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Introduction  

 
MEMS (MicroElectroMechanical Systems) offer nowadays several 

stimulating possibilities to the research of new devices and new architectures 
for electronics systems. Such devices are composed of mechanical 
components and transducers, which convert electrical signals (voltages or 
currents) in mechanical quantities (such as forces, displacements) and vice 
versa. Their main feature is that they can be fabricated with technologies 
similar to the ones used to produce integrated circuits, so that MEMS can be 
fabricated on a chip and in some cases on the same chip together with an 
electronics system if their fabrication process is fully IC-compatible. 

The way MEMS can be produced allows the integration in a system on a 
package or even in a system on a chip of devices once macroscopic, like 
many sensor or like mechanical resonators, commonly quartzes, often used 
in electronics systems as frequency references. 

Among MEMS, MEM resonators are particularly attractive: indeed the 
expression “MEM resonator” includes a lot of different devices, whose 
operating principle is based on the mechanical resonance of one or more 
moveable part composing the device.  

Several are the proposed potential applications of MEM resonators: they 
can be used as frequency references in electronic systems or as fundamental 
components in electronic filters, local oscillators or mixers in RF 
communication systems. They can be even designed so as to maximize the 
sensitivity of their resonance frequency to temperature, humidity or the 
adsorption of a particular kind of molecule, in order to obtain sensors of 
these respective physical quantities.   

MEM resonators for RF applications are especially important because 
they potentially allow the integration on a single-chip RF transceiver of 
some of the components, as filters and oscillators, which are currently out-
of-chip components. Furthermore, the possibility of integrating a large 
number of resonators on a single chip leads to the possibility of new 
architectures for RF transmission systems [1]. In a different field, resonators 
for chemical sensing can allow new solutions for chemical analysis: a huge 
number of sensors on a single chip will make the detection of a very large 
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number of different molecules possible, enabling very complex, 
simultaneous analyses and making the idea of a “lab on a chip” viable. 

Fundamental parameters for a MEM resonator are the resonance 
frequency and the quality factor. This last parameter measures the frequency 
selectivity of the filter: a high quality factor means high selectivity in filter 
architectures and a low phase noise in oscillator architecture. 

The goal of this Ph.D. thesis is to give a small, but hopefully important 
contribution to the research in the field of MEM resonators, and in particular 
to the design of RF MEM resonators and resonator-based chemical sensors. 

The research activity discussed in this thesis starts from the design of 
MEM resonators for RF applications with resonance frequency in the range 
5-50 MHz and high quality factor, intended to be used as filters or as 
frequency selective element in oscillator. These devices are based on 
bending polysilicon beams. Among them two innovative devices are 
presented: the first, namely free-free third-mode resonator with flexural 
supports, allow theoretically to reach higher resonance frequencies and 
lower insertion losses than other resonators based on bending beams; the 
second is a resonator with tuneable resonance frequency. 

The design, and the characterization of these devices, will be largely 
discussed in the following, as well as the results from FEM simulations, 
which were especially useful to understand the behaviour of these devices 
when it was different from the expected one. The fabrication of the devices 
was carried out using THELMA process, provided by STMicroelectronics.  

Since the importance of the long-term stability of the resonance 
frequency of the device if it is used as a frequency reference, the effect of 
temperature on the resonance frequency of flexural-beam resonators was 
studied both analytically and by FEM simulations. On the other hand the 
effect of residual stresses was taken into account, because it can make the 
device to have a resonance frequency different to the nominal one.       

Last but not least, an equivalent circuit for the designed resonators was 
extracted. Equivalent circuits for MEMS are very important both to allow 
the simulation of MEMS together with electronics systems with a typical 
tool for the simulation of electronics circuits (for example Pspice), and to 
provide a handy and quick synthesis and analysis tool to the system-level 
designer. Practically equivalent circuits are necessary to facilitate the 
integration of MEMS with electronic circuits almost as much as the 
fabrication processes. 

The topology of the flexural-beam resonators presented in this thesis 
was optimized to reach a high resonance frequency. Nonetheless, this kind of 
resonator can reach only resonance frequency not higher than 100 MHz. To 
reach higher resonance frequencies, which are needed for several RF 
applications, it is necessary to choose another kind of MEM resonators, the 
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so-called bulk-mode resonator, which are based on mechanical structures, 
such as squares or disks, which are locally compressed or expanded at the 
resonance. The deformed shape at the resonance of different devices can be 
dissimilar, but in any case bulk-mode resonators generally allow to obtain a 
resonance frequency as high as 1 GHz, retaining quality factor higher than in 
flexural-beam resonators (from 1000 to 100.000 in dependence of the 
resonance frequency).  

Thus, in the framework of a collaboration with the international research 
centre IMEC (Interuniversity MicroElectronics Centre) of Leuven (Belgium), 
bulk-mode disk resonators were studied in order to find a way of optimizing 
their layout. The fundamental task of this optimization was the maximization 
of the quality factor of the device at the particular resonance frequency given 
by the specification.  

An analysis of the main physical mechanisms determining the quality 
factor was consequently done. This analysis led to the theoretical models and 
simulation methods, which will be shown in this thesis and which were 
essential to optimize the devices design. 

While this activity was carried out with respect to MEM resonators for 
RF application, another research was pursued in the field of MEM resonators 
for chemical sensing.  

In this thesis, the design, fabrication and characterization of an 
innovative MEM microbalance will be presented. A microbalance is a 
resonator, which changes its resonance frequency proportionally to the mass 
of a particular molecule adsorbed by a sensitive layer deposited on the 
device. Such layer has to be chosen to adsorb maximally one kind of 
molecule and minimally all the other kind of molecules. A microbalance can 
be thus used to sense the presence of a particular gas, as well as complex 
organic molecules, such as proteins or DNA. But it can be even used for 
other purpose, as for example the measurement of the thickness of a layer 
deposited on a chip during typical steps of IC fabrication process, such as 
sputtering or evaporation. 

The microbalance which will be presented in this thesis is innovative 
both because of its mechanical structure and for the actuation.  

The resonator is magnetically driven, exploiting the “bias” provided by 
an external and constant magnetic field, which interacts with an input current 
flowing in a loop, generating a Lorentz force, which actuates the device. 
Besides the magnetic field is also used to sense the device movements, 
which leads to variation of the flow of the magnetic field through another 
metallic loop, generating an electromotive force as an output signal. 
Magnetic actuation and sensing are not often used in MEMS, despite their 
potentiality and only in few cases they are used together. 
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Finally, a very important feature of the presented device is that it is 
fabricated with a low-cost CMOS-compatible process. The first steps of the 
process were carried out using the standard mixed technology BCD6 
(including BJT, CMOS and DMOS), provided by STMicroelectronics, while 
the last steps, including the release of the mechanical structure were 
accomplished in the Microsystems Laboratory of the Information 
Engineering Department of the University of Pisa. 
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1. State of the art of MEM resonators for RF 
applications and chemical sensing 

1.1 MEM resonators: from the working principle to 
the applications  

 
Before any discussion about the topic dealt with in this thesis, it is 

necessary to define the class of devices addressed: a “MEM resonator” is a 
micro-electro-mechanical system (MEMS), that is, a machine composed by 
micrometric transducers, changing electrical signals into mechanical ones 
and vice versa, and mechanical moveable parts, which can be integrated 
together on a chip by technologies similar to the ones used to fabricate 
integrated electronics circuits and sometimes they can be even fabricated on 
the same chip with an electronic system, if the fabrication processes for 
MEMS and electronics are compatible. A MEM resonator is usually 
composed of a mechanical structure (rotor) and one or more transducers, 
which are used to actuate a force by an electrical signal (input signal), 
driving consequently the structure into motion, and to transduce its 
movements in another electrical signal (output signal) proportional to their 
amplitude (Figure 1). The relation between input electrical signal and force 
actuated on the rotor depends on the kind of actuation, but can be generally 
considered as linear at least for small signals, unless the resonator is used as 
a component in mixers [1] or is characterized employing some particular 
system of measurements, which requires a non-linear actuation [2]. The 
same usually holds also for the relation between rotor movements and output 
signal. If the driving signal is a sinusoid with frequency equal to one of the 
resonance frequencies of the mechanical structure, the rotor movements are 
much higher than if the input signal was at a frequency far from any 
resonance frequencies. As a consequence, being the electrical output signal 
proportional to the amplitude of rotor movements, also the output signal will 
be a sinusoid at the same frequency of the input signal and with amplitude 
higher than at any other frequency.  

Generally in a MEM resonator, the mechanical structure and the input 
transducers are properly designed in order to obtain the highest movements 
amplitude, when the input signal frequency is equal to one particular 
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frequency chosen among all the resonance frequencies, while the movements 
amplitude is minimized for all the other resonance frequencies: in this case, 
if the resonator is considered as a “black box”, the whole device can be 
considered as an electrical bandpass filter with central frequency equal to the 
selected resonance frequency. The same can be obtained also by properly 
designing the output transducers in order to reduce the output electrical 
signal amplitude when the device resonates at resonance frequency different 
from the chosen one. If it is not possible to lessen enough the output signal 
for all the resonance frequency different from the central frequency of the 
filter, it can be useful to have a large separation between the selected 
resonance frequency and all the others, in order to have ideal bandpass 
behaviour, at least in a certain range of frequencies.  

Besides the resonance frequency, the other fundamental parameter, 
which characterizes a MEM resonator is the frequency selectivity, that is, the 
ability of cut the input signal at frequencies close but different to the central 
frequency of the filter.  

The selectivity of a resonator is measured by the “quality factor” Q. 
One of the possible definitions for the quality factor is: 
 

0
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Q

B−

=  (1) 

 
where f0 is the resonance frequency and B-3dB is the 3dB bandwidth, the 
distance from the resonance frequency at which the output signal is 3dB 
lower than at the resonance. It is clear that this definition is strictly related to 
the frequency selectivity concept and that the higher the Q, the higher the 
selectivity. 
 
 
 

 
 

Figure 1: Standard structure of a MEM resonator.  
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1.1.1 Actuation and sensing mechanisms 
 

The main actuation mechanism used in MEM resonators is based on the 
electrostatic force: with respect to two conductors (i.e. a capacitor), if they 
are at a different electric potential they exert a force on each other and if one 
of the two can move in a direction it can be driven into motion and 
consequently work as rotor, or be connected to the rotor to actuate it. As an 
example, it is possible to consider the parallel plate capacitor in              
Figure 2a: one of the conductors can move in a rigid way in a direction 
parallel to the other one. In this condition, according to the virtual work 
principle, the actuated force Fe is: 

 

2 201 1
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ε∂ ∂= = =
∂ ∂

 (2) 

 
where Ue is the energy stored in the electric field, ux a infinitesimal 
displacement in x direction, C the capacitance and V the applied voltage; ε0 
is the dielectric constant of the air between the two conductors, H their 
thickness (in z direction) and d the distance. This kind of electrostatic 
actuation, constant with the actuation was used often in the oldest resonators 
[3], but it is not too much efficient.  

If the moveable plate is forced to move in direction perpendicular to the 
other conductor as in Figure 2b, the actuated force is: 
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where L is the length along which the electrodes face each other. This time 
the force is L\d times higher than in the previous case, so that designing long 
and close electrodes, it is easy to reach values of the force even 100 times 
higher than in the previous case, applying the same actuation voltage. The 
drawbacks of the configuration in Figure 2b is that the force depends on the 
moveable plate displacement uy, introducing a limit to the linearity of 
equations, which rules the device behaviour. However the displacement 
amplitude is generally much smaller than the gap between electrodes, so that 
this electrostatic actuation is generally preferred to the other one, not only 
for the resonators but also for other MEMS.  

In both cases the relation between the input voltage and the actuated 
force is quadratic, and thus non-linear, so that the signal is generally 
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superposed to a DC voltage VDC higher enough than the signal Vs, in order to 
make Eqs. (2) and (3) linear with respect to VS for small value of the signal1. 

The actuators in Figure 2 can be used also as sensing elements, i.e. to 
convert the movements of the rotor in an output electrical signal. If a DC 
bias voltage VDC is applied between the two electrodes and if the moveable 
plate displacement uy in direction perpendicular to the electrodes is a 
function of the time (Figure 2b, with VDC = VS), a current I flows in the 
capacitor: 

 

( )
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1
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y yDC

DC DC DC
y y
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        (4) 

 
Considering rotor displacements ux in the other direction (Figure 2a, 

with VDC  = VS) an expression similar for the current can be extracted: 
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Like the actuation, the sensing mechanism exploiting rotor movements 

in direction perpendicular to the plates is non-linear but more efficient than 
the one which converts movements parallel to the electrodes in current, so 
that it is anyway preferred to this. In general the rotor can also deform, as in 
the bi-dimensional example in Figure 3. In this case, the forces per unit 
length, fx along x and fy along y can be defined as: 
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where c is a capacitance per unit length. While the linear current density j 
flowing through the capacitor will be, if a DC bias voltage VDC is applied: 
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Eqs. (6) and (7) can be easily generalized to the 3D case, defining 
current density, forces and capacitance per unit area. 

Other mechanisms used to actuate MEM resonators or sense their 
movements exploit magnetic interactions, piezoelectricity, thermal 
expansion (thermomechanical actuation) and piezoresistivity. These 
actuation/sensing mechanism are the same used in also all the other MEMS, 
but in the following they will be discussed with respect to their usage in 
MEM resonators.   

 
 

 
 

Figure 2: Electrostatic actuation/sensing: a) the moveable plate is forced to move in direction 
parallel to the plates (x direction); b) the rotor can move only in direction perpendicular to 
the plates (y direction). The moveable plates are connected to the anchor through a spring.  

 
 

Figure 3: Electrostatic actuation/sensing of a deformable rotor, leading to a distributed 
load/current: the moveable electrode is a cantilever, a slender beam clamped at one end.  
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Figure 4: Thermomechanical actuation exploiting the bimorphic effect: a cantilever is made 
of two layers with different coefficient of thermal expansion α1 and α2, so that heating the 
cantilever it is possible to bend it.   

 
The magnetic driving [4] generally exploits the Lorentz force acting on 

a current-carrying wire in a magnetic field, and will be discussed in detail in 
chapter 4. In this case the input signal is the current flowing in the wire and 
the relation between driving signal and actuated force is linear. Also a 
magnetic sensing [6] is possible and in this case the change in magnetic flux 
through an integrated moving inductance can be exploited. The 
implementation of magnetic actuation or sensing is complicated by the need 
of generating a magnetic field and is less efficient than electrostatic when 
device dimensions scale down. Being necessary to reduce the dimension of 
devices to reach high resonance frequencies, the magnetic actuation and 
sensing can be used only for low-frequencies applications. 

Piezoelectric actuation and sensing [7] are based on the fact that some 
particular materials deform if an electric field is applied on them and is 
directed in a proper direction. They are more efficient than electrostatic, but 
require the deposition of materials such as AlN (aluminium nitride) or PZT 
(lead zirconate titanate), which cannot be easily included in fabrication flows 
compatible with standard electronic processes like the CMOS. This 
technological complexity generally prevents from implementing 
piezoelectric actuation and sensing, because the possibility of integration of 
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MEMS together with electronics is one of the main advantages of these 
devices.  

The thermal expansion of materials can be exploited to actuate a 
resonator if it is composed of materials with different coefficients of thermal 
expansion (CTE) α [8] as the bilayer cantilever in Figure 4: heating the 
cantilever a compressive stress is exerted on the layers with the highest CTE, 
while a tensile stress loads the material with the lowest CTE. Thus a stress 
gradient in transverse direction (y direction in Figure 4) is obtained and it 
makes the cantilever to bend. This effect is known also as bimorphic effect. 
The heating of the cantilever can be achieved by driving a current I in 
heating resistors integrated along the cantilever. The relation between input 
current and actuated force is non-linear, being non linear the heat q 
generated by the current (q = RI2 due to the Joule heating). Another 
important drawback of this actuation is that the highest frequency of the 
actuated force is limited by the thermal time constant. The time needed for 
the heat transfer by conduction cuts the higher-frequency excitations. Thus 
this actuation mechanism was used only for low-frequency resonators (less 
than 1 MHz) [8].  
 

        
 

 

Figure 5: SEM picture of a lumped-parameter resonator taken from [11]. Regions considered 
as concentrated springs and mass are indicated.   
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Mass 
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Finally, the piezoresistivity can be used as a sensing mechanism [4]: 
resistors made of crystalline materials as silicon, change the value of their 
resistivity if they are stressed. In this case the resonator output voltage can 
be extracted by a Wheatstone bridge where one of the resistances is under 
stress and the others not. Also transistors show piezoresistivity [5]: in this 
case it is possible to exploit the stress-induced change of electron mobility in 
the channel.  

This sensing mechanism can be easily implemented in CMOS 
compatible processes, and it is certainly efficient if the resonator or a portion 
of it is made of crystalline materials where it is possible to fabricate diffused 
resistors. However piezoresistive sensing is plagued by thermal drifts. 

 

1.1.2 A possible classification of MEM resonators 
 
In the past years many different kinds of resonators have been proposed, 

so that there are a lot of possible classifications of these devices. One of 
these involves the way they are actuated and their movements are sensed, so 
that it is possible for example to talk about electrostatically, magnetically or 
piezoelectrically actuated resonator. Another classification is connected to 
the way of model the mechanical structure: it is generally a deformable solid, 
which can be described as a distributed-parameter system [9], but sometimes 
it can be considered as a mass-spring-damper system [10], at least for the 
lowest resonance frequencies. This is possible if the mechanical structure 
can be separated in two region: one big and rigid whose inertial properties 
are mainly important and which can be considered as the mass; the other 
smaller but composed by one ore more flexible structures, which can be 
considered as pure springs, because their mass can be neglected with respect 
to the mass of the other region. In this case the resonator can be modelled as 
lumped-parameter system [10]. 

The first resonators proposed in literature [3] were lumped-parameter 
resonators. A more recent example is shown in the SEM picture in Figure 5 
[11], where the “mass” and the “springs” are indicated too.   

As an example of distributed-parameter resonator, a flexural-beam 
resonator is shown in Figure 6 [12]. This last device is composed of a beam, 
that is, a solid with one dimension (length) much higher than the other two 
(width and thickness), whose deformed shape or mode shape at the 
resonance is given by a pure bending of the beam.    

 With lumped-parameter resonator is impossible to reach resonance 
frequency higher than some hundreds of kHz and it is a limit for a lot of 
applications, so that generally distributed-parameter resonators were more 
successful. 
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Figure 6: SEM picture of a flexural-beam resonator from [12]. Electrodes are indicated as 
well as the distributed-parameter structure, called “resonator”. 

 

 

Figure 7: SEM picture of a bulk-mode disk resonator from [13]: if a sinusoidal signal is 
applied to input electrodes the disk is alternatively compressed and expanded in radial 
direction.  
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Among distributed-parameter resonators an important division can be 
done between flexural resonators and bulk-mode resonators: flexural 
resonators can be plate or beam as the one in Figure 6, or even systems of 
more beams connected together, which bend when they resonate, while bulk-
mode resonators show resonance mode shapes defined by a deformation of 
the volume, or better by an acoustic wave confined inside the volume. 
Examples of bulk-mode resonators are bars, which are alternatively 
compressed and expanded in longitudinal direction, as well as disks or 
square blocks, alternatively compressed and expanded (Figure 7, [13]).  
 

1.1.3 MEM resonators applications 
 
Being MEM resonators basically filters, they can be used in all the 

applications which include filters or components based on filter. 
Furthermore, if packaged under vacuum2 , they often show a very high 
quality factor, so that they can be used as frequency-selective elements in 
oscillator. 

 Besides, they can be integrated on the same chip with electronics, with 
advantages in terms of occupied space, with respect to non-integrable 
solutions. Consequently they are very attractive for all the applications in 
portable devices, and especially in portable RF communication systems [1] 
(i.e. GPS, mobile). They can be used as filters or fundamental components in 
local oscillator, but also to obtain mixers [1], exploiting the intrinsic non-
linearity of electrostatic actuation.  

They could be useful also for communication systems on satellite, 
where the miniaturization is very important in order to save weight and the 
under vacuum package is not needed anymore, because the spatial 
environment is already at a high level of vacuum.  

To be useful for RF applications, MEM resonators have to reach 
resonance frequency at least higher than 1 MHz, and for some applications 
even higher than 1 GHz. Given this limits, actuation and sensing in RF 
MEM resonators are electrostatic, because it do not limit the higher 
reachable resonance frequency, as magnetic and thermomechanical 
sensing/actuation do. Electrostatic actuation and sensing are preferred also to 
piezoelectric, because of its easier technological implementation. RF MEM 
resonators are generally distributed-parameters resonators because of the 
impossibility of reaching high resonance frequencies with lumped-

                                                 
2 As shown in the following one of the main mechanism which limits the quality factor of 
these devices is the energy dissipation due to the interaction between air and resonator surface 
(air damping). 
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parameters resonators. The use in RF communication systems is the more 
attractive application for MEM resonators and the research around this topic 
is the main subject of this thesis. Thus it will be separately dealt with in the 
next section. But there are a lot of other possible applications of MEM 
resonators:  they can be used to create frequency reference not only for RF 
applications but also for all the low-frequency portable applications where a 
clock is needed. 

Besides a MEM resonator can be used as a sensor: a temperature change 
leads to a change of the resonance frequency of the mechanical structure, as 
well as the deposition of some material on the surface. Thus using the 
resonator as a frequency-selective element in an oscillator it is possible to 
obtain a temperature sensor [14], or by covering the resonator with a proper 
sensitive layer adsorbing only a particular analyte (the water and thus the 
humidity, a particular inorganic molecule or a complex organic module as 
DNA or a protein) [5].  

Of course if a temperature sensor is the target, all the molecules 
adsorbed by the surface introduce an error and, vice versa, if sensing a 
particular analyte is desired, temperature changes and adsorption of other 
analytes decrease the sensors selectivity. On the other hand the sensitivity of 
the resonance frequency to temperature adsorbed mass is only a problem for 
MEM resonator used as components of filters and oscillators in 
communication systems: temperature and mass adsorption lead to long-term 
instability of the central frequency in the first case and of the oscillation 
frequency in the second case. Limiting the interference introduced by the 
mass adsorption is thus another reason to package MEM resonator for RF 
applications under vacuum, while proper materials and topologies [15] have 
to be chosen in order to reduce the effect of temperature. 

The state of the art of chemical sensors based on MEM resonators will 
be discussed in the 3rd section of this chapter as the second fundamental 
topic of this thesis. Now the only thing which is interesting to anticipate is 
that electrostatic actuation and sensing is not obliged as for RF resonators, 
because it is not necessary that they resonate at high frequency, so that all 
the actuation and sensing mechanism discussed in this section have been 
proposed in literature about MEM resonators for chemical sensing. 

MEM resonators were proposed also as magnetic sensors: in [16] an 
external magnetic filed is detected by sensing the movements’ amplitude of a 
resonator actuated by the Lorentz force exerted on a current-carrying wire. 
The movements’ amplitude is proportional to both the external magnetic 
field and the current flowing in the wire. MEM resonators can even work as 
pressure because of the dependence of their quality factor on the pressure [2].     

Finally, MEM resonators were proposed even as components in 
scanning probe microscope systems [6] and in electrometers [17].  
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Figure 8: Typical cross-section of an FBAR [21].  

 
Figure 9: Range of use of MEM resonators, quartzes, SAW and FBAR for RF applications. 

 

1.2 MEM resonators in RF communication systems 
 

MEM resonators are very attractive for RF communications, basically 
because they can be integrated on chip. This advantage is very important 
especially if their use in filters and oscillators is considered: nowadays bulky 
and non-integrable devices as quartz and SAW filters are commonly used to 
obtain filters and oscillators at frequencies below 1 GHz.  
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A quartz filter is simply a portion of piezoelectric material such as PZT, 
with two electrodes attached to two sides of the device. The piezoelectric 
effect is used to drive into vibration the quartz crystal, by applying an 
external voltage signal between the two electrodes. But quartz vibrations 
amplitude influences the current flowing in the device, so that the impedance 
of the quartz is minimum when the input voltage frequency is equal to the 
resonance frequency of the quartz and is very high when the input signal 
frequency is far from the resonance frequency. Practically quartz can be 
modelled as a series RLC circuit. These devices are very huge and cannot be 
integrated, but they have very good performance from some hundreds of 
kHz to 100 MHz: in this range they show very high quality factors and small 
insertion losses, which are defined as the ratio in dB between the voltages at 
the output and at the input terminals/ports of a filer at the central frequency, 
when the output terminal/port is loaded with a standard impedance 
(generally a 50 Ω resistance).  Besides they show also a small sensitivity to 
the temperature, long-term stability of the resonance frequency and slow 
aging [18]. If having low insertion losses is very important for a filter, 
because they quantify the attenuation introduced by the device, an high 
quality factor is very important for a filter used as frequency-selective 
element in an oscillator, because an high quality factor reduces the phase 
noise [19], that is, the short-term variations of the frequency of the output 
signal from the oscillator, so that an high quality factor of the frequency-
selective filter increases the oscillator short-term stability.  

SAW (Surface acoustic wave) filters are made of piezoelectric materials 
as quartz filters, but instead of exploiting a bulk resonance in these filters the 
wave is confined to the surface. Except for this difference the working 
principle is the same. They are smaller than quartz filters but cannot be 
integrated on the same chip with the other electronic components of a 
communication system, because of the substrate needed to fabricate it 
(generally LiTaO3 o LiNbO3), which is not compatible with fabrication 
process for electronics. They are generally used for applications between 100 
MHz and 1 GHz and consequently they are especially suitable to be 
employed as intermediate frequency (IF) filters. Their performance is very 
good with respect to the quality factor and the long-term stability but worse 
than quartz performance with respect to the insertion losses [18]. 

Another class of devices have been recently proposed as fundamental 
components for RF filter and oscillators: they are called FBAR (Field Bulk 
Acoustic Resonators). They can work at frequencies from 600 MHz to 10 
GHz, but their performance with respect to the quality factor and the 
insertion losses are excellent especially in the range between 1 GHz and 10 
GHz, so that Agilent include them in its commercial duplexers [20]. FBAR 
can be considered as a sort of integrated quartz filters [21]: they are 
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generally made of a piezoelectric layer (typically AlN) deposited on a 
bottom electrode, which lies on some layers of different materials (Figure 8), 
working as a “distributed reflector”: choosing properly the acoustic 
impedance and the thickness of each layer in the reflector it is possible to 
confine the acoustic wave inside the piezoelectric layer; on the other side the 
same target is automatically obtain because the piezoelectric layer is 
interfaced with the air, apart from the small region where the second 
electrode is applied. The resonance frequency increases if the thickness of 
the piezoelectric layer decreases, and cannot be lower than 600 MHz 
because too thick piezoelectric layer are required to reach this frequency, 
leading to a too complex process. Unlike quartz and SAW filters, FBAR are 
IC (integrated circuits) compatible and it is a very important advantage. 

RF MEM resonators have to be compared to SAW and Quartz filters 
because the highest resonance frequency MEM resonators can reach 
nowadays is 1.5 GHz [22], even if one of the research issues for RF MEM 
resonators is increasing the highest resonance frequency, in order to enlarge 
the range of applications for these devices. Figure 9 summarizes the range of 
frequencies where each device can be used. 

The quality factor of MEM resonators is generally very high and 
sometimes comparable with quartzes quality factor [23], but their main 
advantage is the possibility of being integrated on the same chip with the 
electronics of the communication system. This leads to more compact RF 
receivers and transmitters for portable applications and to a reduction of 
parasitic elements introduced by the off chip connection, resulting in smaller 
power dissipation [1]. But the small dimensions of MEM resonators and the 
possibility of integrating filters and local oscillators with the other electronic 
components can lead also to revolutionary architectures for communication 
systems, as suggested by C.T.-C. Nguyen in [1]. For example the possibility 
of having a large quantity of filter integrated in a small space allows to 
design a bank of filters with different central frequencies and high quality 
factor, which can be used to select the channel just after the antenna and 
before the LNA (Low Noise Amplifier), obtaining the architecture 
represented in Figure 10 for an RF receiver with SSB (Single Side Band) 
demodulator. This bank of selectable filters is a very efficient 
implementation of an accordable filter with high quality factor, which would 
be very useful for the first selection of the channel, because it would reduce 
the complexity of the LNA: in such a way, indeed, the other channels are 
much more attenuated than if a classical electronic accordable filter is used, 
so that the specification of linearity for the LNA can be less strictly (this 
specification being generally due to the need of decreasing the effect of 
cross-channel interference). Furthermore also noise specification can be 
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released because the input noise is largely cut owing to the high selectivity 
of MEM filters. 

In the receiver in Figure 10 the selection among one of filters in the 
bank is done with MEM integrated switches. Besides, also the mixer is 
replaced with a MEM resonator-based device. It is interesting to consider 
that a single resonator can have at the same time the function of multiplier 
and intermediate frequency filter: if the actuation is electrostatic and if a 
sinusoidal voltage at different frequency is added to the input signal, 
according to Eqs. (2) to (3) and (6) the quadratic non-linearity of the 
resonator produces a component of the force equal to the product of the local 
oscillation and the signal, while the mechanical structure selects the force 
frequency components around the resonance frequency.  

A MEM resonator-based mixer has the great advantage to be a passive 
element: its power consumption is much lower than the one of the mixers 
based on active components, which is generally used in RF transmission 
systems.  

MEM resonators can be used to obtain not only high selectivity filers 
but also relatively large bandwidth filers with high stopband rejections: this 
can be obtained by coupling two or more resonators with a mechanical 
element such as a soft beam [24] (Figure 11), or by an electrical coupling 
element, such as a capacitor [25]. In such a way, if designed properly, the 
overall resonator has two or more very close resonance frequencies, so that 
the bandwidth is increased with respect to the case of a single-resonator filter, 
even if a ripple in the passband is introduced (Figure 11). The high quality 
factor of each resonator assures a great stopband rejection in multi-resonator 
filters.  

Thus MEM resonators use for RF applications is very attractive owing 
to the high quality factor, the possibility of large scale integration and the 
large amount of different devices which can be replaced by a MEM 
resonator-based counterpart.  

But, apart from the quality factor, the performance indicators of RF 
MEM resonator are generally worse than quartz and SAW filters: the 
insertion losses are higher and the long-term stability is less than quartz, 
because of the dependence of resonance frequency on temperature, humidity 
and mass adsorption and desorption of the resonator surfaces. The problems 
related to humidity and mass adsorption/desorption can be solved by 
packaging under vacuum the resonator [26], while with respect to 
temperature the problem is more complicated as shown in chapter 2.  

The biggest problem is connected to the insertion losses. In resonators 
with electrostatic driving and sensing the insertion losses can be reduced 
increasing the electromechanical coupling, that is, the actuated force when a 
unitary input voltage is applied and the output current per unitary 
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displacement. According to Eqs. from (2) to (7), the easiest way to achieve a 
higher electromechanical coupling is to increase the bias DC voltage applied 
between the rotor and both input and output electrodes. But to obtain 
acceptable insertion losses, many authors ([23],[24]) proposed bias voltage 
from 10 V to 100 V, which are too high for portable communications 
systems, usually working with bias voltages below 5 V. Charge pumps 
circuits, even MEMS-based [27], were proposed to solve the problem, but 
even considering this possibility the bias voltage cannot off course reach 
value as high as 100 V. Another way to increase the electromechanical 
coupling is to optimize the electrodes and the mechanical structure or select 
the better resonance modes. This strategy can lead to a reduction of both bias 
voltage and insertion losses and is the strategy developed also in this thesis 
and in the author’s master thesis [18] as discussed in the chapter 2. 

 

 
 

Figure 10: Innovative architecture for an RF receiver for SSB modulated signal, presented in 
[1]. The components replaced with MEMS are in grey.  

 

 
Figure 11: Schematic representation of the two resonance modes for a two-resonator filter 
and of the expected frequency response (from [24]). The resonator is composed of two 
flexural-beam resonators connected by a coupling beam: on the first resonance mode the two 
beams move symmetrically, on the second one anti-symmetrically.  

Coupling 
beam 
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Finally, the insertion losses can be reduced also increasing the quality 
factor Q: the output current at the resonance is proportional to Q if the 
resonator can be represented as a second order system, as it is generally 
reasonable ([9],[10]). This is a further reason to maximize the quality factor, 
besides its importance to have high-selective resonator-based filters, multi-
resonator filters with high stopband rejection and resonator-based oscillator 
with low phase noise (high short-term stability). For all this reasons the 
maximization of quality factor was the main issue of the work about 
modelling and design of disk resonators, which is discussed in chapter 3.  

A parameter strictly connected to the insertion losses is the motional 
resistance, which is the electrical resistance the resonator can be consider 
equivalent to at the resonance. 

Summarizing, in the research about electrostatically driven RF MEM 
resonators, the main open issues are, in order of importance: 

 
I. Reducing the insertion/losses (motional resistance), without 

increasing the bias voltage 
II.  Increasing the quality factor 
III.  Increasing the maximum resonance frequency which can be 

obtained 
IV.  Increasing the long-term stability of the resonance frequency 

(temperature effect) 
 
Issues I, II and III were considered in the design of beam flexural 

resonators presented chapter 2 of this thesis as well as in the optimization of 
the design of bulk-mode disk resonators discussed in chapter 3. With respect 
to long-term stability (point IV) an estimation of the sensitivity to 
temperature of resonance frequency was done only for the flexural-beam 
resonators. 

In the following some solutions presented in literature to solve 
especially problem I, II and IV are presented. The mechanical structures are 
generally made of single-crystal Silicon, Polysilicon or Poly Silicon-
Germanium (SiGe), a promising structural material for CMOS-compatible 
process to fabricate MEMS [28]. Recently diamond and Silicon Carbide 
(SiC) resonators were as well proposed in order to reach high resonance 
frequencies through the high Young’s modulus of these materials 
([11],[22],[29]). 
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1.2.1 Flexural resonators   
 

Because of the reasons already discussed (resonance frequencies needed 
and technological complexity) the large majority of RF MEM resonators 
have an electrostatic actuation and sensing, apart few cases with 
piezoelectric actuation and/or sensing [30]. Also the RF resonators cited 
from literature in the following, as well as the RF devices developed in this 
thesis, have electrostatic sensing and actuation, thus starting from this point 
all the RF MEM resonator considered in this thesis, will have electrostatic 
actuation and the sensing.     

Besides, being the resonance frequencies achievable with lumped-
parameter resonators well below 1 MHZ, the RF MEM resonators are 
always distributed parameters systems and they are divided in flexural 
resonators and in bulk-mode resonators, as already said.   

Flexural-beam resonators were the earliest distributed-parameter 
resonators proposed and among them clamped-clamped beam resonators 
were the first: the resonant mechanical structure is a beam anchored at both 
the ends, where beam cross section cannot move or rotate, which means that 
the ends are both clamped (Figure 6). It is a very easy structure composed by 
only one beam, and among all the resonators composed of only one beam it 
is the one which has the higher resonance frequency, if the comparison is 
done among beams with the same length and cross-section. For example if 
compared with a cantilever resonator, which is a beam clamped at one end 
and free at the other (as the structure in Figure 3), the resonance frequency of 
the fundamental mode of clamped-clamped beam is about six times higher 
than the first resonance frequency of a cantilever with the same lengths and 
cross-section. This relation is strictly dependent on the different boundary 
conditions and can be verified using the formulas in [31].   

 Like every flexural resonator, clamped-clamped beams can be laterally 
actuated, as the one in Figure 6 [12], when resonator and electrodes lies on 
the same plane parallel on the substrate, or they can be vertically actuated by 
an electrode lying on the substrate beneath the beam [1], as the resonator in 
Figure 12. In the first case the beam bends in direction parallel to the 
substrate, while in the second case in direction perpendicular to the substrate.     

Clamped-clamped beam resonators have a significant quality factor 
(some thousands), when they work in vacuum and their resonance frequency 
is less than 15 MHz ([12],[32]). But their quality factor dramatically 
decreases increasing the resonance frequency [32], so that for higher 
frequencies clamped-clamped resonators are practically useless. Thus a more 
complex device, the so-called free-free beam resonator, was proposed: this 
architecture enhances the quality factor (and thus it also reduces insertion 
losses) and allows to reach resonance frequencies as high as 90 MHz, 
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retaining a quality factor more than 20 times higher than a clamped-clamped 
beam working at the same frequency [33]. A SEM picture of a free-free 
resonator is presented as Figure 13a. 

 

 
 

Figure 12: Schematic representation of a one-port clamped-clamped beam resonator 
actuated by an electrode lying on the substrate. The figure is taken by [1]. 

 

 
 
 

 
 

Figure 13: Free-free resonator with torsional supports from [33]: a) SEM picture; b) 
schematic structure.  

a) 

b) 
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In order to understand how the free-free design can improve the quality 
factor with respect to clamped-clamped beam resonators, it is necessary to 
discuss shortly the physical mechanisms which limit a resonator quality 
factor. An expression alternative to (1) for the quality factor Q is: 

 

2 imm

L

W
Q

W
π=

∆
 (8) 

  
where Wimm is the energy stored in the resonator at the resonance and ∆WL, 
the energy lost per cycle. Thus the quality factor can be extracted by 
measurement of the frequency response, using Eq. (1), but it can be also 
estimated from (8), the only thing needed is to find the energy losses or 
damping mechanisms. In Figure 14 the three main energy losses are 
represented for a clamped-clamped beam resonator: 
 

a. The surface losses, due (at atmospheric pressure) mainly to the 
air damping, that is, to the collisions of the air molecules at the 
resonator surfaces.  

b. The intrinsic losses, due to internal friction and vibration-
induced heat generation (thermoelasticity). They are localized 
inside the material and are strictly connected to material 
properties. 

c. The anchor losses, due to interaction between the resonator and 
the substrate: because of resonators movements a propagating 
acoustic wave is driven in the substrate at the resonance and the 
amount of energy stored in the wave is lost, unless it is 
reflected back by some material discontinuity in the substrate. 

 
 

The discussion, held in the last years by academics, about the estimation 
the quality factor in MEM resonators will be detailed later in this chapter, 
because it was very important for this Ph.D. thesis, whose aim is also to give 
a small contribution to this subject (see chapter 3). At this point the only 
important aspect of the problem is that by the dependence of quality factor 
on the pressure ([2],[32]), it can be demonstrated that the air damping is the 
higher loss, and thus limits the quality factor at atmospheric pressure. But 
both to increase the quality factor and to improve the long-term stability of 
the resonance frequency, resonators has to work in vacuum and in this case 
the internal losses are always too small to explain the measured quality 
factor ([18],[36]). Besides in many cases a smaller quality factor was 
measured increasing the anchor size [37], so that it was concluded by many 



 

 25 

authors that anchor losses cause the main energy dissipation in vacuum. In 
chapter 3 it will be shown that this dependence between anchor size and 
quality factor is not always true. It holds, however, in the aforementioned 
cases [37], so that the observation can support the thesis of the centrality of 
the anchor losses. 

To reduce anchor losses and thus increase quality factor, in [33] was 
proposed an architecture where the beam driven by the input electrode (or 
main beam) is minimally coupled with the anchor, so that the energy fed by 
the input signal is maximally confined inside the beam and does not flow 
into the substrate through the anchors. This condition is obtained               
(Figure 13b) by connecting the main beam to the anchors through two other 
beams namely supports. The main beam has ‘free’ ends, so that its resonance 
frequencies can be found solving the problem for a free-free beam (from this 
come the device name). Supports minimally affect the principal beam mode 
shape at the resonance, if they are connected at the nodes of the deformed 
shape of the main at the resonance. The nodes are points which do not move, 
but around which the beam cross-section is free to rotate. Thus the supports 
must also not exert any bending moment on the main beam. This can be 
obtained by considering the beams as mechanical lines of transmission and 
choosing the supports length in order to obtain a λ/4 adaptation, with a 
perfect analogy with the λ/4 adaptation usually done in electric transmission 
lines: the supports when the main beam bends (in z direction according to 
Figure 13b), are twisted, so that they behave as torsional support and in this 
case the dynamic equations relating the torsional moment and the derivative 
of the twisting angle with respect to the time have exactly the same form of 
the equations relating voltage and current in electric transmission lines, if the 
moment is replaced by the voltage, the derivative of the angle with respect to 
the time by the current and the velocity of the torsional acoustic wave by the 
light velocity.     

This λ/4 adaptation leads to the possibility to obtain MEM resonator 
with Q about 8000 till about 90 MHz, achieving a great improvement with 
respect to clamped-clamped resonators. 

With respect to the maximum achievable resonance frequency, the          
free-free beam resonance frequencies are equal to the one of a clamped-
clamped beam, so that concerning this point the two solutions are practically 
equivalent. The only small disadvantage of free-free beam is that it occupies 
a slightly larger surface of the chip, because of the supports.  

Another possible architecture is anyway presented by Nguyen for a  
free-free resonator (Figure 15). This time the resonator is laterally driven and 
consequently also the supports bend because the free-free beam bends in a 
direction parallel to the substrate. 
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Figure 14: Damping source limiting the quality factor in a MEM resonator, shown in the 
schematic longitudinal   cross-section of a vertically actuated clamped-clamped beam 
resonator.  

 
 

Figure 15: 3D sketch of the free-free resonator with flexural supports presented in [38].  

 
Also in this case the supports are connected with the main beam at its 

nodal points and a sort of λ/4 adaptation is done, even if dynamic equations 
for a bending beam are not equivalent to equations for an electrical 
transmission line, and thus the analogy is less rigorous than in the case of 
free-free resonator with torsional supports. The adaptation anyway works, 
leading to quality factor around 10000 at 10 MHz [38].  

The problem of supports adaptation in a free-free resonator with flexural 
supports will be detailed in chapter 2, where structures similar to the one in 
Figure 15 will be presented. 

In [33] and [38] are presented resonators where the free-free beam 
resonates on its first resonance mode; designing resonators with free-free 
beam resonating on higher resonance modes is a way to reach higher 
resonance frequencies and lower motional resistances with flexural-beam 
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resonators. Nguyen did it for free-free resonators with torsional supports [39], 
while in the author’s master thesis, from which these Ph.D. research 
activities start, a free-free resonator resonating on the third resonance mode 
with flexural support is presented [18] almost at the same time as the device 
in [39]. 

To complete the state of the art of flexural-beam resonator it is 
mandatory also to introduce another possibility of MEM resonators: their 
resonance frequency can be varied changing the bias DC voltage applied 
between rotor and electrodes and thus a MEM resonator can be an 
accordable filter. This effect is well known in literature ([38],[40]) and will 
be quickly discussed in chapter 2. But it was also observed that in free-free 
resonators an increasing of bias DC voltage reduces the quality factor [38]. 
This quality factor decrease is probably due to the fact that λ/4 adaptation 
works exactly only at the resonance frequency the free-free beam is 
supposed to resonate. If it resonates at a different frequency owing to the 
effect of bias voltage, the adaptation does not work anymore. In chapter 2 a 
possible solution to this problem is presented, in order to show a way to 
exploit the intrinsic accordability of a high-Q filter such as the free-free 
resonator. 
 

1.2.2 Bulk-mode resonators 
 
Even exploiting higher order modes, it is impossible to reach resonance 

frequency higher than 500 MHz [18] because of the small dimensions 
needed. As a matter of fact, it is not practical to design flexural resonators at 
frequency higher than 100 MHz ([18],[33],[38],[39]), in order to obtain 
reasonable value for the motional resistance, retaining low bias voltage. 

Thus, to obtain higher resonance frequencies the bulk-mode resonators 
were introduced: the most simple bulk-mode resonator is a beam inside 
which a longitudinal compressive wave propagates [23] (Figure 16). The 
beam resonates at about 12 MHz and has a Q about 180000, but the rigidity 
of the structure and the inefficient electromechanical coupling (the only parts 
of the beam facing the electrodes are the two short ends), lead to a high 
motional resistance despite the high-Q.  

Bulk-mode resonators better performing than the compressed beam in 
[23], are the square ([29], [41]) and the disk ([13],[22],[37],[42]) resonators. 
In both cases if the resonator alternatively is expanded and compressed 
increasing and decreasing its volume without changing its shape, the device 
is a contour mode resonator, because it resonates on a contour resonance 
mode ([13],[22],[37],[41])  (Figure 17a). But, if the actuation electrodes are 
properly shaped, it is possible to exploit resonance mode shapes according to 
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which the mechanical structure is expanded in a direction and compressed in 
the orthogonal direction, preserving its volume ([29],[42]). These resonance 
modes are called Lamé modes (Figure 17b). All these devices show very 
high quality factors at every frequency from the value of 130000 at 13.1 
MHz presented in [41] to the quality factor about 2600 at 1.156 GHz in [37]. 
The last value is obtained by exciting the third contour mode of a silicon 
disk, with a disk radius equal to 10 µm. Using other materials more rigid 
than silicon, such as diamond, it is possible to reach frequency even higher 
preserving very high quality factor. In [22] a nanocrystalline diamond disk 
resonator is presented: its radius is again 10 µm, resulting in a resonance 
frequency about 1.5 GHz with a quality factor higher than 10000. The disk 
resonates on the second contour mode.  

Furthermore, square and disk resonators reduce a lot the motional 
resistance with respect to the beam under compression in [23], because they 
show a better electromechanical coupling, having a larger lateral surface 
which can be faced by electrodes. 

A further reduction of the motional resistance can be achieved with the 
radial bulk annular resonator (RBAR) presented in [44], where theoretically 
the resonance frequency is proportional to the difference between the 
internal and external radius of the ring (Wr in Figure 18), while the motional 
resistance increase if the average radius increase (rav in Figure 18). The 
authors of [44] propose a design to obtain a Poly-Silicon-Germanium 
resonator at 1 GHz with 50 Ω of motional resistance guaranteed if the 
quality factor is at least 10000. It could be a very advanced result, if 
confirmed by experimental results.  

 

 
 

Figure 16: SEM picture of the bulk-mode beam resonator presented in [23]: the arrows 
represent the directions of propagation of the progressive and regressive longitudinal 
compressive waves.  
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Figure 17: Deformed shapes of bulk-mode disk resonators: a) a disk vibrating on its first 
contour mode; b) a disk vibrating on its first Lamé mode. The relaxed geometry edges are 
represent by a black line in both case, while the map of colours show the displacements 
amplitude (from blue which is zero to red which is the maximum displacement). Both the 
deformed shapes were taken from FEM eigenfrequency simulations performed with FEMLAB 
[43]. 

 
 

Figure 18: Schematic top view and radial cross-section of the radial bulk annular resonator 
(RBAR) presented in [44]. 

 
At frequencies higher than 100 MHz it is possible to obtain results 

which cannot be achieved with flexural-beam resonators, but in the 
frequency range between 1-100 MHz the flexural-beam resonators show 
acceptable performance, even if worse with respect the quality factor (less 
than 10000 vs. more than 100000) and they have at least the advantage to be 

a) b) 
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much more compact than bulk-mode resonator: the square resonator in [41] 
occupies an area larger than 300x300 µm, while a free-free resonator at the 
same frequencies needs an area smaller than a square 100x100 µm. Thus if 
the resonance frequency required belong to the interval 1-100 MHz and the 
quality factor required is not too high, it could be useful to choose a               
flexural-beam resonator in order to save area and put more devices on the 
same chip. Thus in the first part of the research activity presented in this 
thesis the devices proposed in the author’s master thesis were characterized, 
identifying possible improvements. Their performance with respect to 
temperature variations was modelled as well as the effect of residual stresses 
on the resonance frequency and equivalent electrical circuits were extracted 
to better understand their behaviour and to make easier their use by system-
level designers in complex electronics systems. But owing to the great 
importance of the range of frequencies from 100 MHz to 1 GHz for RF 
communications systems [1], in a second part, the optimization of the design 
of a MEM disk resonator was considered3. The main target of the design was 
the maximization of the quality factor and for this purpose a strategy based 
on FEM simulations to evaluate the Q was found. Thus this chapter about 
the state of the art of RF MEM resonator will be concluded by a short 
description of the different theoretical models, analytical approximations and 
simulative approaches presented in literature as methods to estimate the 
quality factor. 
 

1.2.3 The problem of estimation of the quality fact or of RF MEM 
resonator 

 

Due to the great importance of the quality factor for RF MEM 
resonators, a lot of research has been done to find methods to estimate it. Air 
damping, intrinsic dissipation mechanisms and above all anchor losses has 
been investigated.  

Air damping can be simply due to the drag force generated by to the 
friction between air and resonator surface ([45],[46]). But if the resonator 
moveable structure is surrounded by thin layers of air, the damping is strictly 
connected to the thin film properties. This situation usually occurs when the 
resonator is electrically actuated, because according to Eqs. from (2) to (7) 
the gap between the rotor and the electrodes has to be reduced as much as 
possible, in order to increase the electromechanical coupling and 
consequently the insertion losses. If the resonator movements are parallel to 
                                                 
3 This activity was carried out in collaboration with IMEC (Interuniversity MicroElectronics 
Centre). 
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the air film (as in Figure 2a) the structure is affected by a slide film damping 
[47], if the rotor moves in direction perpendicular to the film (as in             
Figure 2b), so that it compresses it, the resonator loses energy through a 
squeeze film damping [46].    

Squeeze film damping has been studied by many authors for many 
different MEM structures ([48],[49],[50]) and it generally reduces to very 
small value the resonator quality factor when the electrodes/rotor gap scale 
down (if d is the electrodes/rotor gap, the damping is proportional to 1/d3 as 
it is possible to find from [48], [49] or [50]). Thus electrostatic actuation and 
sensing are generally unfitted to be used in resonator working in air, because 
of the squeeze film damping, even if with some bulk resonators with 
electrostatic actuation and sensing it is possible to reach high quality factor 
also at atmospheric pressure ([22],[37]).  

However, as it was already discussed, in RF MEM resonators air 
damping is totally removed by packaging the device under vacuum. Of 
course this leads to a higher technological complexity and increase devices 
costs, but the advantages are considerable not only because of the increase of 
the quality factor but also with respect to the long-term stability of the device 
resonance frequency [26], which is fundamental when the resonator is used 
as oscillator component. A lot of research activities in the world are about 
RF MEM resonators packaging, involving also zero-level packaging [51], in 
order to reduce package leakages and the package cost. If the air damping is 
removed by a proper packaging, only intrinsic and anchor losses limit the 
quality factor.  

Internal damping is strictly connected with the properties of the 
materials the resonator is made of, so that the choice of proper materials is 
primary to reduce the effect of this energy loss. Intrinsic dissipation include 
a great number of mechanisms which can be modelled by considering the 
material as viscoelastic ([18],[34]), but also assuming the damping source as 
caused by a thermoelastic dissipation or by the phonon-phonon effect [52]. 
Both losses are due to the interaction between an acoustic wave propagation 
and heat transfer.     

Phonon-phonon dissipation happens because an acoustic wave 
propagating in a material disturbs the condition of equilibrium of thermal 
phonons corresponding to the thermal lattice vibration. The recovering of the 
equilibrium condition produces the loss of a part of the energy stored in the 
acoustic wave [53]. This effect usually leads to a very small energy 
dissipation and can be generally neglected in MEM resonator [52]. 

More important is the thermoelastic damping: if the resonator vibrates, 
the mechanical structure is alternatively locally compressed and expanded. 
According to the model for thermoelastic damping presented in [35], a time-
variant state of compression leads to a heat generation. Thus, owing to heat 
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transfer by conduction, a time-variant temperature gradient is generated and 
this gradient drives a dilatation or compression of the material which 
opposes the vibrations which cause it, resulting in energy dissipation. 

Thermoelastic dissipation is very important in flexural-beam resonators, 
as shown in [35] and [36]. To our knowledge nobody has ever evaluated the 
effect of thermoelastic damping in bulk-mode resonator, but according to the 
analysis presented in chapter 3 of this thesis, it is much smaller than 
thermoelastic damping effect in flexural-beam resonator, at least in the 
bandwidth from 1 MHz to 1 GHz. Nonetheless thermoelastic dissipation is 
very small if compared with the anchor losses, which are certainly the main 
damping mechanism in vacuum, because the small value of intrinsic losses 
cannot explain alone the experimental values and because the quality factor 
generally increases if the dimensions of the interface resonator/substrate 
increases [37]. 

Despite their importance, methods to estimate anchor losses were 
presented only recently in literature (all the papers about this topic have been 
published during the last three years). This is due to the complexity of the 
problem which prevents from finding easily the solution. Owing to such 
complexity an approach based to simulations seems to be an efficient 
solution to estimate the anchor losses in a MEM resonator. Nonetheless any 
simulation strategy has to face the problem of the substrate: being the anchor 
losses related to the propagation of an acoustic wave in the substrate, the 
substrate has to be included in the simulations, but it is much larger than the 
resonator so that including all the substrate in the simulations would lead to a 
too large number of element in the simulation and consequently to a too 
large amount of RAM needed and a too long time of simulation. 
Furthermore, the effective attenuation coefficient for an acoustic wave 
propagating in the substrate is expected to be small as it will be discussed in 
chapter 3, so that it is not possible to simulate only a small portion of 
substrate, assuming that in that portion all the propagating wave it is 
absorbed.   

The substrate problem can be solved replacing the substrate with a 
smaller domain, with an extension comparable to the one of the resonator, if 
this element absorbs all the energy propagating from the resonator to the 
substrate, even if it is different from the substrate, with respect to material 
properties and behaviour. In order to estimate the anchor losses, it is 
important that the element which substitutes the substrate in the simulation 
has the same effect on the resonator and not that it behaves exactly as the 
substrate. Of course doing this substitution it is fundamental to avoid 
spurious reflection at the interface resonator/substrate-equivalent element 
which can be caused changing the substrate with the alternative element.  
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One element proposed to replace the substrate in anchor loss simulations 
is the PML (Perfectly Matched Layer), an element for FEM simulation 
which has a function similar to the homonymous element used in 
electromagnetic simulations [54]. PML for acoustic simulations is obtained 
by applying a complex-value change of coordinate in the substrate, which 
changes its properties with respect to the attenuation of an acoustic 
propagating wave. PML was used for simulation of anchor losses in               
bulk-mode disk resonator in [55]. The quality factor only due to anchor 
losses was extracted from the simulations and compared with the quality 
factor given by the experimental results: the agreement between simulations 
and measurements is good, confirming both the validity of the method and 
the hypothesis according to which anchor losses are the damping mechanism 
which limits the quality factor of the resonator in vacuum [55].             

In chapter 3, an element alternative to PML will be discussed. This 
strategy has some limits: it is very critical to choose properly the size of the 
substrate-equivalent element as well as some parameters which change the 
attenuation of the incoming acoustic waves, as for example the parameters 
defining the complex-value change of coordinates used to obtain the PML. 
Besides this proper choice could be efficient only for a particular substrate, 
resonator or frequency range and the limits of validity of the choice does not 
seems to be immediately detectable. Finally, these parameters are not 
connected with the physical properties of the substrate material. Thus in 
chapter 3 an alternative simulation strategy is presented and it is used to 
evaluate the anchor losses in a bulk-mode disk resonator: the substrate-
equivalent element is removed and proper boundary conditions are forced at 
the interface resonator/substrate. Such boundary conditions can be extracted 
through a rigorous analytical approach for the calculation of the profile of 
the wave propagating in the substrate, so that any “non-physical” parameter 
is removed from the model and the limits of the approach descend directly 
from the limits of validity of the hypotheses used to find that boundary 
conditions.  

Another alternative approach was proposed in [56] and [57] to find the 
anchor losses in a clamped-clamped resonator: an approach similar to the 
one discussed in chapter 3 was used to solve the problem of the propagation 
of an acoustic wave in a substrate, even if the problem is more complicated 
with respect to the case of the disk dealt with in chapter 3, because the 
geometry does not allows some important simplifications discussed in 
chapter 3. In this paper the problem is not solved by extracting boundary 
conditions at the substrate/resonator interface, but dividing the substrate in 
thin layers and then solving in each layer the problem of propagation of 
acoustic wave. Finally, forcing the condition of the continuity of 
displacements at each layer interface, a linear system was found and can be 
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solved assuming that the load at the interface resonator/substrate is forced by 
the resonator, whose deformed shape is assumed to be unaffected by the 
substrate, as well as the internal stress condition. This assumption does not 
always hold, because sometimes the substrate radically changes the 
deformed shape of a resonator as it will be discussed in chapter 3. The 
approach is very flexible because can also deal with multilayer structure as 
the dielectric layers which generally lies between resonator and substrate, 
but when the influence of these layers is not too important, the approach is 
not so useful. To obtain accurate results as well as efficient simulations, such 
method should be used only for the dielectric layers, setting a boundary 
condition at the interface between the last dielectric layer and the silicon 
substrate. 

Finally, some analytical formulas to evaluate anchor losses were 
proposed by Ayazi for cantilever and clamped-clamped beam resonators in 
[36] and for contour mode disk resonators in [58]: again the problem of 
wave propagation in the substrate is solved in a way similar to [56], [57] and 
to the one discussed in the chapter 3 of this thesis, while very strong 
assumptions were done with respect to the load forced by the resonator at the 
interface with the substrate, whose effect on the resonator mode shape is 
assumed to be negligible. The analytical expression provided for cantilever 
and clamped-clamped beam resonators in [36] seems to fit properly with 
experimental data, if also thermoelastic damping is considered, while the 
formula proposed for contour mode disk  resonators is compared with few 
experimental data and the agreement is not so good, even if the authors 
justify it with the high sensitivity of quality factor value to some parameters 
strongly dependent on the process [58]. The most important limit of Ayazi’s 
model for disk resonators is the assumption on the shape of stress driven by 
the resonator on the substrate: in chapter 3 simulation results which cannot 
be explained by Ayazi’s model will be discussed and an explanation of the 
disagreement will be given.    

   

1.3 MEM resonators for chemical sensing 
applications 

 
MEM resonators are not only useful devices for RF communication, but 

they can also used as sensors to detect the presence of particular analytes 
from chemical molecules to complex organic compounds: any molecule 
which is attached to (adsorbed by) or is absorbed by a micromechanical 
structure changes the mass of this structure and thus its resonance frequency. 
Consequently, if the resonator is used as frequency-selective element in an 
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oscillator, the oscillator output is a sinusoidal signal at a frequency variable 
with the adsorbed mass and the device works as a microbalance.  

A micromechanical resonator is generally made of material such as 
silicon, polysilicon, SiGe, silicon oxide or other typical materials used in 
technological process for MEMS and traditional electronics. Thus it can 
adsorb many kinds of molecules, and among them not necessarily the target 
molecules,  so that it is necessary to cover the resonator surface with a 
sensitive layer able to adsorb only (or at least “principally”) the target 
analyte in order to obtain a sensor for such molecule. If the sensitive layer is 
enough selective, a change of the oscillator output frequency can be 
connected to a change of the adsorbed mass of target molecules and then to 
the concentration of them in the environment surrounding the resonator [59] 
(Figure 19). Because of their small mass, MEM resonators are very sensitive 
to the adsorbed mass, so that they are very attractive as chemical sensors. 
Anyway their main advantage is that a lot of them can be integrated in a 
small space on a chip. This leads to the possibility of integrating an array of 
microbalances (Figure 20), so that, if each microbalance is covered with a 
different sensitive layer, a system of sensors sensitive to a lot of different 
analytes is obtained on a single chip [60].  

Furthermore, MEM resonators can be integrated with the control 
electronics, needed at least to build the oscillator. If other devices useful for 
chemical or a biological analysis are included, such as microchannel for 
microfluidic operations on the solution under analysis, it is possible to obtain 
a “Lab On a Chip”, a fully integrated system which can perform on a small 
chip, many of the operations usually done by a laboratory for chemical 
analyses. 

 
 

 
Figure 19: Working principle of a MEM microbalance, used as gas sensor from [59]: a 
cantilever covered with a proper sensitive layer, has a resonance frequency which changes of 
an amount ∆f, proportional to gas concentration ∆Cgas.  
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Figure 20: Picture of an array of MEM resonant cantilevers for chemical sensing from [60] .  

 
Such fully integrated system can be a very cheap diagnostic device, 

because it can be produced with the same logic of integrated circuits. Due to 
its low-cost, a Lab On a Chip can be even used only once. Besides it can be 
included in portable instrumentation and due to the small size of the system, 
the analysis time is generally shortened. As it is integrable, the single 
MEMS-based chemical sensor is also cheaper than any other alternative 
macroscopic devices. 

 

1.3.1 Devices alternative to MEM microbalances 
 
Their integrability is the main advantage of MEM microbalances with 

respect to their macroscopic counterpart, the QCM (Quartz Crystal 
Microbalance) ([60],[62]): despite their name this devices are quite bulky if 
compared with MEM microbalance, because they are oscillator using a 
quartz crystal as frequency-selective element. Quartz crystal anyway can 
have quality factor as high as 100000, so that using a quartz it is possible to 
obtain oscillator with very low phase noise and very high short-term stability. 
Therefore the resolution of a QCM is generally very high, because even very 
small variations of the resonance frequency due to a mass loading of the 
quartz surface are much higher than the fluctuation due to the noise. Besides 
also the temperature dependence and long-term stability of quartz crystal 
resonance frequency is generally pretty good. Quartz Crystal Microbalances 
are often used in laboratory for many different kinds of chemical analyses, 
but they are currently used also to check the thickness of deposited or growth 
layers in IC fabrication processes. It is difficult to replicate QCM’s good 
performance, but the small mass of MEM resonator can help, even if quality 
factor of MEM resonator at atmospheric pressure is generally much smaller 
than quartz crystal, so that it is possible to obtain performance comparable 



 

 37 

with QCM’s, or even better, with respect to the sensitivity to the adsorbed 
mass, by using MEM resonators ([61],[62],[63],[64]). 

MEM microbalances are not the only chemical sensor which can be 
integrated on chip with the electronics: among them there are of course a lot 
of sensors based on solid state devices such as EIS (electrode-insulator-
semiconductor) or EMIS (electrode-metal-insulator-semiconductor) 
structures, as well as sensors based on solid state devices employing porous 
silicon to increase the surface which the analyte can be adsorbed by [65]. 
Other integrated chemical sensors are based on changes induced on the 
dielectric properties of a polymer, when it absorbs a particular analyte: they 
are capacitors whose capacitance changes proportionally to the amount of 
analyte absorbed by the polymer, and consequently to its concentration [59] 
(Figure 21a). In Figure 21b a further example of an integrable chemical 
sensor [59] is represented. The concentration of an analyte is determined 
through a calorimetric measure carried out by a thermopile: any adsorption 
or desorption generates heat which increases the temperature of the hot 
junctions of some thermopiles, so that from the output voltage of the 
thermopiles it is possible to find the time derivative of the analyte 
concentration. This sensor detects only transitory changes in concentration 
and not its absolute value [59]. Even if it is not a MEMS, this sensor is 
fabricated with a MEMS process because it requires a membrane of 
thermally insulated material (i.e. Silicon Oxide) where thermopiles hot 
junction are placed, while cold junctions are placed where the silicon 
substrate under the oxide was not removed.    

An interesting integrable chemical sensor is proposed in [66]: it is 
practically an FBAR (Figure 22) covered with a sensitive layer able to 
adsorb molecules, which change resonance frequency of the device with 
their mass. As the FBAR is a kind of integrated quartz filter, this device is a 
sort of integrated QCM. The device show quality factor smaller than in the 
case of QCM and it results in a reduction of the minimum shift of frequency 
which can be considered as due to a change in analyte concentration, but the 
high frequencies which can be reached with such device (some GHz versus 
some MHz of quartz crystals) leads to an acceptable resolution [66]. Even if 
integrable, this solution requires processing steps, including piezoelectric 
layers deposition, more complex and expensive than those needed for MEM 
microbalances fabrication. 

Finally, there are some devices which are alternative to MEM 
microbalances also among MEMS: these devices exploit the fact that some 
molecules ([60],[67]) drive compressive or tensile stress on a surface where 
they stick to it. These devices are generally cantilevers, whose top surface is 
covered by a sensitive layer where a particular kind of molecule can stick to, 
among the ones which can drive a stress on the surface.  
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When analytes are attached to the cantilever top surface, a stress 
gradient is generated inside the cantilever as a consequence of the surface 
stress driven by stuck molecules, so that the cantilever bends ([60],[67]). In 
such device the deposition of the sensitive layer (generally a polymer or 
organic material) has to be carried out carefully in order to avoid that also 
the bottom surface is covered: in this case the molecules would attach also at 
the bottom of the cantilever, driving the same surface stress which is driven 
at the top and thus preventing the cantilever from bending (a tensile stress at 
the top bends the cantilever in the opposite direction with respect to the 
bending induced by a tensile stress at the bottom surface).  

Chemical sensors based on statically bending cantilever are especially 
attractive for analysis in liquid environment ([60],[66]), where MEM 
microbalances are not efficient, because their quality factor in liquids is 
much smaller than in air.  These cantilever-based devices can be also driven 
into resonance [60], working as a microbalance so that the same MEMS 
gives two different measurements one based on the static bending and the 
other on the shift of resonance frequency, due to the adsorbed mass. The 
double measure can be an advantage when the selectivity of the sensitive 
layer is not good enough, so that more different kinds of molecules are 
adsorbed: for example a kind of molecule could shift with its mass the 
cantilever resonance frequency, but not drive a surface stress, so that can be 
distinguished from another that causes both a static deflection and a 
resonance frequency change. Thus a static and a dynamic measure could 
improve the sensor selectivity if combined together. 
 

 
 

Figure 21: a) Working principle of a capacitive gas sensor from [59]: capacitance changes 
are proportional to gas concentration. b) Working principle of a calorimetric gas sensor from 
[59]: analyte adsorption/desorption generates or absorbs heat and thus changes the 
temperature of a thermally insulted membrane and thermopiles measure the temperature 
gradient with respect to the chip area outside the membrane. Thermopiles output voltage is 
proportional to changes in analyte concentration.   

a) b) 
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 Figure 22: Cross-section of a chemical sensor based on a piezoelectric resonator from [65]. 

 

1.3.2 MEM microbalances proposed in literature: des igns 
and applications 

 
Because of the advantages related to their integrability a lot of MEM 

microbalances have been presented in literature in the last years. Apart from 
some rare example as in [64], the mechanical structure in MEM 
microbalance is generally a cantilever: resonant cantilevers coated with a 
proper polymer (polyurethane, polyetherurethane polyvinylchloride, etc.) 
have been proposed as sensors for alcohols or other volatile organic 
compounds as ethanol, methanol [60] and octane [8]. These sensors can have 
selectivity problems connected with the selectivity of the coating             
polymer: even if it is more sensitive to one analyte it can absorb also other 
chemical molecules. Nonetheless the possibility of large number of 
cantilever integrable on a chip can be exploited to increase the selectivity, 
combining measurements from cantilever with different coating layers. 
Furthermore, also a measure of the static deflection induced by analytes 
attached on the cantilevers can be utilized to improve the selectivity as 
explained in the previous section.  

MEM microbalances based on resonant cantilevers were used also to 
detect more complex molecules as in the DNA sensor in [69] and they show 
a selectivity higher than resonant cantilever used as gas sensors: in [69] the 
sensitive layer is made of  DNA filaments, which link steadily only with 
their complementary filament, which is the target DNA sequence (Figure 23). 
The resonator surface can anyway adsorbs other smaller molecules whose 
mass can be anyway neglected with respect to the mass of the target DNA 
filament. A similar sensitive layer made of “complementary molecules” can 
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be done also for other complex organic molecules such as proteins, leading 
to the same advantages with respect to the selectivity. Thus the complexity 
of the analyte guarantees sensor selectivity whatever the mechanical 
structure, the actuation and the sensing are. Besides their intrinsic high 
sensitivity to heavy molecules, this is a further reason to use MEM 
microbalance to detect the presence of complex organic molecules. 

Even if the cantilever is undoubtedly the preferred mechanical structure 
for MEM resonators used as microbalances, with respect to the mechanisms 
used to actuate and to sense resonator movements there are many different 
proposed solutions: electrostatic actuation is not the best actuation/sensing 
mechanisms for MEM microbalances, because, unlike RF MEM resonators, 
they should not necessarily resonate at high frequencies between 1 MHz and 
1 GHz. The resonance frequency shift per nanogram  increases, decreasing 
the resonator mass and increasing the resonance frequency, but the quality 
factor of MEM resonators generally decreases very much at high frequencies, 
if not owing to air damping, at least for anchor losses as it is possible to see 
from references about RF MEM resonators in section 1.2.3. Thus an increase 
of resonator resonance frequency does not always lead to an improvement of 
the sensor resolution. 

Moreover a MEM microbalance cannot work in vacuum, because has to 
be exposed to the surroundings in order to sense analyte concentration and 
the environment could be a gas, generally at atmospheric pressure or a 
solution. In this conditions electrostatic actuation and sensing does not work 
as well as in vacuum, because they generally need very small gaps between 
electrodes and moveable structure to be effective, as it is clear in Eqs. from 
(2) to (7). But at atmospheric pressure small gaps usually means high 
squeeze film damping [46], which leads to a small quality factor and 
subsequently to a small sensor resolution. If the microbalance has to detect 
the presence of a protein or a DNA sequence in a solution the situation is 
even worse: the sensor is usually first dipped in the solution under analysis 
and then dried [69], because in liquid phase the quality factor is in any case 
too low, but this dipping and drying operation can lead to stiction problems 
in the structure with small electrode/resonator gaps [70], resulting in the 
collapse of the rotor on the electrodes, with the consequent destruction of the 
device. In spite of all these observations electrostatically-driven MEM 
microbalances has been anyway proposed for example in [71], where the 
resonant mechanical structure is a cantilever, and in [72], where the 
resonator is a clamped-clamped beam. 

Using a bulk-mode resonant structure could partly reduce these 
problems with the use of electrostatic actuation: their higher rigidity with 
respect to cantilever and other flexural-beam resonators usually results in 
smaller movements and thus in a smaller effect of squeeze film damping, as 
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it is possible to observe for example by comparing quality factors in vacuum 
and in air from [22] or [37]. Besides the high rigidity makes more difficult 
the stiction, when the resonator is dried after it was rinsed in a solution.   

Being the electrostatic actuation not so efficient for MEM 
microbalances, all the actuation and sensing mechanisms which are not used 
for RF MEM resonators have been experimented in resonators for chemical 
sensing: there are cantilevers which are actuated through bimorphic effect as 
in [8] and cantilevers piezoelectrically actuated as in [63], where two 
electrodes drive a PZT layer into vibration which is mechanically 
transmitted to the cantilever, driving it into resonance (Figure 24). Also 
magnetic actuation was used [5]: a static magnetic field Bext generated by a 
micro magnet, interacts with the current I flowing in a current loop 
integrated on the top of the cantilever, producing a Lorentz force which 
bends the cantilever according to what in shown in Figure 25. 

To detect resonators movements, optical methods and Wheatstone 
bridges with piezoresistive elements have been proposed. Optical methods 
have been proposed in several papers ([60],[72]), but they require a bulky 
detection set-up, at least composed of a laser and a photo detector, which 
cannot be integrated on sensor chip. Piezoresistive detection can employ 
piezoresistances or piezo-transistors ([5],[8]), does not need any external 
equipment and has good performance when piezoresistive elements are 
fabricated in monocrystalline silicon, but performance are not easily 
predictable when resistors are made of polycrystalline materials and 
probably depends on the fabrication process very much. Besides, this 
sensing mechanism is plagued by thermal drifts.  

To conclude the overview about the state of the art of MEM 
microbalance, it is necessary also to mention that in few cases a shift of 
resonance frequency greater than expected was observed [63]: it is probably 
due to the surface stress which is induced by analyte adsorption. When this 
stress is high enough it can change greatly the stiffness of the resonator and 
thus its resonance frequency [63].  

 

 
 

 

Figure 23: Resonant cantilever for the detection of complex organic molecules as DNA 
sequences or proteins: the sensitive layer is composed by organic molecules which can link 
steadily only with their complementary molecule.  
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Figure 24: Schematic longitudinal cross-section of a piezoelectrically actuated resonant 
cantilever for proteins detection, from [63].  

 

 

Figure 25: Top-view picture of a magnetically actuated resonant cantilever for chemical 
sensing, from [4]. The external magnetic field Bext and driving current I, as well as the 
actuated force FL are indicated. 

 
In chapter 4 of this Ph.D. thesis the design, fabrication and 

characterization of a MEM microbalance fabricated with a low-cost CMOS-
compatible process is presented. The resonator is not the usual cantilever, 
but a torsional resonator, as it will be detailed in chapter 4. Besides it is 
magnetically actuated and its movements are sensed magnetically. As shown 
in chapter 4 the choice of actuation and sensing mechanisms was done 
basically in order to obtain the compatibility with a CMOS process in the 
less expensive way and also to guarantee good performance with no need of 
any external equipment for movements sensing.  

Magnetic sensing was seldom used to detect MEMS movements 
([6],[73]) and it was never used in MEM microbalances. The resonator 
proposed in chapter 4 is to our knowledge the only MEM microbalance with 
magnetically actuation and sensing, while the only other example of MEMS 
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with magnetically actuation and sensing is the resonant cantilever for 
scanning probe microscope in [6], which is anyway totally different from the 
torsional resonator presented in chapter 4.  
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2. Design and modelling of RF free-free flexural 
resonators 

In this chapter the experimental characterization of the free-free 
resonators presented in the author’s Master Degree thesis [18] will be 
discussed as well as the modelling of their sensitivity to temperature and 
residual stress. The fundamental result was the measure of the basic 
operation of a novel free-free third-mode resonator, with flexural support. 
Potential improvements of the design are also suggested.  

A possible equivalent electrical circuit is also proposed in order to refine 
the model used to design some the proposed devices and to provide a quick a 
handy analysis tool to system-level designers which could use RF MEM 
resonators in more complex electronics system. Besides, equivalent circuits 
allow to include models for MEMS in simulations of the entire on-chip 
system. 

The main results of these research activities described in this chapter, 
have been presented also at conferences and published on scientific journal 
([74],[75],[76],[77]). The discussion will start with a short review of the 
design issue and of the devices designed in [18]. 

 

2.1 Design issues 
 

As anticipated in the first chapter, the main issues of the design of the 
flexural-beam resonators presented in [18] were the reduction of motional 
resistance and/or the bias voltage needed to keep low the motional resistance, 
as well as obtaining resonators with high quality factors. Another important 
issue was to find topologies, allowing to reach resonance frequency higher 
than the one presented in literature, even if the target for resonance 
frequencies of the designed devices was from 5 to 50 MHz, a specification 
which can be obtained also using other flexural-beam resonator already 
proposed in literature (for example in [12] and [33]).  

The last issue was to find a way to obtain high-Q resonators whose 
resonance frequency is accordable with a bias voltage, avoiding any decrease 
of the quality factor when the resonance frequency is changed as is [38]. 
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Figure 26: 3D sketch of the deformed shape of the main beam of a free-free resonator, 
resonating on the first resonance mode. We is the width of the electrode surface which faces 
the beam and Le its length.  Supports are not included in order to show a general situation, 
valid for free-free resonators both with torsional supports and with bending supports. 

 

2.1.1 Choice of the laterally-driven free-free reso nator as 
basic structure 

 
In order to obtain a high quality factor the free-free architectures 

presented in [33] and [38] were considered: these structures guarantee a 
higher quality factor than that of a clamped-clamped resonator, and 
consequently lower motional resistance and insertion losses. 

Between the vertically-driven [33] and the laterally-driven [38] topology 
the second one was chosen because of the technological process selected to 
fabricate the device: this process will be detailed in the third section of this 
chapter, but its main features is that its structural layer is a thick polysilicon 
layer, i.e. all the suspended structure and thus all the mechanical moveable 
parts are made of a thick layer of polysilicon. Conversely the beam width 
has to be smaller than the thickness, in order to assure the complete release 
of the beam. Thus lateral actuation and sensing were chosen because the 
force per unit length actuated by an electrode on a beam is proportional to 
the width of the resonator surface faced by the electrode as well as the 
density of current due to resonator movements.  

Indeed, considering the system of reference in Figure 26 and neglecting 
the displacement in direction parallel to the beam length (x direction in 
Figure 26), which is usually much smaller than displacement in the direction 
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along which the beam bends (y direction in Figure 26), the force per unit 
length fy in y direction and the current density j are, from (6) and (7): 
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where We is the width of the electrode surface, d the gap between the 
resonator and the electrode, uy the displacement along y direction and ε0 the 
dielectric constant of the air. The voltage V applied to between electrode and 
resonator is considered as a superposition of a signal VS and a DC bias 
voltage VDC. In (9) there is also a parasitic component dependent of the 
density of current ( ) ( ), sc x t V t⋅ ∂ ∂ , which is not due to rotor movements 

and does not appear in (7) according to which only a DC voltage is applied 
between electrode and rotor.  

Usually VS << VDC and uy << d, so that (9) can be approximated as: 
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From (10) is clear that We has to be high in order to increase 

electromechanical coupling, but this is not the only reason why a laterally 
driven resonator was preferred: from (10) it is also clear that the gap between 
resonator and electrode is even more important than We, in order to obtain a 
high electromechanical coupling. In the following it will be shown that 
electrostatic actuator can be used to reduce d, while analogous device cannot 
be designed for vertically driven resonators. 

Finally, laterally-driven resonators can be designed also as two-port 
devices, while vertically-driven resonators have to be one-port devices. 
Indeed all the free-free resonators presented in this thesis are two-port 
devices. 
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Figure 27: Schematic top view of a two-port free-free resonator with flexural support, with 
the main beam resonating on its first free-free mode. The symmetry axis of the structure, 
parallel to y direction, is indicated by grey dashed line. 

 
Thus the devices presented in [18] are basically free-free laterally-

driven resonators, which were designed in order to improve the performance 
of the two-port free-free resonator, resonating on the first resonance mode, 
presented by Nguyen in [38]. A sketch of this device is represented in  
Figure 27.     

 

2.1.2 Motional resistance and resonance frequency  
 
The main goal of the design work in [18] was to reduce the motional 

resistance of the free-free architecture proposed in [38]. This result is 
important not only in order to reduce the insertion losses of the resonator 
when it is used as a filter, but also to reduce the amplification of the active 
element needed when the resonator is used as a frequency-selective element 
in an oscillator. Furthermore, if the motional resistance is too high, it is 
impossible to build an oscillator, at least in three-point architecture [78], 
because in this case the Barkhausen conditions cannot be satisfied, even if 
the amplification of the active element is infinite, as discussed in [18]. In the 
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specific motional resistance has to be lower than a function which decreases 
if the parasitic capacitances between electrodes and between each electrode 
and ground increase [18]. 

Of course it is fundamental also to set the resonance frequency by 
design, because it determines the central frequency if the resonator is used as 
a filter or the oscillation frequency if the device is employed in oscillator 
architecture. Besides, the need of filters and oscillators for RF applications at 
frequency even higher than 1 GHz compels to research architectures which 
allows to obtain resonance frequencies as high as possible. 

Due to the importance of motional resistance and resonance frequency, 
it can be useful to remind how they can be found and the expression used to 
evaluate it in [18] for a free-free structure like the one in Figure 27.  

Assuming that supports do not load the main beam, they were neglected 
and a free-free beam in the space like in Figure 26 was considered. 
Considering the beam deflection uy, the dynamic equation for a single 
vibrating beam is, according to the Euler-Bernoulli equation with a damping 
term added [9]: 
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        (11) 

   
where E is the beam Young’s modulus, µ its linear mass density and c(x) is a 
damping parameter; [Le] is interval of length along which the resonator is 
faced by the driving electrode, while We and d are respectively the input 
electrode width and the gap between it and the beam. I is the inertia moment 
of the beam cross-section, given by the expression 3 12bI W H= , where Wb is 
the width of the beam in the direction in which the beam bends (y direction 
in Figures 26 and 27), while H is the thickness of the beam in the third 
direction, orthogonal to both the length and the width (z direction in               
Figures 26 and 27). The static component of the distributed force in (10) is 
neglected in (11) because practically does not affect the resonator behaviour 
close to the resonance4. Besides if the bias voltage is applied on the rotor as 
in Figure 27 another static force actuated by the output electrode has to be 
considered and this force has a sign opposite to the static component in (11), 
reducing the effect of the static component.  

                                                 
4 The only considerable effect of the static component of the force can be a static deflection of 
the beam, leading to a gap d(x) dependent on x direction. Anyway this effect is usually 
neglectable.  
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The beam is considered as homogeneous with respect to mass density 
and Young’s modulus, because the resonators in [18] were designed to be 
fabricated in homogeneous polysilicon, while with respect to the damping a 
possible dependence is retained with respect to the x direction, parallel to the 
beam length, because c(x) is not always homogeneously distributed: for 
example if consider anchor losses is more reasonable to consider damping as 
concentrated at the anchor or at the points of connection between main beam 
and supports in the model used for free-free beam in [18], so that c(x) is 
proportional to a Dirac delta function. The dependence of damping on the 
beam transversal dimensions (z and y directions), can be anyway neglected if 
the beam is slender.  

In order to use the Euler-Bernoulli equation the beam has to be slender, 
i.e. its length is enough larger than its width in the direction in which the 
beam bends (y direction in Figures 26 and 27 for the main beam). If the 
hypothesis does not hold the beam has to be model with the more complex 
Timoshenko approach [31]. All the resonators designed in [18] are 
composed of beams where the ratio length/width is larger than 10, so that the 
hypothesis of slender beam should hold in that case. 

Following the approach in [9] it is possible to find the resonance 
frequencies of the resonator, as well as an equivalent electrical circuit for a 
single-beam resonator, working close to the resonance. From this equivalent 
circuit an expression for the motional resistance can be found.  

The fundamental hypothesis in considering the solution uy of (11) as 
approximately equal to the solution of  the following simplified equation 
obtained by neglecting damping and external force: 
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                                      (12) 

 
which is the equation usually solved to find the resonance modes of a slender 
beam [31].  

The hypothesis is reasonable close to the resonance if the resonator 
quality factor is very high: this means that the damping coefficient, related to 
energy loss, has to be very small according to the quality factor definition 
given by (8), so that is generally negligible with respect to the other terms in 
the equation. Besides a high quality factor means that beam deflection is 
very high at the resonance even if actuated by a small distributed force, 
which is consequently negligible with respect to the deflection dependent 
terms at the resonance (the ratio between the maximum displacement and the 
actuated force is Q times higher than with a static actuation, if the device is 
approximately considered as a second order system). Thus Eq. (12) can be 
used to approximate the deflection at the resonance of the beam.  
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According to the so-called modal analysis technique [9], solutions of 
Eqs. (11) and (12)can be found by assuming uy as a superposition of function 
written as a product of a part only dependent on the time ξ(t) and a part only 
dependent on x, Φ(x): 
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 Each term of the sum in (13) represents a resonance mode of the device. 

The parts only dependent on x, Φm(x) are also known as mode shapes, 
because describe the deformed shape of the structure. They can be found 
exploiting the linearity of equation (12), which allows to find each ξm(t)Φm(x) 
by substituting it in (12). Considering in particular m = n, such equation 
becomes after some straightforward manipulations: 
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A function only dependent on the spatial variable x can be equal to a 

variable only dependent on the time t, only if they are both constant with 
respect to x and t, leading to: 
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                                  (15) 

 
where the constant is normalized with respect to the beam length Lb; λn is 
defined as the nth eigenvalue of the structure, related to the nth resonance 
mode. Applying the proper boundary conditions it is possible to find both 
Φn(x) and λn. These boundary conditions are bending moment M and shear 
force S zero at the ends (assumed to be at x = 0 and x = L of a free-free beam 
(free ends condition) [31]: 
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Applying the boundary conditions in (16), the solution of (15) is5:   
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with the eigenvalue λn given by the nth solution of the equation: 
 

( ) ( )1 cos cosh 0n nλ λ− =                                  (18) 

 
A is a constant which can be chosen arbitrarily [31]. In [18] it was 

chosen in order to obtain the following normalization condition: 
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From (14) it is possible also to find the resonance frequency of each 

resonance mode. If the function ξn(t) is assumed to be a sinusoid with 
frequency fn, Eq. (14), combined with (15), gives: 
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which leads to the following expression for the resonance frequency fn of the 
nth, if the expressions for the inertia moment I and for the linear mass density 
µ are expanded (µ = ρHWb, where ρ is the volumetric mass density or 
simply mass density): 
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5 Details can be found in both [18] and [31]. 
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To find an equivalent electrical circuit, solutions as expressed in (13) 
have to be replaced in (11), leading to: 
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At this point in [9] the orthogonaility property of the mode shapes is 
used to simplify the problem in Eq. (22). The equation is multiplied for the 
nth mode shape and integrated along the cantilever length, but being the 
mode shape orthogonal: 
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the following equation can be found after straightforward calculations: 
 

n n n n n n nK r M Pξ ξ ξ+ + =& &&                                   (24) 
 
where a generalized stiffness Km

 is defined, as well as a generalized 
mechanical resistance rm, a generalized mass Mm and a generalized load Pm. 
The expressions for these parameters are: 
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In (25) ΓINn is the input electromechanical coupling factor for the nth 

resonance mode. The subscript [L e]  means that the integral defining Pm and 
ΓINn is calculated along the length of the beam faced by the driving electrode. 
The normalization condition expressed in (19) makes the generalized mass 
equal to the actual mass of the beam. 

The same approach can be used to find equation analogous to (24) for 
each ξm, finding a system of infinite equations, one for each mode shape.  
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Considering the output electrode in Figure 27, the displacement due to 
each mode shape produces a current density according to Eq. (10), leading to 
a current Iout flowing out from the output electrode: 
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where the output electrode is assumed to be exactly equal to the input 
electrode and placed in symmetric position with respect to it, as in Figure 27, 
in order to obtain ΓINm = ΓOUTm = Γm. This condition is respected by all the 
resonators in [18], because the geometry and the position of the input 
electrode, which maximize the input electromechanical coupling, maximize 
also the output electromechanical coupling if applied at the output electrode, 
so that there is no reason to design the two electrodes in a different way. 
This electrode symmetry produces also the total cancel of the static 
component of the actuated force, if the bias voltage is applied on the rotor as 
in Figure 27, because in this case the static force actuated by output 
electrode totally counterbalance the static force actuated by the input 
electrode. The polarization in Figure 27, consequently avoid a static 
deflection of the resonator if electrodes are equal and symmetric. 

Considering nξ&  as a current and Pn as a voltage, Eq. (24) is equivalent to 
the equation which rules the behaviour of a series RLC circuit with a Mm 
instead of the inductance, 1/Kn in place of the capacitance and rn replacing 
the electrical resistance. The same holds of course for any resonance mode. 

Finally, the electromechanical couplings factors Γn have the function of 
ideal transformers, changing for each mode shape a voltage in a generalized 
force and a generalized displacement ξn in a current, which is summed with 
all the currents generated by the other mode shapes, giving the global output 
current. The device can be thus described by the equivalent circuit in            
Figure 28. If the resonance frequencies of the beam are not close (as usually 
it is) and if the quality factor of the resonance mode is high, close to the nth 
resonance mode, considering only the nth RLC circuit in Figure 28 is an 
acceptable approximation. Thus to find the motional resistance of a free-free 
resonator, with the main beam resonating on the nth resonance mode, it is 
possible to refer to the simplified circuit in Figure 29. 
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Figure 28: General equivalent circuit for a single-beam resonator: it can be applied to a free-
free resonator if it is possible to neglect the effect of the supports (the free-free beam was 
considered totally free in the space). 

 

 

Figure 29: Equivalent circuit for a single beam resonator, considering only the nth resonance 
mode: it holds if the actuation frequency is close to the nth resonance frequency, the quality 
factor of the nth resonance mode is high and the nth resonance frequency is far enough from 
the other resonance frequencies.   

 
As shown in [18] if the input and output electromechanical coupling 

factors are equal, at the nth resonance frequency of the beam, the circuit in 
Figure 29 is equivalent to an electrical resistance, which can be defined as 
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motional resistance Rn for the nth resonance mode, whose value can be 
calculated by: 
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where Qn is the quality factor of the nth resonance mode, which can be 
calculated by the expression 2n n n nQ f M rπ= . Combining Eq. (27) with the 

expressions for Mm and Γn from (25) and (26), the motional resistance can be 
expressed as: 
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where the width of the electrode area facing the resonator We is considered 
equal to resonator thickness H because electrodes and resonator are 
supposed to be fabricated with the same structural layer, as it was for the 
resonators presented in [18]. 

Eq. (28), as well as Eqs. (18) and (21) for the resonance frequencies, is 
fundamental for the design choice discussed in section 2.2. 

 

2.1.3 Accordability of a MEM resonator 
 

Resonance frequency tunability of MEM resonators can be very useful 
for RF applications: in some application having tuneable oscillator or filter 
with accordable central frequency is very important, but even more 
significant is the possibility of using this tunability to correct errors in the 
resonance frequency value of the fabricated devices with respect to the 
designed value, due to process parameter dispersion.  

A variation of the resonance frequency can be achieved by changing the 
bias voltage VDC. To evaluate the effect of VDC on the resonance frequency 
of the device, it is necessary to consider an approximation for the distributed 
force fy in (9) which is more accurate than the one used to find Eqs. (10) and 
(11). In this case, instead of neglecting uy, a linearization of the expression 
for the distributed force fy in (9) with respect to uy has to be done, obtaining: 
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where as in (10), the assumption Vs << VDC is exploited and as in (11) the 
static component of the force is neglected. Besides if the device is biased as 
in Figure 27, in the expression for the force has to be included also the force 
actuated by the output electrode which has no more only a static component, 
but also a component dependent on the deflection uy. If output and input 
electrode are equal and placed in the same position with respect to the beam, 
it is possible to demonstrate that the term proportional to uy doubles [18]: 
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If the expression in (30) is replaced to the distributed force in (11), and 

the same approach described in 2.1.2 is repeated a new equation ruling the 
equivalent circuits in Figures 28 and 29 is found instead of Eq. (24): 
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where Kn, rn, Mn, Pn have the same expressions shown in (25), while for ∆Kn 
it is possible to find ([9],[18]): 
 

2 20
3 [ ]e

e
n DC nL

W
K V dx

d

ε∆ = Φ∫                                 (32) 

 
∆Km is always positive, thus an increase of the bias voltage produces a 

decrease of the equivalent stiffness of the device according to (31). This 
leads to a reduction of the resonance frequency according to the following 
relation: 
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where f*n is the resonance frequency calculated considering the effect of the 
bias voltage, while fn is the resonance frequency calculated neglecting it. 

On the other hand, in a free-free architecture the tuning of the resonance 
frequency through the bias voltage leads to a decrease of the quality factor, 
probably because the support λ/4 adaptation works exactly only at the 
resonance frequency the free-free beam is supposed to resonate [38]. A 
solution of this problem was proposed in [18] and will be discussed in the 
next section.  
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2.2 Designed devices 
 

In [18] were proposed two innovative devices: a free-free resonator, 
resonating on the third resonance mode, with flexural supports and a              
free-free resonator, resonating on the first resonance mode, with flexural 
supports and with additional electrodes for the frequency tuning. The first 
device has theoretically a motional resistance lower than the one of a free-
free resonator resonating on the first resonance mode, if the resonance 
frequency and the quality factor are the same. The second solution in theory 
allows to tune the resonator resonance frequency, without any quality factor 
decrease.   

In the fabricated chip were included also a clamped-clamped beam and 
a free-free resonator, resonating on the first resonance mode similar to the 
one presented in [38], in order to compare the performance of the innovative 
devices which were presented in [18] with devices already presented in 
literature. The design of the clamped-clamped beam resonator was very easy: 
the width was fixed to be equal to the minimum value allowed by layout 
rules, in order to limit the section of the anchors and consequently the anchor 
losses (the choice is in agreement with the model presented in [36]); the 
length was fixed to select the resonance frequency (10 MHz) exploiting Eq. 
(18) and (21) for n = 1 (first resonance mode), because as shown in [31], the 
equation for the resonance frequency is the same for clamped-clamped and 
free-free beams. 

 

Figure 30: Schematic top view of the electrostatic actuator used to reduce the resonator gap. 
In grey are represented the anchored parts, in cyan the moveable parts. 
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Figure 31: SEM picture of one of the electrostatic actuators fabricated. 

 
The design of the other devices will be discussed in detail in the next 

subsections. It is however necessary to introduce now an auxiliary device, 
used to reduce the gap d between electrodes: indeed the motional resistance 
critically depends on this value (Rn is proportional to d4 according to (28)). 
Being the minimum gap allowed by layout rules of the process chosen to 
fabricate the device too high (higher than 2 µm) to have reasonable motional 
resistances, the introduction of an actuator able to reduce d is of fundamental 
importance. 
 

2.2.1 Auxiliary electrostatic actuators to reduce 
electrode/resonator gap  

 
To reduce the gap between electrodes and beam, a solution already 

presented in [32] was used. The electrode was connected to a moveable plate 
which is anchored to the substrate via two system of springs and actuated by 
two fixed electrodes (Figure 30) through a static voltage VON applied 
between fixed electrodes and moveable plate (or resonator input or output 
electrode). If VON is higher than the pull-in voltage Vpi of the system 
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springs/electrostatic actuators, the moveable plate falls onto some stoppers 
which avoid the collapse of the moveable part on the fixed electrodes. This 
collapse has to be stopped to prevent structure damage, which can occur 
because the high static voltage VON. 

This electrostatic actuator fixes the final gap between resonating beam 
and actuation electrode to a value d0-dS, where d0 is the initial gap and dS the 
gap between stoppers and moveable plate of the actuator (Figure 30). The 
value of the final gap is very accurate because depend on a difference 
between two distance and consequently if there is a process parameter 
dispersion, it can be modified only by matching errors and not by errors 
which affect in the same way the two distance.  

The positioning system was dimensioned in order to obtain a reduction 
of the resonator/electrodes gap from a value higher than 2 µm to 0.2 µm. 

As already mentioned, the actuators exploit the pull-in mechanisms: it 
consists in an instability of the electrostatic actuator/spring system, due to 
the fact that if the voltage is too high (i.e. higher than pull-in voltage) the 
elastic force exerted by the springs cannot equilibrate anymore the 
electrostatic force. The value of the pull-in voltage was calculated in details 
in [18]: 
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where K is the overall stiffness of the system of springs dA the gap between 
moveable part and fixed electrodes of the actuator, A the surface of the fixed 
electrodes and ε0 is the dielectric constant of the air. 

Eq. (34) was used to design actuators with VON = Vpi about 40 V in the 
final layout: even if it is possible to obtain lower actuation voltage, it would 
be achieved only increasing the area occupied by the device. Thus a trade-off 
was chosen between actuator efficiency and occupied area. In Figure 31 a 
SEM picture of one of the fabricated electrostatic actuator is included in 
order to show the large area occupied by the electrostatic actuator if 
compared with a resonator. 

Finally, springs electrodes and stoppers where symmetrically placed 
with respect to a symmetry axis (Figure 30) in order to obtain a pure 
translation of the structure in direction perpendicular to the main beam of the 
resonator, without any spurious rotation or displacement in direction parallel 
to the main beam.   
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2.2.2 Free-free resonator resonating on the first r esonance 
mode 

 
The typical structure for a free-free resonator, resonating on the first 

mode (type FF1) is represented in Figure 27. The structure dimensions were 
chosen to maximize the quality factor, minimize the motional resistance a 
target resonance frequency. First the supports width Ws was chosen as the 
minimum allowed by layout rules fixed by the chosen process. This was 
done both to reduce the contact area between anchors and supports and to 
minimize the area of connection between the main beam and supports. Thus 
this choice should minimize supports anchor losses and the interaction 
between supports and main beam, better approximating the condition of free-
free beam for the main beam. Indeed one fundamental condition to obtain a 
free-free beam is to join the supports to the main beam in two points which 
correspond to the nodes of the first free-free resonance mode of the main 
beam. In this way supports do not hinder the deflection of main beam, 
because the point of connection is fixed, but this is strictly true only if the 
two beam have zero width: for example if the width of the support is larger 
than zero the support is connected to the beam also in a region where its 
deflection is not zero. If the support width is small this deflection is small, 
while if the width is large, the region of connection can reach even sections 
of the main beam where the deflection of the main beam should be high. 

 Also the beam width was set to the minimum value allowed by layout 
rules in order to minimize the region of interaction between main beam and 
supports. Besides even if the quality factor is constant with Wb, if the 
resonance frequency is fixed, by properly manipulating Eq. (28) it is possible 
to show that the motional resistance is proportional to bW 6, at least if the 

main beam is long enough [18]. Thus even if the beam width does not affect 
the quality factor, the motional resistance is minimized if Wb is as small as 
possible.  

It is necessary to say that damping mechanisms different from anchor 
losses were neglected during this design: some authors ([35],[36]) showed 
the importance of thermoelastic losses in beam resonators and with respect 
to this mechanism, choosing the minimum value allowed by layout for the 
beams width could be not the optimum. 

Once the beam width is fixed and the resonance mode order is chosen, 
according to (18) and (21) the resonance frequency can be fixed by properly 

                                                 
6 This dependence is not linear as in (28), because if the resonance frequency is fixed if Wb 
changes also Lb as to change accordingly as well as the electrodes length Le, which the 

integral 
[ ]e
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EC dx= Φ∫  depends on. 
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choosing the beam length Lb (the material properties E and ρ are fixed by the 
process). For example for one of these devices, designed to resonate at 10 
MHz, the value chosen for Lb was about 42 µm. 

To find the nodes of the first free-free mode of the main beam, the zeros 
of Eqs. (17) for n = 1 and consequently for λn = λ1, whose value is 4.73 
according to Eq. (18). The mode shape has two nodes one for 0.224Lb, the 
other for 0.776Lb. 

In order to obtain the free-free condition on the main beam, supports 
have not only to be connected to the main beam at the nodal point, but they 
have also to exert no bending moment on the main beam. In this there is not 
a strict analogy with transmission lines as in the case of free-free with 
torsional supports [33], but the condition can be achieved if each support 
half resonates on its first clamped-pinned mode at the resonance frequency 
of the first free-free mode of the main beam. In this fashion the pinned 
condition, which means zero displacement and bending moment, is 
automatically satisfied at the centre of the support, i.e. at the connection with 
the main beam, obtaining the desired behaviour. The clamped condition at 
the other end is forced by anchoring the support beams at each end. The 
resonance of each support half on its first clamped-pinned mode, when the 
main beam resonates on its first free-free mode, can be obtained by choosing 
properly the supports length Ls, once the supports width Ws is chosen, 
according the already mentioned criterion. 

In [18] it was shown that the overall support resonates on its second 
clamped-clamped mode when each support half resonates on its first 
clamped-pinned mode. Thus an easy way to fix Ls is to exploit Eqs. (18) and 
(21), which hold also for clamped-clamped beams as shown in [31]. In this 
way the value for Ls can be found from the following expression: 
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where λ2 = 7.85 and f0 is the resonance frequency of the free-free resonator. 
Therefore supports are longer than the main beam: Ls is almost 70 µm for the 
first-mode free-free resonator designed to resonate at 10 MHz.   

Finally, the electrodes are placed as in Figure 27 in order to maximize 
the electromechanical coupling factors Γm and consequently to minimize the 
motional resistance: according to Eqs. (25),(26) and (28), this can be 

achieved by maximizing the integral
[ ]e

mL
EC dx= Φ∫ . Thus electrodes are 

placed in regions where the mode shape is maximum and has constant sign. 
On the other hand the choice represented in Figure 27 minimizes the integral 
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for many other resonance modes of the structure. Among them there are all 
the resonance modes according to which the main beam vibrates 
antisymmetrically with respect to the symmetry axis of the structure parallel 
to y direction: for these modes the integral EC and consequently the 
electromechanical coupling Γm are zero. This reduce the number of spurious 
peak in the device frequency response, which alters the ideal behaviour of 
the resonator as a filter and can make interfering channel and disturbs to pass 
through the filter when it is used in RF communication systems.  

The other resonance modes of the structure are however attenuated also 
because it is expected that they have a quality factor lower than the first  
free-free mode, because the adaptation of the support does not work for them. 

  

2.2.3 Free-free resonator resonating on the third r esonance 
mode 

 
According to Eq. (28) the motional resistance strongly decreases if the 

integral EC increases. This integral is proportional to the length of electrodes 
Le [18], so that the motional resistance for the nth mode is proportional 
to 21 eL , which is in turn proportional to 21 bL , because the longer is the beam, 

the longer could be the electrodes. On the other hand if the target resonance 
frequency is fixed b nL λ∝ according to (21), so that from (28) it can be found 
that: 

 

( )
1

n
n n n

R
F Qλ

∝
Φ

                                         (36) 

 
where F is function of the mode shape and of the way of placing the 
electrodes. Changing the resonance mode of the free-free beam, at least 
among the lower ones, the function F does not change so much, if for each 
mode the electrode position is optimized to minimize the motional resistance. 
The eigenvalues λn monotonically increase with m, thus, considering a group 
of resonance modes, if the quality factor of each mode is the same, the 
highest mode has a lowest motional resistance. It happens basically because 
in order to obtain the target resonance frequency, it is necessary to design a 
beam longer7 than if the selected mode is a lower one, allowing consequently 
longer electrodes and a better electromechanical coupling.  

                                                 
7 Of course the comparison has to be done between beam with the same width , according to 
(21) 
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The idea of designing a third-mode free-free resonator comes directly 
from the observation which has been just discussed: if the main beam 
resonates on the third mode instead of on the first one, to obtain the same 
resonance frequency the length has to be higher and the ratio between the 
motional resistances of the first-mode resonator and the one of the third-
mode resonator is approximately: 

 

31

3 1

2.3
R

R

λ
λ

≈ ≈                                          (37) 

    
where it was assumed ( ) ( )3 1F FΦ ≈ Φ  and the quality factor is considered 

the same for the two modes. Thus, implementing a third-mode resonator the 
motional resistance could be reduced to more than a half of the one of a first-
mode free-free resonator. 

The designed third-mode free-free resonator (type FF3) is schematically 
represented in Figure 32, where the deflected shape of the resonator is 
represented as well the undeformed structure. The beams widths Wb and Ws 
were set equal to the minimum value allowed by layout for the same reasons 
discussed in 2.2.2 about the design of the first-mode resonator. Then Lb was 
set in order to obtain the target resonance frequency (with respect to the 
designed structures, about 98 µm to obtain 10 MHz), using Eqs. (18) and 
(21), with n = 3.  

The free-free condition is obtained by connecting the supports to the 
main beam at two nodal points of its third free-free resonance mode. 
According to (17) this mode has four nodes: at 0.094Lb, 0.356Lb, 0.644Lb 
and 0.906Lb. The nodes position are different from the ones of the first mode 
and thus if the support are connected to one of these nodes, they hinder the 
movements of the first mode of the free-free beam, which correspond to a 
lower resonance frequency of the structure, resulting in a positive effect with 
respect to the spectral purity of the device. 

The external nodes at 0.094Lb and 0.906Lb were chosen as connection 
points for the supports, but there are no specific reasons to prefer these nodes 
to the others.  

As for the first-mode free-free resonator the length of the supports LS 
was chosen in order to make them to resonate on their second mode 
clamped-clamped at the resonance frequency of the device, in order to make 
them to exert no bending moment at the connection with the main beam. 
Thus their length is the same as for a first-mode resonator resonating at the 
same frequency (with respect to the designed structures, about 70 µm at          
10 MHz). 
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Figure 32: Schematic top view of a two-port free-free resonator with flexural support, with 
the main beam resonating on its third free-free mode. The symmetry axis of the structure, 
parallel to y direction, is indicated by grey dashed line. 

 

 
Figure 33: Deflected shapes of two resonance mode of a third-mode free-free resonator from 
a 2D FEM modal simulation performed with Femlab [43]: a) the fundamental mode, 
according to which the main beam resonates on its third resonance mode; b) a parasitic mode 
associated to the first free-free mode of the main beam: in this the supports do not resonate 
on their second resonance mode and they hinder the main beam movements. The electrodes, 
represented in black, are clearly placed in order to maximize the electromechanical coupling 
with the fundamental mode and to minimize it with the parasitic mode.   
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The electrodes were placed as in Figure 32 in order to maximize the 
integral EC, by placing them so that they face the resonator where the third 
mode shape is maximum and with a constant sign (Figure 33a). Through this 
electrodes positioning, a high value of F(Φm) is obtained, so that considering 
it in (36), the ratio between R1 and R3 is even slightly higher than the one 
given by (37).  

This choice also reduce the electromechanical coupling with the mode 
of the overall structure, connected to the first free-free mode of the main 
beam (Figure 33b): electrodes do not cover the region where the deflection 
due this mode is maximum. Besides the symmetric configuration of the 
electrodes leads to zero electromechanical coupling for all the mode shape 
antisymmetric with respect to the symmetry axis represented in Figure 32. 

Finally, the third-mode free-free resonator has a further important 
advantage with respect to the first-mode resonator: according to (18) and 
(21), the maximum resonance frequency achievable is higher because if the 
width and the length are the same the third-mode resonator reach frequency 
much higher than the first-mode device. With respect to the technological 
process chosen to fabricate the device in [18], it was estimated that the 
maximum resonance frequency which can be reached with the third-mode 
resonator represented in Figure 32, is almost 300 MHz, while it is slightly 
higher than 40 MHz8 for a first-mode resonator as the one in Figure 27. 
However, at such frequencies the motional resistance is too high, even with 
high bias voltage [18], so that practically the maximum resonance frequency 
is lower for both the architectures. 

 

2.2.4 Free-free resonator resonating on the first r esonance 
mode, with frequency tuning 

 
A new device was designed in order to obtain the tunability of a free-

free resonator by changing the bias voltage, without decreasing the quality 
factor.  

The idea is quite simple and comes from the following observation: 
according to what shown in the previous sections, supports exert no bending 
moment on the main beam only at a certain frequency, i.e. the frequency 
which they resonate at on their second clamped-clamped mode. Thus the 

                                                 
8  According to (18), the ratio between the two maximum frequencies should be equal 

to ( )2

3 1λ λ . The ratio calculated in [18] is higher because it was considered also the necessity 

of inserting the electrodes between the two supports as required by Figures 28 an 33, 
respecting layout rules of the process, such as the minimum width of the suspended structures 
of the minimum distance between them.  
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adaptation condition works only if the main beam resonates on one of its 
free-free modes at the same frequency (this discussion is general and holds 
for both first-mode and third-mode free-free resonators).  

If the structure was designed without considering the “electrostatic 
softening”, described by (33), the adaptation would never work when a bias 
voltage is applied. On the other hand if this effect is considered, the 
adaptation can work only at one specific bias voltage.  

The problem can be solved if the same electrostatic softening acting on 
the main beam is reproduced on the supports. This can be obtained if a 
couple of auxiliary electrodes are placed in front of the support as in          
Figure 34. If a DC voltage Vtune is applied to such electrodes a DC voltage 
Vtune - VDC induce a variation of the supports resonance frequency, according 
to Eq. (33). 

If this variation is the same driven on the main beam by the bias voltage 
VDC supports adaptation work as if no bias voltage is applied. 

Tuning electrodes in Figure 34 allow to tune the resonance frequency of 
the device, obtaining exactly the desired resonance frequency in spite of any 
in process parameter dispersion, or allow to use the device in tuneable filters 
and oscillators, even if, according to the calculations [18], the tuning range is 
small.  

 

 
Figure 34: Schematic top view of a two-port free-free resonator with flexural support, with 
two auxiliary electrodes which are used to retain a high quality factor when the device 
resonance frequency is tuned by changing the bias voltage VDC . 
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Besides if supports width and/or length of the fabricated device are 

different from the designed dimensions as a consequence of process 
parameter dispersion, it is possible to correct a decrease of the quality factor 
which can be due to this parameter dispersion, by setting properly the 
voltage Vtune applied to the tuning electrodes. 

A first-mode free-free resonator with tuneable electrodes was included 
in the chip where also the other kinds of resonator presented in this section 
were fabricated. Tuning electrodes could be anyway added also to a third-
mode free-free resonator.  
 

2.3 Fabrication 
 

The resonators were fabricated by using the THELMA MEMS 
technology, developed by STMicroelectronics.  

THELMA is a surface micromachining process developed to fabricate 
capacitive inertial sensors. In the process flow a first polysilicon thin layer, 
used for electrical connectivity, is followed by a silicon dioxide sacrificial 
layer, and by a second, thick, epitaxially grown polysilicon layer, which 
constitutes the structure of the presented resonators and of their driving 
electrodes. The structures are defined in this layer by a deep reactive ion 
etching (DRIE). Selective etching of the silicon dioxide releases the thick 
polysilicon structures, which become free to move under electrostatic forces. 
The high thickness of the epitaxial polysilicon implies a large capacitance 
between electrodes, and thus a large electromechanical coupling ([25],[32]). 
A cross-section of a generic device fabricated with THELMA is represented 
in Figure 35. In spite of the high thickness of the polysilicon structural layer 
the electromechanical coupling factor which can be obtained fabricating 
resonators with this process, is too low, because the minimum distance 
allowed between two suspended structure (i.e. between resonator and 
actuation or sensing electrode) is higher then 2 µm, even if the DRIE allows 
a good aspect ratio of the trench. As already mentioned, owing to the strong 
dependence of the motional resistance on the gap between electrodes and 
resonator, this process limit compels to introduce the actuators described in 
2.2.1 to reduce the gap.  

Among the fabricated device there is a clamped-clamped beam designed 
to resonate at 10 MHz (a SEM picture of its is represented in Figure 31), as 
well as some FF1 resonators with resonance frequencies from 5 MHz to           
15 MHz some FF3 resonators with resonance frequency from 10 MHz to 50 
MHz; a FF1 resonator designed to resonate at 10 MHz is represented in the 
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picture in Figure 36, while a FF3 resonator with the same resonance 
frequency is shown in the picture in Figure 37. 

The electrostatic actuators occupy a lot of space on the chip, especially 
if compared with resonator as shown in Figures 31 and 36, and thus limit the 
number of device which can be integrated on the same chip. Due to the great 
area occupied by the electrostatic actuator the device which require more 
area on the chip is the resonator with tuneable electrodes presented in 2.2.4: 
also the gap between tuneable electrodes and supports have to be decreased 
by actuators as the input and output electrodes of the device because also the 
electromechanical softening is critical dependent on the gap  ( 31mK d∆ ∝  
according to (32)). If the tuneable electrodes/supports gap is not decreased to 
value comparable to the gap between signal electrodes and resonator, it is 
practically impossible to obtain the same shift of the resonance frequency for 
the supports and the main beam, needed to retaining a high quality factor 
when the resonance frequency is tuned.  

Thus a resonator with tuneable electrodes occupies an area 
approximately twice as large as the area needed by a resonator without them. 
For this reason only one tuneable device was included in the fabricated                 
chip: such device is a first-mode free-free resonator nominally resonating at 
10 MHz.  

The most important aspects of the design and the fabrication of all these 
devices were also presented in [74].     

 
 

 

 
 

Figure 35: Cross-section of a generic device fabricated with THELMA, taken from [32].  
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Figure 36: SEM picture of a fabricated FF1 resonator with nominal resonance frequency 10 
MHz. The area occupied by the resonator is indicated as well as the region with the two 
actuators needed to reduce the gap between the resonator and both the sensing and the 
actuation electrode. 

 

 

Figure 37: SEM picture of a fabricated FF3 resonator with nominal resonance frequency 10 
MHz. 
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2.4 Failure mechanisms and preliminary tests 
 

Before the presentation of the measurements setup utilized to 
characterize the device and the results of the characterization, it could be 
useful to discuss some mechanisms failures which made impossible the 
characterization of considerable number of devices in each of the tested 
chips, reducing the number of available experimental data.   

Since the first preliminary tests, it was found that the fabricated devices 
can fail for two different reasons: failure of the system for the positioning of 
driving and sensing electrodes and presence of unexpected parasitic paths 
connecting terminals nominally insulated, leading to a current flow even in 
DC, even if capacitive parasitic paths do not work. These parasitic paths 
were equivalent to small resistances, leading practically to a short-circuit 
between for example input and output or signal electrodes and resonator, 
leading to the impossibility of using the device. Sometimes the resistive path 
was between bias voltage and ground, leading to extremely large currents, 
with the consequent risk of device damage. These resistive currents were 
unexpected because all the terminals of the designed devices are connected 
theoretically only through capacitive path as it is clear from their schematic 
views in Figures 27, 32 and 34. 

An accurate analysis of this “parasitic resistance” carried out with a 
parameter analyzer shows that they are only in first approximation linear: for 
high voltage the current flowing through them increases much than linearly, 
showing a strongly non-linear behaviour. In some case keeping the voltage 
low enough allowed to limit the current flowing through the parasitic path 
and to make some measurement on the device. On the other hand sometimes 
the amplitude of these parasitic currents was observed to increase with the 
use of the device, making the device useless after a short usage. 

Even if it is not completely clear the cause of such resistive path a 
possible explanation can be supposed: when the chip pads are soldered to 
carry out the wire bonding9, the oxide which insulates the devices with 
respect to the substrate could be cracked. The oxide damage allows a path 
for the current through the substrate: if the oxide under two pads is damaged 
the substrate act as a shortcut connecting the two pads. This should explain 
the non-linear behaviour and the decrease of the parasitic resistance with the 
usage, which was observed especially with respect to the terminals where 
high voltage was applied: time after time the high voltage could increase the 
oxide damage. Anyway the soldering was clearly identified as the cause of 
these currents: setting properly the soldering parameters, a decrease of the 
number of devices per chip affected by these parasitic currents was observed.       

                                                 
9 The wire bonding was done in our laboratory by a wedge bonding technique.  
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While the problem of the resistive parasitic currents was unforeseen and 
of difficult understanding, troubles connected to the electrostatic actuators 
described in 2.2.1 were expected and can be easily explained: for example 
the complex structure of springs could be not perfectly released, so that the 
structure is blocked and cannot move, or if it can, it could not only translate 
but also rotate because even if the structure is designed to be symmetric, this 
symmetry can be broken for the reason that some of the beams, the springs 
are composed of, are blocked. Furthermore, the systems of springs are very 
sensitive to mechanical shocks because of the low stiffness of the springs, 
which is needed to keep low the actuation voltage. Mechanical shocks as 
well as an imperfect release can lead to structure blocked in such way that 
the positioning system cannot work anymore, as in the case of the device 
represented in Figure 38. Another reason of the failure of the system for the 
positioning of the electrodes was the presence of a parasitic path between the 
actuation electrodes and ground leading to an increase of the actuation 
voltage to too high values, because of the voltage partition introduced by the 
parasitic resistance. 

 

 
  

Figure 38: SEM picture of a fabricated FF1 resonator with auxiliary electrodes for the tuning. 
The tuning electrode on the right is rotated as a consequence of an imperfect release of the 
electrostatic actuators or some mechanical shocks. The nominal resonance frequency of the 
device is 10 MHz. 
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Finally, a last cause of failure was observed: sometimes a sudden short-
circuit was observed between terminals on which a high difference of 
voltage was applied. This was due to a ring of polysilicon surrounding the 
pads, which is included generally in all the chips fabricated with THELMA: 
wires carrying high voltage can pass very close to this ring and if two of 
them are to close to the ring, a short-circuit could happen, as was observed 
by chance at the optical microscope, while it was observed if the electrode 
positioning system was working.  

The probability of short-circuit was reduced by increasing the height of 
the arc described by each wire from package leads to chip pads. 

All these failure mechanisms are especially important for the free-free 
resonator with tuning electrodes: its high complexity, the higher number of 
pads and systems for the positioning of the electrodes (Figure 38), make the 
failure of this device very common. The incidence of a failure for this device 
was so high that was impossible to characterize any free-free resonator with 
tuning electrode. 
 

2.5 Characterization of the devices 
 
In this section it is shown how it is possible to measure the basic 

features of the fabricated resonators, such as the resonance frequency and the 
quality factor, by the acquisition of the mechanical frequency response of the 
device under vacuum. 

The technique to acquire such frequency response will be shown in the 
following and compared with some of the other possible techniques. The 
time needed for each acquisition is long because the resonator output is 
evaluated for a long span of frequency of the force actuated on the resonator 
and because the frequency step has to be small, because the expected quality 
factor is high.  

Thus before any acquisition the devices were preliminary tested to find 
if they were affected by the failure mechanisms introduced in section 2.4. 

First the insulation of the terminals of any device was verified by using 
a parameter analyzer. Then devices, which had not problems of parasitic 
resistive currents, were tested with respect to the system for the electrodes 
positioning: a voltage VON higher than the pull-in voltage was applied to 
drive each electrostatic actuator and observing the device with an optical 
microscope it was possible observe if the electrodes moved. All the devices 
which did not pass these two tests were preliminary excluded from the 
measurement of mechanical frequency response of the device. 

In the following after the description of the set-up chosen to acquire 
such frequency response, results from some devices will be given. It will be 
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observed that the measured resonance frequency is significantly lower than 
the expected one and a possible reason of this disagreement will be proposed, 
by considering the results from some FEM simulations. 

   

2.5.1 Measurement set-up 
 

The main problem in the characterization of MEM resonator are the 
parasitic capacitances [79]: even if no parasitic resistive path connects input 
and output, there is at least a capacitive path connecting input and output, so 
that a parasitic current is superposed to the current due to rotor movements, 
which is expressed in (26). Besides there are the capacitance between signals 
electrodes and ground: they can be important as an additional input or output 
load. Adding the parasitic capacitances to the equivalent circuit for small 
signal and close to the resonance represented in Figure 29, for a free-free 
resonator resonating on the nth, it is possible to find the circuit in Figure 39.   

Due to the parasitic capacitance CIO between the input and the output 
electrode of the resonator, the output current Iout is given by the sum of the 
current In due to the main beam movements and of a parasitic current Ip 
flowing through the capacitive feed-through between input and output. This 
superposition leads to a transfer function different from the second order 
system which is expected for a filter. If the series impedance ZS to the input 
voltage is neglected and considering that input admittance YIN as the parallel 
of a capacitance CIN and a resistance RIN,  it is possible to find the following 
function for the transfer function as a function of the angular frequency           
ω = 2πf (f is the frequency): 
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where CP = CO + CIO + CIN. Capacitance CIO does not affect the result 
because the output impedance ZS of the voltage generator VS is neglected. 
The assumption of neglecting ZS corresponds to the optimal condition, 
according to which the voltage VS is totally used to actuate the force (if ZS is 
big enough the voltage which is used to actuate the force is a partition of VS). 
On the other hand the hypothesis on the shape of the load YIN is reasonable 
working at high frequencies (even using a pure resistance as a load the 
capacitance has to be considered. The transfer function in (38) is totally 
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different from the second order system, which would be obtained without 
parasitic capacitance. The problem is even more evident if 2

P n nC K>> Γ  is 
assumed: 
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where n nK M  is substituted with 2πfn and n nr K with ( )1 2 n nf Qπ ; fn 

represents the resonance frequency and Qn the quality factor. In this case the 
transfer function has two poles exactly at the resonator resonance frequency, 
but it has also two zeros whose frequency fz is pretty close to the resonance 
frequency:  
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Figure 39: Equivalent circuit for a single beam resonator resonating on its nth mode, 
complete of parasitic capacitances. It holds if the actuation frequency is close to the nth 
resonance frequency, the quality factor of the nth resonance mode is high and the nth 
resonance frequency is far enough from the other resonance frequencies.   

 
Zeros frequency is closer to the poles corresponding to the resonator 

resonance frequency as much as CIO is higher. If 2
IO n nC K>> Γ  the two 

frequencies are almost equal so that zeros almost cancel poles and the device 
cannot work anymore as a filter. 

Hypotheses 2
P n nC K>> Γ  and 2

IO n nC K>> Γ  can be easily satisfied: 

the value for 2
n nKΓ  is generally about some fF while if the device is 

inserted in a PCB board for the measurement, parasitic capacitance between 
terminals and ground can be even higher than 1 pF. The feed-through 
capacitance CIO could be lower, but is anyway much higher than2

n nKΓ . 
Thus the configuration in Figures 27 and 32 cannot be used to characterize 
the devices, even if it is the typical configuration used to obtain a linear 
behaviour of the filter. 

A possible idea to reduce the effect of the parasitic capacitance is the 
use of the device as one-port resonator with differential driving, as 
represented in Figure 40. The output current is collected from the rotor. If 

DC SV V>>  and DC outV V>> , the force actuated by the electrode IN2 is 
negligible with respect to the force actuated by IN1 and no current due to the 
resonator movements flows through the capacitance composed by the 
electrode IN1 and the resonator. Thus only the current due to the parasitic 
capacitance CO flows through IN2 and the equivalent circuit can be 
represented in Figure 41 (ZS is neglected).  
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The transfer function in this configuration can be expressed by solving 
the equivalent circuit [80]: 
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(41) 
 
where CP2 = CI  + C0 + CIN. The transfer function is approximated, assuming 

2
2P n nC K>> Γ , which is reasonable for the same motivations just discussed 

about the traditional linear driving. The capacitance CIO between the two 
electrodes plays no role in this configuration. 
 
 
 

 
Figure 40: FF1 resonator used as one-port resonator with differential driving.   
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Figure 41: Equivalent circuit for a free-free resonator, with the main beam resonating on its 
nth mode, complete of parasitic capacitances, for the differential driving.   

 
As in (39), the frequencies of the poles connected to the device 

resonance frequency are not affected by parasitic components, but the 
frequency of the zeros is given by: 
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which can be much higher than fm if the two capacitances CI and CO match.  

Unfortunately is very difficult to reduce the mismatch to some fF, 
because CI and CO are high and given mainly by the PCB board used to 
characterize the device. The method is an improvement of the classic linear 
method but it could be significant only if the output signal from the resonator 
is pre-amplified by some active element fabricated on the same chip of the 
device: in this way the in-chip parasitic capacitances become more important 
than parasitic elements introduced by the board, so that the mismatch 
between CI and CO can be reduced a lot because they are smaller and their 
value can be very similar if electrodes are designed symmetrically, as well as 
their connection to the pads.       

Thus for the characterization of the devices presented in [18], the so-
called “2 nd harmonic method” [2] was used: according to this measurement 
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strategy the input electrode is driven by a signal with any DC voltage 
superposed, the rotor is grounded and the output electrode is biased with the 
voltage VDC in order to convert rotor movements in current (Figure 42).  

The method exploit the intrinsic non-linearity of electrostatic actuation, 
so that if the input signal is a sinusoid VS = Asin(2πft), the actuated force per 
unit length is: 
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 The actuated force is composed of a static part and another at a 

frequency twice the input signal frequency. Neglecting the static components 
the other generates a displacement and consequently an output current Im at 
frequency twice the input signal frequency. Thus the frequency of Im is also 
twice the frequency of the parasitic current due to the feed-through 
capacitance CIO. The output current Iout is thus a superposition of a current at 
the same frequency of the input voltage VS, the parasitic IP, and another Im at 
twice the frequency of VS. The two components of the output current can be 
converted in voltage, amplified and then fed to a lock-in amplifier, which 
receive also VS  as a reference signal. The lock-in can extract the component 
at frequency twice the frequency of the reference channel. Alternatively the 
total amplified signal can be given as input of a “digitizer”, i.e. a PCI 
acquisition card connected to a PC: both the two components can be 
extracted from the FFT (Fast Fourier Transform of the global signal). The 
method allows to make the characterization of the devices but the parasitic 
current has to be kept low anyway, because, if too high, it can saturate the 
amplifier stage used to amplify the resonator output or even the lock-in or 
the acquisition card. If the resonator is driven with an input signal with 
frequency f, varying around the frequency fn/2, where fn is the nth resonance 
frequency of the device, the parasitic current can be extracted by the circuit 
in Figure 43a suitable for the component of the output voltage at frequency f, 
if around frequency fn/2 there is no other resonance frequency. According to 
this assumption it is possible to neglect the impedance seen by the output 
port of the resonator and due to resonator movements (i.e. the LRC circuit of 
each resonance mode, in Figure 29. Thus the component of the output 
voltage Vp, due to the parasitic current, is given by: 
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considering again YIN as the parallel of a resistance RIN and a capacitance CIN. 
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Figure 42: Schematic configuration for the characterization of a free-free resonator with the 
2nd harmonic method.   

 

 
 

Figure 43: Equivalent circuits for a free-free resonator driven with the 2nd harmonic method: 
a) parasitic component at frequency f, extracted assuming that no beam resonance modes are 
close to frequency ω; b) component due to beam movements at frequency 2f.   

 
The component of the output voltage Vn current In at frequency 2f  close 

to fn can be found by the equivalent circuit in Figure 43b: the circuit is 
extracted considering the capacitance CIO as open (indeed no current flows 
through CIO at frequency 2f) and Pn is the generalized load corresponding to 
the actuation load at frequency 2f  defined similarly to the linear case as: 

 

( )
2

0
2 [ ]

cos 2
4 e

e
n nL

W A
P ft dx

d

ε π= Φ∫         (45) 

 
 
 

VS @ f 
+  

- 

Ip 

CO 

CIO 

Vp YIN 
- 

+  

a) Mn rn 1/Kn Γn:1 

Pn @ 2f 
+  

- 

ξn 

In 

CO 

+  

- 
YIN     

b) 

Vout 

VS 

VDC 

Iout 

Vout 

- 

+  
IN OUT CO CI 

CIO CB 

YIN 



 

 80 

Solving the circuit in Figure 43b and assuming 
2

3P O IN n nC C C K= + >> Γ , which is reasonable as already said many times, 
it is possible to find Vn as: 
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(46) 
 

where ( )* 2
0 [ ]

2
e

n e nL
W d dxεΓ = Φ∫  is a coupling coefficient between the 

component frequency 2f of 2
SV  and the generalized force Pm. The actuation 

is less efficient than in the linear and differential architecture, because it is 
not multiplied by VDC, which is generally much higher than VS, and thus the 
signal has to be amplified much more than in other cases. 

The 2nd harmonic method is similar to the EAM [79], where the non-
linearity of the electrostatic actuation is used to multiply the signal, at 
frequency fs, by a carrier at higher frequency fc in order to obtain a 
component of the actuated force at frequency fc - fs, close to the resonance 
frequency. The result is the same of 2nd harmonic method: the two 
components are separated in frequency.  

This method can be used to characterize any MEMS composed of a 
moveable mass and at least 2 electrodes: during the initial months of the 
author’s Ph.D. course, 2nd harmonic method was employed to estimate some 
important feature of a two-axis accelerometer, such as the mechanical 
frequency response, the cross-sensitivity and maximum voltage which can 
be applied between electrodes and moveable mass10. The acceleration was 
mimicked with an electrical signal applied to one of the electrodes usually 
employed for the sensing, avoiding the use of apparatus for the generation of 
the mechanical load, such as shakers or turntables. Despite the importance of 

                                                 
10 This voltage is the pull-in voltage and was extracted without driving the structure till the 
collapse. 
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the results obtained during this activity, the accelerometer characterization 
was excluded by this thesis because it did not deal with a resonator. Detail of 
the results can be anyway found in [81] and [82]. 

With respect to the board for the generation of the input signal and 
amplification of the output signal from the resonator, the design is more 
complex than in the case of accelerometer, because if in that case the board 
had to work till some tens of kilohertz, it has to reach frequency higher than    
1 MHz to characterize the devices designed in [18].  

Thus the routing and the placement of the discrete components on the 
board have to be more careful, especially to reduce the effect of the feed-
though capacitance, whose admittance is proportional to the frequency. At 
high frequency if the capacitance is too high, according to(44), the parasitic 
component Vp of the resonator output voltage can be so high to saturate the 
following amplifier stage. Besides any other coupling or RF interference can 
disturb the measure: thus it is necessary to use coaxial cables and BNC 
connectors for the connections of the board with other needed 
instrumentation such as the lock-in or the PC acquisition card. The board 
includes a voltage buffer which is fed by an external voltage generated by a 
waveform generator (an Agilent 33120A). The buffer provide the input 
voltage to the resonator, in order to obtain an output impedance ZS as close 
as possible to zero, for the stage driving the resonator. This buffer was 
obtained employing an op-amp AD8001, suitable for applications in the HF 
band (over than 1 MHz and till some hundreds of MHz). 
 

 

Figure 44: Two alternatives considered during the design of the first amplifier stage of the 
board used for the characterization of the fabricated RF MEM resonators: a) transresistive 
amplifier based on an op-amp; b) a cascode jfet-amplifier.    

a) b) 

Resonator 
output Resonator 

output 
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The crucial part of the board is the stage which receives the output from 
the resonator as an input. It has to convert the output current in a voltage and 
amplify it, as well as to provide the bias DC voltage VDC. Being the 
processed signals at frequency higher than 1 MHz also its bandwidth has to 
be relatively large.  

The need of a high VDC (at least 15 V) prevents to use a transresistive 
stage based on an op-amp as in ([81],[82]) and as represented in Figure 44a, 
because op-amp working in HF band cannot support high bias voltages: 
generally bias voltage has to be lower than 5 V and consequently also the 
voltage VDC as applied in Figure 44a has to be much lower than 5 V to allow 
the correct working of the stage. Thus the jfet-amplifier in Figure 44b was 
chosen: the DC voltage on the input terminal of the circuit can be as high as 
20 V and can be changed by changing the bias voltages VDD and VSS of the 
jfet-amplifier. Naturally the range of variation of VDD and VSS cannot be too 
large, because it is necessary to guarantee the correct biasing of the stage and 
an adequate amplification.  

The amplifier stage in Figure 44b is a “cascode” in order to obtain the 
maximum bandwidth possible with the lowest circuital complexity (in this 
case only two jfet are needed). 

With respect to the noise the estimated performance are good and the 
jfet noise is negligible with respect to thermal noise generated RG [80], 
whose value has thus to be not too high. Flicker noise is filtered by the CR 
filters which follow this and the following amplifier stage. This filters reduce 
also low frequency disturbs and DC offsets which can saturate the amplifiers. 

The cascode amplifier is followed by two non-inverting voltage 
amplifier based on op-amps AD8001. The gain of each of this stage is about 
20 leading to an overall gain about 400.  

Bias voltage for the AD8001 are provided by two voltage regulators 
(7805 for the positive voltage, 7905 for the negative one), in order to reduce 
disturbs coming from the power supply, as well as the possibility of op-amp 
damages. The voltages VDD and VSS for the biasing of jfet-amplifier and 
resonator are directly fed by the power supply, because they could be 
changed, as well as the voltage Vmot used to actuate the system for the 
positioning of the input and output electrodes. Finally, a second power 
supply provides trough a buffer the voltage Vlat, in case of test of a resonator 
with tuning electrodes. The overall circuit is represented in Figure 45. The 
device package is a PLCC68.  

The board output voltage, Voutput in Figure 45 is acquired by a PC 
through the 14-bit digitizer NI PCI-5122. The large bandwidth (100 MHz) 
and the high maximum sampling rate (100 MSa/s) allow to deal with signal 
frequencies around the resonance frequencies of the fabricated devices. 
 



 

 83 

 
Figure 45: Schematic of the overall circuit for the driving of the resonator and amplification 
of the device output current: the circuit was fabricated on a PCB board, using discrete 
components. 
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If the waveform generator feeds the input buffer with a sinusoid at 
frequency f, Voutput spectrum contains two peak, the first at frequency f�  
corresponding to the parasitic signal, the second at frequency 2f, 
corresponding to the signal components proportional to resonator 
movements, in the specific proportional to derivative of the deflection with 
respect to the time, according to (10). Thus if the PC process Voutput in 
order to extract its FFT, it is possible to extract the second harmonic 
component of Voutput, which is proportional to the resonator displacement 
when the frequency of the actuation force is 2f. Repeating this procedure 
changing the frequency of the signal provided by the waveform generator 
from f1 to f2, it is possible to extract the mechanical frequency response of 
the device, i.e. the ratio between the deflection derivative with respect to the 
time and the actuated force, for a frequency from 2f1  to 2f2. 

An IEEE-488 card, connected to a PC, was used to drive the waveform 
generator, so that the acquisition of the frequency response was done 
automatically, driving both the waveform generator and the digitizer with 
Labview [83]. 

Being the devices not packaged under vacuum, the board was inserted in 
a vacuum chamber in order to minimize the air losses and obtain high quality 
factors. The vacuum was obtained by a system based on a combined 
membrane pump/turbomolecular pump, while the pressure was measured 
with a standard thermocouple gauge. The investigated pressures were 
between 2 and 4 Pa. 

    

2.5.2 Measurement results 
 
Measurement results are not so much and their quality is not so high, 

because of both the described failure mechanisms and the difficulty of the 
measure at high frequencies. Nonetheless a significant number of 
measurements were extracted for a FF1 resonator, with nominal resonance 
frequency 5 MHz and for a FF3 resonator, whose nominal resonance 
frequency is 10 MHz. This last result is fundamental because of the novelty 
of the device.  

The second harmonic component VO of Voutput is represented as a 
function of the frequency 2f of actuated force is represented in Figure 46a for 
the FF1 resonator and in Figure 46b for the FF3 resonator. In both the case a 
high level of the signal floor is observed: it decreases the quality of the 
measure and it is probably due to noise and to amplifier distortions, which 
can generate a second harmonic component of the high parasitic signal. The 
effect of two complex zeros before the resonance is clearly observable in 
both the frequency responses and this seems to confirm the contribution of a 
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distortion of the parasitic current due to a capacitive feed-through between 
resonator input and output.    

The FF1 device resonates at 3.955 MHz while the FF3 resonator at 
8.537 MHz. The measured resonance frequency is much lower than the 
nominal one in both cases. Such large discrepancy cannot be explained by 
the variation of some process parameters, for example as in the case of an 
overetch higher or lower than usual, which results in a difference between 
the dimensions of the fabricated devices and the nominal ones. This 
discrepancy can be explained by the non-ideal behaviour of anchors as will 
be discussed in 2.5.3. 

From different chips the value of the resonance frequency is enough 
repeatable, varying for example from 3.891 to 3.955 MHz for FF1 resonators 
with nominal frequency 5 MHz coming from different chips.  

On the other hand the resonance frequency is affected by a long term 
instability, as shown in Figure 47, where two measurement of the same FF3 
resonator were done keeping the same biasing condition and approximately 
the same pressure, but in two different days. The shift of the resonance 
frequency between the two measurements is about 600 ppm and could be 
due probably to adsorption of some particle from the surrounding, because 
as it will be shown in section 2.6, the effect of the temperature fluctuation is 
too low to explain such a shift. 

The dependence of the resonance frequency and quality factor was 
tested as well: in Figure 48 the frequency response of the FF3 resonator with 
VDC = 15 V is compared with the frequency response acquired with                
VDC = 17 V. A decrease of the resonance frequency can be observed, as 
predicted by (33). But this measurement of the shift of the resonance 
frequency with respect to the applied bias voltage is not reliable because the 
value of frequency change is comparable by the one due to the long term 
instability as shown by Figure 47. Indeed sometimes this last shift was 
higher than the variation due to the change in bias voltage, resulting that for 
an increase of the voltage the resonance frequency was observed to increase. 
On the other hand with respect to the quality factor the expected decrease 
was always observed when VDC was raised as it is evident from 49, where the 
peak in the curve obtained with VDC = 17 V is significantly larger than the 
peak obtained with VDC = 15 V. This shift can be due only on the change in 
the bias voltage because at the pressure the measurements were done, 
pressure variations do not affect results (i.e. air damping is negligible). 
Finally, the quality factors of the FF1 and FF3 resonators were extracted. 
The presence of the large signal floor and of the two zeros before the 
resonance makes complicated the fitting. To get an estimation of the quality 
factor, the second harmonic component VO of Voutput was assumed to be 
given by the sum of the typical output of a second order system, which is 
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due to resonator movements according to (46), and a signal, resulting from 
the distortion of the parasitic signal, assumed to be equal to j2πfD:           
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where VMAX is the value of VO at the resonance, fm the resonance frequency 
and Qm the quality factor. The effect of the real pole ( )31 2 in Pp R Cπ=  in (46) 

can be neglected in (47) if only a small portion of the frequency response 
around the resonance is considered.  
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Figure 46: Frequency responses for two fabricated devices: a) a FF1 resonator with nominal 
resonance frequency 5 MHz (Pressure 2.5 Pa, amplitude of the input signal VS 1 V, bias 
voltage VDC = 12 V); b) a FF3 resonator with nominal resonance frequency 10 MHz 
(Pressure 4 Pa, amplitude of the input signal VS 1 V, bias voltage VDC = 15 V). 

a) b) 
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Figure 47: Long term instability of the resonance frequency: both the two curves represent 
the frequency response for the same FF3 resonator biased with VDC = 15 V and driven with 
an input signal VS, whose amplitude is 1 V. Also the pressure is quite the same: in both cases 
is around 4 Pa. 
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Figure 48: Frequency responses of FF3 resonators biased with two different DC voltages. In 
both cases the input signal amplitude is 1 V and the pressure is about 4 Pa.  
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The supposed parasitic signal explains the presence of two zeros close 
to the resonance. With respect to all the curves shown in this section, D has 
to be negative, because zeros are at lower frequency than the poles. 

Eq. (47) was used as fitting function for the measured curves, using as 
fitting parameters D, fm, Qm and Vmax. The fitting is not too much robust 
owing to the high number of fitting parameters, even if fm can be fixed 
because its value is evident from the curves even without doing a fitting. 

The described fitting can give an estimate of the quality factor of the 
measured devices: from curves in Figure 46 it is possible to find a quality 
factor about 1600 for the FF1 device and about 5000 for the FF3 resonator. 
Thus quality factor of the new device is higher than the one obtained with a 
classic FF1. The high measured quality factor demonstrates how much the 
proposed FF3 is promising. Nonetheless this does not mean that the quality 
factor of FF3 devices is higher than the one of FF1 resonators in general: 
further measurements on more devices are needed to draw any conclusion 
about the quality factor of the two kind of device.  

The main results from measurements of FF1 and FF3 devices can be 
found also in [76].   
 

2.5.3 A possible reason of the difference between t he 
nominal and measured resonance frequency of the 
devices 

 
The discrepancy between the measured and the nominal resonance 

frequencies of both FF1 and FF3 devices can be explained considering the 
anchors where the supports are clamped: during the design of the resonator 
the square at the end of the supports beam were assumed to be immobile at 
the resonance, allowing to consider clamped their interface with the supports 
(i.e. this cross section does not deflect nor rotate), as shown in Figure 49. In 
this condition, unless width and length of the fabricated beams differ very 
much from their nominal values, the obtained resonance frequencies should 
be very close to the nominal ones, as confirmed by both 2D and 3D FEM 
modal simulations performed with FEMLAB, forcing the section indicated 
in Figure 49 to be clamped. But a better approximation of the working 
conditions of the resonators can be obtained if the area of contact between 
resonator and substrate is considered as clamped instead of the ends of the 
beam. Thus a 3D FEM modal simulation was done with the structure 
clamped at the anchors, i.e. the dark grey areas in Figure 49, and with the 
beam ends, i.e. cross-sections in red in Figure 49, considered as free. 
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Figure 49: Schematic top view of FF1: anchors are in dark grey, the cross section considered 
as clamped during the design in red.  

 
Results presented in Figure 50 for a FF1 resonator demonstrate that the 

squares at the supports ends moves significantly: they “bends” as shown in 
the particular in Figure 50b, leading to a torsion movements of the supports 
and to a radical change of the mode shape and resonance frequency.  

The fundamental mode for a FF1 device with nominal resonance 
frequency at 5 MHz, changes in the one represented in Figure 50, whose 
resonance frequency is 4.24 MHz according to the simulations.  

This value is still higher than the measured 3.955 MHz but the size of 
the anchors (i.e. the side of the dark grey square in Figure 49) critically 
affects simulation results. The value used in simulations for anchor sizes is 
the nominal one, i.e. 4 µm, if the real one is for example 0.5 µm smaller 
simulated and measured resonance frequency match perfectly. Of course 
also other smaller errors in the fabrication can be a cause of the difference 
between the simulated frequency with nominal anchor size and the measured 
one. Besides a further reduction of the resonance frequency is probably due 
to the fact that even the anchor/substrate interfaces are not perfectly  
clamped: the substrate can allow small movements which reduce the rigidity 
of the overall system.  

The unexpected behaviour of the anchors explains at least the large part 
(almost 0.8 MHz) of the difference between measured and nominal 
resonance frequency. 

The unforeseen behaviour of anchors probably do not affect only the 
resonance frequency but also the quality factor: supports do not resonate on 

Anchors 

Section considered as 
clamped during the design 
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their second clamped-clamped mode but on a hybrid mode characterized by 
the superposition of torsional and bending mode, so that the described 
supports adaptation do not strictly hold anymore.  

The anchor sizes were fixed to be as small as possible in order to reduce 
the area of interaction between substrate and resonator and thus to minimize 
the anchor losses, but the effect of small anchors size on resonator mode 
shapes seems to suggest the need to increase it, in order to avoid spurious 
torsional movements of the supports, which can affect their adaptation.  

Finally, torsion of the main beam can also be observed from a careful 
exam of the mode shape in Figure 50 and such torsion can alter the 
electromechanical coupling coefficient Γ1.   

A further complication is due to the fact that one of the square at the 
supports ends is connected to a line of thick polysilicon used to bring the 
bias voltage (or ground in 2nd harmonic configuration) to the resonator: the 
line partially prevents resonator movements, making more ideal the 
behaviour of one of the anchor. Overestimating the contribution of the bias 
line, modal simulations FEM modal simulations were carried out with only 
one end of one support clamped as well as the anchor/substrate interfaces. 

 
 

                       
 

 

Figure 50: Mode shape of the fundamental mode of a FF1 resonator with nominal resonance 
frequency 5 MHz, from FEM simulations including anchors movements: a) overall mode 
shape; b) detail of one anchor. 

a) b) 
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Blocking one of the squares at the supports ends slightly raises the 
resonance frequency (from 4.24 MHz to 4.39 MHz) and the torsion of one of 
the supports is reduced, but the greater difference with respect to the 
previous simulations is that the symmetry of the mode shape is compromised. 
The real mode shape of the fabricated mode shape is probably something 
between the behaviour represented in Figure 50 and the one in Figure 51. 
However the conclusions about the quality factor and the induced 
discrepancy between the measured and nominal resonance frequency do not 
change, even considering one of the supports ends as blocked. 

FEM simulations of the third-mode resonator, with nominal frequency 
10 MHz, confirm what observed in simulations of the FF1 device: 
considering all the support ends as free a resonance frequency about                 
8.90 MHz was found, while if the ends corresponding to the anchor 
connected to the bias line is blocked the extracted resonance frequency was 
8.98 MHz. The shape of the fundamental mode according to the two 
simulations is represented in Figure 52. As for the FF1 resonator, the real 
mode shape will be something between the two mode shapes in Figure 52.  

In both cases the resonance frequency is higher than the measured one 
but much closer to than the nominal one (difference between nominal and 
simulated resonance frequency is in this case about 1 MHz). The torsion of 
supports and main beam is more evident than for FF1 resonator, so that the 
supports adaptation is even more reduced in this case: thus it is possible to 
presume that if the anchor size was large enough to obtain a more ideal 
anchor behaviour, the quality factor of FF3 resonator would be much larger 
than the one of the FF1 device, considering the good result from 
measurements of these devices. 

Finally, the torsion of FF3 main beam in Figure 52 is much higher than 
in the case of FF1 device, leading to a higher change in the 
electromechanical coupling factor with respect to the nominal value. 

In conclusion, a redesign of the devices with higher anchors size is 
recommended in order to obtain a reduced discrepancy between nominal and 
real value of the resonance frequency, as well as a higher control on the 
electromechanical coupling. An increase of anchor size should also raises the 
quality factor obtaining a condition of supports adaptation closer to the ideal 
one. With respect to the supports adaptation and electromechanical coupling, 
the anchor size increase especially needed for the FF3 device. 

According to the simulation, the minimum value of anchor size to 
neglect the effect of anchor movements on device resonance modes is 9 µm 
for both the FF1 and the FF3 device.  
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Figure 51: Mode shape of the fundamental mode of a FF1 resonator with nominal resonance 
frequency 5 MHz, from FEM simulations including anchors movements, with one of the 
supports ends blocked in order to consider  the effect of the polysilicon line carrying the bias 
voltage (or ground in 2nd harmonic configuration). 

 

 

 

            
 

Figure 52: Mode shape of the fundamental mode of a FF3 resonator with nominal resonance 
frequency 10 MHz, from FEM simulations including anchors movements: a) all the supports 
ends are free (neglecting the effect the bias line);   b) one supports end is blocked to take into 
account the effect the bias line. 

a) b) 
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2.6 The effect of the temperature and axial stress on 
the resonance frequency  

 
Temperature variation can shift the resonance frequency of a               

flexural-beam resonator because it changes its material properties, but also 
because it produces a compressive or tensile stress on clamped-clamped 
beams: a tensile or compressive stress is created if the chip temperature 
drops or raises with respect to a reference temperature and the materials the 
resonator and substrate are made of are different. But the stress is still driven 
even if materials are equal, when there is a temperature difference between 
the resonator and the substrate, even if the materials.  

Dilatation and reduction of width or length (in case of beams with at 
least one free end) are usually negligible if compared with other temperature 
effects.  

The temperature dependence of the resonance frequency is fundamental 
to estimate the long term stability of the device resonance frequency, a very 
important feature especially if the resonator is used as frequency selective 
element in an oscillator. 

With respect to material property changes, the Young’s modulus E 
variation has the most important effect [15]. In a small range of temperature 
around the (reference) ambient temperature Tref, E depends linearly on the 
temperature: 

 

( )0 1 E refE E T Tα = + −                                  (48) 

 
In (48), E0 is the Young’s modulus at reference temperature and αE the 

temperature coefficient for the Young’s modulus. Since αE for polysilicon is 
very small (63 ppm/K according to [70]) its effect on resonance frequency of 
a beam resonator, can be model from (21) as: 
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where f0 is the resonance frequency when T = Tref. Eq. (21) holds for any 
beam resonator, clamped-clamped, free-free or cantilever, because only the 
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eigenvalues λn depends on boundary conditions [31]. Thus Eq. (49) holds for 
any kind of flexural-beam resonator, unless λn depends on E. 

The effect of the temperature of Young’s modulus can be considered 
linear and thus separately calculated and then superposed to other effect such 
as dilatation or axial stress induced by temperature. 

In this section a model for the dependence of resonance frequency on an 
axial stress induced by the temperature is presented for clamped-clamped 
beams. For free-free resonator some attempts of modelling were done, but no 
satisfactory theoretical expression was found. Thus FEM simulations were 
carried out in order to make a comparison among clamped-clamped, FF1 and 
FF3 resonator, with respect to their resonance frequency sensitivity to the 
temperature/axial stress. 

The axial stress can be induced not only by the temperature but also by 
residual stress induced by some fabrication process at high temperature 
which drives a different stress distribution on superposed layers of different 
materials (in a similar way as the already discussed bimorphic effect). Thus 
the model and the simulation proposed are useful also to estimate how much 
the resonance frequency of the fabricated devices can be different from the 
nominal one due to residual stress. 

   

2.6.1 A theoretical model for clamped-clamped reson ators 
 

The analytical derivation of the resonance frequencies for axially loaded 
clamped-clamped beams has been already carried out in [84]. The approach 
presented in this thesis is slightly different and leads to a closed form for the 
resonance frequencies. The effect of temperature and/or residual stress on a 
clamped-clamped resonator can be modelled by supposing a uniform stress 
parallel to the beam axis, and by including its effect on the equation of 
motion of the beam. The total compressive axial stress σeq can be caused by 
the fabrication residual stress σR, by the temperature difference between the 
beam and the substrate, and by the difference between their respective 
thermal expansion coefficients. Consequently its expression can be written 
as: 

  

( )eq R m m refE T T Tσ σ α α = + ∆ + − ∆   (50) 

 
where αm is the average value of the thermal expansion coefficients and ∆α 
their difference; Tm is the mean temperature of the resonator and the 
substrate, ∆T their difference and Tref a reference temperature; E is the 
Young’s modulus of the material.   
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To obtain the resonance frequencies of a CC beam, the Euler-Bernoulli 
equation for a beam with rectangular section under axial load has to be 
solved. Such equation is: 

 
4 2 2

4 2 2
0y y yu u u

EI N
x x t

µ
∂ ∂ ∂

+ + =
∂ ∂ ∂

                         (51) 

 
where N is a compressive axial load. If the stress σeq is considered as 
constant along the cross-section of the beam: 
 

b eqN HWσ=                                           (52) 

  
where Wb is the beam width, while H its thickness. The resonance 
frequencies of the structure are still given by Eq. (21), but the eigenvalues λn 
has to be calculated by solving the following equation [84]: 
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where λ1n and λ2n are given by the expressions: 
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where Lb is the beam length. If the axial stress is small enough, i.e. if 

( )2 2 26eq n b bEW Lσ λ<< , and if its effect is small, i.e. 0
n nλ λ≈ , where 0

nλ is 

the nth eigenvalue frequency of the unstressed structure and one of the 
solutions of (18), it is possible to find an approximation for the eigenvalue λn.  
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Once λn is known, after straightforward algebraic manipulation, it is 
possible to obtain the following expression for the resonance frequency: 
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             (55) 

 

where 0
nf is the nth resonance frequency of the unstressed structure, and 

0( )nG λ is a function only of the eigenvalue0nλ and of the mode-shape of the 

unstressed structure: 
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0( )nG λ increases with n and it is nearly 1 for n  > 5. For comparison, γn used 

in the model presented in [84] equals ( )20 012 ( ) /n nG λ λ− . A graph of function 

0( )nG λ is represented in Figure 53: the value of the function increases if the 
order of the mode increases. 

The stability of fn descends at once from (55). For example, its value 
with respect to the temperature difference ∆Τ  between resonator and 
substrate is: 

 

( )00 0

31

12
nn m

n b n

f E
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Tf W f

α λ
ρπ

∂
= = −

∂∆
                (57) 

 
According to (57) wider clamped-clamped beams are less sensitive to 

axial stresses, the stability is better for high resonance frequencies, but is 

worse for high order mode (S is proportional to 0( )nG λ ). 
Eq. (57) is confirmed by FEM simulations in wide range of temperature 

and difference of temperature with respect to the substrate, as shown in 2.6.2. 
In order to isolate the effect of axial stress, E was taken constant in the FEM 

simulations presented in the next section. Indeed if ( )2 2 26eq n b bEW Lσ λ<<  

the eigenvalue λn does not practically depend on E, even if according to (53)
and (54) it generally does. 
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Figure 53: Dependence of function G(λ0
n ) on the resonance mode order: it monotonically 

increases, approaching to 1 for n → ∞ . 

 
. Thus considering Eq. (49) and what was said about it, it is possible to 

calculate the overall dependence on temperature, considering both the effect 
on Young’s modulus and axial stress by: 
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       (58) 

 

2.6.2 FEM simulations for clamped-clamped and free- free 
resonators 

 
Finite element simulations of the dependence of the resonance 

frequency on the temperature were performed. The analyses were focused on 
the effect of the axial stress caused by the temperature and neglected other 
temperature effects, like Young’s modulus changes.  

All the analyses were executed in FEMLAB: in a first step a 
temperature load was applied, a static nonlinear analysis was done and the 
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consequent stress and strain configuration was stored; then this static 
solution was loaded for a pre-stressed modal analysis; the operation was 
repeated for different temperatures and for every kind of resonator in order 
to find in each case the resonance frequency at different temperatures/axial 
stresses, and for different width in the case of the clamped-clamped beam.  

In Figure 54 a comparison between analytical model and simulations for 
a clamped-clamped resonator is shown: while the error is acceptable, it is 
shown to increase for increasing beam thickness, an effect which is not 
accounted for by the analytical model. In Figure 55, a comparison between 
the CC resonance frequency stability with respect to the beam width 
according to FEMLAB simulations and theoretical model in Eq. (57) 
respectively, is presented. The theoretical analysis for clamped-clamped 
resonators leading to Eq. (57) gives interesting suggestions for the design of 
clamped-clamped resonators: first, slender beams are more sensitive to axial 
loads (due to both temperature and/or residual stress) (Figure 55); moreover, 
resonators with higher resonance frequencies show a better stability; finally, 

because 0( )nG λ increases with increasing n, lower order clamped-clamped 
resonant modes are expected to be more stable than the upper ones. 

The situation for FF1 and FF3 resonators is complicated by the presence 
of the supports, which are clamped-clamped beams (resonating on their 
second mode) themselves. A comparison between the simulation results for 
the three resonator types is shown in Figure 56. The resonance frequency 
was simulated for three devices with the same nominal resonance frequency 
(10 MHz) at 300 K, and the same width (2.2 µm). The average thermal 
expansion cofficient used was αm = 4.5ppm. The worst performance (largest 
∆f on the selected temperature range, or worst stability S) is that of a free-
free resonator, namely the FF1 type. The FF3 resonator has the best 
performance, while the clamped-clamped beam resonating on its first 
resonance mode performs between the two. It is interesting that a higher 
order free-free mode is more stable that a lower order one: this is just the 
opposite of the behaviour predicted by Eq. (6) for clamped-clamped modes. 

An interpretation of the results for free-free resonators is not 
straightforward: in particular, while the main beam in these two cases can be 
supposed to be axially unloaded (it can easily expand, discharging any axial 
stress), the frequency shift cannot be ascribed (at least not completely) to the 
frequency shift of the supports. This has been verified by separate 
simulations, which show that CC2 (clamped-clamped second mode) beams 
of the appropriate length have a much better stability when on their own, i.e. 
when not connected with the main beam. The main results of this activity 
about modelling of the effect of temperature and axial stress on resonance 
frequency are presented also in [76]. 
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Figure 54: Simulated and theoretical dependence of the resonance frequency on the 
temperature for a clamped-clamped resonator (Substrate temperature Tsub = 300 K;            
αm = 4.5 ppm/K) for different beam thicknesses. 
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Figure 55: Simulated and theoretical stability of the resonance frequency of a clamped-
clamped resonator (1st mode), with respect to the temperature difference between resonator 
and substrate for different beam widths (Substrate temperature Tsub = 300 K; αm = 4.5 
ppm/K); resonance frequency of the unstressed structure 10 MHz (resonator length is 
adjusted to obtain the same frequency at each width). 
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Figure 56: FEMLAB simulations of the dependence on the temperature of the normalized 
resonance frequencies for a clamped-clamped (first mode), an FF1 and an FF3 resonator 
(normalization is done with respect to the resonance frequency at T = 300 K). S = 269 ppm/K 
for the FF1 resonator, S = 244 ppm/K for the CC1 resonator and S = 218 ppm/K for the FF3 
resonator. Substrate temperature Tsub = 300 K; αm = 4.5 ppm/K. 

 

2.7 Equivalent circuits for free-free resonators 
 
Compact models for MEMS components, which operate on multiple 

physical domains, are required for efficient simulation of complex systems, 
including MEMS devices as well as analog and digital circuits. 
Consequently, a large amount of MEMS literature has been devoted to the 
development of such models (often based on a lumped-parameter approach) 
and to their integration in the flow of system simulation and design 
([85],[86],[87]). In this respect, electrical lumped-parameter equivalent 
circuits are especially useful. They reduce the number of state variables of 
the model and they can be implemented in a language for behavioural 
modelling [87], but also on more established and conventional (from the 
point of view of the electronic design) circuit simulators.  

This last aspect is relevant not only because circuit simulators are readily 
available in a design environment, but also because the equivalent circuit 
gives to the designer a quick insight into the component behaviour regardless 
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of the underlying physical working principle, leading to a tighter interaction 
between the system-level and the device designer. 

The equivalent circuit is a handy and quick analysis tool for device 
designer: as already discussed the equivalent circuit presented in [9] for 
single-beam resonators was fundamental also in the design of the                 
flexural-beam resonators characterized in this thesis and proposed in [18], 
[74] and [76]. In the following an equivalent circuit for free-free resonators 
on the first mode (type FF1) is presented: the main beam is not considered as 
a stand-alone beam as in [18] and the effect of supports on it was included, 
so that equivalent components representing the supports are added with 
respect to the circuit used to design the free-free resonators presented in [18]. 
Both a general (or extended) and a simplified version of the circuit are 
presented. 

The circuit predicts the behaviour of FF1 device with more accuracy 
than the circuit presented in [9], especially when the condition of supports 
matching is not completely satisfied, so that they do not exert any bending 
moment on the main beam, because for example they are too long or too 
short. The device behaviour was also compared with FEM simulations 
performed with FEMLAB: the agreement with the simulations is very good 
for both the simplified and the general form of the circuit, with respect to 
resonance frequency and quality factor11, for both matched and unmatched  
supports. The agreement is acceptable with respect to the maximum 
resonator deflection (which is related to the output signal amplitude, and the 
linearity of the device) only when the extended equivalent circuit is used.  
Thus the circuit presented can be an accurate equivalent circuit for FF1 
resonators and can also help to estimate how the performance of the device 
is worsened, when the condition of supports matching is not satisfied, due to 
some design error or process parameter dispersion.  

 Equivalent circuits can be extracted for free-free resonators with the 
main beam resonating on mode higher than the first (for example FF3 
devices), by following a procedure similar to the one which will be presented 
for FF1 resonators. Besides the presented approach can be extended even to 
any resonator composed of multiple beams, each of which bends around the 
fundamental12 resonance frequency of the device. More accurate equivalent 
circuits for FF1 and FF3 resonator could be a very important contribution to 
a future redesign of the device discussed in this chapter. 

In the following first the extraction of the equivalent circuit and then its 
validation through FEM simulation will be presented. 

                                                 
11 As camping mechanism only internal viscoelastic losses are included, but other damping 
source are anchor losses, can be included without changing the form of the circuit. 
12 In this case for “fundamental” it is not meant “the first”, but the one favoured by design 
with respect to both quality factor and electromechanical coupling. 
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2.7.1 Equivalent circuit for a free-free resonator resonating 
on the first resonance mode (FF1 type), including 
supports modelling 

 
A FF1 resonator (Figure 57), can be decomposed into three beams, each 

of them obeying the Euler-Bernoulli beam equation, if they can be consider 
as slender (i.e. Wb < Lb/10 and WS < LS/10). The deflections w(x, t) (for the 
main beam) and u(y, t) (for the supports) can be written as a linear 
superposition of the equation solutions found by modal analysis [9], each of 
them corresponding to a different resonance frequency.  

By calling Φn(x) and Ψn(y) these solutions, i.e. the mode-shapes of the 
nth resonance mode of the main beam and of the supports, respectively, the 
displacements are thus expressed as: 

  

1 1

( , ) ( ) ( ) ( , ) ( ) ( )n n n n
n n

w x t t x u y t t yξ η
+∞ +∞

= =

= Φ = Ψ∑ ∑            (59) 

 
where ξn(t) and ηn(t) are generalized displacements. A closed analytical form 
for each mode-shape can be calculated.  Substitution of the first equation of 
(59) in the Euler-Bernoulli equation leads, for each resonance mode of the 
main beam Eq. (24), as seen in 2.1.2. Eq. (24) is formally equivalent to the 
one describing an RLC series circuit, once the mappings n nr R→ , n nM L→ , 

1/ n nK C→  are performed, where rn, Mn and Kn are defined as in (25). The 

generalized force (generalized velocitynξ& ) is then interpreted as a voltage 

(current). The input voltage Vs is coupled with the equivalent circuit of each 
mode by an ideal transformer of turn ratio Γn as defined in (25). The same 
can be done for the supports with the only difference that do not experiment 
any load due a driving voltage. 

If the quality factor of the resonator is high enough, and the input 
voltage is narrowband around the first resonance frequency of the main 
beam (corresponding to the fundamental frequency of a FF1 resonator), it is 
possible to suppose that the first generalized displacement ξ1(t) is much 
larger than those of the higher modes. Consequently, only the first RLC 
series of the infinitely many implied by Eq. (24) will be included in the 
equivalent circuit. While this hypothesis greatly simplifies the equivalent 
circuit, it is not strictly necessary to the development of the following 
passages. The same assumption is not made for the supports, in order to 
model the behaviour of the device also if supports length is different from 
the optimum (matching) length.  
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Figure 57: Schematic top view of a two-port free-free resonator with flexural support, with 
the main beam resonating on its first free-free mode, with the system of reference and 
displacement name used in section 2.7.1. The symmetry axis of the structure, parallel to y 
direction, is indicated by grey dashed line. Name of main beam deflection is w instead of u uy, 
as used previously, in order to make easier the writing of the maximum deflection wmax 

 
To model the dynamic properties of the full system, the behaviour of the 

nodal points (which are defined by the condition Φ1(x) = 0) has to be taken 
into account: a rigid connection is assumed, i.e., the angle between the main 
beam and the supports remains square during deflection. This hypothesis can 
be written simply as: 
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where ˆ ˆ( , )i ix y  are the coordinates of the nodal point. Substitution of Eqs. (59) 
into Eq. (60) gives: 
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Solving for the first generalized displacement of the main beam it is 
possible to find: 

 

1 2
1

1 1
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Because of the above discussion, the second term in Eq. (62) can be 
neglected. Defining a coupling coefficient Πn between the main beam and 
the nth mode of the support as: 
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Eq. (62) becomes: 
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Eq. (64) holds also for the first time derivative of the generalized 
displacements. This leads to a straightforward electrical representation: the 
equivalent RLC circuit of the nth mode of the support beams is coupled to the 
first mode of the main beam through an ideal transformer of turn ratio Πn  
(Figure 58). This approach could be generalized to more complex systems of 
interconnected beams, although the resultant equivalent circuit could become 
so complex as to be impractical for many scopes. Considering the 
expressions for the first free-free mode from Eq. (17) and for the nth 
clamped-clamped mode from [31]: 
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it can be shown that the expression in Eq. (63) can be written also as: 
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where Lb, Ls are the lengths of the main beam and the support beam, 

cnλ , 1fλ are the nth eigenvalue of the support beam and the first eigenvalue 

of the main beam, respectively; the function F( cnλ , 1fλ  ) can be easily 

derived from the analytical expressions of the mode shapes and if both Φ1 
and Ψn are normalized according to Eq. (19)13, it can be written as: 
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(67) 
 
and from (67) it can be shown that F is bounded for cnλ → ∞  (n → ∞ ). 

The existence of a nodal point at the centre of the support beams is 
compatible with their even resonance modes only; thus in Eq. (64) only even 
n are considered. Moreover, higher modes can be considered as quasi-
statically driven in the considered frequency range, i.e. their only important 
mechanical properties is the generalized stiffness Kn defined as in (25)14 their 
electrical equivalent reduces to a capacitance, whose value is: 
 

3

4
,

1 1s
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n scc n

L
C

K EIλ
= =  (68) 

 
where E is the Young’s modulus of the material which the beams are made 
of and Is is the moment of inertia of the support beam cross-section. 

The circuit in Figure 58 can be further simplified by using the 
impedance transformation properties of ideal transformers, so that each 

                                                 
13 With respect to the normalization of Ψn Ls substitutes Lb and the integral is done with 
respect to y instead of x. 
14 With Ψn and Ls which substitutes respectivelyΦn and Lb, while the integral is done with 
respect to y instead of x. 
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impedance is transferred to the first loop (Figure 59). The capacitance Cup, 
taking into account all the higher order modes of both supports, can be 
expressed as: 
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Because of the boundedness of F, the terms of the series in Eq. (69) 

vanish as 2
cnλ− , so that only a limited number of higher modes of the support 

beam can be actually used to compute Cup.  
A further simplification is possible by removing Cup altogether, leading 

to an equivalent circuit reduced to a single RLC series. In the next section, a 
comparison between FEM simulations and the results predicted by the 
circuits with Cup (extended) and without (simplified) will be presented. 
 
 
 

 
 

Figure 58: Full equivalent circuit for a FF1 resonator, including supports equivalent. The 
transform coupling the resonator with the output electrode is modelled as in 2.1.2 and the 
electromechanical coupling factorΓ1 for the output port is defined as in (26). 
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Figure 59: Reduced equivalent circuit for a FF1 resonator, including supports equivalents. 

 

2.7.2 FEM Simulations 
 
To validate the model, modal and frequency response simulations were 

performed using FEMLAB [43], and the results compared with the 
equivalent circuit predictions. The simulations were only mechanical and 
considered no electromechanical coupling, so that they do not validate the 
values of ideal transformers in Figures 58 and 59. In the calculation done 
using the equivalent circuits in Figures 58 and 59, the output port was 
considered as loaded by a short-circuit, while the voltage needed to obtain 
the mechanical load used in the simulation was given as an input.  

Two types of simulations were implemented: the first one based on 1D 
beam elements (described by the Euler-Bernoulli theory), the second one 
with 2D elements. The simulated device was characterized by the following 
dimensions (as defined in Figure 57): Lb = 42.2 µm, Ws = Wb = 2.2 µm, while 
Ls was varied from 59.8 µm to 79.8 µm. The value Ls = 69.8 µm corresponds 
to the matched condition, where the main and support beams show 
resonance at the same frequency. 

For each Ls, a modal simulation was carried out to extract the resonance 
frequency of the first mode. Subsequently, a frequency response simulation 
was performed in a narrow band around the resonance frequency, and the 
maximum deflection wmax of the main beam was extracted for each 
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frequency (the maximum deflection occurs at the central point of the beam 
as shown in Figure 57). A uniform distributed mechanical load p = Γ1Vs /Le 
was used to mimic the electromechanical load applied by the electrode, Le 
being the length of the electrode (see Figure 57). In the frequency response 
simulations, the damping was modelled as a bulk viscoelastic loss according 
to the Kelvin-Voigt model [34]. The same damping model was used to 
extract the equivalent resistances in the circuit. 

Assuming a lumped-parameter second-order resonant system behaviour 
around the resonance frequency, the simulated frequency response was fitted 
against this function: 
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 (70) 

 
where Wmax is the Fourier transform of the deflection, f0 the resonance 
frequency, WR the deflection at resonance, and Q the quality factor. WR and 
Q were used as fitting parameters, because f0 is already known from the 
modal simulation. This can make the fitting more robust.  

Simulations results for f0, Q and WR are compared with the 
corresponding values predicted by the extended and the simplified circuit (as 
defined at the end of the preceding section) in the graphs represented in 
Figures 60, 61 and 62. On the horizontal axis, the mismatch, i.e. the 
difference between the actual and the matched support length, is represented. 

Resonance frequency and quality factor are more accurately predicted 
by the extended circuit model than by the simplified one (Figures 60 and 61), 
but the relative error is very small in both cases (less than 2.5% with respect 
to 2D simulations for a large relative mismatch of ±10 µm over 69.8 µm). 

For the maximum deflection WR (Figure 62) the error between 
theoretical and simulated curves is significantly larger, especially if the 
simplified model is considered. The maximum relative error with respect to 
the 2D simulations is nearly 13% for the extended model, and nearly 25% 
for the simplified one. The total error is contributed both by an offset and a 
higher slope of the curve. The offset is to be ascribed to the use of the Euler-
Bernoulli equation in deriving the equivalent circuit, as the 1D simulations 
(which are based on the same model) are also affected by. Thus an 
equivalent circuit based on Timoshenko beam model [31] could solve the 
problem, but the procedure of extraction of an equivalent circuit would be 
very complicated if not impossible in that case. 
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Figure 60: Frequency resonance f0 as a function of support length mismatch: comparison 
between equivalent circuit and simulation results. 
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Figure 61: Quality factor Q as a function of support length mismatch: comparison between 
equivalent circuit and simulation results. 



 

 110 

 -10  -8 -6 -4 -2    0    2  4  6  8  10   

3.5

4  

4.5

5  

5.5

6  

6.5

7  

Supports mismatch [µm]

D
ef

le
ct

io
n 

[n
m

]

2D FEM simulation
simplified model
extended model
Euler beam simulation

 
 

Figure 62: Maximum displacement WR of the main beam as a function of support length 
mismatch: comparison between equivalent circuit and simulation results. 

 
Results are nonetheless significant, and allow to use the presented 

equivalent circuit for simulations of the free-free resonator together with an 
electronic system or to exploit it as a synthesis tool, even if the inaccuracy of 
the value of WR leads to an error on the estimated value of the ratio between 
output current and input voltage and consequently on the value of motional 
resistance. 

The equivalent circuits proposed in this thesis are presented also in [75] 
and [77].  
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3. Design optimization of bulk-mode disk 
resonators 

In this chapter design issues and solutions for bulk-mode disk resonators 
will be shown. As already said, bulk-mode resonators allows to reach higher 
resonance frequencies than flexural-beam resonators, retaining very high 
quality factor. For this reasons a research activity about MEM resonators for 
RF applications cannot avoid to consider the design and modelling of              
bulk-mode resonators.  

The results shown in this chapter were obtained during a period of 
intensive collaboration with the international research laboratory IMEC 
(Interuniversity MicroElectronics Center) of Leuven in Belgium, where I 
spent several mounts, funded by a Marie Curie scholarship, in the framework 
of the project APROTHIN (Advanced PROcess Technologies for Horizontal 
INtegration). A small part of the achievements described in the following 
was presented in [88]. 

A huge number of bulk-mode disk resonators are under fabrication at 
IMEC: experimental data are expected soon, in order to validate the 
conclusions presented in the following. 

 

3.1 Device  description and design issues 
 

The device, whose design was optimized, is a contour mode disk 
resonator and is represented in Figure 63: it is a disk connected to the 
substrate by a cylindrical stem or anchor; a couple of electrodes are used to 
electrostatically drive the disk into motion. The output current can be 
collected from the disk, in a one-port configuration; also a bias voltage 
(applied on the resonator or on the electrodes) is needed to linearize the 
relationship between the input voltage signal applied on the electrodes and 
the force actuated on the disk. The shape of the electrodes has to be properly 
chosen to actuate a force oriented in radial direction and constant on the 
lateral edge of the disk, so that only axisymmetric resonance modes and 
especially the so-called contour modes are stimulated: for this modes the 
disk, at least ideally, is only compressed and stretched alternatively, in radial 
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direction, without any distortion of its circular shape and without any out-of-
plane movement.  

The ideal electrodes shape to reach this condition is a circular holed 
plate, with the hole concentric with the disk, so that the axisymmetry of the 
actuation is perfect. In the figure the electrodes are interrupted, essentially 
because it is necessary also to connect the disk to the reading electronics 
which is used to collect the output current due to the resonator movements. 
Even if the process allows to fabricate two or more different levels of 
connection, designing an electrode surrounding the entire disk will introduce 
parasitic capacitance between input and output. The shape schematically 
represented in Figure 63 is a possible a trade off between the necessity to 
increase the spectral purity of the device and to limit parasitic capacitance. 

The two electrodes in Figure 63 can be also used as an input and an 
output electrode with the resonator grounded, in a two-port architecture, but 
in this case a lot of spurious modes which are not axisymmetric are 
stimulated. In particular there are Lame modes and some resonance modes at 
frequency lower than the contour mode, according to which the stem bends. 

Thus for spectral purity reasons the resonator has to be used as one-port 
device, with all the disk surrounded by actuation electrodes, apart from 
regions where disk connection pass by. These regions have anyway to be 
kept as small as possible. Maximizing the region where the disk is 
surrounded by electrodes increases also the electromechanical coupling 
factor, which can be extracted in manner similar to what done in section 
2.1.2 for flexural-beam resonator. Another way to maximize the 
electromechanical coupling is to reduce the gap between electrodes and disk: 
for this purpose a process to obtain gaps under 100 nm is going to be used to 
fabricate the devices at IMEC.  

Considering the mechanical structure, there are two fundamental issues 
for the RF resonators design: first resonance frequency has to be chosen, 
second the mechanical losses has to be limited as much as possible, in order 
to maximize the quality factor. 

The first parameter is essential in both filter and oscillation architecture, 
because it is the central frequency of the filter in the first case, while it is the 
frequency of the output oscillation in the second case. Nonetheless the 
quality factor is even more important, because the higher it is the higher the 
selectivity in filter architecture and, even more significant, the lower the 
phase noise in the oscillator architecture. 

Thus to design a good RF MEM resonator, it is necessary both to set the 
resonance frequency and to maximize the quality factor.  

These goals should be preferably reached by changing only layout 
parameters, such as lateral dimensions of the resonator or the size and the 
number of the anchors, without changing process parameters, such as layer 
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thicknesses or material properties: of course it is not reasonable to change 
the process to optimize the device for each particular application, because it 
costs money and times. Nonetheless the effect of process parameters on the 
resonance frequency and quality factor has to be taken into account, because 
a variation of them due to process parameter dispersion can reduce the 
robustness of the design. 
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Figure 63: Schematic view of a contour mode disk resonator: a) 3D view; b) radial cross 
section (RD is the disk radius, TD the disk thickness, RS the stem radius and HS the stem 
height). The symmetry axis of the device is indicated by the dashed line. 
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Figure 64: System of reference, displacements and stress components in cylindrical 
coordinates. 
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In particular, with respect to the cross-section of the device in Figure 63, 
the layout parameters are the radius of the disk RD and the stem radius RS, 
while process parameters are disk thickness TD and the stem height HS the 
material properties. 

Due to the complexity of the estimation and optimization of quality 
factor (see also section 1.2.3) the main efforts concerning the design of 
contour mode disk resonators were concentrated in finding an accurate 
model to estimate the quality factor of the resonator.  

 

3.1.1 Resonance frequency 
 

The resonance frequencies of contour modes can be found starting from 
the equilibrium conditions. In cylindrical coordinates, if the problem is 
axisymmetric (i.e. assuming the mode shape does not depend on the angle 
θ  indicated in Figure 63), the equilibrium conditions can be written as [89]: 

  
2

2

2

2

rrrr rz

zr zz rz

u

r z r t

w

r z r t

θθσ σσ σ ρ

σ σ σ ρ

 −∂ ∂ ∂+ + = ∂ ∂ ∂


∂ ∂ ∂ + + =
 ∂ ∂ ∂

 (71) 

 
where u and w are the components of the displacement vector u in z and r 
direction, while σij  are the components of stress tensor (i = r, θ, z and                
j = r, θ, z where r, θ, z are the directions in cylindrical coordinates, as 
indicated in Figure 64). According to the assumption of axisymmetric mode 
shapes, the displacement in direction θ is zero as well as shear stress 
components σrθ = σθr and σzθ = σθz. 

If the assumption of plane stress is done it is possible to neglect also σzz 
and σzr = σrz, so that Eqs. (71) are reduced to the single equation: 

 
2

2
rrrr u

r r t
θθσ σσ ρ−∂ ∂+ =

∂ ∂
                                    (72) 

 
Substituting then expression of stress in terms of displacements [89]: 
 

2 21 1rr
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           (73) 
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the following equation can be found: 
 

2 2

2 2 2 2

1

1

E u u u u

r rr r t
ρ

ν
 ∂ ∂ ∂+ − = ∂− ∂ ∂ 

 (74) 

 
where E is the Young’s modulus, ν the Poisson ratio and ρ the mass density 
of the disk.  

Following the same approach described in 2.1.2 to find beams resonance 
frequency, the solution is assumed as a superposition of function ξn(t)Φn(x), 
with ξn(t) = Vsin(2πfn), and ξn(t)Φn(x) is substituted in (74), so that the 
following equation can be found for the nth mode shape Φn(x),  
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              (75) 

 
where fn is the resonance frequency of the nth contour mode. Eq. (75) is a 
Bessel equation, whose solution is: 
 

1 1 1
n n n
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D D D

AJ r BY r AJ r
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                 (76) 

  
where J1 is the Bessel function of first kind and first order, while Y1 is the 
Bessel function of second kind and first order; B = 0, because Y1 diverges for 
r = 0, so that if B was not zero the displacement would diverge for r = 0, but 
it cannot. λn is the nth eigenvalue. If the free condition, i.e. σrr = 0, is 
assumed at the ends of the disk, i.e. for r = RD, the eigenvalue can be found 
by solving the following equation: 
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where J1 is the Bessel function of first kind and zero order. Substituting (76) 
in (75), it can be shown that the resonance frequency fn is given by the well 
known formula [37]: 
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Thus a very handy and compact formula can be used to choose the 
resonance frequency of a contour mode disk resonator. Once material 
properties are known and the resonance mode order n is chosen, the desired 
resonance frequency can be obtained by choosing the proper disk radius. It is 
important to notice that the only geometrical dimension, which the resonance 
frequency depend on, is the disk radius: it is strictly true only if the disk is 
thin, i.e. TD << RD, so that the plane stress assumption holds, and if the stem 
radius is much smaller than the disk, so that it is possible to neglect the 
effect of the stem on the contour mode resonance of the disk. However, for 
all the device geometries which will be discussed in this thesis, Eq. (78) 
holds, because it gives indications which agree with FEM modal simulations. 
Indeed FEM modal simulations confirm the independence of resonance 
frequency on TD, RS and HS, for all geometries which were simulated. 

 

3.1.2 The problem of quality factor estimation 
 
Unlike the resonance frequency the quality factor of a contour mode 

disk resonator cannot be easily evaluated. As discussed in 1.2.3 the difficulty 
is due both to the great number of losses mechanisms which limit the quality 
factor and to the complexity of each mechanism. 

The device analyzed in this thesis should work under vacuum, so that 
the air damping is removed. Thus the damping sources which limit the 
quality factor of the designed devices are anchor losses and internal 
dissipation. The first mechanism is generally considered as the fundamental 
for devices working in vacuum and consequently will be deeply investigated 
in this thesis. However, also a model for a particular internal loss, namely 
thermoelastic dissipation, was also considered in order to obtain a more 
accurate estimation of the quality factor of the devices. 

In following sections first methods to estimate anchor losses through 
FEM simulation will be discussed and then theoretical models and 
simulations will be presented to obtain an estimation of thermoelastic losses 
in contour mode disk resonators. Each loss mechanism dissipates an amount 
of energy per cycle, and the overall energy dissipated per cycle (∆WL in          
Eq. (8)) is given by the sum of the energy dissipated by each mechanism. 
According to Eq. (8) if the Qi is the quality factor calculated considering 
only the ith damping mechanisms, the overall quality factor Q is given by: 

 
1 1

iiQ Q
=∑                                             (79) 
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Among all the mechanisms only anchor losses and thermoelastic losses 
will be considered, so that in the following the overall Q will be 
approximated by: 

 
1 1 1

al thermoQ Q Q
= +                                      (80) 

 
where Qal is the quality factor calculated considering only anchor losses, 
while Qthermo is the quality factor calculated considering only thermoelastic 
dissipation. From the value of Q estimated as in (80) for different geometries, 
a strategy will be proposed to maximize the quality factor of contour mode 
disk resonators by properly choosing disk and stem radius, i.e. by only acting 
on layout parameters.  

 

3.2 Anchor losses evaluation 
 
In this section, three different strategies are presented to estimate anchor 

losses in a contour mode disk resonator, through FEM simulations. Even if a 
analytical models were proposed to evaluate anchor losses in beam 
resonators [36] and even in contour mode resonators [58], to obtain such 
models make very strong assumption were done by authors and at least in 
the case of contour mode disk resonators, they do not explain some results 
from simulations which will be discussed later.   

The main problem in the evaluation of anchor losses in every MEM 
resonator is connected to the fact that the substrate has to be included in the 
simulations because according to the definition of anchor losses the substrate 
plays a very important role in this loss mechanism: the energy is lost through 
a wave which propagates from the resonator to the substrate (see also section 
1.3.2) and of course the shape of this wave and the amount of energy lost are 
strictly connected to substrate properties. Furthermore, the presence of the 
substrate can also change the ideal mode shapes of a resonator: generally the 
anchor/substrate interface is assumed as still to extract mode shapes, but the 
substrate even if it is very rigid is not infinitely rigid and allows some 
movements at the interface. This can change a lot some resonance mode of 
the device as shown later.  

But even if the whole substrate should be included in simulations to 
have accurate results it is not possible to do it: the substrate is practically 
“semi-infinite” with respect to the resonator and simulating the whole 
substrate means to simulate a so high number of element to make the 
problem unsolvable for even the most powerful calculator in the world, 
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because it would need a too large amount of RAM and even if it had it, a too 
long time of computation would be necessary. 

The problem can be solved in two different ways: substituting the 
substrate with a smaller domain which behaves like the substrate with 
respect to the wave driven by the resonator, or by removing the whole 
substrate and applying proper boundary conditions at the stem/substrate 
interface. Both the approach can be effective because to estimate the quality 
factor it is necessary that on the anchor/substrate interface there is something 
through which it is obtained the same configuration of stress and 
displacement as when there is the real substrate so that the work done by the 
resonator on the interface is the same as the job done to drive the wave in the 
substrate. In particular a smaller domain replacing the substrate has to absorb 
the whole wave coming from the substrate, without any spurious reflection 
and the wave driven in the smaller domain should be the same driven as 
when there is the entire substrate. The simplest idea to obtain such a smaller 
domain is to “cut” a portion of real substrate, large enough to totally 
attenuate any incoming wave. This idea cannot work because the needed 
portion is still too small, because the expected intrinsic dissipation of the 
substrate is expected to be low. Thus more complex approaches are 
necessary to find a proper substrate-equivalent domain. 

Both using a substrate-equivalent element, it is possible to extract the 
quality factor by extracting the so-called “complex eigenvalue”. The 
extraction of complex eigenvalue is allowed by many FEM analysis tools. 
For example in Femlab [43] it is an option of the transient analysis and given 
the complex eigenvalue λn, the resonance frequency of the nth mode and its 
quality factor are given by: 
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In the following, one strategy based on a substrate-equivalent element 

will be presented as well as a strategy based on proper boundary conditions 
applied at the stem/substrate interface, which are found by solving the 
equations ruling the propagation of an acoustic wave in the substrate.  

First, a consideration on the axisymmetry of the geometry and of the 
mode shapes has to be done to simplify the simulations: each radial cross 
section as the one in Figure 63b shows at the resonance the same 
deformations and the same profile of stress as well as the same radial 
displacements as shown in (76), i.e. deformations does not depend on angle 
θ indicated in Figure 63a. If mode-shape is axisymmetric also the load 
driven on the substrate is axisymmetric and if the substrate is considered as 
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isotropic or axisymmetric with respect to the material properties (i.e. E, 
ρ and ν do not depend on θ), also the propagating wave can be considered as 
axisymmetric. This allows to conclude that simulating the overall 3D 
structure is the same as simulating only a radial cross section (Figure 65): of 
course far from contour mode resonance the disk deformation could be not 
axisymmetric anymore, but if the quality factor is evaluated trough a 
complex eigenvalue associated to the respective resonance mode, the 
axisymmetry of the mode-shape is enough to allow the aforementioned 
simplification. On the other hand the hypothesis on the isotropy or 
axisymmetry of substrate material properties could be considered as very 
strong, but the simplification in Figure 65 allows to reduce very much the 
time of calculations.   

The axisymmetry hypothesis of the overall problem will be fundamental 
also to extract the boundary conditions at the stem/substrate interface in the 
second simulation method presented. 
 

3.2.1 Simulations based on a high damping substrate  
 
In this section an element which can mimic the behaviour of the 

substrate is proposed: it is the High Damping Substrate (HDS): the damping 
coefficients of the substrate are increased with respect to the real ones in 
order to obtain the total absorption of the incoming wave in small domain, 
but they cannot be augmented so much because if material properties are too 
much different from the real ones in the substrate, the wave propagating in 
the substrate is significantly different from the wave which propagates in the 
actual substrate. For example if both substrate and resonator are made of the 
same material characterized by a low intrinsic dissipation, a HDS substrate-
equivalent element with damping coefficient too high would lead to spurious 
reflections, for the difference in the materials, which was introduced 
artificially.  

HDS element can be implemented in Femlab [43], a FEM tool, capable 
of multi-physic simulations of structural, heat transmission, electrical and 
electromagnetic, fluid flows and micro fluidics, and chemical reactions. It is 
a complete and flexible tool which has been proved as useful for the analysis 
of many problems related to MEMS design, so that it could be interesting to 
exploit it also for anchor losses estimation. Another interesting peculiarity of 
Femlab, is the option of interfacing it with MATLAB, which increase the 
potentiality and the flexibility of Femlab, above all if parametric simulations 
are needed. 
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Figure 65: Due to the axisymmetry, the three dimensional problem (on the left) can be 
simplified in a bi-dimensional one (on the right) by simulating only one radial cross section. 
In blue it is represented the disk, in green the stem and in pink the HDS. Disk dimensions are 
indicated as well as the size LSub of the HDS.    

 
As an example, the one-dimensional  mass-spring-damper system is 

considered: 
 

mx cx kx F+ + =&& &                                          (82) 
 
where m, k, c are respectively the mass, the stiffness and the damping 
coefficient, while F is the external applied force. According to the Rayleigh 
model: 
 

c m kα β= +                                            (83) 
 
which leads to a quality factor: 
 

0
0

1
Q α βω

ω

=
+

                                          (84) 

 
To obtain a HDS the two degrees of freedom α and β are too many: if 

the damping in the substrate depends on mass or stiffness, it does not matter, 
because the only important thing is that the damping factor c or better the 
elements of the damping matrix [C]  are high enough to obtain that wave 
propagating in the substrate is completely absorbed in the finite domain.  
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Figure 66: Geometry used in simulations, including non-absorbing layer (NAL), in the HDS. 
The regions with zero damping or the real low intrinsic damping of the material are 
represented in green, while the regions with a high damping are in green. LNA is the non-
absorbing layer size.    

 
Thus it is assumed α = 0, while β has to be increased until all the 

propagating wave was totally absorbed. Nonetheless, as already mentioned, 
it is not possible to increase too much the damping, because it would change 
too much the material properties of the substrate, leading to a change in 
propagating wave shape, with respect to what happens in the real substrate. 
Besides a decay of the acoustic wave in a too short area close to the anchor, 
should require a too fine mesh in order to avoid spurious reflection. It is 
necessary to choose carefully both β and the “size” of the HDS: in the 
simulations of disk resonators presented in this thesis, the HDS is a cylinder 
with radius equal to the height, so that its radial cross section is a square, 
whose side is the HDS size, indicated as LSub in Figure 65.  

Both the two parameters have to be high to have the total absorption, but 
not too high the first to obtain the same wave propagating in the real 
substrate and to avoid spurious reflection at the interface between resonator 
and substrate, the second to avoid to simulate too many elements. On the 
other hand they are related because at least theoretically the higher β is the 
less substrate is needed to mimic the total absorption and vice versa. To 
obtain a more realistic behaviour at the stem/substrate interface, where the 
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higher substrate deformation are expected to be higher, a “linear” model for 
the damping in the substrate could be used: β can set to 0, or at the low value 
expected in the real substrate, at the interface between substrate and 
resonator and increased linearly with the distance to the interface. As an 
alternative it is also possible to introduce a region around the interface with 
β = 0 or fixed to the low value expected for the substrate. This region, called 
also non-absorbing layer (NAL), was chosen to be a cylinder with radius LNA 
equal to the height, and consequently a square in the simulated cross-section 
(Figure 66).  

In the following results from HDS-based simulations employing NAL 
will be presented as well as results HDS-based simulations which do not 
include NAL, while the model with linearly increased β was not tested.  

Both the HDS-based simulations were compared with the results from 
simulations employing another substrate-equivalent element, the PML. Such 
element, similar to the homonymous element used in electromagnetic 
simulations [54], was used by a HiQLab, an open source FEM simulations 
tool, presented in [55] as a software to estimate anchor losses. The extraction 
of the quality factor can be done as in Femlab through the evaluation of 
complex eigenvalues. 

The total absorption of energy is obtained through a complex-value 
change of coordinates. To explain this point, the one-dimensional example 
reported in [90] is considered. In that case the change of variable is defined 
as: 

 

( )
0

1 ( ) /
x

x x j s k dsσ↔ = −∫%  (85) 

 
where x is the Cartesian coordinate and x~ the transformed coordinate; k is 
the wave number and σ(s) a stretch function, which can be defined as: 
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L is an offset length and σ0 is a constant which can be related to the 

length of PML needed to dissipate the entire incident wave. Considering the 
equation for the propagation of an acoustic compressive wave in a bar: 
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where u(x,t) is the displacement in x direction, E the Young’s modulus and ρ 
the mass density of the material; if there is a boundary condition of no 
refection at one end of the bar, the time harmonic solutions can be expressed 
as: 

 

( )( , ) j t jkx jkx
out inu x t e c e c eω − += +                             (88) 

 
where cout is the amplitude of the outgoing wave from 0 to infinity, while cin 

is the amplitude of the incoming wave from infinity to 0; the two amplitudes 
depend of course on the boundary conditions at the ends of the clamp, 
namely 0 and LB; let us to assume that in LB there is no reflected wave and 
that all the outgoing energy has to be absorbed; using a PML, it is possible to 
solve Eq.(87) for x > LB by substituting xx ~↔ as defined in (85), so that : 
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or using the expression for σ(s) in (86), with L = LB: 
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      (90) 

 
Thus the change of coordinates introduces an attenuation of the 

propagating wave in PML region and σ0 can be seen as an attenuation factor; 
by increasing σ0 it is possible [90] to set the reflected  wave (the second term 
in (90)) in LB very close to zero, so that the condition of no reflection and 
total absorption of the propagating wave (perfect matching) is obtained. Of 
course to get the matching also the length of PML RPML should be enough to 
have the entire outgoing wave absorbed.  

The size of the PML cannot be too high to limit the number of simulated 
elements and then the simulation time. Also with respect to σ0 it is necessary 
to choose a value high enough to have all the outgoing wave absorbed in the 
PML, but it should not be too high, because if the exponential function in the 
first term of (90) decrease in a too short length, the mesh used to numerically 
solve the problem, can become too coarse and there could appear some 
spurious reflection. Besides the complex-value of coordinates is equivalent 
to a change of material properties which can introduce a difference between 
the wave propagating in simulations and in the real substrate. 
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In HiQLab, a non-absorbing layer is also introduced between the 
anchor/substrate interface and the PML, in order to have a condition close to 
reality where deformation of the substrate is expected to be the highest. 

HDS and PML are very similar: even the two models are different, the 
result is anyway a region where the wave is attenuated more than in the 
substrate. The problem in the choice of σ0 and RPML are the same as in the 
choice of β and LSub: a trade-off between the total absorption of the wave 
without any spurious reflection and the size. If the non-absorbing layer is 
included also the value of LNA can change the results.  

Thus several preliminary simulations were needed to evaluate the best 
values for β and LSub or for σ0 and RPML.  

For HDS, different curves of the quality factor QAL only due to anchor 
losses as a function of β were extracted for different size of LSub and LNA. 
Disk and stem material was polysilicon (E = 160 GPa, ρ = 2330 Kg/m3,         
ν = 0.226) and the substrate was assumed to be silicon with approximately 
the same material properties of the resonator. From such simulations if the 
NAL was not included (Figure 65) β = 200 ps and LSub = 60 µm, were 
chosen because for all the substrate sizes simulated (from 30 µm to 80 µm) a 
minimum for QAL was found around β = 200 ps (even if the minimum 
position slightly decreases if LSub increases) and its value does not change for 
LSub > 60 µm. This means that for β  < 200 ps the attenuation inside HDS is 
not enough to absorb all the propagating wave, while for β  > 200 ps the 
damping is too high and there are some spurious reflections at the interface 
between stem and substrate, confining greater amount of energy in the 
resonator where the intrinsic losses are neglected (i.e. β = α = 0). Repeating 
the same analysis for a geometry including non-absorbing layer (Figure 66) 
leads to choose again 200 ps and 60 µm as optimum values respectively for 
β�  and � LSub, while for the NAL LNA = 10 µm was chosen: QAL changes, 
generally increasing, if LNA is changed from 0 to 10 µm, while if it is further 
increased results do not changes anymore. 

The selected value for β, LSub and LNA are the optimum choice for a 
silicon substrate and a contour mode disk resonator resonating around 200 
MHz, if substrate material properties or device resonance frequency are too 
much different from the test case, the selected parameters could be no more 
the best one. The same hold in case of PML, because parameters σ0, RPML 
and LNA has to be chosen in the same way. 
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3.2.2 Simulations based on analytical boundary cond itions 
at the stem/substrate interface 

  
Both PML and HDS lead to very fast simulations, at least in 2D, but 

give results dependent on the size of the simulated domain and on the 
damping parameter β in HDS or on the stretch parameter σ0 in PML. Thus, 
in both cases, it is necessary to choose two parameters properly to obtain 
reliable results. Besides neither the PML nor the HDS is the real substrate; 
they are just an approximation of it.  

Thus the possibility of totally eliminating the PML and the HDS was 
investigated, by replacing them with proper boundary conditions at the 
interface between anchor and substrate. These boundary conditions mimic 
the exact relationship between stress and displacements at the stem/substrate 
interface, due to the propagation of an acoustic wave in the substrate.  

If the problem is axisymmetric as in the case of a contour mode disk 
resonator, a set of proper boundary conditions can be found in an analytical 
form by exploiting the solution for the propagation of an elastic 
axisymmetric wave in a semi-infinite space, in a similar way to what done in 
[58]. 

Fundamental conditions to use this model are: 
a) The substrate is much higher than the resonator (the substrate 

behaves as a semi-infinite space). 
b) The substrate is isotropic, or even if anisotropic it preserves the 

axial symmetry of the problem. 

Due to the assumption b) Eq. (71) holds in the substrate considering the 
system of reference in Figure 64.  

Defining the Lame coefficients λ, µ, stress tensor components can be 
expressed as functions of strain tensor components: 
  

2ij ij ij kk
k

σ µε δ λ ε= + ∑  (91) 

 
where δij is the Kronecker delta (it is 1 if i = j , else 0), and Lame coefficients 
can be expressed as functions of Young’s modulus E and Poisson ratio v as: 
 

( )( ) ( )1 2 1 2 1

E Eνλ µ
ν ν ν

= =
− + +

                         (92)                          
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Neglecting the non-linear terms, the strain tensor components in 
axisymmetric coordinates can be expressed as [91]: 

  

1
0 0

2

r r z
rr zz

z r
rz r z

u u u

r r z
u u

r z

θθ

θ θ

ε ε ε

ε ε ε

∂ ∂= = =
∂ ∂

∂ ∂ = + = = ∂ ∂ 

    (93) 

 
so that, substituting the Eqs. (93)  in (92) and then (93) in (71), after some 
straightforward calculations it is possible to find two equations in 
dependence on the displacements u and w:  
  

 

( )

( )

2 2 2
2 2 2

2 2 2 2

2 2 2
2 2 2

2 2 2

1

1 1

L L T

L L T

u u u u w u u
c c c

r r r r z z r z t

w w w u w u w w
c c c

r r r z r z r r z r t

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − + + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   


   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    + + + − − + − =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

  

(94) 
 
where Lc  and Tc are the velocities of the longitudinal and transverse wave, 
defined as: 
 

2
L Tc c

λ µ µ
ρ ρ

+= =                      (95) 

 
If u is the displacements vector, the rotation vector ΩΩΩΩ�  and the dilatation 

∆ are given by [89]: 
 

= ∇ × ∆ = ∇ ⋅
�

u u                                        (96) 
 

If the problem is axisymmetric, ΩΩΩΩ�  and ∆ can be expressed in cylindrical 
coordinates as: 
 

0
0

0
0

u w u u w

z r r r zθ

 
  ∂ ∂ ∂ ∂  = − = Ω ∆ = + +  ∂ ∂ ∂ ∂ 

   
 

�
                   (97) 
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so that from (94) it is possible to find the following equations for Ωθ and ∆: 
                               

2 2 2
2

2 2 2

2 2 2
2

2 2 2 2

1

1

L

T

c
r r r z t

c
r r r r z t

θ θ θ θ θ

  ∂ ∆ ∂∆ ∂ ∆ ∂ ∆+ + =  ∂ ∂ ∂ ∂ 


 ∂ Ω ∂Ω Ω ∂ Ω ∂ Ω + − + =  ∂ ∂ ∂ ∂ 

               (98) 

 
The dilatation and the rotation are associated to the geometrical 

characteristics of the wave: the first can be related with a dilatation wave, 
which retains the shape of any infinitesimal element of the domain, changing 
only its volume, while the second can related to a distortion wave, which 
maintains the volume but alters the shape of any infinitesimal element of the 
domain.  

Then the solutions for the rotation and the dilatation can be assumed to 
be respectively ( , ) j t j tr z e eω ω

θΩ = Ω ⋅ = Ω ⋅  and ( , ) j t j tr z e eω ω∆ = ∆ ⋅ = ∆ ⋅ , i.e.  
they can be obtained by multiplying a part only dependent on the time and 
another one only dependent on r and z. Furthermore, it is possible also to 
make the hypothesis that the part dependent only on the time is a sinusoidal 
function. According to these assumptions Eq. (98) becomes: 

 
2 2

2 2
2 2

2 2
2 2

2 2 2

1

1

L

T

c
r r r z

c
r r r r z

ω

ω

  ∂ ∆ ∂∆ ∂ ∆+ + = − ∆  ∂ ∂ ∂  


 ∂ Ω ∂Ω Ω ∂ Ω + − + = − Ω  ∂ ∂ ∂ 

    (99) 

 
Eqs. (99) can be solved by applying to the first one the Hankel 

transform (or Bessel-Fourier transform) of zero order and to the second one 
the Hankel transform (or Bessel-Fourier transform) of first order. Given a 
function F, its zero order Hankel transform F0 and its first order Hankel 
transform F1, transforms and inverse transforms are defined as [92]: 

 

( ) ( )

( ) ( )

0 0 0 0

0 0

1 1 1 1

0 0

( , ) ( , ) ( , ) ( , )

and

( , ) ( , ) ( , ) ( , )

F q z rF r z J qr dr F r z qF q z J qr dq

F q z rF r z J qr dr F r z qF q z J qr dq

∞ ∞

∞ ∞

= =

= =

∫ ∫

∫ ∫

(100) 
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where J0 and J1 are the Bessel functions of the first kind of zero and first 
order respectively.  

According to the properties of the Hankel transform, if F and its first 
derivative with respect to r are bounded for r → ∞  (see appendix A)): 

 
2

2
0 02
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2
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1 12 2
0

1
( )

1
( )

F F
r J qr dr q F

r r r

F F F
r J qr dr q F

r r r r

∞

∞

 ∂ ∂+ = − ∂ ∂ 

 ∂ ∂+ − = − ∂ ∂ 

∫

∫

                       (101) 

 
Thus, by applying the Hankel transforms as defined in (100) to (99) and 

exploiting the properties defined in (101), the following equations can be 
found: 

 
2 2

20
02 2

2 2
21

12 2

L

T

q
z c

q
z c

ω

ω

  ∂ ∆ = − ∆  ∂  


 ∂ Ω = − Ω  ∂  

                                  (102) 

 
and solving Eq. (102) the following expression for the dilatation wave can be 
found: 
 

( ) ( ) ( )0

2
2

2

, L Lz z

L
L

q z A q e C q e

q
c

γ γ

ωγ

− +∆ = +

= −
 (103) 

 
while and for the rotation wave it is obtained: 
 

( ) ( ) ( )1

2
2

2

, T Tz z

T
T

q z B q e D q e

q
c

γ γ

ωγ

− +Ω = +

= −
 (104) 

 
 Considering that for z→ ∞  the amplitude of the wave cannot diverge, 

or assuming in a equivalent way as negligible the regressive wave, because 
of the hypothesis of total absorption of the wave propagating in the substrate 
(no reflection), it is necessary that C = 0 and D = 0.  
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Assuming also for the displacement vector components 
( , ) j t j tu U r z e U eω ω= ⋅ = ⋅  and ( , ) j t j tw W r z e W eω ω= ⋅ = ⋅ , it is possible to 

find the following relations between displacement, dilatation and rotation 
wave, by properly combining Eqs. (94) and (97): 

 

2 2
2

2 2
2

1

1

L T

L T

U c c
r z

W c c
z r r

ω

ω

  ∂∆ ∂Ω= − +  ∂ ∂ 


  ∂∆ ∂Ω Ω = − − +   ∂ ∂  

 (105) 

 
If the Hankel transform of first order is applied to the first equation in 

(105) and the Hankel transform of zero order to the second one, Eq. (105) 
becomes: 
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   ∂∆ ∂Ω Ω  = − − +    ∂ ∂    

∫

∫

     (106) 

 
Since the following relations hold if F is bounded for r → ∞  (as shown 

in appendix A): 
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         (107) 

 
Eq. (106) becomes: 
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 ∂Ω = − − ∆  ∂ 


∂∆  = − − Ω  ∂ 

 (108) 
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To find a proper set of boundary conditions, the displacement at the 
interface between anchor and substrate has to be found. If the interface is at  
z = 0, the transform of the displacements components at the interface can be 
expressed as: 

 

( )

( )

2 2
1 10 2

2 2
0 00 2

1
( , 0)

1
( , 0)

T T L

L L T
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γ
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 = = = +

 = = = +


               (109) 

 
where the expression for the dilatation and rotation in (103) and (104) have 
been substituted. 

It is then necessary to express A and B as functions of the stress 
components in order to find an expression which relates the displacements to 
the stress in the transformed domain. The stress components which act on 
the stem/substrate interface are σzz and σrz, because the interface 
stem/substrate is perpendicular to z as shown in Figure 63b and the problem 
is axisymmetric. They can be expressed as functions of the displacements 
components by the following expressions, which can be found combining 
(91),(93) and (95): 

 

( )2 2 2

2

2z r r
zz L L T

z r
rz T

u u u
c c c

z r r

u u
c

r z

σ ρ ρ

σ ρ

∂ ∂ = + − + ∂ ∂ 

∂ ∂ = + ∂ ∂ 

    (110) 

 
or, given the expressions for dilatation and rotation in (97), stress 
components can be written as: 
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Then, ( , ) j t j t
zz Z ZS r z e S eω ωσ = ⋅ = ⋅  and ( , ) j t j t

rz R RS r z e S eω ωσ = ⋅ = ⋅  are 
assumed to find: 
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                          (112) 

 
so that, if the Hankel transform of zero order is applied to the first equation 
in (112) and the Hankel transform of first order to the second one, it is 
possible to extract, by the Hankel transforms properties defined in (107): 
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 (113) 

 
Eqs. (113) can be evaluated in z = 0 to find an expression for A and B as 

functions of stress and displacement components at the stem/substrate 
interface: 

 
2

00 10 10 00
2 2 2

2 2
;Z T R

L L T

S c qU S qW
A B

c c cρ ρ ρ ρ
= + = +                  (114) 

 
where 00 0( , 0)Z ZS S q z= =  and 10 1( , 0)R RS S q z= = . Substituting the 

expressions for A and B in (114) into (109), it is possible to find two 
expressions which relates the Hankel transforms of the displacement 
components to the transforms of the stress components. After 
straightforward calculations these expressions are: 
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Finally, it is possible to apply the inverse transform as defined in (100) 
to Eqs. (115), in order to find the following boundary conditions: 
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(116) 
 
 where functions AIJ are defined as: 
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Eqs. (116) and (117) can be implemented in Femlab as boundary 

conditions at the stem/substrate interface, avoiding to include any substrate-
equivalent element.  

Coefficients AIJ are dependent only on the wave frequency and on the 
material properties of the substrate (velocities cL and cT of the longitudinal 
and transversal waves and mass density ρ). They do not depend on the 
resonator dimensions and material properties. 

The problem with the coefficients AIJ is that each of them has a 
discontinuity, due to the presence of a real positive zero q0 in the 
denominator. This discontinuity results in a divergence of the value of each 
AIJ (Figure 67). 

The value of q0 can be found by substituting γT and γL from (103) and 
(104) in the expression of the denominator of all the coefficients AIJ in            
Eqs. (117), leading to the equation: 
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            (118) 
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Eq. (118) can be numerically solved. For a silicon substrate and a 
propagating wave with frequency 200 MHz the value of q0 is about          
2.6x105 m-1 (0.26 µm-1).   

The physical meaning of this discontinuity can be found considering the 
sense of applying Hankel transform to stress components and displacements: 
the operation is equivalent to write the wave as a superposition of infinite 
waves B(z)Jn(qr) (with  n = 0, 1 depending on the transform order). Thus q-1 
can be considered a sort of “wavelength” in radial direction, even if, being 
Bessel functions not periodic, it is not possible to talk about wavelength; due 
to this reason q-1 will be called “pseudo-wavelength” in the following. 
According to this interpretation the singularity in the coefficients AIJ for q0 
means that stresses, with pseudo-wavelength q0

-1 in radial direction, produce 
very high displacements, i.e. the wave with this radial pseudo-wavelength is 
better propagating than all the other waves (for silicon q0

-1 at 200 MHz is 
about 3.8 µm). 

The discontinuity results in a great difficulty in numerical calculating 
the outer integrals in (116): they cannot converge, due to the discontinuity . 

Thus it is necessary to remove this discontinuity, by introducing a 
substrate model more realistic: in the previous calculations the intrinsic 
losses of the substrate were neglected and this resulted in an infinite ratio 
between each displacement components and each stress component at the 
interface for a particular pseudo-wavelength. Introducing a viscoelastic 
damping in the substrate the discontinuity becomes a sharp peak and the 
integrals in (116) can be numerically evaluated if the grid of q-space is fine 
enough around the peak. The introduction of the viscoelastic damping can be 
done by defining a new Young’s modulus E’ for the substrate, according to 
Kelvin-Voigt representation [34]: 

 
' (1 )E E jωτ= +                                         (119) 

 
where E is the Young’s modulus considered till this point and τ  is the 
relaxation time of the material. Reasonable values for τ can be evaluated 
from thermoelastic and phonon-phonon dissipations in the substrate. Using 
the expression for the attenuation of a longitudinal plane wave due to 
thermoelastic dissipation in [93] and due phonon-phonon interaction in [94], 
values for τ  about 1 fs can be found for silicon (see appendix B). Of course 
other internal damping mechanisms can increase the estimated value for τ , 
thus in the following simulations considering also higher value for τ  will be 
presented.    

Another interesting observation about graphs in Figure 67 is that 
coefficients AIJ are complex and their imaginary part produces a component 
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of each displacement with a phase shift of 90° with respect to the stress 
acting in the same direction. As an example, the imaginary part of AZZ 
introduces a component of w with a 90 degrees of phase shift with respect to 
σzz. This results in a dissipation of energy and it is interesting to notice that it 
occurs also without considering any intrinsic losses in the material (in  
Figure 67 it is assumed τ = 0).  
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Figure 67: Real (blue curve) and imaginary (red curve) part of coefficient AZZ for a silicon 
substrate and a propagating wave at 200 MHz. It is possible to see the pseudo-wavelength 
where the real part diverges and the cut-off pseudo-wavelength (wave components with a 
pseudo-wavelength higher than the cut-off one are attenuated). A similar behaviour has been 
found also for the other coefficients AIJ. 
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The imaginary parts of AIJ are zero for high value of q (for example 
Im[AZZ] = 0 for q-1 > cL/ω), which means that components of displacement 
with higher pseudo-wavelength are attenuated, i.e. they are evanescent wave; 
cL/ω  can be considered as a cut-off pseudo-wavelength for displacements in 
z direction generated by the compressive stress σzz. Of course this is true 
only if other losses are neglected: if an intrinsic damping is introduced as in 
(119), the wave is attenuated for all the pseudo-wavelength. 

The previous observation is very important to give a physical 
explanation of the anchor loss dissipation: it occurs just because the 
resonator movements produce a wave propagating in the substrate, with 
some evanescent components and thus a part of the energy stored in the 
device is dissipated during each cycle to sustain these attenuated waves.   

 

3.3 Comparison between three methods to evaluate 
anchor losses  

 
Several simulations were done in order to compare the performance of 

the two methods proposed in this thesis with PML-based simulations, which 
were performed using the version of HiQLab downloadable from [95]. Also 
a comparison with some experimental data from [37] was done in order to 
validate the simulation approaches. In all the simulations presented in the 
following internal damping of stem and disk was neglected. 

PML and HDS based simulations give very similar results if they both 
include a non-absorbing layer or if they do not include it, as shown in  
Figure 68. In both simulations, whose results are shown in Figure 68, the 
NAL size LNA is chosen large enough so that a change of it does not affect 
anymore the results as discussed in 3.2.1 

On the other hand the presence or the absence of the non-absorbing 
layer in the simulations can change a lot the value of the estimated quality 
factor only due to the anchor losses: considering for example a disk 
resonator, resonating at about 184 MHz on its first contour mode the 
dependence of Qal on the stem radius RS show a very huge and sharp peak if 
the non-absorbing layer is considered, while if NAL is not included in the 
simulations the peak is less sharp and its value is smaller (Figure 69).  

The model with NAL included should be better than the one with NAL 
excluded, because considers the real substrate material properties close to the 
stem/substrate interface, where the higher substrate deformations are 
expected, but a comparison with experimental data from [37] seems to 
demonstrate a better agreement of simulation without non-absorbing layer, 
as shown in Figure 70.  
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Figure 68: Comparison between the HDS-based and PML-based simulations with respect to 
the quality factor dependence on stem radius, with non absorbing layer included.                         
RD = 15 µm, TD = 3 µm and HS = 0.5 µm; disk and stem material Polysilicon (E = 160 GPa,             
ρ = 2230 Kg/m3, ν = 0.226) for a resonance frequency of the first contour mode about 184 
MHz, independently on RS. Substrate material was assumed to be silicon, with material 
properties equal to the ones of stem and substrate. 

 
The agreement between experimental data from [37] and                

HDS/PML-based simulations is anyway acceptable and this could be a 
validation of these two strategies both with and without NAL included.   

On the other hand the quality factor from experimental data can be due 
not only on anchor losses but also on other damping mechanisms, while in 
the simulations only anchor losses are considered. Even if anchor losses are 
expected to be the dominant damping mechanism, if there are some other 
significant dissipation sources and if they were considered in simulations the 
quality factor given by estimating anchor losses with NAL included could be 
lowered and it could match better with measurements, while the quality 
factor obtained by evaluating anchor losses without including NAL could 
become smaller than the measured one. 
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Figure 69: Comparison between HDS-based simulations with and without the non 

absorbing layer included. RD = 15 µm, TD = 3 µm and HS = 0.5 µm; disk and stem material is 
Polysilicon (E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226) for a resonance frequency of the first 
contour mode about 184 MHz, independently on RS. Substrate material was assumed to be 
silicon, with material properties equal to the ones of stem and substrate  

 
 
Thus the comparison between simulations and measurements from [37] 

does not lead to any clear solution about the necessity of including or not the 
non-absorbing layer. Something more about it can be concluded by 
comparing HDS/PML-based simulation with the simulation model 
employing theoretical boundary conditions (THBC) at the stem/substrate 
interface, but first it is mandatory to consider the effect of the relaxation time 
τ defined in (119) on the results of THBC-based simulations. 

It is again important to notice that unlike the parameters β and σ  used in 
HDS and PML strategies, the parameter τ corresponds to the actual substrate 
damping, if the intrinsic damping of the substrate can model as a viscoelastic 
dissipation according to Kelvin-Voigt model as in Eq. (119). It is not an 
artificial parameter included to obtain the total absorption of the wave 
propagating in the substrate, using a finite domain and it can be measured or 
theoretically evaluated. More complicated model than Kelvin-Voigt’s can be 
used employing more time constants [34], to obtain a more accurate model 
of substrate intrinsic damping.  

In order to evaluate the effect of τ on the curve Qal(RS) simulations with 
different τ were performed for a polysilicon (E = 160 GPa, ρ = 2230 Kg/m3,                   
ν = 0.226) disk resonator with fixed disk radius RD = 15 µm, disk thickness 
TD = 3 µm, and stem height HS = 0.5 µm, changing the stem radius RS from 
0.5 µm to 3 µm. The substrate material is assumed to be homogenous silicon 
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with material properties approximately equal to the polysilicon used to 
fabricate the disk and stem. Resonance frequency is about 184 MHz.  

Parameter τ was varied in the range 10-200 fs even if an evaluation of 
this parameter suggests a τ  about 1 fs, if thermoelastic and phonon-phonon 
dissipation are considered according to formulas in [93] and [94]. This 
choice can be justified because there could be some other mechanisms 
contributing to internal losses, which can increase τ, thus the estimated 
relaxation time is probably a “best case”. Second for very small τ, lower than 
1 fs, some numeric instability affect the results, and can be only removed by 
taking more mesh point to calculate the integral in (116), resulting in very 
long time of computation.   
 

 

 
 

Figure 70: Comparison between experimental data from [37] and both HDS-based 
simulations without the non-absorbing layer and PML-based simulations with NAL included. 
RD = 18 µm, TD = 2.1 µm and HS = 0.35 µm; disk and stem material is Polysilicon                      
(E = 150 GPa, ρ = 2300 Kg/m3, ν = 0.226) for a resonance frequency of the first contour 
mode about 150 MHz, independently on RS. Substrate material was assumed to be silicon, 
with material properties equal to the ones of stem and substrate. 
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On the other hand, according to the simulations in Figure 71, for              
τ  < 100 fs the curves Qal(RS) do not change anymore if the relaxation time is 
decreased. It means that for value of τ lower than 100 fs the substrate 
damping does not affect the simulations results, or, in other words, the only 
mechanism which influences the quality factor is the dissipation through 
anchor losses. If τ  is 1 fs, as estimated considering thermoelastic and 
phonon-phonon dissipation in the substrate, the device works in a condition 
of anchor losses-dominated energy dissipation.  

If a comparison between the THBC-based simulations and PML/HDS 
based simulations is carried out, the value of substrate relaxation time results 
fundamental to affirm the need of including or not the non-absorbing layer. 
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Figure 71: Dependence of quality factor only due to anchor losses on stem radius with 
parametric viscoelastic relaxation time τ , varying from 10 fs to 200 ps. Disk and stem 
material was considered to be polysilicon (E = 160 GPa ρ = 2230 Kg/m3 and ν = 0.226), 
while the substrate was assumed to be made of homogeneous silicon (approximately with the 
same material properties of polysilicon). Disk radius is fixed to 15 µm, disk thickness to 3 µm 
and stem height to 0.5 µm, resulting in a resonance frequency of about 184.5 MHz. All the 
simulations were carried out implementing the THBC-based method in Femlab.   
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Considering again a disk with radius RD = 15 µm, thickness TD = 3 µm, 
and stem height HS = 0.5 µm, made of polysilicon, it was found that until 
τ  > 50 ps results for the dependence of Qal on the stem radius RS, given by 
the simulations based on THBC model, agree with results obtained 
employing HDS/PML model, without non-absorbing layer (NAL) included 
(Figure 72). Specifically for the HDS model the agreement is obtained if  
τ  = β. The result is not surprising because it is possible to find that β and τ  
represent exactly the same kind of intrinsic damping, i.e. a viscoelastic 
damping increasing with the material stiffness. The only difference is that 
while τ  can be considered as the real relaxation time of the structure, β was 
a relaxation time increased to a value high enough to obtain the total 
absorption of energy in the simulated portion of substrate, but not to high in 
order to avoid spurious reflections.    

 

 
Figure 72: Comparison between THBC-based model (blue line) and HDS-based model 
without non-absorbing layer included (red line), with respect to the dependence of Qal on the 
stem radius, with τ = β = 200 ps. Disk and stem material was considered to be polysilicon            
(E = 160 GPa ρ = 2230 Kg/m3 and ν = 0.226), while the substrate was assumed to be made 
of homogeneous silicon (approximately same material properties of polysilicon). Disk radius 
is fixed to 15 µm, disk thickness to 3 µm and stem height to 0.5 µm, resulting in a resonance 
frequency of about 184.5 MHz. 
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Thus the equivalence between the results in Figure 72, can be 
interpreted as a proof that when the relaxation time of the material the 
substrate is made of is higher than 50 ps a propagating acoustic wave at 
184.5 MHz (resonance frequency of the simulated device) is totally absorbed 
in a portion of substrate equal to the portion of substrate included in the HDS 
based simulations (i.e. a cylinder of radius 60 µm and height 60 µm, with 
respect to results in Figure 72).  

But if τ  < 1 ps THBC model agrees with HDS/PML with non-
absorbing layer included (Figure 73). It can be reasonable because in this 
case it is necessary to set a damping much higher than the real one (i.e. 
β >> τ ) to obtain the total absorption in a small domain, using HDS/PML 
model. But this damping has to be raised to high value gradually to avoid 
spurious reflections and to have a more accurate model for the substrate 
where the higher deformation are expected, that is, close to the 
stem/substrate interface.  

 

 
Figure 73: Comparison between THBC-based model (blue line) with τ = 100 fs and PML-
based model with non-absorbing layer included (red line), with respect to the dependence of 
Qal on the stem radius. Disk and stem material was considered to be polysilicon                          
(E = 160 GPa, ρ = 2230 Kg/m3 and ν = 0.226), while the substrate was assumed to be made 
of homogeneous silicon (approximately same material properties of polysilicon). Disk radius 
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is fixed to 15 µm, disk thickness to 3 µm and stem height to 0.5 µm, resulting in a resonance 
frequency of about 184.5 MHz.   
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Figure 74: Comparison among THBC-based model(blue line), HDS-based model without 
non-absorbing layer included (red line) and PML with non-absorbing layer included (black 
line), with respect to the dependence of Qal on the  stem radius, with τ  = β = 10 ps.                   
Disk and stem material was considered to be polysilicon (E = 160 GPa, ρ = 2230 Kg/m3 and 
ν = 0.226), while the substrate was assumed to be made of homogeneous silicon 
(approximately same material properties of polysilicon). Disk radius is fixed to 15 µm, disk 
thickness to 3 µm and stem height to 0.5 µm, resulting in a resonance frequency of about   
184.5 MHz.   

 

Finally, for 1 ps < τ < 50 ps, the HDS/PML model is different from the 
THBC one if both non-absorbing layer is included or not (Figure 74). 

Thus THBC-based model solve the problem about the opportunity of 
including or not NAL in HDS/PML-based model in order to obtain the more 
accurate results. By the comparisons between HDS/PML-based model and 
THBC model it is now clear that non-absorbing layer is necessary when the 
substrate damping is low, while it can be removed when the damping is high. 
Besides, there is a relaxation time interval where the HDS/PML cannot give 
the same results as THBC model, neither with nor without non-absorbing 
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layer. THBC model (with τ = 100 fs) was compared also with HDS/PML 
model (non-absorbing layer included) for some SiGe disks (E = 137 GPa, 
ρ = 3430 Kg/m3, ν = 0.23) with disk thickness TD = 2 µm and disk height    
HS = 1 µm (the substrate is assumed to be made of silicon). This values 
correspond to the one obtained by particular process flow used to fabricate 
the devices at IMEC. In Figure 75, the dependence of Qal stem radius is 
represented with disk radius RD = 10 µm (resonance frequency about           
207 MHz). In this case the agreement between THBC and HDS model with 
non-absorbing layer included, is still good even if there is a little difference 
in the curve Qal(RS) around the maximum. This could be due to the fact that 
the maximum amplitude is very huge according to HDS, which means 
probably that for τ = 100 fs the intrinsic damping is still important and limits 
the maximum amplitude. On the other hand the mismatch could be also due 
to some numeric error in THBC and/or HDS model for such low damping. 
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Figure 75: Comparison between THBC-based model (blue line) with τ = 100 fs and HDS-
based model with non-absorbing layer included (red line), with respect to the dependence of 
Qal on the stem radius. Disk and stem material was considered to be SiGe (E = 137 GPa           
ρ = 3430 Kg/m3 and ν = 0.23), while the substrate was assumed to be made of homogeneous 
silicon (approximately same material properties of polysilicon). Disk radius is fixed to 10 µm, 
Disk thickness to 2 µm and stem height to 1 µm, resulting in a resonance frequency of about 
207 MHz.  
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Figure 76: Comparison between THBC-based model (blue line) with τ = 100 fs and                
HDS-based model with  non-absorbing layer included (red line), with respect to the 
dependence of Qal  on the stem radius. Disk and stem material was considered to be SiGe          
(E = 137 GPa, ρ = 3430 Kg/m3 and ν = 0.23), while the substrate was assumed to be made of 
homogeneous silicon (approximately same material properties of polysilicon). Disk radius is 
fixed to 9 µm, Disk thickness to 2 µm and stem height to 1 µm, resulting in a resonance 
frequency of about 230 MHz. A sharp change of slope in the HDS simulation with NAL is 
circled by a black dashed line.    

 
In Figure 76 the difference is even higher (RD = 9 µm for a resonance 

frequency about 230 MHz), with even a shift in the minimum position, but in 
this case it is possible to conclude that the wrong results come from the HDS 
model: first because of the sharp step (almost a discontinuity), circled in the 
figure, second because including in the simulation the thermoelastic 
damping (see section 3.6.4), the agreement between HDS and THBC is 
complete. In the specific if the thermoelastic damping is included in the HDS 
model the minimum position shifts, which is a nonsense, because as it will 
be shown in the following the minimum is due to the superposition between 
resonance frequencies of the contour mode and a parasitic bending mode, 
and according to the theory the intrinsic damping of the resonator material 
should not influence the resonance frequency of the bending mode (see 
section 3.5). 
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Figure 77: Comparison between THBC-based model(blue line) with τ = 100 fs and HDS-
based model with non-absorbing layer included (red line), with respect to the dependence of 
Qal  on the stem radius. Disk and stem material was considered to be SiGe (E = 137 GPa,              
ρ = 3430 Kg/m3 and ν = 0.23), while the substrate was assumed to be made of homogeneous 
silicon (approximately same material properties of polysilicon). Disk radius is fixed to 10 µm, 
disk thickness to 4 µm and stem height to 1 µm, resulting in a resonance frequency of about 
207 MHz.   

 
A last comparison between HDS and THBC method is presented in 

Figure 77 (disk material SiGe, substrate material Silicon, TD = 4 µm,                       
HS = 1 µm, RD = 10 µm, RS variable from 0.2 µm to 2.5 µm (resonance 
frequency about 207 MHz). The agreement this time is perfect, and it is 
always very good when there is neither a maximum nor a minimum in the 
curve Qal(RS): in this case it is possible to conclude that there are no accuracy 
problems for both the HDS-based and THBC model. 

Besides the greater accuracy shown with respect to HDS/PML methods, 
the model based on the theoretical boundary conditions allow also a deep 
insight of the anchor loss mechanism: as shown in the previous section it can 
be used to explain anchor losses with the creation of evanescent waves in the 
substrate. Besides it could be used to evaluate which stress component is the 
more important to evaluate the anchor losses, among the stress components 
acting on the interface. These components are the shear stress σrz(r,0) and 
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the compressive stress σzz(r,0). To evaluate their respective effect on the 
anchor losses, results of a complete THBC-based simulation are compared 
with the results given by the same simulation performed by setting              
ARR = AZR = 0, so that simulation results become independent on σrz(r,0). 
The comparison is shown in Figure 78: the difference is small but very 
important because excluding shear stress changes significantly the maximum 
position which is a fundamental results of the simulation, since identify the 
stem radius which can be chosen to minimize the anchor losses. Anyway 
apart from the maximum region the contribution of shear stress is negligible.  

To summarize the comparison between the three discussed simulations 
mode it is possible to say that PML-based simulations and HDS-based 
simulations basically agree. Also their agreement with some measurements 
from [37] is good.  
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Figure 78: Dependence of Qal on the stem radius according to THBC-based simulations 
compete, when the effect of the shear stress at the stem/substrate interface is considered (blue 
line) and when it is neglected (black line); τ = 100 fs in both the cases. Disk and stem 
material was considered to be Polysilicon (E = 160 GPa, ρ = 2230 Kg/m3 and ν = 0.226), 
while the substrate was assumed to be made of homogeneous silicon (approximately the same 
material properties of polysilicon). Disk radius is fixed to 15 µm, disk thickness to 3µm and 
stem height to 0.5 µm, resulting in a resonance frequency of about 184 MHz. The curves are 
less regular than in the previous figure because a rougher mesh is used for both the FEM 
analysis both to calculate the integrals in (116).     



 

 147 

THBC-based model confirm substantially results form HDS-based 
method and PML-based method, allowing to draw the conclusion that non-
absorbing layer is necessary if the real damping of the substrate is small. 

The main advantage provided by THBC-model is the great insight and 
consequently the chance of a better understanding of the physical 
mechanism which determine the anchor losses  

Besides THBC model avoids spurious parameters as PML/HDS size, 
parameters β and σ, or the size of the size of non-absorbing layer. It 
introduces the real relaxation time τ  of the substrate, which can be 
fundamental parameter to evaluate the quality factor of the device and can be 
even measured and/or estimated. 

Moreover in some cases, it seems that THBC-based simulations give 
more accurate results than HDS/PML-based model, as in the case of results 
in Figure 76, or for a substrate relaxation time neither too small nor too high. 

The main drawback of THBC-based method is unluckily given by the 
velocity of simulations: while to calculate the quality factor for a specified 
geometry the HDS/PML-based model needs 15-30 sec., the THBC-based 
model needs 50 seconds when a rough mesh is used (Figure 78) and even 4 
minutes, when a fine mesh is used (all the other figures). This is due to the 
sharp peak in the coefficient AIJ, which leads to the necessity of using a very 
large amount of points around the peak, in order to evaluate numerically the 
integrals in (116). Maybe a more efficient algorithm to find the inverse 
Hankel transform is needed to obtain faster simulations with THBC method.  

Due to this last drawbacks in the following HDS-based or PML-based 
simulations will be generally presented. THBC-method can be still used to 
verify results from the other two methods when results are suspected to be 
inaccurate as in the case of results in Figure 76. 

 

3.4 Dependence of quality factor due to anchor 
losses on disk and stem dimensions 

 
In this section results about the dependence of anchor losses on stem 

radius and height as well as on disk radius and thickness, will be discussed 
for a contour mode disk resonator, resonating on its first mode. The 
dependence on the disk thickness has not been investigated too much, 
because a discussion about it was already done in [55]. 

All the results presented in this section were extracted from PML-based 
or HDS-based simulations, with non-absorbing layer included, i.e. the 
relaxation time of the substrate was assumed to be small (less than 1 ps 
according to the THBC-based simulations presented in the previous section). 
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3.4.1 Dependence on the stem radius (or anchor size ) 
 
As shown by the results in the previous section curves Qal(RS) can 

monotonically decrease (Figures 70 and 77) or can have a minimum and a 
maximum for particular values of stem radius (Figures 68, 75 or 76). It is an 
unexpected behaviour, which was never observed by measurements, but 
which seems to be very probable because it is predicted by all the three 
different simulation strategies compared in the previous section. 

Generally it is assumed that curves Qal(RS) should monotonically 
decrease because the larger is the stem/substrate interface, the larger amount 
of energy can be lost through the anchor [37]. Also the theoretical model 
presented in [58] seems to confirm this observation, but the assumptions 
made on the stress distribution at the anchor are very strong and could 
exclude some cases. 

The presence of the minimum is due to the superposition of a parasitic 
bending mode to the contour mode as it can be found by in the deflected 
shape of the disk at the resonance, when the quality factor is minimum 
(Figure 79). Indeed the disk bends whatever is the stem radius, but at the 
minimum the bending is maximum, because probably the resonance 
frequency of the bending mode equals the resonance frequency of the 
contour mode for that particular stem radius. The resonance frequency of the 
contour mode does not depend on stem radius as shown by Eq. (78) and by 
results from FEM modal simulations (Figure 80), but the resonance 
frequency of bending modes does. The dependence of resonance frequency 
of the bending mode, even if not straightforward can be modelled as shown 
in section 3.5. Anyway it is possible to observe that a higher stem radius 
makes the disk more rigid with respect to the bending: from FEM 
simulations bending mode resonance frequency increases if stem radius 
increases (Figure 80). The interference of the bending mode with the contour 
mode was discussed also in [55], where a minimum was observed in the 
dependence of the quality factor on the disk thickness. The model in [58] 
cannot predict the minimum because neglect the possibility of disk bending. 
The strict connection with the parasitic bending mode is confirmed by the 
small influence of shear stress at the stem/substrate interface on the anchor 
losses, as shown in 3.3. The compressive stress and the consequent 
compressive wave is the main source of anchor losses and both compressive 
stress and wave are very high when the disk bending is high, because when 
the disk bends the stem goes up and down (Figure 79) and subsequently 
drives a high compressive stress at the stem/substrate interface. 
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Figure 79: Typical coupling of a contour mode with a bending mode, near to the minimum of 
a curve Q(RS). The simulation was done in Femlab, using  the geometrical dimensions  and 
material properties by which the minimum in Figure 68 is obtained.  

 
The maximum in the curves Qal(RS) is probably due to the equilibrium 

by the two different effects of an increase of the stem radius, for values 
higher than the minimum: increasing the stem the difference between the 
resonance frequency of the contour mode and of the bending mode increases, 
but also the section through which the energy can be lost enlarges.  

The first effect leads to a raise of Qal, while the second would decrease 
it. Thus Qal increases as long as the first effect prevails on the second, then, 
after the maximum, it decreases. The maximum occurs when the two effect 
are equals. 

The presence of a maximum and a minimum in the curves Qal(RS) is not 
only a novelty with respect to what is generally believed, but it is also very 
important for the design of the device: it is possible to maximize the quality 
factor by choosing a proper stem radius. The stem radius should be not 
necessary as small as possible to maximize the quality factor, so that there is 
no need to complicate the technological process in order to reduce the 
minimum stem radius which can be obtained. 

Stem radius is a layout parameter and thus it can be changed by simply 
change the device layout without modifying the process: this is very 
important because as it will be shown in the following the maximum 
position in the curve Qal(RS) depends on the disk radius, and consequently on 
the resonance frequency of the device, according to (78). Thus for each 
resonance frequency a different stem radius is needed to maximize the 
quality factor and it is consequently very important the possibility of 
changing it by layout. 
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Figure 80: Simulation of the quality factor dependence on stem radius (upper chart) and 
simulation of the dependence of the resonance frequencies on stem radius of the first contour 
mode and of the second bending mode (lower chart). RD =  15 µm, TD =  3 µm and HS =  0.5 µm; 
disk, stem and substrate material Polysilicon (E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226). 

 

3.4.2 Dependence on the stem height 
 
The stem can be in first approximation considered as beam, which is 

alternately compressed and extended when the disk bends (Figure 79). Since 
the coupling of the contour mode with a bending one has been identified as 
the main cause of anchor losses increase, it is possible to choose a proper 
value of the stem height HS in order to obtain an acoustical impedance 
transformation, so that the energy transferred from the stem to the substrate 
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is minimized; this “impedance matching” can be achieved by transforming 
the condition of free end (zero acoustical impedance) at a distance HS from 
the substrate, i.e. where the stem is connected to the disk, to a condition of 
clamped end (infinite acoustical impedance) at the stem/substrate interface. 

While changing stem radius is possible to reduce the bending of the 
disk, by avoiding the contour and the bending mode resonate at the same 
frequency, a change in the stem height does not hinder the bending 
resonance, but avoid the transfer of energy. From the equation of acoustic 
wave propagation in bar under compression: 

                                                         
2 2

2 2

w w
E

t x
ρ ∂ ∂=

∂ ∂
                                       (120) 

 
it is possible to find that the length to obtain that the bar resonates on its first 
clamped-free mode, at same frequency f1 of the disk is [31]: 
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=                                          (121) 

                                                                           
where E is the Young’s modulus and ρ the mass density of the stem material. 
Eq. (121) represents a λ/4 adaptation: a bar under compression is indeed 
ruled by a law analogous to the one ruling electrical transmission lines, if the 

compressive force replaces the voltage and the velocity the current ( E ρ  

is the velocity of the wave). 
The main limit of this strategy is that the stem height is given by a layer 

thickness and thus is process parameter: it means that for each resonance 
frequency the process should be changed in order to maximize the quality 
factor only due to anchor losses.  

Furthermore, another big problem is that the needed Lm is generally too 
high: considering a polysilicon stem (E = 160 GPa, ρ = 2230 Kg/m3) Lm has 
to be 4.24 µm for f1 = 500 MHz and 21.12 µm for f1=100 MHz. More 
reasonable values can be obtained for resonance frequency higher than 1 
GHz: in this case Lm becomes lower than 2 µm. For lower resonance 
frequencies anyway it seems that the stem height should be to be as high as 
possible in order to as close as possible to Lm. Alternatively according to Eq. 
(121) the λ/4 adaptation can be used for low-frequency resonators if 
materials stiffer and/or lighter than polysilicon are used for the stem. 

According to the simulations the solution is not so easy. In Figure 81 a 
simulation of Qal dependence on the stem height HS with parametric stem 
radius is represented, for a contour mode resonator made of polysilicon and 
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with disk radius RD = 15 µm, disk thickness TD = 3 µm (resonance frequency 
184.5 MHz, not dependent on stem height). From the theory the quality 
factor is expected to increase monotonically until the maximum, which is 
obtained if HS = Lm (about 11.5 µm). According to the simulation the curve 
for RS = 0.5 µm is almost like the one expected monotonically increasing 
and reaching a maximum for value very close to Lm. For higher values of RS 
the maximum still occurs for HS = Lm, but Qal is not monotonic anymore: 
there is first and unexpected minimum (for HS = 1.35 µm). For RS = 2.02 µm 
there is even a very high maximum before the minimum and the theoretical 
maximum for HS = Lm disappears. These unexpected behaviours occur 

because the beam cannot be considered slender anymore if its height is 
comparable with is base radius and because also stem height affects the 
resonance frequency of the parasitic bending mode (see section 3.5).  
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Figure 81: HDS-based simulations of the dependence of Qal on the stem height with 
parametric stem radius for a contour mode disk resonator, resonating on its first contour 
mode with parametric stem radius; non absorbing layer is included, RD = 15 µm, TD = 3 µm; 
disk, stem and substrate material Polysilicon (E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226). 
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Figure 82: HDS-based simulations of the dependence of Qal on the stem radius for a contour 
mode disk resonator, resonating on the first mode, with parametric stem height; non-
absorbing layer is included, RD = 15 µm, TD = 3 µm; disk, stem material is polysilicon               
(E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226), while the substrate is considered as made of 
silicon with properties similar to the polysilicon. 

 
Other simulations have been carried out to see the influence of a stem 

height change on the curves Qal(RS). The goal of these simulation was to 
consider the influence of a variation of stem height on the position of the 
maximum Qal(RS): the stem radius which give the maximum in curve Qal(RS) 
can be chosen to maximize the quality factor only due to anchor losses, but 
the choice could be not the best one if there is variation of disk thickness, 
stem height and/or material properties of both stem and disk, which can 
change from chip to chip, or inside the same chip, due to a dispersion in 
process parameters. Thus, if the change of maximum position in a the curve 
Qal(RS) due to a change of HS is evaluated, it is possible to estimate the 
“robustness” of the anchor losses minimization with respect to stem height 
variations. 

In Figure 82 some curves Qal(RS) with different stem height HS and 
extracted by HDS-based simulations with NAL included are plotted, while in 
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Figure 83 the same curves with are evaluated by a HDS-based simulation 
without non-absorbing layer: apart from the different shape of the curves, in 
both the cases the effect of an increase in stem height is both on the position 
of the minimum, which shift towards higher values of the stem radius RS, 
and on the position and on the value of the maximum, which shift also 
towards higher RS and increases its value. The most important information 
from Figures 82 and 83 is that choosing RS in order to maximize Qal with a 
nominal HS for example equal to 1 µm, the validity of this choice holds 
enough even if there are a great dispersion of the process ( 0.5 mµ± ) on the 
value of HS; furthermore, an error on the value of HS leads to a decrease of 
the Q much smaller than the same error on RS, so that it is possible to 
conclude that stem height is not a too critical parameter. 
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Figure 83: HDS-based simulations of the dependence of Qal on the stem radius for a contour 
mode disk resonator, resonating on the first mode, with parametric stem height; non 
absorbing layer is not included, RD = 15 µm, TD = 3 µm; disk and stem material is 
polysilicon   (E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226), while the substrate is considered as 
made of silicon with properties similar to the polysilicon. 
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3.4.3 Dependence on the disk radius and thickness 
 
Like a stem height variation also a change of disk radius and/or disk 

thickness can change the profile of curves Qal(RS). If the radius and/or the 
thickness of the disk in the fabricated device are different from the nominal 
ones, their variation can affect the maximum position in curves Qal(RS). 

An investigation into the effect of the thickness on Qal in contour mode 
disk resonator has been already presented in [55], where it was shown by 
PML-based simulations that there was a minimum in the dependence of Qal 
on the thickness. This minimum is due to a parasitic bending mode which 
interferes with the contour mode. Changing the disk thickness the contour 
mode resonance frequencies do not change according to (78) if the disk is 
thin, while the resonance frequencies of the bending modes are affected by 
the disk thickness. Considering a free disk, i.e. neither connected to a 
substrate through a stem nor at the end, the resonance frequencies of bending 
modes is found by solving the following equation [96]: 
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∂ −
                            (122) 

 
where w is the deflection in z direction while E is the Young’s modulus, ρ is 
the material density and ν the Poisson; TD is the thickness of the disk and 

2
c∇ is the scalar Laplacian in cylindrical coordinates:  

  
2 2 2

2
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1 1
c

w w w w
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 (123) 

 
If the disk is thin enough it is possible to consider the deflection as 

constant and equal to the deflection of the neutral plane (similar to the 
assumption done to find the Bernoulli equation for slender beam), so that 

2 2 0w z∂ ∂ = . Furthermore, if the resonance mode is axisymmetric (as for the 

bending mode coupled with our contour mode), also2 2 0w θ∂ ∂ = is 
satisfied. If these assumptions hold it is possible to find the resonance 
frequency of the bending disk from (122), in a similar way to what done to 
find the resonance frequency of disk contour modes or bending beams: 
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where λBn is the nth eigenvalue, which depends on the boundary conditions 
on the edge of the disk (r = RD); if the disk is free at its ends, the radial 
bending moment Mr, as well as the shear transverse force Qr, has to be zero 
at the edge. The expressions for Mr and Qr can be found in many mechanics 
book, for example in [97]:  
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(125) 
        

Using the boundary conditions of free end the equation to find the 
eigenvalues λBn is:  
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 (126) 

 
where J1 and J2 are the Bessel functions of first kind, of first and second 
order respectively, while I1 and I0 are the modified Bessel functions of first 
kind, of first and zero order. 

According to Eq. (124) it is clear that the resonance frequency of 
bending modes is proportional to the thickness, thus changing it the 
resonance frequency of the parasitic bending mode can be forced to be close 
or far from the resonance frequency of the contour mode. Due to this effect 
also a maximum is expected in curves Qal(TD), because there is probably one 
minimum for each parasitic bending mode and evidently a maximum should 
be between two consecutive minima.  

Anyway maximizing the quality factor by choosing the optimum 
thickness is not efficient, because such optimum change if the contour mode 
resonance frequency changes and changing the process parameters each time 
to obtain different thickness of the disk layer is not a practical solution. 

Also the disk radius affect the quality factor, because a certain value of 
disk radius can lead to a matching between the resonance frequencies of a 
contour mode and a bending mode, while another value can lead to a great 
difference to the two frequencies: according to (78) the resonance frequency 
of the contour mode is proportional to 1 DR  while the according to (124) fBn 

is proportional to 21 DR . 
The disk radius cannot be used to separate the two resonance 

frequencies, because it has to be fixed in order to obtain the target resonance 
frequency, according to Eq. (78). Thus, the quality factor only due to anchor 
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losses can be maximized in a contour mode disk resonator only choosing the 
proper value of the stem radius. 

Nonetheless the value of disk radius can affect the curve Qal(RS): an 
increase of the disk  radius results in a shift of the minimum and of the 
maximum position towards higher values of stem radius. According to         
Eqs. (78) and (124), if the disk radius is enlarged, the resonance frequency of 
the contour mode is reduced less than the resonance frequency of the 
bending mode, so that for RS = 0 the difference between the two resonance 
frequencies is higher and the stem radius has to be increased more than with 
a smaller disk radius to obtain the matching between the two resonance 
frequencies; in other words, as a consequence of the disk radius raise the 
curves in Figure 80 are both translated towards smaller frequencies, but the 
line corresponding to the bending mode shifts more than the other.  

On the other hand due to the a big increase of the disk radius a higher 
order bending mode can shift to a frequency lower than the contour mode for 
RS = 0 and a new couple minimum/maximum can be added to the curve 
Qal(RS) for small stem radii.  

A similar reasoning can be done for the thickness which has an 
important effect on the curve Qal(RS), because as the disk radius affects the 
coupling between contour mode and bending mode and thus position of 
minimum and maximum in curves Qal(RS).  

 

3.5 A theoretical model to find the minimum in the curves 
Qal(RS) 

 
Even if the estimation the stem radius which gives the maximum in 

curves Qal(RS), is more important than the evaluation of the minimum 
position in order to optimize the layout of a disk resonator, it was not 
possible to find analytical formula to find the maximum, due to the 
complexity of the problem. Thus the maximum position can be estimated 
only by simulations. 

On the other hand also the knowledge of the position of the minimum in 
curves Qal(RS) gives some indications for the design: it allows to exclude 
from the possible design choice an interval of stem radii around the 
minimum; besides as shown in the previous section, a minimum in the curve 
Qal(RS)  has to be necessarily followed by a maximum, thus if the minimum 
position is known also a rough indication about the maximum position is 
available, reducing the number of simulations needed to find the maximum. 
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Figure 84: Radial cross section of the resonator, emphasizing the division in 3 domains of the 
device, made in order to estimate the resonance frequencies of the bending modes: the ‘disk’ 
in green, the ‘stem’ in yellow, the substrate in black and white.  

 
Nonetheless also the evaluation of the minimum position is not easy, 

mainly due to the complexity of the calculation of the resonance frequencies 
of the disk bending modes, which are dependent not only on disk dimensions 
and material properties, but also on the stem and the substrate behaviour. 

The minimum is obtained if the resonance frequencies of parasitic 
bending mode and contour mode are exactly equal. Thus the stem radius 
RSmin, which leads to a minimum in the curves Qal(RS), can be found by 
forcing the condition of equality between the two resonance frequencies. But 
according to (78) the resonance frequency of the contour mode is 
independent from stem radius. Eq. (78) is confirmed for FEM simulations, 
for stem radius smaller than 0.2RD: the maximum error found between 
results predicted by (78) and simulations is less than 1%, with respect to this 
range of stem radii.   

Thus the problem is to find the dependence of resonance frequencies of 
the bending modes on the stem radius.  

To find an approximated solution of the problem the disk, the stem and 
the substrate are first modelled separately as indicated in Figure 84 and then 
they are put together, by using proper boundary conditions at the interfaces 
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between different domains. The “disk” is considered as a cylinder with a 
circular hollow of radius RS in the centre (green region in Figure 84).  

If the disk is moderately thick, its dynamic behaviour can be described 
by the following system of differential equations better than by (124) [98]: 
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     (127) 

 
where w(r,t) is the transverse deflection of the disk midplane, while ψ(r,t) is 
the bending rotation perpendicular to the midplane; TD  is the disk thickness, 
I = TD

3/12 is the inertia moment per unit of length and κ = π2/12 the shear 
correction factor. Finally, ωmb = 2πfmb, where fmb is one of the resonance 
frequencies of the structure, while the flexural rigidity D and the shear 
modulus G are defined as: 
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Theory of moderately thick disk was introduced because it was 

generally found not enough accurate to estimate resonance frequency of 
bending modes of the disk considered in this thesis (contour mode disk 
resonators with resonance frequency higher than 100 MHz), even if the disk 
was completely free, i.e. not connected to substrate through a stem. 

The differential equations in  (127) can be used to find the 
eigenfrequency of the holed disk, applying as boundary conditions: 

a) free conditions at the external end of the disk (r = RD), that 
is, both the bending moment Mr (bending the cross-section of 
the disk perpendicular to the radius) and the shear force V 
directed along z are zero at this boundary: 
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b) Boundary conditions fixed by the stem at the internal end     
(r = RS). Some hypothesis are made on the stem movements: 

i. Stem is assumed as extremely rigid with respect to 
the rotation of the section perpendicular to the radius, 
which is reasonable if the height (TD + HS) is higher 
than stem radius. This assumption leads to the 
condition: 

                                                  

( ), 0SR tψ =                          (130) 

 
ii. The only movement allowed for the stem is a 

compression up and down in z direction. 
iii.  The resonance frequencies of the stem, considered as 

separated from the disk, are generally higher than the 
resonance frequencies of the devices studied in this 
thesis (according to theory and FEM simulations the 
first resonance frequency of a ‘stand-alone’ stem 
with height HS + TD = 4 µm and stem radius 1 µm is 
higher than 2 GHz). Thus the behaviour of the stem 
around the resonance frequency of the disk can be 
considered as quasi-static. 

iv. According to ii. and iii. the stem can be considered as 
a lumped spring of stiffness K, which opposes the 
movements of the disk up and down at its inner end. 
The last boundary condition is thus: 
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If the beam is considered as a one-dimensional bar under compression 

the compressive stress σzz can be written as a function of the strain εzz and 
consequently of the displacement w1

15 in z direction, as: 
    

1
zz zz

w
E E

z
σ ε ∂= =

∂
 (132) 

 
 
 

                                                 
15 The name is chosen to avoid confusion with the displacement w of the disk midplane. 
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whose solution is, according the frame of reference in Figure 84: 
                                             

( ) ( )1 1

0
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z

zzw z t dz w t
E

σ= +∫  (133) 

 
The displacement at the stem/substrate interface w1(0,t), can be 

estimated by the boundary conditions in Eq. (116). Such boundary 
conditions can be simplified a lot if the shear stress is neglected, which 
reasonable according to what was observed in section 3.3, if the compressive 
stress is assumed as constant on the stem/substrate interface and if the 
displacement w1(0,t) is assumed as constant on the interface. If the 
displacement all over the interface is approximated with its value for r = 0 
and if the compressive stress at the interface is called σzz(0,t): 
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with the coefficient czz defined as: 
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A more accurate approximation can be obtained if  w1(0,t) is considered 

still constant, but equal to its mean value. In this case, if shear stress is 
neglected and compressive stress is assumed as constant, it is possible to 
obtain from Eq. (116): 
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with the coefficient czz defined as: 
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Apart from neglecting the shear stress, assumptions are strong but at 

least allow to approach the problem in analytical way, without using 
simulations. Besides for small stem radius the error introduced by assuming 
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displacement and stress constant should be not too large. Substituting (134) 
or (136) in (133), the following expression is obtained: 
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In order to find K in (44) it is necessary to write w, and consequently 

σzz, in terms of V. V is defined inside the disk as [89]: 
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Due to the symmetry of stress tensor σrz = σzr, so that if the shear stress 

σrz is assumed linear for 0 < r < RS : 
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On the other hand, because of the force equilibrium in r direction on the 

element Ω of the stem, represented in Figure 85, σrz can be written as a 
function of the compressive stress σrr. Given that the upper surface of the 
disk for z = HS + TD can be considered as unloaded, the equilibrium of forces 
on Ω leads to: 

 

( ) ( )
0

2 , , 2 , ,
S S DR H T

rz S rr S

z

r z t rdr R R z t dzπ σ π σ
+

=∫ ∫           (141) 

 
Ιf σrr(RS,z,t) is assumed linear and zero in midplane of the disk, 

according to the theory of moderately thick disk, used also to find (127): 
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where S is the maximum for σrr(RS,z,t), which is obtained for z = HS and          
z = HS + TD.  
 



 

 163 

 
Figure 85: Zoom of the stem with the disk only partially drawn: in the figure the domains Ω 
and Θ are represented together with the stress components loading them, in order to show 
how the force balances are done. On the top right of the figure the profile along z of 
compressive stress in radial direction inside the disk and in the specific at the interface 
disk/stem, is represented.  

 
Thus, it is possible to find σzr(RS,z,t), by combining (141) with (140) and 

(142): 
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and from (139) and (143), V(RS,t) can be written as a function of S: 
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According to the equilibrium of force in z direction on the element Ω in�  
Figure 85, the compressive stress in z direction σzz(,z,t), considered as 
constant inside the stem can be written as function of σzr(RS,z,t): 
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For 0 < z < HS, σzr(RS,z,t) = σrz(RS,z,t) = 0, because the external surface 

of the stem is unloaded, thus the compressive stress has to be constant along 
z, according to the equilibrium of force in z direction on the domain Θ in 
Figure 85. The constant value�  of � σzz can be found by fixing the continuity 
condition for z = HS: 
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At this point the whole profile of compressive stress σzz(z,t) along all the 

stem can be written as a function of V from Eqs. (145) and (146). Thus 
applying (145) and (146) to (138), it is possible to find a relation between 
displacement along z direction w1 and V: 
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But to find the stem stiffness K, as defined in (131), the displacement w 
of the disk midplane for r = RS is needed. For continuity it can be found as: 
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In Eq. (57) there are three terms which are summed and they can be seen 

as three compliance in series: the first takes in account the stem for               
0 < z < HS ( ( )1 2 S Sc H R E= ), the second the stem for HS < z < HS + TD 

surrounded by the disk ( ( )2 13 16D Sc T R E= ) and the third the substrate                

( 3 zz Sc =2c R ). Thus the overall K is: 
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Eqs. (127),  can be solved by applying the boundary conditions defined in 

(129), (130) and  (131), using the method used in [99] to find the bending 
resonance frequencies for a thick beam, which can be applied also to thick 
bending disk problem. This method was used instead of the numerical 
method in [98], because it gives an exact analytical solution for the mode 
shape, without doing any approximation, and because it is more flexible, so 
that it was more straightforward to use it. 

Thus Eqs. (127) were first manipulated to have a two-equation system 
with the first equation dependent on w but not on ψ  and the second one 
dependent on ψ  but not on w, so that, defining ξ = r/RD, Eqs. (127) 
becomes: 
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where λmb is the eigenvalue corresponding to the mth resonance mode of the 
bending disk.  
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From Eq. (127), the resonance frequency fmb can be written in terms of 
eigenvalue λmb: 
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2 12 1
mb

mb D
D
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f T

R

λ
π ν ρ
 

= ⋅ 
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 (150) 

 
Coefficients z and s are defined as: 
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2 2

2 2
2 2 2 2

1 2

12 1
D D
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    (151) 

 
Eq. (150) is formally the same as Eq. (124) for the thin disk, but 

according to Eqs. (59) and (61), λn is generally not constant as in the case of 
thin disk, but it depends on (TD/RD)2. On the other hand, if (TD/RD) → 0,       
z→ 0 and s → 0, Eqs. (149) become equivalent to Eq. (122) for a thin disk. 

Before solving Eqs. (149), it is necessary to observe that going from 
(127) to (149) the system order was increased from 2 to 4, thus not all the 
solutions of (149) are solutions of (127). Consequently to delete the wrong 
solutions given by (149), the general solution of (149) was substituted back 
in (127), so that 4 of the 8 arbitrary constant in the general solution of (149) 
were fixed in order to make it to be a general solution also for (127). 
Defining: 
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    (152) 
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the general solution of (149) for w and ψ , was found to be: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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  (153) 

 
with J0 and Y0 Bessel functions of zero order, respectively of first kind and 
of the second kind, while J1 and Y1 are Bessel functions of first order, 
respectively of first kind and of the second kind.  

The fourth arbitrary constant di can be found by applying the boundary 
conditions defined in (145) and (146) to (138), rewritten considering the 
change of coordinates by which r was replaced with ξ: 

      

 

( )

2

1 1
1 1

2

1
0 0

1
0 0S

D S

D

r D
D D

S
R D
R RD D

R

D w
M V GT

R R

R w
V Kw Kw GT

R R

ξ ξ
ξ ξ

ξ
ξ

ψ ν ψ κ ψ
ξ ξ ξ

ψ ξ κ ψ
ξ

= =
= =

=
=

  ∂ ∂= + = = + =  ∂ ∂   

    ∂= = + = − + =    ∂     

(154) 

 
Defining αm = λn

2Am, βm = λmb
2Bm, h = RS/RD and the vector                                 

d = (d1, d2, d3, d4)
T, the application of the boundary conditions in (154) leads 

to the linear system of equations: 
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Eq. (155) can be solved only if the determinant of the matrix which 
multiplies d is zero: 
 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

0 0 0 0
1 1 1 1

1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1

1 1 1 1
0 0 0 0* * *

2 2 2 2 2 2

1 1 1 1
m m m m m m m m

m m m m

m m m m

m m m m

m m m m

m m m m
m m m m

m m m m m m

m m m m m m

J Y J Y
J Y J Y

J Y J Y

A s A s B s B s

J h Y h J h Y h

J h Y h J h Y h
J h Y h J h Y h

A K A K B K B

B A s B A s A B s

α α α α β β β β
α α β β

ν ν ν ν
α α β β

α α β β
α α β β

α α β β

− − − −
− − − −

− − − −

− − − −

− − − ( )
*

2 2

0

m m

m m

K

A B s

 
 
 
 
 
 

= 
 
 
 
 
 − 

 (156) 
 
where Km

* is defined as: 
 

*
2 2

1 D
m

mb D

RK
K

s G Tλ κ
=  (157) 

 
Given the material properties of the resonator, RD, TD, HS, and RS, it is 

possible to find the λmb, and the resonance frequencies fmb of each bending 
mode, by solving Eq. (156). But in order to find the stem radius which gives 
the minimum in the curves Qal(RS) it is possible also to set λmb = λ∗  so that 
the resonance frequency of the mth bending mode is equal to the resonance 
frequency of the nth contour mode, and find the stem radius RSmin (or better 
the ratio hmin = RSmin/RD), which satisfy (156) if λmb = λ∗  (material properties 
as well as TD, RD and HS are fixed). Combining (78) and (150), λ∗ is: 

 

* 4 12 D
n

D

R

T
λ λ=                                                (158) 

 
To evaluate RSmin, Eqs. (156) have to be solved numerically, for example 

with Matlab. In dependence of the values of RD, TD and λ*, Am can be 
imaginary. This can lead to problem for the numerical solver.  
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To avoid it, defining  | |  m mA A= ,  | |  m mα α= , the solutions can be 
written as: 
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leading to the following eigenvalue equation: 

 
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )
( ) ( )

( )
( )

0 0 0 0
1 1 1 1

1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1

1 1 1 1
0 0 0 0* * *

2 22 2 2 2

1 1 1 1
m m m m m m m m

m m m m

m m m m

m m m m

m m m m

m m m
m m m m

m m m m m m

m mm m m m

I K J Y
I K J Y

I K J Y

A s A s B s B s

I h K h J h Y h

J h Y h J h Y
J h Y h J h Y h

A K A K B K

A B sB A s B A s

α α α α β β β β
α α β β

ν ν ν ν
α α β β

α α β β
α α β

α α β β

− − − − −
− − − −

− −
+ + − −

− − − + +

−+ +

( )

( )
*

2 2

0

m

m m

m m

h

B K

A B s

β

 
 
 
 
 
 

= 
 
 
 
 
  − 

(160) 
 

Results predicted by the method described in the previous section were 
compared with the value of the minimum in curves Qal(RS) for some disks of 
SiGe, with a different radii (9 µm < RD < 20 µm) and consequently different 
resonance frequencies (103.5 MHz < f1 < 230 MHz)  of the first contour 
mode. Disk thickness was fixed to 2 µm and stem height to 1 µm. This 
comparison is represented in Figure 86. Even if the theoretical model agree 
in a qualitative way with the dependence of RSmin on RD given by the 
simulations, relative error can be as high as 40%, while the absolute error 
can be higher than 1 µm (for value of RSmin higher than 4 µm). A behaviour 
similar to the one in Figure 86 was found for other simulated geometries. 

Especially for high stem radius, the more important causes of 
inaccuracy of the model can be assumed to be the condition of no rotation 
for r = RS, as shown by deformed shape of the resonance modes from FEM 
simulations. 
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Figure 86: Value of the stem radius which leads to a minimum in curves Qal(RS), according to 
the presented theoretical model (blue line) and to FEM simulations, for a disk radius RD  
varying from 9 to 20 µm. Disk and stem material was considered to be SiGe (E = 137 GPa, 
ρ = 3430 Kg/m3 and ν = 0.23), while the substrate was assumed to be made of homogeneous 
silicon. Disk thickness is fixed to 2 µm and stem height to 1 µm, resulting in a resonance 
frequency varying from 230 to 103.5 MHz, in dependence on disk radius.  

 
Also the schematization of the stem as one-dimensional bar, which 

removes the effect above all of displacement u in radial direction inside the 
stem can be important. Such assumption cancels also the effect of shear 
stress σrz, but this can be considered as less important, because, as shown in 
section 3.3, at least its effect on the acoustic wave propagating in the 
substrate is negligible.  

Finally, the hypothesis of quasi-static motion of the stem should not 
affect too much the results, given that according to FEM simulations results 
the resonance frequencies of the stand-alone stem are much higher than the 
resonance frequency of the devices the simulations in Figure 86 are about.  
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3.6 Thermoelastic losses 
 

In this section thermoelastic losses in a disk resonator are evaluated, in 
the simple case of a totally free disk, not connected to a substrate through the 
stem. Initially only the thermoelastic dissipation due only to contour mode 
was considered, because it was expected that internal losses played an 
important role only if anchor losses are minimized, that is, if the energy 
stored in the bending mode are minimum. It should allow to neglect the 
coupling with the bending mode produced by the stem. But from both theory 
and simulations it was found that thermoelastic losses in the parasitic 
bending mode are much higher than in the contour mode, so that even a 
small amount of energy stored in a bending movements produced a large 
increase of the overall thermoelastic losses in the device.  

Thus also the thermoelastic losses in the bending mode were evaluated, 
but having no clue about the exact distribution of energy between bending 
and contour mode around the minimum of anchor losses (maximum of 
quality factor), it was not possible to estimate analytically the effect of 
thermoelastic losses on the quality factor of anchored disk. Also in this case 
the solution was to include this mechanism in FEM simulations. 

 

3.6.1 Thermoelastic dissipation in contour modes of  a free 
disk 

 
The interaction between elastic deformation and temperature gradient is 

the source of thermoelastic damping. Referring to the structure and the frame 
of reference in Figure 87, for a contour mode disk resonator this interaction 
is ruled by the following system of partial differential equations: 
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 ∂ ∂ ∂ ∂ + − =  − ∂ ∂ − ∂ ∂ 


+ ∂ ∂∇ ⋅ ∇ − = − ∂ ∂
∑

         (161) 

 
where Kth is thermal conductivity, CP the thermal capacitance and αT the 
coefficient of thermal expansion (CTE) of the disk; T0 is the equilibrium or 
ambient temperature, while T is the temperature variation with respect to T0 
inside the disk and u the displacement in radial direction of points inside the 
disk. Generally T << T0, so that it is possible to neglect T, when it is added to 
T0, leading to a linear PDE system.  
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Figure 87: Axisymmetric system of reference used to model thermoelastic losses in contour 
and bending modes of  a disk resonator not anchored to a substrate  

 
The two equations are expressed in cylindrical coordinates. The first one 

[89] is the differential equation for a disk expanding in radial direction with 
an added term ( ) ( ) ( )1TE T rα ν− ⋅ ∂ ∂ , due to the thermal expansion. The 

second one is the heat transfer equation  with an heat generation qe due to 
disk vibrations [35]. For a contour mode, exploiting the axisymmetry of the 
problem and assuming the plane stress condition (σzz = 0, which is 
reasonable if the plate is thin enough), qe can be written as: 
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e ii
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ν ν=

∂ ∂ ∂ = = + − ∂ − ∂ ∂ 
∑        (162) 

 
It is important to observe that the heat generation occurs only if there is 

a time-variant deformation (it does not take place if the deformation is static) 
and if there is a dilatation, that is, if the trace of strain tensor is different 
from zero (i.e. there is no strain-dependent heat generation if the there is a 
pure rotation wave without a dilatation component). Substituting Eq. (162) 
in (161), writing the term ( )thK T∇ ⋅ ∇ for an axisymmetric geometry and 

assuming the thermal conductivity KTH as constant all over the disk, Eqs. 
(161) become: 
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Eqs. (163) can be solved if the following simplifying assumptions hold: 
 

1. Weak coupling: the coupling term ( ) ( ) ( )1TE T rα ν− ⋅ ∂ ∂  

is very small, so that disk mode shapes, calculated by the 
first equation are approximately the same as the mode 
shapes found when thermal effect is not considered. 

2. In any instant and in any point internal to the disk, the 
thermal gradient follows the profile of dilatation: solution of 
the second equation it is assumed to be the solution forced 
by the heat source qe. This is equivalent to the assumption of 
resonance frequencies much smaller than 1/τT, where τT is 
the characteristic time needed to end a thermal transitory in 
the system. According to the simulations such 
approximation works fine if the disk is thermally insulated, 
while the agreement between theoretical result and 
simulation is worse when a temperature or some kind of heat 
transmission as convection or radiation are allowed at the 
disk external interfaces. This is reasonable because a fixed 
external temperature increase the thermal inertia of the 
system, above all close to the boundaries. 

 
Besides, the following hypotheses have been already made in order to 

obtain Eqs. (163): 
 

3. Not only the mode shapes but also the thermal gradient is 
axisymmetric: they both depend only on radial direction r 
and not on the rotation angle around the symmetry axis θ. 

4. There are not out plane movements, such as the bending 
which is introduced by a stem which anchor the centre of the 
disk to the substrate. Thus in (163) u and T are independent 
on z direction and the displacement in z direction is 
neglected. 

 
According to the presented approach the first equation in (163) is 

simplified because of the first assumption and solved. Then its solution is 
substituted in the second equation and exploiting the second assumption T is 
found. Finally T is substituted back in the first equation to find the part 
dependent on the time of the solution.  

The first assumption is verified because adding the term  

( ) ( ) ( )1TE T rα ν− ⋅ ∂ ∂  only the part dependent on the time of the 

displacement changes and not the part dependent on the radius, i.e. the mode 
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shape. Consequently the only hypotheses of the model are practically only 
the second the third and the fourth (the first automatically holds if the others 
holds).  

According to the first hypothesis it is possible to find the displacement u 
by solving: 
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 (164) 

 
whose solution can be found by separating variables as: 
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 (165) 

 
where λn is the nth eigenvalue for the contour mode, which can be calculated 
as in (77), while fn is the eigenfrequency, which will be different from the 
one given in (78), because of the thermal effect. RD is the disk radius. 

According to the second assumption the second equation in (163) can be 
solved if u is written as in (165). The temperature profile found in such a 
way is: 
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with: 
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 (167) 

 
In (166) no thermal boundary conditions are included, thus the 

temperature profile found in this way is different from the real one, but 
simulations confirm, at least for polysilicon and SiGe resonator, that (166) 
give a good approximation of the temperature profile at least when the 
resonator is almost or totally thermally insulated from the external 
environment. 

 
 
 
 



 

 175 

Substituting the expression for T in (166) back in the first equation of 
(163) the following equation is obtained: 
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              (168) 

 
which gives the same solution as in (165), but leads to the following 
expression for fn, which is different from (78): 
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Assuming ( ) ( )1 1T nfα ν η+ << , and substituting the expression for 

( )nfη  in (167): 
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Defining f0 as the resonance frequency of the device when there is no 

thermoelastic effect (i.e. calculated as in (78)) and assuming 0nf f≈ , fn can 

be written as: 
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The eigenfrequency fn is a complex number, thus the resonance 

frequency *
nf  is defined as [35]:  
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      (172) 

 

which generally leads to a resonance frequency *
0nf f≈ : for example                    

for a Polysilicon disk (E = 160 GPa, ρ = 2230 Kg/m3, ν = 0.226,                       
KTH = 30 W/(K*m), CP = 1.63 MJ/(K*m3), αΤ  = 2.6x10-6 K-1) resonating on 
the first contour mode, with ambient temperature T0 = 300 K and RD =  15 µm 

(f0 = 184.5 MHz), ( )* -11
0 1 9.7x10nf f= + .  

While with respect to the hypothesis ( ) ( )1 1T nfα ν η+ << , substituting 

the value of fn from (172),  ( ) ( ) 4 81 3x10 8x10T nf jα ν η − −+ = +  can be found, 

which is safely negligible with respect to the unity. Generally at least for 
polysilicon resonator under the GHz, ( ) ( )1 1T nfα ν η+ <<  is largely 

satisfied. 
Finally, the thermoelastic losses can be estimated by defining the quality 

factor only due to thermoelastic effect QTH, which can be calculated by the 

complex eigenfrequency *nf  as [35]: 
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where τR is a time constant defined as: 
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th

R
P

K

C E

ρ ν
τ

−
=                                     (174) 

 
while 2

0T PE T Cα  is equal to the relaxation strength of the Young’s modulus 

( )E ad is isE E E∆ = − , where Ead is the unrelaxed or adiabatic Young’s 

modulus and Eis the relaxed or isothermal Young’s modulus [35].  
According to Eq. (173) the higher the CTE, the temperature, the Poisson 
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ratio and the Young’s modulus, the lower QTH, while high capacitance 
material are good to have a high QTH. Eq. (173) can be further simplified 
considering that for the material generally used for MEMS (mono crystalline 
silicon, polysilicon and SiGe) 0.15 ps < τR < 1.25 ps, so that (2πf0τR)

2 << 1 , 
at least for  f0 < 40 GHz. Thus Eq. (173) can be safely approximated to: 
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where the dependence on E disappears and there is a linear dependence on 
thermal conductance KTH: this means that the worse the thermal conductivity 
the lower thermoelastic losses, so that polycrystalline material as SiGe and 
polysilicon performed better than mono crystalline silicon (even if SiGe 
performance is decreased by the high CTE and high mass density). Finally, it 
is important to observe in (173) and (175) that QTH is independent on RD and 
on all the other geometrical dimension of the disk, as well as it is 
independent on the order of the resonance mode. It depends only on material 
properties and on resonance frequency. Thermoelastic dissipation in a 
contour mode disk resonator can be even modelled as a viscoelastic Kelvin-
Voigt damping according to (175) [34]. 

Thermoelastic damping is extremely low for a completely free contour 
mode disk: for a disk designed to resonate at a frequency of 200 MHz QTH 
calculated from (173) and (175) is about 10 million if the material is 
polysilicon and about 8.5 million if the material is SiGe. But as shown in the 
following, when the disk is connected to the substrate through a stem, part of 
the energy is stored in a bending movement, whose thermoelastic losses are 
much higher. 
 

3.6.2 Thermoelastic dissipation in bending modes of  a free 
disk 

 
According to FEM simulations, if the anchor losses are minimized (i.e. 

in correspondence of a local maximum in curves Qal(RS)), the quality factor 
considering both anchor and thermoelastic losses is generally limited to a 
value much smaller than both the result given by the simulation including 
only anchor losses and the QTH calculated in section 3.6.1, even if such 
model is confirmed by the simulations if the disk is not connected to the 
substrate by a stem (see section 3.6.3). This can be explained by the fact that, 
due to the presence of the stem, if the anchor losses are minimized, a part of 
energy is anyway stored in a parasitic bending mode, even if this amount of 
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energy is very small due to separation between the resonance frequencies of 
the two modes. In this section a model for the thermoelastic losses in a disk 
resonating on a bending mode is extracted, in order to demonstrate that they 
are much more important than in the disk contour modes. So that, even if a 
very small portion of the overall energy of the resonator is stored in a 
bending mode, it can affect very much the whole Q.  

Thermoelastic losses of a disk bending mode can be evaluated through 
the same approach used in [35] to evaluate thermoelastic losses in a beam 
resonator.  

Considering thermal dilatation, and making the hypothesis of thin disk16, 
the equation for a bending disk is slightly modified with respect to Eq. (122), 
in order to include thermal stress effects: 
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where w is the deflection of the midplane in z direction, TD disk thickness, ρ 
the mass density, D the flexural rigidity of the plate, E the Young’s modulus, 
ν the Poisson ration αΤ the coefficient of thermal expansion and IT a 
parameter dependent on the temperature which can be defined as: 
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where T is the temperature variation with respect to the ambient temperature. 
The heat transfer equation can be found by making the same assumptions 
made in [35]: only the temperature gradient in z direction (i.e. in the bending 
direction) is considered, neglecting thermal gradients in other direction; then 
it is assumed T << T0, to obtain a linear PDE equation as in (163). 

Finally, the dilatation is written exploiting the axisymmetric condition 
and assuming a plane stress condition (σzz = 0, reasonable if the plate is thin 
enough), in the same way as in the case of the contour mode. The heat 
transfer equation found in such way is:                                           
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16 The model for the thick disk is more accurate, but using such model make only more 
complex the demonstration, while it can be shown that the only thing that it changes, is the 
value of the eigenvalue λmb in the expression for Q presented in the following. 
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Considering that, according to the model for thin disks, u = zψ and 
w rψ = ∂ ∂ , where ψ  is the rotation angle perpendicular to radial direction, 

Eq.  (178) becomes: 
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                (179) 

 
Fixing boundary condition of disk thermally insulated and assuming a 

temperature profile T = e-jωtT’(r)  the solution of Eq. (178) is: 
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with: 
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This expression for T can be substituted back in (177) and then the result 

of (177) can be placed in (176). Assuming - ( )j tw e w rω=  Eq. (176) 
becomes: 
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Solving (182) it is possible to find the complex eigenfrequency fm = ωm/2π, 
given by: 
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where it is assumed also 
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, which is generally 

satisfied  and where fmb0 is the eigenfrequency as calculated in (124), that is, 
when there is no thermoelastic damping. 

Generally such hypothesis is verified: the resonance frequency 
is [ ]*

0Rebm mf f f= ≈  also when the thermoelastic effect is considered. From 

(184) it is possible to find the quality factor only due to thermoelastic losses 
for a bending mode as: 
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which is the same result found in [35] multiplied by the factor 

( ) ( )1 1ν ν+ − , the beam thickness is replaced by the disk thickness: 

Because of ( ) ( )1 1 1ν ν+ − > , a bending disk suffer thermoelastic damping 

even more than a bending beam, whose Q is anyway lowered very much by 
thermoelastic effect ([35],[36]).  

It is possible to show that considering a thick disk, the same formal 
result as in (185) is obtained: the only difference between thin and thick disk 
is in the eigenvalue λmb and thus in the resonance frequency calculated 
neglecting thermoelastic effect fmb0, which can be calculated using the 
methods in [98] or in [99].     
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3.6.3 FEM Validation of the models for a free disk  
 

The models described in sections 3.6.1 and in 3.6.2 can be validated by 
FEM simulations: this is possible through a transient analysis with 
eigenvalue extraction performed by the Femlab coupled thermal-structural 
module. The quality factor is extracted as for the anchor losses simulations, 
by using the formula in (81). In all the simulations presented in the following 
the disk is considered as thermally insulated. 

The agreement is very good for both the model, as shown in Figures 88 
and 89, even if for the bending mode there is an error around the minimum 
value for QTH. Furthermore, in the case of the bending mode, calculating the 
frequency fmb0 with the model for thick disk, improves only slightly the 
agreement for high value of the ratio TD/RD (small disk radius in Figure 89). 
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Figure 88: Quality factor QTH only due to thermoelastic losses for the first contour mode for a 
SiGe disk (E = 137 GPa, ρ = 3430 Kg/m3, ν = 0.23, K = 9.8 W/(K*m), CP = 1.57 MJ/(K*m3), 
αΤ  = 4.18x10-6 K-1) with thickness 2 µm and radius varying from 3 µm to 20 µm (resonance 
frequency varying from nearly 600 MHz to 103 MHz). The red curve represents QTH 
according to the analytical model, the black curve according to Femlab simulations. In 
simulations the disk is considered as thermally insulated.  
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Figure 89: Quality factor QTH only due to thermoelastic losses for the second                    
bending mode for a SiGe disk (E = 137 GPa, ρ = 3430 Kg/m3, ν = 0.23, K = 9.8 W/(K*m), 
CP = 1.57 MJ/(K*m3), αΤ  = 4.18x10-6 K-1) with thickness 2 µm and radius varying from 5 µm 
to 100 µm (resonance frequency varying from nearly 900 MHz to 2 MHz). The blue curve 
represents QTH according to the analytical model for a thin disk, the red curve according to 
the analytical model for a thick disk, the black curve according to Femlab simulations. In 
simulations the disk is considered as thermally insulated 

 
As anticipated, thermoelastic damping for the bending mode is much 

higher than in the case of contour mode for the same range of frequencies: 
indeed depending on the disk radius, the resonance frequency of contour 
mode whose QTH simulation is represented in Figure 88, belongs to the 
interval [103 MHz; 609 MHz], which is, if RD < 20 µm, the same more or 
less for the bending mode whose QTH simulation is shown in Figure 89. In 
the same resonance frequencies interval, for the contour mode QTH varies 
from 1 million to 10 millions, while for the bending mode from nearly 
30,000 to almost 400,000, which makes a large difference. Furthermore, for 
RD around 10 µm, the resonance frequencies of the two modes are very close 
and thus they can be coupled if the disk is anchored to the substrate, through 
a central stem: in this region QTH  is about 100,000 for the bending mode and 
about 7 millions for the contour mode, that is, almost 2 order of magnitude 
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of difference. It means that when modes are coupled, even if the energy 
stored in the bending mode is only 1% percent of the energy stored in the 
contour mode, thermoelastic losses due to the bending mode are comparable 
to the ones due to contour mode.  
 

3.6.4 Simulations of the quality factor of a contou r mode 
disk resonator, including both anchor losses and 
thermoelastic damping 

 
The evaluation of the overall thermoelastic dissipation in a contour 

mode of a disk anchored to a substrate through a central stem is very 
difficult because, if the device is anchored in the centre, the overall energy 
stored in the resonator is divided between a contour and a bending 
movement in a way which is difficult to predict. This is also one of the 
reason which makes difficult to find completely analytical models for the 
anchor losses, including the coupling with the bending mode.  Thus, the only 
way to evaluate thermoelastic losses in a disk resonator is to include it in a 
FEM simulation which includes also both stem and substrate. Then 
thermoelastic effect was included in HDS simulation by making HDS 
simulations using Femlab thermal-structural module.  

In all the simulations presented in the following disk boundaries are 
considered as thermally insulated, as well as the boundaries of the HDS. 

In Figure 90 results are shown from HDS-based simulations of the 
quality factor due to both anchor loss and thermoelastic effect for a SiGe 
resonator, with stem height 1 µm, disk thickness 2 µm, disk radius 10µm and 
a stem radius varying from 0.2 to 2.5µm. The resonance frequency is about 
207 MHz, according to both theory and simulations. These results are 
compared with both HDS and THBC simulations including only anchor 
losses. The effect of thermoelastic dissipation is a decrease of the quality 
factor around the maximum of the curve Q(RS). The maximum is about 1.3 
million, lower than the value obtained when the thermoelastic losses are not 
included, but also lower than 7.3 million, the thermoelastic limit expected by 
Eq. (173), which evaluates thermoelastic losses for a pure contour mode. 
This can be explained only assuming that a small part of the energy is 
anyway stored, even around the maximum, in a bending mode. Such 
hypothesis is confirmed also by mode shapes extracted form FEM 
simulations. 
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Figure 90: Comparison between HDS-based simulations of the quality factor due to both 
anchor loss and thermoelastic effect (black curve) and both HDS-based (red line) and THBC-
based (blue line) simulations including only anchor losses, with respect to the dependence of 
the quality factor on stem radius. Disk and stem material is considered to be                            
SiGe (E = 137 GPa, ρ  = 3430 Kg/m3, ν = 0.23, K = 9.8 W/(K*m), CP = 1.57 MJ/(K*m3),              
αΤ  = 4.18x10-6 K-1), while the substrate is assumed to be made of homogeneous silicon. Disk 
radius is fixed to 10 µm, Disk thickness to 2 µm and stem height to 1 µm, resulting in a 
resonance frequency of about 207 MHz.   

 
Assuming that it is possible to neglect anchor losses around the 

maximum (which reasonable according to results in Figure 90), it is possible 
to calculate the ratio between energy stored in the bending mode EB and the 
energy stored in the contour mode EC as: 
                                              

1 1B M M

THC THBc

E Q Q

Q QE

   
= − −   

  
 (186) 
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where QM is the overall Q at the maximum, while QTHC  is the quality factor 
due only to thermoelastic losses related to the contour mode (Eq. (173)) and 
QTHB is the quality factor due only to thermoelastic losses related to the 
bending mode (Eq. (185)). With respect to the case shown in Figure 90, the 
ratio expressed in (186) is about 0.0685. In spite of only 6.4% of the energy 
stored in the bending mode, thermoelastic losses due to the bending mode 
gives the limit of the quality factor. From Figure 90 it is also possible to 
observe that around the minimum of the curve, thermoelastic losses does not 
change results given by simulations including only anchor losses, as 
expected because around the minimum anchor losses are much higher than 
thermoelastic dissipation of both contour and bending mode.  
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Figure 91: Comparison between HDS-based simulations of the quality factor due to both 
anchor loss and thermoelastic effect (black curve) and both HDS-based (red line) and THBC-
based (blue line) simulations including only anchor losses, with respect to the dependence of 
the quality factor on stem radius. Disk and stem material is considered to be                           
SiGe (E = 137 GPa, ρ�  = 3430 Kg/m3, ν = 0.23, K = 9.8 W/(K*m), CP = 1.57 MJ/(K*m3),                     
αT = 4.18x10-6 K-1), while the substrate is assumed to be made of homogeneous silicon. Disk 
radius is fixed to 9 µm, Disk thickness to 2 µm and stem height to 1 µm, resulting in a 
resonance frequency of about 230 MHz.    
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In Figure 91 the same simulation is presented for a SiGe resonator with 
HS = 1 µm, TD = 2 µm, RD = 9 µm and a stem radius RS varying from 0.2 to 
2.5 µm (resonance frequency about 230 MHz). Also in this case 
thermoelastic damping results in lowering the maximum, but, as already 
said, simulation results in Figure 90 confirm also the low accuracy of HDS-
based simulations without thermoelastic losses included with respect to 
THBC model: results for HDS-based simulation, including thermoelasticity 
matches with THBC for any stem radius apart form the maximum region, 
while it disagree with HDS-based simulation neglecting thermoelasticity, 
even around the minimum. But thermoelastic dissipation cannot affect either 
the minimum amplitude, because it is negligible if the anchor losses are 
maximum, or the minimum position, because the minimum is due to the fact 
that for a particular stem radius the resonance frequency of a parasitic 
bending mode equals the resonance frequency of the fundamental contour 
mode and both resonance frequencies are independent on the disk intrinsic 
damping unless it is too high. 

Thus HDS-based simulations including thermoelasticity show that the 
introduction of this intrinsic loss is necessary to obtain a more realistic curve 
Q(RS) around the maximum, but also to improve the overall accuracy of the 
simulation.  
 

3.7 A design strategy for high-Q contour mode disk 
resonator 

 
In this section all the observations from the simulations discussed in this 

chapter will be summarized and exploited to synthesize a strategy to 
optimize the design of a contour mode disk resonator for RF applications.  

The goal is to obtain a target resonance frequency and a quality factor as 
high as possible, by choosing properly the layout parameters, i.e. the disk 
radius and the stem radius. Also an evaluation of the robustness of the 
strategy is provided. 

 

3.7.1 From theory and simulations to a design recip e 
 

An optimum design of a contour mode disk resonator can be easily 
achieved starting from the following observation: while according to 
simulations the quality factor Qal only due to the anchor losses is affected by 
both RD and RS, according to both theory and simulations the resonance 
frequency fn of a contour mode disk resonator is dependent only on the disk 
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radius ( 1 DR∝ , according to (78)). Thus the following strategy is a good 
option: 

 
1. Chose the disk radius in order to obtain the resonance frequency 

given by the simulations. 
2. Chose the optimum stem radius to maximize the quality factor. 

 
While there is an analytical expression to calculate the disk radius to 

obtain a target resonance frequency, the choice of the optimum stem radius 
is more complicated.  

 

 

Figure 92: HDS-based simulations of the quality factor only due to the anchor losses in a 
SiGe resonator (E = 137 GPa, ρ = 3430 Kg/m3 and ν = 0.23), with disk radius RD = 10 µm 
(resonance frequency 207 MHz) and disk thickness TD = 1 µm, while stem height HS is 1 µm 
and stem radius varies from 0.2 µm to 7 µm. The substrate material is silicon. In the figure 
the shapes of the interfering modes are included: the second minimum is due to the 
interference with the second bending mode, while the first is due to the interference with the 
third one. The first minimum cannot be seen in the figure because it occurs for very small 
values of RS, but has to exist, because of course for RS = 0, there is no stem and thus no 
anchor losses, so that Qal → ∞. 
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The quality factor generally monotonically decreases if the stem radius 
increases (Figures 70 and 77), unless an interfering bending mode is 
superposed to the desired contour mode (watch for example at Figures 68, 75 
or 76), for a certain stem radius. In this case there is a minimum for the 
quality factor corresponding to this particular stem radius. The minimum has 
to be followed by a maximum, because for high stem radius is anyway 
expected a quality factor decreasing towards zero, due to the great area the 
energy can flow through. 
 

 

 
Figure 93: Bottom graph: simulation of the dependence on the disk radius RD of the stem 
radius RSM2 which gives the local maximum in the curve Qal(RS)  following the minimum due 
to the interference with the second bending mode (red curve) and of stem radius RSM3 which 
gives the local maximum following the minimum due to the interference with the third  
bending mode (blue curve). Top graph: quality factor obtained by choosing RS = RSM2 (red 
curve), and by fixing RS = RSM2 (blue curve). Disk and stem material is SiGe, TD = 2 µm,      
HS = 1 µm and RD varies from 9 µm to 30 µm (resonance frequency from 230 MHz to                 
70 MHz). 
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Thus the maximum quality factor can be obtained choosing the stem 
radius equal to the minimum value which can be designed according the 
layout rules, or equal to the stem radius RSM which leads to the maximum 
following to the minimum due the interference of the bending mode.  

But the situation is sometimes complicated by the presence of more than 
one maximum because of the interference with more than one bending mode 
(Figures 92 and 93). Nonetheless simulations show that the higher the stem 
radius value which gives the maximum, the lower the obtained quality factor 
(Figures 92 and 93). This reduces the choice between only the first 
maximum and the minimum layout value for RS. Besides, if the position of 
the first maximum is higher than RD/4  (Figure 93) the value for the quality 
factor corresponding to the maximum is generally too low to be taken in 
consideration and this further reduce the region where it is needed to look for 
the maximum. 

A possible strategy to find the optimum value for RS is: 
 

1. Looking for the first local maximum in the region RS∈[RS
*,RD/4], 

where RS
* is the minimum layout value for the stem radius 

2. Compare the quality factor in the local maximum with the quality 
factor for the minimum stem radius and choose the stem radius 
which gives the maximum one. 

 
This strategy can be used for an automatic design tool which gives the 

value for RD and RS to obtain a target resonance frequency (given as input) 
and the maximum quality factor only due to the anchor losses, once material 
properties disk thickness and stem height are fixed by the process. Some 
results of this algorithm, including also thermoelastic losses will be 
discussed in 3.7.2. 

A better criterion in the choice of the optimum RS could be looking for 
the maximum which assures not only a high value for the maximum QAL, but 
also the robustness of it. The designed values for RS could be different from 
its value in the real device, and also disk thickness and disk radius, stem 
height and/or material properties could vary with respect to the nominal ones, 
leading to a quality factor lower than expected.  

Thus, given the expected maximum variation for each parameter, 
simulations should be carried out to estimate if RSM leads to a more robust 
maximum than RS

* or vice versa (i.e. in which case the maximum is less 
affected by parameters perturbations).  

The choice of this second optimization method has to be recommended 
also because if another damping source limits the quality factor (Figures. 90 
and 91) the difference between the overall quality factor in RS

* and  RSM  
becomes smaller and less significant. 
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Furthermore, as shown in 3.7.4, the smaller RSM is, the more it is 
affected by the value of the disk radius RD. In particular the distance between 
minimum and maximum decreases a lot for small value of RSM (Figure 94)  
leading to the possibility of obtaining a minimum quality factor even 
choosing it to get the maximum, because of some perturbation in the value 
of process parameters. 

The problem can be limited, considering that curves Q(RS) are not 
symmetric around RSM and this asymmetry becomes higher if RSM decreases 
(Figure 94). Thus, in order to minimize the influence of a stem radius 
fluctuation on the quality factor, for small RSM should be chosen as an 
optimum value RSM + δR in order to reduce the maximum decrease of the 
quality factor with respect to the expected value, when there is the maximum 
variation (given the maximum stem variation ∆RS this could be reached by 
choosing δR so that Q(RSM + δR + ∆RS)= Q( RSM + δR - ∆RS)). This 
approach can be used also for high value of RSM, even if in that case is less 
important, at least if ∆R is not very high. 

 
 

 
 

Figure 94: Quality factor only due to the anchor losses in a SiGe resonator (E = 137 GPa,            
ρ = 3430 Kg/m3 and ν = 0.23), with radius RD = 10 µm and thus resonance frequency               
207 MHz (blue curve) and in a SiGe disk with radius RD = 9 µm and thus resonance 
frequency 230 MHz (red curve). Disk thickness TD is 1 µm, while stem height HS is 1 µm and 
stem radius varies from 0.2 µm to 2.5 µm for both the curves. The substrate material is silicon. 
Both the simulations were performed using a HDS element to mimic the substrate. Indeed 
THBC method is more accurate especially for the curve with RD = 9 µm, because of the small 
values of the stem radii which gives the minimum and the maximum, but with respect to the 
effect the figure want to show, that is, the decreasing of the distance between minimum and 
maximum for small values of the stem radius, using THBC would not change the conclusions. 
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The final design recipe  to obtain high quality factor, with the smallest 
sensitivity to stem radius variation is: 

 
1. Chose the disk radius in order to obtain the resonance frequency 

given by the simulations. 
2. Looking for the first local maximum RSM in the region RS∈[RS

*,RD/4], 
where RS

* is the minimum layout value for the stem radius. 
3. Find δR which leads to Q(RSM + δR + ∆RS) = Q(RSM + δR - ∆RS)), 

where ∆RS is the maximum stem variation.   
4. Given the maximum stem radius variation ∆RS compare Q(RS

*+∆RS) 
with Q(RSM + δR + ∆RS): 

a. If Q(RS* + ∆RS) > Q(RSM + δR + ∆RS) choose RS = RS
*. 

b. If Q(RS* + ∆RS) < Q(RSM + δR+ ∆RS) choose RS = RSM + δR. 
 

The third step which can be optional, because if RSM is high enough 
(approximately, higher than 1/10RD), it does not improve the robustness of 
the Q (in this case δR is fixed to zero). 

The algorithm assures not the lowest anchor losses but the lowest anchor 
losses when the variation of RS is the highest expected (better value in the 
worst case). Besides it can be easily implemented, for example in Matlab. 

 Of course also the effect other parameter variation should be done to 
verify the validity of this choice (see 3.7.4). 
 

3.7.2 Effect of thermoelastic damping on the strate gy for 
quality factor maximization 

 
As observed in section 3.6, thermoelastic damping decreases a lot the 

amplitude of the quality factor around the local maximum, while it does not 
affect too much the value for small RS, that is, close to RS

*. It is reasonable if 
it is assumed that for small stem radii the coupling with bending mode is 
smaller: if it holds, for smaller stem radius the thermoelastic limit should be 
due only to the to the contour mode (Eq. (173)), being extremely small the 
energy stored in the bending mode. On the other hand for RS = 0, the disk is 
free, i.e. not connected to the substrate, and thus there is no coupling at all 
between contour and bending mode. Furthermore, the decreasing of the 
coupling between contour and bending mode for small RS is confirmed by 
the fact that value of the minimum quality factor is higher when it occurs for 
smaller stem radius (Figure 94). 

Thus the thermoelastic damping smoothes the difference between the 
quality factor obtained for the minimum radius RS

* allowed by layout and the 
quality factor obtained for the first local maximum RSM, and sometimes even 
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can change the choice of the optimum stem radius: it is just what happen in 
the case shown in Figure 90, at least if the first algorithm proposed is 
considered, i.e. the algorithm which chooses the value of stem radius which 
maximizes Q without considering the robustness.  

Finally, the effect of the thermoelastic damping indicates that is better to 
choose a most robust maximum instead of highest, because if the value of 
Q(RS

*) and Q(RSM) are similar there is no great advantage in choosing the 
criterion of the higher quality factor. Besides being it so important around 
the local maximum, it is mandatory to include it in the simulations used to 
find the maximum. 

3.7.3 Results from algorithm for the synthesis of c ontour 
mode disk resonators 

 
In Figure 95 results of a synthesis algorithm which chooses as stem 

radius the one which gives the maximum Q are shown, while in Figure 96 it 
is possible to observe the results from a synthesis algorithm which chooses 
as stem radius the one which gives the most robust maximum Q. This second 
algorithm is the one discussed in 3.7.1, forcing δR = 0, even if it can be 
fixed from the algorithm to improve the robustness of the local maximum. 
This choice was done only to increase the velocity of the algorithm. The 
maximum error ∆RS between the designed and the obtained value of the stem 
radius is fixed to 0.1 µm. Both the algorithms are based on HDS Femlab 
simulations, including thermoelastic effect and are implemented in Matlab, 
exploiting the possibility of interfacing Femlab and Matlab [43]. 

From results in Figures 95 and 96, it is possible to observe that by the 
presented synthesis algorithm it is possible to obtain the target frequency 
with a good accuracy and very high quality factors: in the worst case, when 
there is no dispersion on the stem radius it is possible to obtain a Q about 1 
million, while if a dispersion of ±0.1 µm is assumed, Q is nearly two 
hundred thousands in the worst case. For low frequencies resonators (around             
60-70 MHz) it is possible even to reach 10 millions. Of course the limit of 
the described approach is that only two damping source are considered: other 
intrinsic losses or surface effects can further limit the quality factor if anchor 
losses are minimized. Nonetheless if such losses are independent or weakly 
dependent on the stem radius the choice made to optimize the quality factor 
is still valid. 

Besides there can be also a dispersion on the value of stem height, disk 
thickness and radius which can  lower a lot the value of the quality factor in 
the worst case (i.e. if the difference between the designed or nominal value 
and the effective one is the maximum expected). 
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Finally, it is evident that if the value or the robustness of the maximum 
quality factor is considered, the chosen RSopt can be a lot different: for 
example considering the robustness, the region at low frequencies where the 
first local maximum is preferable with respect to RS

* (around 90 MHz) 
increases with respect to the case when only the value of the quality factor is 
consider. The opposite happens for the region at high frequencies where the 
first local maximum is preferable than RS

* (around 215 MHz) 
 

3.7.4 Robustness of the choice with respect to vari ation o 
stem height, disk radius and disk thickness 

 
A variation even high on the stem height value affect only slightly the 

position of a local maximum, following a minimum due to a parasitic 
bending mode (Figures 82 and 83 in 3.4.2). Thus the choice of the 
optimization strategy presented in this section is robust with respect to stem 
height variation.  

On the other hand variation of disk radius and thickness are more 
important.   

Given the material properties, stem height and disk thickness, the 
relation between RSM and RD is almost linear in a very big region, so that it is 
to verity easily the effect of a difference between the real and the nominal 
disk radius on the position of a local  maximum (Figure 97).  

The dependence on the disk radius in the linear region is significant but 
not too large: an increase of 1 µm in the value of disk radius leads to an 
increase of about 0.4 µm of the maximum position, even if with respect to 
this value, there are small differences among the different curves shown in 
Figure 97. The situation is significantly worse for small values of RSM, where 
the curves RSM(RD) are not linear anymore: small changes in the value of disk 
radius leads to large variations in the position of the maximum. This non-
linear region is very important because the smaller RSM, the higher the 
quality factor obtained by designing the stem radius equal to RSM. The choice 
of a stem radius slightly higher than RSM can improve the robustness also 
with respect to a variation of RD, because reduces the risk to obtain a 
minimum instead a maximum due to a disk radius higher than the nominal 
one. 

A careful control of the disk radius is necessary for the robustness of 
design not only with respect to the quality factor, but also with respect to the 
resonance frequency. 
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Figure 95: Results of the algorithm of automatic synthesis considering no spread                          
of the value of stem radius (∆RS = 0), for a SiGe (E = 137 GPa, ρ = 3430 Kg/m3, ν = 0.23,   
K = 9.8 W/(K*m), CP = 1.57 MJ/(K*m3), αΤ = 4.18x10-6 K-1) resonator, with TD = 2 µm,          
HS = 1 µm. The upper graph represents the disk radius RD chosen to obtain the target 
resonance frequency. The lower graph shows the optimum value for stem radius RSopt to 
obtain the maximum quality factor, given the target resonance frequency. Finally, the 
remaining graph represents the quality factor expected given the chosen RD and RSopt, in 
dependence of the target resonance frequency. The maximum relative error between the 
target frequency and the resonance frequency according to the simulations is shown as well 
as the quality factor obtained in the worst case by the algorithm (minimum of the curve in the 
second graph). The algorithm exploits HDS-based simulations including thermoelastic losses.  
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Figure 96: Results of the algorithm of automatic synthesis considering a maximum spread on 
the value of stem radius ∆RS = 0.1 µm, for a SiGe (E = 137 GPa, ρ = 3430 Kg/m3, ν = 0.23,           
K = 9.8 W/(K*m), CP = 1.57 MJ/(K*m3), αΤ = 4.18x10-6 K-1) resonator, with TD = 2 µm,              
HS = 1 µm. The upper graph, represents the disk radius RD chosen to obtain the target 
resonance frequency. The lower chart shows the optimum value for stem radius RSopt to obtain 
the most robust maximum for the quality factor, given the target resonance frequency. Finally, 
the remaining graph represents the quality factor expected in the worst case in dependence of 
the target resonance frequency, given the chosen RD and RSopt,. The worst case occurs if the 
variation of RS is maximum and thus if RS = RSopt ± ∆RS. The maximum relative error between 
the target frequency and the resonance frequency according to the simulations is shown, as 
well as the quality factor obtained in the worst case by the algorithm (minimum of the curve 
in the second graph). The algorithm exploits HDS-based simulations including thermoelastic 
losses. 
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Figure 97: Simulation of the dependence on the disk radius RD of the stem radius which gives 
the local maximum RSM in the curve Qal(RS)  following the minimum due to the interference 
with the second bending mode of the disk. The thickness is parametrically changed from 1 to 
5 µm. Disk and stem material is considered to be SiGe (E = 137 GPa, ρ = 3430 Kg/m3 and 
ν = 0.23), while the substrate was assumed to be made of homogeneous silicon. Stem height is 
fixed to 1 µm, resonance frequency varies from about 70 MHz to nearly 500 MHz. All the 
simulations were performed extracting RSM from PML-based simulations (HiQLab) of the 
quality factor only due to anchor losses.  
 

 
Results in Figure 97 suggest also a way to find the local maximum for 

every value of RD by making few simulations to extract the two coefficients 
which define the curve Of course this method fails in the region with low 
values for RSM, where the curve shape is not linear.  

Besides, Figure 97 shows the importance of disk thickness on the 
position of the maximum: it was expected because the resonance frequency 
of the bending mode is affected by TD as shown in section 3.4.3. The effect 
of TD on a local maximum following a minimum due to the interaction of a 
certain bending mode seems to be easily predictable by curves in            
Figure 97: if the thickness increases, they are translated towards right-down, 
that is, the maximum occurs for smaller stem radius and for larger disk 
radius.  

The effect of the disk thickness is even more important than the one of 
the disk radius: maximum position shifts even of 2 µm if the thickness 
increases/decreases of 1 µm. 
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Thus also the thickness is a parameter which has to be carefully 
controlled in order to obtain a robust design according to the strategy 
presented in this thesis. 

Finally, some simulations were done to verify the effect of small 
variation in disk and or substrate material properties but their effect is very 
small. The material properties become important only if the material is 
completely changed. 
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4. Magnetically actuated MEM microbalances 

In this chapter the idea, the design, the fabrication and a preliminary 
characterization of a novel MEM microbalance is presented. As discussed in 
chapter 1, MEM microbalances are generally resonators covered by a 
sensitive layer in order to adsorb or adsorb some particular molecule form 
the environment. The resonance frequency of the device decreases if the 
resonator adsorbs a mass, thus if it is included in an oscillator as frequency-
selective element, the shift of the output oscillation can be used to estimate 
the weight of the adsorbed mass. 

The device presented in this thesis has still to be functionalized with a 
proper sensitive layer and potentially it can be used for any application 
involving the measure of an adsorbed mass: it can be employed as a 
chemical sensor, a DNA sensor or even to measure the thickness of a 
deposited layer in a process to fabricate electronics or MEMS. Given that the 
device has not been yet functionalized only a characterization of its 
performance as resonator has been carried out, as well as a verification of the 
effect of humidity of its resonance frequency. 

A previous experience in modelling chemical sensors based on resonant 
cantilever was fundamental to start these activities. Such experience was 
developed during a collaboration with PEL (Physical Electronics Laboratory) 
of ETH Zurich, but is not included in this thesis. Details about it can be 
found in [100] and [101]. 

On the other hand the activity presented in this thesis about design, 
fabrication and characterization of MEM microbalances is partially 
described in [102] and [103], while the first idea of the device was presented 
in [104]. 

 

4.1 Device description and basic working   
 

The microbalance proposed in this thesis is a torsional resonator with 
magnetic actuation and sensing (Figure 98). To the author’s knowledge, the 
only other resonator which implements magnetic actuation and sensing is the 
resonant cantilever proposed in [6] for scanning probe microscope 
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applications, which is, however, based on a completely different mechanical 
structure. Also, the mechanical structure of a torsional resonator is quite 
unusual: something similar was proposed only in [16] for a magnetic sensor. 

The device was designed in order to obtain the best performance, with 
the less expensive CMOS-compatible process. 

In the following first a description of the proposed device and its basic 
working will be given, then the reasons of the choice of the actuation and 
sensing mechanisms will be discussed, as well as the choice of the 
mechanical structure.  
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Figure 98: a) 3D sketch of the torsional microbalance proposed in this thesis. The black 
dash-dotted line represents the symmetry axis of the device. b) Top-view of the device. 
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Nonetheless, In spite of all the reasons examined in the following the 
novelty of the device, was the fundamental motivation, which led to 
investigate the possibility to fabricate the presented device.  

The mechanical structure proposed is a torsional resonator composed of 
a central square holed suspended by two lateral beams, as shown in           
Figure 98. The hole in the central square is required only for the release of 
the device and its necessity will be detailed in section 4.4. It has only a slight 
influence on the device performance as shown in the following.  

Two inductive loops are integrated in the plate. The first loop (in blue in 
Figure 98) is used to actuate the device, while the second one (in red in 
Figure 98) senses the movements of the rotor.   

Both actuation and sensing work because of an external magnetic field 
B, directed as in Figure 98. B can be generated by a couple of small 
permanent magnets which can be included in the package: for example there 
are NdFeB magnets smaller than 1 mm3, which can generate magnetic fields 
about 0.1 T in a region close enough to the magnets.  

If the input loop carries the input signal current I, on each side of the 
loop the well known Lorentz Force F is exerted: 

  
l I= ⋅ ⋅ ∧F i B                                           (187) 

 
where l is the length of the loop side and i a vector, with unitary module and 
direction parallel to the wire. The force is zero on the sides of resonator 
central square which are parallel to the magnetic field B, while it is directed 
in z direction on the perpendicular sides as indicated in Figure 98. If the 
mechanical structure is symmetric with respect to an axis parallel to the 
lateral beams and crossing the centre of the central square, the total force in z 
direction is zero, avoiding at least theoretically the bending of the structure, 
while there is a twisting moment ττττ which drives a rotation of the central 
square around the symmetry axis: 
 

i i
i

= ∧∑� F b                                            (188) 

 
where Fi is the force acting on the ith side of the loop, while bi is the moment 
arm, i.e. the distance between the ith loop side and the device symmetry axis.  

Considering only the driving port as composed by only one loop the 
moment is due only to the force equal and opposite acting on two symmetric 
sides of the loop.  
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With respect to the direction of the vectors indicated in Figure 98, the 
magnitude τ of the moment ττττ is obtained combining Eqs. (187) and (188): 

 
2 inblIB A IBτ = =                                      (189) 

 
where Ain is the area embedded by the input loop equal to the length l of one 
side of the loop multiplied by 2b which is equal to the perpendicular side of 
the loop (Figure 98b). B is the magnitude of the magnetic field. 

Assuming as linear the relation between actuated moment and rotation 
of the plate, the plate rotates at a frequency equal to the frequency of the 
input current I because of the linearity of Eq. (189), while the lateral beams 
work as torsional springs. 

 If the frequency of the input signal is equal to the resonance frequency 
of the torsional plate the amplitude of the rotation is maximum, while aside 
from this frequency the resonator movements are  much smaller if the 
quality factor is high. A high quality factor is expected even at atmospheric 
pressure, if the gap between the structure and the substrate is high enough to 
neglect squeeze film damping. 

The rotation of the plate is detected by the output loop according to the 
Faraday-Lance law: if the resonator rotates the flow of the magnetic field B 
trough the output loop increases, leading to an electromotive force at the 
ends of the output loop, which opposes the change of flow. If the plate 
rigidly rotates around the symmetry axis, i.e. it does not bend, the output 
voltage Vemf is thus: 

 

( )sin
B

emf outV A B
t t

θ∂∂Φ= − =
∂ ∂

 (190) 

 
where ΦB is the flow of the external magnetic field, Aout the area embedded 
by the output loop and θ the rotation angle. If the rotation amplitude is small: 
  

emf outV A B
t

θ∂≈
∂

                                      (191) 

 
The resonance frequency of the excited torsional mode can be estimated 

considering the resonator as lumped-parameter system [10], composed of a 
mass and a spring: the lateral beams are considered as pure torsional springs, 
without any inertial properties, while the central plate is assumed to be 
extremely rigid in comparison with the springs, so that it rigidly rotates 
without bending. These assumptions introduce a small error with respect to 
the value given by FEM modal simulations as shown in section 4.3.2. and 
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lead to the following easy formula for the resonance frequency f0 of a 
torsional mode: 

 

0

21

2
t

p

K
f

Jπ
=                                           (192) 

 
where Kt is the torsional spring constant of each beam, which act in parallel 
so that their spring constant are added; Jp is the inertia moment of the plate. 
These parameters can be found by [105]: 
 

( )4 40 1

12t p p h
b

GJ
K J t L L

l
ρ= = −               (193) 

 
where lb is the length of the lateral beams and G the material shear modulus 

( ( )2 1G E ν = +  , with E Young’s modulus and ν the Poisson ration); ρ is 

the material mass density, t the plate thickness, Lp the  side of the square 
plate and Lh the side of the square hole inside plate. The expression for the 
inertia moment of the plate in (193) holds for thin plates (t << L p) which is 
the case of the device in this thesis. Besides, Lh does not affect to much the 
inertia moment and consequently the resonance frequency: for example, if Lh 
is a half than Lp, Jp is only 1/16 smaller than if the resonator was not holed. 
Finally, J0 is the polar moment of inertia of the beam cross-section. If the 
thickness t 17  of the cross section is much smaller than the width wb, 
according to [105] J0 can be calculated as: 
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At this point the basic working of the device as a resonator is known. To 

use the device as a microbalance it is necessary also to estimate how much 
mass adsorption from the outside can change the resonance frequency of the 
device. Assuming that no mass is adsorbed by the lateral beam, or that if any 
is adsorbed it neither changes Kt nor the inertial properties of the overall 

                                                 
17 It is called as the thickness of the plate because they are equal due to the process chosen to 
fabricate the device (see section 4.4). 
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devices, if a mass δm is adsorbed by the surface of the central plate, the 
inertia moment of the plate is increased by an additional quantity δJp, while 
the spring constants of the beams remains unvarying. Thus the resonance 
frequency becomes: 

 

( ) ( )
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f f

J J J J
δ π δ δ
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 (195) 

 
If δJp << Jp  the new resonance frequency can be approximated as: 
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                                 (196) 

 
Defining the frequency shift ∆f as: 
 

02
p

p

J
f f

J

δ
∆ =                                     (197) 

 
the sensitivity of the resonance frequency to a change of inertia moment can 
be defined as: 

 

0 2
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Jf
S

f J

δ∆= =                                      (198) 

 
If the adsorbed mass δm is considered as uniformly distributed on the 

central plate, writing δJp as a function of δm and substituting to Jp its 
expression in (193), it is possible to write the sensitivity of the resonance 
frequency to the adsorbed mass as: 
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where it is defined also δσ, as the variation of area mass density due to the 
mass adsorption.  

Sometimes, it can be also interesting to evaluate the maximum shift of 
resonance frequency, which can be obtained. For example if the resonator is 
covered with a sensitive layer which allows the adsorption of molecules 
whose molar mass is m and if the maximum area density of adsorbed 
molecules (i.e. the area density of adsorption sites) is σS, the maximum 
frequency shift can be found from (197) as: 

 

02
S

MAX
A

m
f f

N t

σ
ρ

∆ =                                           (200) 

 

4.1.1 Choice of the actuation and sensing mechanism s 
 

In this section the motivation to use magnetic sensing and driving will 
be given, comparing them with other actuation and sensing mechanisms. 

Electrostatic actuation generally widely in MEMS, anyway it needs not 
need small gaps between electrodes and rotor, so that it had no problem of 
stiction if the device is plunged in solution to sense for example DNA or 
proteins. Furthermore, if it is used in a device working in air for example a 
gas sensor, it experiences the decrease of the quality factor due to squeeze 
film damping, which is very important in electrostatically actuated devices, 
where the rotor vibrates in direction perpendicular to the electrodes and the 
gap is small.  

Magnetically driven resonators are not affected by either stiction or 
squeeze film damping because they do not require small gaps. 

Finally, magnetic actuation can be implemented with a bulk 
micromachining process, without any additional wafer bonding as in [16]. 
Apart from few examples [16], due to the small gaps required, electrostatic 
actuation generally is implemented using surface micromachining process, 
which can be CMOS-compatible only using new materials as SiGe [28], and 
are anyway more complex and expansive than bulk micromachining process, 
even if they allow to fabricate more complex MEMS structure. Indeed as 
shown in section 4.4, employing bulk micromachining techniques, it is 
possible to fabricate the proposed device by a single-mask CMOS-
compatible post process, which can be performed at the end of a standard 
CMOS process. 

With respect to the piezoelectric actuation it was discarded because it 
need a deposition and the lithography of a piezoelectric layer, made of 
material generally not used in standard CMOS fabrication. The goal of 
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reducing the complexity and the cost of the technological process leads to 
prefer magnetic actuation to piezoelectric actuation. 

Finally, magnetic actuation was also preferred to thermal actuation, 
which is used generally if the mechanical structure is a cantilever made of 
different layers with different CTE (coefficient of thermal expansion): 
magnetic actuation requires only the metal wires and the intermetallic 
dielectrics, which embed it, while to exploit bimorphic effect it is required to 
save part of the silicon under the oxide. Thus, using thermomechanical 
actuation, the overall mass of the device is higher if the area occupied by the 
device is the same, so that the ratio between the adsorbed mass (or the mass 
adsorbed per unit area) and the resonator mass (or the resonator mass per 
unit area) is lower than using magnetic actuation. In other words, the 
resonator magnetically actuated if adsorbs the same mass (or mass per unit 
area) as a thermomechanically actuated resonator with the same resonance 
frequency, the shift of resonance frequency is higher in the magnetic 
resonator, so that it works better as microbalance. The situation can be 
improved using the metallic layer to exploit the bimorphic effect, but also in 
this case the overall mass is anyway increased, because to control the effect 
the metal should occupy an area larger than the wires used for magnetic 
actuation.  

Besides thermomechanical actuation is non-linear: the heat generated by 
current-carrying wire is proportional to RI2, where R is the wire resistance 
and I the signal current. Last but not least, thermomechanical actuation is 
sensitive to temperature drifts: indeed the change of temperature can be due 
to the input signal current, but also to temperature variation of the 
environment or to the heating due other device on the chip. 

A magnetic sensing was chosen, basically because to exploit also for the 
sensing the external magnetic field provided by NdFeB magnets. For the 
same reasons discussed about the magnetic actuation, magnetic sensing is 
preferable to electrostatic and piezoelectric sensing. Another mechanism is 
widely used for MEM microbalance, i.e. the piezoresistive sensing [101]. It 
is efficient but it requires or a potion of silicon substrate where fabricate 
diffused resistors (or piezo-transistors) [101], or polycrystalline resistors. 
The first solution implies a higher mass of the resonator and consequently a 
smaller sensitivity of the device as microbalance, as discussed about 
thermomechanical actuation. On the other side, piezoresistive properties of 
polycrystalline materials are not predictable and depend on the technological 
process used. Besides piezoresistive sensing is plagued by thermal drifts, 
which can vary the resistivity in the same way as a mechanical stress.  

A resonant cantilever similar to the one proposed in [101], with 
polycrystalline piezoresistances, is fabricated on the same chip of the novel 
devices proposed in this thesis, in order to compare the performance of the 
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two kinds of devices. Unluckily no measurements of the resonant cantilever 
are now available.    

The bigger limit of the magnetic actuated and sensed devices is their bad 
scalability: the smaller the device the smaller the driving and sensing loops 
have to be, decreasing. according to Eqs. (189) and (191), the efficiency of 
both actuation and sensing. This bad scalability prevents also to reach high 
resonance frequencies, but this is not a big problem in the use of the 
resonator as microbalance: the higher the resonance frequency the higher the 
shift of frequency due to a mass adsorption according to Eq.(197), but at 
high frequency the quality factor decreases, increasing the effect of phase 
noise [19] and consequently reducing the minimum change of resonance 
frequency due to mass adsorption which can be distinguished from the noise. 
Besides the sensitivity to the adsorbed mass can be increased by scaling the 
device according to Eq. (199), but scaling also the surface where the 
particles can be adsorbed, cancelling this effect  when a limited number of 
adsorption sites per unit area allowed, as in the case modelled by Eq. (200). 
Finally, at high frequency also the complexity of the driving and sensing 
electronics is complicated.  

Another problem of magnetic sensing and actuation is that the package 
of the devices is more complex than for microbalance actuated in other way 
because of the magnets. Nonetheless magnetic actuation and sensing have 
significant advantages with respect to other actuation mechanisms, which 
largely justify their employ in MEM microbalances.     

 

4.1.2 Choice of the mechanical structure 
 

The mechanical structure of the presented resonator is chosen to exploit 
the magnetic sensing better other typical mechanical structure often used in 
MEM microbalances, as bending cantilevers (or clamped-free beams) and 
clamped-clamped beams. In the specific clamped-free and                     
clamped-clamped beam has to be indeed “plates”, if their movements are 
magnetically sensed, because loop of metal with a significant area Aout has to 
be integrated on them to obtain a good sensing according to Eq. (191). 

Basically a torsional structure has to be preferred to bending plates 
because a movement of the torsional resonator, as the one in Figure 98, 
produces a change of the flow constant along all the central plates, while in a 
flexural plate there are regions where the flow variation is zero. Thus there 
are parts of s bending plates where the presence of the sensing loop is 
useless.  
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The flexural-plates resonators in Figure 99 can be used as an example. 
For both the cantilever and the clamped-clamped plates the output 
electromotive force is given by:   

 
( )2 2

1 1

2 2

2 2

sinW L W L
n nB

emf W L W L
V B dxdy dxdy

t t t x

ϕ ξ
− −

∂ ∂ ∂Φ∂Φ= − = ≈
∂ ∂ ∂ ∂∫ ∫ ∫ ∫      (201) 

 
where W is the width of the loop, while L1 and L2 define the interval 

along x where the sensing loop is integrated (according to Figure 99 this 
interval is different for the two flexural resonators); ξn and Φn, are the part 
only dependent on the time and the mode shape of the nth resonance mode of 
the plate and can be defined as in section 2.1. 

 

 
 

Figure 99: a) A hypothetical cantilever with magnetic sensing and actuation. b) A 
hypothetical clamped-clamped plate with magnetic sensing and actuation. In both cases the 
driving loop is in blue, the sensing loop in red. 
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Given that the mode shapes of bending plates and beams are equals, if 
the boundary conditions are equal [101], for the first mode of a cantilever 
Φ1cf and for the first mode of a clamped-clamped beam Φ1cc it is possible to 
write from [31]: 
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where the mode shapes are both normalized according to Eq. (19), L is the 
plate length as indicated in Figure 99,  while λ1cf and λ1cc are respectively the 
first eigenvalue for a clamped-free plate and for a clamped-clamped plate 
(λ1cf = 1.87 and λ1cc = 4.73 according to [31]). The derivatives in (202) are 
represented in Figure 100, normalized with respect to the length: in the 
cantilever the region close to the end is useless because the derivative of the 
mode shape is close to zero, while at the free end there is a region with 
constant derivative, where the flow variation is maximum (Figure 100a). 
Thus the region, where the flow of B changes, is small and it is not possible 
to exploit the whole area covered by the sensing loop in Figure 99. The 
situation is even worse (Figure 100b) for the clamped-clamped plate, whose 
mode-shape first derivative has a zero at the anchor and one even in the 
middle.  

Furthermore, this derivative changes its sign and this reduce the area 
where the output loop can be place to a half, because according to Eq. (201), 
the mode-shape derivative should have constant sign in the interval [L 1, L2] , 
in order to maximize the output signal.  

Bending plates and beams are thus less efficient than the torsional 
resonator, in order to obtain a good magnetic sensing.  
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Figure 100: a) Graph of the first derivative of the mode-shape of a cantilever (Figure 99a). b) 
Graph of the first derivative of the mode-shape of a clamped-clamped beam (Figure 99b). In 
both cases the derivative is multiplied for the beam length L and the function is plotted with 
respect to the normalized length x/L. 
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4.2 Equivalent circuit 
 

Before the discussion about the choice of the dimensions of the device 
and the layout design, an electrical circuit equivalent to the proposed 
microbalance is presented. This circuit was important during the design to 
optimize the sensing and the actuation of the resonator, also in dependence 
on the electronics of driving and sensing. Thus equivalent circuit can also 
used what is the best configuration of driving and sensing electronics. 
Furthermore, it can be used to evaluate the frequency response of the device. 
The equivalent circuit can be found in a way similar to what done in [10]. 
The device can be considered as a second-order lumped-parameter system 
with an inertia moment variable, due to the plate mass adsorption, so that its 
dynamic behaviour is ruled by the following equation: 

 

( ) 2p p tJ J D Kδ θ θ θ τ+ + + =&& &  (203) 

    

If τ is considered as a current and θ&  as a voltage, (JP + δJP) as a 
variable capacitance, 1/(2Kt) as an inductance and D as a conductance,              
Eq. (203) is the same as the equation following from the  Kirchhoff's first 
law for a RLC parallel. Defining, from Eqs. (189) and (191), the coupling 
factors Γin and Γout as: 

 

in in out outA B A BΓ = Γ =  (204) 
 
it is possible to find the equivalent circuit in Figure 101. In the circuit also 
the electrical resistances Ri and Ro of the input and output port are included. 
T1 and T2 are ideal transformers, mimicking the electromechanical coupling 
at the input and output port, while 1/Γin and Γout are their respective turn 
ratios. 

If the output port is loaded by an impedance ZL the relationship between 
the voltage VL on the load and the input current (i.e. the transimpedance) as a 
function of the frequency, is given by: 

 

 

( ) ( ) ( ) ( )
2

2

2
2

1 2 2
2 2

in out

tL L

o L out
P P t

t t o L

j f
KV Z

I R Z D
f f J J K

K K R Z

π

π π δ

Γ Γ

=
+  Γ

 + + − +    + 

    

(205) 



 

 211 

T2 T2

Jp+δJp (2Kt)
-1 D-1

Ri Roτ

VemfI θ

Γin:1 1:Γout

Zin ZL

VL

T2 T2

Jp+δJp (2Kt)
-1 D-1

Ri Roτ

VemfI θθ

Γin:1 1:Γout

Zin ZL

VL

 
 

Figure 101: Equivalent circuit of the presented torsional microbalance. 

 
To minimize the partition ratio ( )0L LZ R Z+  in Eq. (205) it is 

necessary to obtainL oZ R>> . Besides if ( )2
L outZ D>> Γ  Eq. (205) can be 

written as: 
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+ −  
 

                               (206) 

 
where Eq. (195) is exploited and the quality factor of the resonator is defined 
as: 
 

( )2 2t p p t pQ K J J D K J Dδ= + ≈             (207) 

 
Thus, if the electronics used to collect the output signal has very big 

input impedance, the load and the resistance Ro does not affect the 
transimpedance. This very important because a from (205) if ZL is resistive 
the quality factor is decreased, while if the impedance has a significant 
reactive component, another pole is added to transimpedance function  and it 
is possible to have a resonance frequency of the overall system (MEMS and 
electronics) different from the mechanical resonance frequency of the 
resonator. Therefore the best way of collecting the output signal is to use a 
voltage amplifier as output stage (ZL very high). 

On the other hand, in Eqs. (205) and (206) the device was assumed to be 
driven by an ideal current generator: indeed if the output impedance ZO of 
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the driving stage is not much higher than the input impedance of the device 
Zin, the driving current partly flows in ZO, leading to a transimpedance: 
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(208) 
 
where ZL was considered higher enough than both Ro and 2

outD Γ . Thus, 
repeating the same analysis done about ZL, the best working condition for the 
device (i.e. the smallest input partition ( )O i OZ R Z+ , and transimpedance 

the closest to the ideal Eq. (206)) is obtained if it is driven by an ideal 
current generator. As the maximum input impedance ( 2

in inR D+ Γ at the 
resonance) is generally very low, ZO has a small effect, even if the value of 
this impedance is not so high. 
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Figure 102: Equivalent circuit of the presented torsional microbalance, with parasitic 
inductances and mutual inductance. 
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A fundamental parameter is the transresistance RT at the resonance, 

which has to be as high as possible to allow the highest output voltage at the 
resonance. In the ideal conditions, from Eq. (206), it is give by: 

 

( ) 22m

in out in out in outL
T m

f f t t pt p p

Q QV
R f Q

I K K JK J Jδ

δπ
δ=

Γ Γ Γ Γ Γ Γ= = = ≈
+

       (209) 

 
where it is assumed p pJ Jδ << . 

The circuit in Figure 101 can be further refined by considering the 
electrical inductance of the input and output loop, as well as the mutual 
inductance between the two ports (Figure 102). The effect of these parasitic 
elements was initially neglected due to the low resonance frequencies of the 
devices. Among these elements, the mutual inductance M is important 
because it leads to a couple of complex zeros in the transimpedance function. 
From the circuit in Figure 102, if ZO and ZL are large enough the 
transimpedance becomes: 
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The couple of zeros occur at the frequency fz: 
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                                       (211) 

 
The optimal condition is ( )2in out tM K<< Γ Γ , so that the frequency of 

the zeros goes to infinity and consequently the separation between poles and 
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zeros is very high. On the other hand if ( )2in out tM K>> Γ Γ , z mf fδ≈  

cancelling the frequency selectivity of the resonator. 
The overall mutual inductance M cannot be easily predicted because is 

due not only the two facing loop in  Figure 98 but also by the mutual 
inductance between wires carrying the input and output. Besides, if the chip 
is measured using a PCB board, out-of-chip components and connections 
introduce additional parasitic elements which have the same effect of the 
mutual inductance between the two facing loop.  

As shown by measurement results in section 4.6, the parasitic signal due 
to the mutual inductance is never large enough to cancel the frequency 
selective behaviour of the device.     

 

4.3 Design 
 
In this section the criteria used for the microbalances dimensioning will 

be discussed. The design choices are mainly driven by the necessity of fixing 
the resonance frequency and optimizing the magnetic actuation and sensing. 
According to Eq. (199), the mass sensitivity of the microbalance can be 
optimized by minimizing the area of the central plate, but such area 
reduction leads to a decrease of the area embedded by the input and output 
loop. Besides if the area where the mass can be adsorbed is reduced, it is 
expected for many application that the maximum shift of the resonance 
frequency is reduced if the plate area decreases, because the number of 
adsorption sites is lowered. Anyway according to Eq. (200) the higher the 
resonance frequency, the higher the maximum shift of the resonance 
frequency, which increases if the device dimensions decrease. But if the 
resonance frequency increases the quality factor could decrease, reducing the 
minimum change of resonance frequency which can be detected. 

The design choice is to optimize the sensing and the actuation of the 
resonator, instead of optimizing its performance as microbalance, basically 
because if actuation and sensing are not efficient the resonator cannot even 
work: indeed the novelty of the device leads to be careful in this respect. 
Besides it is not certain whether the performance of the resonator as 
microbalance increases if its dimensions are scaled: basically it depends on 
how the quality factor changes if dimensions are scaled.  

However, the sensitivity is estimated after the choice of layout 
parameters in order to verify the performance of the device as microbalance. 

 



 

 215 

4.3.1 Layout 
 
Two different devices were designed, one (type A) with a central plate 

as large as possible, in order to obtain a very efficient magnetic and 
actuation sensing, the other (type B) with a central plate smaller, in order to 
verify the effect of scaling on the device and to obtain an higher resonance 
frequency and consequently better performance with respect to the mass 
sensitivity (Eq. (199)) and to maximum resonance frequency shift, when the 
area density of the adsorption sites is limited (Eq. (200)). 

The maximum dimensions of the central plate are limited in order to 
avoid the so-called buckling of the structure [70]. The buckling is 
mechanical instability which occurs in clamped-clamped structure, because 
of the residual compressive stress on the released device. If the stress is too 
high or if the structure from anchor to anchor is too long the resonator can 
break just after the release. According to [70] the maximum length LMAX of a 
clamped-clamped beam under a compressive stress σ is given by: 

 

1 1

2 3MAX

EI E
L

A tπ σ π σ
= =  (212) 

 
where A is the cross-section area, I the inertia moment of the beam and t its 
thickness. For beam longer than LMAX a clamped-clamped beam cracks 
because of the buckling. Eq. (212) of course does not hold for the device 
proposed in this thesis, but can be used as a rough to evaluate approximately 
the maximum overall length (length of plate plus length of lateral beams) 
allowed for the device. The problem is that the residual stress is unknown 
because it is the first time that  the proposed technological process is used to 
fabricate MEMS. If the overall length of the structure is 600 µm  and if the 
thickness is about 3.5 µm (the same thickness of the fabricated devices 
according to process data and measurements performed with a profilometer) 
according to Eq. (212) a residual stress about 7.8 MPa is needed to make a 
clamped-clamped beam to crack (the device is made mainly of Silicon oxide 
whose Young’s modulus is 70 GPa). A higher length leads to a smaller 
residual stress for the buckling. A maximum length of 600 µm was chosen 
for the device in order to reduce the probability of buckling of the structure. 
Nonetheless this possibility cannot be excluded until data about the residual 
stress are known. 

The type A device was designed with a square central plate with a side 
length Lp = 400 µm. The plate hole is a square with side Lh = 200 µm, in 
order to obtain the correct release of the resonator (section 4.4.2). In this way 
each beam is long 100 µm. Each “beam” is wide 70 µm, because as 
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explained in the following it has to be large enough to allow to the signal-
carrying metals to reach the central plate through the “beam” and to obtain a 
distance between metals and “beam” sides large enough to prevent metal 
damages during the release process (section 4.4.2). Thus such “beams” are 
indeed plates. Anyway in the following they will be sometimes called beams 
to avoid confusion with the central plate. The length of the torsional springs 
is designed to be 100 µm because given the width a lower length could 
totally invalidate the approximations used in section 4.1 to find the device 
resonance frequency. Indeed if the beam is too short and too wide is 
behaviour is too far from the behaviour of a beam to assume for its spring 
constant the expression in Eq. (194). Besides if the beam is too short and 
large, its rigidity becomes comparable with the plate rigidity, invalidating 
the hypothesis of lumped-parameter system. Finally, according to Eq. (209), 
the higher the beam spring constant Kt, the lower the transimpedance at the 
resonance RT, so that it is important to have long lateral beam to obtain a 
small Kt.       

On the other hand, the central plate of type B device is smaller than the 
plate of type A microbalance: it is a square with side Lp = 200 µm, with a 
central square hole with side Lh = 100 µm. The beam width is approximately 
same as in the case of type A device (63 µm), while the beam length is           
190 µm, higher than the length of type A device in order to obtain a 
behaviour closest to the working of a torsional beam, and a high RT. As 
shown in section 4.4, the device is mainly made of BPSG 
(borophosphosilicate glass), layers, which have approximately the same 
mechanical properties of silicon oxide. Considering thus the device as 
completely made of silicon oxide (E = 70 GPa, ρ = 2200 Kg/m3, ν = 0.17) 
and assuming oxide plate and beam thickness t = 3.5 µm, according to 
Eqs.(192), (193) and (194), the resonance frequency of type A device is  
30.9 kHz, while for the type B resonator is almost three times higher, i.e. 
84.92 kHz. The mass sensitivity is 0.54 µg-1 for type A device, leading to a 
shift of  resonance frequency about 17 Hz/ng, while the mass sensitivity of 
type B is 2.08 µg-1, resulting in a shift of the resonance frequency of 182 
Hz/ng. 

The maximum resonance frequency shift has been evaluated with 
respect to one of the possible applications of the devices: considering the 
device as covered by DNA filaments and consequently as a DNA sensors, 
the molecule molar mass in Eq. (200) can be assumed to be 1.5 Mg/mol 
while a reasonable value for the density of the adsorption sites is                      
σS = 1012 cm-2 [106]. Substituting these value in Eq. (200), a maximum 
resonance frequency shift ∆fMAX = 50 Hz for type A sensor and                      
∆fMAX = 136 Hz for type B device. 
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Magnetic sensing and actuation can be maximized not only by 
increasing the area of the central plate but also by increasing the number of 
loops, as for the output port in Figure 98. If the number of loops is increased, 
the area embedded by the output port augments, while with respect to the 
input port a high number of loops means a high number of element 
perpendicular to the magnetic field, and thus an increase of the actuated 
moment. As shown in section 4.2 the best performance of the device is 
obtained if it is driven by an ideal current generator, but if the resonator is 
driven by forcing a current in the input port, a high number of loops of the 
input port could not be the optimum choice: a high number of loops means 
that the width of the metal has to be smaller and consequently the maximum 
current the metal can carry has to be reduced in order to avoid metals 
damages, because of a too high density of current.  

Current density in metals is generally by electromigration [107], a well 
known physical mechanism which shortens the lifetime of the metals and 
whose velocity increases if the current density carried by the metal or the 
temperature are increased. Thus in process data the highest current that the 
metal can safely carry at a certain temperature is generally specified.       

Thus current flowing in input port should has to be limited to a certain 
value, given the width and the thickness of the metal, and consequently also 
the twisting moment τ  is limited (Eq. (189)). But if the actuated moment is 
too small also the output signal could be too small to be discerned by noise, 
parasitic or interfering signal. Thus in the final design the input port of both 
type A and  type B device is composed of only one loop, with a metal width 
Wmin = 20 µm. This is optimum width because a higher width would 
decrease too much the embedded area. Besides the larger the width of the 
input loop the larger the lateral beams has to be, so that if the input metal is 
too wide it possible to obtain RT too low or to invalidate the formula used to 
estimate the resonance frequency and the frequency response at the 
resonance.  

For the same reasons, the input loop is fabricated with the second level 
of metal: the process chosen to fabricate the device has three level of metals 
with different thickness and thus different maximum current per metal width. 
The thicker level is the third, but it is not used to fabricate the input port 
because is used as protective layer for the oxide layers underneath, during 
the some steps of the fabrication process (see section 4.4). Thus the second 
level is chosen because it is thicker and thus can carry more current than the 
first level. With this dimensioning the maximum current allowed at ambient 
temperature, according to the process data, is 20 mA. To maximize the 
embedded area the metal is designed as close as possible to the external edge 
of the plate. A space of 10 µm between the metal and the edge is anyway 
needed to avoid damages of the metal during the release (see section 4.4.2).  
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A wide and thick input metal reduces also the electrical resistance Ri of 
the port reducing the overall input resistance and lowering the input current 
partition if the output impedance ZO of the current generator is not infinite. If 
the input port is fabricated using the metal 2 and Wmin = 20 µm, Ri is nearly  
5 Ω for the type A device and nearly 8 Ω for type B device.  

On the other hand the output port has not the problem of carrying 
current: according to what said in section 4.2 the optimum way to collect the 
output signal is using a voltage amplifier with very high input impedance 
( LZ → ∞ ), so that the output metal has not to be wide and can be fabricated 

with a width Wmout = 1 µm (minimum width allowed by layout rules) and 
with the first layer of metal the thinner one. Furthermore, also the resistance 
Ro is not critical if a voltage amplifier is used to collect the output signal: it 
can be easily neglected with respect to the typical input impedance of a 
voltage amplifier, even if it reaches some kΩ. Thus it is possible to design a 
lot of windings in the output port: 27 windings are designed for output port 
of type A microbalance and 14 for the output port of type B device. The final 
layout of a type A device is represented in Figure 103: the metal loops are 
indicated as well the layer of metal 3 covering the MEM structure to protect 
it during some fabrication. Also the area where the passivation and the 
intermetallic dielectrics are opened, is indicated. Such opening is important 
to help the release.  

It is not easy to evaluate how much the multi-winding configuration is 
better than single-winding configuration, because at each turn of the metal 
the area added to the overall embedded area decreases and the exact 
calculation of the area embedded by each turn is not straightforward. 
Nonetheless, as shown in Figure 104, an approximated estimate of the 
overall embedded area can be carried out: the area embedded by the first turn 
is considered to be given by the product of the length of the first two 
consecutive sides after the first (the second and the third), then the following 
two sides are not considered, so that the area of the second turn is 
approximated with the product of the lengths of fifth and sixth sides; the area 
of the remaining windings is calculated in the same way. If the number of 
windings is N, the length of the first side L1, the metal width Wmout and the 
space between two metal s, the area Aout embedded by the output loop can be 
thus approximated as: 
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Figure 103: Layout of a type A microbalance (central plate 400x400 µm). 

 

 

Figure 104: Output port with the more than one winding: the red dashed line surrounds the 
area approximately embedded by the first loop, while the blue dashed lines approximately 
surrounds the area embedded by the first loop. 
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Table 1: List of the nominal dimensions and expected some main features of the devices, such 
as the resonance frequency, mass sensitivity, transimpedance at the resonance and  port 
electrical resistances. 

 
 

 Type A Type B 

Lb 100 µm 190 µm 

Wb 70 µm 63 µm 

Lp 400 µm 200 µm 

Lh 200 µm 100 µm 

t 3.5 µm 3.5 µm 

f0 30.9 kHz 84.9 kHz 

Ain 0.13 mm2 0.026 mm2 

Aout 2.90 mm2 0.33 mm2 

∆∆∆∆f/δδδδm = f0Sδδδδm 17 Hz/ng 182 Hz/ng 

Jp 1.54·10-17 Kg·m2 9.62·10-19 Kg·m2 

2Kt 5.81·10-7 N·m 2.74·10-7 N·m 

Ri 5 Ω 7.9 Ω 

Ro 7.9 kΩ 700 Ω 

RT 

125.5 mΩ 

(B = 100 mT, Q = 100) 

16.3 mΩ 

(B = 100 mT, Q = 100) 
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According to Eq. (213) the area embedded by a type A device is about 
2.9 mm2 (nearly 20 times the area of a single-winding output loop), while 
Aout is 0.33 mm2 for a type B device (nearly 10 times the area of a single-
winding output loop). Given that Ain is 0.13 mm2 for type A microbalance 
and 0.026 mm2 for type B device, if the external magnetic field is 100 mT 
and the quality factor 100, according to Eq. (209) the transimpedance at the 
resonance RT is 125.5 mΩ for type A and 16.3 mΩ for type B device. In 
Table 1 the dimensions and the expected performances of the two designed 
devices are summarized. 

 

4.3.2 Post-layout FEM simulations 
 
To verify the resonance frequencies of the designed devices some FEM 

modal simulations were carried out with Femlab[43]. The high ratio between 
structure plate side Lp and the thickness t as well as between the width Wb 
and the length lb of the lateral beams and the thickness t, makes difficult to 
perform a 3D simulations of the structure. Thus the device was modelled 
with shell elements, i.e. 2D elements fit to simulate thin solids. In a first 
approximated simulation, the resonator was assumed to be made entirely by 
silicon oxide silicon (E = 70 GPa, ρ = 2200 Kg/m3, ν = 0.17), i.e. the metal 
loops are neglected. Metals are made of aluminium which has material 
properties not much different for the silicon dioxide properties, in particular 
the Young’s modulus is almost the same. Material properties of the 
aluminium are E = 70 GPa, ρ = 2700 Kg/m3, ν = 0.35. Thus the effect of 
aluminium metals should be small, considering also that they do not cover 
the whole resonator. In particular their presence should reduce the device 
resonance frequency, because of the higher mass density and Poisson’s ratio 
with respect to the silicon oxide. 

Femlab simulation considering the whole resonator as made of oxide 
predict a resonance frequency f0 = 27.6 kHz for type A device and                        
f0 = 82.4 kHz for type B device. Both the resonance frequencies are lower 
than the calculated one, essentially because the rigidity of the plate is not 
much higher than lateral beams, so that the central plate stiffness cannot be 
neglected and the device cannot be considered as a lumped-parameter 
system. The contribution of the plate is to decrease the overall stiffness of 
the structure and consequently its resonance frequency.  

The previous observation is confirmed by the fact that the percentage 
error is higher for the type A device (error 12%) than for type B device 
(error 3%): lateral springs of type A devices are shorter and thus stiffer than 
in type B. 
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 Besides the central plate is larger in type A than in type B, so that at the 
resonance it can be slightly bended in direction perpendicular to the lateral 
beams instead of rigidly rotating, introducing a further discrepancy with 
respect to the lumped-parameter model. 

Modal simulations gives also information with respect to the other 
resonance modes of the structure: for type A device the torsional mode is the 
fundamental and it is followed by a bending mode at 33 kHz (Figure 105a), 
which cannot be anyway stimulated by the designed actuation, which results 
in a twisting moment but not in a force perpendicular to the plane where the 
device lies. The following mode is the third at 83 kHz (Figure 105b), i.e. at a 
frequency far enough from the resonance frequency of the fundamental 
mode to affect the spectral purity of an oscillator using the device as a 
frequency selective element (even a rough low-pass filter can remove this 
interfering mode). With respect to the type B device, the fundamental mode 
resonates at about 47 kHz and is a bending mode similar to the second mode 
of type A device and consequently cannot be excited by the actuated 
moment. The torsional mode is the second mode, the third is at 136 kHz and 
is again a bending mode, while the fourth, at 294 kHz, is similar to the third 
mode of type A device and is at frequency high enough to be neglected. 

The effect of the metals was estimated still performing a FEM modal 
simulation using shell elements, but defining three different regions one with 
two, the second with one and the third with no metal layers. Such regions 
can be defined by importing the layout of the device (Figure 103). If the 
thickness of each metals and intermetallic layer are known, it is possible to 
determine different material properties for each region, by extracting a mean 
value of the material properties of all intermetallic and metal layers, 
weighted by their respective thicknesses. 

Such simulation was performed only for type A device, leading to a 
simulated resonance frequency about 27.0 kHz. As expected, the difference 
with the result from the simulation carried out with the whole resonator 
made of silicon oxide is very small (relative error about 2%) and the effect 
of the metal loop is to decrease the resonance frequency as they make 
heavier the structure. A similar effect is expected for type B device. In 
Figure 106 the deflected shape of the device according to this last simulation 
is shown. Further simulations carried out also using Ansys, gives the same 
results as Femlab.  

The idea and the design of the resonator were the subject of a master 
degree thesis [104], and were proposed at an international conference [102]. 
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Figure 105: Deformed shape of two parasitic resonance modes of a type A device: a) Second 
mode at 33 kHz; b) fourth mode at 83 kHz. Colours close to the red represent regions where 
the displacement is highest, colder colours (blue) the region where the displacement is 
smallest.  

 
 

Figure 106: Deformed shape of the fundamental resonance mode of a type A device. Colours 
close to the red represent regions where the displacement is highest, colder colours (blue) the 
region where the displacement is smallest. The figure comes from FEM modal simulation 
including metal loops and  performed with Femlab. 

a) 

b) 
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4.4 Fabrication: a CMOS-compatible process flow 
 
The fabrication of the device was carried out by two separate flows: first 

fabrication steps were performed in STMicroelectronics Agrate plant, using 
BCD6 process. On the processed chips there was not only the sensor, but 
also some integrated electronic circuit. After that, in the laboratory of 
Information Department of the University of Pisa, a CMOS-compatible                           
post-processing was carried out to release the mechanical structure. 

  

4.4.1 First process steps in a CMOS standard techno logy 
 
The initial part of the sensor fabrication was fulfilled using BCD6 

process, a standard mixed technology including BJT, CMOS and DMOS 
(MOS for power application). In this thesis only the process features, which 
are strictly connected to the fabrication of the device, will be given. 

The foundry makes available two options for the process, one with 5 
levels of metal, the second with 3 levels of metal. To fabricate the proposed 
device 3 levels are enough, besides a higher number of metal implies also 
more level of intermetallic layers leading to a thicker and thus less sensitive 
microbalance, as shown in Eq. (199). Besides more intermetallic layers 
means a thicker oxide layer in the region where it has to be removed in order 
to release the device, and consequently a more difficult post-processing: as 
shown in 4.4.2 the more critical step in the post-processing is just the 
removal of this oxide layers. The intermetallic layers are made of BPSG. 

The first stage the fabrication is accomplished according to the mask 
defined by the layout in Figure 103: the input and output loops are fabricated 
using respectively the first and the second level of metal. The third level of 
metal overlap the whole region which will be the future released structure. 
This layer protects the structure by the fabrication step indicated by the 
fourth masks indicated in Figure 103, i.e. the opening of passivation and 
intermetallic layers, obtained by plasma etch. This plasma etch anyway does 
not remove all the intermetallic dielectrics, so that, the first task of the post-
processing is to remove the residual silicon oxide which surround the 
resonator. 
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4.4.2 A CMOS-compatible post-processing to release the 
MEMS 

 
In the post-processing, first a selective removal of the silicon oxide 

around the device is performed. Then the metal 3 protective layer is 
eliminated and finally the crystalline silicon substrate under the plate is 
etched by a tetra-methyl ammonium hydroxide (TMAH) to release the 
resonating structure. All these three steps are CMOS-compatible, because 
require no high temperature step and does not damage CMOS devices. In 
particular the TMAH anisotropic etch allows a high compatibility with 
standard microelectronics technologies, primary because it does not contain 
metallic ions detrimental to CMOS reliability, as for example the ions K+ 
released by KOH etchings. Besides it can be specifically tailored to avoid the 
etching of the metal layers, basically made of aluminium) used for electrical 
connections as demonstrated by [108] and [109]. Only two lithographies and 
one mask are needed for the complete release of the structure. 

A schematic section of the device along the plate immediately before 
post-processing (i.e. as obtained from the foundry) is given in Figure 107a. 

The post-processing, used to release the plate and springs, requires two 
lithographic steps. Initially, during the first lithography, the photoresist is 
used to protect the plate and springs areas, and is removed in the areas where 
the silicon substrate has to be etched; practically the area covered by the 
photoresist is given by the inverse of the union of the metal 3 and oxide 
openings masks in Figure 103.  

Later on it was observed that the metal 3 protection is enough to protect 
the springs and the central plate during a following buffered HF (BHF) wet 
etch, used to remove the oxide where they are not protected by the 
photoresist or the metal 3. BCD6 metal 3 is an alloy mainly composed by 
aluminium and BHF etch remove partially also aluminium, but the part of 
metal 3 which is removed during the BHF etch is negligible because the 
thickness of such metal layer very high and because according to 
experimental observation the etch rate of BCD6 metal 3 in a BHF solution is 
much slower than oxide etch rate. Thus the first lithographic step can use a 
mask equal to the mask defined by the layer for the oxide opening in         
Figure 103, i.e. the photoresist can be removed both on the resonator and 
where the oxide should be open. It allows to use in this first lithographic step 
the same mask used to remove the metal 3 protection in the second step.  
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Figure 107: Cross-sections of the plate at different times during post-processing: a) as 
received from the foundry, b) immediately after the BHF etch, c) immediately after the 
aluminium etch (the protective metal has been removed), and d) after the TMAH etch. 

 
After the removal of photoresist the BHF etch is performed to remove 

approximately 2.5 µm of oxide to expose the silicon surface (Figure 107b). 
Composition of the BHF solution is approximately 6.8% of HF, 34.6% of 
NH4F and 58.6% of deionised water. This step is the most critical in the 
process, because the initial non-planarity of the sample impairs the 
photoresist coverage of the plate, and also because, due to the large thickness 
to be removed and the nature of the wet etch, a significant overetch takes 
place, and the metal loops, embedded in the oxide plate, can be exposed. To 
avoid to expose metal loops and thus their damage during the subsequent 
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aluminium etch, the metals of each device are designed at a distance of at 
least 10 µm from the structure edges. 

On the other hand, the bad photoresist coverage and thus the bad 
adhesion of the photoresist to the surfaces facilitates the removal of some 
portion of photoresist during the etch. To avoid it the photoresist adhesion is 
improved by using a primer, a polymer which can be deposed with a spinner 
like the photoresist. Besides, after the photoresist development, a hard post 
baking follows instead of a standard post baking: the chip is exposed to UV 
for 3 minutes and after is baked at a higher temperature than the standard 
(140°C instead of 115°C). Because of the higher temperature the photoresist 
is harder to remove. On the other hand the preliminary UV exposition is 
necessary to partially break the polymeric links of the photoresist, allowing 
to remove it with acetone at the end of the BHF etch. The primer and the 
hard post-baking allow the photoresist to not be damaged for 30 minutes, i.e. 
the time needed to remove 2.5 µm of oxide around the resonator. However, 
at the end of the BHF etch the photoresist is too damaged to be used as a 
mask also for the aluminium etch.  

Thus, a second lithography is performed to expose the plate and silicon 
area, while the outer areas and pads are protected. The same mask employed 
in the first lithography can be used.  

An aluminium wet etch is used to remove the protective metal layer on 
top of the plate. The composition of the solution is about 71.6% H3PO4, 
3.4% CH3COOH and 25% of deionised water. The time needed for the 
complete removal of the metal is 12 minutes at 40°C.  

After the etch of the metal 3 a stylus profilometer can be used to 
evaluate the thickness of the oxide layers where they were not removed, in 
order to estimate the resonator thickness t. The value of t was found to be 
generally around 3.5 µm, confirming what estimated by process data. 

The removal of the protective layer is necessary because after the BHF 
is protective function is no needed anymore, and if it was retained, the final 
devices would very thick and the mass sensitivity of the microbalance very 
low. Besides the devices are resonator moving in a magnetic field and some 
parasitic currents could be generated in a thick metal plate on them. Such 
parasitic currents would oppose to the movement which had generated it by 
driving a magnetic field acting in opposition to the external one. 

At this point, before the TMAH etch, a layer of about 500 nm of 
aluminium is deposited by evaporation on the back of the chip, because 
during the following etch the back of the chip would be greatly etched as 
well, leading to the reduction of the velocity and efficiency of the etch. 
Besides a too large reduction of the chip thickness could also make easier to 
break the chip during the following manipulations.  
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a) b)

c) d)
 

 

Figure 108: Top view of the evolution of the TMAH etch at four subsequent times (from a to 
d). Dark grey indicates areas where the oxide stack is still anchored on the silicon substrate, 
light grey areas where it is released. In d) the residual silicon wedges on the bottom of the 
cavity are visible. 

After the deposition of aluminium at the back of the chip, the sample is 
ready for the TMAH etch (Figure 107c). During the etch, the metal pads are 
exposed to the etching solution. To reduce the etch rate of aluminium, 
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TMAH is often added with dissolved silicon ([108],[109]) or silicic acid 
[110]. These are known to reduce the etch rate of aluminium, but the silicon 
etch rate is also greatly reduced, and the surface roughness is impaired by 
the appearance of pyramidal hillocks. Silicic acid is often preferred because 
it is more quickly dissolved but, as a result of its tendency to adsorb large 
amounts of humidity, the actual quantity of silicon added to the solution is 
more difficult to control. 

To recover an adequate etch rate for silicon, an oxidising agent is 
commonly added to the solution. In our case, the selected compound was 
ammonium peroxodisulphate (AP). Unfortunately, such TMAH-based 
solutions are known to be susceptible to rapid aging, and, unless periodically 
replenished of AP at very short intervals [111], their etching speed drops 
considerably. For this reason, all the solutions for the etching were prepared 
immediately before use and never used for longer than one hour. 

Preparation of the solution is as follows: 80% weight of deionised water 
is added to 20% weight of a 25% TMAH solution (Fluka chemicals code 
87731) to obtain a 5% TMAH solution in weight. Afterwards the solution is 
heated to 50°C and 20 g/l of silicic acid hydrate (Fluka chemicals 60780) are 
added. The solution is stirred to allow the complete dissolution of the silicic 
acid, revealed by the clear appearance of the solution. The dissolution would 
take between 30 and 60 min. The solution was then heated to 80°C (the 
etching temperature) and, immediately before use, 6 g/l of AP (Fluka 
chemicals 09915) were added and again allowed to completely dissolve (a 
step requiring 2 minutes at most). 

At this point, the silicon chip carrying the microbalances was introduced 
and the etch carried out. During the etch, the solution was not stirred. After 
60 min of etch, the chip was moved to a second batch of solution, prepared 
in exactly the same way, for as many times as was required to completely 
release the plate from the silicon substrate. As the pH of the solution is 
believed to influence the etch rate and selectivity [112], it was periodically 
monitored during the etch: its value typically remained between 12.1 and 
12.4. The whole procedure proved to be reliable and insure a reasonably 
constant and predictable etch rate. 

The same stylus profilometer employed to estimate resonator thickness 
can be used to measure the {1 0 0} silicon etch rate. Its average value was 
evaluated to be about 35 µm/h. To completely release the resonator, 2 h 45 
minutes of etch were required. Consequently, three batches of fresh solution 
have to be used for every sample. SEM and optical microscopy observation 
of the samples did not detect any appreciable damage of the metal pads. The 
total depth etched into the substrate was about 100 µm. Such depth is not 
required for operation of the plate, but because of the nature of the etch.  
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Figure 109: SEM photograph of a type B device after TMAH etch. One of  the silicon wedges 
is visible on the bottom. The tiny output metal is circled in red  where it can be damaged by 
the aluminium etch. 

Actually, the torsional beams are released only after the corners of the 
plate are completely underetched, and convex corners (which are preferential 
etching points) at the end of the beams are exposed. The evolution of the 
etch at four different times is sketched in Figure 108. For the same reason, 
two residual silicon wedges are present at the bottom of the cavity (Figure 
108d). One of them is visible also in Figure 109, showing a SEM picture of a 
typical sample.  

Although the complete release of the plate is achieved, the 
aforementioned oxide overetch problem can result in a damage to the metal 
structures. In particular, the thin output loop connections to the pads is 
exposed during the BHF and subsequently damaged during the aluminium 
etch. The metal can be damaged in the point indicated in Figure 109 and in 
the picture at the optical microscope in Figure 110, where the metal loops 
are more recognizable than in the SEM picture in Figure 109. 
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Figure 110: Top-view of a type A device after TMAH etch, observed through an optical 
microscope. This view show the metal loops better the SEM picture. The tiny output metal is 
circled in red where it can be damaged by the aluminium etch.  

 
Initially the metal was so damaged that it could not allow the electrical 

connectivity. The problem was reduced by using a mask 20 µm smaller in 
direction parallel to the length of the lateral springs. With this mask 
reduction the electrical connectivity of the output loop is now obtained for 
the large majority of the processed devices.  

The main features of the post-processing described in this section are 
also published in [103]. Some small differences between what said in this 
thesis and in such paper are due to some process improvements 
accomplished after the paper publication.   

 

4.5 Experimental setup 
 
To evaluate the performance of the proposed microbalance, three 

different setups are used: first the electrical resistance Ri and Ro are 
evaluated by a four contact measurement, carried out using a multimeter. 
This measure is done to detect preliminary the device with input and/or 
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output loops damaged: a damaged metal results a Ri or Ro much higher than 
usual. They can be even so high that the electrical connectivity is not 
guaranteed. A completely broken input loop is very unusual, as well as a 
high Ri, while sometimes the output loop is sometimes interrupted due to 
damages in the region circled in red in Figures 109 and 110. After the 
reduction of the size of the mask used for BHF and aluminium etch, the 
occurrence of this problem is low. The value of the resistances Ri and Ro of 
working devices are respectively around 5.5 Ω and 2.9 kΩ for type A device 
and about 7.9 Ω and 680 Ω for type B device. Such measured values 
practically agree with the expected values (see Table 1). 

After the preliminary verification of electrical connectivity the 
mechanical working of the device can be checked by extracting the 
mechanical frequency response of the resonator, through an optical 
measurement setup. Then the frequency response of the overall device is 
performed with an electrical measurement. The acquisition of the frequency 
response is long as shown in the following, thus the preliminary screaming 
of the devices with damaged input or output loop, allow to save a lot of time. 
The setup for electrical measurements can be also slightly modified to allow 
the evaluation of the effect of humidity on the resonance frequency of the 
device. 

The measurements presented in this thesis characterize the working of 
the device as resonator and not as microbalance, as no attempts to cover the 
device with a sensitive layer were performed.  

In the following of this section a description of the optical and electrical 
setup to acquire the device frequency response will be discussed.         
 

4.5.1 Setup for optical measurements 
 

This first measurement setup exploits the principle of the optical 
leverage: a laser beam is pointed on the central plate, almost perpendicular to 
it. A screen is placed perpendicular to the laser ray at about 2 meters far 
from the device to collect the flicker reflected by the plate (Figure 111a). If 
the resonator rotates around its symmetry axis parallel to the lateral springs, 
the reflected ray is rotated of an angle 2θ, if θ is the angle of rotation of the 
resonator (Figure 111b). 

The distance L of the screen from the device amplifies the 
displacements of the light spot on the screen due to the reflected ray rotation, 
allowing to detect even very small rotation of the device central plate. If the 
microbalance static rotation is θ  the light spot on the screen moves at a 
distance d with respect to the position of the spot when the microbalance is 
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still, according to the following equation, which can be found by the 
geometric construction in Figure 111b: 

 

( )tan 2 2d L Lθ θ= ≈                                  (214) 

 
where the angleθ  is considered small enough to assume( )tan 2 2θ θ≈ , as 

generally is, according to the results shown in next section. If the resonator 
oscillates at a frequency around the resonance frequencies of the presented 
devices, human eyes are not able to follow the spot movements on the screen, 
and actually a dilatation of the spot is observed, with a decreasing on its 
intensity, because the time the spot stays in a certain position is reduced if 
the movements amplitude is increased. The spot becomes approximately an 
ellipse with its major axis increasing as the movements amplitude increases. 
If the rotation of the central plate of the microbalance is given by a 
sinusoidal function ( )sinθ θ θ= , calling R the length of the spot major axis, 

following again Figure 111b, the amplitude of the central plate rotation can 
be found as: 
 

4 4

R r R

L L
θ −= ≈                                        (215) 

 
where r the radius of the spot when the device is immobile, which has to be 
much smaller than R to guarantee the measurement accuracy. 

This kind of optical measurement is affected by errors for both small 
and high value of θ : for small value of θ , R is too close to r to have an 

accurate measure, so that reliable values of the measure can be taken only if 
R is at least twice or three times as high as r. On the other hand for high 
value of θ  the intensity of the spot decreases so much, that is difficult to 

detect the borders of the spot, even in a dark room. 
The external magnetic field is provided by two facing macroscopic 

magnets whose size is about 12x20 cm, placed at a distance of about 5 cm 
from each other; the magnetic field varies from 70 to 80 mT for B inside the 
space between the two magnets, according to measurements carried out with 
a Hall sensor (A SS94A by Honeywell). As for the large part of the electrical 
measurements macroscopic magnets are used instead of NdFeB micro-
magnets, because despite their high magnetization, the generated magnetic 
field decreases very quickly with the distance. If a surface of the NdFeB 
magnets, the magnetic field can be as high as 200 mT, at a distance of less 
than 1 cm it can be smaller than 30 mT.  
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Figure 111: Setup for the optical measurements: a) Schematic 3D view with magnets, chip 
laser and screen; b) a sketch representing the deviation of the incident laser beam (red 
dashed line) if the microbalance is rotated of an angle θ (red solid line) and if  it is rotated of 
an angle of -θ (red dotted line). Red dots on the screen indicate the light spot when the 
microbalance is still and when it is statically rotated of an angle θ. The pink ellipse is what is 
seen on the screen when the resonator moves close to the device resonance frequency with 
amplitude of the rotation angle equal to θ.  
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Figure 112: Driving stage for both the optical and the electrical measurements. 

 
Thus the positioning of the micro-magnet should be very accurate to 

guarantee the repeatability of the measurement. Such accuracy is not 
possible with the facility of laboratory of the Information Department of 
University of Pisa. Besides the positioning of            micro-magnets close to 
the device is very difficult and can be damage the chip if it is not done 
without particular care. 

For all this reason micro-magnets were not used to characterize the 
device. Anyway in the next section some measurements will be presented for 
the electrical frequency response of devices on chip where a micro-magnet 
were glued onto, in order to demonstrate the possibility of using                 
micro-magnets.  

All the optical measurements were performed at atmospheric pressure, 
given than it is not possible to insert all the described optical sensing system 
in a vacuum chamber. 

The device is driven with a waveform generator with a                                
RS =  100 Ω  series resistance as shown in Figure 112, where the output 
impedance of the waveform generator is Rout and the device is indicated with 
its input impedance Zin. This is not the optimal driving according to what 
said in section 4.2, but it works fine for the device characterization because it 
both allows an easy evaluation of the input current, given the voltage 
provided by the voltage generator and assures that input current does not 
exceed the maximum 20 mA allowed by the process data, if the input 
voltage is low enough.  

The input current I is, according to the circuit in Figure 112: 
 

s

out S in

V
I

R R Z
=

+ +
                                     (216) 
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where Vs is the voltage signal provided by the waveform generator. I is a 
function of the frequency through Zin but according to the equivalent circuit 
in Figure 101, if the output loop is open (i.e. unloaded), the input impedance 
Zin is, neglecting the mass loading: 
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     (217) 

 
because the RLC parallel mimic the device mechanical resonance is 
maximum at the resonance. But with a reasonable Q = 100 and B = 80 mT, 

according to the expected values in Table 1 2
in P tQ J KΓ  should be around 

3.6 mΩ for type A device and 0.8 mΩ for type B device.  
Thus in both cases in iZ R≈  and the input current is at each frequency: 

 

s

out S i

V
I

R R R
=

+ +                                       (218) 

 
The resistance RS is inserted in the circuit to limit the input current: 

given that the minimum value for Vs is 100 mV and the waveform output 
resistance Rout = 50 Ω, the minimum input current is about 1.8 mA for type 
device and 1.7 mA for type B device. RS = 100 Ω allow to drive also smaller 
currents which stress less the device both from a mechanical and electrical 
point of view. Besides including RS, the minimum current is almost the same, 
0.6 mA, for both type A and type B device. Also for higher values the driven 
current is independent from the device input impedance Zin, but is function 
only of the input voltage. Such observations were confirmed by measuring 
the current driven into the resonator, with an amperometer. 

In the calculations of the input current the parasitic inductances and the 
mutual impedences in the equivalent circuit in Figure 102 can be safely 
neglected: M and Lo have no effect because no current flow in the output 
open loop, while it is possible to demonstrate that ωLi << R i. Indeed 
according to the expressions for a square inductance in [113],  Li is at most          
1 nH for the type A device and 0.36 nH for type B device, resulting in an 
impedance module ωLi around 0.2 mΩ for both type A and type B devices 
around their respective resonance frequencies. Thus in both cases Li can be 
neglected with respect to Ri at the working frequencies of both the devices. 
FEM magnetic simulations carried out with Femlab slightly underestimate 
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the values calculated with the formulas in [113], practically confirming the 
previous observations.  

Thus, according to Eqs. (203), (204) and (189) the angle amplitude of 
the angle θ, measured according to Eq. (215), can be written as a function of 
the frequency as: 
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       (219) 

 
where the mass loading is neglected (δJP = 0) and was defined the static gain 

2S in tG K= Γ which is the angle of rotation in mrad driven by a static 
current of 1 mA, if such current could be carried by the input loop. 

0 2 2t Pf K J π=  is the resonance frequency of the device if it is not mass 

loaded, while 2 t pQ K J D=  is the quality factor and they are equal to the 

resonance frequency and the quality factor in Eq. (206), if there is no mass 
loading (δJP = 0).  

Eq. (219) can be used as a fitting function to extract the static gain, the 
resonance frequency and the quality factor of the resonator (fitting 
parameters) from the measurements. 

The frequency response is extracted by manually changing the 
frequency of the sinusoidal input provided by the waveform generator and 
reading at each frequency the major axis of the light spot on the screen, 
which is graduated. The process of acquisition is a bit long and the accuracy 
of the results is low as already said, but the extraction of the mechanical 
frequency response gives a first demonstration of the device operation and 
let to estimate the static gain and the maximum amplitude of rotation                 
(= GSQI) which cannot be extracted from electrical measurements.  

Besides, optical measurements can give a confirmation of the value for 
resonance frequency and quality factor extracted from electrical 
measurements. 

 

4.5.2 Setup for electrical measurements 
 
Electrical measurements can be performed to extract the overall 

frequency response of the device: the resonator is inserted in the gap 
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between two facing macroscopic magnets, providing a 70-80 mT18 magnetic 
field, as the ones used for the optical measurement. The magnetic field can 
be measured through a Hall sensor. The microbalance can be driven with the 
same input stage used for optical measurements shown in Figure 112 and 
providing an input current I fixed according to Eq. (216). The sensor output 
voltage is thus amplified by a voltage amplifier fabricated on PCB board, 
with high input impedance and gain A.  

From Eq. (210) it is possible to find the output voltage after the 
amplification Vout: 
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where fδm = f0, because no sensitive layer is deposited onto the resonator, so 
that no mass loading is expected. The effect the mutual inductance was 
included, first because of its important role as feed-through parasitic element, 
introducing two complex zeros in the system transfer function, second 
because it is fundamental to explain the shape of the frequency responses 
from measurements. The inductance Li is neglected because ωLi << R i at the 
working frequencies of the devices, as shown in the previous section, while 
Lo can be neglected because only an extremely small current flows in the 
output loop because of the high input impedance of the voltage amplifier. 
Anyway according to expressions in [113] Lo is about 551 nH for type A 
device and 60 nH for type B device, resulting in an impedance module ωLo 
around 100 mΩ�  and 30 mΩ, for type A and type B devices close to their 
respective resonance frequencies. In both cases thus ωLo << Ro, so that the 
inductance of the output loop is anyway negligible with respect to the loop 
resistance, at the operating frequency of the proposed device, whatever the 
input impedance of the amplifier stage is.  

The amplified output voltage Vout and the input signal Vs are respectively 
the input and the external reference for a lock-in amplifier, which filters all 
components at a different frequency from the one of Vs, cleaning Vout from 
noise and harmonics due to amplifier distortions.  

 

                                                 
18 This value holds only for the measurements at atmospheric pressure: smaller magnets were 
used for the measurements at different vacuum levels, because of the need of put inside both 
device and magnets in a vacuum chamber. 
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Figure 113: Setup for electrical measurements. 
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Figure 114: Amplifier stage collecting the sensor output signal VL and feeding the lock-in 
amplifier with the signal Vout.    
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An IEEE-488 card, driven by PC, is used to drive the waveform 
generator and to collect the output of the lock-in amplifier, so that the 
acquisition of the frequency response can done automatically, driving both 
the waveform generator and the lock-in amplifier with Labview [83]. A Hall 
sensor is placed close to the device and its output terminals are connected to 
a multimeter (the sensor output signals is a voltage), so that at the beginning 
of each acquisition the PC can read also the magnetic filed through the              
IEEE-488 card.  

The possibility of automating the measurements is a great advantage 
with respect to the optical measurements, because it both save the time of the 
operator, and remove all the errors which can be induced by the operator.  

In Figure 113 the block diagram of the setup for the electrical 
measurements is represented, while in Figure 114 the detailed scheme of the 
voltage amplifier collecting the sensor output signal is represented. 

The amplification of the voltage VL is required because according to the 
expected value for RT (see Table 1 for B = 100 mT and Q = 100), an input 
current of some mA results in some hundreds of µV for type A device and in 
some tens of µV for type B device. The amplifier is composed of two non-
inverting voltage amplifier based on op-amp MAXIM437. The gain of each 
stage is theoretically 2119, while the bandwidth is 2.9 MHz, given the high 
GBP20 (= 60 MHz) of the op-amps (the bandwidth is given by the ratio 
between the GPB and the amplification). The overall amplification of the 
amplifier is thus 441, while the bandwidth is enough with deal with the 
frequencies which devices operate at. Measurements of the amplification in a 
bandwidth from 20 kHz to 100 kHz, confirm this expectation, giving a 
constant amplification A = 450, slightly higher than the expected one. 

In the scheme in Figure 114 also two voltage regulators are inserted 
(regulators LM78L12 and LM79L12), in order to provide supply voltages 
minimally affect by disturbs to the amplifiers. 

Finally, a CR high-pass filter follows each amplifier to reject op-amp 
offsets, flicker noise and 50 Hz interfering signal from the supply voltages. 

As shown in the next section, the problem of electrical measurements is 
the parasitic feed-through due to the mutual inductance M. In particular it 
forces sometimes to use Eq. (220) to fit measurements results, leading to a 
four-parameter fitting, which not too much robust, given the high number of 
parameters. A possible solution is to acquire first a resonance frequency 
without the magnets and after the resonance frequency with the magnets. 

                                                 
19 Using the names of the resistances in Figure 114, the amplification of each stage is 

3 11 R R+  for the first stage and 4 21 R R+  for the second stage, according to the well-known 

formula. 
20 Gain Bandwidth Product. 



 

 241 

During the first acquisition the device is not actuated because B = 0 and 
subsequently τ = 0. Thus the component of VP output voltage Vout only due 
to the parasitic feed-through is acquired. Such component is given by: 
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 (221) 

  
During the second measurement the device is actuated and Vout is given 

by the sum of the parasitic and the “mechanical” (i.e. due to the plate 
movements) component, according to Eq. (220). If the frequency response 
acquired in the measurement without magnets was stored by the PC, can be 
now subtracted to the second measurement giving: 
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which can be used to extract f0, Q and RT by a measurements fitting (Q and f0 
should be equal to the one extracted by the optical measurements). On the 
other hand the mutual inductance M can be extracted by fitting the frequency 
response from the measurement without magnets, using as a fitting function 
Eq. (221). 

Electrical measurements thus add the value of the transresistance at the 
resonance RT and the value of mutual inductance M to the parameters already 
extracted by optical measurements. Besides electrical measurements can be 
carried out both at atmospheric pressure and in vacuum, because they do not 
require a bulky screen at a distance of 2 meters as the optical measurements. 
Thus they allow a characterization of the device at different level of vacuum. 

This characterization was done by putting the device in a vacuum 
chamber. In the chamber two facing magnets smaller, which generates a 
magnetic field B = 28 mT were also placed to allow the characterization in 
vacuum. Such magnets are smaller than the ones used for optical 
measurements, which are used also for electrical measurements at 
atmospheric pressure, just because they have to enter in the vacuum chamber.  
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The vacuum was obtained by a system based on a combined membrane 
pump/turbomolecular pump, while the pressure was measured with a 
standard thermocouple gauge. Measurements at low pressure can be done 
also without removing the parasitic signal with the two-measurements 
system aforementioned,  because the high Q obtained under vacuum raises a 
lot the value of RT, so that the parasitic signal is negligible in region around 
the resonance large enough to extract resonance frequency, quality factor 
and RT by using as fitting curve the frequency response described by                
Eq. (222). 

Through electrical measurements also the working of devices packaged 
with NdFeB micro-magnets was demonstrated. Finally, the effect of the 
humidity on the resonance frequency of the device were demonstrated, by 
putting the device under test in a chamber filled by a flow of drying air 
varying from 500 to 600SCCM21. Due to the small size of this chamber it 
was not possible to use any macroscopic magnets, so that these 
measurements were performed on devices packaged with a NdFeB micro-
magnet. 

 

4.6 Measurements results 
  
In this section the results obtained by all the measurements described in 

the previous section will be shown and discussed. Several of these 
measurements were carried out during a master thesis activity [114]. 

 

4.6.1 Results from optical measurements 
 
Many measurements with different driving currents were done on a type 

A and a type B device, using the setup for optical measurements previously 
described. For all the measurements B is about 75 mT. In Figure 115 results 
for type A device are represented for driving currents from 2.28 mA to           
6.66 mA (peak amplitude), with the amplitude of the rotation angle at the 
resonance varying from 7.9 mrad (0.45 degrees) to 22.7 mrad (1.30 degrees). 
Results fro type B devices are shown in Figure 116: in this case the input 
current is varied from 4.8 mA to 12.18 mA, resulting in amplitudes of the 
rotation angle at the resonance from 9.4 mrad (0.53 degrees) to 24.7 mrad 
(1.41 degrees). 

For type B device high driving currents are needed to obtain a rotation 
of the central plate similar to the one achievable with a type A device with 

                                                 
21 Standard Cubic Centimeter per Minute 
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smaller currents. The minimum angle of rotation which can be measured is 
in both the cases 1.3 mrad (0.07 degrees), equivalent to a dilatation of 0.5 cm 
on the screen which collects the laser beam reflected by the microbalance. 
All the angles measured are small enough, so that Eq. (214) holds. The 
dependence of the maximum amplitude of the rotation angle on the input 
current amplitude is practically linear as expected.  

Each curve in Figures 115 and 116 is fitted, using the curve described 
by Eq. (219), in order to find the resonance frequency f0, the quality factor Q 
and the static gain GS (or the gain at the resonance QGS). An example of 
these fittings is given for type A device in Figure 117a and fro type B device 
in Figure 117b. The mean value for the resonance frequency is 30.32 kHz for 
type A device, while for type B device is 89.82 kHz. The maximum 
percentage difference between the resonance frequency from one 
measurement and the mean value is 1.3% for type A device and 0.3% for 
type B device. Anyway there is a difference of some kHz between the 
measured resonance frequencies and the ones expected according to both 
measurements and simulations. In particular is between the two for type A 
device and higher than for both type B device. This disagreement is 
confirmed by electrical measurements shown in the following and can be 
probably attribute to the overetch of the oxide layers during BHF etch. 
Moreover this overetch changes very likely from chip to chip as 
demonstrated by electrical measurements on devices on other chip. Indeed 
the repeatability of the post-processing has to be increased in this respect. 

Quality factor varies from 135 to 160 for type A device with respect to 
measurements in Figure 115. Anyway the quality factor given by the other 
two measurements is 137, leading to discard the results of 160. A mean 
value of 136 can be thus extracted for type A device, with a maximum 
percentage difference of 17% with respect to the value of 160, which 
anyway is probably not too much significant. 

Excluding the value of 160 the maximum percentage difference between 
the quality factor from one measurement and the mean value about 0.74%. 
On the other hand for type B device the mean quality factor extracted by 
curves in Figure 116 is 232, with a maximum percentage difference between 
Q from one measurement and the mean value about 5.6%. 

The quality factor of type B device is almost twice the quality factor of 
type A, thus type device probably performs better than type A with respect 
to both the mass sensitivity and the minimum adsorbed mass detectable. 
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Figure 115: Amplitude of the angle of rotation of the central plate of type B microbalance as 
a function of the frequency. Each curve is for a different input current and is acquired with 
the optical method. External magnetic field is measured to be 75 mT.     
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Figure 116: Amplitude of the angle of rotation of the central plate of type B microbalance as 
a function of the frequency. Each curve is for a different input current and is acquired with 
the optical method. External magnetic field is measured to be 75 mT.     
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On the other hand the actuation of type B device is less efficient than for 
type A microbalance, as expected.  

The mean value for GS extracted from measurements is 24.5 µrad/mA  
(= 5’’/mA) and 8.6 µrad/mA (= 1.8’’/mA). Which means a gain at resonance 
QGS about 3.33 mrad/mA (= 0.19 degrees/mA) for type A device and               
2.00 mrad/mA (= 0.11 degrees/mA) for type B device. 
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Figure 117: Example of fittings of optical measurements of the amplitude of the angle of 
rotation of the central plate as a function of the input signal frequency: a) type A device with 
input current amplitude 4.5 mA and external magnetic field 75 mT. The extracted value for f0, 
Q and GS are respectively 30.32 kHz, 135 and 26.2 µrad/mA. : b) type B device with input 
current amplitude 12.18 mA and external magnetic field 75 mT. The extracted value for f0, Q 
and GS are respectively 89.83 kHz, 225 and 9 µrad/mA.  
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 Type A Type B 

 Expected 
value 

Value from 
measurements 

Expected 
value 

Value from 
measurements 

f0 

30.9 kHz 

(27 kHz   
from FEM 

simulations) 

30.32 kHz   

84.92 kHz 

(82.4 kHz 
from FEM 

simulations)  

89.83 kHz 

Q --- 136 --- 232  

GS 16.8 µrad/mA 24.5 µrad/mA 7.1 µrad/mA 8.6 µrad/mA 

 

Table 2: Comparison between mean f0, Q and GS extracted by optical measurements and their 
expected value. 

 
As for the quality factor the maximum difference between GS from one 

measurement to the mean value is high: 11.4% for type A, 5.8% for type B 
device. Anyway the value given for type A device is due to the same 
measurement which gives Q = 160 and also for GS gives a value very 
different from the other. Neglecting this measurement the maximum 
difference between GS from one measurement to the mean value is 7.3%. 

The optical measurements are thus not easily repeatable, with respect to 
Q and GS, as expected because of the errors connected with this kind of 
measurement, especially for low and high values of the angle of rotation. As 
shown in the following electrical measurements are more repeatable. 

Finally, a last remark about GS is needed: as shown in Table 2 it is 
anyway higher than the expected from theory, according to 
which ( )2S in tG A B K= . Given that B is measured, while the theoretical 

value of Ain is the area of a square, which is probably very reliable, the 
reason of such discrepancy between theory and measurements is almost 
certainly due to the overetch. Indeed overetch makes each lateral spring 
narrower and longer than expected, reducing the stiffness 2Kt of the structure 
and leading to a GS higher than expected. 
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4.6.2 Frequency responses of the devices, acquired 
through the electrical setup  

 
Several frequency response of different type A and B devices were 

acquired. Figures 118 and 119 shown the amplitude and the phase of the 
voltage Vout read by the lock-in as a function of the frequency, respectively 
for a type A device different from the one whose optical measurements were 
previously shown and for the same type B device, whose optical 
measurements were presented before. Both the curves are acquired at 
atmospheric pressure.  

 Amplitude of Vout as a function of the frequency is theoretically 
proportional to the device frequency response, while its phase is equal to the 
one of the frequency response of the device, since no phase shift is 
introduced at least theoretically by the amplifier and by the driving stage. 

Frequency responses of both type A and B are clearly affected by the 
parasitic signal due to the mutual inductance between input and output loops: 
as predicted by the Eq. (210) there is a couple of zeros, which leads to a 
local minimum in the amplitude of Vout and prevent the rotation of                  
-180 degrees due to the poles, because zeros are very close to the resonance 
frequency of the device.  

Anyway type A device is evidently less affected by the parasitic signal. 
Specifically, the maximum rotation is 133 degrees for type A device while it 
is about 75 degrees for the type B device. Thus type B microbalance is less 
suited than type A resonator to be used as a frequency selective element in 
an oscillator than type A device. The different sensitivity to the parasitic 
signal of the two devices is essentially the consequence of the higher 
efficiency of actuation and sensing of type A device.  

The method of the two measurements, one without and the other with 
magnets, is thus needed to fit experimental data using Eq. (222) as fitting 
curve. In Figure 120 an example of frequency response cleaned from the 
parasitic component is shown. The minimum in the amplitude curve 
disappears while the phase shifts of about -180 degrees around the resonance 
frequency, as expected for an ideal second-order system. 

Three different curves were fitted for each device and for each curve 
different input voltages Vs and consequently input currents I were used, in 
order to obtain an estimation of the resonance frequency the quality factor 
and the transresistance RT for each device, by extracting the mean value 
obtained by the measurements, as done in the case of optical measurements. 
The input voltages were for both the resonators 1 VPP, 2 VPP and 3 VPP, 
resulting respectively in an input current amplitude of 3.2 mA, 6.4 mA and 
9.6 mA, according to Eq. (218). An example of one of these fitting is given 
in Figure 121.  
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Figure 118: Amplitude (a) and phase (b) of the voltage Vout  read by the lock-in for a type A 
device, driven by an input current of amplitude about 6.4 mA (Vs = 2 Vpp) and biased with an 
external magnetic field of 73 mT. The amplitude is given in mV root mean square value 
(RMS), while the phase in degrees.   
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Figure 119: Amplitude (a) and phase (b) of the voltage Vout  read by the lock-in for a type A 
device, driven by an input current of amplitude about 6.4 mA (Vs = 2 Vpp) and biased with an 
external magnetic field of 80 mT. The amplitude is given in mV root mean square value 
(RMS), while the phase in degrees.    
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Figure 120: Example of amplitude and phase of Vout cleaned from the parasitic component for 
a type A device. The curves are obtained by removing the parasitic component from the 
curves in Figure 118.  

 
The mean value for the resonance frequency is 28.899 kHz for type A 

device and 89.888 kHz for type B device. This value highly repeatable since 
the maximum difference between one measurement and the mean value is 
0.006% for type A device and 0.023% for type B device: the frequency 
changes also of few Hz from a measurement to another and this is a 
preliminary demonstration of the fact that both the devices can be used as 
microbalance sensible to a shift of tens of Hz due to the mass loading. 

Variations of the resonance frequency between two different electrical 
measurements performed on the same device are thus very small. Generally 
these variations are smaller than 10 Hz for type A microbalance and not 
higher than 50 Hz for type B. This means that even small changes of the 
resonance frequency due to the analyte mass adsorption are higher than the 
short time fluctuations. Thus the resolution should be good for both devices: 
considering the values for mass sensitivity in Table 1, type A device is 
expected to sense at least 1 ng of adsorbed mass, while type B device can 
detect even less than 1 ng of analyte. 
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Figure 121: Examples of fittings of electrical measurements of the amplitude of Vout as a 
function of the frequency, after cleaning it from the parasitic component with the two-
measurement method: a) type A device with input current amplitude 6.4 mA and external 
magnetic field 73 mT. The extracted value for f0, Q and RT are respectively 28.90 kHz, 125 
and 116 mΩ. : b) type B device with input current amplitude 6.4 mA and external magnetic 
field 80 mT. The extracted value for f0, Q and RT are respectively 89.88 kHz, 202 and                
27.6 mΩ. In both cases the output voltage is expressed in dbV RMS (root mean square value). 

 
The resonance frequency extracted from electrical measurements for 

type B device is also quite similar to the one extracted from optical 
measurements: it is 58 Hz higher (see Table 2), but due to the lowest 
accuracy and repeatability of the optical measurements, it is possible to say 
that the agreement is very good.  

On the other hand the resonance frequency of the type A device is about 
2 kHz lower than the resonance frequency of the type A device, whose 
optical measurements are discussed in 4.6.1. Even considering the low 
accuracy of the optical measurements, this difference is very high and cannot 
be due to optical measurements error. Thus it is possible to conclude that 
from chip to chip the resonance frequency of the same device can change a 
lot. This is confirmed also by measurements on other type A and B device. 
The difference between the resonance frequencies of two devices from 
different chips can be as high as 7%.  

This is probably due to the difficulty in controlling the overetch of the 
oxide layers carried out with a BHF etch during the post-processing (see 
4.4.2). Anyway this dispersion in values of the resonance frequency is not so 
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important if the device is used as a microbalance: the resonance frequency 
can be measured once to obtain a reference value, which can be compared 
with the variations due to the mass loading. 

Values extracted for the quality factor are 123.5 for type A device and 
197 for type device. The value extracted is slightly repeatable than in the 
case of optical measurements: the maximum difference between one 
measurement and the mean value is 1.6% for type A device and 3% for type 
B device. Anyway the value extracted for type B device from measurements 
is 15% smaller than the one extracted from the optical ones (Table 2). This 
difference can be due to not necessary by the less accuracy of the optical 
measurement, but by an aging of the device, since the electrical 
measurements follows the optical measurements at a distance of several days.  

More measurements on different devices could be done to make any 
rigorous conclusion in this direction and in any case a decrease of the quality 
factor due to the aging is not a real problem, because these devices can be 
even used only once, because of the large quantity of them which can be 
fabricated and their low cost.  

 
 

 Type A Type B 

 Expected 
value 

Value from 
measurements 

Expected 
value 

Value from 
measurements 

f0 

30.9 kHz  

(27 kHz  
from FEM 

simulations) 

28.899 kHz   

84.92 kHz 

(82.4 kHz 
from FEM 

simulations) 

89.888 kHz 

Q --- 123.5 --- 197 

RT 
 82.9 mΩ 

(B = 73 mT, 
Q = 123.5) 

116.9 mΩ 

 (B = 73 mT,  
Q = 123.5) 

21.1 mΩ 

 (B = 80 mT, 
Q = 197) 

27.1 mΩ 

 (B = 80 mT,  
Q = 197) 

 

Table 3: Comparison between mean f0, Q and RT  extracted by electrical measurements and 
their expected value. Type B device is the same device whose optical measurements are shown 
in Table 2, while the data given for the type A device are from electrical measurements of a 
device different (i.e. fabricated on a different chip) from the type A device for which  optical 
measurements are summarized in Table 2. 
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Finally, from the fitting of the Vout amplitude cleaned from the parasitic 
signal it is possible to extract the transresistance RT at the resonance: its 
mean value is 116.9 mΩ for the type A device and 27.1 mΩ for the type B 
device. The magnetic field measured in the first case is 73 mT, while in the 
second 80 mT. 

The repeatability of the measurement is quite good: the maximum 
difference between one measurement and the mean value is 3.9% for type A 
device and 1.4% for type B device. 

As expected the transresistance RT is much higher for type A device 
than for type B device. Anyway in both the cases the value from 
measurements is higher than the expected one as shown in Table 3: this is 
probably due to the fact that the expected values were calculated without 
considering the overetch, whose value is not know and which leads to a 
lower value of both Kt (as shown in 4.6.1) and JP (the higher the overetch the 
less the mass and thus the inertia moment). This results in an increase of RT 
according to Eq. (209). The overetch and the subsequent reduction of Kt and 
JP is probably the main cause of this increase: indeed B is measured with 
good accuracy with a Hall sensor, while Ain is the air of a metal loop whose 
value is probably very close to the expected value. The only parameter 
which affects RT and can be different from the expected value is Aout, which 
is calculated by the approximated expression written in Eq. (213).  

The value of Aout can be extracted for the type B device, by a 
comparison between optical and electrical measurements by the expression 
of RT in Eq. (209) where the expression of the static gain for the angle of 
rotation GS is substituted: 
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where Qe and Be are the quality factor and the external magnetic field 
measured during the electrical measurement, while Bo is the external 
magnetic field measured during the optical measurements; RT and f0 are 
extracted by electrical measurements, while GS from optical measurement.  

The value of Aout extracted in this way is almost the same as the 
expected (Table 4). Even if this estimation is affected by the low accuracy of 
the optical measurements it is possible to conclude that Eq. (213) is probably 
enough accurate to evaluate Aout, so that the unforeseen high RT cannot be 
ascribed to a difference between the real and the expected value of Aout.  The 
extraction of Aout from measurements for a type A device was not carried out 
because it was not possible to perform on the same type A device both 
optical and electrical measurements. 
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 Expected 
value 

Value from 
optical 

measurements 

Value from 
electrical 

measurements 

Value from  a 
comparison of 

optical and 
electrical 

measurements 

f0 

84.92 kHz 

(82.4 kHz 
from FEM 

simulations) 

89.83 kHz       89.888 kHz --- 

Q --- 232 197 --- 

GS 

7.1 µrad/mA 

 (B = 75 mT) 

8.6 µrad/mA 

(B = 75 mT) 
--- --- 

RT 
21.1 mΩ 

 (B = 80 mT, 
Q = 197) 

--- 
27.1 mΩ 

 (B = 80 mT,  
Q = 197) 

--- 

Aout 0.327 mm2 --- --- 0.332 mm2 

 

Table 4: Comparison between parameters extracted form optical and electrical measurements 
and their expected value for the type B device which was characterized both with an optical 
and an electrical measurement.  

 
The frequency response acquired without magnets can be used not only 

to cancel the parasitic component from the output but also to estimate the 
entity of such parasitic: according to measurements of Vout without magnets, 
the parasitic component has a phase almost 90 degrees rotated with respect 
to the input signal and is amplitude linearly increasing with the frequency. 
This confirms the assumption of a parasitic signal 2j fMπ superposed to the 
signal.  

The value of M can be extracted by the slopes of the dependence of the 
amplitude of Vout on the frequency when the magnets are not included in the 
measurement setup. The linear fitting gives about 87 nH for the mutual 
inductance of the type A device and 32 nH for the type B device.  
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It is possible anyway to demonstrate that this value cannot be due 
entirely on the mutual inductance between input and output loop. Such 
mutual inductance ML can be written as function of the loops inductance: 

 

L i oM c L L=                                           (224) 

 
where c is a coupling factor which is always smaller than 1. Thus in the 
worst case (c = 1) ML is 23.5 nH for type A device and 4.6 nH fro type B 
device. 

Thus there should be probably other parasitic paths introduced by 
connection cables, amplifier PCB board and/or other out of chip components. 
The influence of these parasitic paths can be reduced by integrating the 
amplifier on the same chip with the microbalance instead of fabricating it on 
a PCB board. The CMOS-compatibility of the process of microbalance 
fabrication allows this solution. 
 

4.6.3 Feasibility of the device driving through NdF eB micro-
magnets 

 
To demonstrate the feasibility of the packaging of the devices with a 

NdFeB micro-magnet, a micro-magnet is then glued over some chips 
carrying type A devices as well as over other chips carrying type A resonator. 
A device packaged in this way is represented in the picture in Figure 122.  

The magnetic field on the device changes a lot depending on the 
distance from the micro-magnet. Due to the difficulty of the process of 

magnets positioning, the external magnetic field B and thus RT ( 2B∝ ), 
changes a lot from device to device when actuated by a micro-magnet, and 
the value of the field B is generally lower than the one obtained with the 
macroscopic 20x12 cm magnets. 

Anyway the device actuated by a micro-magnet works almost as a 
device actuated by the macroscopic magnets both if they are type A and if 
they are type B device, as shown in Figure 123. Also in the case of device 
actuated by a micro-magnet the resonance frequency, the quality factor and 
the transresistance RT can be extracted by doing an acquisition of the 
frequency response before and another after the gluing of the magnet and 
then making the difference between them.  
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Figure 122: Chip carrying a type A microbalance on a TO-8 package and with micro-magnet 
glued onto the top.  

 
The type A microbalance, which Figure 123a refers to, is the same 

whose electrical measurements were shown in 4.6.2. The resonance 
frequency and the quality factor extracted by the fitting are respectively 
28.901 kHz and 126.6 and thus very close to the ones extracted by previous 
measurements, as expected. RT is instead 99.9 mΩ, lower than the one in 
Table 3. It is logical to ascribe this lowering to a lower value Bnew magnetic 
field, which can be estimated to be: 

 

Tnew
new old

Told

R
B B

R
=                                       (225) 

    
where Bold is the magnetic field generated bye the macroscopic magnet, 
while RTnew and RTold are respectively the transresistances measured when the 
device is biased by the micro-magnet and when it is driven into motion 
because of the macroscopic magnets. The field acting on the device is thus 
about 67.5 mT, not too much low indeed than the one driven by the 
macroscopic magnets. 
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Figure 123: Amplitude Vout of the voltage read by the lock-in for two device driven through a 
magnetic field generated by a NdFeB micro-magnet: a) type A device (the same whose 
measurements are presented in 4.6.2), with parameters f0 = 28.901 kHz Q = 126.6 and              
RT = 99.9 mΩ, extracted by a fitting after the removing of the parasitic components . b) type B 
device with parameters f0 = 93.361 kHz Q=235.8 and RT = 5.4 mΩ,�  extracted by a fitting 
after the removing of the parasitic components . 

 
On the other hand, Figure 123b refers to a type B devices different to 

the one previously measured the resonance frequency (= 93.631 kHz) is 
higher than in the previous case, confirming the dispersion of the value of 
this parameter from chip to chip. Also the quality factor (= 235.8), is higher 
than in the other case, while RT is 5.4 mΩ. Such low value is probably 
mainly due to a lower magnetic field driven by the micro-magnet than the 
macroscopic magnets, even if, since the device have been fabricated in a 
different post-processing run, the transresistance can be smaller also because 
of a variation of parameters dependent on the fabrication: for example the 
overetch could be lower for this second device, so that Kt and Jp are higher 
and RT smaller even if the magnetic field was the same. Anyway the 
measured value, 5 times smaller than in the other case is too small to be 
explained only with a higher overetch, so that it is possible to say with 
enough confidence that the external magnetic field is definitely lower than in 
the measurements on the other device.  

Finally, it is interesting to observe that in Figure 123b the frequency of 
the zeros is lower to the resonance frequency, unlike the other characterized 
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device: this is probably due to the fact of a phase of the parasitic signal 
opposite to the one assumed to find Eq. (210). This can be simply to an 
inversion in the connection of the input or the output loop (i.e. the terminal 
which in the other device previously measured was connected to the signal is 
now connected to ground, while the other than before was connected to 
ground, now carries the signal.  
 

4.6.4 Frequency responses acquired at different lev els of 
vacuum and effect of the humidity on the resonance 
frequency   

 
The type A device previously characterized at atmospheric pressure 

with macroscopic magnets and NdFeB magnets was also tested at different 
level of vacuum. Indeed these measurements were carried out before gluing 
the micro-magnet but due to the logical order chosen in this thesis, their 
results are summarized now, after the results from electrical measurements 
of the device with a NdFeB magnet glued onto the top of the chip.  

Device was inserted in the previously described vacuum chamber, 
between two magnets generating a magnetic field B = 28 mT, measured by a 
Hall sensor. The device was driven with a voltage Vs varying from 100 mVPP 
to 200 mVPP, leading to a driving current amplitude varying from 320 µA to 
620 µA. The driving current was smaller than at atmospheric pressure to 
avoid to stress to much the device from a mechanical point of view: since 
quality factor in vacuum is expected to be higher than at atmospheric 
pressure the same input current drive an angle of rotation much higher under 
vacuum than at atmospheric pressure. On the other hand if the Q is higher 
also RT is higher, thus there should be no problems in detecting the output 
signal, even if the driving current is reduced. 

  Measurements were carried out at pressures from 0.02 to 2 mbar. At 
these levels of vacuum the quality factor is anyway much higher than at 
atmospheric pressure, leading to a transresistance much higher than 
atmospheric pressure. Thus at least around the resonance the parasitic 
component of Vout is negligible and the there is no need to clean the output 
signal from the parasitic, to extract f0, Q and RT , through a fitting.  

In Figure 124 the amplitude of output voltage read by the lock-in at 
different frequency is shown at different pressures. 

Results extracted for f0, Q and RT at different pressures are compared 
with their value at atmospheric pressure; RT at atmospheric pressure is lower 
than in Table 5, because the magnetic field is now lower (28 mT instead of 
73 mT). Quality factor and thus RT are much higher than at atmospheric 
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pressure even at a pressure of 2 mbar. As expected [2] the quality factor is 
approximately proportional to 1/P. 

But the surprising result of the comparison is that the resonance 
frequency of the device is 28.899 kHz at atmospheric pressure, while varies 
from 29.284 kHz to 29.288 kHz for a pressure changing from 0.02 mbar to 2 
mbar. Thus in vacuum the resonance frequency of the device is almost           
400 Hz higher than at atmospheric pressure. Since the measurement at 
atmospheric pressure was carried out both just before and just after the 
measurement in vacuum, giving in both the case the same results for the 
resonance frequency22, it is possible to exclude any damage to the device 
occurred during the measurement under vacuum.  

The reason of such shift is therefore due to the presence or not of the air 
and to its pressure. It could be due to a mechanical interaction or to 
adsorption/desorption of molecules.  

Indeed the interaction between air and deice structure can result not only 
in a damping but also into a stiffening of the structure: this happens mainly if 
there are thin layer of air compressed, i.e. if the squeeze film damping is 
very high [46]. But around the device considered in this thesis there are not 
films compressed by the movements of the resonator: over the device there 
is a practically semi-infinite (= much larger than the resonator) volume of air, 
while under it there are 100 µm of air, which is an air layer too thick to 
justify a significant stiffening due to its squeezing [46]. Thus if the shift is 
due to a mechanical interaction it is not due to film squeezing. 

Anyway the difference between the resonance frequency in vacuum and 
at atmospheric pressure is more likely due to mass desorption of molecules 
adsorbed or absorbed by the device at atmospheric pressure. In the specific 
silicon oxide and in particular BPSG are known as very hydrophilic material. 
Thus in a humid environment they could absorb a lot of water molecules, 
while in vacuum this molecules are desorbed. According to this hypothesis 
at atmospheric pressure the device is heavier than in vacuum as a 
consequence of the water molecules absorbed and its resonance frequency 
lower, as according to the results shown in Table 5. 

To verify this theory the type A device was introduced in a sealed 
chamber where first a flow of 500 SCCM of dry air and then a flow of               
600 SCCM of dry air were driven. In both the case the measured resonance 
frequency was about 100 Hz higher than the resonance frequency measured 
in the humid atmosphere. Thus, given the expected value of the mass 
sensitivity for a type A device (Table 1), it is possible to estimate that at 
atmospheric pressure almost 6 ng of water molecules are absorbed 

                                                 
22 Or better with a small difference of about 5 Hz, which can be ascribed to measurements 
error or to short time fluctuation of the resonance frequency. 
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Figure 124: Amplitude Vout of the voltage read by the lock-in normalized by the input signal 
Vs a function of the input signal frequency at different pressures, varying from 0.02 mbar to                  
2 mbar. The normalization is required to compare the curves because the curve at 2 mbar is 
obtained by driving the microbalance with 200 mVPP, while at the other pressures the device 
is driven with Vs = 100 mVPP. The magnetic field is about 28 mT for each curve 

 
In conclusion the humidity affects very much the device resonance 

frequency, even if it does not explain alone the whole difference between the 
resonance frequency measured in vacuum and at atmospheric pressure. 
Probably some other kinds of molecules are desorbed when the device works 
in vacuum. The effect of the humidity on the resonance frequency can be a 
problem when the device is used as a chemical sensor because the shift of 
resonance frequency due to the water absorption can be higher than the one 
due to the adsorption of small amounts of analyte, decreasing the resolution 
of the sensor. Anyway this problem can be easily reduced by using to device 
fabricated during the same run and on the same chip, one covered with a 
sensitive layer the other not. In this way to obtain a change in humidity leads 
to the same variation of the resonance frequency, while the absorption of the 
analyte drives a considerable variation of the resonance frequency only on 
the microbalance covered with the proper sensitive layer, so that the 
difference between the two resonance frequencies is due only to the analyte 
mass adsorption.  
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Pressure Measured f0 Measured Q Measured RT 

atmospheric 

(1 bar) 
28.899 kHz 123.5 17 mΩ 

2 mbar 29.284 kHz 902.2 117.7 mΩ 

0.42 mbar 29.283 kHz 1632.5 207.8 mΩ 

0.15 mbar 29.283 kHz 2044.8 257.8 mΩ 

0.065 mbar 29.283 kHz 2510.4 302.6 mΩ 

0.02 mbar 29.284 kHz 2735.8 337.9 mΩ 

 

Table 5: Resonance frequency, quality factor and transresistance RT  extracted at different 
pressures, for a type A device. Magnetic field is about 28 mT for each pressure.  

 
This solution can reduce also the effect of other disturbs, like for 

example a change of temperature, which again leads the same frequency 
change in both the resonator. 
 

4.7 Failure mechanisms 
 
After a long usage (1 month) some of the characterized microbalances 

stop to work. In particular the conductance of the output loop becomes very 
close to zero. Practically the electrical connectivity is broken. The cause of 
this device failure is probably again the interruption of the metal 1 of the 
output loop close to the end of the left lateral beam in Figure 110 and at end 
of the right lateral beam in Figure 110. This region is circled in red in        
Figure 125. The metal in this region is very narrow and maybe slightly 
damaged during the aluminium etch, because even if the oxide overetch was 
limited by shorten the mask for BHF etch, there is still the probability that it 
is partially exposed to the aluminium etch (see 4.4.2). As shown previously 
there is also a low probability of breaking such metal during the post-
processing. 
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Figure 125: Picture at the optical microscope of a type A device after several cycles. The 
region where the output metal can break is circled in red. Both on the right and the left 
anchor there are some cracks in the oxide due to material fatigue, as it is especially clear 
from the zoom on the right. 

Even if such narrow metal is not damaged, it has to endure high 
torsional stresses close to the anchor where the mechanical structure is 
maximally stressed. Thus after a lot of cycle the metal can break due to the 
material fatigue. Of course if the metal has been already damaged during the 
post-processing less cycle are needed to obtain the crash of the metal. 

The high stress acting on the anchors are clear by the picture in        
Figure 125, especially in the magnified area on the left: circular dark lines, 
which do not appear on the device after few cycles (Figure 110), appears 
clearly around both the anchors. Such lines are the sign of some fracture of 
the material, probably a sliding of the intermetallic dielectrics with respect to 
the silicon and to each other. Probably if the metal 1 was not broken the 
lateral spring would break due to the fatigue, even if after a very high 
number of cycles. 

The circular cracks in the oxide seem to not affect the device main 
important features, such as f0, Q and RT. Indeed changes of the resonance 
frequency of about some tens of Hz have been observed by after a lot of 
cycles, but they can be also due to some adsorption/desorption of particles. 

In conclusion the failure of the device due to the output metal breaking 
has be prevented by redesign the output metal larger than in the present 
design. In general a rule of minimum width of the metals close to the 
anchors should be defined 

Cracks in 
the oxide 
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Conclusion 

After this detailed discussion about the activities carried out during the 
Ph.D., it is time to summarize the main results which were obtained. 

The demonstration of the basic operation and the characterization of a 
third-mode free-free resonator with flexural supports (FF3) was certainly a 
very important result because of the originality of the device. The measured 
quality factor in vacuum (about 5000) is good if compared with other 
flexural-beam resonators for RF applications, presented in literature. 
Furthermore, according to FEM simulations, the sensitivity of the resonance 
frequency to temperature and axial stresses is for a FF3 resonator slightly 
better than for other two device based on bending beams (the clamped-
clamped and the free-free first-mode resonator). Unluckily it was not 
possible to characterize the other innovative resonator for RF applications, 
that is, the free-free resonator with tuneable resonance frequency. Finally, 
some possible improvements of the resonators design was found by 
observing experimental data from device characterization, as well as results 
from FEM simulations. 

On the other hand, the equivalent circuit proposed for free-free 
resonators shows a good performance, if compared with FEM simulations of 
the frequency response of the device: the circuit, even in a simplified 
topology, correctly predicts the values of the resonance frequency and the 
quality factor of the device, even when possible fabrication defects alter the 
matching condition used in the design. Acceptable results are obtained with 
respect to the evaluation of the maximum resonator deflection (which is 
related to the output signal amplitude and thus to insertion losses, as well as 
to the linearity of the device), only if the extended equivalent circuit is used. 
Anyway the difference between expected value and results from simulation 
is higher for the maximum deflection than for the resonance frequency and 
quality factor and this can be ascribed, at least to some extent, to the non-
ideal behaviour of the real device with respect to the Euler-Bernoulli model 
for bending beams, which was assumed to extract the equivalent circuit. 

If for flexural-beam resonators a complete cycle of modelling, design 
fabrication and characterization were carried out, for bulk-mode disk 
resonators a very deep and articulated modelling activity were pursued. In 
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particular two new simulation strategies have been formalized to estimate 
one of the most important sources of energy dissipation in MEM resonators, 
namely anchor losses, which is expected to limit the quality factor of a 
MEM resonator in vacuum. These strategies, based on FEM simulations, 
give results very close to the simulation strategies presented by other authors, 
as well as to some measurements from literature. The proposed strategies 
does not lead to simulations faster than the others, but at least one of the two 
is based on a more rigorous theoretical background than in the case of the 
majority of the simulation strategies used to estimate anchor losses. This 
method (indicated in the text as THBC method) is based on the exact 
solution of the problem of the propagation of an acoustic wave in a substrate, 
considered as a semi-infinite space. Such a solution is exploited to find 
proper boundary conditions at the interface between anchor and substrate.  

Because of the rigorous theoretical analysis which it is based on, the 
THBC method allows a deep insight into the mechanism of anchor losses, 
and it is probably much accurate than other methods. 

 Anchor losses simulations together with the estimate of another 
mechanism limiting the quality factor, namely thermoelastic damping, allow 
to find a design strategy to maximize the quality factor of a bulk-mode disk 
resonator, once the resonance frequency is fixed. Indeed thermoelastic losses 
were shown to be important only if anchor losses are minimized. 

Simulations of anchor losses in a disk resonator demonstrated that they 
depend on the anchor size (or anchor/stem radius, since the anchor is circular) 
in an unexpected way: it is generally believed that anchor losses 
monotonically increases, and thus quality factor decreases, if anchor size 
increases. But some of the simulation results presented in this thesis show 
that in the dependence of quality factor only due to anchor losses on the stem 
radius there could be one or more local minima and maxima. This result 
from simulations is confirmed by a theoretical analysis and the stem radii 
which give the minima of the quality factor (maxima of anchor losses) can 
be found by a proposed theoretical model, even if the accuracy of this model 
is not very high if compared with simulations. 

The innovatory discovery of local maxima in the dependence of anchor 
losses on anchor size, allow to find very low anchor losses and thus very 
high quality factor even without reducing the anchor size to very small 
values, as it is generally done nowadays with a great complication with 
respect to the technological process. 

All the theory and the simulations discussed in this thesis about quality 
factor of bulk-mode disk resonators results in a very simple strategy: since 
anchor size does not affect the resonance frequency (as confirmed both by 
theory and simulations), while the disk radius influences both resonance 
frequency and quality factor, the disk radius is initially fixed to determine 
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the resonance frequency and after the stem radius is chosen to maximize the 
quality factor according to the simulations results, finding in this way the 
optimum layout for a disk resonator, resonating at the frequency required by 
the specification. The optimization can be also achieved by an automatic 
synthesis tool. Besides the robustness of the design choices, which were 
suggested by such design strategy, was evaluated by estimating the effect of 
a variation of stem radius, disk radius and other geometrical dimensions of 
the resonator with respect to their nominal value. 

Measurements on real devices are planned to demonstrate the presence 
of maxima and minima in the dependence of quality factor on the anchor 
size and to validate the strategy for the optimization of the layout, which is 
proposed in this thesis. For this purposes several disk resonators are now 
under fabrication at IMEC. 

Finally, the research activity about MEM microbalances, results in a 
very innovative and promising device. A microbalance with magnetic 
actuation and sensing and with an original mechanical structure was for the 
first time presented. It was fabricated with a low-cost CMOS-compatible 
process in two different variants, one bulkier but with more efficient 
actuation and sensing, the other smaller, but with less effective actuation and 
sensing. The basic operation of both the devices was demonstrated at 
different pressures and using both 20x12 cm macroscopic magnets and 
NdFeB micro-magnets smaller than 1 mm3, in order to generate the needed 
external magnetic field. 

The frequency responses of both the devices were acquired, allowing to 
extract resonance frequency and quality factor. Resonance frequency is 
around 30 kHz for the bulkier device and around 90 kHz for the smaller, 
while the quality factor at atmospheric pressure is slightly higher than 100 
for the first kind of device and about 200 for the second. Having a high 
quality factor at atmospheric pressure is fundamental for a resonator used as 
microbalance: since it is generally inserted in an oscillator as a frequency 
selective element, the higher the quality factor, the lower the phase noise and 
thus the lower the minimum resonance frequency changes due to the 
adsorption of the analyte molecules which can be discriminated from a 
variation of the resonance frequency due to the noise. In other words, a high 
quality factor is needed for a good sensor resolution. 

Acquired resonance responses show also that the signal due to the 
resonator movements is enough higher than the parasitic signal around the 
resonance, for both the designed devices, even if, as expected, the bulkier 
device show a level of output signal higher than in the case of the smaller 
one, if the two device are driven with the same input signal.  

The small effect of parasitic signal is an important result considering 
that the measured parasitic signal is significant, since the small output signal 
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of the resonator is amplified by a circuit fabricated with discrete components 
on a PCB board and not by an integrated electronic circuit, which can be 
potentially fabricated on the same chip of the device to reduce parasitic 
signals, because of the CMOS compatibility of the fabrication process of the 
devices. 

Some design improvements have been proposed for a next layout of the 
device in order to avoid some failure mechanisms observed during the 
fabrication and the operation of some devices.  

A problem of the device was found to be the high sensitivity of the 
resonance frequency to the humidity, which is by the way reasonable 
considering that the microbalances are mainly made of BPSG. This problem 
can be solved by using as a sensor a pair of devices nominally equal and 
fabricated very close on the same chip in order to increase their matching: if 
one of them is covered with a proper sensitive layer to detect a particular 
molecule, the other is not, so that while a humidity change influences almost 
in the same way the two, a change in the analyte concentration in the 
surroundings results in a change of the resonance frequency of only the 
device covered with a sensitive layer. Thus if the difference between the 
resonance frequency of the two devices is measured, the interference of the 
humidity is highly reduced. This architecture is useful also to reduce the 
effect of temperature changes or other molecules easily absorbable by BPSG.   

To complete the characterization of the microbalance presented in this 
thesis the only remaining step is the coating with a proper sensitive layer in 
order to test its performance as a sensor. For this purpose the device will be 
given to a group of biologists of the CNR of Pisa, which will cover the 
device surface with a proper sensitive layer in order to detect DNA 
sequences. 
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Appendix A: Bessel Function Properties 

 
In this appendix demonstrate the properties of the Bessel function, 

which were used in chapter 3, are demonstrated:  
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can be demonstrated by applying twice integration by parts: 
 

2

0 02
0 0

0 1
0 0

2 2
1 0 00

0

1
( ) ( )

( ) ( )

( ) ( )

F F F
r J qr dr r J qr dr

r r r r r

F F
r J qr qr J qr dr

r r

rqFJ qr q rFJ qr dr q F

∞ ∞

∞ ∞

∞
∞

 ∂ ∂ ∂ ∂ + = =   ∂ ∂ ∂ ∂  

∂ ∂= + =
∂ ∂

= − = −

∫ ∫

∫

∫

                  (A2) 

 
where it is exploited the hypothesis that F and its first derivative with respect 
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can be demonstrated by applying twice integration by parts: 
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where it is exploited the hypothesis that F and its first derivative with 
respect to r are bounded for r → ∞. This hypothesis implies that 
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can be demonstrated by integrating by parts: 
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where it is exploited the hypothesis that F is bounded for r → ∞. This 
hypothesis implies that 1( )rFJ qr → ∞  for r → ∞.   
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can be demonstrated by integrating by parts: 
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where it is exploited the hypothesis that F is bounded for r → ∞. This 
hypothesis implies that 0( )rFJ qr → ∞  for r → ∞.   



 

 269 

Appendix B: Intrinsic damping in a silicon 
substrate 

 
In order to get a rough evaluation of the relaxation time τ of a 

substrate mentioned in chapter 3, such parameter is calculated from the 
amount of energy dissipated in a substrate by a propagating plane wave. In 
principle the dissipation could depend on the shape of the propagating wave, 
thus this approximation could be considered very coarse. Only phonon-
phonon interaction and thermoelastic damping are considered. 

Starting from the phonon-phonon interaction, the absorption coefficient 
α due to such dissipation mechanism was found by [94], for a compressive 
longitudinal acoustic wave propagating in a material: 
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In (A9) all the variables are expressed in MKS. Cp is the thermal 

capacitance, T temperature in Kelvin, ρ the mass density and cL the velocity 
of longitudinal wave as expressed in (95); γ is the Gruneisen parameter, 
which is given by the average of the relative temperature change, divided by 
relative change of density in the material [94]. According to [52], γ  can be 
taken as 0.4 for mono-crystalline silicon.  

Finally, θ  is a relaxation time necessary to exchange energy between 
hot and cold phonons. Its expression from [94] is: 
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where Kth is the material thermal conductivity.  
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Now, considering the Young’s modulus as defined in (119), with                 
τ = τPH  (i.e. only due to phonon-phonon interaction), the generic attenuated 
longitudinal plane wave ∆, propagating along z direction, towards +∞, is: 
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If E is defined as in (119), with τ = τPH

  (i.e. only due to phonon-phonon 
interaction),  hI  can be written as: 
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where ωτPH

  << 1 is assumed (this hypothesis has to be verified at the end). 
Then, the attenuation coefficient α in dB/m can be written as: 
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and consequently, combining (A14) and (A9) τPH can be written as:  
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Considering that for Silicon (E = 160 GPa, ρ = 2330 Kg/m3, ν = 0.226,           

K = 148 W/(K*m), CP = 1.63 MJ/(K*m3)) θ = 3.64 ps, so that for                                
f = ω/(2*π) = 200 MHz, ωθ  = 0.005  <<  1. Thus, for the frequency the 
device in chapter 3 works at, the following approximation of (A15) holds: 
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where the expression in for θ  written in (A10) was also 
substituted. According to Eq. (A16) τPH

   is independent on the thermal 
capacitance, while it is proportional to thermal conductivity, temperature and 
Gruneisen number. The most important parameter which determines 
phonon-phonon dissipation is the longitudinal velocity cL, so that an increase 
of it strongly reduces τPH

 : the more rigid (high E) and lighter (low ρ) the 
material is, the lower the losses. In the case of the silicon, its very high 
Young’s modulus leads to a very low τPH. In the specific, assuming from  
[52]  γ  = 0.4,τPH is about 0.16 fs at T = 300 K. Considering again the 
approximation done in (A12), it largely holds for such value for τPH, which 
leads ωτPH

  = 2x10-7 at 200 MHz. 
The second mechanism which can dissipate energy in the substrate by 

heating is the thermoelastic effect. In the range of frequencies below 1 GHz 
(at least for Silicon), according to [93], for a plane longitudinal wave the 
attenuation, given in terms of the parameter hI defined as in (A11), can be 
approximated as: 
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Considering a Young’s modulus defined as in (119) with τ = τΤΗ  (i.e. 

only due to thermoelastic dissipation), repeating the same reasoning 
performed for phonon-phonon interaction, it is possible to find: 
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where αT is the coefficient of thermal expansion (CTE), which plays a very 
important role in thermoelastic dissipation as shown also in section 3.6. 
From (A17) it is possible to find that for a Silicon substrate (αΤ = 2.6x10-6), 
τΤΗ = 0.67 fs. Thus this relaxation time is greater but comparable with 
phonon-phonon dissipation. The overall τ given by the two mechanism 
addressed in this appendix is slightly smaller than 1 fs.  
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