cost sensors, making use of the technology of the e-tongue; this concept now represents an 

inexpensive and very attractive way to obtain overall quality indicators of a natural resource or, 

more in general, of a process under monitoring.  

Several attempts are found in the literature regarding the concept of electronic tongue. A 

prototype of an electronic tongue based on voltammetry has been developed in the framework 

of this PhD activity. Most of the work has been focused on the development of signal 

processing algorithms to extract from the data series obtained the useful information for 

classifying liquid samples, and even to detect eventual changes, including the presence of 

pollutants. 

 Experiences made with this prototype and the proposed signal processing approach, have 

demonstrated their capability in classifying water samples of any kind, i.e. bottled mineral 

water, superficial and ground water from field sampling campaigns, even thermal water, tap 

water and bottled beverages. 

A brief overview of the state of the art for “e-tongue” systems, a description of the 

prototype developed, the novel methodological approach to the processing of the signal, and the 

results obtained in several application experiments, are presented in the next Chapters. 

In Chapter I, a general description of electronic taste sensor systems is given. A brief 

summary of the most used techniques in such devices is presented, followed by an overview of 
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the main possible applications. Finally, the advantages of pulse voltammetry with respect to 

other techniques will be highlighted. 

Chapter II gives an overview of the working principles of e-tongues based on voltammetry, 

paying attention to the fundamentals of voltammetry and pulse voltammetry in particular, 

which is the proposed technique in this Thesis. 

Chapter III describes the methodology that represents the core of this PhD Thesis work; the 

sensor device, the control software and the data processing approach are described in this 

sequence. The signal processing approach contains most of the novelty with respect to the 

known literature. 

Chapter IV contains a series of case studies, selected according to their relevancy for the 

peculiarities of the approach described in this Thesis. 

 

0.1 dummy 



 

 

1 CHAPTER I 
 

 

  An overview about taste sensors 

 



CHAPTER I                                                                                An overview about taste sensors 

 

4 

1.1 Human sense of taste  
The sense of taste is due to the excitation of taste receptors; receptors for a large number of 

specific chemicals have been identified, that contribute to the reception of taste. Despite this 

apparent complexity, five types of tastes are commonly recognized by humans:  

• Sweet - usually associated with energy rich nutrients 

• Umami - the taste of amino acids (e.g. meat broth or aged cheese) 

• Salty - allows spontaneous tuning of the diet for electrolyte balance 

• Sour - typically the taste of acids 

• Bitter - allows sensing of various natural toxins 

 

None of these tastes are elicited by a single chemical. Moreover, there are thresholds for 

the detection of taste that differ among chemicals that taste in the same way. 

The sense of taste affords an animal the ability to evaluate what it eats and drinks. At the 

most basic level, this evaluation is used to: 

• prevent consumption of potential poisons or toxins, 

• select food/drinks according to body needs. 

 

In general, food selection and eventual rejection are mediated through the central nervous 

system. In fact, the complex pattern of signals transmitted to the brain from the taste receptor 

cells generates the taste sensations. In a similar fashion, an artificial system that provides a 

similar kind of information may be developed, with a series of foreseen applications such as the 

ones cited in paragraph 1.3. 

Such a bio-mimetic device can be somewhat specialised for different purposes, and can 

exceed the human detection thresholds, especially for those substances which may be present or 

not (i.e. small quantities of pollutant in water), but generally undetectable by the human sense 

of taste, even if potentially harmful. 

One of the main goals of the activity regarding this PhD, is a kind of extension of the 

artificial sense of taste, in order to be able to distinguish between different classes of water even 

with very slight differences in their constituents, including those cases in which such 

differences are due to pollution. 

In fact, the aim of such devices does not necessarily reside in the ability to emulate the 

human senses, but is more focused on the capability to characterise the liquid under 

measurement, in a way that is inspired by biological systems. 

1.2 “E-tongue”: the concept 

1.2.1 Definition of “E-tongue” 

Electronic tongues and taste sensors are devices used to detect and separate compounds. 

They are in fact systems able to determine general attributes of a process under monitoring. In 

some papers, a difference between “electronic tongue” and “taste sensor” is made. For instance 

in [7] a taste sensor system is described as an array of sensors used to classify the different 

gustatory sensations; those are saltiness, bitterness, sourness, sweetness, etc. An electronic 
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tongue is a more general device not necessarily related to some organolectic feature, which 

gives qualitative information (even taste) in food, drinks, water, process fluids, etc. However, in 

most papers both terms are used as synonyms. 

Behind these somewhat misleading terms “electronic tongue” and “taste sensor”, one finds 

some kind of array of sensors. The response patterns of such sensors can be analyzed with 

pattern recognition routines and/or chemometrical methods, where possible. In general, the 

basic principle behind an electronic tongue is to make use of non-specific and overlapping 

signals, via the implementation of some pattern recognition technique, to obtain the necessary 

discrimination between different classes of liquid, for classification and change detection 

purposes. 

In fact, the sensor array in these systems produces signals, which are not necessarily 

selective to any particular species in the environment, drinking water, etc. but a signal pattern 

(often a large dataset) is generated, which can be related to certain chemical/physical features of 

the sample. 

The main advantage of electronic tongues and taste sensors lies in the fact that they can 

help classifying or detect changes of quality in a shorter time and with a far lower analytical 

cost than a complete set of laboratory analyses, although they are not intended to replace them. 

In fact, there is a wide range of applications where an overall information is needed, and, the 

fast response of the device, together with its low analytical cost, contribute to make the 

application attractive, without competing with traditional chemometrics in terms of selectivity  

and quantitative precision. 

1.2.2 Working principles 

Various approaches have been proposed in literature to make multi-sensor systems for wet-

chemical applications such as: ion selective and non-selective (glass) electrodes, lipid/polymer 

membranes, SH-SAW (Shear Horizontal Surface Acoustic Wave) devices, spectrophotometry 

and voltammetry. 

Both glass electrodes and lipid/polymer membranes are based on potentiometry as working 

principle and require an array of sensors with different selectivity properties to operate; SAW 

devices [1] are based on the measurement of the propagation speed and attenuation of an 

acoustic wave due to acoustoelectric interactions with the fluid; spectrophotometry is based on 

light spectral transmittance measurements, and has been recently experimented on wines [2]; 

voltammetry takes information about the concentration and diffusion coefficients of redox 

active species through a measurement of the current flowing in a metal electrode with an 

applied potential having a specific waveshape, depending on the kind of voltammetric 

technique employed. 

As to potentiometric techniques, a high discrimination capability among different brands of 

mineral water using an array of glass ion-selective electrodes (ISE) has been shown in [3] and 

[4]. 

Results obtained with arrays of potentiometric sensors applied to different kinds of 

beverages have been shown also recently in [5] and [6]. 

The known drawbacks of potentiometric techniques [7] lie mainly in the limitation of the 

detection to charged species, sensitivity to electrical noise and some requirement in the 
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maintenance of the electrodes, such as preparation and conditioning; it is thus worth looking for 

simpler and more robust approaches, possibly offering similar performance. It is thus of interest 

to exploit the effectiveness of the technique based on pulse voltammetry and solid metal 

working electrodes. This approach offers several advantages, such as simplicity, robustness, 

and a wide range of analytical possibilities, according to several parameters, such as the shape 

and material of the working electrodes, the excitation signal chosen, and the particular 

processing which is performed over the data. 

Voltammetry, among other possible techniques, is one of the most extensively used in 

analytical chemistry; in addition, pulse voltammetry, with the aid of a suitable signal analysis 

support, has proven to be one of the most attractive techniques for classification and change 

detection purposes [7, 8, 9, 10]. 

1.3 A selection of known applications  
 

Among the various present and foreseen applications for e-tongue systems, the main 

industrial, civil and scientific uses are: 

• quality control in food and beverage industry, 

• environmental monitoring: pollution detection, 

• drinkable water: quality assessment and contamination control, 

• geochemical surveillance: monitoring of natural systems (study and identification of 

changings connected with events such as earthquake precursory alterations). 

 

In [1] an e-tongue based on an SH-SAW device, in a dual-delay configuration, has been 

described. One line is shorted (metallised and electrically shielded), while the other is left free 

(electrically active). In this way, mass loading and viscosity are measured by the shorted delay 

line, while permittivity and conductivity are monitored by the free delay line. Such parameters 

of the liquid under test can be related to taste properties. 

An experiment made on the filtering plant of a Swedish drinkable water network is 

reported in [9, 10]. Differences in water quality before (raw water) and after (clean water) the 

filters are well detected. Such discrimination capability is discussed in both the articles 

referenced. The sensor technique used in this works is based on pulse voltammetry; everything 

has been kept at a very preliminary level with respect to the application, thus a commercial 

device has been used as potentiostat and no custom development for the application is 

described. 

In [3] an e-tongue based on an array of 29 potentiometric chemical sensors is described. 

The analysis of Italian bottled mineral water and dry red wines is discussed, particularly in 

terms of discrimination capability. Other works, based on array of non-specific potentiometric 

sensors, have been presented by the same research group also recently. 

In [2] the fusion of three sensor modalities is discussed for the characterisation of red 

wines: a combination of e-nose (smell of head-space gas), potentiometry (liquid phase 

electrochemical characterisation) and colour analysis is proposed. Correlation between the 

different sensor techniques is discussed, and the enhancement of the discrimination capability is 

demonstrated. 
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Several experiences about the effect of pollutants dissolved in water has been done in this 

PhD work; the most relevant ones can be found in [11], where a slight contamination by 

trichloroethylene and tetrachloroethylene is detected in two different case studies, and detection 

of very small quantities of terbuthylazine (a diserbant) has also been proved in another case 

study. Said experiments can be found in Chapter IV, which contains a selection of the 

experiments made during this PhD work. 

In general, there are two classes of applications into which the application concepts can be 

split: 

• continuous control for asserting quality (such as the taste of some kind of food), 

• sporadic measurement for classification by similarity. 

 

The first category regards those problems often labelled as change detection ones, while 

the second represents a typical supervised classification application.  

A supervised classification framework has been developed in this PhD work, and has been 

presented in [12]. As to the sensor technique, an electrochemical method based on pulse 

voltammetry has been proposed in this work. 

Change detection applications require a high maturity in the sensor and signal processing 

technique; they actually represent one of the most attractive challenges in this family of 

methods. Both industrial processes in the food and beverage industry and water distribution 

networks, with their recent issues regarding security against contamination and terrorist threat, 

would benefit very much from the advancements of this technology. 
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2.1 Electrochemical fundamentals about voltammetry 

2.1.1 Definition of voltammetry 

Voltammetry is a group of electroanalytical methods in which information about the 

analyte is derived from the measurement of a current flowing in a polarised working electrode, 

as a function of the applied potential. That is, the working electrode potential is forced to adhere 

to a predetermined program, and the current is measured as a function of the applied potential, 

or as a function of time. 

In the methods described in this Thesis the electrodes are supposed to be microelectrodes, 

and the solution volume is supposed to be sufficiently large to alter negligibly the concentration 

of electroactive species with the passage of current. 

Mass transfer in solutions occurs either because of a gradient in electrochemical potential 

or because of convection. As a first step, we can consider an unstirred solution, thus with no 

convection. 

According to the approach developed by Butler and Guggenheim [1, 2, 3], the 

electrochemical potential in a location P is defined as: 

 

  
ααα φµµ ⋅⋅+= Fziii                           (2.1) 

 

Where: 

iz  is the charge of species i. 

F is the Faraday’s constant. 
αφ  is the electrical potential at the location P for phase α. 

αµi
is the chemical potential of the chemical species i in phase α, defined as: 

 

                

ijnPTi

i
n

G

≠

∂

∂
=

,,

αµ
          (2.2) 

 

Where: 

the quantity G is the Gibbs’ free energy. 

in  is the number of moles of i in phase α. 

Another way of writing the electrochemical potential can be: 

 

ijnPTi

i
n

G

≠

∂

∂
=

,,

αµ
            (2.3) 

Where G  is the electrochemical free energy, and differs from G because it includes the 

influence of the large-scale (i.e. not due to the ions) electrical effects, as they appear in equation 

(2.1). 



CHAPTER II                                                                        Taste sensors based on voltammetry 

11 

 

The difference of electrochemical potential between two points (A,B) of a solution can 

arise because of: 

• a difference of concentration of electroactive species over the distance A to B, 

• an electric field with a non-zero component along the direction A-B. 

 

These two phenomena contribute to the mass transport by diffusion and migration, 

respectively; in addition, the transport flux of charged species is equivalent to a current density. 

In the proximity of an electrode, in general, the electroactive substance is transported by 

both processes (migration and diffusion).  

For non convective mass transfer the general flux equation is given by: 

 

φ∇⋅⋅⋅
⋅

⋅
−∇−= jj

j

jjj CD
TR

Fz
CDxJ )(     (2.4) 

 

Where: 

jD  is the diffusion coefficient of species j, 

jC  is the local concentration of species j. 

 

Stirred solutions, which are mostly used in practice, involve forced convection. In this case, 

a model has been proposed [4], where it is assumed that convection maintains the 

concentrations of all the species uniform and equal to the bulk values, till a certain distance δ 

from the electrode. Within this layer having thickness δ, it is assumed that there’s no solution 

movement, thus mass transfer is thought to be due by diffusion only. 

Information about the controlled potential microelectrode techniques is given here at an 

introductory level, to allow the reader having a complete view of the approach presented in this 

Thesis, while a deeper explanation would go outside the scope of this work.  

A deep theoretical treatment regarding the fundamentals of electrochemical methods, and 

specifically about voltammetry, can be found in [4, 5]. 

The basic component of the measurement system is called potentiostat. A potentiostat is 

device which injects current into an Auxiliary Electrode (AUX), closing the current loop via a 

Working Electrode (WE), in order to impose a known difference of potential between WE and a 

Reference Electrode (REF). Such voltage has to be measured with a high impedance differential 

amplifier, to make negligible the current going through REF. 

The voltage imposed across WE and REF is supposed to be determined by a function 

generator placed at the input of the potentiostat. The experimental observable, that is obtained 

from each measurement session, is the response of the system potentiostat-cell to the excitation 

signal (voltage) used, that is, the loop current i(t).  

Better detail about the structure of this device will be discussed in paragraph 3.1.1, where 

the prototype developed for the experimental setup of this Thesis is presented. A simplified 

connection diagram, which shows the above mentioned configuration, is reported in Fig. 2.1. 
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Fig. 2.1 Simplified schematic diagram of the experimental system 

 

2.1.2 The basic step experiment 

When the applied excitation signal is a step signal, such as the one shown in Fig. 2.2, the 

obtained response depends on the levels of the applied potential. 

Under the hypothesis that there’s only one dissolved species and that it is electrochemically 

inactive at potential E1 but reduced at E2, a typical response of the experimental system would 

be the one shown in Fig. 2.3a. The electroactive species eliminated (reduced) at the electrode 

(WE) produces a concentration gradient in the proximity of such electrode. Moreover, looking 

at equation (2.4), it comes clear that the flux (thus the current) is proportional to the 

concentration gradient.  

The decay of i(t) is just due to the fact that the flux causes the depletion volume to thicken. 

In other words, the slope of the concentration profile Co(x) from the WE surface declines while 

current flows, the depletion volume gets higher, producing the described decay of i(t). An 

example of the concentration profile behaviour vs. time is shown in Fig. 2.3b. 

The time-dependent concentration and the shape of i(t) can be calculated by solving the 

diffusion equation under the applicable hypothesis for the problem considered. Details about 

the electrochemical and mathematical approach to the problem can be found in [4]. Since 

solutions in a closed form are almost always very difficult to obtain, some hard hypothesis, 

which give good approximation with a much simpler mathematics, are generally used. A brief 

overview of the special cases that are usually considered can be found in Paragraph  2.2.1. 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Excitation signal waveform for the basic step experiment 
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Fig. 2.3 a) i(t) for the step experiment.    b) Concentration profiles at various times 

 

If steps of different amplitudes are applied to the measurement system (Fig. 2.4a), the 

response i(t) may go through the following different conditions, depending on the varying 

amplitude: 

• potentials at which the species is not electroactive, since there’s no overpotential 

for reducing,  

• potentials at which a flux is present and still incrementing with higher potential 

levels, 

• range of potentials where the current value is clipped by a mass-transfer limitation, 

thus not incrementing with higher potential levels. 

 

Such range of possible behaviours is clarified in Fig. 2.4b. Supposing that the current is 

sampled at instant τ, it is possible to plot i(τ) vs. the correspondent step potential, making what 

is called a sampled-current voltammetry. 

The current-potential curve that is obtained (also called voltammogram), is shown in      

Fig. 2.5, which has been obtained by interpolation of seven samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 a) Excitation signals for sampled-current voltammetry. b) Current vs. time for the different steps in 
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Fig. 2.5 Current-potential curve (voltammogram) 

 

2.1.3 General remarks about voltammetry 

The electrochemical behaviour of a system can be determined by imposing known varying 

potentials between WE and REF, recording the current-time curve that is obtained in each 

experiment.  

The different activation overpotential levels, diffusion coefficients and mass-transfer limits 

that are exhibited by each species in a solution, generate a different contribution to the complex 

voltammogram obtained; the shape of such contribution depends on the waveform of the 

excitation signal. 

It is also known that the complete electrochemical signature of a system can be obtained by 

applying a series of steps of different amplitude, always recording the current vs. time curve; 

the approach proposed in this Thesis derives from this concept. 

Voltammetry has proven to be one of the most mature and affordable techniques for 

providing an aggregate information about the quality of water, beverage and food [6, 7, 8, 9,  

10]; LAPV (Large Amplitude Pulse Voltammetry) measurements, derived from standard 

analytical laboratory techniques, has shown excellent sensitivity and discrimination 

performance for e-tongue applications [7], where, instead of analysing traditional 

voltammograms, the large multivariate space generated by the time series of the current signal 

is used to characterise the fluid under measurement, providing an overall quality information. 

In fact, voltammetry, among other possible techniques, is one of the most extensively used 

in analytical chemistry, and appears to be very promising for classification and change 

detection purposes. 

In the following Chapters a general overview of the available voltammetric methods will 

be given. Particular attention goes to those techniques which make use of large amplitude 

excitation signals. 
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2.2 Overview of the most common voltammetric techniques 

2.2.1 Current-potential characteristics 

As already said in Paragraph 2.1.2, there are a number of special cases according to which 

the excitation signals are generally classified. This is in order to make the calculation of 

current-time and current-potential curves easier, under some circumstances that lead to some 

approximate mathematical solution. 

Methods can be classified according to the following special cases: 

Large Amplitude Potential Step: current is limited by mass transfer, thus current is 

independent of potential for activated species and is negligible for the inactivated ones 

Small Amplitude Potential Changes: such small variations may be of different shape, the 

relationship between current and overvoltage is simplified in a linear form 

Reversible Electrode Process: when anodic and cathodic effects (oxidation and reduction) 

are almost simultaneous 

Totally Irreversible Electrode Process: when only one of the two effects (oxidation or 

reduction) is appreciable 

 

Most techniques, as discussed in Paragraph 2.2.2, make use of such approximations. 

2.2.2 Chronoamperometry, chronocoulometry, polarography 

The kind of experiments that can be made in the known voltammetric methods can be 

catalogued as follows: 

Chronoamperometry: when current is recorded as a function of time in correspondence to a 

know excitation waveform 

Chronocoulometry: integral approach equivalent to chronoamperometry, measuring the 

amount of charge which passed 

Polarography: when samples of the current measurement are taken from a sequence of step 

experiments and placed on the current-potential plane. The curve obtained is said polarogram.  

2.2.3 Techniques involving large amplitude excitation signals 

This Paragraph presents a brief overview of the mostly used analytical techniques for 

voltammetry, where large amplitude excitation signals are used. A wider and more detailed 

explanation of the presented methods can be found in [11]. 

Linear sweep voltammetry: it is a chronoamperometry where the excitation signal is a 

ramp. Typical excitation waveform and response signal are shown in Fig. 2.6. 

Polarography: it is classified in various versions, such as pure polarography, tast 

polarography and sweep polarography. Mostly used for quantitative measurements, it is 

generally used with renewable Working Electrodes, such as the dropping mercury ones (DME). 

Current values placed in the current-potential curve are the average or plateau (mass-transfer 

limited) values calculated for each measurement. The obtained curve is a kind of locus of the 
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calculated values for each current-time response obtained. Results are similar to the one shown 

in Fig. 2.5 Current-potential curve (voltammogram). 

Triangular wave voltammetry: as for Linear Sweep Voltammetry, makes use of triangular 

excitation signals, eventually in a cyclic form. 

Normal pulse polarography: the excitation waveform is made by successive pulses with 

linearly increasing amplitude. Again, a polarographic current-potential response is obtained, 

when sampled current is plotted against potential pulse value. Usually applied to dropping 

Working Electrodes. Excitation signal and a typical response curve are shown in Fig. 2.7. 

Double potential step chronoamperometry: a double step pulse as described in Paragraph 

2.2.1, with opposite edges. In [11] this technique is distinguished from pure 

chronoamperometry by the fact that E1 in Fig. 2.8 differs from the open-circuit potential. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Excitation waveform and typical response for linear sweep voltammetry 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Excitation waveform and typical voltammogram for normal pulse polarography; sampled values 

are usually represented in a stepwise manner. E is the step amplitude, I the sampled current 
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Fig. 2.8 Example of an excitation signal and a current-time curve for a double potential step 

chronoamperometry 

 

 

2.3 Signal processing aspects relating to pulse voltammetry 
 

The fundamental idea of this work is to investigate how an adequate signal processing 

approach applied to a mature and affordable sensor technique (voltammetry) can address the 

issue of extracting an aggregate chemical information, useful to characterize the liquid under 

measurement. 

The measurement method proposed here is based on the following idea: instead of 

analysing traditional voltammograms, samples of the current signal are collected, making a kind 

of chronoamperometry. The shape of the excitation signal and the configuration of the 

acquisition system are discussed in Paragraph 3.1.1 and 3.1.2.  

The large multivariate space, generated by the time series of the current signal acquired, is 

used to characterise the fluid under measurement; the work is thus focused on the signal 

analysis techniques useful to make a measurement system capable to: 

• detect changes in a continuous monitoring framework, 

• perform an automatic classification. 

 

When dealing with data series coming from voltammetric measurements, especially when 

data come from a high sampling rate pulsed voltammetry, the crucial signal processing issues 

regard the reduction of dimensionality of the dataset and the extraction of suitable features to 

enhance the discrimination between different classes. 

In fact, the efficiency of the dimensionality reduction algorithms has a beneficial impact on 

the hardware requirements for a system which has to implement them. The possibility of 

embedding the computational power in a low-cost monitoring device, strongly depends on how 
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efficiently datasets having large dimensionality can be reduced with an acceptable loss of 

information. 

Consequently, one important aspect is to study techniques to extract useful information 

from the large multivariate space generated by such measurements. 

This task can be accomplished in two steps: 

• dimensionality reduction 

• feature extraction. 

 

Both classification and change detection applications require optimising the performance of 

the data processing system in terms of discrimination capability. 

More in detail, both the hardware and the software of the equipment have to be designed 

taking into account the following basic requirements: 

• easy implementation on embedded devices having relatively poor resources, 

• light computational load, 

• high discrimination performance. 

 

The efficiency of the dimensionality reduction and feature extraction algorithm becomes an 

essential element in the development of such devices, according to the said guidelines. 

Thus, one essential aim of this work is to define a classification system that can learn by a 

suitable training set (eventually acquired in the laboratory) to be used on the field for successive 

measurements after the tuning process; both electrolytic solutions made in the laboratory and 

water samples coming from the real world can be used for this purpose. In fact, depending on 

the target application, different approaches can be used in building up the training set, such as 

using water samples belonging to different chemical classes for characterisation purposes, or 

simulating different concentration levels of known pollutants, for change detection and 

surveillance uses. 

Once the classification system has been trained, it is then ready to be used for 

characterising unknown samples in the successive measurements. This approach is described in 

3.2.1, going into further detail in 3.5, finally an example is presented in 4.3. 

Measurement repeatability is a fundamental aspect in the development of such an 

approach, and it involves the design of the measurement cell, the analog front-end and the 

acquisition strategy as well. 

 

2.4 Signal processing approach 
 

In this Paragraph, a brief overview about the signal processing approaches proposed up to 

now for pulse chronoamperometric data series, is given. There’s actually not much literature of 

this kind, essentially because most of the research is focused on innovative sensor techniques, 

more then better exploiting known ones, with innovative signal processing concepts. Moreover, 

comparisons with respect to the known literature will be found along the discussion of the 

proposed signal analysis methodology, in Chapter III. 
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Most of the efforts are essentially focused on the aspects regarding  the reduction of 

dimensionality of the collected data. 

The main motivations for dimensionality reduction can be listed as follows: 

• to reduce the complexity of classifiers, 

• to improve classification accuracy with respect to known problems, such as Hughes 

effect [12, 13] due to insufficient number of observations, or poor generalisation, 

• to reduce the computational cost of measurement extraction 

• to better assess class separability. 

 

In [6, 7, 8] PCA (Principal Component Analysis) is applied to the time-domain samples, 

where each sample is represented by a component of the observed vector; the dimensionality of 

the space may be limited before applying PCA, by taking selected samples from the time 

domain signals; in [7] a factor 30 down-sampling from the original 900Hz sampling rate is 

proposed, but no criteria for selecting a sub-set of optimal samples is given. 

In general, the approach based on PCA implies quite a high computational load. In fact, for 

spaces having large dimensionality PCA is very intensive computationally; alternative 

techniques to determine a suitable representation space can be used, as discussed in Paragraph 

3.4. 

In [9] a Wavelet transform is applied to a high sampling rate time series, to reduce the 

dataset and to optimize both change detection (monitoring) and classification (discrimination) 

capabilities. The proposed data processing chain, applicable when a training set of known 

observations is available, is constituted by: 

• Discrete Wavelet Transform (DWT) of the acquired data, 

• sort of the transformed coefficients according to the following uni-variate 

discrimination measure: 
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 Where: 

 q is the number of classes, 

 im is the mean of the selected coefficient in class i, 

 meanm is the mean of the selected coefficient for the total of the observations, 

 in is the number of observations in class i, 

 iV is the variance of the observations in class i, 
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• selection of the first L sorted coefficients according to their discrimination value, 

• select the subset of coefficients (if it exists), which maximizes the Mahalanobis 

distance between clusters, 

• apply PCA to said subset and take the first two Principal Components as a 

representation space. 

 

This processing scheme is prone to the following considerations: 

• there’s no strategy to determine an optimal value for L, 

• in practical experiments L is taken so large (order of thousands) that subset selection 

becomes slow, 

• the first L sorted coefficients are not the best L coefficients. An approach closer to 

exhaustive optimality can be considered. 

 

The signal processing scheme proposed in this Thesis, among other peculiarities, aims at 

finding an optimal (or sub-optimal) dimensionality of the feature space, by using sub-optimal 

search strategies that do not necessarily group coefficients sorted according to an uni-variate 

discriminability measure.  

A review of data compression methods aimed at saving memory space and computational 

time, essentially based on the Wavelet transform and Hierarchical PCA is presented in [14]. 

Two different experiments are presented in the paper, both making use of pulse 

chronoamperometry, made sequentially with four different Working Electrodes. Aim of such 

experiments is to compare the compaction performance and class discriminability that it is 

possible to obtain with different approaches.  

To reduce the datasets derived from voltammetric e-tongue measurements, the following 

three procedures have been experimented: 

• Two-step HPCA, first on data coming from each WE, then on the combined data, 

• Selection of Wavelet transformed samples according to their variance, 

• PCA applied to electrochemical parameters extracted from time domain samples (time 

constant, Faradaic current, peak current). 

 

The weak aspects of this approach can be individuated in: 

• data selection according to variance does not imply a direct estimation of 

discriminability, 

• as a consequence, Wavelet transformed data seem to have less performance then the 

PCA of the electrochemical parameters, 

• only information about discrimination capability is given, no classification framework is 

presented. 

 

In conclusion, especially when developing a device for field use, there’s still the need to 

make further developments on specific methodologies to: 

• save computational time and data storage, 
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• optimise the discrimination performance, 

• develop dedicated supervised classification schemes, 

• develop affordable change detection algorithms. 
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The design of devices based on the principles illustrated in this Thesis requires a specific 

methodological approach, such as the one described in this Chapter. A description of the 

experimental setup and details about the proposed signal processing methodology are given 

here. 

3.1 The prototype developed 

3.1.1  Hardware 

The equipment used to generate the datasets discussed in this Thesis has been custom 

designed and built, including the potentiostatic device; this makes possible to take advantage of 

the many analytical possibilities that voltammetry offers by modifying key working parameters 

of the instrument (i.e. number and type of the electrodes, shape, duration and amplitude of the 

excitation waveform).  A simplified block diagram of the device is shown in Fig. 3.1. 

Both the synthesis of the excitation signal and the collection of the current measurements 

are controlled by a Personal Computer (PC), where a commercial ISA card (Axiom model 

AX5621H+ [1]) provides all the necessary I/O (ADC, DAC and digital signals) plus an 

independent XTAL rate generator used as a timebase for the whole system, separated from the 

PC system clock. 

Said ISA card hosts a SAR A/D converter with S/H stage, 12 bit ADC, 8 TTL compatible 

digital outputs and an 8254-like configurable counter used as timebase generator; the main 

specifications of such devices are found in Tab. 3.1. 

 

Parameter Typ. @25°C Unit 

SAR A/D resolution 16 bit 

No missing codes 15 bit 

S/H aperture delay 40 ns 

A/D conversion time 8 µs 

D/A resolution 12 bit 

D/A linearity error ±1/4 LSB 

D/A full scale range 
change settling time 

4.5 µs 

 

Tab. 3.1 Main specifications of the A/D and D/A devices used 

 

With the configuration of Fig. 3.1 the potential on the working electrode is tied to the 

analog ground by the I/V converter (1); the differential electrometer (2) is connected to the 

negative input of the control amplifier (3) and closes the feedback loop, which ensures that the 
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voltage difference between the reference electrode and the selected working one is equal to the 

voltage set by the PC via the A/D converter. All this is true until both the voltage assumed by 

the Counter-Electrode (CE, also said Auxiliary Electrode) and the current which flows through 

it, lie in the output swing capability of (3). 

One or more relays, directly controlled by the PC card digital I/O lines, select the proper 

working electrode for each phase of the acquisition process. 

The current flowing through the selected Working Electrode (WE) is converted into a 

voltage and acquired via the A/D stage; collected data are stored by the PC and form one 

sampling sequence, such as those shown in Fig. 3.4. 

The current signal conditioning circuit has to handle current levels down to the nA; it is 

based on a DIFET (dielectrically insulated FET) OPAMP (OPA129B), selected for its low bias 

current and small offset drift and noise, suitable for the application (see the data sheet [14]). A 

block schematic, that gives better detail of such stage, is reported in Fig. 3.2. To better exploit 

the dynamic range of the converted signal, two identical stages with different conversion 

resistors (RI1,2) are selected via a low loss switch (SW2, ADG432B), to get the maximum 

unsaturated signal between the two paths; to even reduce switch and layout current losses at the 

input, SW1 has been chosen to be a manual mechanical switch. Full scale signal levels 

determine the switches’ position, and are dependent on the nature of the water under 

measurement. Cc capacitors are placed to reduce the consequences of high frequency noise 

picked up by the cabling and the electrodes, such as switches’ crosstalk and OPAMPs’ 

oscillation and distortion. Their band limiting effect is neglectible with respect to the following 

filter, being their pole higher than 1KHz.  

To improve the frequency response and linearity of the front end, gain is partially allocated 

to the later stage, after filtering with a first order filter. The cut-off frequency of said filter, as 

indicated in Fig. 3.2, is the one chosen for the experiments described in this Thesis; experience 

has shown that with the excitation signal used, there’s no significant improvement in cutting at 

higher frequencies; only the usage of smaller electrodes and of faster excitation signals would 

imply the need for a wider bandwidth.  

The four Working Electrodes are made of different solid metals, having different redox 

properties. Various metals and different quantities of WEs have been presented in the literature. 

As an example, in [8] the Working Electrodes are four, while in [9] a probe with six WEs has 

been used. 

A first order filter at the input of the control amplifier (3) is necessary to prevent electrode-

fluid system nonlinearities from inducing self oscillations in the potentiostat loop, when fast 

signals are applied at its input. Depending on the electrolyte under measure, the cut-off 

frequency may range between 5 and 50 Hz for the configuration used. 

The shape of the excitation signal is programmable, via the implementation of a virtual 

waveform generator in the software which runs on the controlling PC. The voltammetry control 

software has been completely custom developed for this work; it is a DOS application written 

in PowerBasic language, suitable to run on any x86 platform. Signal analysis software has been 

developed in MATLAB environment and runs on a separate machine. Data between the two 

PCs are transferred through their parallel ports. 
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The main guidelines that have driven the design of the hardware are: sampling rate 

stability, small S/H aperture time (in the A/D converter), precision in the phase relationship 

between the excitation signal steps and the sampling times. This was to ensure a proper 

repeatability of the data sequences obtained, in the effort of better evaluating the subsequent 

signal processing results. 

 

 
 

Fig. 3.1 Simplified block diagram of the test set used 

 

 

 
 

Fig. 3.2 Simplified block diagram of the current signal conditioning circuit 
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3.1.2  Sensor system 

The excitation signal used in the presented experiments corresponds to the Large 

Amplitude Pulse Voltammetry (LAPV ) method, and the waveshape is the one proposed in 

[10]. The signal is made by successive pulses of varying amplitude and constant duration (470 

ms), starting from +900 mV and stopping at –130 mV, with 71 amplitude steps and a time 

interval between pulses equal to the pulse duration (470 ms). The excitation function, taken as 

the instantaneous voltage vg(t) applied to the input of the low-pass filter, is shown in Fig. 3.3.  

The acquired data is constituted by the collected sequence of samples of the current signal 

measured by the I/V converter, thus making a kind of chronoamperometry generated by a 

sequence of pulse excitations. 

In a first version of the sensor system, the Working Electrodes were two wires made of Au 

and Re, about 5mm long; the Reference Electrode was an Ag/AgCl one, while the Counter-

Electrode was a stainless steel plate having an area of about 2 cm
2
. The first preliminary 

experiments have been made in this configuration. 

In a more recent version, the measurement cell comprises four Working Electrodes, made 

of Au, Re, Pt and Pd; all of them are encased in a Plexiglas tube filled by an epoxy sealant. The 

wet surface of each electrode has an area of 0.2 mm
2
 and it is flattened to make a uniform 

surface with the epoxy compound. 

The usage of Working Electrodes having a small wet surface (even microelectrodes) allows 

a better performance than by using traditional ones, thanks to their lower capacitance and a 

better exploitation of the diffusion effect. This implies that the analog front-end must handle 

smaller currents than with larger electrodes, with the same potentiostat bandwidth, and is prone 

to higher noise pick-up. 

Each water sample under measurement is continuously stirred with a magnetic stirrer inside 

the measurement cell, during all the time of the measurement session. The volume of water 

contained in the cell is about 50 ml. 

Different cleaning techniques have been experimented: chemical cleaning with H2SO4 1M, 

followed by rinsing in distilled water, has been performed in the first experiments between any 

two measurements of liquids belonging to different classes. 

In the most updated version, the measurement cell is completed by an ultrasonic transducer 

placed at its bottom, used for the periodic washing of the wet parts, without making use of any 

aggressive chemicals or direct mechanical scrubbing, thus preventing any modifications to the 

electrodes’ surface which may somewhat alter the repeatability of the measurements. Thanks to 

that, ultrasonic washing appears to be a useful procedure for long-term field use. Chemical 

cleaning is now used in a sporadic way, especially after long periods of inactivity. 

Fig. 3.5 shows the configuration of the electrodes on their mounting probe, which has been 

designed and built for the measurement cell. 
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Fig. 3.3 Waveshape of the excitation signal used 

 

 
Fig. 3.4 An example of the acquired signals. The correspondent WE material is shown for each of the time 
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Fig. 3.5 Electrodes’ mounting probe used for the experiments 

 

3.1.3  Software 

As already mentioned in Paragraph 3.1.1, the shape of the excitation signal is 

programmable, via the implementation of a virtual waveform generator in the software which 

runs on the local (controlling) PC. The voltammetry control software has been developed in two 

versions: 

• a DOS application written in PowerBasic language, as a first version, 

• a Windows CE 5.0 application written in C++, suitable to run on any x86 platform.  

 

Signal analysis software has been developed in MATLAB environment and runs on a 

separate machine. Data between the two PCs have been transferred through their parallel ports, 

due to the availability of very affordable and fast enough applications for the interconnection 

between DOS and Windows platforms.  

DOS for the acquisition PC in the experimental setup has been chosen for its complete 

absence of time critical issues due to the underlying Operating System; mere experiments 

without special needs of user interface and connectivity are very easy to handle, in this way. In 

addition, the development of custom low-level drivers for the direct access to the I/O space is 

immediate, as well as porting the drivers to microcontroller environments (i.e. simple machines 

that perform only the acquisition task, sending raw data remotely). 

The described solution used for the experimental setup is now being ported to a Windows 

Mobile (CE 5.0) platform, in the view of providing the field device in its final version with the 

typical user interface and connectivity (i.e. TCP/IP, FTP, PPP), that are generally available 

nowadays. In this case, also the MATLAB software, re-written for the Windows CE 

environment in C++ language, is intended to run on the same target machine. Also, the 

hardware of the final field version differs from the experimental setup, especially in the 

acquisition front-end, but it keeps an identical functionality thanks to the high availability of 

register-compatible devices in the embedded market, which are compliant with the Keithley 

DAS-16 standard. 

Working Electrodes (4) 

Ag/AgCl Reference 
Electrode 

Counter Electrode 
(Auxiliary) 
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In fact, the components of the experimental setup and the software architecture are 

determined in the view of the development of a portable field instrument with fully embedded 

and autonomous functionalities. 

The functional structure of the software embedded in a portable prototype must take into 

account two general application frameworks: 

• stand-alone operation for continuous monitoring, 

• sporadic laboratory or field use for characterization and supervised classification. 

 

Fig. 3.6 shows a complete schema of the functionalities of the prototype. 

The embedded device is thought to be connected to a local or remote workstation PC. The 

first step is therefore to determine the functionalities of the embedded device. These are: 

acquiring data (continuously or not), signalling alarms upon detection of changes, providing 

remote connectivity to retrieve data, managing a communication protocol to update working 

parameters and excitation functions and, finally, visualizing on a local display a representation 

of the acquired and processed time series. 

The second step is to determine which operations have to be carried out by the workstation 

PC, which implies the implementation of the entire communication protocol and user interface 

that are not required at the development stage, but are necessary at a certain degree of 

availability in order to perform field applications. Nevertheless, a more detailed description of 

the application software framework goes outside the scope of this Thesis. 

 

 
 

Fig. 3.6 Complete outline of the functionalities of the embedded prototype 

 

 

Inside the “e-Tongue” module shown in Fig. 3.6, there are the functionalities of the control 

software that implements the algorithm for the voltammetric measurement. 

Since the sampling interval is set to 1 ms, suitable sampling rate stability and 

synchronisation between pulse steps and sampling times have been obtained using a monolithic 

(uninterruptible) software routine that sets the D/A and reads the A/D, each time the sampling 
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interval elapses; this routine is triggered by the down counter contained in the multi I/O board, 

which is scaled down from an independent 10MHz source. In such a way, software delays are 

kept far smaller than the D/A settling time (see Tab. 3.1), which is more than two orders of 

magnitude below the sampling interval. Also, the time interval between D/A settling and A/D 

acquisition becomes highly repeatable with respect to the timings of the application, being 

essentially due to D/A settling time fluctuations. The obtained performance exceeds the 

potentiostat bandwidth, which is of the order of the tens of Hz, for the experiments presented. 

Such an approach is made possible with specifically written drivers which have direct 

access to the I/O address space of the PC, where the registers’ space of the AX5621H+ is 

statically located. 

 

3.2 Structure of the signal processing chain 

3.2.1  General description 

Both the sampling rate of the acquired signal (current signal from the I/V converter) and 

the update rate of the excitation signal have been set to 1KHz, to allow for analyzing the useful 

bandwidth all over the range of the tested classes of liquid, sensors’ geometry and measurement 

conditions. Also, the sampling rate cannot be straightly determined by the filters’ bandwidth of 

the analog front-end, due to the nonlinear behaviour of the system potentiostat-cell. 

The general structure of the signal processing chain is shown in Fig. 3.7. The excitation 

waveshape coming from the 12 bit DAC drives the potentiostat, already illustrated in Fig. 3.1. 

The resulting time series of the current signal obtained by the chronoamperometric 

measurements goes through a pre-processing step, consisting into a pre-filtering and down-

sampling stage, as shown in Fig. 3.7. 

The pre-filtering stage consists into a median filter with variable taps, to remove eventual 

glitches picked up by the potentiostat system, treating them as outliers in the filtering window; 

instead, average filtering is already implemented in the hardware with the illustrated low-pass 

filters. 

In the experiments presented in this Thesis, the acquired sequence has been down-sampled 

to a rate of 50Hz, to obtain a pre-reduction of dimensionality adequate to the band of the 

system, estimated in the experiments that have been done. 

Each measurement sequence per each one of the Working Electrodes (WEs) is made by 

M=3384 data points, after down-sampling. Thus, one observation is formed by four sequences 

of M data points, each one generated by the LAPV scan for each of the four WEs. 

The dimensionality reduction and feature selection process go through a transformation 

into the frequency domain, according to the following steps: 

• the data series obtained with different WEs are collected into n sequences made of M 

data points, where n is the number of WEs, 

• DCT (Discrete Cosine Transform) or DWT (Discrete Wavelet Transform) of each 

sequence is calculated, 

• the most informative (according to some criteria) transformed components are selected 

(feature selection).  



CHAPTER III                       A novel approach to water characterisation based on voltammetry 

 

32 

The proposed approach [2, 3] resorts to the frequency domain transform of the data series 

in order to exploit the energy compression properties of the DCT, which has never been 

proposed in literature for this kind of application. 

The use of the DCT is also motivated by the fact that such a transform can be efficiently 

performed with commercial hardware devices. On the other hand, the proposed usage of DWT 

for voltammetric time series [4, 5] suggests the experimentation of both techniques, in order to 

compare their performances and to determine whether the DCT can be fruitfully used in this 

framework. Besides, the feature selection procedure can also be applied to the original time-

domain data (VLT), to compare results with those obtained in a transformed domain. Such 

comparative results are shown and discussed in Chapter 0. 

Fundamentals of DCT are explained in many books and articles about signal and image 

processing; a good reference can be found in [6]. 

The concept that lies behind the usage of a transformation domain is to work in a domain, 

if it exists, where the same separability between classes is achieved with a smaller amount of 

features, with respect to the original domain of the collected signals. 

Feature selection represents a critical issue in multidimensional data processing having the 

dual objective of delivering the most accurate answers with a minimum amount of data and 

with the maximum computational efficiency; it is thus fundamental to design suitable 

algorithms having optimal performance under this point of view. The feature selection consists 

into a two steps (not necessarily distinct) procedure, where the optimum number of data 

components and the best subset of them are determined.  

The approach presented here consists into defining an index that provides a quantitative 

assessment of the effectiveness of a given subset of features, in terms of its ability to 

discriminate between different classes of liquid. Then, an exhaustive analysis of the feature 

space can be accomplished by varying the number of data components and by considering all 

the possible combinations between them, in order to find the optimal selected set. 

The best feature subset can be obtained analytically by solving the optimization problem 

based on the defined index. Nevertheless, in most cases, a solution in a closed form is not 

achievable and a numerical approach becomes the only feasible one. In addition to that, a sub-

optimal approach may be the only practically acceptable, due to the high computational time 

that an exhaustive (combinatorial) procedure may require. 

Selected features (i.e. DCT, DWT coefficients or VLT samples) can be forwarded to three 

possible processing paths: 

• an automatic classifier 

• a change detection procedure 

• a display procedure based on a further reduction of dimensionality. 

 

All the three processing possibilities are explored in the next Paragraphs, particularly 

focusing on supervised classification systems and the individuation of a suitable representation 

sub-space. As to change detection methods, they are essentially based on the discrimination 

capability of data fed to the classifier, applying a suitable metric to assert the distance between 

observations taken and some reference vector. 
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Fig. 3.7 General structure of the signal acquisition and processing chain 

 

 

 

3.3 Study of sub-optimal strategies for feature selection 
 

As already stated, neither an automatic classifier nor a change detector work directly on the 

M-dimensional measurements’ representation space, but on a reduced one. A specific 

methodology is defined here, to determine the data representation space according to the two 

conflicting requirements characterising the application of interest:  

• high discrimination capability, 

• low dimensionality.  

 

Such algorithm is based on a two steps procedure. First, a supervised feature selection 

strategy, based on K training samples, is applied. Then, a preliminary dimensionality reduction 
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of the feature space is done, by selecting the best subset of the DCT components for 

classification purposes (again it is clarified that the same procedures have been tested with 

DWT and VLT components, as well). Then, a further reduction is achieved by searching for the 

transformed training samples, spanning the feature subspace, which preserve most of the data 

information content. This last step may also be not applied, and is mainly oriented to generate 

2D-3D data representations or to feed classifiers having input vectors with fixed 

dimensionality. 

As concerns feature selection, it can be summarised as follows: 

• the discrimination capability of each DCT component is quantitatively assessed by 

computing a suitable class separability index on the K training samples, 

• the DCT components are sorted according to a decreasing order of their discrimination 

capability, 

• a selection strategy is applied, to determine the optimal dimensionality for the feature 

space (l’), thus selecting the l’ best components to generate the feature space. 

 

3.3.1  Definition of a discriminability index 

As stated in the previous paragraph, we are interested into selecting the subset of DCT 

components characterized by the maximum discrimination capability. As a consequence, it is 

important to assess a metric with respect to which such discriminability is evaluated. 

Initially, it must be supposed that each time series obtained by the chronoamperometric 

measurements is equivalent to a vector having dimensionality M, whose components 

correspond to the samples taken in the time domain. Such vectors, from now on, will be called 

observations or observed vectors. 

Hence, it is necessary to define an index that quantifies the separability between classes, for 

each subset of DCT components having dimension l. That is, such an index must provide a 

measurement of class separability on a generic dataset, formed by vectors obtained by grouping 

l components of the observations in the transformed domain, selected according to some criteria 

that will be seen later. 

At a first attempt, said class separability index can be defined as: 
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and: 

L=nM is the whole dimensionality of the observations made with the n WEs, 
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l is the number of DCT components taken, 

N is the total number of observations,  

C the number of classes,  

Nj is the number of observations belonging to class j, 

( )lj

iv  the i-th transformed observation vector belonging to class j,  

( )ljc  the centroid of class j, 

( )lc  the centroid of the whole observations’ set. 

 

In this approach, the target is the minimisation of the ratio between the two measures (a 

within-class distance and a between-classes distance). This is equivalent of saying that a 

specific algorithm must determine: 

• the l-dimensional combination of the observations’ components that minimizes the 

separability index for each value of l  

• the value of l that gives the absolute minimum for S. 

 

Since dimensionality of the observations’ space is nM (where n is the number of WEs), in 

the practical case proposed in this Thesis this corresponds to nM=13536 components. 

The combinatorial exploration of all the possible feature sets would be very intensive, 

under the computational point of view, if made exhaustively (i.e. for each group of combined l 

coefficients and each value of l up to nM). The usage of sub-optimal techniques for selecting a 

suitable feature set is discussed in Paragraph 3.3.2. 

One natural approach to assess the efficacy of a discrimination index is to analyse its 

behaviour in a mono-dimensional space; that is, evaluating the uni-variate index S(1) to 

determine how the score given to each component is reflected by its actual ability to 

discriminate between different classes. 

Under this point of view, the index defined in (3.1), (3.2) and (3.3) is prone to the 

superposition of data pertaining to different classes, particularly when one class has a 

particularly “far” centroid with respect to the remaining classes of the dataset. 

An example of such a situation is presented here, obtained by the following procedure: 

• a dataset made of 40 measurements (4 classes, 10 measurements for each class) has 

been generated (experiment “long01”, details can be found in Paragraph 0), 

• DCT has been applied to the observation vectors made by M=3384 time domain 

samples, 

• the n=4 observation vectors obtained by each measurement are appended in the 

transformed domain, so to form a set of 40 vectors having dimensionality L=13536, 

• the uni-variate discriminability index S(1) is calculated for each of the L 

components, 

• the L components are sorted in reverse order according to the said index (the best in 

discriminability comes first), 

• calculated values for S(1) are sorted in increasing order and plotted. 

 

The best components according to said index give results as shown in Fig. 3.8 and Fig. 3.9.  
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The “stem plot” in Fig. 3.8 shows the first component in ranking. On the x-axis the 

observation number is reported, that is, the progressive number of the measurement that 

generated the set of n observed vectors whose first DCT component in ranking is plotted. The 

10 measurements belonging to each class are placed in a consecutively, independently on the 

measurement order; as a consequence, classes are clearly distinguishable, so the efficacy of the 

component selected according to this metric, to discriminate between classes, is clear. 
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Fig. 3.8 Uni-variate discrimination capability for the 1st DCT component in ranking.   

Experiment: "long01". 

 

 

Fig. 3.9 shows a comparison between the first three components in ranking according to the 

defined metrics. It is apparent how the second one is affected by a substantial superposition of 

classes (classes numbered 1 and 4). The averaged distance calculation found in             

        (3.3) may lead to an high ranking of components where one class is far from the 

others’ centroids with respect to the distances between the others. This may lead to give an high 

rank to components which are somewhat poor in discriminability. 
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Fig. 3.9 Uni-variate discrimination capability for the 1st, 2nd and 3rd DCT components in ranking.  

Index S2. Experiment: “long01”.  

 

 

A more efficient index under this point of view can be obtained according to the following 

modification: 
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Where (3.4) is used in (3.1) instead of (3.3). 

From this moment, the index obtained by the revised metric will be indicated as Sx(l), while 

the index defined by equations (3.1), (3.2) and (3.3) will be labelled as S2(l). Notation S(l) will 

be used when referring to a generic index. 

Results obtained by using said modified index Sx(l) are shown in Fig. 3.10. The 2
nd

 

component in ranking is now apparently efficient in discriminability. Sx(l) will be the preferred 

index for the application discussed in this Thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Uni-variate discrimination capability for the 1st, 2nd and 3rd DCT components in ranking.  

Index Sx. Experiment: “long01”. 
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3.3.2  Selection strategies 

Generally speaking, feature reduction is performed by checking how separable different 

classes are when a reduced set of features (components) is used. 

The optimal configuration of l components must be determined by looking for the 

following two information: 

• the l-dimensional combination of the observations’ components that minimizes the 

separability index for each value of l  

• the value of l that gives the absolute minimum for S(l). 

 

As stated in Paragraph 3.3.1, an optimal search of the feature set, consisting into a 

combinatorial exploration of all the possible combinations of components, would be very 

intensive; a more practical sub-optimal search has to be determined.  

Two possible strategies have been tested and are discussed here. Both of them, at their first 

step, make use of the uni-variate discrimination capability index S(1). 

Such index, which has to be plotted according to the series of actions listed in Paragraph 

3.3.1 (page 34), for the experimental example used (“long01”), behaves as shown in Fig. 3.12 

and Fig. 3.13. Components of the appended observations (n vectors appended per each 

measurement), having dimensionality L, are sorted in increasing order of S(1). 

Three diagrams are presented in each chart, corresponding respectively to: 

• sorted components of the time-domain signal, 

• sorted components of its DWT (COIF5 mother wavelet), 

• sorted components of its DCT. 

 

The Coiflet of order 5 (COIF5) [7] is a discrete wavelet designed by Ingrid Daubechies to 

be more symmetrical than the Daubechies wavelet.  

Whereas Daubechies wavelets have N / 2 − 1 vanishing moments (where N is the order), 

Coiflet scaling functions have N / 3 − 1 zero moments and their wavelet functions have N / 3. In 

the proposed experiments are considered as features both the decomposition coefficients 

(detail) and the approximation ones (coarse). The comparison with the DCT and VLT based 

feature selection procedure is carried out by evaluating the value of the S index in the same 

experiment in all the domains. 

Calculations of the transformed domain versions of the VLT signals are done for each 

observed vector separately, before appending; VLT signals are appended directly to form the 

whole vector of the observations pertaining each measurement; such concept is better explained 

in Fig. 3.11, where the practical case (n=4) corresponding to experimental conditions used in 

this work, has been presented. 

Moreover, values for variables M and L are those related to the real experiments which 

have been conducted inside this PhD Thesis work. 

Diagrams are presented both for the S2 metric and for the Sx metric; notice how, in case of 

the Sx metric, the time-domain signals appear to have more discriminant single components 

then the transformed counterparts. Situation changes when dealing with vectors formed by 

grouped components, as it will be seen further in this Chapter. 
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Fig. 3.11 Structure of the whole observation vectors for the calculation of discriminability. 
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Fig. 3.12 Uni-variate discriminability index S2 for the experiment "long01 ". 
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Fig. 3.13 Uni-variate discriminability index Sx for the experiment "long01 ". 

 

Two different search strategies to select the feature subset are proposed here. They 

essentially consist into the individuation of an optimal (or sub-optimal) set of components of 

the observations’ space that best preserves separability between classes according to the 

selected metric. 

The first method, which can be named simple sequential strategy, consists into the 

following steps: 

• evaluation of S(1) for each component (either DCT, DWT or VLT domain), 

• sorting of the components according to S(1), 

• evaluate the L values that S(l) takes by grouping the first l sorted components, that is: 

• [ ]LllS ,1),( ∈  

• find the l’ value, which corresponds to the absolute minimum of the calculated S(l) 

series. 

 

The obtained S(l) values for the experimental example used in this Chapter (“long01” 

dataset) are shown in Fig. 3.14, Fig. 3.15, Fig. 3.16 and Fig. 3.17. 
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Fig. 3.14 Discrimination capability index S2 for the l-dimensional subspace generated by grouping the first l 

sorted components: all the L values. Experiment: “long01”. 
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Fig. 3.15 Discrimination capability index S2 for the l-dimensional subspace generated by grouping the first l 

sorted components: detail of the first 150 values. Experiment: “long01”. 

 

 

l 

S(l) 

l 

S(l) 



CHAPTER III                       A novel approach to water characterisation based on voltammetry 

 

42 

0 2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

 

 

VLT

DWT

DCT

 
Fig. 3.16 Discrimination capability index Sx for the l-dimensional subspace generated by grouping the first l 

sorted components: all the L values. Experiment: “long01”. 
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Fig. 3.17 Discrimination capability index Sx for the l-dimensional subspace generated by grouping the first l 

sorted components: detail of the first 100 values. Experiment: “long01”. 
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The diagrams above suggest the following considerations: 

• Sx can actually be effective in individuating an optimal dimensionality for the feature 

subset, by locating an absolute minimum of Sx(l), 

• S2 has a monotonic behaviour, which would lead to find optimality in a mono-

dimensional space; this is not particularly interesting since the preferred index will be 

Sx, for the reasons discussed in Paragraph 3.3.1. 

• DCT is the most performing domain with respect to both metrics. 

 

Moreover the simplest uni-variate selection strategy discussed here, discrimination may be 

enhanced by a sub-optimal search method, where the discriminability index is calculated in a 

multidimensional space, generated by selected groups of components. This is a very different 

approach to the one discussed above, since in the simple sequential strategy the feature 

subspace is formed by grouping components according to an uni-variate index The same metric 

is applied to vectors of the generated subspace only in order to determine its dimensionality, 

never to select the components to add. 

A sub-optimal strategy, having a lower computational complexity then an exhaustive 

combinatorial evaluation of all the possible groups of components, is illustrated here; it will be 

named sequential forward strategy. 

Its structure is explained in the next block diagram. 

 

 

 
 

Fig. 3.18 Structure of the sequential forward strategy approach. 
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The concept that lies behind this algorithm is to combine the selected subset at a certain 

step with all the other components, one by one, spanning all the observations’ space. 

Calculation of the discriminability index is performed for each of the said combinations. The 

component that led to the minimum of S(l) is selected and added to the feature set. 

This algorithm may continue till a predetermined maximum dimensionality is reached, then 

an absolute minimum of the calculated series may be searched, in order to determine an optimal 

dimensionality with respect to this criteria. 

For applications implying a supervised classification scheme, such maximum 

dimensionality may be determined by considering the Hughes effect [8, 9, 10, 11, 12], which 

limits the dimensionality of the feature space depending on the number of observations taken as 

a training set. Such limitation has a particular impact on the classification accuracy. 

The sequential forward strategy, applied to the simple example dataset used in this Chapter 

(“long01”), has given the result shown in Fig. 3.19. To obtain this result, the algorithm has been 

applied to the observations in the DCT domain by using the Sx index. 

 

 

 
Fig. 3.19 Discriminability index  obtained by using a sequential forward search strategy. Sx index. 

Experiment "long01". 

 

 

This result takes to the following considerations: 

• optimal dimensionality for the dataset “long01”, according to the simple sequential 

strategy, is 33, 

• optimal dimensionality for the same dataset”, according to the sequential forward 

strategy, is 2, 

l 

S(l) 
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• apart from the efficacy of the optimal dimensionality assessment, the number of training 

examples (collected observations) is well adequate for a feature subspace of 

dimensionality 2, while it is not enough in case of dimensionality 33, since it would be 

prone to the Hughes effect. In fact, the simple experiment “long01” consists into a total 

of 40 measurements of 4 classes of water (10 measurements each class), see Paragraph 

4.2.1. 

 

The sequential forward selection strategy combined with the Sx index is the preferred 

method chosen to approach real world measurements, according to the aspects discussed in this 

Paragraph and to the experimental work which has been done. A series of applications, 

including details about the measurement context, are discussed in the next Chapter. 

3.3.3  The impact on real measurements 

The described feature selection approach applied to the dataset coming from voltammetric 

measurements, may take meaningful information about the useful bandwidth of the collected 

signals, the most informative WEs, and the compaction properties of the used transformations. 

Under this point of view, a scatter plot showing how each component is ranked according 

to one of the criteria above, would be very informative. 
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Fig. 3.20 Ranking of the components of the observation space in the DCT domain. 
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Fig. 3.21 Ranking of the components of the observation space in the DWT domain. 
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Fig. 3.22 Ranking of the components of the observation space in the VLT domain. 

Pd 

Pt 

Re 

Au 

Pd 

Pt 

Re 

Au 

Pd 

Pt 

Re 

Au 

A
p
p
ro

x
im

a
ti
o
n
 (

c
o
a
rs

e
)

D
e

ta
il



CHAPTER III                       A novel approach to water characterisation based on voltammetry 

47 

In Fig. 3.20, Fig. 3.21 and Fig. 3.22 an example of distribution of components in the 

observations’ space is shown in the form of a scatter plot. The x-axis represents the sorting 

order, while on the y-axis is located the number assigned to each one of the component of the 

whole observation space. Data are split into n ranges in the DCT and VLT domain plots, 

according to the different WEs used, and are appended as described in Fig. 3.11. As to the 

DWT domain plot, an additional splitting is due to the fact that coefficients obtained after one 

transformation step are separated into coarse and detail coefficients. Coarse coefficients are 

appended first. 

The scatter plots shown in said figures have been obtained in the following conditions: 

• experimental dataset “long01”, 

• search strategy “simple sequential”, 

• discriminability index Sx. 

 

In the DCT domain (Fig. 3.20) there’s an evidence of the high ranking given to the low 

frequency components for all the four WEs; in the DWT domain it is apparent how the coarse 

coefficients give most of the contribution to discriminability, while detail coefficients are 

poorly ranked, being cumulated to the right side of the chart. In the VLT domain, it is easier to 

locate which WEs contribute most to discriminability. In the dataset used, Pt and Pd electrodes 

appear to be more informative under the point of view of discriminability, according to the 

chosen index and search strategy. 

All the results illustrated up to now have no general applicability; experimental results 

discussed in Chapter 3 show how these problems must be approached on a case-by-case basis, 

due to the different peculiarity that each dataset may exhibit. Other datasets and different signal 

processing algorithms may lead to particular results, specific of the experiment considered. It is 

thus clear that the concept, which lies behind the presented case studies, is to provide a general 

guideline about the data processing methodology, without any general applicability of some 

peculiarities that may be eventually individuated. 

3.4 Data representation subspace 

Dimensionality reduction is accomplished by an iterative procedure aimed at determining 

the subspace of R
L
 where the dataset preserves most of its information content, according to 

some criteria, which will be defined later. This concept may be directly applied to the whole 

observation space, having dimensionality L, as shown in [2], but this is not the preferred 

method in this context. According to the approach proposed in Fig. 3.7, this procedure is 

applied to the space spanned by the extracted feature set, having dimensionality R
l’
, in order to 

determine a sub-space with fixed dimensionality suitable for data representation purposes. 

This two-steps approach relies on a feature extraction strategy that enhances separability 

between classes and makes use of a further reduction, for representation purposes, based on the 

maximisation of the energy content of the signals projected onto the representation subspace. 

To quantify such projected energy content, a particular index, called Information Content 

(IC) is now defined.  
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By denoting with si the generic observation vector in the l’-dimensional feature space (thus 

a whole observation vector in the DCT/DWT/VLT domain reduced to a subset of its 

components), a matrix of the observation vectors in the feature space can be defined as: 

 

[ ]Ni1 sssS LL=      (3.5) 

 

where N is the number of observations and S has dimensionality l’ x N. 

An orthonormal basis: 

 

[ ]jbbB 1L=      (3.6) 

 

of a subspace having dimensionality j < l’ can be built with an iterative procedure, which is 

first of all initialised in this way: 

 

i

N

iN
sbB

1
10

1

=
∑==               (3.7) 

 

that is, by taking as the first vector of the base the centroid of all the N observations in the 

feature space. Now the procedure presented in the block diagram of Fig. 3.23 is performed.  

In this procedure, the Information Content index (IC) is defined as: 
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where si

p

 is the projection of the i-th observation onto the base generated at step j; such 

base at step j=0 is uni-dimensional and corresponds to the centroid of the whole observations 

stated in (3.7). 

IC is thus defined as the ratio between the energy of the reconstructed signal in the 

subspace generated by B and the energy of the original signal. 

In the described algorithm, at any generic step, the direction of the vector that is worst 

represented by the base is added to the base itself. This is equivalent to take the observation 

which has the minimum IC according to (3.8) and complete the base with its normalised 

version. 

The iterative process is stopped at the first occurrence of one of two events: 

• the projected energy of the observation which is worst represented by the base is above 

a threshold T, 

• dimensionality has reached a predetermined maximum, Kmax. 
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Fig. 3.23 Block diagram of the iterative orthogonalisation procedure to determine a representation 

subspace. 

 

 

To provide an example of a typical result obtained by this algorithm, it has been applied to 

the dataset “long01” in the following conditions: 

• feature set in the DCT domain, 

• “simple sequential” search strategy, 

• Sx discriminability index, 
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• feature space dimensionality l’=33, 

• Kmax=2 

 

The obtained result is shown in Fig. 3.24. Separation between classes for this simple 

application is excellent. As it may be seen from the legend, each class has assigned a symbol 

differently coloured. The axes of the chart represent the components bi of each projection onto 

the corresponding normalized vector ib̂  of the base B. In this notation, ib̂  is the column vector 

obtained by extracting the i-th column from B, and the scalar quantities on the axes (bi) are the 

components along the respective vector. 
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Fig. 3.24 Projection of the observations of the dataset “long01” onto the bi-dimensional representation 

space. 

 

 

3.5 One proposed technique for supervised classification 

An essential aim of this work is to define a classification system that can learn by a suitable 

set of examples (eventually acquired in the laboratory) to be used on the field for successive 

measurements after the tuning process; both aqueous solutions made in the laboratory and water 

samples coming from the real world can be used for this purpose. In fact, depending on the 

target application, different approaches can be used in building up the training set, such as using 

water samples having different chemical classification for characterisation purposes, or 

1b  

2b  
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simulating different concentration levels of known pollutants, for change detection and 

surveillance uses. 

Once the classification system has been trained, it is then ready to be used for 

characterising unknown samples in the successive measurements. 

Measurement repeatability is a fundamental aspect in the development of such an 

approach, and it is the reason for which the design of the measurement cell, the analog front-

end and the acquisition system have been dedicated to the present application. 

As to the signal processing procedure, the approach presented here is based on a supervised 

water classification algorithm that relies on different kinds of classifiers. In fact, the proposed 

scheme is applicable to substantially any kind of classifier, depending on the peculiarity of each 

application.  

We assume that a set of measurements for each class of water is available to allow the 

algorithm learning (training set). Moreover to the training of a classifier in a supervised 

classification scheme, the training data set can be used to determine the base of the feature 

space and eventually of the representation space, to be applied at later experiments without 

repeating such calculations. Experiments would be made by simply extracting the already 

selected components from the observation vectors in the appropriate domain, eventually 

projecting vectors of the feature space onto the reduced dimensionality representation base. 

This supervised classification scheme would allow the user to classify liquid samples 

belonging to an already known class or even to train a change detection mechanism based on a 

suitable metric, to assess the distance of the real-time observations from the training ones. 

The fundamental structure of the signal processing chain is the one shown in Fig. 3.7. The 

supervised classification scheme, according to the illustrated structure, is based on the 

following steps: 

• perform a batch of measurements to generate a training set, 

• determine the feature set to extract according to the strategies discussed in Paragraph 3.3 

and its sub-Paragraphs, 

• train a classifier with observations represented in the feature sub-space, 

• perform a new batch of measurements to generate a test set, 

• extract the previously determined features (i.e. take the selected components), 

• feed the classifier with test set and check the classification accuracy. 

 

This sequence of actions has been used in the two example experiments illustrated in 

Paragraphs 4.2 and 4.3, respectively. The representation subspace (2-D or 3-D) has been 

determined making use of the training set vectors only, so vectors belonging to the test set have 

been projected onto the same base. 

To ensure classification accuracy in the reduced dimensionality space (feature space), the 

quantity of available example observations (training set) plays a relevant role. 

In fact, the size of the training set and the number of features (thus the dimensionality of 

the feature space) are in a relationship which has been studied by several authors, such as Jain 

& Chandrasekaran and Kalayeh & Landgrebe in the middle ‘80s [9, 10, 11]. 

As a general guidance, the suggested ratio, indicated by many authors, between the size of 

the training set and the dimensionality of the feature space lies in the range between 5 and 10; 
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this means that the number of example measurements per class should be at least 5 to 10 times 

the number of features, as suggested in [12] for remote sensing applications. 

In this class of problems, the number of observations is frequently limited by practical 

aspects, such as the slowness of the electrochemical measurements. Also, limitations due to the 

high measurement cost may be possible in certain applications. 

The feature reduction approach proposed in this Thesis work relies on a sub-optimal 

determination of the feature space dimensionality. This means that there’s no a priori 

knowledge of the adequate number of observations to collect into the training set. 

Moreover, a scheme with a fixed dimensionality for the feature space, where the search 

strategy stops when the desired number of feature is reached, is anyway possible, making use of 

the methods discussed in this Chapter. 

The practical examples shown in Chapter 4 will clearly highlight the advantage of the 

forward search strategy over the simple sequential one, estimating lower sub-optimal 

dimensionalities for the feature space. Nevertheless, the small amount of observations cannot 

always guarantee the said requirement about the training set size to fulfill. In simple cases, 

where class separation is well appreciable even in single components of the feature space, 

there’s substantially no consequence of this problem. More critical with a less apparent 

clustering would imply paying more attention to this rule. 
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4.1 Classification and change detection approach 

4.1.1 General remarks about the experimental conditions 

The measurement procedure applied for generating the datasets discussed in this Chapter, 

has undergone several modifications and updates during this PhD work, according to new 

results and thoughts carried out by the experience. 

All the measurements have some common aspects in their experimental condition: 

• stirred solution, 

• REF electrode in Ag/AgCl (see Sensor system3.1.2), 

• AUX electrode in stainless steel plate (see 3.1.2), 

• LAPV excitation signal (see Fig. 3.3). 

 

Moreover, the first experiments [1] have been carried out in the following conditions: 

• 2 Working Electrodes (Au, Re), wires about 5mm long, 

• chemical washing with H2SO4 1M between each set of measurements pertaining each 

class, followed by rinsing in de-ionized water, 

• electrochemical washing between any two measurements. 

 

As to the configuration of the analog front-end (potentiostat) and the acquisition strategy 

(sampling rate and pre-filtering) parameters they’ve been kept the same for the experiments 

conducted; the essential parameters are listed as follows: 

• sampling frequency Fs=1KHz, 

• median filter cells Nc=11, 

• downsampling factor Ds=20. 

 

The most updated experimental conditions [2], used for the most recent experiments, are as 

follows: 

• WEs with a wet surface of 0.2 mm
2
, made of Au, Re, Pt, Pd, 

• no chemical washing, 

• no electrochemical washing, 

• ultrasonic washing with a transducer at the bottom of the cell between every set of 

measurements belonging to the same class. 

 

The measurement cell and the potentiostat are shown in Fig. 4.1 and Fig. 4.2, where 

essential parts are illustrated. 
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Fig. 4.1 The measurement cell in its latest version 

 

 
 

Fig. 4.2 The potentiostat. 
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4.1.2 Brief overview of the experiments 

Five different case studies are presented, each of them representative of some peculiarities 

which worth to be shown, such as the different nature of liquids, the capability to detect 

pollutants in water, or the capability to discriminate between different classes of water. 

Moreover, different aspects of data processing are presented, depending on the relevant 

remarks led by such examples. 

The following table summarizes the relevant aspects of the presented experiments: 

 

Paragraph title Dataset name Description 

Bottled water 

discrimination 

     Long01 Four different bottled mineral water brands, 

discrimination capability is assessed with a 

total amount of 10 measurements for each 

class, distributed on 10 different days 

Supervised classification      Day004 More complex experiment with 6 classes of 

water, part of them being laboratory 

solutions with different electrolytes; half of 

the observations form the training set. The 

complete dataset has been checked for 

classification accuracy 

Characterisation by 

standard analytical 

techniques 

     Flegrei Eleven water point in Southern Italy (Naples 

area). E-tongue results are compared to the 

PCA of standard analytical measurements 

Detection of pollutants    LaGabella Discrimination between raw and filtered 

water affected by a slight pollution due to 

trichloroethylene and tetrachloroethylene 

Drifts in long term 

measurements 

   Testt0102 Two 24-hours measurements with 

continuous water stirring and data 

acquisition. Two different classes have been 

used. 

 

Tab. 4.1 Summary of the case studies discussed in Chapter IV. 
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4.2 Experiment #1: bottled water discrimination 

(“Long01”) 

4.2.1 Description of the experiment 

The classification system proposed in this Thesis is based on a supervised procedure where 

the parameters’ tuning is obtained by using a training set of suitable measurements (see 

Paragraph 3.5). This experiment is focused on the discrimination capability of the system. In 

practice, the training set is collected during one or more specific measurement sessions; the 

system designed by means of such training set is then used in the subsequent measurements. 

This example concerns the typical use of the proposed system, where the repeatability after 5 

different measurement sessions distributed over 10 days has been checked. 

The essential information about the measurement procedure followed in this experiment is 

given in Tab. 4.2, while the configuration of the experimental setup is briefly described in Tab. 

4.3. 

 

Time coverage 10 days 

Number of classes 4 

Kind of classes Bottled mineral water 

Training set 8 measurements, 2 for each class 

Total dataset 40 measurements, 10 for each class 

Notes 2 measurements per each brand on 5 different days distributed in 10 days 

 Measurement sequence of different water brands have been randomly 

determined in each measurement session 

  

Tab. 4.2 Measurement procedure of the experiment (“long01”). 

 

 

Working 

Electrodes 

Au, Re, Pt, Pd 

Washing Ultrasonic 

Notes Ultrasonic washing made in distilled water between each batch of 

measurements 

 

Tab. 4.3 Experimental setup configuration (“long01”). 
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The training set has been used to determine the base of the feature space and the 

representation subspace to make the projections of the observations belonging to the whole 

dataset in the following step. 

4.2.2 Results 

Both results obtained with a simple sequential search strategy and results obtained with a 

forward strategy are shown. The next table resumes the parameters used for the simple 

sequential strategy: 

 

Discriminability Index Sx 

Search strategy Simple sequential 

Feature space 

dimensionality 

l’ = 33 

Notes Shown projections regard the observations in the DCT domain 

 

Tab. 4.4 Feature extraction parameters for the dataset “long01” (simple sequential strategy). 

 

The trend of the discriminability index Vs. the dimensionality of the feature space, for the 

chosen search strategy, is shown in Fig. 3.17. 

Projections onto the first 2 vectors of the representation base, generated as described in 

Paragraph 3.4 by using the 8 vectors of the training set, are shown in Fig. 4.3. 

Projection of the full dataset (10 measurements for each class) onto the same base 

previously generated, is shown in Fig. 4.4. 

Even having distributed the measurements on a period of 10 days, measurement 

repeatability has allowed an high discrimination between clusters. Such discrimination is easily 

reachable, since the very reduced training set (8 measurement on 40) used in this context, has 

been sufficient for obtaining a clear cluster separation in the reduced data space, where 

observations are very well grouped according to the water brand they come from. 

Water brands corresponding to each of the analysed classes are associated as follows: 

 

Class # Description 

1 “Vera”  bottled mineral water 

2 “San Benedetto”  bottled mineral water 

3 “Levissima”  bottled mineral water 

4 “Tesorino”  bottled mineral water 

 

Tab. 4.5 Description of classes for the dataset "long01". 
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Fig. 4.3 Projections of the observations of the training set (“long01”) onto the bi-dimensional representation 

space (simple sequential search strategy). 
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Fig. 4.4 Projections of the observations of the full dataset (“long01”) onto the bi-dimensional representation 

space (simple sequential search strategy).. 
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A forward search strategy has been tested on the same dataset. Relevant parameters are as 

follows: 

 

Discriminability Index Sx 

Search strategy Sequential forward 

Feature space 

dimensionality 

l’ = 2 

Notes  

 

Tab. 4.6 Feature extraction parameters for the dataset “long01” (sequential forward strategy). 

 

Again, projections for the training set and the complete dataset are presented in Fig. 4.5 and 

Fig. 4.6. While separation is absolutely apparent also in this case, an automatic procedure to 

determine the dimensionality of the feature subspace would lead to a sub-optimal bi-

dimensional space, instead of the l’=33 found with the simple sequential strategy. 

Since the nature of the experiments implies a relatively small number of observations per 

class, with respect to other areas of research where pattern recognition techniques are applied, it 

is expected that a search strategy that gives a feature space of the lowest dimensionality has a 

very positive impact on the classification accuracy, as the Hughes effect [3] indicates.   

Under this point of view, it is worth noting that the typical requirements about the number 

of training examples with respect to the dimensionality of the feature space [4] is not respected 

here, in both of the two strategies. Details about this aspect can be found in Paragraph 3.3.2. In 

more complex experiments, where separability is more critical, such requirements have 

reasonably to be taken into account. 
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Fig. 4.5 Projections of the observations of the training set (“long01”) onto the bi-dimensional representation 

space (sequential forward strategy). 
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Fig. 4.6 Projections of the observations of the full dataset (“long01”) onto the bi-dimensional representation 

space (sequential forward strategy). 
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An automatic classifier based on an MLP-NN (Multi Layer Perceptron – Neural Net) has 

been experimented on the feature set extracted by the simple sequential strategy. 

As concerns the MLP-NN, a one hidden layer with four neurons architecture has been 

chosen. The selected transfer function for the hidden layer neurons was a log-sigmoid one, 

while the output neuron had a linear transfer function. In this configuration, the network trained 

by the said 8 examples achieves 100% of classification accuracy on the full dataset, consisting 

into 40 measurements. 
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4.3 Experiment #2: supervised classification (“Day004”) 

4.3.1 Description of the experiment 

The supervised classification scheme proposed Paragraph 3.5 is tested in this experiment. 

In practice, the training set is extracted from the full dataset collected during one whole 

measurement session; the system designed by means of such training set is then used in the 

subsequent measurements. This example concerns 6 classes consisting into 3 different brands of 

bottled mineral water and 3 laboratory solutions made with different electrolytes, characterised 

by having the same electrical conductivity (200 µS/cm). 

The use of different classes of water having the same conductivity is very useful to check 

the efficacy of chronoamperometric measurements to take information from the diffusion 

currents instead of the migration effects of bulk charges. Diffusion-limited currents are the only 

available resource to explain the difference between samples having the same bulk 

conductivity. 

The essential information about the measurement procedure followed in this case study is 

given in Tab. 4.7, while the configuration of the experimental setup is briefly described in Tab. 

4.8. 

 

Time coverage Few hours 

Number of classes 6 

Kind of classes Bottled mineral water plus reference solutions with pure electrolytes 

Training set(s) 24 measurements, 4 for each class 

30 measurements, 5 for each class 

42 measurements, 7 for each class 

Total dataset 60 measurements, 10 for each class 

Notes  

 

Tab. 4.7 Measurement procedure of the experiment “Day004”. 

 

 

Working 

Electrodes 

Au, Re, Pt, Pd 

Washing Ultrasonic 

Notes Ultrasonic washing made in distilled water between each batch of 

measurements 

 

Tab. 4.8 Experimental setup configuration of the experiment “Day004”. 
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The training set has been used to determine the base of the feature space and of the 

representation subspace, to make the projections of the observations belonging to the whole 

dataset in the following step. In addition, the training set has been used to determine the class 

boundaries of a KNN (K Nearest Neighbours) classifier, in an Euclidean metric. 

4.3.2 Results 

Shown results have been obtained with a forward search strategy. The next table resumes 

the parameters used: 

 

Discriminability Index Sx 

Search strategy Sequential forward 

Feature space 

dimensionality 

l’ = 8 

Notes The first 5 measurements per class have been used as a 

training set for the feature extraction procedure. The classifier 

has been experimented with 4,5,6 and 7 measurements per 

class. 

The feature set has been searched for in the DCT domain 

 

Tab. 4.9 Feature extraction parameters for the dataset “day004” (sequential forward strategy). 

 

The trend of the discriminability index Vs. the dimensionality of the feature space, for the 

chosen search strategy, is shown in Fig. 4.7, where a detail regarding dimensionality values up 

to l = 13, is plotted. 

Projections onto a tri-dimensional representation base, generated as described in Paragraph 

3.4, by using the 30 vectors of the training set for the feature extraction procedure (see Tab. 

4.9), are shown in Fig. 4.8 for the training set of 30 vectors. Fig. 4.9 shows the full dataset 

projected onto the previously determined base. 

A KNN (K-Nearest Neighbours) classifier has been tested on this dataset. A subset of the 

60 measurements has been used to train the classifier (i.e. to make distance measurements from 

unlabeled observations); all the remaining dataset has been used to test the classifier in a rigid 

manner, that is, new labelled measurements did not contribute to increment the set of known 

examples (training set). 

All the classification process has been performed in the reduced dimensionality space, 

according to the supervised classification scheme discussed in Paragraph 3.5. 

The number of errors on the test set (formed by the full dataset with the training 

measurements removed) is plotted against the number of nearest neighbours to be evaluated to 

determine the class to assign (K). 
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The above mentioned plots are shown in the case of datasets formed by the first 4,5,6 and 7 

measurements respectively. Results are presented in Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 

4.13, respectively. 

In this example, a minimum of 6 measurements in the training set have been necessary to 

have an error-free classifications. The exploration of all the possible training sets (combination 

of measurements) being not so meaningful, the really important information that comes from 

this experiment is that a training set formed by 7 measurements offers an error-free 

classification with a reasonable number of K=3 neighbours. 

Class assignment for this case study is shown in Tab. 4.10. 
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Fig. 4.7 Discriminability index trend obtained by using a sequential forward search strategy. Sx index. 

Experiment "day004". 
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Fig. 4.8 Projections of the observations of the training set (subset of dataset “day004”) onto the tri-

dimensional representation space (sequential forward strategy). 
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Fig. 4.9 Projections of the observations of the full dataset (“day004”) onto the tri-dimensional representation 

space (sequential forward strategy). 
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Class # Description 

1  “Graziosa” mineral water 

2  “Gaia” mineral water 

3  “Lora Recoaro” mineral water 

4   NaCl 200±5 µS·cm
-1 

@ 25°C 

5   KCl 200±5 µS·cm
-1 

@ 25°C 

6   NaHCO3 200±5 µS·cm
-1 

@ 25°C 

 

 

Tab. 4.10 Description of classes for the dataset "day004". 
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Fig. 4.10 Classification errors Vs. K for a KNN classifier applied to the dataset day004 (training set: 4 

measurements per class). 
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Fig. 4.11 Classification errors Vs. K for a KNN classifier applied to the dataset day004 (training set: 5 

measurements per class). 
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Fig. 4.12 Classification errors Vs. K for a KNN classifier applied to the dataset day004 (training set: 6 

measurements per class). 
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Fig. 4.13 Classification errors Vs. K for a KNN classifier applied to the dataset day004 (training set: 7 

measurements per class). 
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4.4 Experiment #3: characterisation by standard analytical 

techniques (“Flegrei”) 

4.4.1 Description of the experiment 

An experiment made on 11 water samples taken from 11 different sites, in the area of 

Campi Flegrei (Naples, Italy) is described here. The interesting aspect, that makes this case 

study a kind of natural benchmark coming from the real world, lies in the fact that different 

kinds of water with different chemical characteristics can be found in a small area of a few sq. 

Km. Their different peculiarities well suit the concept of making a general characterisation of 

the water by giving an aggregate chemical information, as it is one of the major strength of an 

e-tongue system [5]. 

A check of the discrimination capability has been performed with the above said water 

samples, by comparing the e-tongue results with classical classification/clustering based on 

traditional chemical analytical measurements. 

Projections of the observed vectors (in the feature space) onto a tri-dimensional 

representation space are compared with the PCA (Principal Components Analysis) of the 

analytical data, by taking the first 3 Principal Components and representing them. 

The part of Italy where the experiment has been conducted is shown in the map of Italy in 

Fig. 4.14. A detailed map showing the location of the sampling points can be found in  

Fig. 4.15. 

The essential information about the measurement procedure followed in this case study is 

given in Tab. 4.12, while the configuration of the experimental setup is briefly described in 

Tab. 4.13. 
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Fig. 4.14 The area of Italy where water samples of the dataset “Flegrei” have been collected. 
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Fig. 4.15 Location of the sampling points in the experiment "Flegrei". 
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Tab. 4.11 Measurement locations and chemical analyses for the experiment "Flegrei". 

 

 

Time coverage Two days for taking samples on the field, half day for the measurements 

Number of classes 11 

Kind of classes Superficial and downwell water samples carried in sealed containers 

Training set No 

Total dataset 33 measurements, 3 per each class 

Notes Water samples have been collected on the field and taken to the 

laboratory after one week 

 

Tab. 4.12 Measurement procedure of the experiment "Flegrei". 

 

 

Working 

Electrodes 

Au, Re, Pt, VC 

Washing H2SO4 1M + rinsing in distilled water 

Notes VC = Vitreous Carbon electrode. All the Working Electrodes in this 

experiment are in the form of wires about 5mm long, with the exception 

of the VC electrode, which is a standard laboratory electrode (rod) 

having 3mm diameter x 6mm long 

 

Tab. 4.13 Experimental setup configuration of the experiment "Flegrei". 

 

 

4.4.2 Results 

One interesting aspect that emerges in analysing the results of this case study, lies in the 

different ordering of the DCT components as a function of the discrimination index used to 

determine such sorting order. 
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As it may be seen in Fig. 4.16 and Fig. 4.17, the usage of the two uni-variate 

discriminability indexes described in Paragraph 3.3.1 leads to different results in the ranking of 

the DCT components of the 4 observation vectors pertaining each Working Electrode. 

The most apparent thing, lies in the fact that with the S2 index the Au WE appears to be the 

most contributing to discrimination, due to the high density of DCT coefficients having a low 

sorting order. A general description about how the plots discussed are built can be found in 

Paragraph 3.3.3. 

With the Sx index the Re WE shows to give the prevailing contribution to discrimination, 

as it may be well seen in Fig. 4.18 and Fig. 4.19, where the first 100 sorted DCT components 

are shown in detail. 

This simple example gives a clear idea about the substantial practical importance of having 

multiple Working Electrodes. Even in situations where a certain WE appears to be the most 

informative one, a change in the discriminability index chosen, makes another WE the preferred 

one, according to the metric chosen. 

Again, the feature selection domain chosen influences the contribution of the different WEs 

to discriminability. According to the metric asserted by the discriminability index Sx, the 

ranking of the components in the DWT and VLT domains has been calculated, with the results 

shown in Fig. 4.20 and Fig. 4.21. Once more, looking at these plots it comes clear how the 

signal analysis procedure may enhance the importance of different WEs to the discrimination 

capability of each single component; in fact, in the DWT domain the Re and Au WEs give a 

prevailing contribution, while in the VLT domain the Au and VC ones would be preferred. 
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Fig. 4.16 Ranking of the components of the observation space in the DCT domain. Experiment “Flegrei”. 
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VC

V 

Pt 

Re 

Au 



CHAPTER IV                                                                                                Experimental results 

 

76 

 

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

14000

sorting order

c
o
e
ff
. 
#

 
Fig. 4.17 Ranking of the components of the observation space in the DCT domain. Experiment “Flegrei”. 
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Fig. 4.18 Ranking of the first 100 components of the observation space in the DCT domain. Experiment 

“Flegrei”. 
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Fig. 4.19 Ranking of the first 100 components of the observation space in the DCT domain. Experiment 

“Flegrei”. 

 

 

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

sorting order

c
o
e
ff
. 
#

 
Fig. 4.20 Ranking of the first 100 components of the observation space in the DWT domain. Experiment 

“Flegrei”. 
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Fig. 4.21 Ranking of the first 100 components of the observation space in the VLT domain. Experiment 

“Flegrei”. 

 

 

Using the same approach presented in the previous case studies, a sequential forward 

search strategy has been tested on the whole dataset, making use of the Sx index in the DCT 

domain. 

Tab. 4.14 and Fig. 4.22 show the feature extraction parameters and the trend of the 

discriminability index Sx for grouped coefficients in the forward search strategy. Fig. 4.23 

shows the projections of the 33 measurements onto a tri-dimensional representation subspace, 

after reducing the dimensionality of the whole observations to the feature space, having 

dimensionality l’=4. 

 

 

Discriminability Index Sx 

Search strategy Sequential forward 

Feature space 

dimensionality 

l’ = 4 

Notes The feature set has been searched for in the DCT domain 

 

Tab. 4.14 Feature extraction parameters for the dataset "Flegrei” (sequential forward strategy). 
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Fig. 4.22 Discriminability index trend obtained by using a sequential forward search strategy. Sx index. 

Experiment "Flegrei". 
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Fig. 4.23 Projections of the observations of the full dataset (“Flegrei”) onto the tri-dimensional 

representation space (sequential forward strategy). 
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On the same dataset a preliminary experiment to determine how the characterisation 

capability of the e-tongue can be compared to a classical characterisation scheme based on 

traditional chemical measurements. To make this comparison, a very simple approach based on 

the following two steps has been performed: 

• the first 2000 DCT components of each measurement, determined according to the 

S2 metric in the uni-variate space, have been taken, 

• data have been projected onto the tri-dimensional representation space, built as 

described in Paragraph 3.4. 

 

The two plots shown in Fig. 4.24a,b allow the comparison between the classical analytical 

classification results and the e-tongue results.  

Principal Components Analysis has been applied to the chemical analytical measurements; 

data of such analyses are expressed in mg/l, as it can be found in Tab. 4.11. No conversion has 

been performed, since the Principal Components can be freely scaled also after transforming. 

The effect of scaling on the components’ variability, in general, changes the distribution of the 

measurements represented in the Principal Components’ domain. The distribution of the 

observations coming from the voltammetric measurements, after DCT transform and 

dimensionality reduction, is obtained by projection of the observed transformed vectors onto 

the base formed by the first 3 vectors determined in accordance to the procedure described in 

Paragraph 3.4. 

It must be remarked that e-tongue results are chemically altered with respect to what would 

be obtained by on-site measurements, due to the fact that Redox potentials [6] do not carry 

meaningful information, after the contact of the sampled water with the atmospheric gas. As a  

consequence, the main discriminating factor for the e-tongue measurements appears to be the 

chemical composition of the sample, more than its Redox properties, which are basically lost. 

It appears immediately clear how the two thermal water samples (Terme Puteolane and 

Agnano) are strongly discriminated in both the representations. It is also interesting that the 

“Averno”, “Castello di Baia” and “Fondi di Baia” samples are discriminated in both domains, 

and are actually distinguishable through the chemical parameters that mainly contribute to the 

Principal Components’ variability.  

The preliminarity of this investigation and the fact that the e-tongue measurements have 

not been made on-site, do not allow the interpretation of these representations with greater 

detail, thus it becomes difficult to explain the clustering of samples #1,3,4,5,6,7, which are split 

into two groups of three measurements according to the e-tongue, while they are grouped in one 

whole cluster in the PCA representation. 
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Fig. 4.24 a) Projection of the 33 meaurements (11 water samples) of the experiment "Flegrei" onto a tri-

dimensional representatiotn space. b) Representation of the same 11 water samples in the space spanned by 

the first three Principal Components.
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4.5 Experiment #4: detection of pollutants (“LaGabella”) 

4.5.1 Description of the experiment 

This is an experiment intended to check the discrimination between water samples taken at 

the input and the output of an Active Carbon filter pack, as a possible technique for detecting 

changes with respect to the presence of some pollutant or toxic contaminant, which undergoes a 

known abatment by the filter. 

This case study regards a slight pollution by an old industrial activity in the proximity of 

Pisa (Tuscany, Italy), at “La Gabella” wells, where water is extracted by the local drinkable 

water distribution network. 

Four wells are in close proximity of three industrial activities now closed, where the 

pollution due to trichloroethylene and tetrachloroethylene appears to come from the area of two 

old oil production plants. Moreover, a small foundry was located in the area. In Fig. 4.25, 

industrial areas are in red and groundwater flow direction is in blue. 

Pollution by trichloroethylene and tetrachloroethylene is the only parameter outside the 

limits for drinkable water. The test on sampled water, both filtered and not, has proven the 

possibility to detect the presence of pollutant with an approach based on the difference between 

measurements taken at the inlet and the outlet of the filter, respectively. 

Analytical measurements made on water samples, taken both at the inlet and at the outlet of 

the carbon filters, have been done; results are presented in Tab. 4.15, where the values of each 

parameter at the input of the filter (raw water) and at its output, are compared. The only 

parameter affected by said slight pollution is shown on an orange background. The effect of the 

filters on this parameter is substantial, since it lowers the concentration of the contaminants 

(trichloroethylene and tetrachloroethylene) below the lower detectable limit of the analytical 

instrumentation used, and far below the limit imposed by the Italian regulation about water 

quality. 

This test is very demanding for all the measurement and data processing chain, due to the 

very low concentration of the chemical contaminant to be seen: 22.4 µg/l means 22.4 ppb (parts 

per billion) in mass ratio. 

The measurement procedure is described in Tab. 4.16. The sequence, to void some kind of 

“memory effect” on the electrodes, has been done by measuring the filtered water first, then the 

raw water, then the filtered one again. 
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Fig. 4.25 Map of the area where water samples for the dataset "LaGabella" have been taken. 
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Parameter Unit Before 

GAC 

filters 

After 

GAC 

filters 

D. Lgs n° 31/01  

Limit values (Italian 

regulation) 

Hydrogen ion concentration pH 6.8 6.9 6.5≤ pH ≤9.5 

Conductivity µS/cm @ 

20°C 

334 330 2500 

Turbidity NTU 0.54 0.37 - 

Fluorides mg/l F 0.09 0.06 1.50 

Chlorides mg/l Cl 37.8 35.9 250 

Nitrates mg/l 

NO3 

15.1 16.8 50 

Sulphates mg/l 

SO4 

12.8 15.3 250 

Sodium mg/l Na 28.2 26.1 200 

Total Hardness °F 10.7 11.1 - 

Ammonium mg/l 

NH4 

<0.05 <0.05 0.50 

Nitrites mg/l 

NO2 

<0.05 <0.05 0.10 

Nitrates and Nitrites 

relationship 

- 0.32 0.35 {[NO3]/50+[NO2]/0.1≤}1 

Boron mg/l B <0.05 <0.05 1.0 

Iron µg/l Fe 17 23 200 

Manganese µg/l Mn <5 <5 50 

1,2 Dichloroethane µg/l <0.2 <0.2 3.0 

Trichloroethylene and 

tetrachloroethylene 

µg/l 22.4 <0.1 10 

Total Trihalomethanes µg/l <0.1 <0.1 30 

Benzene µg/l <0.1 <0.1 1.0 

Cadmium µg/lCd <0.5 <0.5 5.0 

Chromium µg/l Cr <1 <1 50 

Lead µg/l Pb <3 <3 25 

Nickel µg/l Ni <5 <5 20 

Copper mg/l Cu 0.001 0.001 1.0 

Mercury µg/l Hg <0.1 <0.1 1.0 

Arsenic µg/l As <3 <3 10 

PAH µg/l <0.01 <0.01 0.10 

Pesticides and related 

products 

µg/l <0.01 <0.01 0.10 (0.50) 

Dry residues (calculated) mg/l 187 192 - 

 

Tab. 4.15 Chemical analytical measurements of raw water for the "LaGabella" case study. 
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Time coverage One day, half for taking samples, half for performing the measurements 

Number of classes 2 

Kind of classes Filter outlet (filtered water), filter inlet (raw water) 

Training set - 

Total dataset 4 measurements each class 

Notes The measurement sequence has been as follows: 

2 samples of outlet water 

4 samples of inlet water 

2 samples of outlet water 

 

Tab. 4.16 Measurement procedure of the experiment "LaGabella". 

 

 

Working 

Electrodes 

Au, Re, Pt, Pd 

Washing Ultrasonic 

Notes Ultrasonic washing made in distilled water between each batch of 

measurements 

 

Tab. 4.17 Experimental setup configuration of the experiment “LaGabella”. 
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4.5.2 Results 

The first 4 measurements (2 on filtered water and 2 on raw water) have been used to 

determine the components of the feature space and the base of the representation space. The 

following 4 measurements (performed in reverse order with respect to the first batch) have been 

projected onto the same representation base, after extracting the previously determined 

components. 

A simple sequential procedure with the Sx index, calculated for grouped coefficients of 

increasing l dimensionality, has been applied to this dataset. As a general guideline, in a case 

study with a small number of observations such this one, a very limited optimal dimensionality 

is expected; under this respect, a simple sequential strategy has given sufficient reduction in 

dimensionality (l’ = 3). The essential parameters are listed in Tab. 4.18, while the behaviour of 

the Sx index is plotted in Fig. 4.26 and Fig. 4.27. Calculation of the index has been performed 

both in the DCT, the DWT (again COIF5) and time (VLT) domain. 

From the detailed plot shown in Fig. 4.27, it comes clear how both DCT and DWT domain 

lead to a sub-optimal dimensionality l’ = 3, even with a similar value for the index. 

 

 

Discriminability Index Sx 

Search strategy Simple sequential 

Feature space 

dimensionality 

l’ = 3 

Notes The feature set has been searched for in the DCT, DWT and 

VLT domains 

 

Tab. 4.18 Feature extraction parameters for the dataset "LaGabella” (simple sequential strategy). 

 

 

In Fig. 4.28 the projections of all the observations for this case study are plotted. Feature 

extraction has been applied to observations in the DCT domain, grouped according to Fig. 3.11. 

Larger size of the markers has been given to the first 4 measurements, used to determine the 

feature extraction and representation parameters. Smaller size has been given to the markers 

relating to second batch of measurements, which are directly projected onto the representation 

space after having extracted the previously determined features. 

In a similar fashion to what happened with the dataset “Day004”, after training the feature 

extraction procedure with half of the dataset, successive measurements are still represented with 

a noticeable discrimination between classes, when reduced in dimensionality and projected 

according to the training parameters. 

Feature extraction has also been applied to observations in the DWT domain, again 

grouped according to Fig. 3.11. In Fig. 4.29 the projections of all the observations for this case 

study in the DWT domain are plotted.  
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Fig. 4.26 Discrimination capability index Sx for the l-dimensional subspace generated by grouping the first l 

sorted components. Experiment: “LaGabella”. 
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Fig. 4.27 Discrimination capability index Sx for the l-dimensional subspace generated by grouping the first l 

sorted components: detail of the first 26 values. Experiment: “LaGabella”. 
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Fig. 4.28 Projections of the observations of the full dataset (“LaGabella”) onto the bi-dimensional 

representation space (simple sequential strategy, DCT domain). 

 

 

Again, also in the DWT domain representation, larger size of the markers is given to the 

measurements used to set-up the feature extraction procedure, smaller size is given to the 

second batch of measurements, that have been simply projected onto the previously determined 

base, after extracting the selected components in the DWT domain. The three representation 

planes (1-2, 1-3 and 2-3) are shown; discrimination between inlet and outlet samples is apparent 

in all the three plots. 
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Fig. 4.29 Projections of the "LaGabella" dataset onto  the representation space in the DWT domain.            
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In conclusion, the test on sampled water, both filtered and not, has proven the possibility to 

detect the presence of a contaminant with an approach based on the difference between 

measurements taken at the inlet and the outlet of the filter, respectively. This is a feasible 

technique to detect changes on a long term basis. 

The same approach has been used in another case study (“Zamponi” dataset [7]), that is not 

presented in this Thesis due to the high similarity with this one, obtaining very promising 

results. 
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4.6 Experiment #5: drifts in long term measurements 

(“Testt0102”) 

4.6.1 Description of the experiment 

The case studies seen up to now have not taken into account the long term drifts that may 

arise when performing measurements continuously on the same sample of water, which may be 

flowing or not. As a preliminary check of the possible trends of the signals considered, two 

measurement sessions lasting 24 hours each, performed on two different water samples, have 

been done. 

Moreover, since the comparison between a reference liquid and the water under monitoring 

is a reasonable procedure to perform practical measurements on a long term basis, this case 

study provides information about the feasibility of such an approach. 

 

 

Time coverage Two measurement sessions, 24 hours each. 

One measurement every 10 minutes 

Number of classes 2 (each water sample continuously measured during its 24-hours session) 

Kind of classes Mineral water brands (bottled) 

144 measurements per each class 

Training set - 

Total dataset 288 measuements, 144 per each class 

Notes Water temperature has been logged during the experiment to check day-

night effects due to thermal drifts 

 

Tab. 4.19 Measurement procedure of the experiment "Testt0102". 

 

 

Working 

Electrodes 

Au, Re, Pt, Pd 

Washing Ultrasonic 

Notes Ultrasonic washing made in distilled water between the two batches of 

measurements 

 

Tab. 4.20 Experimental setup configuration of the experiment “Testt0102”. 
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4.6.2 Results 

For this dataset, having two classes and a relatively high number of observations per class 

(144 per each WE), the chosen metric for the discriminability assessment has been the 

“Euclidean” S2 index. Feature selection has been done with a simple sequential search strategy. 

The feature extraction parameters for the dataset “Testt0102” can be found in Tab. 4.21. 

Plots of the values taken by the index S2 vs. dimensionality, according to the chosen search 

strategy, are shown in Fig. 4.30 and Fig. 4.31, with a detail on the first 50 values, in all the three 

domains investigated (DCT, DWT, VLT). 

 

Discriminability Index S2 

Search strategy Simple sequential 

Feature space 

dimensionality 

l’ = 1 

Notes The feature set has been searched for in the DCT, DWT and 

VLT domains 

 

Tab. 4.21 Feature extraction parameters for the dataset "Testt0102” (simple sequential strategy). 
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Fig. 4.30 Discrimination capability index S2 for the l-dimensional subspace generated by grouping the first l 

sorted components. Experiment: “Testt0102”. 
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Fig. 4.31 Discrimination capability index S2 for the l-dimensional subspace generated by grouping the first l 

sorted components: detail of the first 50 values. Experiment: “Testt0102”. 

 

 

Two aspects come immediately clear by analysing the plots in Fig. 4.30 and Fig. 4.31: 

• DCT has the best performance according to the chosen metric, 

• sub-optimal dimensionality is l’=1 (extraction of the first sorted DCT component is 

the best feature set) 

 

It is interesting that the first DCT component in ranking corresponds to the coefficient #141 

of the DCT transform of the observations from the Pt Working Electrode. The corresponding 

frequency is 1.0417 Hz, substantially identical to the pulse repetition frequency of the LAPV 

signal. 

 This happens not surprisingly, due to the fact that this is an experiment with two classes 

only, but this does not mean that the set-up of an efficient change detector would be done by 

extracting a mono-dimensional feature subspace. 

Since one of the aims of this approach is to track eventual changes in the chemistry of 

water, a continuous monitoring device should not be reasonably trained to work in a mono-

dimensional feature space, but, being trained with a number of classes corresponding to a set of 

known possible pollutants, an higher dimensionality would be expected. 

The ranking of the components of the observation space in the DCT, DWT and VLT 

domain takes also meaningful information. Plots obtained according to the conditions listed in 

Tab. 4.21, are shown in Fig. 4.32, Fig. 4.33 and Fig. 4.34 respectively for the DCT, DWT 

(COIF5) and VLT (time) domain. Note that, differently from Fig. 3.21, DWT approximation 

and detail components are appended for each WE, instead of being plotted separately. 

l 

S(l) 
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Fig. 4.32 Ranking of the components of the observation space in the DCT domain. Experiment “Testt0102”. 
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Fig. 4.33 Ranking of the components of the observation space in the DWT domain. Experiment “Testt0102”. 
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Fig. 4.34 Ranking of the components of the observation space in the DCT domain. Experiment “Testt0102”. 
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Fig. 4.35 Projections of all the 288 measurements of the dataset "Testt0102" onto the mono-dimensional 

space corresponding to the first feature in ranking. 
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Tab. 4.22 Description of classes for the dataset "Testt0102". 

 

 

Inspection of Fig. 4.32, Fig. 4.33 and Fig. 4.34, leads to a number of interesting 

considerations: 

• working in different domains, different WEs play a different role, 

• Re electrode, which is the least in ranking in the DCT domain, comes to be the most 

important in the DWT domain, confirming similar situations in the previous 

examples, 

• in the time (VLT) domain, the final values of the current signal of the Au WE are 

high in ranking 

• also, high contribution to discrimination in the time domain comes from most of the 

signal coming from the Pt electrode 

 

The plots discussed here, especially for the observations in the time domain, give 

meaningful information about the electrochemical peculiarities of these experiments. As an 

example, in this case study, the above mentioned considerations about the VLT signals lead to 

the conclusion that the Au Working Electrode is the one which better enhances the effect of the 

diffusion-limited current, having a relatively high contribution to discriminability in the final 

values of the Au WE current transients. 

Fig. 4.35 shows the projections of all the 288 measurements of the dataset “Testt0102” 

onto the mono-dimensional space spanned by the DCT component extracted by the feature 

selection strategy. In other words, the value of the coefficient #141 in the DCT expansion of 

each of the 288 observations relating to the Pt WE is plotted onto the x-axis of Fig. 4.35. 

For mere representation purposes, the projection onto a representation subspace obtained 

according to the procedure described in Paragraph 3.4 after the extraction of the first two 

feature in the DCT domain, is shown in Fig. 4.33. 

 

 

 

 

Class # Description 

1  “Lora Recoaro” mineral water 

2  “Gaia” mineral water 
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Fig. 4.36 Projections of all the 288 measurements of the dataset "Testt0102" onto the bi-dimensional 

representation space. 

 

 

To simulate a day-night effect in a controlled environment, water temperature has been 

varied in the range between 23.5°C and 26°C with one cycle having a period of 24 hours. 

Results are shown in Fig. 4.37, where larger markers are assigned to later measurements and 

smaller ones to the first measurements. 

Moreover to the increasing width of the markers as a function of time, markers are 

coloured as a function of temperature measured at the time the voltammetric measurement has 

been done. The colormap, common to both the measurement sessions, is also shown in Fig. 

4.37. 

Investigation of the plot reported in Fig. 4.37 leads to some preliminary considerations: 

• drifts of the projections are both temperature and time dependent, 

• part of such drifts are due to electrochemical modifications; in addition, the first 

measurements of both sessions are outliers of their respective clusters. 

 

While the effect of temperature over the current contributions described in eq. (2.4) is 

known [6], the effect on the observation vectors in the feature subspace is substantially 

impossible to be determined in an analytical form. In order to compensate for the temperature 

effects, one possible way would be to take the temperature information as a variable that takes 

part to the training phase of a classifier. This approach opens the possibility to make further 

advancements in this technique, particularly for long-term monitoring applications.  

It is worth noting that an alternative approach to the study of long term drifts, based on the 

integral of each pulse response, has been recently presented in [8]. 
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Fig. 4.37 Projections of the full dataset "Testt0102" onto the bi-dimensional representation space. Width of 

markers increasing with time. Colour of markers assigned as a function of temperature. 
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4.7 Conclusions 
 

The monitoring technology is an essential aspect in the implementation of innovative and 

integrated techniques for the sustainable management of ground water and surface water. In 

particular, the management and control of the entry-points of water into the distribution 

network, as well as specific nodes of the network itself, can make use of continuous monitoring 

systems to assess the quality of water. 

In this Thesis, a methodological approach to the development of e-tongue devices based on 

voltammetry is presented. This work has been mainly focused on the signal processing aspects. 

Promising results have been obtained in the experiments made during the study of the 

methodology, a selection of such experiments has been presented in this PhD Thesis, according 

to their relevancy. 

With respect to the known literature, novel signal processing aspects for this applications 

have been introduced: 

• DCT of the time series obtained with pulse voltammetry has been used and 

presented for the first time in the literature, with proven benefits, in comparison 

with other techniques; 

• sub-optimal search strategies to search for a suitable dimensionality of the feature 

space, to extract the best features according to the chosen metric, have been 

applied; 

• an algorithm to generate a representation sub-space, which does not rely on PCA, 

voiding its known drawbacks with large dimensionality datasets, has been 

presented. 

 

Moreover, even if the sensor technology used here is quite mature, this original application 

suggested a specific development of the hardware and of the control software in the device 

used. This aspect has surely contributed to the results obtained, and it must be stressed how the 

sensor system development, together with the signal processing chain, have experienced one 

step ahead in the roadmap that leads to a practical field application, during this work. 

More work has to be done in the subject of e-tongue devices; also in the recent literature  

several challenges appear to be still open, such as: 

• data fusion with other sensor techniques has still to be more investigated, 

• characterisation of long term behaviour of the measurement chain and responsivity 

to slow changes in the liquid under monitoring is a very critical subject to be faced 

with; there’s still not much literature about drift analysis. 

 

Focusing on the application area regarding water quality and water distribution monitoring, 

this work has shown a methodological approach that may lead to more efficient, inexpensive, 

and distributed monitoring systems. In fact, while the information coming from the traditional 

field instrumentation, providing the main physical/chemical parameters, is poor to fully assess 

the quality of drinkable water, a complete laboratory analytical measurement is expensive and 

does not provide a continuous control over the resource.  
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The proposed approach may lead to a new monitoring method, based on distributed low 

cost water quality sensors, which make use of the technology of the taste sensors based on 

voltammetry, that now represents a mature enough, inexpensive and very attractive technology 

in the framework of innovative solutions for obtaining overall indicators of quality of a natural 

resource. 

To conclude, if this Thesis had given some contribution to fill the gap between research 

about e-tongue devices and their practical implementation to the real world, this would be 

interpreted as the most desirable form of success for this work. 
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