
U P

D I ’I:
E, I, T

Doctorate in I E

Curriculum in C S

Iterative Message-Passing-Based
Algorithms to Detect Spreading Codes

Presented by:
F P .

Supervisor:
Prof. Marco Luise .

Accepted by: Doctorate Council of Dip. di Ingegneria dell’Informazione
President: Prof. Lanfranco Lopriore

Submission date: 26 February 2007 — Acceptance date: 20 March 2007

http://www.unipi.it/
http://www.iet.unipi.it/
http://www.iet.unipi.it/dottinformazione/
http://xoomer.alice.it/fabio.principe/
http://www2.ing.unipi.it/~d7384/
mailto: lanfranco.lopriore@iet.unipi.it

... to my father,

I miss you ...

Acknowledgements

I would like to thank Margherita, because during these three years she has been always

with me. She has lovingly supported me in bad times and enjoyed happy moments with

me.

I thank my mother and my brother because they have always believed in my capabili-

ties and skills, so approving and supporting every my decisions and work experiences.

I thank Prof. Marco Luise for his precious suggestions and for the great working en-

vironment, that he have created with the collaboration of the DSP-lab staff. It has been a

wonderful experience working together!

I would like to thank Prof. Keith M. Chugg and his staff for the opportunity that they

gave me to visit USC and LA, their great hospitality, and the precious help and collabo-

ration to perform the research topic, which is the base of this thesis.

Thank you very much!!!

iii

Abstract

This thesis tackles the issue of the rapid acquisition of spreading codes in Direct-Sequence

Spread-Spectrum (DS/SS) communication systems. In particular, a new algorithm is pro-

posed that exploits the experience of the iterative decoding of modern codes (LDPC and

turbo codes) to detect these sequences. This new method is a Message-Passing-based

algorithm. In other words, instead of correlating the received signal with local replicas

of the transmitted linear feedback shift register (LFSR) sequence, an iterative Message-

Passing (iMP) algorithm is implemented to be run on a loopy graph. In particular, these

graphical models are designed by manipulating the generating polynomial structure of

the considered LFSR sequence. Therefore, this contribution is a detailed analysis of the

detection technique based on Message-Passing (MP) algorithms to acquire m-Sequences

and Gold codes. More in detail, a unified treatment to design and implement a specific

set of graphical models for these codes is reported. A theoretical study on the acquisition

time performance and their comparison to the standard algorithms (full-parallel, simple-

serial, and hybrid searches) is done. A preliminary architectural design is also provided.

Finally, the analysis is also enriched by comparing this new technique to the standard

algorithms in terms of computational complexity and (missed/wrong/correct) acquisition

probabilities as derived by simulations.

v

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations, Operators, and Symbols xv

1 Introduction 1

1.1 Motivations . 1

1.2 Key Points and Contributions . 3

1.3 Applications . 5

1.4 Outline . 5

2 Linear Feedback Shift Register Sequences 7

2.1 Feedback Shift Register Sequences . 8

2.1.1 Basic Concepts . 8

2.1.2 Periodic Property . 10

2.1.3 Linear Feedback Shift Register Sequences 11

2.2 LFSR Sequences in Terms of Polynomial Rings 12

2.2.1 Characteristic Polynomial . 12

2.3 Minimal Polynomials and M-Sequences 16

vii

viii Contents

2.3.1 Minimal Polynomials of LFSR Sequences 16

2.3.2 Periodicity . 19

2.3.3 M-Sequences . 23

2.3.3.1 M-Sequence Properties 25

2.4 Gold Codes . 28

2.4.1 Definition and Properties . 29

3 Signal Model and Detection Algorithms 33

3.1 Communication System . 34

3.1.1 Base-Band Transmitter . 34

3.1.2 Communication Channel . 36

3.1.3 Base-Band Receiver . 37

3.2 Detection Unit . 38

3.2.1 Single-Dwell Acquisition Algorithms 39

3.2.1.1 Full-Parallel Search 40

3.2.1.2 Simple-Serial Search 43

3.2.1.3 Hybrid Search . 44

3.2.2 Detection with MP-Based Algorithms 46

4 Message Passing Algorithms to Detect Spreading Codes 51

4.1 Iterative Detection Unit . 52

4.1.1 Architectural Design . 52

4.2 Iterative Message Passing for PN Acquisition 54

4.2.1 Iterative Message Passing Algorithms 55

4.2.2 Redundant Tanner Graphs . 60

4.2.3 Detection Algorithm Complexity 63

4.3 Acquisition Time . 64

4.3.1 Acquisition Time Analysis . 64

4.4 Trinomial Multiples of Generating Polynomials 67

Contents ix

4.4.1 Algorithms to search Trinomial Multiple 68

4.4.1.1 Algebraic Manipulation 68

4.4.1.2 Zech’s Logarithm Table 69

4.4.1.3 Division Algorithms 72

4.4.1.4 Exhaustive Search . 74

5 Performance Evaluation 77

5.1 Equivalent Sparse Polynomials with High-Degree 78

5.1.1 Simulation Results and Performance 78

5.2 Hierarchical Model . 83

5.2.1 Simulation Results and Performance 83

5.3 Acquisition time . 86

5.3.1 Simulation Results and Performance 86

6 Conclusions 95

A Extension of Finite Fields 99

A.1 Extension Field GF (pn) . 99

A.2 Periods of Minimal Polynomials . 100

B Multi-TG Model 101

B.1 Message-Updating Algorithm with Damping Factor 101

C Hierarchical Model 103

C.1 Message-Updating Algorithm . 103

Bibliography 105

List of Publications 111

List of Figures

2.1 Generic configuration of a FSR generator. 9

2.2 GPS/SBAS Gold code generator. 32

3.1 DS/SS communication system model. 34

3.2 General representation of an r -stage LFSR generator. 35

3.3 An example of a tracking stage in a DS/SS receiver. 38

3.4 A general design of a coherent single-dwell detector. 40

3.5 A simplified scheme of a full-parallel algorithm. 42

3.6 A simplified scheme of a simple-serial algorithm. 44

3.7 A simplified scheme of a hybrid search. 47

4.1 Iterative Detection Unit with an iMP algorithm. 52

4.2 Main stages of the iDU. 55

4.3 An example of TG. 57

4.4 An example of a free-loop graph. 60

4.5 Markov chain of an iDU with all stages. 65

4.6 A simplified flow graph of an iDU. 67

xi

xii List of Figures

5.1 Performance in case of the m-sequence [15341]8 (r = 12). 80

5.2 Performance in case of the GPS/SBAS codes. 82

5.3 Multi-TGs activation schedule. 84

5.4 Comparison between the two activation schedules. 84

5.5 Example of hierarchical model for GPS/SBAS codes. 87

5.6 Hierarchical model performance. 87

5.7 The SSA PFA vs iMP PWD and PMD . 89

5.8 PCD of the iDU, the SSA, and the FPA. 89

5.9 The mean of the acquisition time of a hybrid detector. 93

C.1 One hierarchical model path. 104

List of Tables

2.1 Shift-equivalent class of G(f). 25

4.1 The Zech’s Logarithm table of P (D) = D5 + D4 + D3 + D2 + 1. 73

4.2 List of trinomial multiples of P (D) = D5 + D4 + D3 + D2 + 1. 74

5.1 Comparison of the acquisition time between the SSA and the iDU. 91

5.2 Comparison of the acquisition time between the FPA and the iDU. 91

5.3 Comparison of the implementation complexity of the iDU, the FPA, and

the SSA. 91

xiii

List of Abbreviations, Operators,
and Symbols

Acronyms
AWGN Additive White Gaussian Noise

BB Base-Band

BGM Basic Graphical Model

CD Correct Detection

CDMA Code Division Multiple Access

DLL Delay Locked-Loop

DS/SS Direct-Sequence/Spread-Spectrum

e.g. Exempli Gratia (from Latin: For Example)

FA False Alarm

FBA Forward Backward Algorithm

FLL Frequency Locked-Loop

FPA Full-Parallel Algorithm

FSM Finite State Machine

FSR Feedback Shift Register

xv

xvi List of Abbreviations, Operators, and Symbols

GF Galois Field

GPS Global Positioning System

HA Hybrid Algorithm

HM Hierarchical Model

IB Input Buffer

iDU Iterative Detection Unit

iMP Iterative Message Passing

iPU Iterative Processing Unit

LDPC Low-Density Parity-Check (codes)

LSFR Linear Feedback Shift Register

MD Missed Detection

MGF Moment Generating Function

ML Maximum Likelihood

MP Message Passing

MS Min-Sum

NLSFR Nonlinear Feedback Shift Register

PCU Parity Control Unit

PLL Phase Locked-Loop

PN Pseudo Noise

RB Refresh Buffer

RGM Redundant Graphical Model

SBAS Satellite Based Augmentation System

SNR Signal-to-Noise Ratio

SP Sum-Product

SR Shift Register

List of Abbreviations, Operators, and Symbols xvii

SSA Simple-Serial Algorithm

SS Spread Spectrum

TG Tanner Graph

UWB Ultra Wide-Band

WD Wrong Detection

Algebra
a Infinite sequence, whose elements {ai } ∈ F , i = 0, 1, . . .

A(a) Set of all polynomials that satisfy f (D)a = 0, on a prefixed a

F [x] Polynomial ring over F = GF (2) = {0, 1}
F Finite field of order 2, F = GF (2) = {0, 1}
G∗ Multiplicative group with nonzero elements, for a finite field G

G(f) Set of all sequences a ∈ V (f) such that f (D)a = 0

GF (q) Finite field of order q (q is a prime or a power of a prime)

N Set of natural numbers (positive integers)

N∗ Set of natural numbers (positive integers), without 0

V (F) Set of all infinite sequences whose elements are taken in F

Z Set of integers

Operators
D Left-shift operator

g(x) | f (x) The polynomial g(x) is a divisor of the polynomial f (x)

| G | Order of the finite group G

gcd The greatest common divisor

xviii List of Abbreviations, Operators, and Symbols

ord (α) Order of an element α ∈ G , with G is a group

per (a) Period of the sequence a

per (f (x)) Period of the polynomial f (x)

Q (�) Complementary cumulative distribution function of a standard Gaussian
random variable

S (�) Sign function S (�) = sgn (�)

a v b The sequences a and b are shift equivalent

⊕ Modulo-2 addition or exclusive or-operator

Symbols
CAlg Complexity of FPA, SSA, HA, or iMP (respectively CFP , CSS , CH ,

CiMP)

Ec Chip energy

Ec/N0 SNR

IMAX Maximum number of iterations

M Number of observations at the receiver side

N PN sequence period

PCase Probability of WD, MD, FA, and CD (respectively PWD , PMD , PFA,
PCD)

π Its value is about 3.1415926535898

Tc Chip time (Rc = 1/Tc is the chip rate)

τd Dwell Time

τiPU Time delay of iPU

Tit Iteration time (Rit = 1/Tit is the iteration rate)

τMD Time delay in case of MD

τpt Penalty Time

τRB Time delay to RB

Chapter 1
Introduction

1.1 Motivations

D -S/S-S (DS/SS) systems have been developed since the

mid-1950’s. They are widely used in wireless military and civil communications

as well as in satellite positioning systems, because they provide low probability of in-

terception, strong anti-jam protection, and low co-channel interferences. All these pro-

prieties are basically due to use of long high-rate binary pseudo-noise (PN) sequences

that spread the spectrum bandwidth and make it difficult to be detected and corrupted

by jammers. Therefore, long period sequences are more desirable than shorter ones that

make the link susceptible to repeat-back jamming or interception/detection via delay and

correlate methods, [53].

At the receiver side, to correctly demodulate SS signals, a despreading operation is

accomplished by correlating the incoming signal with local replicas of its PN sequence.

Because of this, a precise code timing synchronization is necessary. This result is gen-

erally got in two receiver stages ([42], [44], [49], and [53]): the acquisition stage, that

provides a preliminary coarse alignment between the received PN sequence and its local

1

2 C 1. Introduction

replica, and the tracking stage, in which fine synchronization is realized and maintained

by a delay locked-loop (DLL) unit ([12] and [13]), exploiting the previous rough align-

ment. Therefore, PN acquisition is the critical point to have rapid and correct synchro-

nization between DS/SS transmitters and receivers. Of course, this condition is important

to design a more dynamic receiver, that better tracks any change of the channel condition.

The standard and well-known acquisition techniques used to detect such sequences

are ([23], [41], [44], [45], and [53]): full-parallel, simple-serial, and hybrid searches. The

common denominator of all these techniques is that the received and local SS sequences

are correlated and then processed by a suitable detector/decision rule to decide whether

the two codes are in synchronism or not. Specifically, the first method implements a

maximum likelihood (ML) estimation algorithm with a fully parallel search. Hence, it

provides fast detection at price of a high implementation complexity, especially in case of

long SS sequences. The opposite solution is the simple serial search, that has the lowest

complexity, but its acquisition time is prohibitively long. The hybrid search mixes the two

previous methods, resulting in a trade-off between these algorithms.

In this context, new techniques to acquire linear feedback shift register (LSFR) se-

quences have been, recently, presented in [10], [59], [61], and [62]. All these methods are

based on the paradigm of Message Passing (MP) on graphical models, or, more specifi-

cally, on iterative Message Passing (iMP) algorithms to be run on loopy graphs ([1], [9],

[34], [37], [56], and [60]). In other words, instead of correlating the received signal with

a local PN replica (as in all standard methods), this algorithm uses all the information,

provided by the incoming signal, as messages to be run on a predetermined graphical

model with cycles, thus approximating the ML method. This results in a sub-optimal

algorithm, that searches all possible code phases in parallel with a complexity typically

lower than the full-parallel implementation, and an acquisition time shorter than that of

the simple-serial algorithm. Furthermore, considering LFSR sequences characterized by

sparse generating polynomials, it has been shown in [63] that significant improvements

in terms of acquisition probability can be obtained using redundant graphical models

1.2. Key Points and Contributions 3

(RGMs) made up of a set of redundant parity check equations.

These motivations have induced us to investigate iMP algorithms to detect long LFSR

sequences, so laying the bases of the present dissertation. More specifically, focusing on

the approach presented in [10] and [63], we fully describe and analyze the iMP detector

in terms of acquisition time, detection performance, and algorithm complexity. Further-

more, exploiting the algebraic description of LFSR sequences, based on Galois Field

(GF) theory [20], we propose a unified treatment to detect m-sequences and Gold codes.

All previous papers ([10], [59], [61], [62], and [63]) were only addressed to acquire m-

sequences, and they showed that the acquisition performance decreases dramatically in

case of dense primitive polynomials. Our methodology outperforms these results, show-

ing better acquisition probability at low signal-to-noise-ratio (SNR) and low complexity,

for a broader class of LFRS sequences that includes Gold codes.

We also remark that the analysis of iMP detectors is enriched with theoretical studies

on the acquisition-time performance, based on the Holmes seminal work ([26] and [27]),

and related measurements. Of course, all these results are compared to the corresponding

parameters of the standard algorithms (full-parallel,[23] and [45], hybrid, and simple-

serial search, [53]).

1.2 Key Points and Contributions

The equivalence between a SS acquisition problem and a decoding one is the cardinal

point on which this thesis is based. Because of this, it is possible to exploit the iterative

decoding techniques of modern codes (tubo codes, [6], and LDPC, [17]) to acquire LFRS

sequences as demonstrated in [10], [59], [61], and [62]. More specifically, focusing on the

techniques presented in [10] and [63], SS signals can be acquired running MP algorithms

on loopy graphs, that are obtained manipulating generating polynomials of the considered

LFSR sequences. In this way it is possible to perform a full parallel detection with low-

complexity and rapid acquisition.

4 C 1. Introduction

Nevertheless, we will see that to have good performance in case of LFSR sequences

characterized by dense generating polynomials and also acquire Gold codes, it will be nec-

essary to resort to GF properties and related algorithms typically applied in cryptography

problems, [20], [21] and [38]. Such techniques allow us to easy manipulate generating

polynomials, so producing RGMs, that guarantee very interesting performance in terms

of acquisition probability at low-complexity.

In this context, the contributions of this thesis are listed below.

• The algebraic introduction of LFSR sequences (based on GF theory) allows to de-

fine m-sequences and Gold codes as sub-sets of the LFSR sequence family (see

[18], [19], and [20]). This consideration lays the bases to have a unified treatment

to acquire m-sequences and Gold codes, so adapting and improving the algorithms

proposed in [10] and [63].

• About the design of graphical models used to be run iMP algorithms, we pro-

pose some simple algorithms (typically used in cryptographic applications, [30]

and [24]) that easy manipulate dense primitive polynomials to obtain sparse poly-

nomials multiple of them. These polynomials can be efficiently used to implement

sparse TGs with redundancy (called RGMs), that offer very good performance at

low SNR and low-complexity.

• A preliminary architectural design of an iMP detector is provided with a detailed

description of the acquisition algorithm.

• We also present a theoretical study to evaluate the acquisition-time performance of

an iMP detector (based on [27] and [26]) and related measurements, so comparing

them to those of the standard algorithms (full-parallel, hybrid, and simple-serial

searches), [46].

• Finally, to reduce the memory requirements, some different schedules are tested,

and a distinct approach for acquiring Gold codes is also reported. This new method

1.3. Applications 5

basically runs an iMP algorithm on a hierarchical model (see also [47]) generated

by the two primitive polynomials that comprise a Gold code.

1.3 Applications

As mentioned in Section 1.1, DS/SS techniques are widely applied in many communica-

tion systems for several applications, e.g.: civil/commercial, military, safety and rescue,

satellite positioning systems, etc. Of course, each system is different from the others, so

their requirements, in terms of performance, signal/data processing algorithms, etc., are

different. Nevertheless, the common characteristic is the importance that the acquisition

stage has in all these systems to have fast and reliable detections of PN sequences.

In this context, the acquisition algorithm, which is described in this dissertation, can

find large applications, because it guarantees good performance and acquisition times

that tend to that of a full-parallel search, but with a lower complexity. Furthermore, we

remark that this algorithm has been successfully applied to acquire m-sequences in Ultra

Wide-Band (UWB) systems (see [10] and [63]). Therefore, its extension to Code Division

Multiple Access (CDMA) systems could be an important innovation to solve the critical

issue of long spreading-sequence detection.

Taking into account these considerations, in this thesis the GPS/SBAS1 ([2], [22],

[33], and [51]) codes have been specially taken into consideration, in order to have a

realistic context to evaluate the performance achievable using the iMP detector for the

acquisition of Gold sequences.

1.4 Outline

The remainder of this thesis is structured as follows: Chapter 2 introduces LFSR se-

quences in terms of finite field theory. More specifically m-sequence and Gold codes

1GPS stands for Global Positioning and SBAS stands for Satellite Based Augmentation Systems.

6 C 1. Introduction

are defined as subsets of LFSR sequence family, providing the basis to have a unified

treatment to acquire these codes using MP algorithms. Chapter 3 gives a mathematical

description of the communication system and the signal model that will be used to simu-

late the detection of SS signals. Architectural design of the iterative detection unit (iDU)

is presented in Chapter 4 with a description of MP algorithms, their characteristics, and

implementations. Chapter 5 shows some interesting results obtained by computer simu-

lations which prove that MP algorithms can effectively acquire spreading codes. Finally

conclusions and suggestions for future work are reported in Chapter 6.

Chapter 2
Linear Feedback Shift Register

Sequences

Linear feedback shift register (LFSR) sequences have been widely used in many appli-

cations (as random number generators, scrambling codes, for white noise signals, etc.).

Nevertheless, our interest is focused on the generation of m-sequences and Gold codes,

that are commonly used in SS systems for their attractive properties of autocorrelation and

cross-correlation ([14], [41], and [53]). Therefore, the outline of this chapter is reported

below.

• Section 2.1 provides a definition of feedback shift register (FSR) sequences, their

basic concepts, and properties.

• Section 2.2 presents LFSR sequences in terms of polynomial rings.

• Section 2.3 gives an algebraic characterization of m-sequences and also provides

their properties.

• Section 2.4 contains an overview of Gold codes their definition and properties.

7

8 C 2. Linear Feedback Shift Register Sequences

2.1 Feedback Shift Register Sequences

In this section, we define some basic concepts for FSR sequences. We denote the finite

field F = GF (2) = {0, 1} and

Fn = {a = (a0, a1, . . . , an−1)|ai ∈ F }

a vector space over F of dimension n . A function with n binary inputs and one binary

output is called a Boolean function of n variables, that is f : Fn → F which can be

represented as

f (x0, x1, . . . , xn−1) =
∑

i1,i2,...,it

ci1i2...it xi1xi2 . . . xit , ci1i2...it ∈ F (2.1)

where the sum runs through all subsets {i1i2 . . . it } of {0, 1, . . . ,n − 1}. This shows that

there are 22n
different boolean functions of n variables.

2.1.1 Basic Concepts

An n-stage shift register (SR) is basically made up of n consecutive 2-state storage units

(flip-flops) regulated by a single clock. At each clock pulse, the state (1 or 0) of each

memory is shifted to the next stage in line. To have a code generator, a SR is integrated

with a feedback loop, which computes a new term for the left-most stage, based on the n

previous terms. So, a generic feedback shift register (FSR) generator is depicted in Fig.

2.1.

Typically, the n binary storage elements are called the stages of the SR, and their

contents are a state of the SR. The initial state is (a0, a1, . . . , an−1) ∈ Fn . The feedback

function f (x0, . . . , xn−1) is a boolean function of n variables, as defined in (2.1). At every

clock pulse, there is a transition from one state to the next, so, to obtain a new value for

the stage n , we compute f (x0, . . . , xn−1) of all present terms in the SR and use this in the

2.1. Feedback Shift Register Sequences 9

Figure 2.1: Generic configuration of a FSR generator.

stage n . Therefore, assuming that the FSR generator outputs a sequence

a0, a1, . . . , an , . . . , (2.2)

at the generic time k the following recursive equation is satisfied

ak+n = f (ak , ak+1, . . . , ak+n−2, ak+n−1) , k = 0, 1, 2, . . . (2.3)

so, more in general, any n consecutive terms of the sequence (2.2)

ak , ak+1, . . . , ak+n−2, ak+n−1, k = 0, 1, 2, . . .

represents a state of the shift register in Fig. 2.1. The output sequence is called a FSR

sequence. Furthermore, if the feedback function, f (x0, . . . , xn−1), is a linear function, then

the output sequence is called linear feedback shift register (LFSR) sequence. Otherwise,

it is called a nonlinear feedback shift register (NLFSR) sequence (see [20]). Over a binary

field, linear means that the feedback function computes the modulo-2 sum of a subset of

the stages of the SR.

We remark that this thesis is focused on LFSR sequences. In particular, we will see

that their repetition periods are completely determined by their feedback functions in an

easily predictable way. Furthermore, the design of LFSR sequences with desired proper-

ties requires us to understand the functionality of three components of an LFSR generator:

10 C 2. Linear Feedback Shift Register Sequences

• the initial state;

• the feedback function;

• the output sequence.

More specifically, we will show how the behavior of the output sequences is determined

by initial states and feedback functions. We mainly treat the binary case F = GF (2), but

a general analysis (with F = GF (q), where q > 2) is reported in [20].

2.1.2 Periodic Property

In this section, the periodic property of a generic FSR sequence is defined, [20].

Definition 2.1. The sequence a0, a1, . . . is denoted as a or {ai }. If ai ∈ F , then we say

that a is a binary sequence or a sequence over F. If there exist two integers r > 0 and

u > 0 such that

ai+r = ai , ∀i > u (2.4)

then the sequence is said to be ultimately periodic with parameters (r , u) and r is called

a period of the sequence. The smallest number r satisfying (2.4) is called a (least) period

of the sequence. if u = 0, then the sequence is said to be periodic. When the context is

clear, we simply say the period of a instead of the least period of a.

Let us see a simple example.

Example 2.1. Considering the output sequence 00011011011 . . . of a 4-stage LFSR with

feedback function f (x0, x1, x2, x3) = x2 + x3 and initial state a0a1a2a3 = 0001, it is an

ultimately periodic sequence, where u = 2 and the period r is 3.

The following theorem gives a general property for any q-ary FSR sequence1 (with

F = GF (q) and q > 2).
1A binary FSR sequence can be considered as a particular case of a generic q-ary FSR sequence. In other

word, let F = GF (q) where q is a prime or a power of a prime (so |F | = q and q > 2), and referring to Fig. 2.1,
each stage is replaced by a q-state storage unit and the boolean feedback function (2.1) is replaced by a more
general function from Fn to F . More details are given in [20].

2.1. Feedback Shift Register Sequences 11

Theorem 2.1. Any q-ary FSR sequence is ultimately periodic with period r 6 qn , where

n is the number of the stages. In particular, if q = 2 then r 6 2n .

Proof. In a q-ary FSR with n stages, there are qn possible states. Each state uniquely

determines its successor. Hence, the first time that a previous state is repeated, a period

for the sequence is established. Thus, the maximum possible period is qn , that is the

maximum number of different states. �

2.1.3 Linear Feedback Shift Register Sequences

Assuming to have a linear feedback function

f (x0, x1, . . . , xn−1) = c0 · x0 + c1 · x1 + . . . + cn−1 · xn−1, ci ∈ F = GF (2)

the recursive equation shown in (2.3) becomes

ak+n =

n−1∑

i=0

ci · ak+i , k = 0, 1, (2.5)

Thus, an LFSR is also referred to as a linear recursive sequence over F . Note that it is

possible to have only 2n different n-stage LFSRs. On this consideration it is based the

following general theorem.

Theorem 2.2. Let a be a sequence generated by an n-stage LFSR over F = GF (q). Then

the period of a is less then or equal to qn − 1. In particular, if q = 2, the period of any

binary n-stage LFSR sequence is less then or equal to 2n − 1.

Proof. Consider that the successor of state 00 . . . 0 (n times 0) of an n-stage LFSR is

again 00 . . . 0. Using the same argumentations as in the proof of Theorem 2.1, we see that

the period of a is 6 qn − 1, since the state 00 . . . 0 cannot be a part of any period. �

We remark that in the rest of this chapter we restrict our attention to LFSR sequences.

12 C 2. Linear Feedback Shift Register Sequences

2.2 LFSR Sequences in Terms of Polynomial Rings

This section is addressed to characterize the periodicity property of LFRS sequences,

giving an equivalent definition of these sequences over F in terms of polynomial ring,

F [x]. Therefore, we provide the following definition.

Definition 2.2. The ring formed by the polynomials over F = GF (2) with the classic

modulo-2 sum and product operations is called the polynomial ring over F and denoted

by F [x]

F [x] =

f (x) =

n∑

i=0

cix i |ci ∈ F ,n > 0

 .

This analysis is conducted over F = GF (2), but its extension to F = GF (q), where

q is prime or power of a prime, is sometimes obvious, as shown in [20].

2.2.1 Characteristic Polynomial

Let V (F) be a set made up of all infinite sequences whose elements are taken from F =

GF (2),

V (F) = {a = (a0, a1, . . .) |ai ∈ F } .

Assuming to have two generic sequences

a = (a0, a1, a2, . . .) ∈ V (f)

b = (b0, b1, b2, . . .) ∈ V (f)

and c ∈ F , we define the addition and scalar multiplication on V (F) as follows

a + b = (a0 + b0, a1 + b1, a2 + b2, . . .)

c · a = (c · a0, c · a1, c · a2, . . .) .

2.2. LFSR Sequences in Terms of Polynomial Rings 13

Introducing the zero sequence 0 = (000 . . .), it is easy to verify that V (F) is a vector

space over F under these two operations. Thus, an LFRS sequence is a sequence, a =

(a0, a1, . . .), in V (F) whose elements satisfy the linear recursive equation

an+k =

n−1∑

i=0

ciak+i , k = 0, 1, (2.6)

For any sequence a = (a0, a1, a2 . . .) ∈ V (F), we define a left shift operator D as follows

Da = (a1, a2, a3, . . .) .

Note that D is a linear transformation of V (F). Generally, for any positive integer i , we

have

D ia = (ai , ai+1, ai+2, . . .) .

By convention, we define D0a = I a = a, where I is the identity transformation on V (F).

Using the D operator, the recursive formula (2.6) becomes

Dna =

n−1∑

i=0

ciD ia

or equivalently

Dna −
n−1∑

i=0

ciD ia = 0. (2.7)

So we can write

f (x) = xn −
(
cn−1xn−1 + . . . + c0

)

f (D) = Dn −
(
cn−1Dn−1 + . . . + c0I

)
, and f (D)a = 0.

and, considering (2.7), we give the following definition.

14 C 2. Linear Feedback Shift Register Sequences

Definition 2.3. For any infinite sequence a ∈ V (F), if there exists a nonzero monic2

polynomial f (x) ∈ F [x] such that

f (D)a = 0,

then a is called a linear recursive sequence, or equivalently LFSR sequence. The polyno-

mial f (x) is referred to as characteristic polynomial of a over F . The reciprocal polyno-

mial is called the feedback polynomial of a.

More details on reciprocal polynomials are reported in [20]. Here, we just give its

definition over GF (2).

Definition 2.4. Let f (x) = xn + cn−1 · xn−1 + . . .+ c1 · x + c0, ci ∈ GF (2) and c0 , 0 (so

c0 = 1), the reciprocal polynomial of f (x) is defined as

f −1(x) ,
xn

c0
· f (x−1) = xn + c1 · xn−1 + . . . + cn−1 · x + 1.

One more definition is needed before proceeding further on.

Definition 2.5. For any nonzero polynomial f (x) ∈ F [x], G(f) represents the set made

up of all sequences in V (F) with f (D)a = 0

G(f) = {a ∈ V (F)|f (D)a = 0, f (x) ∈ F [x]} .

Since f (D) is a linear transformation, G(f) is a subspace of V (F). Furthermore, we

remark that, by convention, the constant polynomial 1 is the characteristic polynomial of

the zero sequence 000

Theorem 2.3. Let f (x) ∈ F [x] be a monic polynomial of degree n . Then G(f) is a linear

space of dimension n . Hence, it contains 2n different binary sequences.

2A monic polynomial is a polynomial in which the coefficient of the highest order term is 1, e.g.: xn +cn−1 ·
xn−1 + . . . + c1 · x + c0.

2.2. LFSR Sequences in Terms of Polynomial Rings 15

Proof. For a sequence

a = (a0, a1, . . . , an−1, an , . . .) ∈ G(f)

since deg(f) = n , when the first n terms are given, all other terms of a can be determined

by (2.6) starting from an . There are 2n ways to choose and n-tuple (a0, a1, . . . , an−1) ∈ F .

Therefore |G(f)| = 2n . �

Note that the sequences in V (F) may or may not be periodic, in particular, applying

Def. 2.3 of LFSR sequences, it is easy to check the periodicity of these sequences, as we

will show in the next section.

Finally, we just remark the key points of this section. More specifically, if a sequence,

a = (a0, a1, a2, . . .), is generated by an n-stage LFSR, the following three equivalent

definitions are verified:

1. a = (a0, a1, a2, . . .) is an output sequence of an LFSR generator with the linear

feedback function

f (x0, x1, . . . , xn−1) =

n−1∑

i=0

c1xi , ci ∈ F

and an initial state (a0, a1, . . . , an−1), so all elements of a satisfy the following re-

cursive relation

an+k =

n−1∑

i=0

ciak+i , k = 0, 1, (2.8)

2. a is a linear recursive sequence that satisfies the above recursive equation, (2.8).

3. There exists a monic polynomial f (x) = xn − ∑n−1
i=0 cix i , with f (x) ∈ F [x], of

degree n such that f (D)a = 0 or, equivalently, a ∈ G(f).

The polynomial f (x) is referred to as characteristic polynomial of a and the reciprocal

polynomial of f (x) is called the feedback polynomial of a.

16 C 2. Linear Feedback Shift Register Sequences

2.3 Minimal Polynomials and M-Sequences

In the previous section, LFSR sequences over F have been associated with polynomials

over F . This result enables us to use the theory of the polynomial ring F [x] to investigate

the periods of LFSR sequences and discuss the minimal polynomials. In this way, it

is possible to define m-sequences, or equivalently LFSR sequences with the maximum

period.

2.3.1 Minimal Polynomials of LFSR Sequences

Let a be an LFSR sequence, so there is a nonzero monic polynomial f (x) such that

f (D)a = 0. (2.9)

Nevertheless, for the fixed sequence a, there are many polynomials for which (2.9) is

verified.

Example 2.2. Assuming to have the LFSR sequence a = 011011 . . ., then both the poly-

nomials f1(x) = x 2 + x + 1 and f2(x) = x 3 + 1 satisfy the property (2.9).

Hence, we want to find the relation among these polynomials, for a fixed LFSR se-

quence a. Therefore, we define

A(a) = {f (x) ∈ F [x]|f (D)a = 0} , (2.10)

in other words, A(a) is made up of all polynomials that verify the condition (2.9). The fol-

lowing theorem gives a set of properties that are verified by all characteristic polynomials

of A(a).

Theorem 2.4. Let a be an LFSR sequence and A(a) be defined as (2.10). Then A(a)

satisfies the following properties

2.3. Minimal Polynomials and M-Sequences 17

1. The zero polynomial belongs to A(a).

2. if f (x), g(x) ∈ A(a), then f (x) ± g(x) ∈ A(a).

3. if f (x) ∈ A(a) and h(x) ∈ F [x], then h(x) · f (x) ∈ A(a).

Proof. We demonstrate all points in the following list.

1. 0a = 0 =⇒ 0 ∈ A(a).

2. Assuming f (x), g(x) ∈ A(a), then

f (D)a = 0 and g(D)a = 0

(f (D) ± g(D)) a = f (D)a ± g(D)a = 0

f (D) ± g(D) ∈ A(a).

3. Assuming f (x) ∈ A(a), then

f (D)a = 0

(h(D) · f (D)) a = h(D) (f (D)a) = h(D)0 = 0.

Hence, all points are proved. �

Since A(a) is closed with respect to all these operations, so A(a) is an algebra. Now,

we can give the definition of minimal polynomial.

Definition 2.6. A monic polynomial of the lowest degree in A(a) is referred to as minimal

polynomial of a over F .

According to Def. 2.6, we remark that the minimal polynomial of the zero sequence

000 . . . is 1, and the polynomial x −1 is the minimal polynomial of any constant sequence,

(1, 1, 1, . . .). Furthermore, it is also possible to demonstrate the following theorem.

18 C 2. Linear Feedback Shift Register Sequences

Theorem 2.5. Let a ∈ V (F) and m(x) be the minimal polynomial of a. Then the minimal

polynomial of a is unique and satisfies the following two properties.

1. m(D)a = 0.

2. For f (x) ∈ F [x], f (D)a = 0 iff m(x) is a divisor of f(x) (also pointed out m(x)|f (x)).

The proof is shown in [20]. Of course, for any a ∈ G(f), f (x) does not need to be the

minimal polynomial of a, and so the following result is obvious.

Corollary 2.1. If f (x) , 0, a ∈ G(f), then the minimal polynomial of a, called as m(x),

divides f (x), or briefly m(x)|f (x).

Proof. According to the definition of G(f) (Def. 2.5), a ∈ G(f) =⇒ f (D)a = 0. So

applying Theorem 2.5, m(x)|f (x). �

we introduce now the concept of irreducibility3 over F[x] to obtain another interesting

result can be obtained.

Definition 2.7. A polynomial f (x) ∈ F [x] is referred to as irreducible over F if f (x) has

positive degree and f (x) = h(x) · g(x) with h(x), g(x) ∈ F [x] implies that either h(x) or

g(x) is a constant polynomial. Otherwise, f (x) is called reducible over F .

Corollary 2.2. If f (x) is irreducible, then f (x) is the minimal polynomial of any nonzero

sequence in G(f).

Proof. Considering that f (x) has only 1 and itself as its factor and the zero sequence has

1 as its minimal polynomial, then f (x) is a minimal polynomial of any nonzero sequence

in G(f). �

According to Def. 2.6, an important result is that the degree of the minimal polynomial

of a is equal to the length of the shorter LFSR generator that can output a. Furthermore,

the degree of a minimal polynomial of a sequence is called the linear span of the sequence,

as shown in the next subsection.
3More details and properties are reported in [20], [35], and [53].

2.3. Minimal Polynomials and M-Sequences 19

2.3.2 Periodicity

For any periodic sequence, a, the following theorem is satisfied.

Theorem 2.6. If a is an ultimately periodic sequence with parameters (u , r), then the

minimal polynomial of a is m(x) = xum1(x) with m1(0) , 0 and m1(x)|(x r − 1). Hence,

it can be generated by an LFSR.

Proof. Note that ak+r = ak , k = u , u + 1, . . ., so

=⇒ (Dr − 1) Du (a) = 0 =⇒ m(x)|xu (x r − 1) .

Writing m(x) = xum1(x), then m1(0) , 0 and m1(x) divides x r − 1. Therefore, a can be

outputted by an LFSR with characteristic polynomial m(x). �

The following corollary immediately follows Theorem 2.6.

Corollary 2.3. If a is a periodic sequence with period r (it means u = 0), then its minimal

polynomial m(x) divides (x r − 1).

Proof. From Theorem 2.6, if a is ultimately periodic, then the minimal polynomial is

m(x) = xum1(x), with m1(0) , 0. In this case u = 0, so the minimal polynomial

becomes m(x) = m1(x). �

Now, we give the following definition.

Definition 2.8. Let a be an ultimately periodic sequence over F . Then the degree of the

minimal polynomial of a is called linear span or linear complexity of a.

Equivalently, the linear span of a periodic sequence is the length of the shortest LFSR

generator that produce the sequence.

Lemma 2.1. Let r be the least period of a. If l is a period of a, then r |l .

20 C 2. Linear Feedback Shift Register Sequences

Proof. Assuming that r and l are two periods of a =⇒ Dra = a and D la = a. So,

applying the division algorithm, we can write

l = q · r + t , 0 6 t < r and q ∈ N,

because r is the smallest integer with this property (r < l). Considering that Dq ·ra = a,

thus

D la = Dq ·r+ta = D t (Dq ·r) a = D ta = a

so t = 0 and r |l . �

Now, we introduce the definition of the period of a polynomial (see also [20]), f (x),

over F . This step is fundamental to characterize m-sequences in terms of their generating

polynomials.

Definition 2.9. For a polynomial f (x) over F , the period of f (x) is the least positive

integer r such that f (x)|(x r − 1).

Hence, denoting by per (a) a period of a sequence a and per (f (x)) a period of a poly-

nomial f (x), we prove the following theorem.

Theorem 2.7. Let a be an LFSR sequence with minimal polynomial m(x).

1. If m(0) , 0, then a is periodic. In this case per (a) = per (m(x)).

2. If a is periodic, then m(0) , 0.

Proof. We prove both these points.

1. Let a be an ultimately periodic sequence over F and with parameters (u , r) and

m(x) be its minimal polynomial. According to Def. 2.1, a is periodic if and only

if u = 0. So, from Theorem 2.6, m(x) = x xm1(x) = m1(x) with m1(0) , 0 and

m1(x)|(x r − 1). Thus, a is periodic if and only if m(x) = m1(x). According to Def.

2.9 and Corollary 2.3, it is proved per(a) = per (m(x)).

2.3. Minimal Polynomials and M-Sequences 21

2. Conversely, if a is periodic, then u = 0 and x r − 1 ∈ A(a). According to The-

orem 2.5, we have m(x)| (x r − 1) =⇒ m(0) , 0, which demonstrates the second

assertion.

So, the theorem is demonstrated. �

Thus far, we have got a criterion for determining whether an ultimately periodic se-

quence is periodic evaluating its minimal polynomial at 0. Now, we want to show the

relationships among the period of a sequence, the period of its minimal polynomial, and

the order of a root of the minimal polynomial when the minimal polynomial is irreducible.

Therefore, we first give a couple of definitions.

Definition 2.10. An element α ∈ F is called a root4 (or a zero) of the polynomial f (x) ∈
F [x], if f (α) = 0.

Definition 2.11. Let G be a group. For α ∈ G , if r is the smallest positive integer such

that αr = 1 , then r is called order of α, denoted by ord(α) = r .

Now, we prove the following important theorem.

Theorem 2.8. Let a be an LFSR sequence with minimal polynomial m(x). Assume that

m(x) is an irreducible polynomial over F = GF (2) of degree n . Let α be a root of m(x)

in the extension field GF (2n)5. Then

per (a) = per (m(x)) = ord (α)

in other words, the period of a sequence a, the period of its minimal polynomial, and the

order of a root of the minimal polynomial of a are equal.

4More details are contained in [20].
5The construction of an extension field GF (2n) is reported in App. A, but more details are contained in

[20].

22 C 2. Linear Feedback Shift Register Sequences

Proof. Noting that m(x) is the minimal polynomial of α and according to Theorem A.2

in App. A, we have per (m(x)) = ord (α). Considering also Theorem 2.7

per (a) = per (m(x)) = ord (α) .

The assertion is established. �

This important result is emphasized here.

The period of an LFSR sequence, a, is equal to the period of its minimal

polynomial m(x). If the minimal polynomial is irreducible, then the period

of the sequence is equal to the order of a root6 α of the minimal polynomial

in the extension field. Briefly, per (a) = per (m(x)) = ord (α).

Thus, introducing the concept of cyclic group, it is possible to provide an algebraic defi-

nition of primitive polynomial (see also [20] and [35]).

Definition 2.12. A multiplicative group G is said to be cyclic if there is an element a ∈ G

such that for any b ∈ G there is some integer i with b = ai . Such an element a is called

a generator of the cyclic group, and we write G =< a >.

Definition 2.13. A generator of a cyclic group GF (2n)∗ (this is a multiplicative group,

without the zero element of GF (2n)) is called a primitive element of GF (2n). An irre-

ducible polynomial over GF (2) having a primitive element in GF (2n) as a root is called

a primitive polynomial over GF (2). Equivalently, an irreducible polynomial f (x) of de-

gree r is said to be primitive if the smallest positive integer p for which f (x) divides xp +1

(or xp − 1) is p = 2r − 1.

Note that not all irreducible polynomials are primitive ([20] and [53]). We give an

example.

6All roots have the same order [20].

2.3. Minimal Polynomials and M-Sequences 23

Example 2.3. According to Def. 2.7, the polynomial f (x) = x 4 + x 3 + x 2 + x + 1 is

irreducible over GF (2), so it can be used to generate the field GF
(
24

)
. However, it is

not a primitive polynomial. Indeed, let α be a root of f (x), according to Def. 2.13, its

order should be 24 − 1 = 15, because α is a primitive element in GF
(
24

)
. Nevertheless,

it possible to prove that ord (α) = 5 < 24 − 1 = 15, so f (x) is not a primitive polynomial

over GF (2).

2.3.3 M-Sequences

This section defines m-sequences in terms of the previous properties and theorems based

on polynomial field theory, [20].

Definition 2.14. Two periodic sequences a = {ai } and b = {bi } are called shift equivalent

if there exists an integer k such that

ai = bi+k , ∀i > 0.

In this case, we write a = Dkb, or a v b. Otherwise, they are referred to as shift distinct.

A set in which all sequences are shift equivalent is called a shift-equivalent class. One

shift-equivalent class of G(f) corresponds to one cycle of the states in the state diagram

of the LFSR with f (x). The number of shift-equivalent class is determined as follows.

Theorem 2.9. Let f (x) be an irreducible polynomial over GF (2) of degree n . Then the

number of shift-equivalent classes of nonzero LFSR sequences in G(f) is given by

2n − 1
per (f (x))

.

This theorem shows that for an LFSR with an irreducible polynomial there are (2n−1)
per(f (x))

sequences with period equal to per (f (x)) and one sequence with period 1, that is the zero

sequence. An example is useful to well understand this theorem.

24 C 2. Linear Feedback Shift Register Sequences

Example 2.4. Considering the polynomial f (x) = x 4 + x 3 + x 2 + x + 1 ∈ F [x] (see also

Ex. 2.3), this is irreducible with per (f (x)) = 5. Hence, the number of shift-equivalent

class is
2n − 1

per (f (x))
= 3,

(
n = 4, per (f (x)) = 5

)
,

or, equivalently, 3 sequences with period 5, as shown in Tab. 2.1, where each class is

denoted by Gi , with i = 1, 2, 3. Thus we have

G(f) = {0} ∪G1 ∪G2 ∪G3.

As consequence of Theorem 2.9, we have the following corollary.

Corollary 2.4. If f (x) is primitive over GF (2) of degree n , then any nonzero a ∈ G(f)

has period 2n − 1 and

G(f) =
{
D ia|0 6 i 6 2n − 2

}
∪ {0}.

This result clearly means that if f (x) is a primitive polynomial over GF (2) of degree

n , then the number of shift-equivalent class in G(f) is always

2n − 1
per (f (x))

= 1

because per (f (x)) = 2n − 1. So, m-sequences are defined as follows.

Definition 2.15. A binary sequence, a, generated by an n-stage LFSR is called a maximal

length sequence if it has period 2n−1, or, equivalently, if its polynomial, f (x), is primitive,

so satisfying the following equation

per (a) = per (f (x)) = ord (α) = 2n − 1.

where α is a polynomial root in the extension field GF (2n).

2.3. Minimal Polynomials and M-Sequences 25

Table 2.1: Shift-equivalent class of G(f).
G1 G2 G3

00011 01010 11110
00110 10100 11101
01100 01001 11011
11000 10010 10111
10001 00101 01111

According to Corollary 2.4 and Def. 2.15, in order to generate an m-sequence of

period 2n − 1 over F = GF (2) by an LFSR, we only need to select a primitive polyno-

mial over F of degree n as the characteristic polynomial (also referred to as generating

polynomial) of this LFSR sequence. This result is summarized in the following theorem,

[53].

Theorem 2.10. An LFSR generator of a given memory, r , produces a sequence of el-

ements from GF (2), with the largest period, 2r − 1, iff its characteristic polynomial is

primitive over GF (2).

2.3.3.1 M-Sequence Properties

A large bibliography is provided on m-sequence correlation properties and their applica-

tions ([3], [14], [18], [19], [20], [21], [35], [36], [41], and [53]). Therefore, here we just

give an overview of the statistical properties of these codes ([14], [41], and [53]).

Property 2.1. A maximal length sequence, a, contains more ones than zeros. The number

of ones is 1
2 · (N + 1), where N = per (a) = 2r − 1 and r is the degree of its characteristic

polynomial.

Property 2.2. Let {an } be an m-sequence over GF (2) with linear span r (polynomial

degree). Then for any τ, with τ , 0 mod 2r − 1, the difference of the m-sequence {an }

26 C 2. Linear Feedback Shift Register Sequences

and its τ-shift {an+τ} is another shift
{
an+τ′(τ)

}
of the same m-sequence. That is

an+τ′(τ) = an+τ ⊕ an ∀n ,

where τ′(τ) is defined for all τ , 0 mod 2r − 1 and ⊕ is modulo-2 sum. This property is

referred to as shift-and-add property.

Property 2.3. If a window of width r is slid along the m-sequence (with period N =

2r − 1) for N shifts, each r -tuple, except the all zero r -tuple, appears exactly once.

In data communication, binary sequences are often mapped on polar values (or BPSK

values)

yk = (−1)ak , ∀k ∈ N and ak ∈ GF (2) = {0, 1}.

We introduce now the periodic autocorrelation function of the sequence y as

R(k) =
1
N
·

N∑

i=1

yi+k · y∗i
 (2.11)

where N is the period. It is easy to show the following correlation properties of m-

sequences.

Property 2.4. The period autocorrelation function R(k) of a BPSK-mapped m-sequence

(with period N) is two-valued and is given by

R(k) =

1, k = l ·N
−1
N , k , l ·N

where l ∈ Z7.

Nevertheless, in realistic contexts, correlation calculations are carried out over M

7Z is the set of integers.

2.3. Minimal Polynomials and M-Sequences 27

symbols, such that

r � M � N = 2r − 1

where r is the polynomial degree and N is the sequence period. So, the partial-period

correlation is defined as ([41] and [53])

r (M ,n , τ) =
1
M
·

M−1∑

i=0

yn+i+τ · y∗n+i

 .

The partial-period correlation value depends on the initial location, n , in the sequence,

where the correlation computation begins as well as on the window length M . Therefore,

this correlation function is statistically characterized by its first and second time-average

moments, that are denoted by 〈�〉 and are calculated as follows respectively, [53]

〈r (M ,n , τ)〉 =
1
N
·

N∑

n=1

r (M ,n , τ)

〈|r (M ,n , τ)|2〉 =
1
N
·

N∑

n=1

|r (M ,n , τ)|2

where N is the sequence period. Hence, the following property is satisfied ([41] and [53]).

Property 2.5. Let y be a BPSK-mapped m-sequence of period N , then the first and

second time-average moments of the partial-period correlation function of y are given by

〈r (M ,n , τ)〉 =

−1
N , τ , 0 mod N

1, τ = 0 mod N

〈|r (M ,n , τ)|2〉 =

1
M ·

(
1 − M−1

N

)
, τ , 0 mod N

1, τ = 0 mod N

for M 6 N .

Finally, an important class of m-sequences is characterized by generating polynomials

28 C 2. Linear Feedback Shift Register Sequences

with only three coefficients

f (x) = xn + x k + 1, with n , k ∈ N∗ and n > k

referred to as trinomials. In this case, their implementation is very simple, because the

LFSR generator is made up of a n-stage SR and a single exclusive-or gate (typically de-

noted by ⊕). Thus, it is more efficient to use a primitive trinomial for generation of an

m-sequence than to use generating polynomials characterized by more nonzero coeffi-

cients.

2.4 Gold Codes

The main application of SS systems is to perform CDMA, so sharing the scarce channel

resources. This is achieved by associating a code to each user. More in detail, each signal

is spread by a pre-assigned code that identifies just one particular user. So, the overall SS

signal is ideally a combination of all these spread signals and the Additive White Gaussian

Noise (AWGN). In this way, all users can transmit/receive simultaneously using the same

band of frequencies.

At the receiver side, a despreading operation is necessary to track and process the

desired user signal. This operation is basically performed by a correlation between the in-

coming signal and local replicas of the desired spreading code. Of course, in this context,

all other spread signals will not be despread and will cause interference in the considered

signal (or user channel). Therefore, the main goal of a SS system designer, for a multiple-

access system, is to search a set of spreading codes such that as many users as possible

can share a band of frequencies with the minimum mutual interference.

The amount of interference from a user employing a different spreading code is re-

lated to the cross-correlation between the two different codes, thus the Gold codes8, [18]

8Gold codes were invented in 1967 at the Magnavox Corporation.

2.4. Gold Codes 29

and [19], were specifically introduced for multiple-access applications of SS systems.

Relatively large sets of Gold codes exist which have well controlled cross-correlation

properties. Furthermore, the large difference between the in-phase autocorrelation func-

tion 2N − 1 (where N is the sequence period) and the cross-correlation function of any

two Gold sequences makes these codes useful in CDMA communication systems.

The full period cross-correlation between two spreading codes, an and bn , with period

N is defined

C (k) =
1
N
·
N−1∑

n=0

an+k · b∗n . (2.12)

Roughly speaking, this is a list of all possible correlation values C (k) as a function of

the temporal index k that yields that particular cross-correlation figure. In the case an =

bn the cross-correlation coincides with the periodic autocorrelation and (2.12) becomes

(2.11).

Definition and properties of Gold codes are reported in the following section. Further

details can be found in [3], [18], [20], [41], and [52].

2.4.1 Definition and Properties

The Gold codes are large families of linear binary sequences with uniformly low cross-

correlation values. More specifically, in [18] and [19], Gold described a class of pairs of

m-sequence whose cross-correlation function have three low values which can be deter-

mined precisely.

Consider an m-sequence that is represented by a binary vector a of period N , and

a second sequence b obtained sampling every q th symbol of a. The second sequence is

said to be a decimation of the first, and the notation b = a[q] is used to indicate that

b is obtained sampling every q th symbol of a. The decimation of an m-sequence may

or may not yield another m-sequence. When the decimation yields an m-sequence, the

decimation is said to be a proper decimation. It has been proven in [52] that b = a[q]

has period N if and only if gcd (N , q) = 1 (where gcd is the greatest common divisor),

30 C 2. Linear Feedback Shift Register Sequences

and the proper decimation by odd integers, q , will give all the m-sequences of period N .

Thus, any pair of m-sequences having the same period N , can be related by b = a[q] for

some q .

The cross-correlation of pairs of m-sequences computed using (2.12) can be three-

valued, four-valued, or many-valued. In particular, certain special pairs of m-sequences,

whose cross-correlation is three-valued (see also [41])

C (k) ∈
{
− 1

N
t(r),− 1

N
,

1
N

[t(r) − 2]
}
,

where

t(r) =

1 + 2(r+1)/2, for r odd

1 + 2(r+2)/2, for r even

the code period is N = 2r − 1, and r is their characteristic polynomial degree, are called

preferred pairs of m-sequences. Finding preferred pairs is necessary to define a set of

Gold codes. So, we give the following three conditions that are sufficient to define a

preferred pair of m-sequences.

1. r , 0 mod 4, this means that r is odd or r = 2 mod 4;

2. b = a[q] where q is odd and either q = 2k + 1 or q = 22·k − 2k + 1;

3. gcd(r , k) =

1, for r odd

2, for r = 2 mod 4
.

More details and an example to find a preferred pair of m-sequences are shown in [41].

Gold sequences are clearly defined by the following theorem, [3].

Theorem 2.11. Let f (x) and g(x) be a preferred pair of primitive polynomials over

GF (2) of degree r , r , 0 mod 4. The LFSR, with characteristic polynomial f (x) · g(x),

will generate a set of 2r + 1 different sequences of period N = 2r − 1. Any pair of

2.4. Gold Codes 31

sequences in this set has a three-valued cross-correlation, that is

C (k) ∈
{−1

N
t(r),

−1
N
,

1
N

[t(r) − 2]
}
. (2.13)

These sequences are commonly called Gold codes.

Indeed, let a and b represent a preferred pair of m-sequences having period N =

2r − 1. The family of codes

{
a,b, a + Db, a + D2b, . . . , a + DN−1b

}

is called the set of Gold codes for the preferred pair a and b. The notation D j b repre-

sent the cyclic shift of the m-sequence b by j units (or equivalently j chips). As shown

in Theorem 2.11, any set of Gold codes has the property that any pair of sequences in

the set have a three-valued cross-correlation which takes on the values defined in (2.13).

Furthermore, the number of sequences in any family of Gold codes is 2r + 1.

Example 2.5. A typical implementation used to generate Gold codes is illustrated in Fig.

2.2. More in detail, the picture shows the configuration used to obtain the GPS/SBAS

Gold code set. The two m-sequences are

Pc′(D) = D10 + D3 + 1

Pc′′(D) = D10 + D9 + D8 + D6 + D3 + D2 + 1

their degree is r = 10, so all the sequences of this set have period N = 2r − 1 = 1023 and

the total number of codes is 2r + 1 = N + 2 = 1025. The equivalent LFSR generator is

characterized by the following polynomial of higher degree

P (D) = Pc′ (D) · Pc′′(D)

= D20 + D19 + D18 + D16 + D11 + D8 + D5 + D2 + 1

32 C 2. Linear Feedback Shift Register Sequences

Figure 2.2: GPS/SBAS Gold code generator.

that provides the tap configuration of the LFSR generator of this Gold code set. This

second implementation can also be used to generate the same set of N + 2 sequences,

simply changing the initial word of its SR.

Chapter 3
Signal Model and Detection

Algorithms

This chapter provides a mathematical description of the communication system and the

signal model that will be considered to compare the iMP detector to the standard correlation-

based acquisition algorithms (full-parallel, hybrid, and simple-serial searches). Further-

more, the second part of this chapter gives an overview of the standard detectors and

presents the motivations that allow the application of MP algorithms to acquire spreading

sequences. Thus, the outline is below.

• Section 3.1 contains a description of a simplified DS/SS communication system,

including a mathematical characterization of the signal model.

• Section 3.2 is an overview of detection algorithms typically used to acquire SS

codes. It also contains an introduction to MP algorithms and their application as

detectors.

33

34 C 3. Signal Model and Detection Algorithms

Figure 3.1: DS/SS communication system model.

3.1 Communication System

This section gives an overview of the communication system model that will be used to

evaluate the performance of iMP algorithms to acquire PN sequences. The base-band

(BB) representation of a DS/SS communication system is reported in Fig. 3.1. It is made

up of: a BB transmitter, that outputs a predetermined spreading sequence1, a channel that

introduces a propagation delay (∆ = 0), an additive white gaussian noise (AWGN), and

finally a BB receiver that runs two important stages: acquisition and tracking stage. The

first one is addressed to detect a SS signal, performing a rough estimation of its code

delay. Then, the tracking stage exploits this coarse synchronization to run a DLL that

improves the alignment between the transmitted spreading sequence and its local replica.

This step is fundamental to avoid catastrophic SNR degradation and correctly process

the incoming signal. The following sections provide more details on each stage of the

proposed communication system model (Fig. 3.1).

3.1.1 Base-Band Transmitter

The BB transmitter is basically made up of a PN sequence generator that produces pseudo-

random binary sequences, c (each element is ck ∈ {0, 1}) and a BPSK mapper that outputs

1Only LFSR sequences are considered.

3.1. Communication System 35

Figure 3.2: General representation of an r -stage LFSR generator.

the correspondent antipodal sequences, y, where each component is yk = (−1)ck . Only

LFSR generators are taken into account in this thesis. A general representation of an

LFSR generator is in Fig. 3.2. As shown in the picture, at the generic time k , assuming

that ck is the SR output and ck+i (with 0 6 i 6 r) is the content of the i th register, the

following parity equation is verified

0 = gr · ck ⊕ gr−1 · ck+1 ⊕ gr−2 · ck+2 ⊕ . . .
⊕ g2 · ck+r−2 ⊕ g1 · ck+r−1 ⊕ g0 · ck+r

=

r⊕

i=0

gr−i · ck+i

(3.1)

where ⊕ is modulo-2 addition and gi ∈ {0, 1}, 0 6 i 6 r , are the feedback coefficients (also

referred to as taps). The most common way to represent an r -stage LFSR is providing its

generating polynomial (that also gives the tap configuration of the code) as

P (D) = g0 + g1 ·D + . . . + gr−1 ·Dr−1 + gr ·Dr

=

r∑

i=0

gi ·D i
(3.2)

where D is the unit delay operator2, and r is the polynomial degree. For a given degree

r , g0 and gr are always 1.

After the detailed introduction of m-sequences and Gold codes performed in Chapter

2It is mathematically defined left-shift operator (see Chap. 2 and [20]).

36 C 3. Signal Model and Detection Algorithms

2, we highlight here that there also exits an equivalent way for producing Gold sequences

using a single higher-order LFSR generator. Indeed, as demonstrated in [18], a Gold

code can be generated by an r -stage LFSR unit (the scheme is in Fig. 3.2) with the tap

configuration

P (D) = Pc′(D) · Pc′′(D) (3.3)

where Pc′ (D) and Pc′′(D) are the primitive polynomials that specify the feedback con-

nections of the two q-stage SRs, where q = r
2 , that output the generating m-sequences c′

and c′′ (as shows in Fig. 2.2).

Example 3.1. The two m-sequence polynomials of GPS/SBAS Gold sequences are

Pc′ (D) = D10 + D3 + 1 (3.4a)

Pc′′ (D) = D10 + D9 + D8 + D6 + D3 + D2 + 1 (3.4b)

q = 10 implies r = 2 · q = 20. From (3.3), the high-order LFSR (or Gold generating

polynomial) is

P (D) = D20 + D19 + D18 + D16 + D11 + D8 + D5 + D2 + 1 (3.5)

this important result allows Gold codes to be treated as LFSR sequences.

Note that typically the equivalent LFSR for Gold sequences (e.g., Eq. (3.5) for

GPS/SBAS codes) is not a sparse (dense) generator, because it has more then 4 coeffi-

cients.

3.1.2 Communication Channel

Referring to Fig. 3.1, the incoming BB spreading signal at the receiver side is found to be

zk =
√

Ec · yk + nk =
√

Ec · (−1)ck + nk (3.6)

3.1. Communication System 37

where zk is the noisy sample received by detection unit at time k Tc (Tc is the chip time),

yk is the antipodal modulation of the spreading sequence chip ck (N is the sequence

period), and nk is an additive white gaussian noise (AWGN) with mean value 0 and

variance N0
2 . No data modulation is shown, since we are assuming to acquire a pilot signal

with coherent detection. This is admittedly a simplified representation, that we use here

to ”isolate” the issue we are concerned with as is customary done in the spread-spectrum

literature (see also [10], [46], [47], [53], [59], [61], and [62]).

3.1.3 Base-Band Receiver

As mentioned, synchronization between the transmitter and the receiver is the key point

to guarantee the correct functioning of a DS/SS communication system. More in detail,

this synchronization is achieved when, at the receiver side, the transmitted code is aligned

with its local replica, in such a way that it is possible to carry out despreading and then

process the data. Of course, any misalignment can cause catastrophic degradations of the

SNR, making fruitless the next data-processing.

As depicted in Fig. 3.1, to get a fine synchronization two receiver stages are neces-

sary: the acquisition and tracking stages. The acquisitions stage is addressed to detect

the incoming sequence performing a preliminary rough estimation of its code phase. This

operation is generally performed by a detection unit that correlates the received signal

with local replicas of its PN sequence. More specifically, the search is typically carried

out shifting the local code until the maximum correlation peak is got or a fixed threshold

is crossed. When this happens, the incoming sequence is acquired and the receiver goes

into a verification mode ([26], [27], [44], [46], and [53]) that checks the correct align-

ment. This operation is commonly done executing a longer correlation. In both cases, the

probability to a have a wrong decision during the verification mode can be neglected. Of

course, if the test is not passed, a new acquisition try is carried out.

Assuming that the incoming sequence is acquired, the tracking stage is run. An ex-

38 C 3. Signal Model and Detection Algorithms

Figure 3.3: An example of a tracking stage in a DS/SS receiver.

ample of a typical architecture of a DS/SS receiver during this stage is shown in Fig.

3.3 (see [5], [11], [15], and [48]). During the tracking phase, the previous coarse syn-

chronization3 is exploited by a DLL to improve the code phase estimation and ultimately

lock the received spreading code. In this way, the correlation module (Fig. 3.3) performs

the despreading operation without any appreciable degradation of SNR, so recovering all

code gain ([39], [53], and [54]). The estimations of carrier frequency and phase offsets

are carried out by a Phase/Frequency Locked-Loop (PLL and FLL), [15], [39], and [48].

3.2 Detection Unit

This section contains an overview of the standard acquisition algorithms, used to detect

SS sequences, and finally introduces the iMP detector. More specifically, full-parallel,

hybrid, and simple-serial searches are described and characterized in terms of correct

detection (CD), missed detection (MD), and false alarm (FA) probabilities ([32], [41],

[44], and [53]), algorithm complexity, and acquisition time performance ([26], [27], and

[44]). Then, the last part of this section gives the motivations that allow to use iMP-based

3Typically, the estimation error of a generic code phase is in modulo less than Tc/2, where Tc is the chip
time. With this assumption, the estimation error is contained in the acquisition range of the DLL S curve, so
guaranteeing the correct functioning of this device (see also [12], [13], [27], [28], [39], [53], and [54]).

3.2. Detection Unit 39

algorithms to detect PN sequences, and a brief description of this new kind of detection

unit is presented.

3.2.1 Single-Dwell Acquisition Algorithms

Correlation-based detectors, typically used to acquire PN sequences, are widely studied

in literature: [7], [26], [27], [32], [41], [44], [53], [55], [57], and [64]. Therefore, this

section just provides an overview of these techniques, showing their implementation and

performance.

The common characteristic of all standard detectors is the correlation between the

received signal and local replicas of the transmitted PN sequence. Thus, considering the

assumption of a coherent pilot channel, that is done in Section 3.1.2, and the mathematical

representation of the incoming signal, (3.6), a simplified representation of one correlation

branch of an acquisition unit is shown in Fig. 3.4. In particular, the integration time is

defined dwell time and its value is

τd = M · Tc (3.7)

where M is the number of observations and Tc is the chip time. These algorithms are

called single-dwell because they are characterized by just one integration stage (Fig. 3.4)

with respect to the multiple-dwell algorithms in which more integration stages are sequen-

tially performed in order to improve the performance (more details are given in [53]).

The code-phase search is carried out shifting the local code until a rough4 alignment

between the transmitted sequence and its local replica is achieved. When this happens,

a suitable decision unit should detect the correlation peak and run a verification mode

to check if a correct detection has been got ([27], [44], [46], and [53]). This last step

is fundamental to avoid that a wrong decision which could cause huge delays due to a

tracking stage that tries to process a misaligned incoming signal.

4Genarally, it means an error in modulo less then one-half chip.

40 C 3. Signal Model and Detection Algorithms

Figure 3.4: A general design of a coherent single-dwell detector.

The verification mode is typically implemented via a long correlation. In other wordS,

the incoming signal is first despread and then the correlation is compared to a preset

threshold. Of course, such solution adds a further delay to the acquisition time, that is

called penalty time, τpt . Generally, this figure is assumed to be (using the dwell time

definition (3.7))

τpt , k · τd = k ·M · Tc (3.8)

where k ∈ N∗ (integer larger than 0), and its value is a characteristic parameter of the

receiver that depends on the implementation of the verification stage.

There are three main architectures to perform the code delay (also called code phase)

search. Those are: full-parallel, hybrid, and simple-serial searches. More details on those

algorithms are reported in the following sections.

3.2.1.1 Full-Parallel Search

The full-parallel search carries out the ML estimation of the code phase through an ex-

haustive search over all possible code delays, yielding the estimate

ŷ = arg max
yi

[
p (z|yi)

]
, with i = 0, 1, . . . ,N − 1 (3.9)

3.2. Detection Unit 41

where p (z|yi) is the likelihood of yi and z that are two vectors, respectively, made up of

M chips5, yk , and M soft observations, zk , as defined in (3.6).

Consider the coherent pilot channel reported in Fig. 3.1 and let N be the period of the

transmitted PN sequence. The architectural design of a full-parallel detector is as in Fig.

3.5, where the number of correlation branches (also referred to as fingers) BFP is N . Each

finger is univocally associated to a code phase of the local replica of the considered PN

sequence. The decision unit, selecting the finger with the maximum correlation figure,

chooses the correspondent code phase estimation. This is in agreement with the ML

estimate algorithm (3.9).

Assuming to process M observations (dwell time τ = M Tc), the complexity CFP is

computed as the total number of sum operators per acquisition try

CFP � BFP ·M = N ·M (3.10)

where BFP = N is the sequence period. In case of an m-sequence, the period depends

on the degree, r , of its primitive polynomial. Thus, N = 2r − 1. So, using (3.10), the

complexity becomes

CFP � N ·M = (2r − 1) ·M .

The probabilities of correct and wrong acquisition, respectively calledPCD andPWD ,

for full parallel search are computed approximately using the model in (3.6). The results

are ([10], [41], and [53])

PCD =

∫ +∞

−∞

[
1 − Q

(
w +

√
2 ·M · (Ec/N0)√

2 · (Ec/N0) + 1

)]N−1

· e−
w2
2√

2 · π
dw

PWD = 1 − PCD

where Q (�) is the complementary cumulative distribution function of a standard Gaussian

5With an antipodal modulation, yk = (−1)ck .

42 C 3. Signal Model and Detection Algorithms

Figure 3.5: A simplified scheme of a full-parallel algorithm.

random variable.6

Finally, the mean and variance of its acquisition time can be evaluated using the fol-

lowing equation (see also [46])

µFP

Tc
=

k + 1
PCD

·M (3.11a)

σ2
FP

T 2
c

=
(k + 1)2

P2
CD

·M 2 · (1 − PCD) (3.11b)

The proof is easy got following the analysis in [26], [27], and [44].

6The Q-function is defined

Q (x) ,
∫ +∞

x

e−α2/2
√

2 π
dα.

3.2. Detection Unit 43

3.2.1.2 Simple-Serial Search

With respect to the full-parallel search, the simple-serial search is the opposite solution.

Indeed, it is characterized by one correlation branch (one finger) and the right alignment

is obtained shifting the local code until the correlation values crosses a prefixed threshold.

Its block scheme is shown in Fig. 3.6.

As in the previous section, assuming to collect M observations, the complexity of a

simple-serial search, CSS , is the total number of sum operators per acquisition try

CSS � M . (3.12)

The probabilities of correct, missed detection and false alarm, PCD , PMD , and PFA

respectively, for simple-serial search are

PCD = Q

[
λ −

√
Ec

]
·
√

2 ·M
Ec

· (Ec/N0)

PMD = 1 − PCD

PFA = Q

λ ·
√

2 ·M · (Ec/N0)
Ec · [2 · (Ec/N0) + 1]

 .

where λ is the threshold, Ec/N0 is the SNR, and Ec is the chip energy. These results are

easily proved following the guidelines reported in [10], [44], and [53].

Finally, defining q as the number of cells, [26], to be searched (of course, it depends on

sequence period, N , and the search step7 of a simple-serial search), the mean and variance

of the simple-serial acquisition time can be evaluated using the following equation (see

7The search step is typically one or one-half chip.

44 C 3. Signal Model and Detection Algorithms

Figure 3.6: A simplified scheme of a simple-serial algorithm.

also [46])

µSS

Tc
=

2 · (k · PCD + 1) + (q − 1) · (k · PFA + 1) · (2 − PCD)
2 · PCD

·M (3.13a)

σ2
SS

T 2
c

≈ M 2 · q2 · (k · PFA + 1)2 ·

1
12
− 1
PCD

+

(
1
PCD

)2 (3.13b)

where q � 1 and q � k · (k · PFA + 1). The proof is reported in [26], adding the penalty

time (3.8) of the verification stage to both cases of correct detection and false alarm.

3.2.1.3 Hybrid Search

The hybrid search is a trade-off between the two previous algorithms. Its general design is

shown in Fig. 3.7. It is characterized by BH correlation branches (where 1 < BH < N and

N is the sequence period) each one associated with a particular code phase of the local

code. The decision unit selects the maximum correlation value that crosses a prefixed

threshold, λ (where λ > 0), otherwise all local replicas of the sequence are shifted.

Assuming to collect M observations, the complexity of a hybrid search, CH , is the

total number of sum operators per acquisition try

CH � M · BH . (3.14)

3.2. Detection Unit 45

Of course

• if BH = BFP = N , where N is the sequence period, then CH = CFP ;

• if BH = 1, then CH = CSS .

Defining

α , Q

[
λ −

√
Ec

]
·
√

2 ·M
Ec

· (Ec/N0)

β(ν) , Q
(
ν +
√

2 ·M · (Ec/N0)√
2 · (Ec/N0) + 1

)

ξ , Q

λ ·
√

2 ·M · (Ec/N0)
Ec · [2 · (Ec/N0) + 1]

the probabilities of correct, missed, wrong detection, and false alarm, PCD , PMD , PWD ,

and PFA
8 respectively, for the hybrid search are

PCD = α ·
∫ +∞

−∞

[
1 − β(ν)

]BH−1 · e−
ν2
2

√
2 · π

dν (3.15a)

PMD = [1 − α] · [1 − ξ]BH−1 (3.15b)

PWD = 1 − PCD − PMD (3.15c)

PFA = ξ ·
∫ +∞

−∞
[1 − Q (ν)]BH−1 · e−

ν2
2√

2 · π
dν. (3.15d)

The proof can be achieved following the considerations reported in [44], [53], and [64].

It is easy to check that if λ → −∞ and BH = N then the hybrid performance tends to

full-parallel one, and if BH = 1 then the hybrid tends to simple-serial.

Finally, defining q as the number of cells to be searched, the mean and variance of its

8We assume to have a wrong detection, when one finger is aligned and a different finger is elected to be
synchronized. While false alarm happens when none local replica is synchronized with the incoming sequence,
but the threshold is crossed by a correlation peak. Thus, the finger, which generates that peak, is considered
synchronized.

46 C 3. Signal Model and Detection Algorithms

acquisition time can be evaluated using the following equation (see also [46])

µH

Tc
=

[2 (k · PCD + 1) + (q − 1) (k · PFA + 1) (2 − PCD) + 2 · k · PWD] M
2 · PCD

(3.16a)

σ2
H

T 2
c

≈ µH

Tc
+ Γ1 + Γ2 + Γ3 (3.16b)

where

Γ1 , −M · (k + 1)

Γ2 ,
M
PCD

{(M − 1) (1 − PCD) + k (M k + 2 M − 1)PWD }

+
M
PCD

{[M − 1 + k (k M + 2 M − 1)PFA] (1 − PCD) (q − 1)}

+
M
PCD

{2 M (q − 1) (1 + k PFA) (1 − PCD + k PWD)}

+
M
PCD

{
M (q − 1) (q − 2) (1 − PCD) (1 + k PFA)2

}

+

(
M
PCD

)2

{k [PWD + PFA (1 − PCD) (q − 1)] + q (1 − PCD)}2

Γ3 ,
1
12

M (q − 1)
{
−6 (1 + k PFA) + M

[
1 + k 2 PFA (6 + PFA (q − 5))

]}

+
1
12

M (q − 1) {q + 2 k PFA (q + 1)} .

3.2.2 Detection with MP-Based Algorithms

As shown in Section 3.2.1, all standard detection algorithms operate by correlating the re-

ceived signal with shifted local replicas of the incoming PN code, until the right alignment

is obtained ([53], [42], and [44]).

A new approach is proposed in [10], [47], [59], and [62], that is based on a general-

ization of the standard decoding problem. Consider the M -dimensional received vector,

3.2. Detection Unit 47

Figure 3.7: A simplified scheme of a hybrid search.

z = [z0, z1, . . . , zM−1], the ML detection algorithm can be formulated as

ŷ = arg max
yi

[
p (z|yi)

]
, with i = 0, 1, . . . ,N − 1

where yi is a vector that contains M shifted chips of the transmitted PN sequence, and

p (z|yi) is the likelihood function of yi and z. Instead of casting our problem into one of

delay estimation, we stick to a detection approach. Indeed, we have to search into a set

of N different sequences corresponding to all possible shifts of the considered spreading

code. This problem is definitely similar to decoding of a block code, in which the ML

decoder selects the codeword yi (among a set of N different codewords that could have

been transmitted) that maximizes p (z|yi), [49] and [35]. So, the equivalence between

acquisition and decoding is clearly proved.

48 C 3. Signal Model and Detection Algorithms

Following the approach of iterative decoding of modern codes ([4], [6], and [17]), an

ML algorithm can be implemented by a MP algorithm run on a graphical model without

cycles, called tree graph. Unluckily, these optimal algorithms are often too complex to

implement, so graphical models with cycles (e.g., Tanner graphs, TGs), [56] and [60], are

commonly used. Indeed, these models with cycles yield sub-optimal solutions with lower

complexity, and it has been experimentally observed that, iterating the MP on a proper

model design, the performance can be close to that of the ML algorithm. These graphical

models are, basically, made up of sets of variable nodes, directly associated to incoming

soft information, and check nodes, that identify the parity equations (local constrains)

verified by the transmitted code. Unfortunately, a systematic method for designing the

best graphical model for a given specified code is not known. Complete treatments on

standard MP algorithms are reported in [1], [9], [34], [35], [37], and [60]. Roughly

speaking, an iMP algorithm passes soft information between nodes in its graph, and each

iteration ends when all nodes are activated. Hence, in order to correctly implement an iMP

algorithm, one must generate a graphical model, on which this algorithm is run, define its

activation schedule, which is the order that is established to activate all variable and check

nodes, including when the algorithm is terminated. Typically, these algorithms end either

when their estimated vectors verify all parity checks or when the max number of iteration,

IMAX , is obtained. The last step is to select the processing used to perform the message

updating. As reported in [9], [34], and [60], there are two main algorithms: Sum-Product

(SP) and Min-Sum (MS) algorithms. We will consider the Min-Sum algorithm because it

is simpler and does not require an estimate of the operating SNR. So, the key points to

configure an iMP algorithm are summarized below.

• Graphical Model - that is typically a loopy graph, with a complexity lower than a

tree graph.

• Activation Schedule - that is the set of rules that, for every iteration, establishes the

activation order of all nodes in a graph. It also includes the end condition of the

3.2. Detection Unit 49

iMP (e.g. IMAX).

• Message-Updating Algorithm - Sum-Product or Min-Sum algorithms.

The next chapter is fully addressed to the iMP detector characterization. In particular,

we will give a description of the algorithm, its implementation, and the complexity. We

also evaluate its acquisition time performance, using the Markov chain theory ([26], [27],

[40], [44], and [46]).

Chapter 4
Message Passing Algorithms to

Detect Spreading Codes

This chapter introduces a new procedure to acquire spreading codes based on MP algo-

rithms. Considering that a large bibliography is provided on MP and its applications in

modern decoding theory ([1], [4], [6], [9], [17], [34], [35], [37], [56], and [60]), our at-

tention will be mainly focused on acquisition aspects that characterize an iMP detector.

More specifically, the outline of the chapter is the following.

• Section 4.1 contains the architectural design of an iMP detector.

• Section 4.2 gives a general overview of MP algorithms, focusing on the implemen-

tation and evaluation of the complexity of loopy graphs, [47] and [63].

• Section 4.3 reports an analysis, based on the Holmes seminal work (reported in

[26] and [27]), of the acquisition time performance of an iMP detector, [46].

• Section 4.4 presents algorithms to search trinomial multiples of primitive polyno-

mials that will be used to generate sparse graphical models.

51

52 C 4. Message Passing Algorithms to Detect Spreading Codes

Figure 4.1: Iterative Detection Unit with an iMP algorithm.

4.1 Iterative Detection Unit

This section shows the architectural design of a coherent iMP detector. This unit is also

referred to as iterative detection unit (iDU). All main phases of the iDU are shown and

described, and their time delays are also provided. This last point is fundamental to

perform the analysis of the acquisition time (Section 4.3).

4.1.1 Architectural Design

The basic architecture of a coherent iMP detector (also called iDU) is shown in Fig. 4.1.

As the picture shows, it is made up of an input buffer (IB), to store the received vector z, an

iterative processing unit (iPU), that runs the iMP algorithm, which is the core of the iDU,

and a parity control unit (PCU), that stops the acquisition procedure when the estimated

binary vector verifies all the parity equations, otherwise a new iteration is carried out until

the maximum number of iterations, IMAX , is achieved.

More in detail, considering the communication system shown in Fig. 3.1, a prede-

termined LFSR sequence is transmitted through an AWGN channel. The mathematical

representation of the signal is (3.6). At the receiver side, an incoming vector of M ob-

servations, z, (each element, zk , is characterized in (3.6)) is stored in the IB. So, let Tc

4.1. Iterative Detection Unit 53

be the chip time of a generic zk element (the chip rate is Rc = 1/Tc), the required time

to fill the buffer is M · Tc . This array of observations gets in the iPU that runs an iMP

algorithm on a predetermined loopy graph (see [9], [34], [37], and [60]). Typically, at the

end of each iteration, the iMP algorithm provides a soft-output information vector that is

used to estimate the transmitted vector by hard decision, and, soon after, a parity control

is executed on it ([47] and [63]). Because of this, the acquisition algorithm can end earlier

than IMAX iterations, as soon as the check is positive. Therefore, the time required by

iPU, τiPU , to output a soft-output information vector (produced by the iMP algorithm)

and perform a hard-decision on it, is

τiPU 6
IMAX

ρ
· Tc

where IMAX is the maximum number of iterations of the iMP algorithm, Tc is the chip

time, Tit is the time per iteration (Rit = 1/Tit is the iteration rate), and ρ = Tc/Tit =

Rit/Rc is the iMP time-factor. Of course, the ρ-factor depends on the implementation

technology of the receiver. Nevertheless, to simplify our analysis, we will over-bound the

acquisition time, assuming that the iMP algorithm always ends when all IMAX iterations

are run. This means

τiPU =
IMAX

ρ
· Tc .

When all IMAX iterations are run, the estimate vector, ĉ, is handed over to the PCU that

checks the parity. If the parity control fails, a missed detection is achieved and a new

received vector is processed by the iDU. In this case, the missed detection time, τMD , is

τMD , m · Tc , with m = max
(
M ,

IMAX

ρ

)
. (4.1)

In other words, τMD is the longest time between τRB , M ·Tc , that is the time to refill the

IB, and τiPU . If the check is passed, we can have either a correct or a wrong acquisition.

Thus, the receiver goes into a verification mode, which may include a long correlation

54 C 4. Message Passing Algorithms to Detect Spreading Codes

test and/or a tracking loop. At the end of the verification, it is reasonable to assume that

the probability of wrong decision is close to 0 (as mentioned in Section 3.1.3) and the

penalty-time is τpt , k ·M · Tc (see also [26] and [27]). Of course, in the case of wrong

detection, a new acquisition try is run, otherwise, in the case of correct acquisition (often

referred to as a hit), the signal is considered to be detected and tracking is started.

As previously illustrated, one acquisition attempt can end with just one of three mutually-

exclusive possible outcomes: missed detection (MD), wrong detection (WD), or correct

detection (CD). So, referring to the CD probability as PCD , to the WD probability as

PWD , and to the MD probability as PMD , the following equality is verified

PCD + PWD + PMD = 1 =⇒ PCD

1 − PMD
+
PWD

1 − PMD
= 1. (4.2)

Fig. 4.2 summarizes all the main stages of this detection strategy, including their time

delays.

4.2 Iterative Message Passing for PN Acquisition

As mentioned in the previous section, the iPU is the core of an iDU. Indeed, this device

runs a MP algorithms on predetermined graphical models with cycles. Therefore, it be-

comes important to define the guidelines to correctly configure a MP algorithm. More in

details, three cardinal points have been introduced in Section 3.2.2 and repeated here.

• Graphical Model - that is typically a loopy graph, because the complexity is lower

than a tree graph.

• Activation Schedule - that is the set of rules which establishes, for every iteration,

the activation order of all nodes in a graph. It also includes the end condition of a

MP algorithm (e.g., IMAX).

• Message-Updating Algorithm - Sum-Product (SP) or Min-Sum (MS).

4.2. Iterative Message Passing for PN Acquisition 55

Figure 4.2: Main stages of the iDU.

Of course, a right selection and configuration of these parameters allows to correctly

build a MP algorithm. Therefore, the following section provides a simplified treatment

to define these cardinal parameters, so providing an immediate and practical approach to

implement an iMP algorithm.

4.2.1 Iterative Message Passing Algorithms

Graphical modeling and MP algorithms are widely applied to inference problems in com-

munications and signal processing, most notably decoding of modern error correction

codes ([4], [6], and [17]). A graphical model captures constraints on variables by con-

56 C 4. Message Passing Algorithms to Detect Spreading Codes

necting variable nodes to check nodes, that constrain the configurations of the connected

variables. For example, considering the set of m-sequence outputs {ci }M−1
i=0 , one graphical

model is a single check node with M binary variable connected. While there are 2M pos-

sible combinations of these binary variables, the check node enforces the constraint that

only N = 2r − 1 (where r is the sequence polynomial degree) of these are allowable con-

figurations. There are other graphical models that can enforce the same set of constraints.

These are obtained by factoring this global constraint (involving all variables) into a sets

of interdependent check nodes, each enforcing only local constraints (e.g., involving only

a subset of variables). An example can help us.

Example 4.1. Consider the m-sequence generated by the following primitive polynomial

P (D) = D6 + D + 1, (4.3)

whose octal representation is [103]8. The polynomial degree is r = 6 and the period

N = 2r−1 = 63. A simple loopy graph to describe this LFSR is depicted in Fig. 4.3. Note

that we use the convention that variable nodes are circles and check nodes are squares.

Furthermore, each check node enforces the constraint ck ⊕ ck−1 ⊕ ck−6 = 0 for any value

of k . Of course this parity constraint is directly associated with the generating polynomial

(4.3). This means that there are 4 valid local configurations, that are: (ck , ck−1, ck−6) ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)}.

Note that graphical models like Fig. 4.3 are typically referred to as Tanner Graphs

(TG), [56].

For a given graphical model with cycles, there is a well-defined MP algorithm that it-

eratively passes messages across edges in both directions (called iMP). The MP algorithm

combines and marginalizes messages on variables over the constraints associated with the

check nodes. Specifically, each check node will accept incoming messages, character-

izing some form of soft-decision information, on the variables connected to it. These

messages, which are sent from connected variable nodes, are then combined to obtain

4.2. Iterative Message Passing for PN Acquisition 57

Figure 4.3: An example of TG.

soft-decision information (also called metrics) on all valid local configurations. Finally,

these local configuration metrics are marginalized to produce output metrics.

Thus far, we have proposed a simple way to generate a graph model (a more complex

construction will be presented in the next section) exploiting the generating polynomial

structure (more examples are contained in [10], [47], and [63]). The next step is addressed

to introduce the algorithm to process messages and the concept of the activation schedule.

More specifically, regarding the first point, only the MS algorithm will be shown, because

its complexity is lower than that of SP and does not require an estimate of Ec/N0.

Referring to the communication model presented in Section 3.1 and to the TG reported

in Fig. 4.3 and assuming to receive a set of M observations, represented by the vector

z = [z0, . . . , zM−1], the initial metrics (soft-in information) of an MS algorithm are defined

∆sik , − log
[P(zk |ck = 1)
P(zk |ck = 0)

]
= zi 0 6 k 6 M − 1.

These become the initial input messages for all three check nodes which are connected to

ck . Under this convention, a message larger than 0 (∆sik > 0) means a high confidence

in ck = 0, otherwise a ∆sik < 0 means that ck = 1 is highly probable. Focusing on the

generic couple variable-check node (ci , hj), the message from hj to ci is defined ∆ηj ,i ,

while the opposite message is pointed out ∆µi ,j . So, the processing associated with the

58 C 4. Message Passing Algorithms to Detect Spreading Codes

message interchange can be viewed as a two-step process

∆µi ,j = ∆sii +
∑

∀n :hn→ci
n,j

∆ηn ,i (4.4)

∆ηj ,i =
∏

∀n :cn→hj

n,i

S
(
∆µn ,j

)
· min
∀n :cn→hj

n,i

∣∣∣∆µn ,j

∣∣∣ (4.5)

where hn → ci (or cn → hj) means the n th check (variable) node connects to the i th vari-

able (j th check) node1 and S (�) = sgn (�). In other words, Eq. (4.4) computes messages

from variable to check nodes, while check to variable messages are calculated by (4.5).

While the above defines the processing associated with message updating, to correctly

carry out a MP algorithm, its activation schedule should be defined, too.

Definition 4.1. An activation schedule is the order in which all variable and check nodes

are activated, including when the condition upon which the algorithm is terminated.

In particular, considering the graph in Fig. 4.3, a possible schedule2 for the MP algo-

rithm is to activate all variable nodes in parallel, then all check nodes in parallel, etc. One

activation of all check and variable nodes will be defined as one iteration. Thus, at the

end of each iteration, the soft-out metrics can be computed as follows

∆sok = ∆sii +
∑

∀n :hn→ci

∆ηn ,i , 0 6 k 6 M − 1 (4.6)

and the hard decision performed on (4.6) is

ĉk =

1, ∆sok < 0

0, ∆sok > 0
where 0 6 k 6 M − 1.

In this way, we get the vector ĉ that is an estimate of the received PN sequence. Thus,

1The arrows also indicates the message direction.
2Many different activation schedules can be defined.

4.2. Iterative Message Passing for PN Acquisition 59

a parity control is performed to check that ĉ satisfies all the parity constraints provided

by the graph. If the parity is verified the MP ends, otherwise a new iteration is run, until

IMAX iterations are got.

A basic result in this area is that if a graph has no cycles, then there is a schedule for

which the MP algorithm is optimal. In other words, by repeatedly updating messages us-

ing simple local constraints, one can compute the same messages that would be computed

using a single global constraint. The advantage is that the processing of many local con-

straints can be simpler than that associated with a single global constraint. Roughly, any

activation schedule that passes messages from each node to all other nodes on a cycle-free

graph is optimal and the MP algorithm converges to the same result that would have been

obtained by processing the global constraint directly.

When the graphical model has cycles, the same message updating rules can be used,

but the approaches are suboptimal heuristics, which we refer to as iMP algorithms. More

specifically, little has been proven about the convergence properties and the long term

evolution of the messages for these algorithms when cycles are present. However, it has

been observed empirically that iMP algorithms are very effective and often yield perfor-

mance near that of the optimal solution. Empirical results suggest that the iMP algorithm

is most effective when there are no very short cycles and when the cycle structure is highly

irregular. The advantage of using graphs with cycles is that the complexity of the resulting

iMP algorithm can be significantly less than that of any MP algorithm associated with a

cycle-free graphical model.

The graphical model associated with a particular set of constraints is not unique and

selecting different models will yield a different MP algorithm. One way to alter a graph

is to include hidden variables3 that are neither the input nor the output of the system.

Example 4.2. The same m-sequence modeled in Fig. 4.3 can be modeled by the cycle-

free graphical model in Fig. 4.4, in which the hidden variables σk , indexing all values

3The channel messages for these variables are taken to be zero for all conditional values.

60 C 4. Message Passing Algorithms to Detect Spreading Codes

Figure 4.4: An example of a free-loop graph.

of (ck−1, ck−2, . . . , ck−6), have been added and are denoted with double-lined circles to

distinguish them from the output variables.

These hidden variables are simply the state of the finite state machine (FSM) that

represents that LFSR. An optimal MP algorithm on this graph is known as the forward-

backward algorithm (FBA), [9]. In the FBA, messages are sent forward (left to right)

starting at σ0 and ending at σM , and then backward from σM to σ0. This is one activation

schedule that results in an optimal MP algorithm and further activations of the check

nodes does not change the message values. It follows from the definition of the nonzero

σk for an m-sequence that each state takes 2r − 1 values and each local check node has

2r − 1 valid configurations. Indeed, at the end of the forward recursion, the messages

at σM are the N = 2r − 1, which are all the correlations computed by the full-parallel

search approach to acquire a PN sequence. This illustrates the importance of cycles in the

graphical model to achieve low complexity iMP algorithms. Further details can be found

in [1], [9], [10], [34], and [37].

4.2.2 Redundant Tanner Graphs

A graphical model (or TG) for a linear code can be mathematically described by its parity

matrix, that contains all the edges between its variable and check nodes. In other words,

assuming that the j th column is directly associated with the j th variable node and that the

i th row correspond to the i th check node, the matrix element hi ,j is 1 only if the i th check

node and the j th variable node are connected, otherwise hi ,j = 0.

4.2. Iterative Message Passing for PN Acquisition 61

Now, in agreement with [10] (see also [34] and [37]), several TGs can be generated

keeping in mind the particular LFSR sequence to be acquired. Nevertheless, the simplest

and most general way to build graphical models is based on the generating polynomial

of the LFSR sequence. Considering (3.1) and (3.2), it is clear that each generating poly-

nomial identifies a set of parity checks, that can be used to construct a simple TG. The

resulting parity matrix of the ”code” is

H =

gr · · · g0 0 · · · · · · 0

0 gr · · · g0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 gr · · · g0 0

0 · · · · · · 0 gr · · · g0

Nr×Nc

(4.7)

where Nr = M − r is the number of rows (or number of parity equations), Nc = M

number of columns, r is the generating polynomial degree, M is the number of incoming

observations (received soft information), and gi (with 0 6 i 6 r) is the i th polynomial co-

efficient. In (4.7), each row is a shifted repetition of the polynomial vector (p = [gr · · · g0],

associated to P (D)) of one column. We refer to this TG as a basic graphical model

(BGM).

The regular structure of the BGM may cause the associated iMP algorithm to perform

poorly [9], [10], and [34]. Redundant graphical models (RGMs) have been introduced

to alleviate this effect. They are, roughly, made up of a set BGMs that are put together

to form one big TG. Each BGM is based on one equivalent generating polynomial of the

same LFSR sequence to be detected. The use of such redundancy has been shown to

improve performance when each BGM has poor cycle structure.

Consider a set of n +1 equivalent generating polynomials that enforce the same LFSR

sequence structure. A RGM can be defined by simply grouping all the BGMs generated

62 C 4. Message Passing Algorithms to Detect Spreading Codes

by these polynomials (as shown in (4.7)). The final parity matrix is

HRGM =

H0

H1
...

Hn

N ′

r×N ′
c

(4.8)

where N ′r and N ′c are, respectively, the number of rows and columns. They are computed

as

N ′r = [(n + 1) ·M] −
n∑

j=0

rj

N ′c = M

where M is the number of observations, and rj (with 0 6 j 6 n) is the degree of the j th

equivalent polynomial.

An interesting family of RGMs was introduced in [63]. It is based on the following

Galois field property (see [20], [35], and [53])

[P (D)]2n

= P
(
D2n

)

where P (D) is a LFSR generating polynomial. Therefore, fixed n , a set of equivalent

high-degree generating polynomial is identified by: P
(
D2

)
, P

(
D4

)
, · · · , P

(
D2n

)
. Each

polynomial can generate its own BGM (from (4.7)), and the union of all these BGMs

produces a RGM (from the (4.8)) of order n (n = 0 clearly means a RGM made up of

only one BGM based on P (D)). Furthermore, n is selected in agreement with

r0 · 2n 6 M − 1 ⇒ n 6 K · log
(
M − 1

r0

)
(4.9)

where r0 is P (D) degree, M is the number of received observations, and K =
[
log(2)

]−1.

4.2. Iterative Message Passing for PN Acquisition 63

In other words, n is the largest integer that verifies the (4.9) inequality. We define these

graphical models Yeung-RGM of order n (also pointed out YRGMn).

4.2.3 Detection Algorithm Complexity

In case of the iMP detector, the complexity strictly depends on the particular graphical

model that has been built. More specifically, considering the MS algorithm (presented

in Section 4.2.1), its complexity can be easy measured counting the number of sum and

min operations. Then, assuming that a min-operation is approximatively equivalent to a

sum-operation ([43] and [50]), it is possible to compare the iMP complexity to that of

the full-parallel, hybrid, and simple-serial searches (Sections 3.2.1.1, 3.2.1.3, and 3.2.1.2)

simply comparing their total number of sum-operators per acquisition try.

The iMP complexity CiMP , in case of a TG (e.g., Fig. 4.3), is

CiMP � T vn
Σ + T cn

Σ (4.10)

where T vn
Σ

and T cn
Σ

are respectively the numbers of sum-operators of all variable/check

nodes, and they are computed using the following equations, [46]

T vn
Σ 6 2 ·N vn

edg
·Nvn · IMAX (4.11a)

T cn
min ≈ T cn

Σ 6
(
N cn

edg
− 2

)
·N cn

edg
·Ncn · IMAX (4.11b)

where Nvn and Ncn are respectively the numbers of variable/check nodes of the TG, N vn
edg

and N cn
edg

are the mean numbers of edges per variable/check node, IMAX is the max num-

ber of iterations, and T cn
min is the total number of min-operations (a min is approximatively

equivalent to a sum).

64 C 4. Message Passing Algorithms to Detect Spreading Codes

4.3 Acquisition Time

The acquisition time analysis of an iMP detector is performed in this section. More

specifically, this analysis takes inspiration from the studies on the acquisition times of

correlation-based detectors reported in [26], [27], [44], and [53]. Basically, building the

Markov chain4 that characterizes an iDU, it is possible to compute the moment generating

function (MGF) of its acquisition time. Thus, deriving this result, it is possible to compute

the first and the second order moments ([40] and [49]), so evaluating the mean and the

variance of the acquisition time, as shown in [27].

4.3.1 Acquisition Time Analysis

Referring to Section 4.1, the architecture of iDU is reported Fig. 4.1. Considering that

design, it is possible to build a state diagram of the acquisition unit, which is shown in

Fig. 4.2. This picture summarizes the main steps that an iDU carries out to detect a

transmitted PN sequences. More in detail, it also contains all delays that every phase

introduces during a detection try. Exploiting this diagram, it is possible to generate the

Markov chain which characterizes an iDU.

Assuming Tc as our time unit, the ad-hoc Markov chain in the z -transform domain is

depicted in Fig. 4.5, where each node represents one of the stages of the iDU and each

edge is labeled by a transition probability multiplied by its time delay. More specifically,

starting from the START node, the A 7→ B edge5 is the IB filling stage, labeled zM

because its time interval is τRB = M ·Tc . After that, the iPU provides an estimate vector

on which parity checks are carried out by the PCU, so the missed detection is represented

by the B 7→ B edge, labeled PMD · zm (where m is (4.1)), while the right parity is the

B 7→ C edge, labeled (1 − PMD) · z IMAX /ρ. Following that line, the C node represents a

4A good introduction on Markov chain theory is in [40].
5A 7→ B means the edge that connects A and B nodes, and the direction is form A to B .

4.3. Acquisition Time 65

Figure 4.5: Markov chain of an iDU with all stages.

verification mode that can confirm the CD with the C 7→ END edge, labeled

PCD

1 − PMD
· z k ·M ,

because the probability is PCD/(1 − PMD) (Eq. (4.2)) and the verification stage time is

τpt = k ·M · Tc , or a WD can happen with

PWD

1 − PMD
· z k ·M ,

on the C 7→ D edge (Eq. (4.2)). In this last case, a new detection try is run: the D 7→ D

edge represents the parity failure (MD), while D 7→ C is the case of correct parity. We

remark that the D stage corresponds to the B stage, but it is split to simplify the next

calculations.

Computing the MGF, we simplify the flow graph of Fig. 4.5 as shown in Fig. 4.6,

where

QAC (z) =
1 − PMD

1 − PMD · zm
· z

IMAX
ρ +M (4.12a)

QC (z) =
PWD

1 − PMD · zm
· z

IMAX
ρ +M ·k (4.12b)

66 C 4. Message Passing Algorithms to Detect Spreading Codes

so the MGF is (using (4.12) equations)

U (z) =
PCD

1 − PMD
·QAC (z) · 1

1 −Qc(z)

=
PCD

(1 − PMD · zm) − PWD · z
IMAX

ρ +k ·M
· z

IMAX
ρ +M ·(k+1)

(4.13)

we can check that (considering (4.2))

U (1) =
PCD

1 − PMD − PWD
=
PCD

PCD
= 1,

as it should be. The mean of the acquisition time is derived from (4.13) (see also [27],

[40], and [49])

µiDU

Tc
=
∂U (z)
∂z

∣∣∣∣∣
z=1

U (1)=1−−−−−→ ∂ ln [U (z)]
∂z

∣∣∣∣∣
z=1

=

[
IMAX

ρ
+ M · (k + 1)

]
+
PMD ·m + PWD ·

(
IMAX

ρ
+ k ·M

)

PCD

(4.14)

and the variance is (see also [27], [40], and [49])

σ2
iDU

T 2
c

=

∂2U (z)
∂z 2 +

∂U (z)
∂z

−
(
∂U (z)
∂z

)2
z=1

U (1)=1−−−−−→
[
∂2 ln [U (z)]

∂z 2 +
∂ ln [U (z)]

∂z

]

z=1

=

PMD ·m + PWD ·

(
IMAX

ρ
+ k M

)

PCD

2

+
PMD ·m2 + PWD ·

(
IMAX

ρ
+ k ·M

)2

PCD
.

(4.15)

Both these results ((4.14) and (4.15)) allow to evaluate the time performance of a coherent

iDU with respect to the full-parallel, hybrid, and simple-serial search ones.

4.4. Trinomial Multiples of Generating Polynomials 67

Figure 4.6: A simplified flow graph of an iDU.

4.4 Trinomial Multiples of Generating Polynomials

In Section 4.2, we have given an overview of MP algorithms to be run on graphical mod-

els with cycles. More specifically, we have introduced the MS algorithm and a typical

activation schedule that is used to execute an iMP algorithm. Furthermore, we have pro-

vided a simple way to generate RGMs and a set of equations to evaluate the iMP-detector

complexity. In particular, considering (4.10) and (4.11), it is clear that the iMP complex-

ity depends on the number of connections of its graphical model. Therefore, to reduce the

complexity is necessary have a sparse TG. Furthermore, from the decoding theory ([9]

and [35]), it has been proved that iMP algorithms tends to ML performance with very

sparse and random loopy graphs.

In this context, it is not sufficient to generate RGMs (Section 4.2.2) to have an iMP

detector with good performance and low-complexity, but it is also important to reduce the

number of connections in the graph. Referring to Section 4.2.2, a RGM is constructed

using the generating polynomial of the considered LFSR sequence, and if that is a dense

polynomial (more than 4 coefficients) its parity matrix results dense. Thus, in these cir-

cumstances, the solution is to search a trinomial multiple6 of the generating polynomial,

which provides a new set of parity equations, that can be used to generate a low-density

6A trinomial is a polynomial with 3 coefficients (see also Section 2.3.3.1 and [20]).

68 C 4. Message Passing Algorithms to Detect Spreading Codes

redundant TG (in agreement with construction strategy shown in Section 4.2.2).

The next section proposes four different algorithms to find trinomial multiples of an

LFSR generating polynomial.

4.4.1 Algorithms to search Trinomial Multiple

This section contains four algorithms that we adapted from the literature to search trino-

mials which are multiple of a given generating polynomial. They are:

• Algebraic Manipulation.

• Zech’s Logarithm Table.

• Division Algorithms.

• Exhaustive Search.

We remark that the only limit that we have in the search of trinomials is their degree, rtr ,

that should be rtr � M , where M is the number of observations at the receiver side.

This condition is fundamental to perform RGMs as described in Section 4.2.2. When the

condition rtr � M cannot be satisfied, 4-nomial multiples with degree r � M will be

searched.

4.4.1.1 Algebraic Manipulation

The simplest method to find a trinomial multiple of an LFSR generating polynomial is the

algebraic manipulation of the initial polynomial till an equivalent one of higher degree

with only 3 coefficients is achieved. We give an example.

Example 4.3. Consider the m-sequence identified by the following dense generating

polynomial

P (D) = D10 + D9 + D8 + D6 + D3 + D2 + 1

4.4. Trinomial Multiples of Generating Polynomials 69

its octal representation is [3515]8. An equivalent sparse polynomial can be computed as

Ptr (D) = P (D) · [D3 + D2 + 1] = D13 + D4 + 1

the octal representation is [20021]8.

It is evident that Ptr (D) is sparser than P (D) and its degree is higher. So, Ptr (D) can

be used as BGM to generate a YRGM of order n (YRGMn). Nevertheless, not all cases

are so simple to process. Indeed, some LFSR sequences are characterized by equivalent

sparse polynomials with very high degrees that require a quite complex computational

search to be identified and evaluated with this method.

Note that this method can be also used to find any t-nomial7 multiple of a prefixed

generating polynomial.

4.4.1.2 Zech’s Logarithm Table

Exploiting the GF theory, it is possible to provide an elegant way to search trinomial

multiples of a primitive generating polynomial. The first important result is given by the

following theorems ([21], [24], and [29]).

Theorem 4.1. Let f (x) be a primitive polynomial of degree r . Then there exists a trino-

mial g(x) = x i + x j + 1 which is divisible by f (x).

Theorem 4.2. Let f (x) be a primitive polynomial over GF (2) of even degree r . Then the

trinomial x
2
3 (2r−1) + x

1
3 (2r−1) + 1 is divisible by f (x).

Theorem 4.1 guarantees that a trinomial multiple of a primitive polynomial always

exists, and Theorem 4.2 provides a simple formula to compute a trinomial that is divisible

by any primitive polynomial, f (x), with even degree r . Then, the number of all trinomial

multiples of a given primitive polynomial is given by the following corollary (see also

[24]).
7A t-nomial is a polynomial with t coefficients.

70 C 4. Message Passing Algorithms to Detect Spreading Codes

Corollary 4.1. Given a primitive polynomial f (x) of degree r , there will be 2r−1 − 1

distinct trinomial multiples (of degree < 2r − 1) of f (x).

Thus, this number is 2r−1 − 1, where r = deg (f (x)) and f (x) is a primitive polyno-

mial. Now, the issue is to find these trinomials, and one possible way is to exploit Zech’s

Logarithm table.

Let f (x) be a primitive polynomial over GF (2) of degree r and let α be a root of f (x),

in the extension GF (2r), so α2r−1 = 1 ([20] and [30]). Thus, if g(x) = x i + x j + 1 is a

multiple of f (x), then g(α) = αi + αj + 1 = 0, so we have

αi = 1 + αj .

This result means that, given the value of j , such that αi = 1 + αj , the value of i is fixed

depending on the primitive element α, which in turn depends on the specific primitive

polynomial f (x). Therefore, we can write

αZ (j) = 1 + αj (4.16)

this equation defines the Zech’s Logarithm Z (j), and it can be directly associated to the

trinomial g(x) = xZ (j) + x j + 1, which is a multiple of the primitive polynomial f (x).

It is possible now to compute the Zech’s Logarithm table which yields all couples

(j ,Z (j)) that satisfies (4.16). Therefore, this table also provides all trinomial multiples of

a given primitive polynomial. Referring to [30], we assume that α is a root of a primitive

polynomial

P (D) = Dr + pr−1 Dr−1 + . . . + p1 D + p0

where pi ∈ F = GF (2) ∀i ∈ [0, r − 1] and α ∈ GF (2r). Since P (α) = 0, we have

αr = −(pr−1 α
r−1 + . . . + p1 α + p0). (4.17)

4.4. Trinomial Multiples of Generating Polynomials 71

By successive application of (4.17), a generic αj can be written in the form of a polyno-

mial in α of degree at most r − 1 ([20] and [30])

αj = br−1 α
r−1 + . . . + b1 α + b0 (4.18)

where j ∈ {∞, 0, . . . , 2r−2} and bi ∈ F . Since α is a primitive element, j and (br−1, . . . , b0)

are in one-to-one correspondence for any j ∈ {∞, 0, . . . , 2r − 2}.8 So, we can define Nj

by

Nj = br−1 2r−1 + . . . + b1 2 + b0 (4.19)

where j and Nj , they are in one-to-one correspondence for any j ∈ {∞, 0, . . . , 2r − 2}.
From (4.16) and (4.18), we have

αZ (j) = br−1 α
r−1 + . . . + b1 α + b̃0 (4.20)

where b̃0 = b0 + 1. Thus, from (4.19) and (4.20), we obtain

NZ (j) = br−1 2r−1 + . . . + b1 2 + b̃0 =

Nj − 1, if |Nj |2 = 1

Nj + 1, if |Nj |2 = 0
. (4.21)

To sum up, the algorithm to generate a Zech’s Logarithm table is reported in the following

three steps.

Step 1 Tabulate Nj for j ∈ {∞, 0, . . . , 2r − 2} by using (4.18) and (4.19).

Step 2 Tabulate NZ (j) for j ∈ {∞, 0, . . . , 2r − 2} by using (4.21).

Step 3 Decide Z (j) from NZ (j) by looking NZ (j) up in the table of Nj .

An example is useful to illustrate this procedure (more details are contained in [30]).

8∞ is a symbol defined by α∞ = 0.

72 C 4. Message Passing Algorithms to Detect Spreading Codes

Example 4.4. Let P (D) = D5 + D4 + D3 + D2 + 1 and deg (P (D)) = 5. By successive

application of α5 = α4 + α3 + α2 + 1, the third column of Tab. 4.1 is achieved. Then, we

compute Nj in the fourth column by using (4.19), and NZ (j) is got by (4.21) and reported

in the fifth column. Finally, Z (j) is given by taking the elements of the first column that

are in the same rows where Nj assumes the same value of NZ (j) (Nj ≡ NZ (j)).

Now, all trinomial multiples of P (D) can be read in the Zech’s Logarithm table and

written as

g(D) = DZ (j) + D j + 1.

We remark that the total number of rows in a Zech’s Logarithm table is 2r − 1, but the

effective number of distinct trinomials is (2r − 2)/2 = 2r−1 − 1. This result is definitely

in agreement with Corollary 4.1. The following example lists all trinomials provided by

Tab. 4.1.

Example 4.5. Referring to Ex. 4.4 and Tab. 4.1, all trinomials, that are multiple of P (D),

are listed in Tab. 4.2. The number of these trinomials is 2r−1 − 1 = 15. In particular, the

trinomial with the lowest degree is (to satisfy the condition rtr � M)

g(D) = D8 + D5 + 1.

This can be used to generate a RGM as proposed in Section 4.2.2.

4.4.1.3 Division Algorithms

Several studies were done to compute multiples of primitive polynomials over GF (2)

in [24], [38], and [58]. In this section, we report an example of algorithm based on

division between polynomials. In particular, let g(D) = Drtr + D j + 1 be a trinomial

multiple of f (D) of degree r . Then, the search of couples (rtr , j) is done fixing a value

of rtr ∈ [r + 1, 2r − 1], and searching j such that f (D)|g(D). Algorithm 1 show the

pseudo-code of the proposed procedure. Other algorithms based on the same criteria and

4.4. Trinomial Multiples of Generating Polynomials 73

j αj b4, . . . , b0 Nj NZ (j) Z (j)
∞ 0 00000 0 1 0
0 1 00001 1 0 ∞
1 α 00010 2 3 20
2 α2 00100 4 5 9
3 α3 01000 8 9 26
4 α4 10000 16 17 18
5 α5 11101 29 28 8
6 α6 00111 7 6 21
7 α7 01110 14 15 29
8 α8 11100 28 29 5
9 α9 00101 5 4 2
10 α10 01010 10 11 16
11 α11 10100 20 21 12
12 α12 10101 21 20 11
13 α13 10111 23 22 17
14 α14 10011 19 18 27
15 α15 11011 27 26 25
16 α16 01011 11 10 10
17 α17 10110 22 23 13
18 α18 10001 17 16 4
19 α19 11111 31 30 30
20 α20 00011 3 2 1
21 α21 00110 6 7 6
22 α22 01100 12 13 24
23 α23 11000 24 25 28
24 α24 01101 13 12 22
25 α25 11010 26 27 15
26 α26 01001 9 8 3
27 α27 10010 18 19 14
28 α28 11001 25 24 23
29 α29 01111 15 14 7
30 α30 11110 30 31 19

Table 4.1: The Zech’s Logarithm table of P (D) = D5 + D4 + D3 + D2 + 1.

74 C 4. Message Passing Algorithms to Detect Spreading Codes

g(D) = DZ (j) + D j + 1
D20 + D + 1
D9 + D2 + 1
D26 + D3 + 1
D18 + D4 + 1
D8 + D5 + 1
D21 + D6 + 1
D29 + D7 + 1
D16 + D10 + 1
D12 + D11 + 1
D17 + D13 + 1
D27 + D14 + 1
D25 + D15 + 1
D30 + D19 + 1
D24 + D22 + 1
D28 + D23 + 1

Table 4.2: List of trinomial multiples of P (D) = D5 + D4 + D3 + D2 + 1.

more details are also reported in [24] and [58].

4.4.1.4 Exhaustive Search

Let f (D) be the generating polynomial of the PN sequence a with period N , the property

f (D)a = 0 is always satisfied, as proved by (2.7). Thus, assuming that g(D) is a poly-

nomial multiple of f (D), the equality g(D)a = 0 is also satisfied (Theorem 2.4). This

property can be exploited to search trinomial multiples of a generating polynomial by

performing an exhaustive search. Thus, defining g(D) = D i +D j +1 and deg (f (D)) = r ,

Algorithm 2 shows again the pseudo-code.

This algorithm can be also applied to search any t-nomial multiple of the initial gen-

erating polynomial.

4.4. Trinomial Multiples of Generating Polynomials 75

Algorithm 1: Division algorithm.
Input: A primitive polynomial f (D) and its degree r .
Output: A trinomial g(D) = Drtr + D j + 1.

begin1

repeat2

Random selection of an integer rtr ∈ [r + 1, 2r − 1];3

for (1 6 j 6 rtr − 1) do4

g(D)←− Drtr + D j + 1;5

// Computing the reminder of g(D)/f (D)
rem ←− Rem(f (D), g̃(D));6

if (rem = 0) then7

return g(D);8

end9

end10

until (rem , 0);11

end12

Algorithm 2: Exhaustive search algorithm.
Input: A generating polynomial f (D) and its degree r .
Output: A trinomial g(D) = D i + D j + 1.

begin1

// Generating the LFSR sequence and computing its period

a←− GenerateSeq(f (D));2

N ←− ComputePeriod(a);3

// Searching i
for (r < i 6 N) do4

// Searching j
for (0 < j < i) do5

// Testing the parity provided by g(D) = D i + D j + 1
if (g(D)a = 0) then6

return g(D);7

end8

end9

end10

end11

Chapter 5
Performance Evaluation

This chapter shows the performance of iMP detectors and compares it to that of all stan-

dard algorithms presented in Chapter 3. This comparison will be done in terms of wrong,

missed, and correct detection probabilities and acquisition-time performance. We will

also show that RGMs, generated by using trinomial multiples of dense primitive polyno-

mials, offer better performance in terms of correct detection probability with respect to

that of RGMs generated by dense primitive polynomials. Finally, a new activation sched-

ule and a different graph-model implementation for Gold codes are also proposed and

tested. The outline is listed here.

• Section 5.1 compares different ways to implement loopy graphs in terms of perfor-

mance and complexity.

• Section 5.2 shows a hierarchical implementation to generate loopy graph in case of

Gold sequences.

• Section 5.3 compares the acquisition time performance of an iMP algorithm to that

of all standard detectors.

77

78 C 5. Performance Evaluation

5.1 Equivalent Sparse Polynomials with High-Degree

Using equivalent sparse polynomials with high-degree (e.g., trinomials and 4-nomials),

that are multiple of dense primitive polynomial, to generate RGMs, it is possible to get

significant improvements in terms of detection probabilities and low-complexity. This

section reports some simulation results to prove this.

Furthermore, an alternative activation schedule is also shown in this section, to reduce

the memory required to store all node messages during each MP iteration.

5.1.1 Simulation Results and Performance

As demonstrated in [63], YRGMs offer great benefits in terms of acquisition probability

at low-SNR, in the case of sparse generating polynomials (e.g., with only 3 or 4 nonzero

coefficients). However, for dense generating polynomials (e.g., more than 4 nonzero co-

efficients) experiments suggest that poor performance is obtained using TG models. This

problem is common to many m-sequences and Gold codes that, having a dense polyno-

mial, cannot be efficiently acquired using iMP algorithms on YRGMs.

In order to address this problem, the key idea is to find equivalent higher degree gen-

erating polynomials that are sparse and use these as BGMs to build new RGMs, following

(4.7) and (4.8). These models will be denoted by adding the superscript esp, to identify

RGMs generated by equivalent sparse polynomials of higher degree – e.g., RGMesp . Fur-

thermore, we will show these RGMsesp provide better performance and lower complexity

than YRGMs generated by initial dense polynomials. Now the problem is to search and

identify these high degree equivalent polynomials with 3 or 4 nonzero coefficients (re-

spectively called trinomials and 4-nomials). This result can be achieved exploiting the

algorithms presented in Section 4.4.

An example is useful to well explain this procedure and illustrates the potential im-

provements. Consider the m-sequence identified by the following dense primitive poly-

5.1. Equivalent Sparse Polynomials with High-Degree 79

nomial

P (D) = D12 + D11 + D9 + D7 + D6 + D5 + 1

its octal representation is [15341]8 and the period is N = 2r − 1 = 4 095. An equivalent

sparse polynomial can be easy computed as

Pesp(D) = P (D) · [D19 + D18 + D17 + D15 + D14 + D13

+ D12 + D10 + D8 + D6 + D5 + D2 + 1]

= D31 + D2 + 1

whose octal representation is [20000000005]8. It is evident that Pesp(D) is more sparse

than P (D) and its degree is higher. So, Pesp(D) can be used as BGM to generate a

YRGMesp of order n (YRGMesp
n). Assuming the signal model of Chapter 3, and consid-

ering 1024 observations, a comparison between the YRGMesp
5 , YRGM6, BGM, and ML

algorithm is reported in Fig. 5.1. Here, we show the values of the detection probability

obtained by simulation as a function of the signal-to-noise ratio (SNR) Ec/N0. In partic-

ular, the YRGMesp
5 gains about 7 to 8 dB with 30 iterations on the YRGM6 that requires

100 iterations (the gain is larger than 10 dB if it is compared to the BGM). The complex-

ity depends on the number of iterations run and number of edges per variable/check node.

Assuming one min-operation is equivalent to a sum-operation, it is possible to evaluate

the following complexity factors:1

CYRGM esp
5

CYRGM6

<
1

24
and

CYRGM esp
5

CML
6

1
4

where CMod points out the complexity of one model (Mod is YRGMesp
5 , or YRGM6,

or ML2). These two factors evaluate the complexity of the YRGMesp
5 with respect to the

others. In the both cases, they demonstrate that the complexity is lower than that of the

1The complexity is measured counting the number of sum-operators per iteration and multiplying it by the
number of iterations (see also Section 4.2.3).

2Full-parallel implementation of the ML algorithm.

80 C 5. Performance Evaluation

Figure 5.1: Performance in case of the m-sequence [15341]8 (r = 12).

YRGM6 (based on the primitive polynomial) and of the ML algorithm.

Nevertheless, not all cases are so simple to process. Indeed, some LFSR sequences

are characterized by equivalent sparse polynomials with very high degrees that require a

quite complex computational search to be identified and evaluated. In these cases, one

of the algorithms reported in Section 4.4 (e.g., the exhaustive search or the division algo-

rithm) can be performed to find all equivalent sparse polynomials that will be used to build

RGMsesp . An example is provided by GPS/SBAS Gold codes. Indeed, they are generated

by the dense generating polynomial showed in (3.5) that has equivalent sparse polynomi-

als with very high degree. Carrying out an exhaustive search (on one period, 1 023 chips),

it is possible to identify 341 equivalent sparse polynomials: only 1 with 3 coefficients, and

340 with 4 coefficients, that offer the possibility to generate a large number of different

RGMsesp with only 3÷4 edges per check node and without 4-cycles. A pair of RGMsesp

are compared to the YRGM5, the BGM, and the ML algorithm in Fig. 5.2. In particular,

the RGMesp
M is the largest RGM achievable with all the 341 GPS/SBAS equivalent sparse

5.1. Equivalent Sparse Polynomials with High-Degree 81

polynomials, and the RGMesp is generated grouping the BGMs obtained by the following

sparse equivalent polynomials

PEq ,1(D) = D682 + D341 + 1

PEq ,2(D) = D111 + D46 + D5 + 1

PEq ,3(D) = D222 + D92 + D10 + 1

PEq ,4(D) = D444 + D184 + D20 + 1

PEq ,5(D) = D888 + D368 + D40 + 1.

As in the previous example, both these models (RGMesp
M and RGM esp) present benefits in

terms of detection probability with respect to the YRGM5 and BGM, with fewer iterations.

Furthermore, the complexity is lower than that of the YRGM5 (generated by (3.5)), as

follows
CRGM esp

M

CYRGM5

<
1
3
,

CRGM esp

CYRGM5

<
1

90
,

CRGM esp

CML
<

1
2
.

CRGM esp
M

and CRGM esp are smaller than CYRGM5 . Furthermore, CRGM esp is smaller than

CML, but it is possible to verify that CRGM esp
M

> CML. Indeed, this method is most

suitable for longer Gold sequences.

The examples above demonstrate that equivalent sparse polynomials can be efficiently

used to generate RGMs, on which low-complexity iMP algorithms are run, achieving

good performance at low-SNR.

Another parameter to be considered, when iMP algorithms are implemented, is the

memory required to store all node messages during each iteration. The memory require-

ments depends on the selected TG and, more specifically, on the number of edges. For

this reason, large RGMs typically have large memory requirements. To address this prob-

lem, a different activation schedule is proposed. In the previous examples, all variable or

check nodes were activated in parallel at the same time implying that all messages along

edges had to be stored. The memory requirements for large RGMs can be reduced by

82 C 5. Performance Evaluation

Figure 5.2: Performance in case of the GPS/SBAS codes.

using a different activation schedule and a modified message passing algorithm. The ac-

tivation schedule is based on breaking the RGM into a set of smaller sub-TGs, each one

containing a portion of the parity checks (e.g., two different sub-TGs do not share com-

mon parity checks), and running the iMP sequentially on all sub-TGs (see also [31] and

[25]). This yields a reduction in memory requirements if the messages between variable

and check nodes in a given sub-TG are not stored while iterating other sub-TGs. This, in

fact, is not standard iMP since these internal messages would normally be required for the

next activation of the iMP algorithm on the sub-TG. Nevertheless, this yields a significant

decrease in memory requirements with a small performance degradation. More precisely,

assume there are I2 sub-TGs, one iteration is made for each sub-model (inner iterations

= 1), and its soft output metrics become the input metrics in the next sub-model. The MP

ends either when all check nodes of one sub-TG are verified or when I1 outer iterations

are performed. In this way, the computational complexity is the same as in the previous

examples, but the required memory is only that needed to store all messages of the largest

5.2. Hierarchical Model 83

sub-TG and, therefore, it is reduced. A pictorial representation of this schedule is reported

in Fig. 5.3 and the algorithm is shown in App. B. In addition to not storing the internal

messages between sub-TG iterations, we use a MS algorithm with damping factor α (see

also App. B, [31], [25], and [8]).

A performance comparison between these two methods is displayed in Fig. 5.4. In-

deed, the RGMesp
M acquisition is compared to the results achievable splitting this graph in

2 and 10 sub-TGs, with a damping factor α = 0.1. It is quite evident that the split models

maintain the same rapid convergence of RGMesp
M , but their performance can change in

function of α and the characteristics of sub-TGs in which the initial RGM is separated. In

this case, the required memory, it is about 1/2 in case of 2 sub-TGs and 1/10 in case of 10

sub-TGs, because the initial RGM was split in sub-TGs with about the same dimensions.

Furthermore, all the models have the same complexity.

5.2 Hierarchical Model

In this section, we propose a distinct approach to acquire Gold codes using hierarchical

models (HMs) built by their two generating m-sequences. In other words, introducing a

set of suitably defined hidden variables (see Section 4.2, [9], [34], and [60]), it is possible

to generate two graphical models serially connected. Thus, the result is a hierarchical TG

on which an iMP algorithm can be run. The following section gives an example using

GPS/SBAS Gold sequences.

5.2.1 Simulation Results and Performance

Considering the primitive polynomials in (3.4) (GPS/SBAS LFSR generators), (3.3) can

be expressed as

P (D) = Pc′ D10 + Pc′ D9 + Pc′ D8 + Pc′ D6 + Pc′ D3 + Pc′ D2 + Pc′

84 C 5. Performance Evaluation

Figure 5.3: Multi-TGs activation schedule.

Figure 5.4: Comparison between the two activation schedules.

5.2. Hierarchical Model 85

which leads to the system of equations

σk−10 , zk ⊕ zk−3 ⊕ zk−10 (5.1a)

0 = σk ⊕ σk−2 ⊕ σk−3 ⊕ σk−6 ⊕ σk−8 ⊕ σk−9 ⊕ σk−10 (5.1b)

where (5.1a) defines a generic hidden variable σk . It is evident that the system (5.1) iden-

tifies a concatenated structure because (5.1b) (slave) directly depends on (5.1a) (master).

Furthermore, (5.1a) provides a first set of local constraints depending of the index k that

are useful to generate a first preliminary model, H′. A second set of constraints is got by

(5.1b), delivering the second graphical model H′′. These two models are related by their

hidden variables. An example of this hierarchical TG is displayed in Fig. 5.5, in case

of 23 observations. Specifically, a generic h ′i corresponds to a H′ check node, while a

generic h ′′j is a check nodes of the H′′ matrix.

We also remark that this method can be applied to a generic set of Gold codes and that

the example in Fig. 5.5 is not the only way to realize a HM for GPS/SBAS sequences. In-

deed, many different HMs can be constructed manipulating their generating m-sequence

polynomials and inverting the master and slave polynomials. Of course, if we group to-

gether more HMs, graphical models with redundancy are obtained. The message updating

algorithm for HMs is described in App. C.

Some preliminary results, obtained using this technique, are displayed in Fig. 5.6.

Specifically, HM1 and HM2 are both generated by Pc′ and Pc′′ , from (3.4), by inverting

master and slave. The performance is better in the case of Pc′′-master and Pc′-slave

(HM2). Furthermore, manipulating Pc′′(D) yields

Pesp
c′′ (D) = Pc′′(D) ·

[
D3 + D2 + 1

]
= D13 + D4 + 1

where Pesp
c′′ -master and Pc′-slave are used to generate HM3 and HM4. In particular, in

the case of HM4, the H′′ is constructed as YRGM6. So, from results in Fig. 5.6, it

86 C 5. Performance Evaluation

is evident that more sparse polynomials can generate models (HM3) that provide better

performance with fewer iterations than more dense models (HM1 and HM2) and, adding

more redundancy (HM4), this performance can be improved. Therefore, these results

confirm the previous section conclusions.

5.3 Acquisition time

In this section, the iMP detector is compared to the standard correlation-based algorithms

in terms of acquisition time performance. This analysis is also enriched comparing their

wrong, missed, and correct detection probabilities and algorithm complexity.

5.3.1 Simulation Results and Performance

This section compares the iDU to the full-parallel (FPA), hybrid (HA), and simple-serial

(SSA) search algorithms. This comparison is performed in terms of detection perfor-

mance, acquisition time, and implementation complexity. More specifically, the detection

performance of each method is measured in terms of PWD , PMD , and PCD as a function

of the signal-to-noise ratio (SNR = Ec/N0). These curves are obtained by simulating the

DS/SS communication system described in Chapter 3. The time performance of each al-

gorithm is characterized by the mean and the variance of its acquisition time. In particular,

for the iDU, these parameters are evaluated by (4.14)-(4.15). While in case of:

• FPA, we have Equations (3.11),

• SSA, we have Equations (3.13),

• HA, we have Equations (3.16).

To complete the comparison of these algorithms, an analysis in terms of implementation

complexity is necessary too. This can be done by counting the number of sum-operators of

each method per detection try, and comparing these figures. In particular, in case of FPA,

5.3. Acquisition time 87

Figure 5.5: Example of hierarchical model for GPS/SBAS codes.

Figure 5.6: Hierarchical model performance.

88 C 5. Performance Evaluation

SSA, and HA, the complexity is respectively measured with (3.10), (3.12), and (3.14),

while the iMP complexity is (4.11) and (4.10).

We will perform this comparison on the specific example of the m-sequence g18 =

[1000201]8, with degree r = 18 and period N = 262 143. For the iMP algorithm, at the

receiver side (see Fig. 3.1), 1 024 observations (M) are collected. Furthermore, the SSA

threshold is λ = 0.85. About the graphical model used by the iDU, we refer to Section

4.2.2 ([47] and [63]). In this particular example a YRGM5 is implemented and the number

of iteration is IMAX = 30.

Some simulation results are shown in Fig. 5.7. In particular, the PFA of the SSA is

lower than the PWD and PMD of the iDU. Furthermore, it can be clearly neglected for

SNR > −16 dB (PFA < 10−9). The detection probabilities of each algorithm (SSA, FPA,

and iMP algorithm) are given in Fig. 5.8. Of course, the best performance is provided

by the ML algorithm. The cross-over value SNR � −13.8 dB splits the chart in two

regions in which the iDU outperforms the SSA (SNR > −13.8 dB) and vice versa (SNR <

−13.8 dB). A comparison between the acquisition times of the SSA and the iMP detector

is contained in Tab. 5.1. To provide a realistic scenario, we can suppose a chip time

Tc ≈ 0.1÷1 µsec, that is typical of satellite positioning systems (as GPS, [2], and Galileo

System, [16]), and an iteration time Tit ≈ 1 µsec that can be considered a reasonable

figure for the state-of-the-art of LDPC decoders. Therefore, ρ = Tc/Tit ≈ 0.1 ÷ 1, so

we can consider as the worst case: ρ = 0.1. Furthermore, we assume that the penalty

time (defined in (3.8)) is the same for all the detectors and its value is proportional to

10 times the number of observations M , so k = 10. Finally, for the SSA two typical

values of q are considered: N and 2 N (it respectively means a search step of one chip

or half a chip). All results contained in Tab. 5.1 are obtained considering the curves in

Fig. 5.7 and Fig. 5.8 and Equations (4.14), (4.15), and (3.13). This table shows the

huge gap in terms of the acquisition time between the iDU and the SSA. In particular, the

iMP detector has a mean time and a standard deviation about 105 times smaller than the

SSA ones. This result is basically due to the q-factor that depends on the selected search

5.3. Acquisition time 89

Figure 5.7: The SSA PFA vs iMP PWD and PMD .

Figure 5.8: PCD of the iDU, the SSA, and the FPA.

90 C 5. Performance Evaluation

step and on the sequence length. A similar comparison between the iMP and the FPA is

performed in Tab. 5.2 (considering Fig. 5.8 and (4.14), (4.15), and (3.11)). In this case,

the FPA implementation is optimal in terms of the acquisition time performance, but the

iDU tends to its performance. More specifically, it is evident the difference between the

iDU standard deviation and that of FPA, due to the highest PWD and PMD of the iMP

detector. Nevertheless, increasing the SNR, both the iDU acquisition time parameters (the

mean and the standard deviation) tend to reduce the gap with respect to FPA. This result

still demonstrates that the iMP algorithm is a sub-optimal solution of the ML algorithm

in terms of time performance.

Coming to the issue of complexity, let us call CAlg the complexity of one detection

algorithm (Alg is a FP, SS, H, or iMP algorithm). Thus, in agreement with (3.10) and

(3.12), CFP = M N = M (2r − 1) = 268 434 432 and CSS ≈ M = 1 024. In case of the

iMP detector, the complexity strictly depends on the particular graphical model that has

been built, and it is measured in agreement with the equations (4.11) and (4.10). Hence,

CiMP can be computed and reported in Tab. 5.3 in comparison with the other algorithms.

Our analysis shows that the iDU complexity is considerably smaller than that of the full-

parallel implementation of the ML algorithm, and, of course, considerably higher than

that of the SSA. Therefore the final conclusion is that the iMP detector is a good trade-off

between the FPA and SSA, because it allows to have a rapid detection (that tends to the

FPA acquisition time) and good performance, in terms of correct detection probability at

low SNR, with a complexity lower than a full parallel implementation.

The last step is to compare the hybrid search to the iMP detector. To do this, we

refer to the architectural design of an hybrid algorithm presented in Section 3.2.1.3. The

analysis is conducted identifying the hybrid detector that is equivalent to the iDU in terms

of acquisition time, and then, its complexity is evaluated and compared to that of the iMP

algorithm.

Considering the previous m-sequence g18 = [1000201]8 and assuming that the thresh-

old λ of the hybrid unit is 0.85, Equations (3.15) and (3.16) can be used to evaluate the

5.3. Acquisition time 91

SN
R

SS
A

iD
U

q
=

N
q

=
2
·N

(d
B

)
P F

A
P C

D
P W

D
P M

D
P C

D
µ
iM

P

µ
S
S

σ
iM

P

σ
S
S

µ
iM

P

µ
S
S

σ
iM

P

σ
S
S

−1
2

<
10
−9

≈
0.

95
6

≈
0.

00
08

≈
0.

00
02

≈
0.

99
9

7.
89

10
−5

3.
07

10
−6

3.
95

10
−5

1.
53

10
−6

−1
3.

8
<

10
−9

≈
0.

92
≈

0.
07

≈
0.

01
≈

0.
92

7.
86

10
−5

2.
67

10
−5

3.
93

10
−5

1.
33

10
−5

−1
4.

4
<

10
−9

≈
0.

90
2

≈
0.

15
5

≈
0.

02
1

≈
0.

82
4

8.
31

10
−5

4.
12

10
−5

4.
15

10
−5

2.
06

10
−5

Ta
bl

e
5.

1:
C

om
pa

ri
so

n
of

th
e

ac
qu

is
iti

on
tim

e
be

tw
ee

n
th

e
SS

A
an

d
th

e
iD

U
.

SN
R

FP
A

iD
U

µ
iM

P

µ
F
P

σ
iM

P
σ

F
P

σ
iM

P

σ
F
P

(d
B

)
P C

D
P W

D
P M

D
P C

D

−1
2

1
≈

0.
00

08
≈

0.
00

02
≈

0.
99

9
≈

1.
02

7
29

8.
74

2
0

−
−1

3.
8

≈
1

≈
0.

07
≈

0.
01

≈
0.

92
≈

1.
09

9
3

02
0.

78
3

≈
0

−
−1

4.
4

≈
0.

99
95

≈
0.

15
5

≈
0.

02
1

≈
0.

82
4

≈
1.

20
4

4
99

5.
88

4
≈

25
1.

99
7

19
.8

25

Ta
bl

e
5.

2:
C

om
pa

ri
so

n
of

th
e

ac
qu

is
iti

on
tim

e
be

tw
ee

n
th

e
FP

A
an

d
th

e
iD

U
.

Y
R

G
M

5
N

v
n
≡

M
N

c
n

N
v
n

ed
g

N
c
n

ed
g

C
iM

P
C

iM
P

C
S
S

C
iM

P

C
F
P

I M
A

X
=

30
1

02
4

5
01

0
14
.6

8
3

1
35

2
83

9.
2

1
32

1.
13

2
1

19
8.

42

Ta
bl

e
5.

3:
C

om
pa

ri
so

n
of

th
e

im
pl

em
en

ta
tio

n
co

m
pl

ex
ity

of
th

e
iD

U
,t

he
FP

A
,a

nd
th

e
SS

A
.

92 C 5. Performance Evaluation

mean of the acquisition time at SNR � −13.8 dB as a function of the number of correla-

tion branches. More specifically, let BH is the number of correlation fingers of a hybrid

system, we compute the following function (from Eq. (3.16))

Ψ (BH) , log10

[
µH (BH)
µFP

]
λ=0.85
Ec/N0=−13.8 dB

and the result is plotted in Fig. 5.9. From Tab. 5.2, we have

log10

[
µiMP

µFP

]

Ec/N0=−13.8 dB
= 0.040997692 −→ Ψ

(
B̃H

)

so, using (3.15) and (3.16), and by numerical approximations, we get

Ψ
(
B̃H

)
≈ 0.040997692 =⇒ B̃H ≈ 131 071.

It is now possible to evaluate the complexity of the hybrid detector and compare it to that

of the iMP algorithm. Therefore, using (3.14) and considering Tab. 5.3, we find that

CH = BH ·M = 134 216 704 =⇒ CiMP

CH
≈

1
99.211

=⇒ CiMP � CH .

Thus, to get the same mean of the iMP acquisition time, the hybrid search needs to have

a number of correlation branches which tends to the sequence period N (BH → N).

Therefore, its complexity tends to that of a full-parallel implementation, and so it is higher

than the iDU complexity. Like this, many other examples can be done (with sparse/dense

generating polynomials) that provide similar results and conclusions, so definitely proving

the effectiveness of MP algorithms to acquire LFSR sequences.

5.3. Acquisition time 93

Fi
gu

re
5.

9:
T

he
m

ea
n

of
th

e
ac

qu
is

iti
on

tim
e

of
a

hy
br

id
de

te
ct

or
.

Chapter 6
Conclusions

In this thesis, a novel detection technique that exploits iMP algorithms to perform initial

acquisition of a spreading code is analyzed. Such technique basically uses the channel soft

information as messages to be exchanged within a graphical model with cycles to estimate

the transmitted LFSR sequence, thus implicity evaluating its code delay. In particular, the

graphical model can be implemented exploiting the generating polynomial structure of

the sequence, as shown in Chapter 4 and in [47] and [63].

The main feature that makes this algorithm very attractive is fast acquisition of long

SS sequences. More specifically, the standard algorithms are not adequate to acquire these

codes, because the full-parallel implementation features fast detection at a price of a high

complexity, and a simple-serial search results in a low complexity algorithm but has a

prohibitively long acquisition time. In this context, the iMP detector is a good trade-off

between these two techniques, because its correct detection probability is equivalent to

that of the simple-serial algorithm, but its performance in terms of acquisition time tends

to that of a full-parallel implementation with a much lower complexity. Comparing the

iDU to an hybrid search detector, it can also be shown that an hybrid algorithm tends to

the iMP acquisition time when the number of its correlation fingers tends to the sequence

95

96 C 6. Conclusions

period. This means that the complexity of an hybrid detector tends to that of a full-parallel

search, and so it is higher than that of the iMP algorithm.

We also focused on rapid acquisition of LFSR sequences with dense generating poly-

nomials and Gold codes, using iMP algorithms. Exploiting the theorems reported in [18],

we showed that these two cases are closely related, because every set of Gold sequences

can be described by a high-order LFSR (typically dense) generator. Thus, in order to de-

tect these sequences, iMP algorithms are run on RGMs generated by high degree equiv-

alent polynomials that are very sparse (trinomials and 4-nomials). These polynomials

can be algebraically computed by manipulating dense primitive polynomials of LFSR se-

quences, as shown in Section 4.4. Simulations results demonstrate that such technique,

called RGMsesp , offer benefits in terms of performance at low-SNR and low complexity

respect graphical models based on dense polynomials.

Addressing the problem of large memory requirements, a different activation schedule

and modified MP rules were proposed using the MS algorithm with a damping factor

([8] and [25]). This approach yields significant memory savings without a change in

computational complexity as compared to the initial iMP algorithms on RGMs. This

modification can provide good performance, but requires care in selecting the sub-model

partition and the damping factor.

In order to acquire Gold codes, HMs are also proposed. Our preliminary results

demonstrate the richness of the available HMs for Gold codes, but the performance is not

as good as that obtained with redundant TG models. Thus, an interesting future direction

is to further explore these HMs in search for better performance/complexity compromises.

Our results, take along with those in [10] and [63], demonstrate that iMP algorithms

can yield low-complexity, full-parallel search for rapid PN acquisition that approximates

the ML method. Many topics still remain to be investigated, such as: the SS acquisition

with the joint coarse estimation of code timing and carrier phase and frequency, the im-

provement of HM or RGMesp techniques, the search of other graphical models that could

introduce more benefits, more detailed hardware implementation considerations, and de-

97

sign of high-performance PN sequences, other than m-sequences and Gold codes, which

are studied to be acquired by iDU.

Appendix A
Extension of Finite Fields

A.1 Extension Field GF (pn)

Here, we define the procedure to construct the finite field GF (pn), [20]. Let GF (p) = Zp

be the finite field of order p, where p is a prime, the elements of GF (p) are {0, 1, . . . , p −
1}, and the addition + and the product · are carried out modulo p. Considering the follow-

ing fact, [20].

Fact A.1. For every prime p and every degree n > 1, there is at least one irreducible

polynomial of degree n over Zp .

Assuming n a positive integer, thus to construct the finite field GF (pn) of order pn ,

we choose f (x) to be an irreducible polynomial over GF (p) of degree n . Let α be a

formal symbol that satisfies f (α) = 0 (α is a root of f (x)), we define

GF (pn) = {a0 + a1 α + . . . + an−1 α
n−1|ai ∈ GF (p)}.

We also define two operations: + and · on GF (pn) as follows. Let g(α), h(α) ∈ GF (pn)

99

100 Appendix A. Extension of Finite Fields

be

g(α) =

n−1∑

i=0

ai α
i and h(α) =

n−1∑

i=0

bi αi .

• Addition: g(α) + h(α) =
∑n−1

i=0 (ai + bi) α ∈ GF (pn);

• Multiplication: g(α) · h(α) = r (α);

where r (α) is computed as follows.

• S 1 - Multiply g(α) and h(α) according to the polynomial multiplication

g(α) h(α) =

2 (n−1)∑

k=0

ck αk , c(α)

ck ,
∑

i+j=k

ai bj

• S 2 - Dividing c(α) by f (α), we can get two polynomials q(α) and r (α) such

that c(α) = q(α) f (α) + r (α) with deg (r (α)) < n .

Since, f (α) = 0, we have r (α) = c(α) ∈ GF (pn). In other words, r (x) is the reminder of

the g(x) f (x) divided by f (x).

Theorem A.1. The set GF (pn) together with the two operations defined above (+ and ·)
forms a finite field and the order of this field is pn .

The polynomial f (x) is called a defining polynomial of GF (pn) and α is a defining el-

ement of GF (pn) over GF (p). From the construction of GF (pn), f (α) = 0. Therefore,

α is a root of f (x) in GF (pn), so we say that GF (pn) is a finite extension of GF (p).

A.2 Periods of Minimal Polynomials

Theorem A.2. For any 0 , α ∈ GF (pn), the period of the minimal polynomial of α is

equal to the order of α

per (m(x)) = ord(α).

Appendix B
Multi-TG Model

B.1 Message-Updating Algorithm with Damping Factor

Referring to Fig. 5.3, the processing that we propose to update messages in a multi-

TG model is characterized by three loops, which are connected in a pyramid structure,

as shows in Algorithm 3. More specifically, the outer loop (with I1 iterations) counts

the number of global iterations1, the TG-loop is addressed to scan all sub-graphs (their

number is I2), and finally the inner loop (with I3 iterations) carries out a MS algorithm

with damping factor for a specific sub-TG. The algorithm is reported below.2

• S 0 - Initialization, i3 = 0 (line 7 of Algorithm 3):

∆soi = soi [1] − soi [0] = ∆sii

∆µi ,j = 0, ∀i → j (Messages from Variable to Check Nodes)

∆ηj ,i = 0, ∀j → i (Messages from Check to Variable Nodes)

1One global iteration ends when all sub-TGs are activated.
2S (�) = sgn(�).

101

102 Appendix B. Multi-TG Model

• S 1 - Iteration i th
3 , 0 6 i3 < I3 (line 9 of Algorithm 3):

∆µi ,j = µi ,j [1] − µi ,j [0] = ∆soi −
(
α · ∆ηj ,i

)

∆ηj ,i = ηj ,i [1] − ηj ,i [0] =
∏

∀k→j
k,i

[
S

(
∆µk ,j

)]
· min
∀k→j
k,i

(∣∣∣∆µk ,j

∣∣∣
)

∆soi = soi [1] − soi [0] = ∆sii +

α ·
∑

∀k→i

∆ηk ,i

 .

Algorithm 3: Message-updating with damping factor α.
Input: I1, I2, I3, initial damping factor α0, soft-input vector si (dim. M).
Output: soft-output vector so (dim. M), hard decision vector hd (dim. M).

begin1

// Initializing

α(0) ←− α0;2

s←− si ;3

// Outer Loop: Iteration Loop

for (0 ≤ i1 < I1) do4

// Tanner Graph Loop: Loop to Scan Sub-TG

for (0 ≤ i2 < I2) do5

HTG ←− Hi2 ;6

InitMinSumALg(s);7

// Inner Loop: Min-Sum with Damping Factor

for (0 ≤ i3 < I3) do8

so←− MinSumAlg(s, HTG, α(i1));9

hd←− HardDecision(so);10

if (HTG · hd = 0) then11

return [hd];12

else13

s←− so;14

end15

end16

end17

α(i1) ←−
[
α0 + (1 − α0) ·

(
i1

I1−1

)]
;18

end19

end20

Appendix C
Hierarchical Model

C.1 Message-Updating Algorithm

To describe the message updating proposed for HMs, a generic path of these graphs is

extracted and shown in Fig. C.1. Let z be an observation vector of M elements, the

soft-in information (∆sii), in negative log-domain, is defined (see also [9]) as ∆sii ,

− log
[

Pr(zi |ci=1)
Pr(zi |ci=0)

]
= zi , 0 6 i 6 M − 1. The main steps of our algorithm are below.

• S 0 - Initialization (n = 1):

∆soi , soi [1] − soi [0] = ∆sii

all other messages are zero.

• S 1 - Iteration n th, 1 6 n 6 IMAX :

∆µ′i ,j = ∆soi − ∆η′j ,i , ∀i : zi → h ′j

∆αj =
∏

∀i :zi→h ′j

[
S(∆µ′i ,j)

]
· min
∀i :zi→h ′j

(∣∣∣∆µ′i ,j
∣∣∣
)
, ∀j : h ′j → σj

103

104 Appendix C. Hierarchical Model

Figure C.1: One hierarchical model path.

∆µ′′j ,k = ∆αj + ∆βj − ∆η′′k ,j , ∀j : σj → h ′′k

∆η′′k ,j =
∏

∀l :σl→h ′′k
l,j

[
S(∆µ′′l ,k)

]
· min
∀l :σl→h ′′

k
l,j

(∣∣∣∆µ′′l ,k
∣∣∣
)
, ∀k : h ′′k → σj

∆βj =
∑

∀k :h ′′
k
→σj

∆η′′k ,j = Sβj ·Mβj , ∀j : σj → h ′j

∆η′j ,i = Sβj ·
∏

∀m :
zm→h ′j
m,i

S(∆µ′m ,j) · min
∀m :

zm→h ′j
m,i

[
Mβj ,

∣∣∣∆µ′m ,j

∣∣∣
]
, ∀j : h ′j → zi

∆soi = ∆sii +
∑

∀j :h ′j→zi

(
∆η′j ,i

)
, ∀i ∈ [0,M − 1]

where Sβj = S
(
∆βj

)
and Mβj = |∆βj |. The hard decision is made on the soft-out informa-

tion (∆soi). If the estimated vector verifies all the parity checks, the algorithm will end,

otherwise n = n + 1 and the S 1 will restart. The algorithm definitely ends when the

last iteration is performed (n = IMAX).

Bibliography

[1] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Transactions
on Information Theory, vol. 46, no. 2, pp. 325–343, March 2000.

[2] M. Aparicio and et al ., Global Positioning Systems: Theory and Applications, B. W.
Parkinson and J. J. Spilker, Eds. 370 L’Enfant Promenade, SW, Washington, DC
20024-2518: American Institute of Aeronautics and Astronautics, Inc., 1996, vol. I
and II.

[3] N. E. Bekir, “Bounds on the distribution of partial correlation for PN and Gold
sequences,” Ph.D. dissertation, University of Southern California, Los Angeles, CA
90007, January 1978.

[4] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-output mod-
ules for the construction and distributed iterative decoding of code networks,” Euro-
pean Transactions on Telecommunications, vol. 9, no. 2, pp. 155–172, March-April
1998.

[5] S. Berberich and S. Fischer, “AGGA-3 functional specification,” EADS Astrium,
Tech. Rep. 1, 16 October 2003.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting
coding and decoding: Turbo-codes(1),” in Proc. Int. Conf. Communications,
Geneva, Switzerland, 23-26 May 1993, pp. 1064–1070.

[7] K. K. Chawla and D. V. Sarwate, “Parallel acquisition of PN sequences in DS/SS
systems,” IEEE transactions on communications, vol. 42, no. 5, pp. 2155–2164,
May 1994.

105

106 Bibliography

[8] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based
decoding of low-density parity-check codes,” IEEE Transactions on Communica-
tions, vol. 50, no. 3, pp. 406–414, March 2002.

[9] K. M. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection: Adaptivity,
Complexity Reduction, and Applications. Norwell, Massachusetts 02061: Kluwer
Academic Publishers, 2001.

[10] K. M. Chugg and M. Zhu, “A new approach to rapid PN code acquisition using
iterative message passing techniques,” IEEE Journal on Selected Areas in Commu-
nications, vol. 23, no. 5, pp. 884–897, May 2005.

[11] R. De Gaudenzi, L. Fanucci, F. Giannetti, M. Luise, and M. Rovini, “Satellite mobile
communications spread-spectrum receiver,” IEEE Aerospace and Electronic Sys-
tems Magazine, vol. 18, no. 8, pp. 23–30, August 2003.

[12] R. De Gaudenzi, M. Luise, and R. Viola, “Chip timing synchronization in an all-
digital band-limited DS/SS modem,” in Proc. IEEE International Conference on
Communications 91, vol. 3, Denver CO, USA, 23-26 June 1991, pp. 1688–1692.

[13] ——, “A digital chip timing recovery loop for band-limited direct-sequence spread-
spectrum signals,” IEEE Transactions on Communications, vol. 41, no. 11, pp.
1760–1769, November 1993.

[14] R. C. Dixon, Spread Spectrum Systems, ser. Wiley-Interscience Publication. John
Wiley & Sons, Inc., 1976.

[15] P. Fenton, B. Falkenberg, T. Ford, K. Ng, and A. J. Van Dierendonck, “NovAtel’s
GPS receiver, the high performance OEM sensor of the future,,” in Proc. of GPS
1991, T. I. of Navigation, Ed., 1991, pp. 49–58.

[16] Galileo JU (Joint Undertaking), “Galileo open service signal in space interface con-
trol document (OS SIS ICD) - draft 0,” ESA, Tech. Rep. GAL-OS-SIS-ICD/D.0,
May 23 2006.

[17] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, pp. 21–28, January 1962.

[18] R. Gold, “Optimal binary sequences for spread spectrum multiplexing,” IEEE Trans-
actions on Information Theory (Correspondence), vol. 13, pp. 619–621, October
1967.

[19] ——, “Maximal recursive sequences with 3-valued recursive cross-correlation func-
tions,” IEEE Transactions on Information Theory (Correspondence), vol. 14, pp.
154–156, January 1968.

Bibliography 107

[20] R. W. Golomb and G. Gong, Signal Design for Good Correlation for Wireless Com-
munications, Cryptography, and Radar. New York, NY 10011-4211: Cambridge
University Press, 2005.

[21] S. W. Golomb and P. F. Lee, “Which irreducible polynomials divide trinomials over
GF(2),” SETA 2004, no. 3486, pp. 414–424, 2004.

[22] GPS JTO (Joint Program Office), “NAVSTAR GPS space segment/navigation user
interfaces,” ARINC Research Corporation, Fountain Valley, California, Tech. Rep.
ICD-GPS-200, Rev. C-PR (Public Release Version), October 1993.

[23] C. Gumacos, “Analysis of an optimal synch search procedure,” IEEE Transactions
on Communications Systems, vol. CS-11, pp. 89–99, March 1963.

[24] K. C. Gupta and S. Maitra, “Primitive polynomials over GF(2) - a cryptologic ap-
proach,” ICICS 2001, no. 2229, pp. 23–34, November 2001.

[25] T. R. Halford and K. M. Chugg, “Random redundant soft-in soft-out decoding of lin-
ear block codes,” in Proc. IEEE International Symp. on Information Theory, Seattle
WA, USA, July 2006.

[26] J. K. Holmes, “Acquisition time performance of PN spread-spectrum systems,”
IEEE Transactions on Communications, vol. COM-25, no. 8, pp. 778–784, August
1977.

[27] ——, Coherent Spread Spectrum Systems. New York, NY: John Wiley & Sons,
Inc., 1982.

[28] J. K. Holmes and L. Biederman, “Delay-lock-loop mean time to lose lock,” IEEE
Transactions on Communications, vol. COM-26, no. 11, pp. 1549–1557, November
1978.

[29] K. Huber, “Some comments on Zechs logarithms,” IEEE Transactions on Informa-
tion Theory, vol. 36, no. 4, pp. 946–950, July 1990.

[30] K. Imamura, “A method for computing addition table in GF(pn),” IEEE Transac-
tions on Information Theory, vol. IT-26, no. 3, pp. 367–369, May 1980.

[31] J. Jiang and K. R. Narayanan, “Iterative soft decision decoding of Reed Solomon
codes,” IEEE Communications Letters, vol. 8, no. 4, pp. 244–246, April 2004.

[32] B.-J. Kang and I.-K. Lee, “A performance comparison of code acquisition tech-
niques in DS-CDMA system,” Wireless Personal Communications, vol. 25, no. 2,
pp. 163–176, May 2003.

108 Bibliography

[33] E. D. Kaplan, Understanding GPS: Principles and Applications, ser. Mobile Com-
munications Series, E. D. Kaplan, Ed. Norwood, MA 02062: Artech House, Inc.,
1996.

[34] F. R. Kschichang, B. J. Frey, and H. A. Loeliger, “Factor graph and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
February 2001.

[35] S. Lin and D. J. Costello, Error Control Coding Fundamentals and Applications,
2nd ed. Upper Saddle River, NJ 07458: Pearson Prentice-Hall, 2003.

[36] J. H. Lindholm, “An analysis of the pseudo-randomness properties of subsequences
of long m-sequences,” IEEE Transactions on Information Theory, vol. IT-14, no. 4,
pp. 569–576, July 1968.

[37] H. A. Loeliger, “An introduction to factor graphs,” IEEE Signal Processing Maga-
zine, vol. 21, pp. 28–41, March 2004.

[38] S. Maitra, K. C. Gupta, and A. Venkateswarlu, “Multiples of primitive polynomials
and their products over GF(2),” in Proc. SAC 2002, August 2002, pp. 218–234.

[39] H. Meyr and G. Ascheid, Synchronization in Digital Communications: Phase-,
Frequency-Locked Loops, and Amplitude Control, ser. Wiley Series in Telecommu-
nications. John Wiley & Sons, Inc., January 1990, vol. 1.

[40] A. Papoulis and U. Pillai, Probability, Random Variables and Stochastic Processes,
4th ed. McGraw-Hill, 2002.

[41] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-Spectrum
Communications. Prentice-Hall, Inc., 1995.

[42] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread spectrum
communications - a tutorial,” IEEE Transactions on Communications, vol. COM-
30, no. 5, pp. 855–884, May 1982.

[43] L. Ping, X. Huang, and N. Phamdo, “Zigzag codes and concatenated zigzag codes,”
IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 800–807, February
2001.

[44] A. Polydoros and C. L. Weber, “A unified approach to serial search spread-spectrum
code acquisition,” IEEE Transactions on Communications, vol. 32, no. 5, pp. 542–
560, May 1984.

[45] E. C. Posner, “Optimal search procedure,” IEEE Transactions on Information The-
ory, vol. IT-11, pp. 157–160, July 1963.

Bibliography 109

[46] F. Principe, K. M. Chugg, and M. Luise, “Performance evaluation of message-
passing-based algorithms for fast acquisition of spreading codes with application to
satellite positioning,” in Proc. ESA Workshop on Satellite Navigation User Equip-
ment Technologies NAVITEC 2006. Noordwijk, The Netherlands: ESTEC, 11-13
December 2006.

[47] ——, “Rapid acquisition of Gold codes and related sequences using iterative mes-
sage passing on redundant graphical models,” in Proc. IEEE Military Communica-
tions Conference, Washington DC, USA, 23-25 October 2006.

[48] F. Principe, C. Terzi, M. Luise, and M. Casucci, “SOFT-REC: a GPS/EGNOS soft-
ware receiver,” in Proc. 14th IST Mobile & Wireless Communication Summit. Dres-
den, Germany: EURASIP, 19-23 June 2005.

[49] J. G. Proakis, Digital Communications, 4th ed., S. W. Director, Ed. McGraw-Hill,
2001.

[50] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal map decoding algorithms operating in the log domain,” in Proc. ICC 1995,
vol. 2, Seattle, WA, USA, 18-22 June 1995, pp. 1009–1013.

[51] RTCA JTO (Joint Program Office), “Minimum operational performance standards
for global positioning system/wide area augmentation system airborne equipment,”
RTCA Inc., Washington DC, Tech. Rep. RTCA/DO-299C, 2001.

[52] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and
related sequences,” in Proc. of the IEEE, vol. 68, no. 5, May 1980, pp. 593– 619.

[53] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Com-
munications Handbook. McGraw-Hill TELECOM, 2002.

[54] J. J. Spilker, Digital Communications by Satellite, ser. Prentice-Hall Information
Theory Series, T. Kailath, Ed. Prentice-Hall, Inc., 1977.

[55] M. Srinivasan and D. V. Sarwate, “Simple schemes for parallel acquisition of spread-
ing sequences in DS/SS systems,” IEEE Transactions on Vehicular Technology,
vol. 45, no. 3, pp. 593–598, August 1996.

[56] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
on Information Theory, vol. 27, no. 5, pp. 533–547, September 1981.

[57] A. Van Der Meer and R. Liyana-Pathirana, “Performance analysis of a hybrid ac-
quisition system for DS spread spectrum,” in Proc. TENCON 2003, vol. 1, 15-17
October 2003.

110 Bibliography

[58] A. Venkateswarlu and S. Maitra, “Further results on multiples of primitive polyno-
mials and their products over GF(2),” ICICS 2002, no. 2513, pp. 231–242, 2002.

[59] B. Vigoda, J. Dauwels, M. Frey, N. Gershenfeld, T. Koch, H. A. Loeliger, and
P. Merkli, “Synchronization of pseudorandom signals by forward-only message
passing with application to electronic circuits,” IEEE Transactions on Information
Theory, vol. 52, no. 8, pp. 3843–3852, August 2006.

[60] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping
University, S-581 83 Linköping, Sweden, 1996.

[61] L. Yang and L. Hanzo, “Iterative soft sequential estimation aided differential ac-
quisition of m-sequences,” in Proc. Vehicular Technology Conference, 2003. VTC
2003-Spring. The 57th IEEE Semiannual, vol. 3, 22-25 April 2003, pp. 1629–1633.

[62] ——, “Acquisition of m-sequences using recursive soft sequential estimation,” IEEE
Transactions on Communications, vol. 52, no. 2, pp. 199–204, February 2004.

[63] O. W. Yeung and K. M. Chugg, “An iterative algorithm and low complexity hard-
ware architecture for fast acquisition of long PN codes in UWB systems,” Springer
J. VLSI and Signal Processing (Special Issue on UWB Systems), vol. 43, no. 1, pp.
25–42, April 2006.

[64] W. Zhuang, “Noncoherent hybrid parallel PN code acqusition for CDMA mobile
communications,” IEEE Transactions on Vehicular Technology, vol. 45, no. 4, pp.
643–656, November 1996.

List of Publications

International Conferences

IC01 F. Principe, M. Luise, and K. M. Chugg, ”Performance Evaluation of Message-Passing-
Based Algorithms for Fast Acquisition of Spreading Codes with Application to Satellite
Positioning,” in Proc. NAVITEC 2006, ESTEC Noordwijk (The Netherlands), December 11-
13, 2006.

IC02 F. Principe, K. M. Chugg, and M. Luise, ”Rapid Acquisition of Gold Codes and Related Se-
quences Using Iterative Message Passing on Redundant Graphical Models,” in Proc. MIL-
COM 2006, Washington DC (USA), October 23-25, 2006.

IC03 G. Bacci, F. Principe, M. Luise, C. Terzi, and M. Casucci, ”SOFT-REC: a GPS Real Time
Software Receiver with EGNOS Augmentation,” in Proc. Workshop on EGNOS Perfor-
mance and Applications 2005, Gdynia (Poland), October 27-28, 2005.

IC04 F. Principe, C. Terzi, M. Luise, and M. Casucci, ”SOFT-REC: a GPS/EGNOS Software Re-
ceiver,” in Proc. 14th IST Mobile & Wireless Communication Summit, Dresden (Germany),
June 19-23, 2005.

IC05 F. Principe, C. Terzi, M. Luise, and M. Casucci, ”SOFT-REC: a Low-Cost GPS Receiver
Following the Software Radio Paradigm,” in Proc. NAVITEC 2004, ESTEC Noordwijk (The
Netherlands), December 8-10, 2006.

Technical Reports

TR01 G. Bacci, F. Principe, and M. Luise, SOFT-REC: GPS/EGNOS Software Receiver. Technical
Note: Verification of User Requirement 8 [UR8]. Dip. di Ingegneria dell’Informazione -
University of Pisa, Pisa (Italy), May 6, 2005.

111

112 Appendix C. List of Publications

TR02 F. Principe, G. Bacci, and M. Luise, SOFT-REC: GPS/EGNOS Software Receiver. Technical
Note: Signal Processing and Navigation Algorithms. Dip. di Ingegneria dell’Informazione -
University of Pisa, Pisa (Italy), July 15, 2005.

TR03 F. Principe, G. Bacci, and M. Luise, SOFT-REC: GPS/EGNOS Software Receiver. Technical
Note: Signal Processing and Navigation Algorithms Software Description. Dip. di Ingegne-
ria dell’Informazione - University of Pisa, Pisa (Italy), July 15, 2005.

TR04 F. Principe, M. Luise, and L. Fanucci, GREAT (Galileo Receiver Advanced Testbed). GARDA
Receiver Architecture. Dip. di Ingegneria dell’Informazione - University of Pisa, Pisa (Italy),
January 10, 2005.

	List of Figures
	List of Tables
	List of Abbreviations, Operators, and Symbols
	Introduction
	Motivations
	Key Points and Contributions
	Applications
	Outline

	Linear Feedback Shift Register Sequences
	Feedback Shift Register Sequences
	Basic Concepts
	Periodic Property
	Linear Feedback Shift Register Sequences

	LFSR Sequences in Terms of Polynomial Rings
	Characteristic Polynomial

	Minimal Polynomials and M-Sequences
	Minimal Polynomials of LFSR Sequences
	Periodicity
	M-Sequences
	M-Sequence Properties

	Gold Codes
	Definition and Properties

	Signal Model and Detection Algorithms
	Communication System
	Base-Band Transmitter
	Communication Channel
	Base-Band Receiver

	Detection Unit
	Single-Dwell Acquisition Algorithms
	Full-Parallel Search
	Simple-Serial Search
	Hybrid Search

	Detection with MP-Based Algorithms

	Message Passing Algorithms to Detect Spreading Codes
	Iterative Detection Unit
	Architectural Design

	Iterative Message Passing for PN Acquisition
	Iterative Message Passing Algorithms
	Redundant Tanner Graphs
	Detection Algorithm Complexity

	Acquisition Time
	Acquisition Time Analysis

	Trinomial Multiples of Generating Polynomials
	Algorithms to search Trinomial Multiple
	Algebraic Manipulation
	Zech's Logarithm Table
	Division Algorithms
	Exhaustive Search

	Performance Evaluation
	Equivalent Sparse Polynomials with High-Degree
	Simulation Results and Performance

	Hierarchical Model
	Simulation Results and Performance

	Acquisition time
	Simulation Results and Performance

	Conclusions
	Extension of Finite Fields
	Extension Field GF(pˆn)
	Periods of Minimal Polynomials

	Multi-TG Model
	Message-Updating Algorithm with Damping Factor

	Hierarchical Model
	Message-Updating Algorithm

	Bibliography
	List of Publications

