
Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Hypothesis Testing

with Classifier Systems

Flavio Baronti

Supervisor

Antonina Starita

May, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14694097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

This thesis presents a new ML algorithm, HCS, taking inspiration from
Learning Classifier Systems, Decision Trees and Statistical Hypothesis Test-
ing, aimed at providing clearly understandable models of medical datasets.
Analysis of medical datasets has some specific requirements not always ful-
filled by standard Machine Learning methods. In particular, heterogeneous
and missing data must be tolerated, the results should be easily interpretable.
Moreover, often the combination of two or more attributes leads to non-linear
effects not detectable for each attribute on its own. Although it has been
designed specifically for medical datasets, HCS can be applied to a broad
range of data types, making it suitable for many domains. We describe the
details of the algorithm, and test its effectiveness on five real-world datasets.

3

4

Acknowledgements

I would like to thank my supervisor, Antonina Starita, for giving me the intel-
lectual (and economical!) freedom to follow and explore my often diverging
ideas, adding guidance and concreteness, and never putting constraints.

I’m very grateful to my reviewers, Stewart W. Wilson and John H.
Holmes, for extremely helpful comments and constructive suggestions.

Thanks to Alessandro for countless interesting discussions and exchanges
of ideas.

As silly as it sounds, I am thankful to Google. It always gave me the
answer I was looking for — once I found the right way to ask the question!

Last, I thank my family for supporting me, asking me “is it done yet?”
at just the wrong times (that is. . . always!), and bearing with my consequent
losses of temper. Grazie.

5

6

Contents

1 Introduction 13

2 Machine learning 17
2.1 Introduction . 17

2.1.1 Task . 19
2.1.2 Hypothesis space . 20
2.1.3 Search algorithm . 22
2.1.4 Evaluation . 23
2.1.5 Validation . 29

2.2 Logistic Regression . 31
2.3 Decision Trees . 33
2.4 Bayesian Belief Networks . 35
2.5 Evolutionary computation . 37

2.5.1 Implementations . 39
2.6 Learning Classifier Systems 39

2.6.1 XCS . 40
2.6.2 EpiCS . 42
2.6.3 UCS . 43

2.7 Neural Networks . 43
2.8 Support Vector Machines . 45
2.9 Summary . 46

3 Medical data analysis 47
3.1 Personal tasks in medicine . 48

3.1.1 Screening . 49
3.1.2 Diagnostic reasoning 49
3.1.3 Prognostic reasoning 50
3.1.4 Treatment selection . 51

7

8 CONTENTS

3.2 General tasks in medical research 51
3.2.1 Studying risk factors: epidemiology 52
3.2.2 Discovering functional interactions 53

3.3 Machine learning in medicine 54

4 HCS 55
4.1 Statistical hypothesis testing 56
4.2 Definitions . 59
4.3 HCS: Fundamentals . 59
4.4 HCS: Implementation . 62
4.5 HCS: classifiers and search algorithm 72

4.5.1 Genotype definition . 72
4.5.2 Phenotype definition 73
4.5.3 Fitness evaluation . 74
4.5.4 Internal cycle . 74
4.5.5 External cycle . 77

4.6 HCS: optimizations . 77
4.6.1 Optimizing cover set building 77
4.6.2 Optimizing fitness calculation 78

4.7 An illustrative example . 81

5 Experiments 87
5.1 Datasets description . 88

5.1.1 Mushroom dataset . 88
5.1.2 Pima Indians diabetes dataset 89
5.1.3 Wisconsin breast cancer (WBC) dataset 89
5.1.4 BUPA liver disorders dataset 90
5.1.5 Oral cancer dataset . 90

5.2 Structure of experiments . 91
5.3 Performance measures . 92
5.4 Results . 94

5.4.1 Results: design choices 95
5.4.2 Results: Mushroom dataset 98
5.4.3 Results: Pima dataset 100
5.4.4 Results: WBC dataset 101
5.4.5 Results: Bupa dataset 101
5.4.6 Results: HNSCC dataset 102

5.5 Discussion . 105

CONTENTS 9

6 Summary and conclusions 107

A Testing multiple classifiers 111

B Evaluating C size 115

10 CONTENTS

Symbols

Ai One of the sets composing the space of the dataset: D = A1 × A2 ×
. . .× As

B The set of boolean values: B = {True, False}
D The space the dataset comes from: D ⊆ D = A1 ×A2 × . . .× As

C The set of all possible classifiers, C : D → B

c A single classifier, c ∈ C
D The dataset
d An instance of the dataset: d ∈ D
F Indicates the fitness function. Generally, F : D×H×C → R; however,

often H and D are implicit and dropped for readability. When y :
D → B, the fitness can also be defined as F(q, t) : N × N → R. In
this case, q = #{d ∈ D/c|y(d) = True}, and t = #{d ∈ D/c}.

F (x) The cumulative probability of a probability distribution: F (x) =
P(X ≤ x) =

∑

v≤x f(v)

f(x) The probability mass function of a probability distribution: f(x) =
P(X = x)

H The set of all models taken into account by the algorithm
H A function creating a model from a dataset: H : 2D →H
N The maximum number of classifiers used during genetic search (“pop-

ulation size”)
Q The number of positive instances in the dataset. Meaningful only if

y : D → B, and in that case Q = #{d ∈ D|y(d) = True}
ρ The proportion of positive targets in the dataset: ρ = Q/T
s The number of attributes in each instance

11

12 CONTENTS

SD(q, t) A subset of D containing q positive instances and t total instances:
S(q, t) ∈ {R ⊆ D|t = #(R) ∧ q = #{d ∈ R|y(d) = True}

T The number of instances in the dataset: T = #(D)
y The target function, associating each instance of the dataset to its

target. y : D → Y
Size of operator: returns the size of a set
C/d The match set of an instance: C/d = {c ∈ C|c(d)}
D/c The cover set of a classifier: D/c = {d ∈ D|c(d)}

Chapter 1

Introduction

This thesis will present a new Machine Learning algorithm, called HCS, de-
signed to combine the hypothesis formulation capabilities of Machine Learn-
ing, and the hypothesis validation proofs of Statistics. The purpose of HCS
is providing a new tool for medical research, which can aid the process of un-
derstanding medical phenomena by providing comprehensible explanations
of the collected data. Fulfilling the requirements of medical datasets makes
HCS a very robust algorithm, able to analyze data in most other domains.

Modern sciences are based on the experimental method, as described
by Galileo Galilei 400 years ago. The method can be decomposed in a se-
quence of steps: we will concentrate on the first, which are observation of the
phenomenon, formulation of a hypothesis, validation of the results through
experiments. Scientists need first to acquire sufficient data regarding the
phenomenon they want to analyze. Then the induction step comes: here the
intuition of scientists is fundamental, because they are required to provide
the formulation of a general hypothesis from the collection of particular situ-
ations. Once the hypothesis is set down, its predictions have to be validated
and verified through more experiments.

For Galileo, mathematics was the tool to use in the whole process: “It
[the book of Nature] is written in mathematical language”. The science of
Medicine is no exception to this rule; the uncertainty inherent in its results
however required Statistics, rather than Mathematics, to provide the models
to describe and deal with phenomena — along with the tools for model
validation.

The widespread use of computers greatly simplified the tasks of acquiring

13

14 CHAPTER 1. INTRODUCTION

and managing data, in all fields as well as in medical research. Keeping
track of patients, collecting results of exams, recovering old records: all these
activities have become more easy and straightforward. Practical limits of
dealing with large amounts of data are still present — but the meaning
of “large” has radically changed, with a shift of many orders of magnitude.
The availability of internet connections facilitates the creation of multi-center
studies, further increasing the amount of information available for research.
At the same time, medicine itself has advanced, both by replacing previous
exams with more precise version, and by introducing new tests, which again
lead to an increase in information.

On one side, more data means more experimental evidence to test hy-
potheses on, and more confidence on the validity of conclusions. On the
other side however, the dimensionality of the data has increased along with
the quantity; out of the mathematical jargon, this means that not only in-
formation regarding many patients can be easily stored, but also that more
information about each patient is stored. This is also a requirement of mod-
ern medicine, more than a consequence of the presence of computers. Going
back to the experimental method, the task medical scientists are faced with
nowadays is much more complex: when the amount of available data grows,
and knowledge on the phenomenon is scarce, human intuition can fail to see
relationships and dependencies which would make good hypotheses.

Statistics offers some instruments to aid intuition, and help the scientist
formulate hypotheses (one of the most popular models in medicine is logistic
regression). These methods however are based upon simple, typically linear
models, which can be insufficient to properly capture the complexity of the
data. The derivation of statistics from mathematics is double-edged weapon:
it provides provably valid models, but is also limited to provide only those
models which are provable.

Differently from statisticians, computer scientists are accustomed to write
programs which show that they work, rather than prove it. Deriving from
Computer Science, Machine Learning follows this pragmatic approach: it
first shows evidence that its models produce correct results, and usually
only later attempts to provide proofs. This approach allows to experiment
with complex models, which are less mathematically tractable, but can find a
more precise description of the phenomenon being studied. This difference of
focus — provability versus effectiveness — is considered by some researchers
the core distinction between data analysis through statistics and machine
learning [133].

15

More traditionally, Machine Learning is defined as a discipline aimed at
making programs which learn from experience. In our setting, experience
comes from the data we want to analyze; the computer program is a ma-
chine learning algorithm which terminates with one (or more) hypothesis
explaining the data; improving with experience means that the algorithm
creates these hypotheses learning from the examples provided in the data.
It is important to stress the difference between learning and remembering:
the ML algorithms are always concerned with trying to produce a general
hypothesis, which should perform well also on unseen data, instead of simply
remembering all the examples without any level of abstraction.

Machine Learning can then be an important instrument for researchers,
providing empirically valid hypotheses which can then be statistically tested
and validated. Our algorithm was designed exactly with this aim in mind.

The HCS (Hypothesis testing with Classifier Systems) algorithm bor-
rows ideas from Statistics, Decision Trees [100], and Learning Classifier Sys-
tems [51]. HCS belongs to the class of supervised learning algorithms: it
needs a training set containing independent variables (also called attributes)
and dependent variables (also called target). A supervised learner assumes
that a relationship between the two sets is present; this is called the target
concept. The learner must produce an approximation of this concept by ex-
amining the data. HCS starts from the basic assumption (null hypothesis)
that the target variable is actually independent from the other variables; it
therefore builds an independent model of the target. The algorithm then at-
tempts to reject the independence hypothesis, by finding subsets of the data
which falsify this model.

Subsets of data are defined by classifiers. A classifier is a conjunction
of conditions on the values of the attributes; an example of a classifier is
x2 ≥ 10∧x4 ∈ {A, B}. If such a classifier identifies a subset of t elements, the
null hypothesis should guarantee that the distribution of the target of these
elements is the same as a completely random extraction of t elements from the
whole dataset. If this does not happen, the model postulating independence
between attributes and target is not valid, and must be corrected. The
amount of accordance between the actual extraction and the general model
is evaluated through the p-value of a statistical hypothesis test. The lower
the p-value, the higher the disagreement between our subset and the global
model, the more confident is rejection of the independence hypothesis. The
search for low p-value classifiers is performed through a genetic algorithm,
very similar in structure to the XCS [122] classifier system.

16 CHAPTER 1. INTRODUCTION

Once the region with lowest p-value is found, that is a region with max-
imum amount of disagreement with the global model, the data is split into
two subsets: the identified region, and the rest. The algorithm is then recur-
sively called on both subsets, mimicking decision trees’ divide-and-conquer
approach. Recursion stops when the amount of disagreement is not sufficient
to reject the null hypothesis. The independent model of the target is then
accepted as valid.

In the following, chap. 2 will introduce the main concepts of Machine
Learning, and briefly illustrate the most common methodologies. In chap. 3,
we will discuss the various data-analysis tasks possible in medicine, and illus-
trate the peculiarities and requirements of medical datasets, whic lead us to
develop HCS. Chapter 4 is dedicated at detailing the theoretical and prac-
tical structure of the HCS algorithm. Experiments upon real-world datasets
are carried over in chap. 5, where a few HCS variants are compared between
themselves, and with other ML approaches. We will summarize the work
done, draw conclusions, and sketch future research directions in chap. 6.

Chapter 2

Machine learning

2.1 Introduction

Machine learning is a very broad discipline; this is reflected in its textbook de-
finition, which typically is not much more than a tautological “[...] construct
computer programs which automatically improve with experience” [86]. The
word learning is used in its more proper sense of obtaining knowledge, as
opposite to simple remembering. This means that a machine learning algo-
rithm is always concerned with trying to build knowledge which will improve
its performance in future, unseen situations.

In the particular (but very frequent) setting of learning from examples,
experience is presented to the algorithm in form of a set of situations, for
which also the expected correct behaviour is provided. The algorithm then
is required not to simply remember all these situations, but to come out with
a generalization, which will be applicable also to unseen situations. For hu-
mans generalizing is quite natural, although it proves its limitations in many
occasions (the word itself can also be used with a slightly negative meaning).
Machine learning on this point is not different; in order for any generalization
to work, there are a priori assumptions which must hold, for instance about
the shape of the solution. These assumptions go under the name of inductive
bias. Inductive bias can be dangerous: too strong assumptions can prevent
the system to find the best answer. On the other side, it is necessary; with-
out any form of inductive bias, there is no rational support for classifying
any unseen situations, and the only thing a learning algorithm can do is to
remember past situations.

17

18 CHAPTER 2. MACHINE LEARNING

Often, training algorithms offer one or more parameters which can be ad-
justed, in order to select the desired amount of inductive bias. For instance,
in a simple polynomial fitting situation, the degree of the polyomial is such
a parameter: a higher degree allows many more function shapes to be rep-
resented. As noted before however, more complexity is not always desirable.
In particular, it can be shown (see e.g. [32]) that the error committed by a
training algorithm can be decomposed into three components: bias, variance,
and intrinsic. The last term comes from the inherent noise in the data, and
cannot be avoided. The first term is due to the algorithm learning a function
which is an approximation of the true underlying relationship. This error can
become lower with increasing model complexity. The second term is related
to the dependence of the final model upon the particular sample being used
as training. Its value increases as the model becomes more complex. This is
the bias-variance tradeoff: finding a good balance between a low-complexity
model, susceptible of underfitting the training data, and a high-complexity
model, able of perfectly representing data, but at risk of overfitting. Con-
sider again the polynomial regression. A set of 10 points following a linear
relationship can be approximated perfectly either by a straight line, or by a
10-degree polynomial, or by many higher-degree polynomials. In the latter
cases however the shape of the polynomials will greatly vary by changing the
sample of points from the original relationship: this is a case of overfitting.
Presence of noise in the data further exacerbates the problem. Model selec-
tion is generally tackled through regularization techniques, often paired or
replaced by validation techniques (as described in sec. 2.1.5).

Although machine learning is a relatively young discipline, it has devel-
oped a wide range of different algorithms, specific to various situations. A
classification of the algorithms along broad characteristics can then be useful,
although unavoidably approximative: often algorithms are modified in order
to overcome one of their limitation, or hybridized with another algorithm
in the attempt to exploit the strength points of both. In the following, we
will describe the most important characteristics of learning algorithm: the
task, the hypothesis space, and the search algorithm. From the next sec-
tion instead, we present some machine learning approaches. First we show
logistic regression, a rather simple method widely used in medicine. Then
we describe decision trees and Bayes networks, which have good descriptive
capabilities. Following, we discuss evolutionary algorithms and in partic-
ular XCS, which provide high flexibility. Finally we conclude with neural
networks and SVMs, appreciated for their high discriminative power.

2.1. INTRODUCTION 19

2.1.1 Task

The first broad distinction we can do regards the task we are called to deal
with. When we have dependent variables which we want to relate to a set
of independent variables, we speak of supervised learning; the term comes
from the idea of a teacher, telling the system what is the right answer for a
set of known input situations. In medicine this situation is quite frequent:
we could want to decide whether a person has or not a certain disease, how
high is the risk to develop oral cancer, or how long she will survive after a
surgical intervention. The teacher generally is just a table of data, containing
the expected answer along with the independent variables — although in
principle it could be anything: a human being actually classifying examples
for instance, or even another computer model.

On the other hand, in some situations we are actually looking for a dis-
crimination between the input situations, but lack the teacher. This setting
is called unsupervised learning; the general aim is to look for regularities in
data. One option we have is to group the input in sets of similar-looking
situations; in medical domain, for instance we could want to see if all the
people who achieved complete remission from leukemia form a homogeneous
set, or if we can find some distinct sub-groups within them, which would
point towards different remission causes. This task is solved by clustering
algorithms, like K-Means or SOM [64]. Another possibility is to look for
recurrent patterns in the data, that is associations between input variables.
As a trivial example, a system could re-discover that whenever a person has
influenza, she is very likely to have higher than average body temperature.

A third learning paradigm is called reinforcement learning ; this is the
problem faced by an agent that must learn behavior through trial-and-error
interactions with a dynamic environment. The agent can perform a set of
actions onto the environment; with each action, the environment changes
state, and the agent is given feedback through a scalar value, the reinforce-
ment signal. This is quite different from supervised learning, since the agent
is never told the “right” action to take, but must find it on its own. The
presence of the reinforcement signal differentiates the paradigm from straight
unsupervised learning. An excellent survey on the topic can be found in [63].

20 CHAPTER 2. MACHINE LEARNING

2.1.2 Hypothesis space

Mitchell in [85] describes learning as a search over a hypothesis space. When
trying to learn a certain concept, a hypothesis is the system’s attempt at
giving a definition; the space of hypothesis is made of all the definitions the
system is able to try. This choice depends both on the problem to be solved,
and on the kind of solutions we want to find. For instance, the hypothesis
space of logistic regression for a problem with n real inputs is

H =

fα,β(x) =
1

1 + eα+
∑n

i=1
βixi

∣

∣

∣

α ∈ R

βi ∈ R

f ∈ {Rn → [0, 1]}

≡ R
n+1

The hypothesis space of decision trees is the set of all rooted binary trees,
which have each node labelled with a single boolean condition of the kind
(xk ≷ v) (if all the input variables are real). The two spaces differ not only in
their size (the second is clearly much bigger), but also on the kind of function
they can express: the first ultimately defines an arbitrary hyperplane, while
the second builds a composition of hyperplanes parallel to the axes. It is clear
then that bigger is not necessarily better: a simple concept as x1 +x2 < v will
be easily discovered by logistic regression, and only roughly approximated by
decision trees.

Classifying hypothesis spaces is more complex, since many choices are
possible — depending both on the problem we want to solve, and on the
structure of the solution we want to obtain. The following distinctions are
given in no particular order, since each of them can be combined with each
of the others.

One distinction regards the expressiveness (we will also call this expressive
power) of the hypothesis space; in order to keep the discussion simple, this
can be imagined as the number of parameters we can adjust to fit the data
(there exist more rigorous definitions of the complexity of the hypothesis
space, like VC-dimension [119]). It is important to note that a simple model
is not necessarily worse than a complex one; both approaches have their
points of strength. The first deals with a smaller hypotheses space; finding
the best solution here is usually an easy task, and typically this solution does
not change with slight variations of the input data (small variance of the
model). However, such models have a quite strong bias : a small hypothesis
space is less likely to contain the real optimum solution, so it is impossible
for the system to find it. On the other side, variable-size models show great

2.1. INTRODUCTION 21

flexibility, and higher ability to find unexpected or novel solutions (they have
a smaller bias); this comes of course at the price of a greater variance, that
is a greater sensitivity of the model to the input data. Moreover, the bigger
the hypotheses space becomes, the more difficult it is to properly explore it;
while it probably contains good solutions, it is more difficult to find them.
Complex representations require then more data to properly orient learning
towards the best solution [15, 117, 120].

The second distinction we present is on the language of the hypothe-
ses, which can be more oriented towards logic (symbolic representation)
or towards numbers (sub-symbolic representation). A symbolic algorithm
generates rules which relate the outcome to some characteristics of the in-
put, performing comparisons and logical operations. An example of a sym-
bolic hypothesis in human-readable form could be “If sex is male and ei-
ther smoke is greater than 5 or exposure to pollutants is greater than 8,
then the probability to get oral cancer is 0.9”. On the other side, sub-
symbolic approaches deal only with numbers and mathematical functions;
in the same setting, such an approach could instead derive the formula
p = 0.76× sex + 8.12× smoke + 3.15× poll .

The symbolic approach has the strong advantage of being very close to
human reasoning: this generally makes the results readily understandable
by the researcher, which is very important in critical domains like medicine.
On the other side, sub-symbolic models are generally more flexible; their
mathematical nature can be exploited to explore cleverly the search space,
and to demonstrate properties of the found solution.

The last distinction we will note on the model regards deterministic and
stochastic models1. The first ones try to learn a direct function f : X → Y
from the space of inputs X to the set of outputs Y . Stochastic models instead
look for a probability distribution, namely P(y|x) (where x ∈ X and g ∈ Y).
Of course, the deterministic correspondent of a stochastic model can always
be obtained by simply taking the most probable outcome. The latter model
is then clearly more complex, and as usual more complex models need more
data to produce stable results; the choice here can then be guided by the real
need of a probabilistic estimate of the outputs, rather than a single choice.

There are other characteristics which can guide towards a hypothesis
space (and thus towards a ML algorithm), which are orthogonal to the vari-

1Note this is not the difference between discriminative and generative (or informative)
learning [103, 91]; the distinction we are doing is inside discriminative models.

22 CHAPTER 2. MACHINE LEARNING

ous discriminations cited so far. One is its interpretability. If the researcher
is more interested understanding the solution found by the algorithm rather
than using it for predicting unseen data, interpretability becomes a chief fac-
tor. However, this usually comes at the expense of flexibility and descriptive
power: systems which do not need to satisfy an interpretability constraint
can afford more complex representations.

Another important feature of ML algorithms is the ability to incorporate
prior knowledge into the learning process. Often the researcher has some
information on the data which could help learning, discarding trivial or in-
correct hypotheses; being able to convey this information to the algorithm
is certainly advantage. It is to be noted however that one of the points of
strength of ML against traditional techniques is its ability to propose solu-
tions on poorly understood domains.

2.1.3 Search algorithm

The last distinctive feature of a ML algorithm is the way it exploits the data
to search through the hypothesis space: this is called search algorithm (or
learning algorithm in some cases).

In the most simple situations it is actually possible to analytically deter-
mine the optimum solution given the data; more commonly however this is
not possible. A search algorithm is then necessary, which specifies how the
hypothesis space is to be explored. Search strategies can be described in gen-
eral terms, leaving some details to be specified with the particular structure
of the search space. These details typically include a relationship of “better
than” between hypotheses, and a way to generate neighbour hypotheses from
a given one (along with the definition of neighborhood).

The most simple search algorithm is exhaustive search. This involves
simply trying every hypothesis in the hypothesis space, and choosing the
best one. This method of course ensures optimality (and very often it is
the only one so reliable); unfortunately, it is unfeasible for all the non-trivial
cases, since the space is too big (or even infinite) to be explored completely
in a reasonable amount of time.

At the other end of the spectrum lie the Monte Carlo methods: these
algorithms choose a random subset of the space of hypotheses and explore
only that. Choosing the size of the sample is a very easy method to limit
the running time of search; of course, these methods generally do not offer
guarantees on the quality of the found solution with respect to the true

2.1. INTRODUCTION 23

optimum.
In order to reduce the time necessary to find a solution, several heuristic

methods have been developed. Best first search can be thought as a clever
way to perform an exhaustive search. A start point is chosen (at random);
then all of its neighbours (defined following a problem-dependent neighbor-
hood criterion) are ordered according to the “better than” relationship, and
recursively visited. With this strategy, most promising paths are followed
first, and then progressively worse-looking parts of the space are explored.

In order to cut down the complexity of this search, beam search explores
only the best n solutions at each step. This however does not guarantee any
more that the best solution will sooner or later be found; so often n is taken
as 1, which is the case of hill climbing. In continuous domains (like in neural
networks), this algorithm makes use of gradient descent techniques.

While at first glance this seems a much better solution than random or
exhaustive search, it has some drawbacks. Often there is no clear definition
of neighboring solutions — or when there is one, the set could be too big
or infinite to be explored exhaustively. The main drawback however is that
this strategy is deceived by local optima, that is solutions which are best of
their neighborhood, but not the global optimum; in complex representations,
this is a serious problem, also because there is no guarantee on the actual
distance to the true optimum. This problems tend to be mitigated with other
heuristic techniques, like restarting (performing several times hill climbing,
each time with a different start point).

Finally, Evolutionary computation is a relatively new search paradigm
which promises to overcome these limitations, but at the price of introducing
variability in the final solution (the algorithm makes probabilistic choices,
resulting in executions with the same input and starting point are not to
be guaranteed to produce the same output). EC and genetic algorithms are
better described in following sections.

2.1.4 Evaluation

A crucial issue in machine learning is performance evaluation. This means
defining one or more synthetic measures which summarize the behaviour of
the model — in other words, how much the model corresponds to the data.

In a classification task, the most immediate performance measure is ac-
curacy, that is the fraction of instances correctly classified. But this is far
from giving us all the information we could need. As an example, in a clini-

24 CHAPTER 2. MACHINE LEARNING

predicted
positive negative

actual
positive TP FN
negative FP TN

Table 2.1: A confusion matrix.

cal context, if we want to classify ill patients against healthy ones, it is very
relevant if a test misclassifies an ill patient as healthy or viceversa, but this
is something crude accuracy does not take into account.

In this chapter we will examine some performance measures, especially
those most commonly used in medical applications, and we will consider the
most widely used methods of estimating them.

Confusion Matrix

Consider a binary classification problem (with only two classes: positive and
negative) on a dataset of N examples. In this case, a confusion matrix is
used as a basis for performance evaluation.

The fields of the confusion matrix shown in Table 2.1 contain the numbers
of examples of the following four subsets:

True positives (TP): True positive answers denoting correct classifica-
tions of positive cases.

True negatives (TN): True negative answers denoting correct classifica-
tions of negative cases.

False positives (FP): False positive answers denoting incorrect classifi-
cations of negative cases into positive class.

False negatives (FN): False negative answers denoting incorrect classifi-
cations of positive cases into negative class.

In the fields of the confusion matrix, for the convenience of computation,
the absolute numbers may be replaced by the relative frequencies, e.g. TP
by TP

N
. This may be more convenient when relative frequencies are used as

probability estimates.

2.1. INTRODUCTION 25

Standard Performance Evaluation Measures

The classification accuracy is the most popular performance evaluation mea-
sure used in predictive knowledge discovery where the goal of learning is
prediction or classification. The classification accuracy measures the propor-
tion of correctly classified cases. In binary classification problems using the
confusion matrix notation, the accuracy is computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

N
(2.1)

Sensitivity is a measure frequently used in medical applications. It mea-
sures the fraction of actual positives that are correctly classified. In medical
terms, maximizing sensitivity means detecting as many ill patients as possi-
ble.

Sensitivity =
TP

TP + FN
(2.2)

This measure is identical to recall known from information retrieval (recall
of positive cases).

Specificity is the parallel of sensitivity for negative cases (it is also called
the recall of negative cases):

Specificity =
TN

TN + FP
(2.3)

Maximizing specificity is equivalent to minimizing the false alarm rate, where
FalseAlarm = 1−Specificity = FP

TN+FP
. In medicine, this measure is aimed

at minimizing the fraction of healthy patients declared as ill.
Specificity and sensitivity are extremely important in medical applications

because they correctly differentiate between the two types of errors (FP and
FN), which usually have very different implications. In a screening test for
HIV for instance, a false positive result can be easily detected through the
further tests the patient will undergo. A false negative will instead delay cures
until the disease becomes clinically evident, therefore possibly impairing the
effectiveness of medications. Notice that it is usually difficult to design a
medical test with both high specificity and sensitivity. The doctor must
therefore choose the most appropriate test, based upon his aims.

A further point of interest of the two measures is their theoretical inde-
pendence of the prior probability of being positive (the prevalence). Their
estimates will therefore be correct, regardless of possible differences in preva-
lence between the estimate set and the application.

26 CHAPTER 2. MACHINE LEARNING

Once specificity, sensitivity and apriori prevalence have been estimated,
the probability of an instance being positive given that the test classifies
it as positive can be calculated through the Bayes’ theorem. This value
is called positive predictive value, which along with the negative predictive
value describes the performance of a classifier over a population of known
prevalence. Calling A the “actually positive” event, and B the “classified
positive” event, the formula is

ppv = P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B| ∼ A)P(∼ A)

=
sns× prv

sns× prv + (1− spc)× (1− prv)
(2.4)

To exemplify, suppose a medical test has been estimated to have 95%
specificity and 99% sensitivity. If the general prevalence of disease is 0.1%,
the probability of a patient to be ill given that the test reports him as ill is

.99×.001
.99×.001+.05×.999

≃ 2%. Although the sensitivity appears quite high, the test
is still insufficient to declare the patient ill with any reasonable degree of
certainty. On the other side, if the patient apriori risk is higher (for instance,
an hereditary disease already present in his family), the test can become
more decisive. If the apriori risk is prv = 15%, we obtain ppv ≃ 78%.

ROC curves

A further use of sensitivity and specificity values is to plot a receiver operat-
ing characteristic (ROC) curve [35]. Some tests produce a continuous-valued
output; in order to produce a binary classification, a threshold on this value
is applied, which discriminates positive from negative instances. Different
thresholds will clearly produce different predictions, and consequently differ-
ent sensitivity and specificity values. The ROC curve is the plot of sensitivity
against 1 - specificity for each possible threshold value.

Fig. 2.1 shows the ROC curves corresponding to three different tests. The
first one plots on the 45-degree diagonal through the origin. This curve corre-
sponds to a classifier with no information content, giving predictions equiva-
lent to completely random. Instead the ROC curves for the other tests, have
a shoulder closer to the upper left-hand corner of the plot (higher sensitivity
and specificity), thus they are better classifiers. The perfect classifier would
produce a plot along the left and top borders of the graph.

2.1. INTRODUCTION 27

1 - Specificity

0.0 0.2 0.4 0.6 0.8 1.0

S
en

si
tiv

ity

0.0

0.2

0.4

0.6

0.8

1.0

Test I
Test II
Test III

Figure 2.1: Examples of ROC curves.

The ROC curve is of great interest in visualizing the discriminatory accu-
racy of a test. If the ROC curve of a test is always above another curve, the
former test is always more precise in discriminating positive from negative
instances, regardless of the global prevalence.

Another measure of interest coming from the ROC curve is the area un-
der the curve (AUC or AUROC). This value is between 0.5 (random classi-
fication) and 1.0 (perfect classification), and can be used to summarize the
performance of a classifier in a single figure. The value can be interpreted as
the probability that a random negative instance will be ranked lower than a
random positive instance. Although its use has been advocated [18], it is still
not very popular in the Machine Learning community. A clear exposition of
ROC curves and their use is given by [39]. Webb and Ting [121] present an
interesting discussion on the applicability of ROC curve analysis to changing
class distributions.

28 CHAPTER 2. MACHINE LEARNING

Brier score

The Brier score [20] is another well-known measure of performance of a model,
which is more precise than accuracy when the algorithm produces risk esti-
mates, rather than simple classification. If positive and negative instances
are labelled with 1 and 0 respectively, the Brier score can be expressed as

1

#D

∑

i∈D

(y(d)− f(d))2 (2.5)

where y(d) is the original target value, and f(d) is the probability of d being
a positive instance as estimated by the model. Similarly to accuracy, the
Brier score ranges from 0 to 1, but here lower values correspond to better
models.

Relationship between performance measures

Accuracy is by far the most common, and most simple, evaluation criterion
in Machine Learning. When the goal of a learner is simply to predict a
boolean target value, accuracy appears well-suited. However, it has at least
two major drawbacks [98]:

• It treats equally misallocation costs. The two types of error (assigning
a positive instance to the negative class, and vice-versa) normally have
very different implications. In many cases, one kind of error is much
more tolerable than the other kind; treating both errors equally is a
simplification which is rarely guaranteed to hold.

• It is based upon the dataset prevalence. The amount of positive and
negative data in the dataset is not necessarily reflecting the expected
real-world prevalence. An algorithm maximizing accuracy is therefore
not guaranteed to maximize accuracy also when tested on real-world
data, where the prevalence may radically differ.

Analysis of the ROC curve solves these two issues. If the curve of a classifier
is always above the curve of another one, the former will perform better
than the latter, regardless of the particular prevalence or misallocation costs.
Analyzing the curve is however problematic when many classifiers must be
compared, or when measuring performance relative to results reported in
literature. The area under the ROC curve is then a summary measure which

2.1. INTRODUCTION 29

can provide the advantage of independence from particular prevalence or
misallocation costs. It is however to be noticed that a greater AUC does not
imply that one curve is always below the other.

Accuracy and AUC are measures which focus on the discrimination power
of a classifier — that is, its ability to differently rank positive and negative
instances. The Brier score is instead focused on the correct calibration of
the forecasts. In a probabilistic environment, where the target cannot be de-
cided with complete certainty, a model with lowest Brier score is one which
predicts accurately the probability of each instance to be positive or nega-
tive. The Brier score however suffers from the same drawbacks as accuracy.
The relationship between Brier Score and AUC can be specified under some
assumptions, particularly regarding the correct calibration of the model [61].
In general however this is not possible, since AUC is invariant under order-
preserving transformations, while Brier score is not. It can be important
therefore to evaluate both performance measures.

2.1.5 Validation

As every machine learning researcher knows, the true performance of an al-
gorithm should not be evaluated on the same data it was trained on. Doing
so leads to optimistic results, with the amount of “optimism” hardly quan-
tifiable. As an extreme example, a model could simply store all the data it
was provided with. It would then show perfect performance on already seen
data, but would be unable to make any inference on new data. Validation
is concerned with predicting the performance of the model on unseen data
coming from the same distribution, i.e., its ability to generalize.

To obtain an unbiased estimate of performance, the standard procedure
is to employ two datasets (coming from the same distribution): training set
and test set. During training, the algorithm can only make use of the data
in the training set. Once a model is obtained, its performance is evaluated
upon the data contained in the test set.

The split can be completely at random, or stratified. In this latter case,
the division is performed still at random, but in such a way that both the
subsets contain approximately the same distribution of the target as the
complete dataset.

This approach is generally feasible only when data is abundant. This
is because two competing goals must be reached. First, it is quite obvious
that showing less data to the training algorithm can impair its performance,

30 CHAPTER 2. MACHINE LEARNING

and its ability to generalize. The training set should therefore be as large as
possible. On the other side however, data in the test set must be abundant
too: a estimate on a small sample will have a very high variance, thus making
the estimate less reliable.

When there is not enough data to allow splitting into two subsets without
impairing performance, a k-fold cross-validation procedure can be used. The
whole dataset is split into k subsets, of equal size (or very similar, if equal
is not possible). The training process is then repeated k times. At each
repetition, one of the folds is removed from the data, and the algorithm
is trained upon the remaining folds. The obtained model is then tested
with the data in the secluded fold. Finally, the performance value for the
algorithm is obtained by recombining all the results obtained on each fold, on
the execution where it was not included in the training set. Also the k-fold
cross-validation can be stratified, by forcing every fold to have similar target
distribution to the complete dataset.

Estimates based upon a single split (either training/test or cross-validation)
will show a certain amount of variance, due to the particular choice of the
split. Further, some algorithms are not deterministic, but stochastic — mean-
ing that they can produce different results when applied to the same data.
In order to smooth these sources of variability, it is necessary to run multiple
tests with different fold splits, and to average the performance across all the
tests.

Although cross-validation can be applied also when data is abundant, the
simple training/test split is usually preferred [31], for two reasons: it’s much
faster (a single model is trained, instead of k), and it’s easier to perform
statistical inference on the results.

Model selection and validation

Validation methods are often applied to give an empirical answer to the bias-
variance tradeoff, or more generally to perform model selection. For instance,
a typical pruning method in decision trees (see sec. 2.3) chooses the nodes to
discard by examining the performance of the tree estimated on a validation
set. It is not uncommon for Support Vector Machines to perform several
training sessions, with different combination of hyperparameter values, and
to choose the one which generalized most by estimating the performance
upon a separate data set.

It is important to recognize that the same data cannot be used both for

2.2. LOGISTIC REGRESSION 31

model selection and validation. In order to obtain a truly unbiased estimate
of the performance of a model, it is necessary to test it on data which has
never been used — neither for training, nor for model selection. To this
aim, the validation methods can be nested. In the decision tree example for
instance, we could split the whole dataset into three parts. The first one is
used for training; the second one is required for choosing the nodes to be
pruned. The performance of the model is finally estimated over the third
part.

Cross-validation can be nested too, for instance with the following algo-
rithm:

• Split the dataset D into k1 equal-size subsets, s1, . . . , sk1
.

• For each i ∈ k1

– Create D′
i = D \ si

– Split D′
i into k2 equal-size subsets, ti1, . . . , tik2

– For each j ∈ k2

∗ Train the algorithm on D′′
ij = D′ \ tij

∗ Obtain model Mij

– Choose the model selection parameters by evaluating each Mij

upon tij

– With these parameters, train the algorithm on D′
i and obtain

model Mi

• Estimate the overall performance by evaluating each Mi upon si

Once the performance estimate has been obtained, the final model on
all the data can be build by applying a single cross-validation for model
selection.

2.2 Logistic Regression

One of the most common data analysis methods in medicine is logistic re-
gression (LR) [59]. Logistic regression is usually not considered a Machine
Learning algorithm, since it originates from the field of Statistics. However,

32 CHAPTER 2. MACHINE LEARNING

the procedure perfectly fits inside the supervised learning paradigm — and
LR in fact can be seen as a very simple neural network model [106].

Logistic regression is used to describe a categorical output variable from
input variables. The output typically has just two possible outcomes (di-
chotomous variable), which describe the presence or absence of a certain
condition (a certain disease, for instance), and are labelled with 0 and 1.
The theory is however extensible to more than two outcomes.

We could simply treat this data as real-valued data: it is sufficient to
substitute the classes with distinct real values (0 and 1 are the most practical
choice). The data could now be analyzed with regression methods — linear
regression, for instance. With these methods however our prediction would
span over all of R, instead of only 0, 1.

The goal of logistic regression is to constrain the output in the range [0, 1],
while maintaining a linear relationship with the input; moreover, it works on
the probability to have a certain output given an input, giving rise to useful
interpretations of the results.

The model is based on the following equation:

P(G = 1|X = x) =
1

1 + eα+βx
(2.6)

where α is a scalar, and β is a vector; X is the input vector, while G is
the outcome. Since we want to build a probabilistic model, the relationship
P(G = 0|X = x) + P(G = 1|X = x) = 1 holds. We can then rewrite
equation 2.6 as

log
P(G = 1|X = x)

P(G = 0|X = x)
= α + βx (2.7)

The quantity on the left of this equation is the log-odds of class 1 with
respect to class 0: without the log, this ratio describes how much the outcome
is more likely to be present (class 1), given that the input is x.

Least mean squares (LMS) fit is not appropriate in this problem: the
dependent variable is not continuous, so the desirable properties obtained
with LMS do not hold (mainly because the error on the target variable is
not normally distributed). The α and β parameters are then fit through
maximum likelihood. This criterion chooses the model which explains the
data with maximum probability — that is, the model which maximizes the
quantity P(G|X). A rather simple derivation shows this model is the one
which maximizes the quantity

2.3. DECISION TREES 33

L(α, β) =
N

∑

i=1

{

yiβxi − log (1 + eα+βxi)
}

(2.8)

where xi is the i-th input vector, and yi is its class (0 or 1). This value can
be easily maximized with standard numerical methods (the Newton-Raphson
algorithm, for instance).

The usefulness of logistic regression is not only in building a model which
can predict unseen data, but also in the interpretation of the found coef-
ficients. An important quantity relative to the input variables is the odds
ratio; let’s see for instance what this means for a single dichotomous input
variable, xj ∈ {0, 1}. In this context, the odds ratio is defined as the ratio of
the odds for xj = 1 to the odds for xj = 0:

ORj =

P(G = 1|xj = 1)

P(G = 0|xj = 1)

P(G = 1|xj = 0)

P(G = 0|xj = 0)

= eβj (2.9)

This quantity describes then how much the outcome is more likely when
the input condition is present (xj = 1) with respect to when the input con-
dition is not present (xj = 0). This value is then clearly very important in
deciding how much an input variable is influent on the final outcome.

If the input variable is continuous instead of dichotomous, the formula
is actually quite similar: the odds ratio for an increase of c units on the
continuous variable xj is

ORj =

P(G = 1|xj = v + c)

P(G = 0|xj = v + c)

P(G = 1|xj = v)

P(G = 0|xj = v)

= ecβj (2.10)

2.3 Decision Trees

Decision trees [100, 19] are popular tools for classification and prediction. The
models produced by decision trees combine high expressive power, allowing
a wide variety of functions to be represented, with immediate readability:

34 CHAPTER 2. MACHINE LEARNING

the model is readily understandable by humans. Their main application is
therefore in all those situations where the ability to explain the reason for a
decision is crucial.

In a decision tree, internal nodes contain tests on the values of the at-
tributes, with one branch and subtree for each possible outcome of the test.
Leaves contain instead a classification value. A sample is classified by start-
ing at the root of the tree, and following the branches where conditions on the
attributes are fulfilled; when a leaf is reached, it provides the classification
of the sample.

While this tree structure is common to all variants of decision trees, there
can be differences in many areas:

• Node shape: the algorithm must describe what kind of conditions can
be inserted into a node. The usual choice is to have a test on the value
of a single attribute in each node. The outcome of the test can be
binary, or multi-valued.

• Learning algorithm: each decision tree algorithm must specify the steps
to be taken in order to decide which conditions to put at each node, and
the overall shape of the tree. Usually, a greedy algorithm is applied,
where the tree is recursively built in order to maximize at each step
the value of a selection measure.

• Selection measure: most algorithms require a function which compares
the “goodness” of the possible alternatives for node tests, in order to
choose the best one. Common choices are entropy-related functions,
and statistics (typically χ2) related functions. [84] and [22] provide an
empirical comparison of various measures.

The typical decision tree construction algorithm starts with the empty
tree, and all the training data. For each attribute, all the possible tests
are evaluated; each test will produce a split in the training data. Consider
for instance a simple boolean test, in a boolean classification task. If the
initial data had P positive instances and N negative instances, two groups
will be created after the split: the first group, fulfilling the test condition,
with p1 and n1 positive and negative instances; and the second group, with
p2 = P − p1 positive instances, and n2 = N − n1 negative instances. The
selection measure used by the common ID3 and C4.5 algorithms [100] is

2.4. BAYESIAN BELIEF NETWORKS 35

based upon the entropy function:

E(p, n) = −
p

p + n
log2

p

p + n
−

n

p + n
log2

n

p + n
(2.11)

The selection measure evaluates the previous split through the informa-
tion gain measure:

I(P, N, p1, n1) = E(P, N)−E(p1, n1)− E(p2, n2) (2.12)

This value is aimed at obtaining splits with high purity — meaning that the
two sides should contain as much as possible instances with equal target.
The information gain for all possible tests is therefore calculated, and the
test with highest value is chosen as the root of the tree. The construction
now proceeds recursively. The original training data is split according to
the chosen test; the splitting algorithm is then recursively applied on both,
obtaining a new test split which goes at the first level of the tree — and so
on.

There are several criteria for stopping the recursion; clearly, once a subset
contains only instances with equal target, it is pointless to further split it.
However, often such a situation is reached too late, and causes the tree to
overfit the data. This problem is usually addressed through pruning methods,
which cut unnecessary branches of the tree after the building algorithm has
terminated. A review of pruning methods can be found in [37]. A more
general review of the research on decision tree is reported in [88].

Decision tree induction counts numerous applications in medicine, among
which those described in [132, 67, 68].

2.4 Bayesian Belief Networks

Bayesian belief networks are powerful tools for modeling causes and ef-
fects [93]. They are compact networks of probabilities that capture the prob-
abilistic relationship between variables. Bayesian belief networks are very
effective for modeling situations where some information is already known
and incoming data is uncertain or partially unavailable (unlike rule-based or
“expert” systems, where uncertain or unavailable data results in ineffective
or inaccurate reasoning). These networks also offer consistent semantics for
representing causes and effects (and likelihoods) via an intuitive graphical
representation. Because of all of these capabilities, Bayesian belief networks

36 CHAPTER 2. MACHINE LEARNING

are being increasingly used in a wide variety of domains where automated
reasoning is needed.

A belief network is a directed acyclic graph (DAG) which encodes the
causal relationships between particular variables, represented in the DAG
as nodes. Nodes are connected by causal links pointing from parent nodes
(causes) to child nodes (effects).

As an example, a Bayesian network for diagnosing diseases may have a
causal link from the node “cold” to “sneezing”. This encodes the causal
relationship “sneezing is caused by a cold”. A node can have any number of
parents; the nodes “hay–fever” and “allergies” may also point to the child
node “sneezing”.

The advantage of using conditional probability and belief networks over
a joint probability distribution is that information is represented in a more
understandable and logical manner, making construction and interpretation
much simpler.

Nodes with one or more parents require their conditional probability dis-
tribution to be provided by way of a conditional probability table, which spec-
ifies the conditional probability of the child node being in a particular state,
given the states of all its parents: P(child|parent1, parent2, . . . , parentN).
A conditioning state is used to specify the states of all the parents when
specifying an entry in the child node’s conditional probability table. Nodes
without parents only require a prior probability distribution, P(node).

As mentioned earlier, the conditional probability is a summarized form of
the joint probability distribution. The relationship between joint and condi-
tional probability is shown in Equation 2.13, where the function Parents(Xi)
represents the set of nodes with causal links directed into the node Xi.

P(X1, X2, . . . , XN) =
N
∏

i=1

P(Xi|Parents(Xi)) (2.13)

The output of a Bayesian network employed in a classification task is
naturally stochastic, since it corresponds to the probability distribution of
the output variables.

Before evidence can be added and beliefs extracted from a Bayesian net-
work, it must first be created. This can be done following different ap-
proaches. In many cases, the initial design of the network requires the help
of an “expert” to specify the correct causal relationships, whilst the condi-
tional probabilities are determined by an algorithm using training data. A

2.5. EVOLUTIONARY COMPUTATION 37

substantially more complex algorithm may even be able to determine the
causal relationships between variables and therefore automatically generate
an appropriate network structure.

Bayesian networks have been used in medicine for many years and have
demonstrated to be well-suited for handling the uncertain knowledge involved
in establishing diagnoses of disease [50], in selecting optimal treatment al-
ternatives [78], and predicting treatment outcome in various different ar-
eas [118]. Examples include the use of Bayesian networks in clinical epidemi-
ology for the construction of disease models [2] and within bioinformatics for
the interpretation of microarray gene expression data [44]. However appli-
cations show that they are mostly successful when they can exploit previous
knowledge and a large amount of data is available. In other cases other
methods can be more efficient.

2.5 Evolutionary computation

Genetic Algorithms date back to 1975, when Holland introduced them [51]:
after that, the original proposal expanded into a whole research field called
evolutionary computation. The evolutionary keyword is of primary impor-
tance to understand how they work: in fact, much of the inspiration is taken
from Darwin’s evolution theory.

A genetic algorithm works not with a single hypothesis, but with a pop-
ulation of competing hypotheses (which in the GA jargon are called indi-
viduals). Like in nature, better individuals have greater choices to survive,
and to propagate their genetic makeup to their children. In nature, “bet-
ter” is related to the ability to find food, escape predators, and mate; all
together, this measure of fitness is dependent on the level of adaptation of
the individual to the environment it lives in.

In evolutionary computation, since every individual is a hypothesis, its
fitness is related to how well the hypothesis explains (fits) the data. A genetic
algorithm starts typically with random hypothesis; some of them will casually
have a better-than-average fitness, and will have greater chances to survive,
and evolve towards even better solutions.

But how is evolution achieved? In nature, evolution comes from the com-
bined action of random variations, and selection pressure. GAs again parallel
this behaviour, providing two sources of variation: mutation and crossover.
When an individual is selected for survival, it has two possibilities to carry

38 CHAPTER 2. MACHINE LEARNING

its genetic makeup to the next generation: sexual and asexual reproduction.
In the first case, the individual mates with another selected one; two new
individuals are created, constituted by a random recombination of the ge-
netic makeup of the parents (crossover). In the second case, the individual
is “cloned” to the next generation. In both cases there is a small chance of
a mutation happening during the process; mutations are the only variation
mechanism in asexual reproduction. It is important to note that the sin-
gle individual cannot change its genotype, or in other words learn: learning
comes from the adaptation of the whole population through generations.

As regards selection pressure in GA, a few options exist; the common
factor is that higher-fitness individuals have greter chance to reproduce. In
fitness proportionate selection, each individual has a probability to be se-
lected equal to its fitness, divided by the sum of the fitness value of all the
individuals. This mechanism is simple, but has the disadvantage of being
dependent on the scale of fitness values. For instance, consider a population
with average fitness value of 1; an individual with fitness 2 will have twice the
probability to be selected with respect to the average individual. If however
the average fitness was 11, an individual with fitness 12 would have selection
probability very close to the average — while maintaining the same absolute
fitness improvement. Tournament selection escapes this problem. In its most
general form, it involves two parameters: t ∈ {2, 3, . . .} and p ∈ [0, 1]. When
an individual must be selected, t are chosen at random from the population,
and sorted in decreasing fitness order. The first individual is then returned
with probability p, the second with probability p(1−p), the third with prob-
ability p(1 − p)2, and so on, until the last which is chosen with probability
(1 − p)t−1. Since the rank matters, rather than the absolute fitness value,
this method does not have the drawbacks of the former. It however requires
two parameters to be chosen (although the p value is commonly taken as 1).

The problem-solving power of genetic algorithms has been ascribed to
two main factors:

• Ability to escape local minima. Using a population instead of a
single hypothesis, and allowing also lower fitness hypotheses to survive
(although with a lower chance), gives genetic algorithm the chance to
avoid getting trapped in local minima.

• Building blocks. The crossover method could allow to take the good
parts of two average-fitness solution and combine them, resulting in a
good advance in fitness. This issue is however still quite debated, and

2.6. LEARNING CLASSIFIER SYSTEMS 39

certainly depends greatly on the problem, and on the representation of
individuals.

2.5.1 Implementations

Evolutionary computation, as we just described it, is only a search algorithm.
In order to obtain a complete ML algorithm it is necessary to specify the
shape of individuals, and the mutation and crossover operators. This leads
to varying degrees of expressiveness and almost arbitrary shaped hypotheses.

In the original Genetic Algorithms for instance, individuals are structured
as sequence of bits, which the learning algorithm interprets in order to build
the solution [46]. GAs have been widely used in medicine, often in combi-
nation with other machine learning techniques — like neural networks, or
Bayes networks. See for some examples [130, 92, 62].

In Genetic Programming [66] instead, individuals are mathematical func-
tions or computer programs, which are themselves a solution to the problem.
The first is more suited to problems where the structure of the final solution
can be decided a priori, before searching it. The latter is on the other side
much more flexible, finding itself the structure of the final solution given only
the basic building blocks; this comes at the usual price of more variance in
the results, since the search space is much bigger. For examples of using GP
in medicine, see [96, 47].

2.6 Learning Classifier Systems

Learning Classifier Systems (LCS) [52] exploit the ability of the Genetic Al-
gorithm at their heart to search efficiently over complex search spaces. In
a Learning Classifier System each individual is basically a production rule,
providing a level of readability that is rarely found within subsymbolic ap-
proaches without the need for additional post-processing. LCS combine rein-
forcement learning, evolutionary computing and other heuristics to produce
adaptive systems. They maintain and evolve a population of classifiers (rules)
through the genetic algorithm. These rules are used to match environmental
inputs and choose subsequent actions. Environment’s reward to the actions
is then used to modify the classifiers in a reinforcement learning process.
When used to classify, the set of rules provides a deterministic answer.

40 CHAPTER 2. MACHINE LEARNING

2.6.1 XCS

XCS is an evolution of Learning Classifier Systems proposed by Wilson [122,
123] which demonstrated to perform very well in comparison to other machine
learning techniques [4]. XCS introduces a measure of classifiers’ fitness based
on their accuracy, which is defined as the reliability of their prediction of the
expected payoff; this definition is different from traditional LCS systems,
where fitness is based directly on the payoff. A second chief difference is that
the GA is applied only on the action set, the subset of classifiers which leads
to the choice of the action. The combination of these two characteristics gives
the system a strong tendency to develop accurate and general rules to cover
problem space and allow the system’s “knowledge” to be clearly seen. In the
following we provide a brief description of XCS. For full details, see [26].

The core component of XCS is a set of classifiers, that is condition-action-
prediction rules, where the condition specifies a pattern over the input states
provided by the environment, the action is the action proposed (e.g. a
classification), and the prediction is the payoff expected by the system in
response to the action. Additionally each classifier has associated an estimate
of the error made in payoff predictions, and a fitness value.

XCS implements a reinforcement learning process: at each step the sys-
tem is presented a sample from the data set and it examines its set of classi-
fiers to select those matching the input situation. These classifiers form the
match set. Then for each possible action the system uses the fitness–weighted
average prediction of the corresponding classifiers to estimate environmental
reward. At this point, the XCS can choose the best action looking for the
highest predicted reward. However, during learning, the action is usually se-
lected alternating the previous criterion with random choice, useful to better
explore the problem space. The actual reward returned by the environment
is then used to update the classifiers in the action set, i.e. the subset of the
match set corresponding to the selected action. A genetic algorithm is also
executed on this set to discover new interesting classifiers.

To reduce the number of rules developed, XCS implements various tech-
niques, such as the use of macroclassifiers, the subsumption and the deletion
mechanisms. In fact the system uses a population of macroclassifiers, i.e.
normal classifiers with a numerosity parameter, representing the number
of their instances (microclassifiers). This helps in keeping track of the most
useful rules and improves computational performance at no cost.

Subsumption is used to help generalization: when the GA creates a new

2.6. LEARNING CLASSIFIER SYSTEMS 41

classifier whose condition is logically subsumed by one of its parents (i.e.
matching a subset of the inputs matched by the parent’s) it is not added to
the population, but the parent’s numerosity is incremented. A similar check
is also occasionally performed among all the classifiers in the current action
set.

Finally the deletion mechanism keeps the number of microclassifiers under
a fixed bound. The classifier to be removed is chosen with a roulette wheel
selection biased towards low–fitness individuals and assuring approximately
equal number of classifiers in each action set.

As already stated this process leads to the evolution of more and more
general rules. For each classifier we can define a measure of generality fol-
lowing [126], ranging from 0 (most specific) to 1 (most general). A possible
termination criterion is to stop evolution when the average generality value
of the population gets stable.

Missing values

Missing values in the dataset are a common issue in classification problems,
leading to a degradation of the performance of essentially every classification
technique. Many machine learning algorithms do not natively deal with
missing data, and require all values to be present. In such cases, two options
are usually followed. The simplest choice is deletion: either the instances
containing missing data (case-wise deletion), or the attributes (attribute-
wise deletion) are removed from the dataset — whatever causes lower loss
of information. A more complex option is imputation: the missing value
is replaced with a statistically meaningful value. This latter option can be
implemented with varying degrees of sophistication; see [104] for a more
detailed approach to the problem.

The traditional way of dealing with missing data in LCS is to treat the
missing value as a wildcard. Tests performed on a missing value will therefore
always pass, regardless of the content of the test [56]. With this approach,
a sample with missing data will be matched by all classifiers which could
match it, if it was complete. Other possibilities reported in literature involve
some form of imputation [58].

42 CHAPTER 2. MACHINE LEARNING

Data type integration

Another key aspect of XCS is the ease of integration of different kind of data.
In fact, whilst the original formulation of XCS is targeted to binary input,
the shift to other data types, such as real or integer ones, has already been
proved to be very easy (see respectively [126, 124]).

Ruleset reduction

During learning XCS tends to evolve an accurate and complete mapping of
condition-action-prediction rules matching the data. Consequently, in par-
ticular on very sparse data set, the final number of rules is quite high. Similar
problems, which break the knowledge visibility property, were experienced
in various studies on “real” data sets [126, 125]. These works suggest to let
the system evolve many steps after reaching the maximum performance, and
then to extract a small subset of rules which reach the same performance
level using the Compact Ruleset Algorithm (CRA), first proposed by Wilson
[125].

2.6.2 EpiCS

The EpiCS system is a Learning Classifier System designed for knowledge
discovery in epidemiologic surveillance [55]. Having a common ancestor with
XCS (the NEWBOOLE system [16]), the two systems share many charac-
teristics. The primary difference is that XCS is accuracy-based, while EpiCS
is strength-based. Briefly, with the latter system rule fitness is based upon
the amount of reward the rule receives from the environment; in the for-
mer system, fitness is based upon the precision with which the rule predicts
the reward it will receive. They use different heuristics for fitness calcula-
tion, and EpiCS implements explicit methods for controlling over- and under-
generalization which are implicit in XCS.

The most interesting difference however regards the ability of EpiCS to
produce risk estimates, rather than simple classification. EpiCS calculates
risk estimates for an instance through the proportion of classifiers in that
instance’s match set bearing the same class prediction. This idea has the
advantage of being easily adaptable to many LCS systems: in fact, it has
been employed in the XCS system, creating the EpiXCS algorithm [57]. It
has however the drawback to complicate understandability of the system

2.7. NEURAL NETWORKS 43

decision, since the risk estimate is demanded to a diverse set of rules for each
instance.

2.6.3 UCS

UCS [9] is a derivation of XCS tailored for an explicit supervised learning
setting. The main difference with XCS regards the definition of fitness. In
UCS, fitness of a classifier is directly based upon the estimated precision of its
class prediction. The concept of reward is still present, but only the classifiers
able to score on average high reward will have a high fitness, and thus be able
to survive the evolutionary process. In XCS instead, it is sufficient that the
classifier correctly predicts its expected reward — even if this is consistently
low — in order to reach high fitness. UCS will then generate a best action
map, while XCS produces a complete action map.

2.7 Neural Networks

Neural networks currently represent one of the most powerful and general
models developed by Machine Learning [49, 10]. Their high flexibility allows
them to be successfully applied in several domains, including regression, clas-
sification, and pattern recognition problems. Many real-world datasets have
been analyzed with Neural Networks, obtaining performances often at the
state of the art in the Machine Learning community. An interesting survey
on the application of NN to medical analysis, both for diagnosis, prognosis
and survival analysis functions, is provided in [71].

Neural networks take inspiration from studies of the structure of neurons
in the brain. A networks is made of a set of interconnected neurons. The
structure of the connections defines the topology of the network; the most
common and studied structure is the multi-layer feedforward network. Here
the neurons are organized in ordered layers; each neuron receives inputs from
the neurons in the previous layer, and sends outputs to the neuron in the
following layer. The first layer it the input layer, which receives data from
the dataset. The last layer is the output layer, which provides the results.

Each neuron performs a relatively simple calculation, by summing the
values on its inputs, weighted by coefficients on the connections. The sum
is then passed through the activation function; its result constitutes the out-
put of the neuron. If the networks employs non-linear activation functions,

44 CHAPTER 2. MACHINE LEARNING

it has been demonstrated that it constitutes an universal approximator —
meaning that it can approximate arbitrarily well any continuous function.
Interestingly, if the activation function is logistic, a Neural Network can be
regarded as a generalization of the logistic model [33].

NN store the knowledge acquired from the dataset in the connection
weights. Adaptation of the weights to the dataset —i.e. learning — is usu-
ally performed through gradient descent techniques, which are allowed when
the activation function is derivable. The most common of such techniques is
backpropagation. Roughly speaking, then backpropagation algorithm works
by feeding an instance into the network, calculating the error as difference
between the expected and actual output, and adjusting the weights of the
network by propagating the error backwards through the neurons.

The high explanatory power of Neural Networks comes with some disad-
vantages.

• No tolerance of missing data

• Low interpretability

• Non-determinism

Neural networks do not allow missing data: each neuron must have some sort
of input. They therefore require imputation techniques to be used, which
fill in missing values [6]: such a procedure can however lead to creation of
artifacts in the data.

The neural network model is a black-box model. It is already very com-
plex to write down the formula calculated by a network — let alone interpret
it. Several attempts at solving this problem have been made, with varying
degrees of success [3, 34]. It is acknowledged however that a loss of perfor-
mance is inherent to the simplification of the model into an understandable
form.

While the standard back-propagation algorithm is deterministic, it re-
quires a starting point, which is chosen arbitrarily (typically at random).
Several executions of the algorithm on the same data are therefore not guar-
anteed to produce the same result. Neural Networks share this characteristic
with more classical stochastic algorithms, like evolutionary algorithms.

Another difficulty in using Neural Networks regards the choice of the net-
work structure, which is originally left to the user’s experience. Techniques

2.8. SUPPORT VECTOR MACHINES 45

exist to train structure together with the weights (for instance, Cascade Cor-
relation [38], tiling [80], upstart [41]), or to prune the network after it has
been trained by removing unnecessary nodes and connections [101].

Recently, NN methods have been extended to deal with complex data
belonging to structured domains, including sequences, trees and classes of
graphs (Recurrent and Recursive Neural Networks) [111, 81]. The applica-
tions of such models allows to consider more complex types of data, able to
facilitate the integration of medical chemistry, biological and clinical data.

2.8 Support Vector Machines

Support Vector Machine (SVM) and kernel-based approaches have recently
emerged as a major topic within the field of machine learning [120, 23, 110].

Like Neural Networks, SVM, can be used for pattern recognition, classifi-
cation and regression tasks to learn from data an high-dimensional nonlinear
hypothesis.

For the purpose of this survey, we could therefore include this model
in the same framework of the NN approach. The basic difference between
SVM and other ML models similar to NN is in the inner methodology of
learning, rather than in how they are applied. Although is known that there
is no general optimization method for learning tasks, interestingly, SVM
and kernel approaches are principled learning methods originated from the
foundations of the statistical learning theory [120] with the aim to provide
good generalization properties to the methods.

The original linear machine built by SVM can be extended including non-
linearity (in the original input space) by implicitly embedding the data into
an internal feature space through a kernel function. Through the choice of
kernel function different hypotheses can be considered, specifying for instance
kernels belonging to the classes of polynomials, Gaussian or Radial-basis
functions (RBF), or more complex cases such as two-layer Neural Networks
type of learning machines. However, it should be noted that the definition
of a kernel function corresponds to the definition of a prior similarity mea-
sure on data; hence, the choice of the proper kernel is a critical issue in the
application of the method.

The SVM algorithm is strongly dependent on some parameters which
must be decided by the researcher. One of them, usually called C, controls
the tradeoff between margin maximization and error minimization. Other

46 CHAPTER 2. MACHINE LEARNING

important parameters are usually dependent on the choice of the kernel func-
tion. The simplest approach involves trying various combinations and choos-
ing the one which leads to more satisfactory performance, although more
complex strategies have been discussed [27].

2.9 Summary

In this chapter, some established statistical and Machine Learning algorithms
for supervised data analysis have been described. The requirements and
outputs of each algorithm have been presented. In the next chapter, we will
summarize where in the field of medicine these algorithms can be applied,
and what are the typical requisites of this domain. We will then see how
most algorithms fail to satisfy some requisites; this prompted us to develop
the HCS algorithm, which will be described in chap. 4.

Chapter 3

Medical data analysis

The characteristics of the data clearly depend on the problem being analyzed.
Medical data sets however have some recurring specificities, which are inter-
esting to summarize in order to better understand the typical requirements
of medical problems.

• Medical data is heterogeneous. Among the various recordings on each
patient, there can be real values with different ranges, integer values,
ordered or unordered classes. There can be images, variable-length
strings; there could even be some non-standardizable natural language
text (the physician’s conclusions for a certain set of tests, for instance).

It almost impossible for a single technique to handle all of this vari-
ety of data types. On the other side, techniques which require only
homogeneous data are of limited usefulness in medical data analysis.

• Medical databases are incomplete. Collection of data is generally a
byproduct of medical care, rather than an objective in itself; altough
completeness is generally required, it is very rarely achieved. There can
be technical or economical reasons for which a value is not recorded;
or even motivations pertaining the patient’s health itself. Certain val-
ues for instance could require dangerous tests, which are performed
only when considered strictly necessary. Here, the fact that a value is
missing is informative on the concept to be examined; these kinds of
missing values must then be treated with much care, in order to avoid
introduction of bias.

47

48 CHAPTER 3. MEDICAL DATA ANALYSIS

Often however, data in medical records are missing with no specific con-
nection to the value of the data itself, or to the target concept. This
is common for instance in retrospective studies, where the data is col-
lected from old patient records, which are often incomplete since they
were collected for different objectives. In this situation, missingness
does not influence the concept under examination. A good method-
ology to manage medical data must then be prepared to deal at least
with this kind of missing values. For a more precise classification of
missing values and their treatment, we refer to [73].

• Medical data is inherently noisy. Not only the recorded values can be
approximate or uncertain; even the classification can be imprecise or
wrong. Noise tolerance is then a primary requirement for analysis.

• Medical problems can show high dimensionality. As we noted in the in-
troduction, medicine is trying to consider complex interactions between
many factors, in order to reduce prediction error. Moreover, some tests
generate large quantity of data alone; think of computer tomography,
or microarray analysis.

• Medical data is often unbalanced. The class of people who have oral
cancer for instance is certainly less numerous than the class of people
who do not have it. Learning algorithms then should not suppose that
the attributes have a balanced or normal distribution.

• Investigation results must be interpretable. Opaque methods, which
can not show in human-readable way the reasoning behind their an-
swers, are unlikely to be accepted and used by physicians — even if
they demonstrate a very good performance. Understandability of the
model is at least as much important as performance itself.

Managing medical data finally presents other issues, still important but
less relevant to our goals (ethical and legal, for instance). An enlightening
review on the topic can be found in [28].

3.1 Personal tasks in medicine

Medical practice is concerned with curing single patients. This involves de-
tection of a disease before clinical evidence appears (screening); finding out

3.1. PERSONAL TASKS IN MEDICINE 49

what their disease is (diagnosis); predicting how the disease will develop
(prognosis); deciding which kind of medical treatment is best for the patient,
in order to cure him (treatment selection). It is important to notice that all
these steps take into account the patient’s status only, and are generally not
concerned with the original causes of the illness — unless they are considered
important for the prognosis.

3.1.1 Screening

Screening is the process of looking for a disease over a population with no
clinical indication of illness. In some kinds of disease, early detection can
greatly improve the effectiveness of cures: screening can therefore be a very
valuable tool in improving the overall population health.

Since screening is performed on large amounts of people, it generally
applies simpler tests that medical diagnosis. Such tests can report both false
positive and false negative results, with respect to the proper diagnostic test
(often called “gold standard”). Estimation of specificity and sensitivity of
the test is then necessary, along with the prevalence of disease in the group
the patient belongs to, in order to correctly interpret the result [48].

Machine learning in this setting can be helpful to devise new tests, and
evaluate their effectiveness. Some reports include [108] and [74].

3.1.2 Diagnostic reasoning

A central problem in medicine is the diagnosis of the disease an individual
patient is suffering [76]. This in essence amounts to the construction of
a hypothesis about the disease, based upon a set of indirect observations
from diagnostic tests. Diagnostic tests, however, generally do not serve to
unambiguously reveal the condition of a patient: the tests typically have true-
positive and true-negative rates unequal to 100%. To avoid misdiagnosis, the
uncertainty in the test results obtained for a patient should be taken into
consideration.

The above–mentioned issues make the diagnostic problem a very suitable
and interesting one for computer–based systems [114]. In fact, the histori-
cal development of machine learning and its applications in medical diagno-
sis shows that from simple and straightforward to use algorithms, systems
and methodology have emerged that enable advanced and sophisticated data
analysis [65]. In the future, intelligent data analysis will play even a more

50 CHAPTER 3. MEDICAL DATA ANALYSIS

important role due to the huge amount of information produced and stored
by modern technology.

To assist physicians in the complex task of diagnostic reasoning, test-
selection methods are required to indicate which tests should be ordered to
decrease the uncertainty about the disease present in a specific patient. A
test-selection method typically employs an information-theoretic measure for
assessing diagnostic uncertainty. Such a measure is defined on a probability
distribution over a disease variable and expresses the expected amount of
information required to establish the value of this variable with certainty. An
example measure often used for this purpose is the Shannon entropy. The
measure can be extended to include information about the costs involved in
performing a specific test and about the side effects it can have. Since it
is computationally hard to look beyond the immediate next diagnostic test,
test selection is generally carried out non-myopically, that is, in a sequential
manner. The method then suggests a test to be performed and awaits the
user’s input; after taking the test’s result into account, the method suggests
a subsequent test, and so on.

3.1.3 Prognostic reasoning

In a prognostic process, patient’s information is gathered and interpreted to
predict the future development of the patient’s condition [75]. Due to the
predictive nature of this process, prognostic systems are frequently used as
tools to plan medical treatments. As knowledge of the future is inherently un-
certain, in prognostic reasoning uncertainty is even more predominant than
in diagnostic reasoning. Another prominent feature of prognostic reason-
ing when compared to diagnostic reasoning is the exploitation of knowledge
about the evolution of processes over time.

The outcome predicted for a specific patient is generally influenced by
the particular sequence of treatment actions to be performed, which in turn
may depend on the information that is available about the patient before
the treatment is started. The outcome is often also influenced by progress of
the underlying disease itself. The outcome of interest may be expressed by a
single variable, e.g. modelling life expectancy, but it may be more complex,
modelling not just length of life but also various aspects pertaining to quality
of life. A subset of variables may then be used to express the outcome.

Approaches to developing prognostic models vary from using traditional
probabilistic techniques, originating from the field of statistics, to techniques

3.2. GENERAL TASKS IN MEDICAL RESEARCH 51

based on more complex models, originating from the field of artificial intel-
ligence [134, 29].

3.1.4 Treatment selection

Another area for which automatic methods are favorable is treatment selec-
tion, that is the process of deciding upon the most appropriate treatment
alternative for a specific patient. Reasoning about different treatments, how-
ever, involves reasoning about the current situation of a patient and the
effects to be expected from the treatments. It thus involves diagnostic rea-
soning and, even more prominently, prognostic reasoning. The reasoning
algorithms are therefore often embedded in a decision-support system that
offers the necessary constructs from decision theory to select an optimal
treatment given the predictions [77, 2].

3.2 General tasks in medical research

Medical practice focuses on a single patient, diagnosing his illness and pre-
scribing a cure. Medical research is on the contrary primarily interested in
what happens in the “general” case; the single patient has value only if it is
contained in a collection of similar cases, where a global hypothesis can be
formulated and tested.

The main objective of data analysis in medical research is therefore not
to provide exact answers for single patients: at best, this can be considered
a byproduct. The real interest is in understanding why some phenomenon
occurs. This knowledge can then be exploited by physicians for instance to
find strategies aimed at preventing diseases, or design better cures. On the
contrary, in such a setting a black-box model of the data is not useful, since
it cannot give explanations to the user.

Interpretability is then a chief requirement of any model attempting to
describe medical data in such tasks [69]. The model should allow to convey
information about its decisions in a straightforward manner.

In our opinion, another important requirement of an interpretable model
is its stability. We define a stable algorithm as one which will produce very
similar result when confronted with data extracted from the same distribu-
tion. Notice that often stability is defined through accuracy, meaning that
the algorithm produces consistently similar accuracy values [17, 36]. This

52 CHAPTER 3. MEDICAL DATA ANALYSIS

does not imply that the algorithm found a similar explanation of the data: it
simply means that it will produce explanations with similar precision. Our
concern is instead related to the actual decisions of the classifier, as in [116].

Many researchers in Machine Learning overlook this problem, either ig-
noring it, or believing that many different classifiers with similar accuracy
can give a better understanding of the data [87]. We actually believe the
opposite is true. While two or three possible explanations of the data can
actually shed more light on the underlying relationships, more and more ex-
planations will only increase confusion in the user, and decrease confidence in
the model. Too much information, without a sensible method to discern use-
ful from useless, is equivalent to no information (in the information retrieval
context, this is often called information overload [8]).

3.2.1 Studying risk factors: epidemiology

Diagnosis, prognosis, treatment selection are all activities which involve cur-
ing an already developed disease. Epidemiology works on the opposite side,
by studying the factors involved into health and illness. Defining the dis-
eases, drawing disease causal chains, and formulation of health strategy are
important aspects of epidemiology. Epidemiological information is then used
to plan and evaluate strategies to prevent illness, and as a guide to the man-
agement of patients in whom disease has already developed. For all these
aims, the single patient does not provide enough information. Epidemiology
requires a population, where characteristics and disease development can be
correlated and relevant causes ascertained and separated from irrelevant fac-
tors.

In observational epidemiology, three kinds of study design are employed.
The simplest is the cross-sectional study: both the exposure status and the
disease are measured at a given time. The prevalence of disease in different
exposure groups can then be compared, in order to identify possible corre-
lations. This type of study however cannot prove causation. To this aim
the more onerous cohort study can be employed. Here, a population of ini-
tially healthy, exposed subjects is followed through time, along with initially
healthy, unexposed subjects. Analyzing the incidence of disease in the two
groups over time can then support causality relationships. This kind of study
has the drawback of being much onerous, particularly for diseases having a
long period between first exposure and manifestation. One possible remedy
is to conduct the study retrospectively, by collecting past data. When this is

3.2. GENERAL TASKS IN MEDICAL RESEARCH 53

not possible, a case-control study can be set up. With this setting, the study
originates from a set of diseased subjects (cases). This set must then be
matched by a suitable set of controls: subjects not showing the disease, but
having similar statistical distribution. Analysis is then performed in order
to show relationship between exposure and disease.

In all cases, once data has been collected, a data analysis methodology
must be applied. This is where Machine Learning can help, by suggesting
possible relationships between risk factors and disease development, which
could have been otherwise overlooked with standard data analysis techniques.
An interesting example of application of ML to predict breast cancer suscep-
tibility can be found in [72].

3.2.2 Discovering functional interactions

As the amount of biological and medical data is more and more growing,
methods able to discover functional interactions among them are of the great-
est interest. The kind of data to analyze can vary from clinical databases
collected in research and health-care centers to genetic data, and can even
be a mixture of the two. Moreover, since data are often collected over time,
it is possible to analyze the temporal patterns to reveal how the variables
interact as a function of time.

The discovery and the study of genetic interactions is central to the un-
derstanding of molecular structure and function, cellular metabolism, devel-
opment of cells and tissues, and response of organisms to their environments.
If such interaction patterns can be measured for various kinds of tissues and
the corresponding data can be interpreted, potential clinical benefits are ob-
vious and novel tools for diagnostics, identification of candidate drug targets,
and predictions of drug effectiveness for many diseases will emerge.

For example, finding interactions between genes based on experimentally
obtained expression data in microarrays is currently a significant research
topic. Microarrays [105] allow for the study of expression of thousands of
genes simultaneously, so to be interpreted they obviously require knowledge
discovery tools ranging from clustering techniques to supervised learning
methods.

54 CHAPTER 3. MEDICAL DATA ANALYSIS

3.3 Machine learning in medicine

There are many areas in Medicine where Machine Learning can be applied.
Clearly understanding the setting where ML will be applied, along with the
result which is expected from the doctors, is a fundamental step in con-
structing a successful collaboration. The traditional approaches to medical
data analysis have the strong advantage of being well-known and thoroughly
tested, with a robust corpus of theoretical studies to their support. New
algorithms can however complement them, by providing novel ideas, and ap-
proaching problems from a different perspective. It is with this objective in
mind that we designed HCS: it is thought as a tool to explore data with
a non-linear, interpretable model, while keeping in mind the requirement of
seamless treatment of different types of data, and ability to cope with missing
values.

Chapter 4

HCS

Chapter 3 described the requirements of medical data analysis. Our interest
will be focused on the use of computational tools for the field of medical
research. This means that we have all the typical peculiarities of medical
datasets, with the adjoint constraint of clear and immediate understandabil-
ity of the model inferred from the data.

Most classical machine learning approaches fail to fulfill at least one of
the requirements for this particular setting. Numerical methods, like neural
networks and SVMs, can represent a very wide variety of functions, and are
therefore able to capture many diverse target concepts; they create however
black-box models, which require further processing in order to produce un-
derstandable knowledge (e.g. see [34]). After the effort for appropriately
training the model, a new task starts which seeks to answer the question
“Why did the model take such a decision?”. Another often disregarded re-
quirement is their need for complete data — no missing values are allowed.
Medical datasets almost invariably fail this condition. To cope with this
shortcoming, typically imputation methods are applied, which “fill” the miss-
ing data [6]. Alternatively, missing values are encoded with a special value,
different from the others. Both solutions can skew the original data distribu-
tion, or anyway add extra noise to the dataset; an algorithm natively able to
cope with missing data can therefore prove to be a better alternative.

Among classical methods, decision trees [100] exhibit all the characteris-
tics required by medical data analysis. They are highly interpretable, and
treat missing values in a sensible way: there is no need for imputation meth-
ods. We were however not entirely satisfied with their approach for a few
reasons:

55

56 CHAPTER 4. HCS

• They originally aim at a perfect division between classes. Such a result
is possible in certain areas of medicine (diagnosis is a good candidate),
but is not realistic in other situations, like epidemiology, where a risk
estimate is more appropriate. Decision trees ultimately produce such
a risk estimate, but only after pruning occurred, and only as a fallback
of not being able to completely split the classes.

• The tree construction algorithm takes decisions only on a single at-
tribute at each node. Interactions between different attributes come
as a by-product of search, and are not immediately evaluated and ex-
plored.

The above considerations prompted us to develop a learning algorithm
tailored for risk analysis in medical datasets. Such an algorithm must cope
well with diverse data types and missing data. It must take into account
interactions between various attributes, and produce readily interpretable
results. XCS [122] showed most of the above characteristics, but was aimed
at accurate predictions rather then probabilistic risk estimates, and applied
to the broader field of reinforcement learning, instead of plain supervised
learning. A modified version of XCS, EpiXCS [57], was suggested to specialize
XCS for risk prediction. While being able to deliver accurate risk score,
this algorithm does not directly pursue them during search, retaining XCS
accuracy-based learning strategy.

The algorithm we propose is called HCS, which is an acronym for Hy-
pothesis testing with Classifier Systems. It originated as a variation upon
XCS, but it has finally evolved into a hybrid between classifier systems and
decision trees.

4.1 Statistical hypothesis testing

HCS employs statistical hypothesis testing as its main data exploration tool.
In this section we will very briefly introduce the subject, pointing to statistics
textbooks for a more detailed analysis [128, 70].

According to Popper [97], science is strictly connected with falsifiability.
Each theory which claims scientific soundness must be falsifiable: it must be
stated in such a way to admit the possibility of performing an observation, or
an experiment, which can contradict it. If such a situation arises, the theory
must be revised and corrected, and an improved theory which accounts for

4.1. STATISTICAL HYPOTHESIS TESTING 57

the unexpected observation is formed. Statistical hypothesis testing provides
a procedure to follow in order to take such a decision, when the original theory
is probabilistic in nature.

Consider a situation where we formulate a probabilistic hypothesis de-
scribing the general behaviour of a specific phenomenon. We then acquire a
certain number of observations of the phenomenon, and we want to establish
whether these observations disprove or do not disprove the initial hypothesis.

The following steps define the statistical hypothesis testing procedure:

• Mathematically formulate the hypothesis, called null hypothesis and
marked with H0, in such a way that it is possible to calculate the
probability to obtain each possible outcome of the observation.

• Establish the critical region (or rejection region), that is the set of
possible outcomes which we regard as evidence against the hypothesis.
The probability of the observations to fall in this region, assuming that
the null hypothesis is true, is called significance level of the test, and
is marked with the symbol α; it is therefore the probability to wrongly
reject the null hypothesis.

• Perform the observation of the phenomenon, and check whether it falls
inside the critical region or not.

The null hypothesis H0 is rejected (disproved) if the observation falls inside
the rejection region, and accepted (not disproved) otherwise. Notice that
acceptance must not be treated as evidence in favour of the null hypothesis;
it’s just lack of evidence against it.

As a simple example, consider the theory “this coin is well-balanced”.
Such a theory can be mathematically formulated as “the probability to obtain
heads or tails is 1/2”. In order to verify the theory, we will perform an
experiment consisting of 100 coin tosses, and observe the number of resulting
heads. Before starting the experiment, we decide that we will reject the
hypothesis if we obtain less than 40, or more than 60 heads. The significance
level of this experiment can be calculated through the binomial distribution,
and is α ≃ 0.035.

The significance value α measures the probability to commit a type I
error — that is, the probability to reject H0 in a situation where the hy-
pothesis was correct. Clearly, this value should be kept as low as possible.
However, lowering the value generally increases the probability to commit

58 CHAPTER 4. HCS

a type II error: failing to reject the hypothesis, when in fact it was wrong.
This is intuitively clear: if we require only extreme evidence against the null
hypothesis in order to disprove it, we will accept it in many situations where
it is actually false. The probability to reject H0 when it is actually false is
called power of the hypothesis testing procedure.

In the coin-tossing example, α ≃ 0.035 means that, if the coin is indeed
perfectly balanced, if we repeat the 100-tosses experiment 1000 times, we
will reach the wrong conclusion (the coin is biased) 35 times. On the other
hand, if the coin is only slightly biased, it will be difficult for us to detect the
anomaly. For instance, using a biased coin with 0.6 probability to flip a head,
the power of the tests turns out to be ≃ .46. Upon repeating the 100-tosses
experiment, roughly half of the time we would not be able to detect the bias.

Another quantity strongly connected to significance and power is the
sample size. Since we deal with probabilistic phenomena, a single observation
is generally not sufficient to draw conclusions. A group of observations is then
performed, and the probability of the whole group to occur is considered.
Changing the size of the group (the sample size) creates a test with different
characteristics. Again in the previous example, tossing the coin 200 times
instead of 100, and building a rejection region with similar significance level
(≤ 85 or ≥ 115, α ≃ .04) yields a test with higher power: in the case of a 0.6
biased coin, power is ≃ .79. When the sample size is under control by the
statistician, a test can be structured to reach both required significance and
power.

When sample size is externally decided, it is necessary to choose a tradeoff
between significance and power. Statistical tests are usually designed to
maximize the power, while maintaining a specified significance level. In many
occasions, this aim naturally leads to the definition of a nested family of
rejection regions, with varying confidence levels. Calling Rα the rejection
region with α significance level, we have

∀α1 < α2.Rα1
⊆ Rα2

(4.1)

If the tests has this property, it is possible and advisable to avoid the ar-
bitrary decision about the significance level α, and report instead the p-value
of an observation. This value is defined as the probability of the smallest
rejection region containing the observed result X:

p(X) = min{α|X ∈ Rα} (4.2)

4.2. DEFINITIONS 59

This practically means that, in order to follow the proper definition, the
rejection region should include the observed result and all “more extreme”
results — that is, the results which would have provided even more clear
evidence against the null hypothesis than the current one.

The p-value can be informally considered as a measure of the degree to
which an observation disproves the null hypothesis. The HCS learning algo-
rithm mainly revolves around this concept to provide guidance for building
classifiers.

4.2 Definitions

Let D be the dataset to be analyzed, with T = #(D) the size of the set. Each
item in the dataset is called instance. Each instance d is a tuple belonging to
the same cartesian product: d ∈ A1×A2× . . .×An = D, where Ai is a (not
empty, possibly infinite) set. The values of an instance are called attributes.
Together with the dataset, we have a function y : D → Y which specifies
the target value (or values) for each instance. We will focus on the situation
where Y = B, although other possibilities can arise. If the Y set is finite,
y(d) can also be called class of the instance d.

A classifier is c a predicate on D, that is c : D → B. c is the inverse
of classifier c. The cover set of a classifier c over a set of data D is defined
as the subset of data where the classifier holds: D/c = {d ∈ D|c(d)}. The
match set of an instance d over a set of classifiers C is the subset of classifiers
which hold on the instance: C/d = {c ∈ C|c(d)}.

4.3 HCS: Fundamentals

The underlying idea driving HCS design is to construct a system which can
find interesting information in a dataset. Formally defining interestingness
immediately appears very difficult, if not impossible at all: it is too much a
subjective and domain-dependent quantity, to be practically established in
all situations (there have been some attempts nevertheless, e.g. [95, 42]). We
then turned our research for the interesting into a research for the unexpected.
Starting from an established theory, experiments can be run to obtain a set
of data in order to test it. If the data is in accordance with the theory,
there is nothing new: nothing of interest. But when an experiment produces

60 CHAPTER 4. HCS

unexpected results, then something new has been discovered: the original
theory needs to be revised — and this is certainly interesting.

Turning the idea into application, in HCS the initial hypothesis is a model
of the data built upon the whole dataset. It is necessary then to establish
which kind of data model H the algorithm will be using, and a function H
which can build a model from a dataset D. In the approach we will pursue,
this model is an uniform risk model, where the risk is estimated through
the proportion of classes in the dataset. In a survival analysis setting, the
basic hypothesis could be for instance an exponential survival model. The
estimated basic hypothesis is called H0 = H(D). We furthermore pose an
independence hypothesis between the attributes and the target, which the
algorithm will try to disprove.

The algorithm then searches for areas of the dataset where the basic
hypothesis is disproved. The areas will be defined only through the values
of the attributes, but the search will directed with knowledge of the target.
If the independence hypothesis is true, the resulting areas should contain
data with the same target distribution as the basic one. If otherwise the
hypothesis is not verified (and this is what we actually expect!), the target
distribution in the subset will be different from the general one.

An appropriate fitness function F evaluates the amount of disagreement
between the basic hypothesis and the data contained in the subset. Once
the area with highest disagreement has been identified, the dataset is split
into two parts — the one belonging to the area, and the remaining. The
algorithm is then recursively called on both sub-datasets. Recursion ends
when the disagreement between hypothesis and data is low (that is, when
the data does not disprove the current hypothesis).

The result of such a procedure is a tree. Each internal node splits the
data into two mutually exclusive subsets. Each leaf is a model of the data in
the subset identified by the sequence of splits up to the root of the tree.

The algorithm just described is very high-level, avoiding to specify most
details. In particular, the following points must be further described in order
to fully detail the algorithm:

• The H function, building a hypothesis (or model) from the data. In
principle, this could be anything — even another ML algorithm. In
HCS we will use a simple constant-risk hypotheses.

• The C set. This set contains all the possible classifiers, and will thus be
C ⊆ (D → B). It must balance expressiveness (as defined in sec. 2.1.2)

4.3. HCS: FUNDAMENTALS 61

Algorithm 1 The HCS algorithm

Require: D a dataset
H0 ← H(D) {Create the initial hypothesis}
ĉ← argmax{c∈C}F (D, H0, c) {Find the most disagreeing classifier}
if F(D, H0, ĉ) > FLim then {If the disagreement is sufficient}

Dm ← D/ĉ {Split the dataset; m stands for “matched”}
Du ← D/ĉ {u stands for “not matched”}
Hm ← HCS(Dm) {Recursive call}
Hu ← HCS(Du)
return HTree(ĉ, Hm, Hu) {Merge results in a tree}

else {The data confirms H0}
return H0

end if

and size, while taking into account readability. It should therefore
contain a wide array of possible classifiers, in order to be able to find
interesting regions of the data; however, it should not be too big, oth-
erwise searching for the best classifier becomes unfeasible. Moreover,
since interpretability is one of our primary goals, the classifiers must
be readily understandable.

• The F(D, c, H0) function, and its associated FLim. This function mea-
sures the degree of disagreement between the datasets D/c, D/c and a
model H0. It must be positive, and increase with the amount of dis-
agreement. The FLim value indicates the limit under which the data is
considered to confirm (not disprove) the hypothesis, rather than dis-
prove it.

• When C cannot be explored exhaustively, a heuristic search algorithm
must be defined too, in order to find the maximum of the set — or at
least, a good approximation of the maximum.

Notice the current setting is actually open enough to include classical
decision trees. In this case, H0 would simply be the proportion of instances
belonging to different classes; C is the set of conditions which rely on a single
attribute, and F would calculate the information gain measure of the split
provided. The search algorithm over C depends in principle on the attribute
types, that is the Ai sets; however, the C4.5 algorithm defines polynomial de-

62 CHAPTER 4. HCS

terministic algorithms for all the most usual data types (categorical, ordinal,
numerical).

4.4 HCS: Implementation

The heart of the HCS algorithm is fitness definition. A proper definition of
the fitness function must fulfil two competing goals:

• Assign a high fitness to subsets described by a very different model
than the general dataset

• Assign a low fitness to small subsets

The second goal is as important as the first one: it would be very easy to split
the dataset so much that every instance takes its own model. Every single
model would probably be very different from the global one, being tailored
for a specific instance; however, generalization would be extremely poor, and
the global resulting model simply useless. The balance between these two
issues will be achieved through statistical hypothesis testing.

We will from now on restrict to the case where the learning task is a
standard two-classes classification task. The target function will then be
y : D → B.

The dataset contains T instances, out of which Q = #{d ∈ D|y(d)} have
a positive target. We will call ρ the proportion of positive values — that
is, ρ = Q/T . Any random extraction from the dataset will contain some
positive and some negative instances; their proportion will typically be not
too far from the global one. Specifically, a random subset extraction will
exactly follow a hypergeometric distribution.

Remembering the assumption of independence between attributes and
target, selecting instances with respect to their attribute values instead of
completely at random should again yield a proportion of positive and neg-
ative compatible with the global ρ. When this does not happen, we found
something unexpected. The more diverse the proportion is from the global
one, the more unexpected and interesting is the subset of instances we found.
Since the subset is defined by a precise set of conditions on the attributes,
the researcher can easily read these conditions and realize what is the distin-
guishing pattern of the subset.

Statistical hypothesis testing is used in order to establish how much a
particular subset of the data is in disagreement with the full dataset. Since

4.4. HCS: IMPLEMENTATION 63

we restricted to a Boolean target concept, there are two possibilities to model
the result of an extraction from a set of Boolean values: the hypergeometric
and the binomial distribution.

Hypergeometric distribution The hypergeometric distribution calculates
the probability of obtaining q positive instances in a sequence of t ex-
tractions without replacement, from a total set of T instances, out of
which Q are positive. The probability mass function is

ft(q) =

(

Q

q

)(

T−Q

t−q

)

(

T

t

) (4.3)

Binomial distribution The binomial distribution calculates the probabil-
ity of obtaining q positive instances in a sequence of t extractions,
where each instance has a fixed probability ρ = Q/T to be positive.
The probability mass function is

ft(q) =

(

q

t

)

ρq(1− ρ)t−q (4.4)

From a practical point of view, the two distributions have a similar shape,
but very different values, especially on the extremes (see fig. 4.1 for an ex-
ample of the difference for particular values of t, Q and T). This happens
because, while with the binomial distribution the probability to get a positive
value is constant, with the hypergeometric distribution this probability varies
depending on the other extracted values. This however gives no indication
on which one could be more appropriate for our purpose.

Theoretically, the hypergeometric distribution is the correct one to apply
in this situation. We deal with a finite dataset, and look for the probability to
extract a particular combination of positive and negative instances out of that
dataset: this is exactly the hypergeometric distribution definition. On the
other side, applying the binomial distribution needs to first generalize from
the (Q, T) combination of the dataset, to a ρ = Q/T inferred probability.

The reason why we take into account the binomial distribution is that
the inference step must be applied sooner or later. The hypergeometric
distribution cannot do any prediction on the target of unseen instances; since
it deals with extractions from a set, new instances not belonging to the
original set cannot be accounted for. The binomial distribution performs

64 CHAPTER 4. HCS

0 10 20 30 40 50
q1.´10-41

1.´10-34

1.´10-27

1.´10-20

1.´10-13

1.´10-6

ftHqL

Figure 4.1: Probability mass function (PMF) for binomial (black dots) and
hypergeometric (grey dots) distributions, with parameters T=150, Q = 50,
t = 50. The y-axis is in log scale.

exactly the kind of inductive step we are miss. If we observed T instances,
Q of which are positive, we assume that a ρ = Q/T proportion of all future
instances will be positive.

From the Machine Learning point of view, the difference between the two
distributions is then the timing of the inductive step. A model based on the
binomial distribution performs generalization before calculating the proba-
bility, while with the hypergeometric model generalization will occur after
probabilities are assessed. The former calculates the ρ value, then assumes
that it will apply to the whole dataset, then calculates the probability of
a subset. The latter on the contrary follows more closely the information
provided by the dataset, and as such should be preferable, but requires to be
generalized at the end of learning, when the model is applied to new data.

Since Machine Learning is all about generalization capability of algo-
rithms, this situation makes it unclear whether a hypergeometric distribu-
tion would improve or impair understanding of the dataset. Having no clear
theoretical indication on the best choice to follow, we choose a pragmatic
approach, and tested both distributions on several standard datasets (see
chap. 5 for experimental results).

4.4. HCS: IMPLEMENTATION 65

10 20 30 40 50 60
r

0.02

0.04

0.06

0.08

0.1

0.12

ftHrL

Figure 4.2: Rejection region R(16, 60) in a setting where ρ = 1/3. The x
axis shows the possible values for the number of positive instances; the y axis
contains the corresponding probability value.

Once the probability distribution has been decided, we will call ft(q)
the probability to extract a subset S(q, t) of t instances, q of which are
positive. This is exactly the probability mass function (PMF) of the chosen
distribution.

To calculate the p-value of the S(q, t) subset, we have then to decide
a rejection region, containing the sample and every “more extreme” result.
Since there is no specific restriction on the direction of search, a two-tailed
test is necessary. We decided to define the rejection region of a subset S(q, t)
as

R(q, t) = {S(r, t)|r ∈ {0, . . . , t} ∧ ft(r) ≤ ft(q)} (4.5)

The rejection region is then the set of all results having probability lower or
equal to the examined sample. Other possibilities have been discussed, with
particular regard to the “other side” of such a two-tailed distribution: see
for instance [45] (our choice is referred there as the “principle of minimum
likelihood”). Figure 4.2 provides an example of the rejection region for a
binomial distribution. The bigger dot represents the sample subset, with 16
positive instances out of 60 total (S(16, 60)). The shaded area highlights all
the “more extreme” possibilities, which all together form the rejection region.

66 CHAPTER 4. HCS

It is then straightforward to calculate the p-value of a subset:

p-value(S(q, t)) =
∑

S(r,t)∈R(q,t)

ft(r) (4.6)

The lower the p-value is, the more the S(q, t) subset is unexpected under
the assumption of the current model. Such subsets are identified by classi-
fiers. In particular, a classifier c identifies two subsets: Dm = D/c = {d ∈
D|c(d)} and Du = D/c = {d ∈ D| ∼ c(d)}; in the subscripts, m stands for
“matched”, while u stands for “not matched”1. We can then choose among
the two subsets the most unexpected one — that is, the one with minimum
p-value. Finally, the fitness of a classifier is defined as the − log of the mini-
mum p-value:

F(q, t) = − log10 min{p-value(S(q, t)), p-value(S(Q− q, T − t))} (4.7)

Notice this quantity is always defined and positive, since p-values are in the
]0, 1] range. Maximizing the fitness will then be the same as minimizing the
classifier’s p-value, i.e. looking for highly unexpected regions.

Algorithm 2 recaps the steps necessary to calculate the fitness of a clas-
sifier with the binomial distribution. Figure 4.3 shows how the fitness value
changes in an example setting of 60 extractions out of a ρ = 1/3 binomial
distribution, with varying amount of positive values. Clearly the least in-
teresting subset is the one with 20 positives: this is exactly the expected
proportion when ρ = 1/3. It would be instead very strange to find a subset
with all, or almost all positive: this corresponds to a very high interest value.

It can be interesting to finally notice that our hypergeometric formulation
can be viewed as an application of Fisher’s exact test [40]. Fisher’s test is
applied in 2 × 2 contingency tables. A 2 × 2 contingency table counts the
number of positive and negative outcomes of two different random variables; a
statistical test is generally applied in order to detect a statistically significant
difference. A classical example is the comparison of two medical treatments:
a number of tests is carried out with both treatments, recording the number
of cured patients versus the number of not cured patients.

The common approach to detect statistically significant differences in this
situation is by way of a χ2 test. This test has the advantage of being easy

1u originally stood for unmatched — which unfortunately, turned out not to have the
meaning we intended!

4.4. HCS: IMPLEMENTATION 67

Algorithm 2 The binomial fitness algorithm

Require: D the dataset, ρ the positive ratio in D, c a classifier
Define ft(q) =

(

t

q

)

ρq(1− ρ)t−q

tm ← #{d ∈ D/c}
qm ← #{d ∈ D/c|y(d)}
vm ←

∑

{ftm(x)|x ∈ [0, . . . , tm] ∧ ftm(x) ≤ ftm(qm)}
tu ← #{d ∈ D/c}
qu ← #{d ∈ D/c|y(d)}
vu ←

∑

{ftu(x)|x ∈ [0, . . . , tu] ∧ ftu(x) ≤ ftu(qu)}
return − log min{vm, vu}

10 20 30 40 50 60
q

10

20

30

40

50

60

70
FHq, 60L

Figure 4.3: Negative log of the p-value in a setting where ρ = 1/3 and 60
instances. The x axis shows the possible values for the number of positive
instances.

68 CHAPTER 4. HCS

to compute; however, its correctness is guaranteed only asymptotically. This
means that its results are reliable only with suitably large sample size, and
not too skewed marginal frequencies2. When such conditions cannot be guar-
anteed (and this is the HCS case), Fisher’s test provides a computationally
intensive, but always correct, answer.

Notice how our test, instead of comparing two independent samples, is
comparing a set of observations with one if its subsets. This appears to
be quite distant from Fisher’s test situation; however, it turns out that our
calculation is exactly the same as Fisher’s, by applying the test in order to
evaluate statistical difference of the D/c and D/c subsets.

Choosing the FLim value

The last (but not less important) step required to specify the HCS algorithm
is to define the FLim value. The purpose of this value is to determine when
the fitness is high enough to justify the creation of a new model. With an
alternative point of view, this value distinguishes subsets confirming (or at
least not disproving) the general hypothesis, from those disproving it. In the
standard hypothesis testing paradigm, this operation is performed through
significance testing: the user decides the confidence level α at which he wants
to operate, and considers tests with a p-value less than α to disprove the H0

hypothesis. Usual practice sets the α value to 0.05 or 0.01.
In HCS, using such a value would lead to a very high actual error rate.

There are three reasons why the standard confidence levels do not apply.

• Hypothesis bias: for the binomial hypothesis, we estimate the binomial
parameter ρ from the data, and later test the estimated distribution on
the same data. This leads to biased estimates of the significance. This
problem can be solved using the hypergeometric distribution.

• Multiple hypothesis testing: in order to find a good classifier, the algo-
rithm performs a very high number of tests — one for each generated
classifier. As each one of these tests can wrongly reject the H0 hypoth-
esis with α probability, the probability to commit at least one error
quickly rises to very high values3. As a further complication, the tests

2The exact meaning of suitably large and not too skewed is not agreed upon by statistics
textbooks.

3This is sometimes called data dredging: testing many hypotheses on the same data,
until a significant result is found [109].

4.4. HCS: IMPLEMENTATION 69

are strongly dependent: two classifiers with only slightly different con-
ditions will test very similar subsets, producing a heavily dependent
result.

• Sequential hypothesis testing: the tests performed on lower levels of
the tree depend on the result of tests performed on higher levels. This
creates a dependency which skews the distribution of p-values.

For all these reasons, p-values lose their usual meaning in the HCS con-
text. We believe it is possible to restore their proper statistical significance,
but such an accomplishment is beyond the scope of this thesis. We therefore
decided to follow a pragmatic approach to choosing the FLim value, suggest-
ing two possible alternatives.

The first proposal is to focus on the second source of error. It is necessary
to apply a correction for multiple hypothesis testing [107]. The most simple
and most common of such methods is the Bonferroni correction [11], which
divides the significance value α by the number of tests performed, which in
our case is the total number of classifiers generated during the search. The
Bonferroni correction has often been criticized for being too stringent [94].
We must consider however that our attention is focused on the classifier
with smallest p-value, where the correction is actually accurate enough: the
Holm method for instance, often quoted to substitute Bonferroni’s, on the
smallest p-value performs exactly the same calculation [53, 1]. Furthermore,
it is extremely complex to derive the statistically correct value for FLim (see
App. A). The definition for the FLim value is then as follows:

FLim = − log(
α

Tot classifiers
) (4.8)

Using this formula with typical values for α and the total number of classi-
fiers, the limit results in the 5-7 range.

Another possibility is to completely relinquish the statistical meaning of
p-value, and apply a standard pruning post-processing. In this case, the
training set is split through a k-fold cross-validation. For each fold, HCS
builds a tree up to a very low fitness level (2, for instance). Then, the fitness
values of all the nodes in all the k generated trees are collected and sorted.
The limit is set in turn to each of these values, and the cross-validation
performance of the pruned trees is assessed, in order to estimate the best
threshold. The final tree returned is built on the complete training set, with
this threshold value. This method is closely related to the reduced error

70 CHAPTER 4. HCS

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0 5 10 15 20 25 30

B
rie

r
sc

or
e

Fitness limit

Test point
Smoothed average

Figure 4.4: Variation of the cross-validation Brier score for various threshold
values on a sample execution of the WBC problem. Actual values (crosses)
and smoothed average (dashed line).

pruning method proposed by Quinlan [99], but applies k-fold cross-validation,
instead of a single training/validation split.

The graph in fig. 4.4 is an example of the result of this procedure, for one
run on the WBC dataset. The choice of threshold value is a typical example
of the bias-variance dilemma in Machine Learning [32]: higher threshold
values (on the right of the graph) yield low-power models, which exhibit a
high error rate due to their high bias. As the threshold lowers, the power
of the model starts to rise, which lowers bias but correspondingly increases
variance. To the left of the graph, HCS can build very complex models, but
variance has increased so much that these models are easily deceived by the
noise present in the data — increasing the generalization error again.

4.4. HCS: IMPLEMENTATION 71

HCS and sample size

Figure 4.3 showed how the p-value varies with changing proportion of nega-
tive and positive instances, keeping fixed the sample size. To better charac-
terize our choice of fitness, it can be interesting to illustrate the relationship
between the test significance and the sample size, which is not apparent from
the formulas. Clearly the sample size is of primary importance: a sample
with 10 positive and 20 negative values tells something very different from
one with 100 and 200, although the overall proportion is the same. The pro-
posed binomial and hypergeometric tests take this difference into account.
In fact, if the null hypothesis postulated a binomial distribution with 0.5 pa-
rameter, the p-value of first sample would be 0.099, while the second would
be 8× 10−9.

To better illustrate this effect, let’s consider as null hypothesis the bino-
mial distribution, with ρ parameter. We then extract a sample from another
binomial distribution, with θ 6= ρ parameter. Since we know the two distribu-
tions are different, we expect the test to reject the null hypothesis. Rejection
is connected with two factors:

• The difference between θ and ρ: the more diverse the two parameters
are, the more easy it should be to reject the null hypothesis

• The particular sample obtained from the second distribution: even if θ
is very far from ρ, we could have obtained by chance a sample which
appears likely to have come from the ρ distribution

In order to show the relationship between rejection and sample size, we will
plot for each value θ the minimum n required in order to obtain, with prob-
ability β, a result with p-value less than α. Figure 4.5 shows the plot for
ρ = 1/4, α = .01 and β = .99. In formulas, it plots

min{n ∈ N | P(p-value(S(B(ρ,n), n)) ≤ α) ≥ β} (4.9)

where B(ρ,n) is a random variable with a (ρ, n) binomial distribution.
The graph clearly shows how, the closer the tested distribution is to

the reference one, the more evidence is necessary in order to reject the null
hypothesis. On the other extreme, a very different distribution requires little
evidence in order to be rejected: for instance, in the extreme case where
θ = 1, a sample of size 4 is sufficient to reach a significance level ≤ .01.

72 CHAPTER 4. HCS

0.2 0.4 0.6 0.8 1
Θ

50

100

150

200

250

N

Ρ

Figure 4.5: The minimum sample size in order to obtain a rejection (α =
.01) of the binomial distribution (ρ = 1/4) null hypothesis, with probability
β = .99 (see text). The graph should be a continuous line, but is sampled
for 200 equally-spaced values of θ for computational feasibility reasons.

4.5 HCS: classifiers and search algorithm

Now that a measure of interest of a region has been defined, it is necessary
to describe how regions can be defined, and design an algorithm which can
discover such regions. We will pose it as a maximization problem: among all
the subsets of the training data which can be defined with a conjunction of
conditions on the value of the attributes, find the one with highest interest
value. This problem was solved with a genetic algorithm [46] (GA), taking
inspiration from current Learning Classifier Systems (LCS) research.

4.5.1 Genotype definition

The genetic algorithm must identify the classifier with highest fitness. Each
individual in the GA population will then be a classifier (individual and
classifier will be used interchangeably from now on). Each classifier will
contain exactly one condition for each attribute in the training set; the size
of a classifier is therefore constant. A condition is a test on the value of its
attribute: examples can be smoke ≤ 15, or Gender = Male. Some conditions
however can specify a wildcard, meaning that any value will pass them. In

4.5. HCS: CLASSIFIERS AND SEARCH ALGORITHM 73

this case, the condition can be effectively ignored when reading the classifier.
The meaning of the classifier is the logical conjunction of the tests in each
condition.

Since we defined D as D ⊆ D = A1 × A2 × . . . × As, every classifier
will have s conditions. The shape of each condition is independent of the
others, and is determined only by is corresponding Ai set. Conditions for the
most common data types are as follows (x is the value of an instance for the
attribute being tested):

• Categorical data: Ai = {v1, v2, . . . , vn} with no ordering relationship.
In this case, the condition can have only two shapes: x = vi and
x = #, meaning respectively that a single value will pass the test, and
that every value (including null) will pass the test (“wildcard”).

• Ordinal data: Ai = {v1, v2, . . . , vn} with vi < vi+1. In this situation,
the condition will always be x ∈ [vi, vj], meaning that all the values
between vi and vj will pass the test. The wildcard, matching also
the null value, in this case is x ∈ [v1, vn]. This situation applies for
instance to the integer numbers (Ai = N) [126].

• Real data: Ai = R. The data must first be scaled to the [0, 1] range. A
condition is then x ∈ [a, b], where a and b are two values in [0, 1] with
a < b4. The wildcard, matching also the null value, is x ∈ [0, 1].

With respect to conditions, genotypes in HCS have the same shape as the
ones in other LCS systems, like XCS [122]. However, individuals have no ad-
ditional data other then their genotype; there is thus no action, performance,
accuracy, numerosity, etc..

4.5.2 Phenotype definition

In genetic algorithms, the phenotype of an individual is defined as its meaning
in the original problem space (while the genotype is related to the practical
encoding). In our situation, we evaluate classifiers not upon the content
of their conditions, but rather on the subset of training data they identify.
The phenotype of an individual can therefore be defined as the subset of the
training data matched by the individual, that is the cover set D/c = {d ∈

4Actually, in the implementation a and b can also be swapped around, and the algorithm
takes care to perform the test in the proper order. This appears to reduce search bias [113].

74 CHAPTER 4. HCS

D|c(d)}. Matching occurs if a training sample satisfies all the conditions of
the individual. A classifier is then interpreted as the logical conjunction of
conditions on the attributes.

While the result of a test is obvious if the value is present, some possibil-
ities arise when the value is missing. In our implementation, only the largest
(“wildcard”) condition is satisfied by missing data. Taking for instance a
boolean attribute, only classifiers with a # condition (corresponding to “any
boolean value”) will match data with the boolean value missing. For in-
stance, 01**11 (where * is a missing value) will be matched by the #1##1#
classifier, but not by the ##1## classifier, since the latter specifies a condi-
tion upon the third attribute which cannot be verified. The rationale behind
this choice is to avoid taking decisions based on unknown values: if a classi-
fier has a wildcard condition upon an attribute, it will take the same decision
regardless of the actual (and possibly unknown) value of the attribute. If a
classifier requires a certain value, and the current instance has no information
regarding that value, we prefer to let the instance be dealt with by another,
more general classifier.

Other possible approaches to missing data are analyzed by Holmes [54].
The “classical” ones involve imputation — that is, substituting the missing
value with a calculated value, based on some probabilistic distribution. A
different, LCS-specific way to treat missing values is instead to consider them
as wildcards, being matched by any condition of the classifier. With the
previous example, the 00**11 instance would be matched by both a 000011
classifier and by a 001111 classifier. We did not pursue this approach in HCS;
it could be interesting anyway to compare it with ours in various missing data
situations, in order to discover if either is superior to the other.

4.5.3 Fitness evaluation

Once the cover sets D/c and D/c have been identified, the evaluation of fitness
simply follows the definition given in the previous section, and recapped in
Alg. 2.

4.5.4 Internal cycle

The genetic algorithm is substantially a generation and selection cycle, here
called “internal cycle” to distinguish it from the recursive, external cycle
described in Alg. 1. In that context, the genetic algorithm is inside the

4.5. HCS: CLASSIFIERS AND SEARCH ALGORITHM 75

second instruction, where it performs the search for the most disagreeing
classifier.

The internal cycle starts with an empty population, and evolves for a pre-
defined number of steps. HCS employs a steady-state population model: at
each step, a new offspring is generated and inserted into the population, re-
moving another one if the population reached its maximum size, also defined
through a parameter chosen by the user. The Q and T values are evaluated
from the dataset at the start of the internal cycle.

Selection and reproduction

The selection process employs a niching method inspired to XCS in order
to maintain diversity in the classifiers population, which in turn greatly im-
proves the GA ability to escape local optima. Notice however the major
different between standard LCS: in our algorithm, each individual is com-
peting against the others to earn the winner status (Pittsburgh model). On
the contrary, in LCS the whole population cooperates towards the final goal
of learning (Michigan model).

At each step, a random sample is chosen with replacement from the train-
ing set D. The current population is scanned to find all the classifiers match-
ing this sample: these classifiers form the match set. If the match set is empty,
covering occurs: a new, random classifier is created, in such a way that its
conditions match at least the extracted sample, and immediately added to
the population. The match set mechanism is responsible for niches creation
and diversity maintenance.

Inside the match set, selection occurs in order to choose which classifier
will be allowed to reproduce. The two most important selection methods in
evolutionary algorithms are fitness proportionate and tournament selection.
If {ci}i=1...n it the set of classifiers where selection occurs, fitness propor-

tionate assigns each classifier a probability to be chosen equal to F(ci)
∑

j F(cj)
.

Tournament selection chooses τ classifiers from {ci} without replacement,
and selects the one with highest fitness among those.

Fitness proportionate selection has often been criticized for leading to
premature convergence, and in general choosing individuals with a heavy de-
pendence on the actual values of fitness, rather than their relative position
(fitness scaling problem [13]). Tournament selection does not have these dis-
advantages, and can be applied as long as fitness values can be compared [14]
(while the former needs fitness value which can be added).

76 CHAPTER 4. HCS

In this algorithm however, tournament selection might not be the best
choice. We apply selection inside match sets: their size greatly varies between
classifiers, and can range from 1 to the whole dataset size T . A single, fixed
value for the tournament size τ can then be inappropriate in most situations.
To solve this problem, Butz suggested to use a tournament size proportional
to the size of the match set [25]. We followed his advice; tournament selection
still requires however a τ ∈ [0, 1] parameter.

Conversely, since our fitness values are strictly defined (rather than to-
tally dependent on the problem, like in most genetic algorithms), fitness
proportionate selection operates in a more “controlled” environment — not
to mention that it is currently the standard selection method in the LCS
community. We decided then to perform experimental tests with both selec-
tion operators, in order to assess whether one of them had any significant
advantage over the other.

Once selection has been performed, the chosen classifier is passed to the
actual discovery mechanism of the genetic algorithm: reproduction. In HCS,
reproduction applies the three classical operators. Simple cloning just cre-
ates a perfect copy of the selected individual. Mutation creates instead an
imperfect copy, that is a classifier with a single condition slightly modified
(the exact specification of variation is dependent on the shape of the condi-
tion). With crossover, a second individual is selected from the match set; the
offspring will contain part of the genes from the first parent, and part from
the second parent. Each reproduction operator will be applied (exclusively)
with a probability defined at runtime: χ for crossover, µ for mutation, and
cloning otherwise (χ + µ < 1).

The created offspring is finally added to the population. If the population
size has reached its limit, a classifier is removed from it with an “inverse”
tournament selection: a subset τ of the whole population is chosen, and the
classifier with lowest fitness in the subset is selected for removal. Since in
this case the set where inverse selection operates upon has a fixed size, we
always use tournament selection, with τ ∈ N.

The selection and reproduction cycle is repeated until a pre-determined
number of steps has been performed. This value is generally decided by
the user, in order to balance the search for the best solution with a limited
amount of available time. Once the step limit has been reached, searching
terminates, returning the classifier with highest fitness value.

4.6. HCS: OPTIMIZATIONS 77

4.5.5 External cycle

Once the internal cycle is terminated, the classifier with highest fitness in
the final population is retrieved and stored, and will form the root of the
tree of classifiers returned. The training set is then split into two subsets:
the instances matched by the classifier, and the instances not matched by it.
The internal cycle is then recursively repeated on both subsets, creating two
subtree structures, which are appended to the current root node. The result
is clearly a new tree, which is returned to the caller.

The niched algorithm creates at each step many high-fitness classifiers,
with possibly disjunct cover sets. It could seem to be possible to exploit this
information, and to immediately use the other high-fitness classifiers. The
problem with this approach is that, on each of the two new subsets created
by the current best classifier, the H0 hypothesis is recomputed, since the
proportion of positive instances Q over the total size T has changed. This
modification completely changes the fitness surface, making it necessary to
start the new computations from scratch. At best, the old population could
be used to seed the new ones, in order to speed up convergence; we did not
explore this approach.

The external cycle repeats splitting until the classifier fitness is judged
too low. This decision is taken comparing the best fitness with the limit
value FLim. The definition of this value, based upon significance testing, was
discussed earlier. If no classifier reached the FLim value, the H0 hypothe-
sis has not been disproved, therefore the model of the whole dataset D is
returned — that is, the ρ = Q/T value describing the proportion between
positive and total instances in D.

The final result of the algorithm is then a tree, with classifiers at each
node, and ρ values on the leaves.

4.6 HCS: optimizations

4.6.1 Optimizing cover set building

The first step necessary to calculate the fitness of a classifier c is to find its
cover set D/c, that is the subset of all the instances D which the classifier
matches. A näıve implementation would scan the whole dataset, and test for
each instance whether the classifier covers it or not. The complexity of this

78 CHAPTER 4. HCS

operation is Θ(sT) attribute test operations, to be repeated for every step of
the algorithm.

In order to speed up generation of the cover set, we employed a caching
mechanism. The fundamental observation is that each classifier is composed
of a series of conditions on single attributes; while the number of classifiers
is generally very large, the number of possible conditions for each attribute
is usually quite limited. Even with a real number attribute, it does not make
sense to introduce more cut-off points than the number of different values
this attribute takes in D. We then created a cache associating conditions
found on each attribute to a bitmask representing the instances in D that the
condition matched. Since D is fixed, the bitmask for every condition needs
to be built only once — namely, the first time the condition is encountered.
The bitmask representing a classifier’s cover set can then be obtained by
the logical AND of the bitmasks of each of the classifier’s conditions. The
complexity of this method is still Θ(sT), but now each operation is a bit
AND, rather than a condition test: this makes the cached algorithm much
faster, also since current computers can perform 32 or 64 such operations in
a single clock cycle.

4.6.2 Optimizing fitness calculation

Once the cover set has been derived, and the number of positive and negative
instances is obtained, the fitness of such a S(q, t) subset must be calculated.
Standard statistical methods typically rely on approximations [115], which
work under certain conditions (eg. a balanced proportion of positive and
negative cases, and a minimum number of cases). Clearly, we cannot an-
ticipate those conditions will be met through every possible classifier being
tested; the most appropriate definition of the conditions is also under discus-
sion [21]. Moreover, on some problems classifiers can spot areas with very
low p-values (on the order of 10−100), where approximations inevitably com-
mit unpredictable errors5. These reason made it necessary to use the exact
formula to calculate fitness values.

Indicating as ft(p) the value of the probability mass function (be it bi-
nomial or hypergeometric) for p positive instances out of t extractions, the

5For instance, most standard statistical packages return a 0.000 result when the com-
puted p-value is below 10−3.

4.6. HCS: OPTIMIZATIONS 79

original formula to be calculated for hypothesis testing is

Hb(q, t) =
∑

v ∈ 0, . . . , t
ft(v) ≤ ft(q)

ft(v) (4.10)

The first step in optimizing is to recognize binomial and hypergeometric
distributions have a first increasing, then decreasing shape. This allows to
rewrite the previous formula as

Hb(q, t) =

L1
∑

v=0

ft(v) +

t
∑

v=L2

ft(v) (4.11)

=

L1
∑

v=0

ft(v) + 1−
L2−1
∑

v=0

ft(v) (4.12)

where L1 and L2 are the two “borderline” values (see Fig. 4.2), that is L1 < L2

and

ft(L1) ≤ ft(q) ∧ ft(L1 + 1) > ft(q) (4.13)

ft(L2) ≤ ft(q) ∧ ft(L2 − 1) > ft(q) (4.14)

One of the two values is always equal to q; the other can be efficiently found
through local search, and exploiting the symmetry of the binomial and hy-
pergeometric curves. The problem of calculating fitness is then reduced to
the problem of calculating the cumulative distribution function (CDF) of the
distribution.

Calculating binomial CDF

The binomial CDF for q positive extractions out of t is defined by the formula

Ft(q) =

q
∑

v=0

(

t

v

)

ρv(1− ρ)t−v (4.15)

The first step to be taken in order to avoid approximation errors (notably
underflow) is to use fractions instead of floating-point values. The formula
can then be expanded to

q
∑

v=0

(

t

v

) (

Q

T

)v (

1−
Q

T

)t−v

=

q
∑

v=0

(

t

v

)

Qv(T −Q)t−v

T t

80 CHAPTER 4. HCS

=
1

T t

q
∑

v=0

(

t

v

)

Qv(T −Q)t−v (4.16)

Notice the formula now is dealing with very big numbers: storing Qq takes
an amount of space linear in q. This is however necessary in order not to
lose accuracy. The formula could be simplified more (factoring a t! out of
the binomial coefficient for instance); anyway, with this format the numbers
inside the sum are guaranteed to be integers, rather than fractions. Avoiding
divisions and simplifications makes calculations dramatically faster.

Caching was used to avoid recomputing factorials and powers. The former
are the same throughout the whole computation, so need to be computed only
once. The latter, once the dataset is decided, have only 3 possible bases: Q,
T−Q, and T ; only 3 caches are then needed (but must be refreshed with each
iteration of the recursive algorithm). The space (in bytes) occupied by each
cache, including the factorial one, if all the results are stored is approximately

n
∑

i=0

log2 ni

8
=

n(n + 1)

16
log2 n (4.17)

where n is the maximum factorial argument, or the exponent base, which
ultimately depend on T . Storing everything is then feasible with smaller
datasets, where n < 1000. In other situations, a least recently used (LRU)
policy is probably to be preferred.

Caching is also used to ease recomputing of the sum in eq. 4.16. Each
time a CDF value is calculated, the result of the sum (before division) is
cached. If successively a value with different q but same t is asked, it is
possible to use the cached value as starting point, instead of recalculating all
the sum from scratch. Finally, calculating successive addends of the sum can
be speeded up with the following relationships:

gt(q) = gt(q − 1)
t− q + 1

q

Q

T −Q
(4.18)

gt(q) = gt(q + 1)
q + 1

t− q

T −Q

Q
(4.19)

where gt(q) =
(

t

q

)

Qq(T −Q)t−q.

4.7. AN ILLUSTRATIVE EXAMPLE 81

Calculating hypergeometric CDF

The formula for the CDF of hypergeometric distribution, with at most q
positive out of t total extractions, is as follows:

Ft(q) =

q
∑

v=0

(

Q

v

)(

T−Q

t−v

)

(

T

t

) =

∑q

v=0

(

Q

v

)(

T−Q

t−v

)

(

T

t

) (4.20)

Similarly to the binomial case, the second formula involves summing only
natural numbers, so the calculations are greatly simplified with respect to
the sum of fractions in the first formula. The factorials and the results of the
already calculated sums are again cached. As for the binomial distribution,
it is possible to calculate one addend of the sum from the previous or the
following addend, with the following equations:

gt(q) = gt(q − 1)
Q− q + 1

q

t− q + 1

T −Q− t + q
(4.21)

gt(q) = gt(q + 1)
q + 1

Q− q

T −Q− t− q + 1

t− q
(4.22)

where gt(q) =
(

Q

q

)(

T−Q

t−q

)

.

4.7 An illustrative example

We will now describe the execution of HCS on a simple artificial dataset,
in order to provide an example which can help understanding the algorithm.
The dataset has 1000 instances with two real attributes, X and Y, both in the
[-1.5:1.5] range, and a boolean target value. The classes are balanced, with
500 positive instances, and 500 negative ones. A graphical representation of
the dataset is shown in fig. 4.6, where circles represent the positive class, and
crosses the negative class.

The dataset is a mixture of 4 bivariate Gaussian distributions, with un-
correlated components. Each point therefore belongs to a N (µx, µy, σ) dis-
tribution, where (µx, µy) are the means, and σ is the standard deviation
(equal for both components). The dataset was generated by picking the 500
negative points from a N (0, 0, .5) distribution. The 500 positive points were
instead split: 200 points from a N (.5, .5, .15) distribution, 200 points from
a N (−.5, .5, .15) distribution, and finally 100 points from a N (−.5,−.5, .1)

82 CHAPTER 4. HCS

distribution. All the four generating distributions are clearly identifiable by
naked eye from the figure.

The first recursive step of the search algorithm produces the population
of classifiers represented in fig. 4.7 (this is at the final iteration of the genetic
algorithm). Each classifier is represented as a light dashed line, identified by
the value of the conditions on X and Y. The thick dashed line is the classifier
with highest fitness (62.7 in this case), which is chosen by the algorithm to be
used as the root node of the tree. Since this classifier selects 242 instances,
5 of them being positive, its fitness is calculated as

F(5, 242) = − log10

∑

f242(i)≤f242(5)

f242(i) ≃ 62.7 (4.23)

Two interesting points deserve to be highlighted:

• This best classifier identifies the lower right area, where no positive
Gaussian distribution was set. The algorithm could have easily found
in the same area a pure classifier, containing only negative instances;
however, this would have reduced the match size, providing less evi-
dence. Hypothesis testing decides the tradeoff between the sample size
and composition of the set.

• It is interesting to notice how the niching mechanism is able to maintain
many distinct classifiers even at the end of the evolutionary cycle, thus
contributing to avoid premature convergence.

Once the best classifier has been found, the dataset is split into two
subsets: the data which matches the classifier, and the data which does not.
The algorithm is recursively applied on both subsets. On the right side of
fig. 4.8 the data matching the classifier is represented. Here, the algorithm
does not perform any more tests: since there are 5 positive instances over
242, the maximum reachable fitness (if all the instances could be isolated by
a classifier) would be below the minimum threshold.

On the left side, the algorithm starts again looking for classifiers. The one
with highest fitness (25.1) is basically excluding the outer area, where only
negative instances can be found. Notice how these classifiers were already
present in the classifier population at the root of the tree. This suggests that
seeding the initial population of a node with the final population of its parent
could be beneficial to searching (we did not test this idea).

4.7. AN ILLUSTRATIVE EXAMPLE 83

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 4.6: Graphical representation of a simple artificial dataset. Crosses
are negative instances, circles positive ones.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 4.7: Graphical representation of the classifiers population tested at
the root of the tree.

84 CHAPTER 4. HCS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 4.8: The data tested at the first level of the tree, and the classifiers
produced by the search algorithm. Right: data matched by the root classifier.
Left: data not matched by the root classifier.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 4.9: The data tested at the second level of the tree, and the classifiers
produced by the search algorithm. Right: data matched by the first-level left
node. Left: data not matched by the first-level left node.

The algorithm proceeds then to further split the data, obtaining the two
subsets reported in fig. 4.9. Again, one of the two subsets is not tested, since
the number of positive instances was too low to allow reaching sufficient
fitness values. A new significant classifier is found on the other side (fitness:
19.6), and the algorithm proceeds with splitting. The final classifiers tree
obtained on this data is shown in fig. 4.10.

4.7. AN ILLUSTRATIVE EXAMPLE 85

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

X ≥ .3 ∧ Y ≤ 0.178
f = 62.71

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

X ∈ [−.87, .88]∧
Y ∈ [−.76, .80]
f = 25.1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

X ≤ .65∧
Y ∈ [−.24, .20]

f = 19.6

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

X ∈ [−.16, .14]
f = 19.2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

X ∈ [−.38, .41]∧
Y ∈ [−.45, .39]
f = 6.7

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Y

X

Figure 4.10: Full tree built for example dataset. Right branches contain
data matched by the classifier; left branches contain not matched data. Text
reports conditions and fitness of the best classifier (chosen for splitting).

86 CHAPTER 4. HCS

Chapter 5

Experiments

This chapter presents the results of experimental testing of the HCS. The
experiments were performed upon several datasets, and various aspects of
the algorithm have been assessed in order to answer three questions.

The first question regards the design choices left open in the previous
chapter. We had to decide between two alternatives, both in the fitness cal-
culation, and in the selection process. As regards fitness calculation, the ques-
tion was raised whether it was more appropriate to model the data through
a hypergeometric distribution or a binomial one. The first is more faith-
ful to the setting of extracting instances from a fixed dataset, but needs to
be later generalized to a binomial, in order to be able to make predictions
on new data. The latter immediately performs the generalization step, at
the expense of modelling less precisely the probability distribution of extrac-
tions from the dataset — and thus being at risk to take wrong decisions (see
sec. 4.4).

In the selection process, the two competing alternatives were tournament
selection and fitness proportionate selection (also called roulette wheel se-
lection). While the former has been demonstrated to have some appealing
formal properties [14], it’s not necessarily the best choice for our situation.
Its main drawback is that it requires a tournament size value; such a choice
could adversely affect evolution. On the other hand, fitness proportionate se-
lection is generally less well-behaved from a mathematical point of view [13],
but it could nevertheless be appropriate for our situation, since the fitness
values come from a specific distribution.

The second question we seek to answer through experiments regards the
stability of our algorithm. As discussed in chapter 3, we relate the stability

87

88 CHAPTER 5. EXPERIMENTS

of an algorithm to the consistency of its predictions when it is trained on
different samples of the same datasets. We will then give a formal definition
of stability, and evaluate it through the tests.

Finally, we will compare the results we obtained with the results gath-
ered by other researchers with different algorithms on the same datasets. For
ease of comparison, we also executed the algorithms ourselves, and gathered
results over the datasets. We already described the theoretical advantages
of HCS over other algorithms, but it is necessary to compare its actual per-
formance with the results obtained by other algorithms, in order to evalu-
ate its real usefulness. We chose to test the Naive Bayes and the Logistic
Regression algorithms, both for their well-defined statistical structure, and
their widespread use in medical research (especially LR). We then tested
three well-known Machine Learning algorithm: C4.5, for its similarity with
our proposal and its interpretability, Neural Networks and Support Vector
Machines, which are considered the state of the art for their proven learn-
ing capability, but cannot give an immediate explanation of the model they
build.

5.1 Datasets description

Experiments with HCS were carried out over five real-world datasets. The
first four are well-known and thoroughly studied datasets, coming from the
UCI machine learning repository [90]. In particular, they are the mushroom,
pima, WBC and bupa datasets. The fifth is a dataset concerning risk fac-
tors for Head and Neck Squamous Cells Carcinoma (HNSCC), gathered and
analyzed in cooperation with prof. R. Barale’s research group.

For the tests with Logistic Regression, Neural Networks and Support
Vector Machines, missing values were replaced with the mean/mode of the
attribute. The other methods could natively cope with missing data, and did
not require special treatment: the algorith was provided the original dataset.

5.1.1 Mushroom dataset

The mushroom dataset regards distinguishing between edible and poisonous
mushrooms; every mushroom is described through a set of quantitative and
qualitative features. The data consists of 8192 instances, with 22 categorical
(unsorted) attributes, ranging from 2 to 12 different values. 51.8% of the

5.1. DATASETS DESCRIPTION 89

cases represent edible, while the rest poisonous mushrooms. There is a single
attribute (stalk-root) with 2480 (30%) missing values; all the other attributes
are always complete.

This dataset is not really focused on risk prediction: there exist compact
sets of rules which achieve 100% accuracy. Nevertheless, it is an impor-
tant benchmark dataset, studied by most machine learning algorithms. It is
moreover a very large dataset — especially for medical standards.

5.1.2 Pima Indians diabetes dataset

The Pima Indians diabetes dataset is a medical dataset, gathered to inves-
tigate predispositions to diabetes among the females of the Pima Indians
population. It comprises 768 instances, with 268 (35%) tested positive for
diabetes. Each instance contains 8 numeric attributes, some of which integer
and some real valued.

The dataset apparently contains no missing values. However, a more
careful examination (even by a non-expert eye) reveals that a few variables
present impossible values. Such erroneous data can lead to meaningless rules
produced by the algorithm, therefore we decided to remove the wrong values:
every number equal to 0 in the plasma glucose concentration, diastolic blood
pressure, skin thickness and BMI attributes was deleted. Notice we did not
delete attributes, or instances: we just removed the wrong values inside each
instance. The resulting dataset has 278 missing values (5 on plasma, 35 on
pressure, 227 on skin thickness, 11 on BMI), amounting to 4.5% of the overall
data.

This dataset is very interesting from our point of view. It contains in fact
most of the characteristics which prompted the development of HCS: medical
dataset, missing data, inherently uncertain classification. Results obtained
on this data will therefore be especially meaningful to our algorithm.

5.1.3 Wisconsin breast cancer (WBC) dataset

The Wisconsin breast cancer dataset [79] is another extremely common bench-
mark for machine learning algorithms. The data was collected in order to
learn to distinguish between benign and malignant tumors, in the context of
breast cancer diagnosis. It consists of 699 instances, with 241 (34.5%) malig-
nant and 458 benign cases. Each instance is described by 9 ordinal attributes,
ranging in the {1, . . . , 10} set. There are 16 missing values overall.

90 CHAPTER 5. EXPERIMENTS

This dataset is related to a standard diagnostic task; it should then be
possible to achieve, in principle, 100% accuracy. In fact, a few simple rules
allow to easily reach around 95% accuracy; improving this figure however
becomes very difficult, and we are not aware of any ML algorithm claim-
ing perfect classification on this data — possibly due to some misclassified
instances.

Our interest in this dataset is due to its medical nature, and the presence
of missing values (albeit few). WBC has also been introduced as a benchmark
dataset in the LCS community [125].

5.1.4 BUPA liver disorders dataset

The BUPA liver disorders dataset is another medical dataset. It was gathered
to examine the relationship between drinking habits and liver disorders. It
consists of 345 instances, with 145 (42%) showing some kind of liver disorder,
and 200 healthy. Each instance has 6 real valued attributes; 5 derive from
blood tests, used to detect anomalies caused by drinking; the last attribute
is directly related to drinking habits. There are no missing values.

We were interested in this dataset mainly for its medical nature, and for
its difficulty: current ML methods reach at best a 72% accuracy on this data.
This let us think that the dataset does not allow a clear-cut classification,
and would then be suitable for risk analysis. This dataset is also interesting
to asses the behaviour of HCS with fewer data points.

5.1.5 Oral cancer dataset

The oral cancer dataset, originally presented in [5], was designed to explore
the influence of genotype on the chance to develop head and neck squamous
cell carcinoma (HNSCC). It is already well-known that this kind of cancer
is associated with smoking and alcohol-drinking habits, it is more common
among males and its incidence increases with age. The individual risk how-
ever could be modified by genetic factors; therefore genotype information,
regarding eleven genes involved with carcinogen-metabolizing (CCND1, NQO1,
EPHX1, CYP2A6, CYP2D6, CYP2E1, NAT1, NAT2, GSTP1) and DNA repair sys-
tems (OGG1, XPD) was provided by molecular testing.

Nine of these genes have two allelic variants; let’s call them a1 and a2.
Since the DNA contains two copies of each gene, there exist three possible
combinations: a1a1, a2a2 (the homozygotes) and a1a2 (the heterozygote —

5.2. STRUCTURE OF EXPERIMENTS 91

order does not matter). The homozygotes where represented with values 0
and 2, while the heterozygote with 1. Due to dominance, for these genes the
heterozygote is equivalent to one of the homozygotes; however, for many of
the considered genes this dominant effect is not known. So class 1 is either
equivalent to class 0, or to class 2. The remaining two genes (NAT1 and NAT2)
have 4 allelic variants, which result in 9 combinations; they were sorted by
their activity level, and put on an integer scale from 0 to 8.

The full data consists of 355 records, with 124 positive instances (HNSCC
patients) and 231 negative (controls). Each record reports the person’s gen-
der, age, total smoke and alcohol consumption, gene values, and a boolean
target value which specifies whether he had cancer when the database was
compiled or not. The data was collected in different periods between 1997
and 2003; this has led to many missing data among the genotypic information
of patients. Actually only 122 elements have complete genotypic description;
the remaining 233 have missing values ranging from 1 to 9, with the average
being 3.58. As an overall figure, of the 11×355 = 3905 genotype values, just
3070 are present: 21% of the genotype information is missing.

5.2 Structure of experiments

The HCS algorithm has two sources of variance. The first one, common to all
ML methods, is due to variance in the dataset: executing the same algorithm
on different datasets, even drawn from the same underlying distribution, is
likely to produce different results. The second source is specific to HCS, and
to stochastic algorithms in general. The algorithm used to explore the space
of classifiers C is not deterministic, but proceed stochastically towards the
optimum. It is therefore possible that repeated explorations on the same
fitness surface produce different results, depending both on different starting
points and different decisions during search.

In order to reduce the dependency of results on the particular choice of
training set, and on the particular search path chosen during the experiment
for non-deterministic algorithms, every test was repeated 10 times, averaging
the results. The value of 10 was chosen as a tradeoff between the requirement
to reduce variance, and the time constraints on running many experiments.
We call run each repetition of the same experiment.

As previously recalled, we have two design choices, both with two options:
selection method (fitness proportionate / tournament) and fitness function

92 CHAPTER 5. EXPERIMENTS

(binomial / hypergeometric). This amounts to four algorithms, to be tested
on five datasets. The total is then of 20 experiments; executing 10 runs for
each experiment produces a total of 200 runs.

The size of the Mushroom dataset allowed for a straightforward training
and test stratified split (25% and 75% of the whole data, respectively). Each
run consisted of a single execution of the algorithm. For all the other datasets,
a simple split would have generated either not enough data for training, or
not enough for a stable evaluation. We therefore decided to apply 10-fold
cross-validation. Each run then comprised 10 executions of the algorithm,
and the measures of performance were calculated on the reconstructed test
set; for every run, a new folding or training/test split was generated1.

For every experiment, fitness limit training was employed, in order to
choose the best fitness cutoff point. The nested cross-validation procedure
described in sec. 2.1.5 was applied; in the inner folding, we choose the FLim

value which minimized the cross-validated Brier score.

5.3 Performance measures

We are interested into two main features of the results obtained through the
HCS algorithm, namely correctness and stability.

The standard way to evaluate correctness of the results is by measuring
the classification accuracy. This measure is the proportion of instances in
the (possibly reconstructed) test set, for whom the model produced by the
algorithm correctly identifies the class label. As already discussed in chap. 2,
other measures are often advocated, usually since they are more robust to
imbalanced class distributions [18]. Accuracy however is still the most com-
mon in the machine learning community, and we calculated it in order to
have a straightforward comparison with other ML algorithms. Since HCS
produces probabilities rather than class labels, in order to calculate accuracy
we labelled each instance with the class with highest probability. Considering
that we restricted to the case where there are only two classes, labelled 0 and
1, and that the risk value is the probability to obtain class 1, this amounts to

1The 10-fold cross-validation was not applied to Mushroom because training/test splits,
when possible, give more statistically tractable results [31], and because the dataset is too
big for HCS and the more complex algorithms (NN, SVM) to complete in a reasonable
amount of time. HCS calculations could be speeded up by approximating the fitness, but
classifiers matching would nevertheless require a large amount of time.

5.3. PERFORMANCE MEASURES 93

rounding the risk to the closest integer. Accuracy ranges from 0 to 1, with
higher values corresponding to better models.

In order to better evaluate HCS’ behaviour, we also recorded the Brier
score and AUC values. The AUC metric is however not particularly favourable
to HCS. The trees resulting from this algorithm are usually are very com-
pact, with a low number of leaves (3-4 typically); this helps readability, and
keeps overfitting low. On the other side, the results inside each group are
undifferentiated; this kind of structure does not have a good discrimination
power, which is exactly what the AUC intends to measure.

Since these Brier score and AUC figures are not systematically reported
in the ML literature, we recalculated the results ourselves (together with
accuracy). For all the learning algorithms except SVM, we used the imple-
mentation in Weka [127]. Some preliminary tests did not show meaningful
differences by modifying the parameters from their default value, therefore
all the parameters were left at their default. As for HCS, we report the av-
erage result for 10 runs, where the result for each run is obtained through
10-fold crossvalidation (or a training/test split in Mushroom case).

As regards SVM, the results obtained are usually quite sensitive to the
choice of initial parameters. We therefore believe that parameter optimiza-
tion was required, in order to provide meaningful results. We choose to apply
the RBF kernel, and optimized the C and Γ parameters through a nested
10-fold crossvalidation (the outer folding was necessary to properly estimate
performance). We used the mySVM implementation by Stefan Rüping, con-
tained inside the YALE machine learning environment [83].

We are not aware of any method of evaluating stability (as defined in
chap. 3) of a risk prediction algorithm. Turney gives a definition in [116],
but it is valid only for simple classification algorithms — and it apparently re-
quires knowledge of the probability distribution underlying D. We therefore
designed our own measure, inspired to Turney’s one.

Every experiment is repeated 10 times. With cross-validation, this means
that every instance of the data will have 10 evaluations when it belongs to the
(reconstructed) test set. With the training/test split used for the mushroom
dataset, the number of evaluations of each instance in the test set will be
slightly lower (7.5 on average).

Calling rj
i the risk value assigned to instance j on its i-th test evaluation,

we first calculate stability for each instance as the standard deviation of

94 CHAPTER 5. EXPERIMENTS

{rj
1, . . . , r

j
n}:

sj =

√

√

√

√

1

n

n
∑

i=1

(rj
i − rj)2 (5.1)

where rj = 1
n

∑n

i=1 rj
i . Stability is then defined as the average of the devia-

tions:

s =
1

T

∑

j

sj (5.2)

Since each rj
i ranges in the [0, 1] set, sj can vary from 0 to 0.5, and so

does s — with 0 being perfect stability, and 0.5 being complete instability.

5.4 Results

Table 5.1 summarizes the parameters applied to the genetic algorithm for the
various datasets. The µ and χ parameters control the probability to perform
a mutation or a crossover, respectively. The mutation value is higher than
usual because we resort to this operator for fine-tuning of the classifier condi-
tions. The two values are always the same for all datasets. The τ parameter
is the size of the tournament, expressed as a fraction of the match set size;
it was set to 0.4, following Butz’ suggestion [25]. During “unselection” —
that is, while choosing the classifier to remove from the population when
a new one must be added — tournament size was fixed at 4. This value
is somewhat dependent on the population size; again, it was not tuned for
singular datasets. The S0, Mr and P# parameters control some aspects of
the generation of classifier conditions. S0 is the maximum initial range for
real and integer conditions, while Mr is the maximum mutation amount for
the borders of the same conditions. P# is the probability to put a wildcard
value when creating a new condition for a categorical attribute. Again, these
values were assigned through past experience and not tuned.

The two most important parameters are the population size, and the
number of evaluation steps. These values are not the same on all dataset due
to the greater difficulty of the Bupa and HNSCC datasets. For these two, a
few preliminary executions suggested that the maximum number of classifiers
and the total number of search steps should have been slightly increased, in
order to improve the algorithm’s performance.

5.4. RESULTS 95

Table 5.1: Genetic algorithm parameters for the 5 datasets.
Mushroom Pima WBC Bupa HNSCC

Pop. size 200 200 200 300 300
Steps 30000 30000 30000 45000 45000
µ 0.4 0.4 0.4 0.4 0.4
χ 0.5 0.5 0.5 0.5 0.5
τ 0.4 0.4 0.4 0.4 0.4
S0 — 0.75 0.75 0.75 0.75
Mr — 0.1 0.1 0.1 0.1
P# 0.5 — — — 0.5

5.4.1 Results: design choices

Tables from 5.2 to 5.6 summarize the results obtained for the 5 datasets with
all the 4 variants of the HCS algorithm. TB stands for Tournament+Binomial,
TH for Tournament+Hypergeometric, RB for Roulette wheel+Binomial, RH
for Roulette wheel+Hypergeometric. At a first glance, the four variants ap-
pear to perform very similarly on all the datasets. From a statistical point
of view, we followed the procedure suggested in [30], and applied the Fried-
man test [43] in order to detect significant variations between the results
(the mean rank value is reported in the last column of each table). This test
reports wheter at least one significant difference is found; a further post-hoc
analysis (the Nemenyi test [89]) can then be applied to detect which couples
have a significant difference.

The Friedman test suggests that no strong difference between the four
design choices can be declared to exist. The only significant result identified
is on the Brier score values (p = .036), where the Roulette+Hypergeometric
combination performs consistently worse than the alternatives. This result
is however only partly confirmed by the others, so we are more inclined to
attribute it to chance, rather than to an effective difference.

We decided then to perform a simpler test, comparing the the fitness
choice and selection method separately. Table 5.7 contains the p-value for
the Wilcoxon signed ranks test (two-tailed).

For the selection operator, both tournament selection and fitness pro-
portionate selection perform equally well, providing no clear indication of
preference. It appears that in HCS the operators maintain a very similar
pressure towards more fit solutions; this is probably also to ascribe to the

96 CHAPTER 5. EXPERIMENTS

Table 5.2: Accuracy results. Average and standard deviation values over 10
runs with 10-fold cross-validation, except Mushroom (see text). Mean rank
value for Friedman test (p = .586).

Mushroom Pima WBC Bupa HNSCC Rank
TB .999± .001 .736± .008 .950± .006 .620± .027 .841± .011 3.1
TH .998± .002 .737± .012 .947± .008 .646± .016 .820± .011 2.7
RB .998± .002 .728± .013 .948± .006 .621± .026 .837± .015 2.1
RH .999± .001 .731± .011 .944± .004 .634± .021 .806± .014 2.1

Table 5.3: Brier score results. Average and standard deviation values over 10
runs with 10-fold cross-validation, except Mushroom (see text). Mean rank
value for Friedman test (p = .036).

Mushroom Pima WBC Bupa HNSCC Rank
TB .000± .001 .186± .003 .040± .006 .243± .012 .134± .007 3.1
TH .001± .002 .180± .005 .038± .005 .244± .016 .146± .007 2.7
RB .001± .002 .186± .005 .039± .002 .239± .009 .138± .010 3.0
RH .001± .001 .187± .004 .043± .003 .256± .014 .152± .011 1.2

Table 5.4: AUC results. Average and standard deviation values over 10 runs
with 10-fold cross-validation, except Mushroom (see text). Mean rank value
for Friedman test (p = .196).

Mushroom Pima WBC Bupa HNSCC Rank
TB 1.000± .000 .764± .011 .971± .008 .59± .03 .811± .017 2.6
TH .999± .002 .775± .012 .973± .005 .63± .02 .821± .010 3.3
RB .999± .001 .768± .010 .966± .005 .58± .02 .805± .017 1.6
RH .999± .001 .759± .011 .968± .009 .63± .03 .823± .021 2.5

5.4. RESULTS 97

Table 5.5: Stability results. Average and standard deviation values over 10
runs with 10-fold cross-validation, except Mushroom (see text). Mean rank
value for Friedman test (p = .658).

Mushroom Pima WBC Bupa HNSCC Rank
TB .001± .020 .147± .066 .049± .098 .137± .068 .084± .108 2.8
TH .004± .033 .129± .064 .049± .094 .188± .074 .120± .107 2.3
RB .004± .033 .141± .066 .043± .091 .125± .070 .090± .108 2.9
RH .002± .027 .139± .064 .049± .095 .201± .080 .128± .108 2.0

Table 5.6: Number of rules. Average and standard deviation values over 10
runs with 10-fold cross-validation, except Mushroom (see text). Mean rank
value for Friedman test (p = .123).

Mushroom Pima WBC Bupa HNSCC Rank
TB 6.4± 0.5 3.8± 1.7 2.5± 0.5 1.6± 0.7 2.1± 0.3 3.6
TH 7.2± 1.0 3.9± 1.1 3.1± 0.7 3.0± 0.9 3.0± 1.8 2.0
RB 6.1± 0.9 4.3± 1.2 3.3± 0.9 1.7± 0.9 2.2± 0.4 2.6
RH 7.1± 0.7 3.7± 0.9 3.5± 1.1 3.2± 1.1 3.7± 1.5 1.8

niching mechanism. There could be some difference in the number of evalua-
tions required to obtain the optimum, which in our experiments was fixed at
the beginning; however we did not verify this possibility. Although the exper-
iments produce no evidence of improvement, we believe tournament selection
to be superior to fitness proportionate – first, for its provable mathematical
properties. Second, in situations where very similar high-fitness classifiers
are competing, tournament selection still provides an advantage to the best
one, while fitness proportionate is basically choosing at random. We then
decide to employ tournament selection in HCS.

Also for the fitness function, the results do not point decisively into one
or another direction. Anyway, the binomial fitness generaly produces smaller
trees, while not impairing performance (except a slight reduction in AUC). A
more compact tree is easier to interpret, so this function should be preferred.
The binomial fitness was moreover slightly faster to calculate in our imple-
mentation. We then choose the binomial distribution for further analysis of
the algorithm.

98 CHAPTER 5. EXPERIMENTS

Table 5.7: Split comparison of Binomial vs Hypergeometric, and Tournament
vs Roulette wheel. Figures report the p-value of Wilcoxon signed ranks test.
◦ reports a better result for Binomial / Tournament; • a better result for
Hypergeometric / Roulette wheel.

Accuracy Brier AUC Stability Size
B/H .787 .105 .038• .348 .014◦
T/R .016◦ .102 .068 .439 .137

5.4.2 Results: Mushroom dataset

On the mushroom dataset, the HCS algorithm reached 99.95% accuracy in
the test set (averaged over 10 runs). This result is good, but partly unsatisfac-
tory: most algorithms reach perfect classification on this dataset (tab. 5.8),
while HCS was able to do so only on 6 runs. There can be two reasons why
our method does not always produce a perfect interpretation of the whole
dataset. The first is simply that HCS is not designed to do that. The al-
gorithm does not expect to find a perfect classification, and therefore the
fitness definition only indirectly prefers classifier leading to 100% accuracy.

The second reason is connected to a limitation in the possible conditions.
The attributes in the dataset are categorical, with many possible distinct
values. For such attributes, our algorithm can only form conditions which
isolate a single class. The most important rule for this dataset, reported
by many classifiers (see for instance [34]), is a disjunction of three possi-
ble values for the odor attribute. This rule would have a very high fitness
value in HCS (approximately 250), but cannot be expressed with the cur-
rent condition format. A partial confirmation to this explanation can come
from the results obtained on this dataset with XCS and UCS, which do not
reach 100% accuracy as well (they obtain 99.0% and 99.2%, respectively [9]).
We did not explore the possibility to employ disjunctive rules for categorical
values: although this is technically possible, the algorithm could find some
difficulties in exploring such a complex space.

Concerning stability, on this dataset HCS behaves very well. With a
stability index of 0.001, we can conclude that the resulting trees consistently
assign similar risk values to instances. Fig. 5.1 depicts the tree obtained from
a sample run.

5.4. RESULTS 99

t0

t1 t3

1 t2 0 t4

1 0.001 0 0.999

t0: [197] odor=none
t1: [24] gill-size=broad ∧ spore-print-color=green
t2: [17] gill-size=narrow ∧ stalk-surface-below-ring=scaly
t3: [136] gill-size=broad ∧ stalk-shape=enlarging ∧ stalk-surface-

above-ring=smooth
t4: [44] gill-spacing=crowded ∧ stalk-shape=tapering

Figure 5.1: Typical result for the mushroom dataset. Conditions are satisfied
on the left branch, and unsatisfied on the right branch. Numbers in brackets
report rule fitness.

Table 5.8: Performance measures for various algorithms on the Mushroom
dataset. Average of 75% test set performance over 10 runs.

NB LR C4.5 SVM NN HCS
Accuracy 0.96 1.0 1.0 1.0 1.0 1.00
Brier score 0.03 0.0 0.0 0.0 0.0 0.00
AUC 0.99 1.0 1.0 1.0 1.0 1.00

100 CHAPTER 5. EXPERIMENTS

t0

0.85 t1

0.61 t2

0.10 0.34

t0: [26] plasma≥ 155 ∧ BMI≥ 24 ∧ pedigree≥ .314
t1: [19] plasma≥ 100 ∧ BMI≥ 27 ∧ pedigree≥ 1.43 ∧ age≥ 29
t2: [6] timesPregnant≤ 11 ∧ plasma≤ 130 ∧ BMI≤ 49 ∧ pedi-

gree≤ 2.28

Figure 5.2: One result for the Pima dataset. Conditions are satisfied on the
left branch, and unsatisfied on the right branch. Numbers in brackets report
rule fitness.

5.4.3 Results: Pima dataset

The Pima dataset should be better suited for analysis through HCS. It does
not guarantee that a perfect distinction between classes can be found — and
in fact, no ML method has succeeded so far in this task. Reported results
for rule-based methods, like C4.5, are generally around 73.0% [112, 60]. Fig-
ures become higher with methods able perform linear combinations of the
attributes: the best result obtained so far is 77.7% with linear discriminant
analysis [82], but a simple logistic regression already reaches 77.2% (our re-
sult).

The HCS algorithm obtained 73.8% average accuracy, which is similar to
C4.5 performance, but slightly lower than the results obtained with XCS and
UCS (around 75.5% [9]). While the accuracy and Brier score figures for HCS
are close to the ones obtained from other algorithms, the results for AUC
appear much lower. This is however expected, and is a consequence of the
low number of different risk values contained in the trees.

Fig 5.2 reports a tree obtained from a sample run.

5.4. RESULTS 101

Table 5.9: Performance measures for various algorithms on the Pima dataset.
Average of 10-fold crossvalidated performance over 10 runs.

NB LR C4.5 SVM NN HCS
Accuracy 0.76 0.77 0.75 0.77 0.75 0.74
Brier score 0.18 0.16 0.19 0.16 0.17 0.18
AUC 0.81 0.83 0.76 0.85 0.81 0.76

Table 5.10: Performance measures for various algorithms on the WBC
dataset. Average of 10-fold crossvalidated performance over 10 runs.

NB LR C4.5 SVM NN HCS
Accuracy 0.97 0.96 0.95 0.97 0.96 0.95
Brier score 0.02 0.03 0.04 0.02 0.03 0.04
AUC 0.99 0.99 0.97 0.99 0.99 0.97

5.4.4 Results: WBC dataset

WBC is another medical dataset, and although it is aimed at a diagnos-
tic task, it is still a difficult problem, where a perfect predictor has not
been found. Results reported for C4.5 range from 93.4% [7] to 94.7% accu-
racy [131]. The XCS algorithm has been reported to obtain between 94.1%
and 96.4% accuracy [125, 9]. Similarly to the Pima datasets, figures are
higher for subsymbolic methods, with SVM and k nearest neighbour re-
ported to reach 97% [7]. Of course, we must remember these methods have
the disadvantage of not providing easily interpretable models. Our results
confirm the literature reports, and show almost tied values for both Brier
score (around 0.03) and AUC (0.97–0.99).

HCS on this dataset reaches on average 94.5% accuracy. This result very
similar to C4.5, and slightly worse than the UCS result. However, HCS
reaches such an accuracy with an average of 2.9 conditions — while XCS
requires approximately 25 rules to reach comparable accuracy levels [125].
Moreover, the results are very stable, meaning that the algorithm consistently
produces similar models. Fig 5.3 reports a tree obtained from a sample run.

5.4.5 Results: Bupa dataset

The Bupa dataset is even more “difficult” than Pima. Just predicting the
most frequent class yields 58% accuracy, and most classifiers don’t improve

102 CHAPTER 5. EXPERIMENTS

t0

t1 0.97

0.72 t2

0.57 0.002

t0: [89] f1 ∈ [0, 8]∧f2 ∈ [0, 4]∧f3 ∈ [0, 6]∧f4 ∈ [0, 7]∧f8 ∈ [0, 8]
t1: [20] f3 ∈ [3, 8] ∧ f4 ∈ [0, 9] ∧ f6 ∈ [3, 10] ∧ f7 ∈ [0, 8]
t2: [6] f1 ∈ [4, 10] ∧ f4 ∈ [0, 9] ∧ f5 ∈ [0, 9] ∧ f7 ∈ [4, 10] ∧ f8 ∈

[0, 6]

Figure 5.3: One result for the WBC dataset. Conditions are satisfied on the
left branch, and unsatisfied on the right branch. Numbers in brackets report
rule fitness.

this value too much. C4.5 is reported to reach accuracies varying from
61% [60] to 64% [7] or even close to 66% [9], which is confirmed by our
result. XCS and UCS attain 65.4% and 68.7% respectively [9]. HCS on this
dataset reaches 62.0% accuracy, which is well below the standard. This is
the only dataset where hypergeometric fitness gives a better accuracy than
binomial fitness (64.6% with tournament selection). However, the result is
not so clear from the Brier score point of view, where the results are mixed.
The toughness of the dataset for HCS is reflected by the stability value, and
by the tree sizes. Roughly half of the runs ended by reporting only a single
condition, and 1/3 with no condition at all (that is, by providing simply the
default 58% value). With so small tree size, the average AUC value is worse
even than Naive Bayes (while the accuracy and Brier score are better): a
tree with no condition will in fact the default value of 0.5 for AUC. Fig 5.4
reports a result with a single condition.

5.4.6 Results: HNSCC dataset

The HNSCC dataset is not public, so we have no independent accuracy values
to confront with. We therefore will compare HCS results only with perfor-
mance figures obtained by our own execution of different ML algorithms.

Results with HCS compare very favourably with the other ML algorithms.

5.4. RESULTS 103

t0

0.95 0.36

t0: [13] sgpt≥ 20 ∧ sgot≤ 21 ∧ gammagt≤ 22 ∧ drinks≤ 3

Figure 5.4: One result for the Bupa dataset. Conditions are satisfied on the
left branch, and unsatisfied on the right branch. Numbers in brackets report
rule fitness.

Table 5.11: Performance measures for various algorithms on the Bupa
dataset. Average of 10-fold crossvalidated performance over 10 runs.

NB LR C4.5 SVM NN HCS
Accuracy 0.55 0.69 0.65 0.69 0.69 0.62
Brier score 0.26 0.21 0.26 0.20 0.21 0.24
AUC 0.63 0.71 0.67 0.75 0.73 0.59

Table 5.12: Performance measures for various algorithms on the HNSCC
dataset. Average of 10-fold crossvalidated performance over 10 runs.

NB LR C4.5 SVM NN HCS
Accuracy 0.69 0.71 0.70 0.76 0.79 0.84
Brier score 0.23 0.20 0.20 0.17 0.17 0.13
AUC 0.74 0.74 0.72 0.82 0.86 0.81

104 CHAPTER 5. EXPERIMENTS

t0

0.95 t1

0.9 0.15

t0: [28] gender=Male ∧ age∈ [49, 79] ∧ packyears≥ 4 ∧ ogg1∈
{0, 1} nat2gen≤ 7 ∧ gstp1∈ {0, 1}

t1: [11] age∈ [35, 82] ∧ packyears≥ 24 ∧ ephx1∈ {1, 2} ∧ gstp1∈
{0, 1}

Figure 5.5: One result for the HNSCC dataset. Conditions are satisfied on
the left branch, and unsatisfied on the right branch. Numbers in brackets
report rule fitness.

While we cannot exclude a certain amount of publication bias, the only
algorithm which appears to be able to reach HCS when applied by an expert
is neural networks. It would be interesting to compare our result with the
results obtained through rule extraction from neural networks (an interesting
algorithm is described in [34]). Once again anyway, the AUC value compares
consistently worse than accuracy and Brier score.

We report a sample tree in fig. 5.5; although accuracy was not as high as
in simpler datasets, the algorithm still produced very stable results, with the
first two conditions of the tree being at most slight variations of the reported
ones.

The first classifier extract 77 patients from the dataset, 73 of whom are
ill. This is a highly significant area, where the p-value of the null hypothesis
is roughly 10−28. The particular genetic combination reported in this rule
appears to be favorable to developing cancer: removing age and packyears
from the conditions yielded a subpopulation of 103 patients, 74% of whom
were ill — still a high risk value, compared to the baseline of 35%.

The second classifiers, which applies on the people not taken into account
by the first one, finds a subset of 22 people, with 18 being ill. Considering
that at this point the baseline risk is (124−73)/(355−77) ≈ 0.18, this subset
is still very interesting (p-value ≈ 10−11). Again, a genotype causing a higher
risk is identified: on the whole dataset, the second classifier without age and
packyears conditions extracts a subset of 70 patients, 74% of whom were ill.

Since this was a case-control study, the dataset is not a representative

5.5. DISCUSSION 105

sample of the global population. It is then important to underline that the
identified risk values are not realistic, and do not represent the actual risk
of a random person satisfying their conditions. However, the result it still
valid with respect to the identified conditions: the genotypes reported by the
classifiers will generally have a worse prognosis than the average — although
a different study design is necessary to estimate the exact values.

5.5 Discussion

Analysis of the experimental results gives many information on the benefits
and limitations of HCS.

The first — and for us most important — information, is that HCS is
able to produce results comparable with other current machine learning algo-
rithms. The correction to significance required by multiple hypothesis testing
are considered by some to deprive most results of any significance, and gener-
ally impair research [102]. With this in mind, applying statistical hypothesis
testing on such a broad scale was not guaranteed to produce any significant
results at all. Instead, the algorithm is able to identify extremely significant
regions, with very low p-values even after conservative multiple hypothesis
testing corrections like Bonferroni’s, also in smaller datasets like HNSCC or
WBC.

Results are generally encouraging from the classification accuracy point of
view, although this is not HCS primary goal: the fitness calculation only in-
directly favours perfect classification, and can (and does, as shown with the
Mushroom dataset) prefer larger, impure subsets to smaller, pure subsets.
Comparison with very expressive non-linear methods, like neural networks,
is generally at a loss for HCS (with the noticeable exception of HNSCC).
However, we believe that the impairment of performance is acceptable, when
we factor in the immediate interpretability of HCS results. Notice that re-
search on XCS recently proposed classifiers with non-axis parallel borders,
which greatly improve expressiveness [24]. Such an improvement anyway
comes at the cost of seriously impairing interpretability; we then decided the
extra flexibility was not worth the subsequent necessity of complex reasoning
to understand the result.

A weak point of HCS is the evaluation of performance through AUC,
where the algorithm appears to have some native disadvantage compared to
other solutions. We believe this can be connected to the very low number

106 CHAPTER 5. EXPERIMENTS

of diverse risk estimates produced by HCS, which produces a structure with
low discrimination power. This interpretation can be partly confirmed by
C4.5 consistently showing lower AUC values as well. It would be interesting
to embed some simple risk estimate algorithm inside the leaves of the final
tree (logistic regression comes to mind), in order to “smooth” the prediction
and evaluate its impact on AUC and the other measures. Another strategy
which can be expected to improve AUC is maximization of this value as an
objective of FLim training, instead of minimization of the Brier score.

The comparison with interpretable methods is more favourable to HCS,
although not decisive. C4.5 is often on par, and sometimes greatly outper-
formed. Whether this is due to the vastly higher number of conditions ex-
plored, or to the radically different fitness function, remains to be discovered.
On the classifier systems side, HCS performance seems comparable to XCS
and UCS, with respect to classification accuracy. From the interpretability
point of view however, the rules have exactly the same structure, so they
are equally readable in both algorithms. HCS however produces much more
compact rule sets — approx. 8 times less than XCS with a ruleset reduction
algorithm [125]. Some indirect information on UCS suggests that it gener-
ates half of the rules produces by XCS, but we could not find direct claim
supporting this.

XCS attempts to find rules which split target classes as much as possible,
in order to increase accuracy of the classifiers. In the datasets where this
is not possible, the result is that many small-size, locally accurate (in the
training set) rules are generated, only to obtain the same test performance
as a bigger, purposely inaccurate rule. On the other hand, some problems
show exactly this kind of highly fragmented, 100% accuracy fitness landscape:
the parity, multiplexer or intertwined spirals problems come to mind. On this
kind of datasets, HCS is bound to produce sub-optimal results. We believe
however that such level of misleading fragmentation would be rare to find in
the class of real-world problems HCS is designed to tackle.

Chapter 6

Summary and conclusions

This thesis presented a new Machine Learning algorithm designed for explo-
ration and understanding of medical datasets. The algorithm, called HCS,
lies at the crossroads of statistics, decision trees and learning classifiers sys-
tems. The learning classifier system is used to generate classifiers which
identify subsets of the data. Statistical hypothesis testing is applied to distin-
guish between expected and unexpected classifiers, directing the LCS search
process towards the unexpected results. Decision trees finally come into play
in order to combine several classifiers together in a single model of the data.

The algorithm has been designed with medical use in mind, and for this
objective fulfils several requirements, all coming from the kind of inputs
provided and outputs required in the medical research area.

• HCS can deal with data containing several, different types of attributes.
Medical data can contain values coming from diverse kinds of tests. In
HCS, mixing categorical, ordinal, numerical data is possible without
any particular preprocessing. Since the attributes are tested separately,
there is no need to find a sensible way to combine them.

• The algorithm natively copes with missing values. Missing data are
very common in medical datasets; HCS does not require the dataset
to be complete in order to work. Missing data are treated exactly
as unknown, and never substituted with any other value — which, as
much educated as possible, still remains a guess.

• HCS does not try to reach perfect modelling at all costs. The accu-
racy value at which the algorithm stops is decided by statistical analy-

107

108 CHAPTER 6. SUMMARY AND CONCLUSIONS

sis, which take into account both the precision of the model, and the
amount of data supporting it.

• It produces interpretable models. HCS outputs a tree of classifiers:
basically a decision tree where each internal node is a conjunction of
conditions on the attributes. Each leaf is a model, built upon the data
which fulfilled (or did not fulfil) the conditions up to the root.

The main engine of HCS is a genetic algorithm which looks for classifiers,
inspired by the XCS learning classifier system. Each classifier is a conjunction
of conditions on single attributes of the data. HCS is similar to XCS with
respect to the search strategy, but has a very different fitness function. In
our algorithm, fitness is calculated through statistical hypothesis testing.
In particular, the algorithm starts with a null hypothesis of independence
between the attributes and the target. It then uses the genetic search to
find classifiers which isolate areas where this hypothesis is rejected, that is
areas with extremely low likelihood to exist if the null hypothesis is true, by
minimizing the p-value of the hypothesis. Once search is over, the classifier
with minimum p-value is used to split the dataset into two parts, and to
recursively restart the algorithm on both subsets. The search ends when the
minimum p-value found is not lower than the significance value, which is
corrected for multiple hypothesis testing, or trained with an internal cross-
validation procedure.

HCS was tested upon five real-world dataset, four of which coming from
the UCI repository [90]. The tests first involved deciding between roulette
wheel and tournament selection, and between binomial or hypergeometric
hypothesis modelling. As regards the fitness function, the tests showed a
little but consistent advantage of binomial upon hypergeometric testing. As
regards selection, no significant difference was detected. We decided then
to choose binomial fitness and tournament selection for subsequent develop-
ment.

Then, the obtained results were compared with those reported in litera-
ture by other well-known machine learning methods, and obtained by us upon
new execution with standard implementations. The results were compara-
ble, and sometimes superior, to those obtainable with the C4.5 algorithm.
From the expressiveness point of view, this is not surprising, since the set of
trees explored through HCS fully contains the set of trees explored by C4.5.
However, the search process and the fitness function are very different. C4.5
uses a deterministic search, while HCS employs a stochastic algorithm. C4.5

109

adopts a fitness measure related to information theory, while HCS uses sta-
tistical hypothesis testing. It appears that HCS has generally similar results
to C4.5, but has an advantage on those datasets (like HNSCC) where an
interaction between different factors is necessary to produce visible results.
It moreover produces more compact trees, which improves understandability.

With respect to subsymbolic methods, like neural networks or support
vector machines, HCS is lacking expressive power, by not being able to test
linear combinations of the attributes. This was however necessary, in order
to maintain the high readability property of the model. The lack of power
anyway did not generally impair performance too much, and on one of the
tests (again the HNSCC dataset) it appeared that HCS can produce models
of the data which are not so easily discovered by subsymbolic methods.

There are many directions of further development of HCS.

• Fitness calculation is a major bottleneck of the algorithm. Speed would
greatly benefit from a closed formula which could quickly approximate
the calculation of the log of the p-value. If a mathematical approach to
this problem is unviable, we could resort to heuristic methods, like ge-
netic programming [66], to identify possible candidates. This problem
is especially noticeable with bigger datasets (like Mushroom), where an
exact fitness calculation is currently unfeasible.

• Binomial and hypergeometric fitness measures could be tested against
classical decision trees fitness measures — most notably, entropy-based
and χ2-based [84]. The treatment of missing data applied in decision
trees could also be adopted, and compared with our method.

• The algorithm should become interactive. At each external step, once
the genetic search is over, the user should be allowed to see the final
population — which, thanks to niching, will have many diverse classi-
fiers, covering various aspects of the dataset. He could then choose the
most interesting classifier as the basis for the successive iteration, rather
than letting the system blindly pick the one with highest fitness. He
could moreover tune the classifiers parameters in order to carry higher
biological significance. For instance, a real-valued condition could read
x ∈ [0.01, 0.5]. The 0.01 value could carry a real significance: if x was
related to smoke, it could distinguish smokers from non-smokers. But
it could also be an artifact of the dataset, where merging also 0.0 values
would just slightly reduce the fitness. Since these decisions affect the

110 CHAPTER 6. SUMMARY AND CONCLUSIONS

subsequent building of the classifier tree by changing the set of data,
they should be taken interactively during tree construction.

• Another exploration algorithm should be included, which allowed to
find alternative classifiers matching the same instances. It is possible,
particularly in datasets with many variables, that approximately the
same set of instances can be identified through different conjunctions
of conditions. Once an interesting subset has been found, HCS should
show all the possible ways to define it, in order to let the user find the
most meaningful one for the examined domain.

• Local, informed search could be integrated as a genetic operator. The
search algorithm currently relies on mutations in order to fine-tune
a good classifier, once its general position has been detected. This is
inefficient, and leads to slow convergence. A local search method should
be used to speed up tuning of classifier conditions.

• The general HCS algorithm can be applied to a variety of problems,
more complex than two-class classification. Higher-complexity models
could be used instead of binomial (for instance, a logistic regression
model could be fit on the data). More than two classes could be ana-
lyzed, either by using specific models, or by iterative methods like pair-
wise coupling [129]. The system could be adapted for survival analysis
problems, by applying the appropriate hypothesis tests (the logrank
test [12], for instance).

Presenting HCS, we have the ambitious goal to suggest a research line
which combines the creativity and computational power of Machine Learning
with the soundness of Statistics. We would like HCS to be a step towards
this stimulating direction.

Appendix A

Testing multiple classifiers

We hereby attempt to calculate the proper multiple hypothesis testing cor-
rection for HCS algorithm, which is necessary to find the most appropriate
value for FLim. We will use the binomial model. The H0 hypothesis will
therefore be that the dataset D has been generated from a binomial dis-
tribution with ρ = Q/T parameter, and that the values of the attributes
are independent of the target. We will require the following two definitions,
which are the probability mass function of the binomial and hypergeometric
distributions respectively:

fB(q, t) =

(

t

q

)

ρq(1− ρ)t−q (A.1)

fH(q, t) =

(

Q

q

)(

T−Q

t−q

)

(

T

t

) (A.2)

We will moreover define the p-value of obtaining q positive instances out of
t extractions under the binomial distribution:

gB(q, t) =
∑

v ∈ 0, . . . , t
fB(v, t) ≤ fB(q, t)

fB(v, t) (A.3)

Under the H0 hypothesis, a classifier can be regarded as a random extrac-
tion of instances from the dataset D. We will call Pt the random variable
describing the distribution of the p-value of a classifier c having t size —
that is, such that #(D/c) = t. We will first look for the CDF of Pt, which

111

112 APPENDIX A. TESTING MULTIPLE CLASSIFIERS

is defined as P(Pt ≤ x), and describes the probability that a random t-size
classifier will have a p-value less than x.

The probability that a random t-size classifier has a p-value less than x is
obviously the sum of the probabilities to obtain classifiers with lower p-values.
Since the dataset D is fixed, the number q of positive instances in a random
sample of t size from the dataset D necessarily follows a hypergeometric
distribution, with t, Q, T parameters. Therefore, the probability for a t-size
classifier to obtain q positive values is exactly fH(q, t). The CDF of Pt is
thus

P(Pt ≤ x) =
∑

v ∈ 0, . . . , t
gB(v, t) ≤ x

fH(v, t) (A.4)

This is a step function, which changes value whenever x reaches a new p-
value of gB(v, t). The previous equation can then be written in a slightly
simplified format:

P(Pt ≤ gB(q, t)) =
∑

v ∈ 0, . . . , t
fB(v, t) ≤ fB(q, t)

fH(v, t) (A.5)

Now that the distribution of the p-value for a single classifier has been
defined, we can describe the distribution for the minimum p-value of many
classifiers. We will call Qi the p-value distribution for the ith classifier; if
this classifier has size t, we will have Qi ∼ Pt. We will moreover call M the
variable describing the minimum of all the p-values. We have M ≤ x when
at least one of the Qi is ≤ x, or equivalently when not all of the Qi are > x.
Since each Qi is independent of the others, we have

P(M ≤ x) = 1−
∏

i

P(Qi > x) = 1−
∏

i

(1− P(Qi ≤ x)) (A.6)

For instance, P(M ≤ 0.01) = 0.8 means that we will get a classifier with
p-value less than 0.01 with 0.8 probability. We should therefore adjust our
confidence level as follows: if we want the α of all the tests to have a certain
value, we should take only classifiers with a p-value less than α̂, defined as

α̂ = argmax
x

P(M ≤ x) ≤ α (A.7)

113

0.002 0.004 0.006 0.008 0.01
Α
`

0.2

0.4

0.6

0.8

1
Α

0.0002 0.0004 0.0006 0.0008 0.001
Α
`

0.05

0.1

0.15

0.2

0.25

0.3

Α

Figure A.1: Plot of P(M ≤ x), with parameters Q = 60, T = 180, n = 10000
(jagged line), and the corresponding Bonferroni correction for 10000 tests
(straight line). The graph on the right is a closeup of the graph on the left.

Unfortunately, it was not possible to find a closed formula for α̂, both due
to the definition of Pt, and to the fact that the distribution of the size of the
classifiers is a priori unknown. The graph in Fig. A.1 gives a hint of the shape
of the true correction, with respect to Bonferroni’s correction, for a particular
choice of the Q, T and n parameters. To draw the plot, we first generate n
random numbers, uniformly distributed in the {0, . . . , T} set. These values
will be the sizes of the tested classifier. We then plot the P(M ≤ x) function,
according to the previous set of classifiers. The plot for Bonferroni correction
is instead simply α = nα̂. To reach the standard α = 0.01 global confidence
level, the graph reports that the p-value of a classifier should be lower than
approximately 7 × 10−5. The Bonferroni correction instead demands the
classifier to have a p-value lower than 10−6.

It is important to notice that our derivation applies to n randomly gener-
ated, independent classifiers. This is definitely not the case for the classifiers
created through the genetic algorithm: the evolutionary mechanism builds
strongly correlated classifiers, and with the specific purpose to minimize their
p-value. More generally, the objective of a search algorithm is to find the
maximum (or the minimum) of a set, by cleverly selecting a small subset of
sampling points. If we were certain that the GA returns the best classifier
of the whole C set, we should then take n = #(C) in the previous formu-
las. Anyway, calculating #(C) is a complex task itself (see App. B), and the
genetic algorithm does not guarantee the actual minimum is found.

For all these reasons, we could not implement the proper multiple hypoth-
esis test correction, and we fell back on the classical Bonferroni correction,

114 APPENDIX A. TESTING MULTIPLE CLASSIFIERS

applied to n independent tests. Whether this gives a good approximation of
the statistically correct FLim value, will be checked through experiments.

Appendix B

Evaluating C size

The previous chapter raised the problem to calculate the size of the set C of
all possible classifiers.

This could seem in principle an easy task. Each classifier is a composition
of s conditions. It should then be sufficient to calculate how many conditions
can be built for attribute 1, how many for attribute 2, etc., and then multiply
the numbers together.

This simplistic approach however greatly overestimates the total number
of different classifiers. Many different sets of conditions can in fact produce
the same subset of data. For instance, consider a dataset where only a single
instance has the 0 value in its first attribute. Every classifier with the x1 = 0
condition will then produce the same subset of the data, as long as the other
conditions do not rule out the pattern. Another, more striking example is
the number of possible different combinations of conditions which produce
an empty subset.

The true size of the C set should then be calculated by counting all the dif-
ferent subsets obtainable with a conjunction of conditions on the attributes.
This approach presents two major problems:

• It requires enumerating all the possible combinations of conditions,
and calculate the subset they isolate. This task is too complex to be
performed

• Even if the previous step could be accomplished, it would require to
store all the identified subsets, and to test new subsets against the
previous one in order to see whether we built a new subset or not

115

116 APPENDIX B. EVALUATING C SIZE

We think therefore that a precise calculation of the magnitude of C is not
feasible. We decided then to proceed with an estimate of this value for a
specific dataset. We choose the WBC dataset for its simplicity.

The dataset contains 9 integer attributes, ranging from 1 to 10. Each
condition is then of the x ∈ {m, . . . , M} kind, where m, M ∈ {1, . . . , 10} and
m ≤M . This gives 55 conditions for each attribute. The last attribute does
never have the 9 value, so it can actually show 45 conditions. The number
of apparently different classifiers for this dataset is then 558× 45 ≈ 4× 1015.

In order to produce an estimate, we approximated the solutions of both
problems outlined earlier. For the first problem, decided to randomly sample
the space of conditions. We took many classifier samples, by choosing a
random condition for the first attribute with uniform probability among the
55, a random condition for the second one, and so on. We stopped building
the classifier when all the conditions were chosen, or if the partial subset of
conditions already identified an empty set of instances.

For the second problem, we simplified the estimate by considering all non-
empty subsets different from each other. We had then to count the number
of samples which produced a non-empty subset, over the total number of
samples. The estimate can finally be accelerated by noticing that, when
we stop building a classifier because a partial number of conditions already
produces an empty subset, all the possible combinations of conditions for the
remaining attributes will produce an empty subset too. In such a case we
can therefore add the number of possible classifiers to the total.

With this algorithm, a sample of 107 randomly built classifiers estimated
that the proportion of non-empty classifiers over the total is 1.7 × 10−7.
Combining the estimate with the0 total number of apparently different clas-
sifiers, we obtain that the number of actually different classifiers for the WBC
dataset is ≈ 6× 108.

Bibliography

[1] Mickel Aickin and Helen Gensler. Adjusting for multiple testing when
reporting research results: The Bonferroni vs Holm methods. American
Journal of Public Health, 86(5):726–728, May 1996.

[2] S. Andreassen, C. Riekehr, B. Kristensen, H.C. Schønheyder, and
L. Leibovici. Using probabilistic and decision-theoretic methods in
treatment and prognosis modeling. Artif. Intell. Med., 15:121–134,
1999.

[3] R. Andrews, J. Diederich, and A. B. Tickle. A survey and critique of
techiques for extracting rules from trained artificial neural networks.
Knowledge-Based Systems, 8:373–389, 1995.

[4] A.J. Bagnall and G.C. Cawley. Learning classifier systems for data min-
ing: A comparison of XCS with other classifiers for the Forest Cover
data set. In Proceedings of the IEEE/INNS International Joint Con-
ference on Artificial Neural Networks (IJCNN-2003), volume 3, pages
1802–1807. IEEE Press, 2003.

[5] F. Baronti, V. Maggini, A. Micheli, A. Passaro, A. M. Rossi, and
A. Starita. A preliminary investigation on connecting genotype to oral
cancer development through XCS. In Bruno Apolloni, Maria Marinaro,
and Roberto Tagliaferri, editors, Biological and Artificial Intelligence
Environments, pages 11–20. Springer, NY, 2006.

[6] Gustavo E. A. P. A. Batista and Maria C. Monard. An analysis of
four missing data treatment methods for supervised learning. Applied
Artificial Intelligence, 17(5):519–533, 2003.

117

118 BIBLIOGRAPHY

[7] K. P. Bennett and J. A. Blue. A support vector machine approach to
decision trees. In The 1998 IEEE International Joint Conference On
Neural Networks Proceedings, volume 3, pages 2396–2401, 1998.

[8] Hal Berghel. Cyberspace 2000: Dealing with information overload.
Communications of the ACM, 40(2):19–24, 1997.

[9] Ester Bernadó-Mansilla and Josep M. Garrell-Guiu. Accuracy-based
learning classifier systems: Models, analysis and applications to classi-
fication tasks. Evolutionary Computation, 11(3):209–238, 2003.

[10] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, Inc., 1995.

[11] J. Martin Bland and Douglas G. Altman. Statistics notes: Multiple
significance tests: the Bonferroni method. British Medical Journal,
310:170, Jan 1995.

[12] J. Martin Bland and Douglas G. Altman. The logrank test. British
Medical Journal, 328(7447):1073, 2004.

[13] Tobias Blickle and Lothar Thiele. A comparison of selection schemes
used in genetic algorithms. Technical Report 11, Swiss Federal Institute
of Technology (ETH), Gloriastrasse 35, 8092 Zurich, Switzerland, 1995.

[14] Tobias Blickle and Lothar Thiele. A mathematical analysis of tour-
nament selection. In Larry Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 9–16, San Fran-
cisco, CA, 1995. Morgan Kaufmann.

[15] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Jour-
nal of the ACM, 36(4):929–965, 1989.

[16] Pierre Bonelli, Alexandre Parodi, Sandip Sen, and Stewart Wilson.
NEWBOOLE: a fast GBML system. In Proceedings of the seventh
international conference (1990) on Machine learning, pages 153–159,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[17] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of
Machine Learning Research, 2:499–526, 2002.

BIBLIOGRAPHY 119

[18] A. P. Bradley. The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. Pattern Recognition, 30:1145–
1159, 1997.

[19] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Chapman & Hall, New York, 1984.

[20] G. W. Brier. Verification of forecasts expressed in terms of probability.
Montly weather review, 78(1):1–3, 1950.

[21] L.D. Brown, T. Cai, and A. DasGupta. Confidence intervals for a bino-
mial proportion and asymptotic expansions. The Annals of Statistics,
30:160–201, 2002.

[22] Wray Buntine and Tim Niblett. A further comparison of splitting rules
for Decision-Tree induction. Machine Learning, 8:75–85, 1992.

[23] Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery, 2(2):121
– 167, 1998.

[24] M. V. Butz, Pier Luca Lanzi, and S. W. Wilson. Hyper-ellipsoidal con-
ditions in XCS: Rotation, linear approximation, and solution structure.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2006), pages 1457–1464, 2006.

[25] Martin V. Butz, Kumara Sastry, and David E. Goldberg. Strong, sta-
ble, and reliable fitness pressure in XCS due to tournament selection.
Genetic Programming and Evolvable Machines, 6(1):53–77, 2005.

[26] Martin V. Butz and Stewart W. Wilson. An algorithmic description of
XCS. In P. L. Lanzi and et al., editors, IWLCS 2000, volume 1996 of
LNAI, pages 253–272. Springer-Verlag, 2001.

[27] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning,
46(1):131–159, 2002.

[28] Krzysztof J. Cios and William G Moore. Uniqueness of medical data
mining. Artificial Intelligence in Medicine, 26(1–2):1–24, 2002.

120 BIBLIOGRAPHY

[29] Joseph A. Cruz and David S. Wishart. Application of machine learning
in cancer prediction and prognosis. Cancer Informatics, 2:59–78, 2006.

[30] Janez Demšar. Statistical comparison of classifiers over multiple data
sets. Journal of Machine Learning Research, 7:1–30, Jan 2006.

[31] Thomas G. Dietterich. Approximate statistical test for comparing
supervised classification learning algorithms. Neural Computation,
10(7):1895–1923, 1998.

[32] Pedro Domingos. A unified bias-variance decomposition and its appli-
cations. In Proc. 17th International Conf. on Machine Learning, pages
231–238. Morgan Kaufmann, San Francisco, CA, 2000.

[33] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial
neural network classification models: a methodology review. Journal
of Biomedical Informatics, 35:352–359, 2002.

[34] W lodzis lav Duch, Rafa l Adamczak, and Krzysztof Gra̧bczewski. A new
methodology of extraction, optimization and application of crisp and
fuzzy logical rules. IEEE Transactions on Neural Networks, 11(2):1–31,
Mar 2000.

[35] J. P. Egan. Signal Detection Theory and ROC Analysis. Academic
Press, New York, 1975.

[36] Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stabil-
ity of randomized learning algorithms. Journal of Machine Learning
Research, 6:55–79, 2005.

[37] F. Esposito, D. Malerba, G. Semeraro, and J. Kay. A comparative
analysis of methods for pruning decision trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(5):476–491, May 1997.

[38] S. E. Fahlman and C. Lebiere. The cascade-correlation learning ar-
chitecture. In D.S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pages 524–532. San Mateo, CA: Morgan Kauf-
mann, 1990.

[39] T. Fawcett. Roc graphs: Notes and practical considerations for re-
searchers. Technical report HPL-2003-4, HP Laboratories, 2003.

BIBLIOGRAPHY 121

[40] R. A. Fisher. Statistical Methods for Research Workers. Oliver and
Boyd, Edinburgh, 14th edition, 1970.

[41] M. Frean. The Upstart algorithm: a method for constructing and
training feedforward neural networks. Neural Computation, 2(2):198–
209, 1990.

[42] A. A. Freitas. On rule interestingness measures. Knowledge-Based
Systems, 12:309–315, 1999.

[43] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32:675–701, 1937.

[44] N.I.R. Friedman, M. Linial, I. Nachman, and D. Peer. Using bayesian
network to analyze expression data. J. Comput. Biol, 7:601–620, 2000.

[45] Jean D. Gibbons and John W. Pratti. P-Values: Intepretation and
methodology. The American Statistician, 29(1):20–25, Feb 1975.

[46] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[47] Helen F. Gray, Ross J. Maxwell, Irene Martinez-Perez, Carles Arús,
and Sebastián Cerdán. Genetic programming for classification and
feature selection: analysis of 1h nuclear magnetic resonance spectra
from human brain tumour biopsies. NMR in Biomedicine, 11(4-5):217–
224, 1998.

[48] Trisha Greenhalgh. How to read a paper: Papers that report diagnostic
or screening tests. British Medical Journal, 315(7107):540–543, Aug
1997.

[49] S. Haykin. Neural Networks, A Comprehensive Foundation. Prentice
Hall, 2nd edition, 1999.

[50] D.E. Heckerman and B.N. Nathwani. Towards normative expert sys-
tems. II. probability-based representations for efficient knowledge ac-
quisition and inference. Meth. Inform. Med., 31:106–116, 1992.

[51] John H. Holland. Adaptation in natural artificial systems. University
of Michigan Press, Ann Arbor, MI, 1975.

122 BIBLIOGRAPHY

[52] John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors,
Progress in theoretical biology, 4. New York: Plenum, 1976.

[53] S. Holm. A simple sequentially rejective multiple test procedure. Scan-
dinavian Journal of Statistics, 6:65–70, 1979.

[54] J. H Holmes, J. A. Sager, and W. B. Bilker. Methods for covering
missing data in XCS. In M Keijzer, editor, Late Breaking Papers at
GECCO 2004, Seattle, WA, June 2004.

[55] John H. Holmes. Discovering risk of disease with a learning classifier
system. In Thomas Bäck, editor, Proceedings of the Seventh Inter-
national Conference on Genetic Algorithms (ICGA97), San Francisco,
CA, 1997. Morgan Kaufmann.

[56] John H. Holmes and Warren B. Bilker. The effect of missing data on
learning classifier system learning rate and classification performance.
In Lanzi et al., editor, IWLCS 2002, volume 2661 of LNAI, pages 46–
60. Springer-Verlag, 2003.

[57] John H. Holmes and Jennifer A. Sager. Rule discovery in epidemi-
ologic surveillance data using EpiXCS: an evolutionary computation
approach. In S. Miksch, J. Hunter, and E. Keravnou, editors, Arti-
ficial Intelligence in Medicine, volume 3581 of LNAI, pages 444–452.
Springer-Verlag, 2005.

[58] John H. Holmes, Jennifer A. Sager, and Warren B. Bilker. A com-
parison of three methods for covering missing data in XCS. In Sev-
enth International Workshop on Learning Classifier Systems (IWLCS-
2004) during the Genetic and Evolutionary Computation Conference
(GECCO 2004), 2004.

[59] David W. Hosmer and Stanley Lemeshow. Applied logistic regression.
Wiley, New York, 1989.

[60] Jin Huang, Jingjing Lu, and Charles X. Ling. Comparing naive Bayes,
decision trees, and SVM with AUC and accuracy. In Proceedings of
the Third IEEE International Conference on Data Mining (ICDM03),
2003.

BIBLIOGRAPHY 123

[61] Mitsuru Ikeda, Takeo Ishigaki, and Kazunobu Yamauchi. Relationship
between Brier score and area under the binormal ROC curve. Computer
Methods and Programs in Biomedicine, 67:187–194, 2002.

[62] M. F. Jefferson, N. Pendleton, S. B. Lucas, and Horan. M. A. Compar-
ison of a genetic algorithm neural network with logistic regression for
predicting outcome after surgery for patients with nonsmall cell lung
carcinoma. Cancer, 79(7), 1995.

[63] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[64] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 3rd edi-
tion, 2001.

[65] Igor Kononenko. Machine learning for medical diagnosis: history, state
of the art and perspective. Artif. Intell. Med., 23(1):89–109, 2001.

[66] John R. Koza. Genetic programming — On the programming of com-
puters by means of natural selection. MIT Press, Cambridge, MA,
1992.

[67] N. Lavrač, E. Keravnou, and B. Zupan, editors. Intelligent data analy-
sis in medicine and pharmacology. Kluwer, 1997.

[68] N. Lavrač, I. Kononenko, E. Keravnou, M. Kukar, and B. Zupan. In-
telligent data analysis for medical diagnosis: using machine learning
and temporal abstraction. AI Commun., 11(3-4):191–218, 1998.

[69] Nada Lavrač. Selected techniques for data mining in medicine. Artifi-
cial Intelligence in Medicine, 16:3–23, 1999.

[70] E. L. Lehmann. Testing Statistical Hypotheses. Springer texts in sta-
tistics. Springer, New York, 2nd edition, 1997.

[71] P. J. G. Lisboa. A review of evidence of health benefit from artificial
neural networks in medical intervention. Neural Networks, 15(1):11–39,
2002.

124 BIBLIOGRAPHY

[72] J. Listgarten and S. et al. Damaraju. Predictive models for breast
cancer susceptibility from multiple single nucleotide polymorphisms.
Clinical Cancer Research, 10:2725–2737, Apr 2004.

[73] R. J. Little and D. B. Rubin. Statistical Analysis with Missing Data.
John Wiley and Sons, New York, 1987.

[74] W. Z. Liu, A. P. White, M. T. Hallissey, and J. W. L. Fielding. Ma-
chine learning techniques in early screening for gastric and oesophageal
cancer. Artificial Intelligence in Medicine, 8:327–341, 1996.

[75] Peter J. F. Lucas and Ameen Abu-Hanna. Prognostic methods in
medicine. Artif. Intell. Med., 15(2):105–119, February 1999.

[76] P.J.F. Lucas. Analysis of notions of diagnosis. Artif. Intell., 105(1-
2):295–343, 1998.

[77] P.J.F. Lucas, H. Boot, and B.G. Taal. Computer-based decision-
support in the management of primary gastric non-Hodgkin lymphoma.
Meth. Inform. Med., 37:206–219, 1998.

[78] P.J.F. Lucas, N.C. De Bruijn, K. Schurink, and I.M. Hoepelman. A
probabilistic and decision-theoretic approach to the management of
infectious disease at the ICU. Artif. Intell. Med., 19(3):251–279, 2000.

[79] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear
programming. SIAM News, 23(5):1 & 18, Sep 1990.

[80] M. Mezard and J.P. Nadal. Learning in feedforward layered networks:
The tiling algorithm. Journal of Physics, A 22:2191–2203, 1989.

[81] A. Micheli. Recursive Processing of Structured Domains in Machine
Learning. PhD thesis, Department of Computer Science, University of
Pisa, 2003. TD-13/03.

[82] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine
Learning, Neural and Statistical Classification. Ellis Horwood, 1994.

[83] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and
Timm Euler. YALE: Rapid prototyping for complex data mining tasks.
In In Proceedings of the 12th ACM SIGKDD International Conference

BIBLIOGRAPHY 125

on Knowledge Discovery and Data Mining (KDD 2006). ACM Press,
2006.

[84] John Mingers. An empirical comparison of selection measures for
Decision-Tree induction. Machine Learning, 3:319–342, 1989.

[85] Tom M. Mitchell. Generalization as search. Artificial intelligence,
18(2):203–226, 1982.

[86] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[87] Patrick M. Murphy and Michael J. Pazzani. Exploring the decision
forest: An empirical investigation of Occam’s razor in decision tree
induction. Journal of Artificial Intelligence Research, 1:257–275, 1994.

[88] Sreerama K. Murthy. Automatic construction of decision trees from
data: A multi-disciplinary survey. Journal Data Mining and Knowledge
Discovery, 2(4):345–389, Dec 1998.

[89] P. B. Nemenyi. Distribution-free multiple comparisons. Phd thesis,
Princeton University, 1963.

[90] D. J. Newman, S. Hettich, C. L. Blake, and C. J.
Merz. UCI repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html], 1998.

[91] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive Bayes. In
Thomas G. Dietterich, Sue Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems 14, Cambridge,
MA, 2001. MIT Press.

[92] Po Shun Ngan, Man Leung Wong, Wai Lam, Kwong Sak Leung, and
Jack C.Y. Cheng. Medical data mining using evolutionary computa-
tion. Artificial Intelligence in Medicine, 16(1), 1999.

[93] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., 1988.

[94] Thomas V. Perneger. What’s wrong with Bonferroni adjustments.
British Medical Journal, 316:1236–1238, Apr 1998.

126 BIBLIOGRAPHY

[95] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong
rules. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge
Discovery in Databases. AAAI/MIT Press, Cambridge, MA, 1991.

[96] Riccardo Poli, S. Cagnoni, and G. Valli. Genetic design of optimum
linear and nonlinear QRS detectors. IEEE Transactions on Biomedical
Engineering, 42(11):1137–41, 1995.

[97] Karl Popper. The Logic of Scientific Discovery. Basic Books, New
York, NY, orig.: logik der forschung, 1934 edition, 1959.

[98] Foster Provost, Tom Fawcett, and Ron Kohavi. The case against ac-
curacy estimation for comparing induction algorithms. In Procedings
of the Fifteenth International Conference on Machine Learning, pages
445–553, 1998.

[99] J. R. Quinlan. Simplifying decision trees. In B. Gaines and J. Boose,
editors, Knowledge Acquisition for Knowledge-Based Systems, pages
239–252. Academic Press, London, 1988.

[100] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–
106, 1986.

[101] Russel Reed. Pruning algorithms — a survey. IEEE Transactions on
Neural Networks, 4(5):740–748, Sep 1993.

[102] K. J. Rothman. No adjustments are needed for multiple comparisons.
Epidemiology, 1(1):43–46, Jan 1990.

[103] Y. D. Rubinstein and T. Hastie. Discriminative vs. informative learn-
ing. In Proceedings of the third international conference on Knowledge
Discovery and Data Mining, pages 49–53. AAAI Press, 1997.

[104] J. L. Schafer and J. W. Graham. Missing data: our view of the state
of the art. Psychological Methods, 7(2):147–177, 2002.

[105] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative
monitoring of gene expression patterns with a complementary DNA
microarray. Science, 270:467–470, 1995.

BIBLIOGRAPHY 127

[106] M. Schumacher, R. Roßner, and W. Vach. Neural networks and logistic
regression: Part I. Computational Statistics and Data Analysis, 21:661–
82, 1996.

[107] J. P. Shaffer. Multiple hypothesis testing. Annual Review of Psychol-
ogy, 46:561–584, 1995.

[108] W. R. Shankle, Subramani Mani, Michael J. Pazzani, and Padhraic
Smyth. Detecting very early stages of dementia from normal aging
with machine learning methods. In E. Keravnou, C. Garbay, R. Baud,
and Wyatt, editors, Lecture Notes in Artificial Intelligence: Artificial
Intelligence in Medicine, AIME97, volume 1211 of LNAI, pages 73–85.
Springer-Verlag, 1997.

[109] G. D. Smith and S. Ebrahim. Data dredging, bias, or confounding.
British Medical Journal, 325(7378):1437–8, Dec 2002.

[110] A.J. Smola and B. Schölkopf. Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

[111] A. Sperduti and A. Starita. Supervised neural networks for the classifi-
cation of structures. IEEE Transactions on Neural Networks, 8(3):714–
735, 1997.

[112] B. Ster and A. Dobnikar. Neural networks in medical diagnosis: Com-
parison with other methods. In A. et al. Bulsari, editor, Proceedings of
EANN’96, pages 427–430, 1996.

[113] Christopher Stone and Larry Bull. For real! XCS with continuous-
valued inputs. Evolutionary Computation, 11(3):299–336, 2003.

[114] P. Szolovits, R.S. Patil, and W.B. Schwartz. Artificial intelligence in
medical diagnosis. Ann. Intern. Med., 108(1):80–7, Jan 1988.

[115] Gary Tietjen. Recursive schemes for calculating cumulative binomial
and Poisson probabilities. The American Statistician, 48(2):136–137,
may 1994.

[116] Peter Turney. Technical note: Bias and the quantification of stability.
Journal of Machine Learning, 20:23–33, 1995.

128 BIBLIOGRAPHY

[117] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[118] L.C. van der Gaag, S. Renooij, C.L.M. Witteman, B.M.P. Aleman, and
B.G. Taal. Probabilities for a probabilistic network: a case study in
oesophageal cancer. Artif. Intell. Med., 25:123–148, 2002.

[119] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and
its Applications, 16(2):264–280, 1971.

[120] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[121] Geoffrey I. Webb and Kai Ming Ting. On the application of roc analysis
to predict classification performance under varying class distributions.
Machine Learning, 58(1):25–32, 2005.

[122] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3(2), 1995.

[123] Stewart W. Wilson. Generalization in the XCS classifier system. In
John R. Koza and et al., editors, Proceedings of GECCO 1998, pages
665–674. Morgan Kaufmann, 22-25 1998.

[124] Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In
Lanzi et al., editor, Learning Classifier Systems. From Foundations to
Applications, volume 1813 of LNAI, pages 209–219. Springer-Verlag,
2000.

[125] Stewart W. Wilson. Compact rulesets from XCSI. In P. L. Lanzi and
et al., editors, IWLCS 2001, volume 2321, pages 197–210. Springer-
Verlag, 2001.

[126] Stewart W. Wilson. Mining oblique data with XCS. In P. L. Lanzi
and et al., editors, IWLCS 2000, volume 1996 of LNAI, pages 158–174.
Springer-Verlag, 2001.

[127] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learn-
ing tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition,
2005.

BIBLIOGRAPHY 129

[128] T. H. Wonnacott and R. J. Wonnacot. Introductory Statistics. Wiley,
New York (NY), 1972.

[129] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal of Machine
Learning Research, 5:975–1005, 2004.

[130] Y. Yu and M. C. Schell. A genetic algorithm for the optimization of
prostate implants. Medical physics, 23(11):2085–91, 1996.

[131] Frederick Zarndt. A comprehensive case study: An examination of
machine learning and connectionist algorithms. Master thesis, Brigham
Young University, 1995.

[132] I. Zelic, I. Kononenko, N. Lavrač, and V. Vuga. Induction of decision
trees and bayesian classification applied to diagnosis of sport injuries.
Journal of Medical Systems, 21(6):429–444, 1997.

[133] Zhi-Hua Zhou. Three perspectives of data mining. Artificial Intelli-
gence, 143(1):139–146, 2003.

[134] Blaz Zupan, Janez Demšar, Michael W. Kattan, J. Robert Beck, and
I. Bratko. Machine learning for survival analysis: a case study on re-
currence of prostate cancer. Artif. Intell. Med., 20(1):59–75, September
2000.

