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Preface

Polymers respresent one of the most wonderful and fascinating class of materials:

they are the constituent of the biological matter, and the basis of the modern

technologies. They are ubiquitous: clothes(for example: nylon,wool), lubrificant,

food, proteins, ...

Since the very beginning of polymer history, with the formulation of theory of

chain molecules due to Staudinger in 1920s, the knowledge of this type of matter

has been growing faster and faster, both from the chemical and from the physical

point of view. These results make polymers an increasingly attractive topic for

investigation.

Nevertheless, several open issues in polymer physics remain. In this thesis,

we consider three of them: the problem of polymer crystallization, the questions

arising from the glass transition and the improvement of the actual models for

simulating polymers. To each of these themes is devoted one of the three sections

of this thesis.

In part I we tackle the process of polymer crystallization. It is curious to

observe that one of the arguments presented against the ideas of Staudinger

came from the field of polymer crystallization: how can a gigantic molecule fit

into a minuscule crystal unit cell? In fact, this is not possible. The answer is

that the single molecule itself is part of different unit cells, and the repeting

unit is not a molecules or a collection of molecules, but a section, a very tiny

section, of the whole molecule. In principle, just one, extremely long, molecule

is sufficient to build up a crystal. This fascinating perspective was so attractive
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that we simulated one single molecule of polyethylene in order to produce a

(very) small crystal; this tiny structure demonstrated to possess enough details

to be valuable of several studies: after a general introduction of the polymer

crystalization (chapter 1) and an explanation of the model employed (chapter 2),

will be presented the original results (chapter 3), with a particular focus on the

free energy landscape features(chapters 4 and 5).

Simulating materials which are so complex, and whose properties are the result

of effects which work on several time and length scales is very challenging. To

this aspect of the problem is devoted the Part II. There, is proposed a series of

new algorithms, in the framework of symplectic integration schemes, which have

been put forward in order to reach longer time steps; in this way is possible to

span a wider dynamic of the system, and, so, more ample spectra of properties.

Part III introduces the problem of glass transition. Glass transition is a wider

field than just polymer dynamics, and we moved in this perspective of generality.

Starting from molecular dynamics simulations of a polymer melt, we linked our

results with experimental data avilable in literature collected from the most dif-

ferent materials. From this comparison we extract an universal scaling law which

connects the fast local motion of the particles with the global reorganization

which take place at longer and slower time scales.
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Introduction

In this chapter we will define polymers, and the ideas that underlie them, in

order to understand the basic notions that will be investigated in the following

chapters. Talking about polymers is not a trivial task, as they are of great interest

to many research fields: technologically they have a wide assortment of practically

useful properties, as we can argue from everyday life, where polymers can be met

everywhere; for a chemist is not trivial the way to synthetize new polymer; and

the conformational and structural aspects of polymer are of great importance also

in biological system at the molecular level (proteins or DNA, for example).

The history of polymer physics began in 1920s, when Staudinger (Nobel Prize

1953) introduced the word macromolecule, in 1922, to define substances which

present a chain structure. Staudinger proposed his viewpoint on the basis of his

experimetal research into the structure of rubber; this picture contrasted with the

generally accepted theory that rubber consisted of colloidal aggregates of small

ring molecules. What shocked the scientists of that period, was the fact that

for the first time they met molecules which can reach macroscopic dimension: a

molecule of DNA can be measured in metres, for example. This contrasted sharply

with their vision of tiny, microscopic particles which work together in order to

shape the macroscopic matter; simply, in their vision, there was a mixture of

time and length scale which was unbelivable. Without any doubt, the hypothesis

of Staudinger fashioned more open minded scientists, who collected more and

more evidence on the existence of chain molecules; worth mentioning are the

results presented by Staudinger himself in a meeting in Düsseldorf in 1926, and

1
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the important work done by Mark and Meyer [1] (incidentally, ref. [1] is the first

monograph on polymeric compounds).

During 1930s the idea of macrmolecules was accepted, and from now on poly-

mer science spread both into physics and chemistry. At that time, chemists had

already discovered several polymers, but their microscopic structure had not been

understood. The first synthetic polymers appearead during the 19th century, but

usually they came in use much later. An example is PVC, discovered by Regnault

in 1835 and considered unuseful because of its mechanical properties; afterward,

in 1936, the addition of plasticiser made it suitable for numerous applications;

nowadays, is one of the most commonly used polymeric materials.

The development of the chemistry of polymer is a monumental challenge be-

tween chemists and their ability in tuning the molecular structure to achieve

the desidered purpose; a clear example is PET, where a deliberate design of a

polymer for a specific purpose (the production of fibres) was achieved with real

understanding of what was required. The history of the chemistry of polymer is

very stimulating, and a quick overview is given in ref. [2]. But from now on we

are going to leave the field of chemistry and to dive into the physics of polymers.

Whilst chemists moved toward the microscopic level to shape macromolecular

structure, physicists, following the outstanding intuitions of Flory (Nobel Prize

1974) [3, 4], understood that the key features of polymers could be extracted from

more general considerations, discarding their specific molecular composition. This

is well described by the the Nobel lecture of Flory, where it is stated: “the chem-

ical basis for the special properties of polymers that make them suitable for so

many applications and functions, both in nature and in the artifacts of man,

is not therefore to be sought in peculiarities of chemical bonding, but rather in

their macromolecular constitution, specifically, in the attributes of long molecular

chains. “ [5] The basic idea is that the essential physics of macromolecules can

be grasped by discarding the chemical details and considering only the statisti-

cal properties of the chains, which is related to the flexibility of the molecules,
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Figure 1: Merging together a large number of equal molecular units of ethylene
(via a process called polymerization) we obtain polyethylene [10].

i.e. bond rotations, angle disposition, ...; substantially, the dynamics of polymer

chains is reduced to an analysis of their conformations.

This area of research remained rather detached and isolated until 1960s, when

some leading theoretic physicists, like Lifshitz[6, 7], Edwards[8], de Gennes [9] in-

troduced the methods of the modern theoretic physics into the field of polymer

physics. In particular, Lifshitz developed an approach based on Scrödinger equa-

tion with imaginary time; Edwards based its results on path integration, whilst

de Gennes introduced the language of renormalization group. Substantially, these

three scientists dealt with the problem of many-body and long range interactions,

beyond the mean field theories which had characterized the physics since Flory’s

studies.

This ended in the formation of a harmonious system of simple models and

qualitative concepts about the physical properties of polymers on the molecular

level, which can be successfully applied in the fields of physical chemistry and

molecular biophysics.
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0.1 Polymers: giant, multilinked molecules

Polymers, also known as macromolecules, are built up of a large number of molec-

ular units (said monomers) which are linked together by covalent bonds. Usually

they are organic compounds. The word comes from the greek polumeros, which

means having many parts: each part is called monomer. A very simple example

is the polyethylene: linking together a huge number of equal building blocks, in

this case ethylene, we obtain the polymer (figura 1).

The word plastics, often associated with polymers, comes also from the Greek,

where it means to form: this say a lot of thing about the properties of this type

of matter, often called soft matter.

0.2 The importance of chain connectivity

At first, one might think that any treatment of the properties of a polymer has

to emanate from its microscopic chemical structure. So we have to consider in

detail the effects of bond lengths, bond angle stretchings, rotational potentials,

ecc. Obviously this kind of analysis is specific for every compound and fails in

generality.

The idea comes from the fact that as polymer are very long chains, we can

watch the chain from a long distance: discussing properties for a lowered resolu-

tion, corresponding to length scales in the orders of nanometers, the dependence

on the chemical constitution vanished. In such a coarse grained picture, polymer

chains become equivalent to each other and then exhibit a common behaviour.

For a lowered resolution, polymer chains become thread, characterized only

by their stiffness [7, 11].

So the key point in polymer physics consists in considering the chain connec-

tivity.
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0.3 Elasticity: entropy

The connectivity, which we revealed in the previous section, bring intriguing

consequences. Suppose we have a thread on the desk: we can arrange it in a huge

number of different conformations. The differences in energy between the different

conformations depend on its stiffness: bending a stiff thread cost much more in

energy than bending a flexible one. But we have to consider another aspects of

the problem: a full stretched configuration can be realized only in one way; on

the other hand, once the energy has been fixed, we can realize a huge number of

coiled structure. The number of configurations means entropy.

Experimental measurements agree that the entropy contribution is huge (at

least for moderate to large deformations). So, if we stretch a polymer chain, the

thread prefers to come back to its coiled structure: an elastic force of entropic

origin has raised.

Here another key feature of the macromolecules has been introduced: the large

contribution of entropy.

0.4 Phase transitions

One aspect that will be studied in the following pages is the phase transitions of

macromolecules. In this work we will consider only linear polymer, usually olefin,

i.e. organic macromolecules built only with carbon and hydrogen atoms.

This type of polymers, at high temperature, is in a melt state where the

molecules are entangled each other. When the temperature decreases, the motion

of the single molecules slows down. Below the melting temperature the motion of

the molecules is not sufficient to permit long range rearrangements; in particular,

below the glass transition temperature the chain appears blocked, and starts a

slow rearrangement, which works on time scales of the order of day, week, etc.

As the temperature is lowered again, also more local motions start to be blocked.



6 CONTENTS

Figure 2: Problematic phase transitions in polymer. Polymer chains are entan-
gled each other, so they need long time for reorganization. Starting from a melt
configuration, where polymer chains have a random coil configuration, after a
rapid cooling we can freeze the melt configuration, which can survive for geo-
logical time scale. To obtain a crystal we need to cool the system very slow. In
every case chains are not able to obtain to disentangle completely, so we obtain
a semicrystalline solid. In figure is also reported the specific volume against tem-
perature: as we can see, in the glassy state it preserved a melt-like behaviour [12].
For details see [13, 14].

This metastable disordered state is called glass (figura 2).

An ordered state, i.e. a crystalline structure, is very difficult to achieve, if not

impossible. In fact we have to remember again that macromolecules are build up

by a large number of linked units, and the chains need to arrange in an ordered

way these units. So two problems arise; first, every chain needs to disentangle

from the other: this can be achieved in solutions of polymers, where the chains

are far from each other. But a second condition has to be fulfilled: the chain

itself has to posses an ordered disposition of its building blocks: if this is not true

(for example in the case of atactic polymers, where monomers have large lateral

groups of atoms disposed irregularly), simply the chain cannot find an ordered

disposition of itself, so a crystalline structure is not possible. Again connectivity

is the key feature.
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Figure 3: Various degree of simplification needed to obtain simulation which in-
vestigate more longer time and space scales [12].

0.5 Simulating polymers

In this work we present extensive simulations in order to study polymer proper-

ties. This section will introduce the basic ideas which lay below the simulation of

polymer. Here is given only a fast view of the problems linked to the simulation of

large molecules, interacting in several, and, sometimes, very complex ways. Nice

reviews can be found in literature which address the matter in deeper details,

for example [12, 15–22]. One idea could be to start from an ab initio quantum

mechanical description of the polymer [23]: this approach can be interesting for

single and not too long molecules, but as the number of molecules increases, also

the computational effort grows. Practically, for the type of studies we are inter-

ested in, this approach is not realistic: system has to be tiny and the time scales

covered are about 1 ns (figure 3, quantum panel).

For longer time scales and greater systems we need simplifications. A first

simplification consists in replacing electronic degrees of freedom by empirical

potential shaping bond lengths, bond angles, etc. [24]. Following this approach

we can consider each atom separately (fully atomistic simulations), or we can

perform united atoms simulations where groups of atoms will be mimicked. For

example: if I am interested in a molecule of polyethylene composed by 100 CH2

groups (plus 2 CH3 groups at the chain ends), I can consider a system of 102 C

atoms plus 206 H atoms (fully atomistic) or a system composed by 100 beads,
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where each bead represents a CH2 group. Following this approach it is possible

to cover until 100 ns (figure 3, atomistic panel).

Until now we have described how to simulate polymers, considering their

chemical structure. As we said in section 0.2, in polymer we can find properties

not related to a particular chemical structure; this suggests that we can perform

other simplifications, which go beyond the chemical nature of the constituents.

This approach, defined coarse-graining [25], leads to the substitution of the faster

degrees of freedom (bond lengths, bond angles,etc) by a more general potential

which retains only the most basics features of polymers chain [12, 19, 26, 27]:

connectivity, excluded volume, stiffness of the chain. This approach permits time

scale of ps (figure 3, coarse-grained panel).
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Polymer crystallization





Chapter 1

Polymer Crystals

In what follows we give a rapid review of the problems and the questions around

polymer crystallization. Firstly, we describe what a polymer crystal is: how it can

be prepared and the major problems arising during the crystallization process.

Finally, a glimpse to the theories developed about the argument. The literature

on all these aspects is huge; a nice and more detailed description can be found in

[28, 29], and references therein.

Before entering into the technical aspects of polymer crystallization, we start

with a brief historical background, which highlights controversies and open ques-

tions around the ordered state of polymers and, more generally, macromolecules.

1.1 Introduction

The first postulate that polymer crystals have folded chain habits (stacks of layer-

like crystallites with thickness in the nanometer-range) was made in 1938 by

Storks [30] and confirmed by Keller [31] in 1957.

In the 1960s and 1970s polymer crystals became a major field of research and

a focus of interest. Lauritzen and Hoffman [32] pioneered the kinetic approach

with secondary nucleation from dilute solution; this model was soon extended

to crystallization from the melt [33]. Instead of a kinetic approach, were also

11
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proposed equilibrium theories for chain folding, due to Peterlin and Fischer [34],

who considered the effect of thermally activated chain vibrations on the crystal

free energy, and Peterson and Lindenmeyer [35], who focused their attention on

dangling chain ends that create an entropic energy penalty.

Other models were presented, some of them different from these now sketched,

other ones which underline inconsistencies or which improve the models [28].

A famous conference, organized by the Faraday Society in 1979 at Cambridge,

became famous as a climatic event [36]. An agreement among the scientists could

not be reached, neither at this conference nor afterwards.

In any case, in the years that followed, the model put forward by Lauritzen and

Hoffman gained the ascendancy. This model was always confronted by criticism,

and some points were taken up and led to modifications, but the foundation

remained unchanged. By the late 1980s was broadly applied.

With the onset of 1990s a reconsideration began, triggered by new experimen-

tal observation [29]. Nowadays the kinetic approach prevails, but a new version

has been proposed by Sadler [37–40]. A completely different picture was engaged

in the field by Strobl, whose theory requires no nucleation process, in contrast

with the other two, commonly accepted, views. [29, 41].

For most of the theories listed above, a quick introduction will be given in

section 1.5.2.

1.2 Factors affecting crystallinity

A crystal consists of a regular disposition, along the three directions of the space,

of its constituents. In order to obtain a crystalline phase from a polymer, we need

a high degree of order inside the molecule itself. In particular ([42], chapter 11):

Symmetry The symmetry of the chain shape influences both the melting tem-

perature and the ability to form crystallites. Polyethylene and poly(tetrafluoro-
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Figure 1.1: Irregular units which
detract the chain from linear ge-
ometry: I) cis-double bond, II)
o-, m-phenylene. III) cis-oriented
puckered rings [42].

ethylene) are both sufficiently symmetrical to be considered as smooth stiff cylin-

drical rods.

In the crystal these rods tend to roll over each other and change position

when thermally agitated [43–46]. This motion within the crystal lattice, called

premelting, increases entropy of the crystal and effectively stabilizes it. Conse-

quently, more thermal energy is required before the crystal becomes unstable,

and the melting temperature is raised.

Flat or irregularly shaped polymers, with bends and bumps in the chain, can-

not move in this way without disrupting the crystal lattice, and so have lower

melting temperature values. This is only one aspect. For crystals formation in a

polymer, easy close-packing of the chains in a regular three-dimensional fashion

is required. Chains containing irregular units, which detract from the linear ge-

ometry, reduce the ability of a polymer to crystallize (figure 1.1).

Intermolecular bonding Any interaction among chains in the crystal lattice

will help to hold the structure together more firmly and raise the melting tem-

perature. In polyethylene crystals this interaction come from the Van der Waals

dispersion forces. Polar groups and hydrogen bonds can provide additional sta-

bility. An interesting example come from polyamides. As it can be seen in figure

1.2, nylon-6,6 is suited to have an extended zig-zag conformation which allows

regular hydrogen bindings [47]. Instead, the extended zig-zag structure of nylon-

7,7 misses one possible hydrogen bonding; but the energy gain is such that the

molecule prefers to bend itself in order to allow the hydrogen bond.

Tacticity If a chain possesses large pendant groups, these increase the difficulty of
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Figure 1.2: Examples of chain dis-
positions inside the crystal. A)
nylon-6,6 completes all hydrogen
bonds with a planar configura-
tion; B) the same is not pos-
sible for nylon-7,7. C) Isotactic
polypropylene has large pendant
groups disposed to form a he-
lix (the strip has been added for
clearness)[42, 48].

the chains to match each other. This latter problem can be overcome if the groups

are arranged in a regular fashion along the chain. An example is polypropylene

(figure 1.2), where a helix is formed [49].

Branching If the chain is branched (i.e. it has long, straight pendant groups

comparable in length with the dimension of the chain itself), the possibility to

obtain crystals is low, due to the difficulty of arranging the long molecular thread

departing from the chain.

Molar mass Reducing molar mass, the importance of terminal groups increases.

These groups are characterized by high mobility, so the energy required to stim-

ulate chain motion and melting decreases. This makes the crystal less stable.

1.3 Molecular packing

The formation of stable crystalline regions in a polymer requires an economical

close packed arrangement of the chains; chains need to approach each other to

distances comparable with the distances of low molar mass compounds. If the

chain has a cylindrical shape, a good disposition can be seen in figure 1.3, where

a coordination number of six unit has been found. Chains with an helical confor-

mation could prefer a disposition with a coordination number of five(figure 1.3).
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Figure 1.3: Possible packings of the
polymer chains inside the crystal: A)
molecules with a cylindrical shape pre-
fer an hexagonal packing; instead B)
molecules with pendant groups chose a
five coordination number; in the latter
case the central helix is disposed in a
different manner [48–50].

The disposition chosen by the chains depends also on the condition in which the

crystallization process has been performed [29].

1.4 Morphology and structure

Polymer crystals are characterized by different morphologies, some of them very

complicated. The conditions in which crystallization occurs are critical. We can

obtain crystals from melt, heating a glass, from solution, and also during the poly-

merization process. Typical structures are spherulites and lamellar-like crystals

[11, 42, 51]. In this work is not possible to consider the wide variety of morpholo-

gies that can be found in nature; for a more detailed review see ref. [48, 52, 53].

Figure 1.4: Typical lamellar morphologies: A) Adjacent re-entry, B) switchboard
model; C) semicrystalline material[42].
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Figure 1.5: A lamellar-like crystal [48].

1.4.1 Crystallization from the solution

The modern era of polymer crystallization began with the discovery [31, 54,

55] that solution grown single crystals are thin platelets, or lamellae, with the

molecular backbone oriented along the thin dimension of the crystal(figure 1.5).

The morphology of this type of crystals has been extensively investigated in the

case of polyethylene, so we will refer to these findings. Lamellae have a thickness

of a few hundreds Å, but a single molecule can be several thousands Å long: so

the chain is folded inside the lamella, in such a way to have straight sections

perpendicular to the basal surfaces [56](see figure 1.4). The models proposed to

describe the fine structure of these lamellae and their surface characteristics are

two:

1. adjacent re-entry of the chains [36, 57, 58]

2. switchboard model, where the chain re-entry is random [59]

The exact nature of the structure has been the subject of considerably contro-

versy [36]; for this reason different techniques have been employed in order to test

the two model, such as Monte Carlo simulation [60], neutron scattering [61, 62],

infrared spectroscopy [63]. While the morphology of the single crystal grown from

dilute solution may be more regular and resembles the first model, for polymers
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Figure 1.6: Spherulites growing. The threads are rotating lamellae [50].

that are crystallized from less dilute solution the second model seems more ap-

propriate. If the solution is not dilute, the system can be semicrystalline, with

sections of the chains inside different crystalline region (figure 1.4).

1.4.2 Crystallization from the melt

Typical of the crystallization from the melt are spherulites. Their name comes

from their substantially spherical shape. Spherulites are composed by rotating

lamellae which spring out from a common central region (figure 1.6 and 1.7 ).

As lamellae are anisotropic material, spherulites present a typical birefringence,

a characteristic Maltese cross optical extinction [11, 50]. Lamellae are linked by

sections of chains which belong to different lamellae.

Figure 1.7: Maltese cross in spherulites. The lamellae spring from the center of
the spherulite screwing(A); as they are birefringent, a typical pattern rise (B)
[50].
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1.5 The crystallization process

For complex materials like polymers, crystallization requires a very difficult re-

organization of the material on different length scales: monomers have to be in

the right position, and so the whole chain; then the chains themselves need to

approach each other in the right manner. Obtaining a perfect crystal is difficult

in this situation, sometimes impossible, and usually semicrystalline materials re-

sult. There is now wide agreement that the morphology of polymer crystals is

determined by kinetic rather than equilibrium factors. Although in principle a

crystal would equilibrate given enough time, the free energy barriers are so great

that the time required is effectively infinite. The kinetic theories assume that the

observed growth faces would have a range of possible thickness, each having a

growth rate which depends on thickness. The preferred thickness for the crystal

is that which maximises the growth rate: hence the kinetic origin of the model.

The way the chains follow to form or enter inside a crystal can be divided in [50]:

1. primary nucleation.

2. growth.

3. secondary crystallization.

The first two processes are often referred together as primary crystallization. In

what follows, a more detailed description will be given.

Equilibrium theory, despite its merits, is usually ignored these days and no

further discussion of this approach is given below. The interested reader can refer

to the original papers of Peterlin [34, 64–66], Huggins [67, 68], Peterson [35],

Zachmann [69]; a brief summary can be found in ref. [28], section 2.4.1.

1.5.1 Primary nucleation

The first step in crystallite formation is the creation of a stable nucleus brought

about by the ordering of chains in a parallel array, stimulated by intramolecular
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Figure 1.8: Total free energy (straight line). The surface and bulk free energy
have been reported for a spherical nucleus (dotted lines); σ is the surface free
energy per units of area and ∆g is the bulk free energy per units of volume [50].

forces (homogeneous nucleation) or brought about by an impurity present, or

added, inside the sample (heterogeneous nucleation). When a “cluster” of polymer

chain has born, two contributions determine his fate. The first contribution is

related to the gain in bulk free energy: this contribution is always favourable to

crystallization. The second aspect to be remembered is related to the increase

in free energy associated with the surface formation. In order to be stable, the

nucleus has to be greater than a certain dimension r∗ (see figure 1.8): in this

situation the nucleus can decrease his total free energy by growing until it has

a dimension larger than rs. Beyond rs the nucleus is stable: a new crystal starts

to grow. The picture represented in fig. 1.8, strictly speaking, make sense only if

we consider a spherical aggregation of particles. For a more detailed review on

primary nucleation in polymer see Chapter 5.

1.5.2 Growth

The growth of the crystal is one of the most active field of research in polymer

crystallization where different theories and hypothesis have been proposed.
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The first explanation comes from Lauritzen and Hoffman [32, 70] in 1960s

(from now LH theory). Once the crystal is sufficiently large, we can think to

the growth surface as a big (usually considered infinite), plain surface. If a chain

poses on it, this fact generates a step (figure 1.9, left), so the same problem as

presented in the previous section rises: the new surfaces created increase free

energy; instead the bulk free energy decrease. The idea was that something like

a nucleation happens: this process is called secondary nucleation. When a free

polymer molecule decides to became part of a crystal, it needs to attach a section

of his chain larger than a minimum length, otherwise it detaches. After this

condition has been fulfilled, the chain arranges itself on the surface and then

other chains can attach close to the nucleus without penalties(Fig. 1.9, right).

So the first nucleus starts to spread over the entire surface until he covered it

completely: a new molecular layer has been added.

Inside this picture is possible to image three regimes:

1. Regime I. The nucleation process is slower than the growth process, so

usually only one nucleation event happens before the layer is completely

covered [71, 72].

2. Regime II. The nucleation process is as fast as the growth process [73–

78]. More nucleation event are present before a layer is covered. Moreover,

on each spreading layer can start other nucleation event. So this regime

Figure 1.9: Lauritzen-Hoffman theory. When a stem (i.e. a straight section of
the chain) attaches onto the surface, a step has been generated (left); this is a
nucleation event. After that, other sections of the chain can collapse, so the step
grows until all the substrate has been covered.
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Figure 1.10: Sadler-Gilmer theory. Above the roughening temperature TR, a plain
surface (left) starts to present steps and vacancies (right).

shows several patches in the same layer, which may in turn support further

nucleation events.

3. Regime III In this regime the niches get so close that patches have little

or no time to spread before colliding with another niche [58, 79, 80].

The theory presented until now is the most broadly accepted in the field of

polymer crystallization. This means that many observations, corrections, ques-

tions about polymer crystallization are phrased in terms of this influential theory.

While it is not possible to cite every aspect of this work, we mention some high-

lights germane to the present study:

1. Concentration. In order to grow the crystal need to be fed by always new

polymer chains adding to the spreading layer[81–86]. Different concentration

can improve some particular aspects which characterize the growth rate

[74, 87, 88]: for example, if more than one layer starts to grow on the same

substrate, they can collide, generating dangling chain ends. Fractionation

effects have also been revealed [89, 90].

2. Defects. The description drawn is related to wide planar surfaces, which

contain no defects. This can not be considered realistic, and sometimes

effects related to defects and the dimension of the crystal arise [91–93].

3. Theoretical basis. More technical problems arise if we consider the de-

tailed prediction of LH theory. Critics of the theory have noted the arbitrary
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choice of some basic parameters [70, 94] that have been made in compar-

ison to experiments, and the path chosen to describe the process of chain

attachment[95–97]. As the theory was considered successful, modifications

and extensions were proposed in order to account for multicomponent chains

[98, 99], cilia [74, 100], fractionation effects [101], the amount of adjacent

reentry [102, 103], the reptation dynamics [104], crystal with curved edges

[94, 105, 106].

The LH theory arguments on the expectation that on a wide crystal surface

a secondary nucleation event on wide crystal surface decreases the free energy, so

that a new polymeric layer starts to spread. Another possibility to decreases the

free energy barrier has been proposed by Sadler and Gilmer [37–40] who proposed

a superficial roughening where the smooth surface just considered starts to present

steps and vacancies above a specific temperature. In this process no nucleation is

required.

In the first two approaches (LH theory and Sadler-Gilmer) a section of the

chain comes close to the surface, and than the whole chain collapses on the sub-

strate. Wunderlich and Metha [90] supposed that (especially for low mass poly-

mers) the leading process is the molecular nucleation: firstly the single molecule

forms a stable nucleus, then it approaches to the surface. This means that chains

too short, which can not form a stable nucleus, will not enter inside the crystal:

this can be observed also experimentally.

Another interesting observation comes from Hikosaka [107, 108]. The growth

front of a polymer can be sketched as a strip with a definite thickness, but an

infinite width. In such a surface the chain has a penalty if it approaches to upper

and bottom edges, so firstly it enters onto the surface, then it rearranges itself

until it reaches the two edges. This reorganization works only within few layers

below the growth surface.
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Figure 1.11: Sketch of the changes in the internal layer structure: liquid-like pack-
ing in the mesomorphic state (right), pattern of crystal blocks after the transition
in the granular state (center), lamellar crystals with mosaic block structure (left).
[41].

1.5.3 Secondary crystallization

Usually, the polymer crystallization stops resulting in a semicrystalline material,

where ordered regions are bounded by disordered ones. In this situation, a slow

process occurs which tends to give rise to more perfect crystals and increasing

crystallization over time. The secondary crystallization involves a slow structural

reorganization of the material.

1.5.4 Some final remarks

An alternative picture of polymer crystallization has been furnished by Strobl

[41] and can be seen in fig. 1.11. The leading idea is that a mesomorphic phase

is present when the sample is cooled below the melting temperature, before it

achieves an ordered disposition of the chains typical of the crystal. In this picture

the chains are disposed along a preferential direction; this preferential direction

is not retained for long distances, so the sample has a granular appearance with

clusters of oriented chains close to each other, moving indipendently inside a ma-

trix of chains which do not belong to any cluster (middle picture in Fig.1.11) ;

these clusters are internally very mobile both in reorganization and in thicken-

ing. Lowering the temperature again, make the cluster grow adsorbing other free
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Figure 1.12: Effect of strain on
crystal morphology. For strain
equal zero a spherulitic pat-
tern would be found. As the
strain increases fibrillar struc-
tures appear [52].

chains. When the matrix of free chains is substantially disappeared, the clusters

start colliding with each other. Their motion is now very difficult, and they start

merging together forming a crystal. The crystallization, in this picture, is a col-

lective process, and no nucleation is present. Evidence of the existence of these

initial clusters of molecule, would be provided by a microscopic blocky structure

of the lamella, which has been actually observed[145, 146].

Spinodal decomposition is often discussed in connection with polymer crystal-

lization [11, 147]. The term “spinodal decomposition” is borrowed from the field

of polymer mixture [148–151], and happens when two chemically different poly-

mers start phase separating leading to interpenetrating continuous domains when

the concentration is near a critical value.A similar situation seems to occur when

polymers crystallize where the crystallized and amorphous forms of the polymer

play the roles of the phase separating species in phase separation. Notably, we are

dealing with a one-component sample; the key issue is the different mobility and

density of the polymer segments in the crystalline and non-crystalline domains

[152].

Although the idea of spinodal mode of crystallization is attractive, but the evi-

dence supporting this phenomenon is rather limited (for a detailed list of samples,
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refer to references cited in [122] and [152]).

Another form of crystallization is the crystallization under strain [48, 52, 109–

115]. Applying a strain lead to a different forms of molecular organization: for

an isotropic melt usually a spherulitic pattern is found; as the strain increase

a fibrillar structure starts to appear. It is interesting to see that nucleation and

growth rates, in materials subjected to a strain can be several orders of magnitude

larger than those of unstrained materials.

Astonishingly, because of the weak effect it has on polymer melts, orientation

effects can be also obtained by means of magnetic fields [116–119].
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Chapter 2

Simulation Model

In this chapter we will explain the details related to the model used during the

simulations. Details on how simulations have been performed, will be given at

the beginning of each of the following chapters.

2.1 System under examination

The system under investigation consists in a single polymer chain in solution.

The aim of the simulations is to investigate the early stages of the crystallization

process. Both structural and dynamic properties of the chain will be analysed.

Figure 2.1: The chain is described as a sequence of beads, where each bead rep-
resents a single methylene CH2 group. No distinction is made between internal
methylene CH2 groups and terminal methyl CH3 groups [120].

27
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Table 2.1: Parameters of the force field.

Parameter
Value

reduced units SI units

ǫ 1 0.112 kcal/mol

σ 1 4.04 Å

m 1 14.03 g/mol

Γ 1 0.455 Hz/mol

kr 51005 350 kcal/mol Å2

r0 0.38 1.53 Å

kθ 535.71 60 kcal/mol

θ0 109◦ 109◦

k1 26.96 3.02 kcal/mol

k2 -5 -0.56 kcal/mol

k3 23.04 2.58 kcal/mol

2.2 Chain representation

The chain is described as a sequence of beads, where each bead represents a single

methylene CH2 group. No distinction is made between internal methylene CH2

groups and terminal methyl CH3 groups in order to obtain a slight improvement in

efficiency [121]. For long chains this approximation is fair. The local interactions

shaping the chain are defined by the potentials

Ubond(r) = kr(r − r0)
2 (2.1)

Uangle(θ) = kθ(cos θ − cos θ0)
2 (2.2)

Utorsion(φ) = k1(1 − cosφ) + k2(1 − cos 2φ)

+ k3(1 − cos 3φ) (2.3)



2.3. SOLVENT 29

Ubond(r) is a harmonic spring potential defined for every couple of adjacent beads,

r being their distance and r0 the equilibrium bond length. Uangle(θ) is defined for

every triplet of adjacent beads, θ being the angle between the corresponding bonds

and θ0 its equilibrium value. Finally, Utorsion(φ) is defined for every quadruplet

of adjacent beads and φ is the dihedral angle between the planes defined by the

corresponding three adjacent bonds. Pairs of beads not interacting by any of the

preceding potentials interact by means of a Lennard-Jones potential

ULJ(r) = 4ǫ

[(σ
r

)12

−
(σ
r

)6
]

(2.4)

with a cutoff radius rcut = 2.5σ. The set of parameters of the above force field are

taken from ref. [122] ( see table 2.1 ). The corresponding time and temperature

units are given by t∗ = 2.21 ps and T ∗ = 56.3 K. All the results will be presented

in terms of reduced units. For that set the single-molecule crystal melts at Tm =

11±0.2 in the limit of vanishing heating rate [122, 123]. This value is exceedingly

high and calls for refinements of the force field. However, since we are interested

in studies carried out by the same force field [121–124], these adjustments are

beyond the present purposes. By the way, similar problems were also noted in

other studies on PE single-chain crystals which exhibited global orientational

order already at 550 K by using the Dreiding potential [125].

2.3 Solvent

The solvent is mimicked by suitable friction and random forces acting on the

monomers. The dynamics is described by the Langevin equation

r̈i = −∇i U − Γṙi −Wi (2.5)

where ri denotes the position vector of the i-th bead, ∇i U is the sum the internal

forces acting on it, Γṙi is the frictional force and Wi is a gaussian noise:

〈Wi(t) · Wj(t
′)〉 = 6ΓkbTδijδ(t− t′) (2.6)
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The friction and the random forces account for the solvent and set the tempera-

ture via the proper fluctuation-dissipation theorem.

2.4 Integration scheme

Eq. 2.5 is integrated by means of the velocity Verlet algorithm [126–128]:

1. Firstly compute the new position r at time t+δt, knowing position, velocity

v and acceleration a at time t:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 (2.7)

2. Then compute velocity at mid-step:

v(t+
1

2
δt) = v(t) +

1

2
δta(t) (2.8)

3. Compute acceleration knowing the new positions r(t+ δt)

4. Finally, complete the velocity step:

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt) (2.9)

The time step used is δt = 0.001.



Chapter 3

Primary Nucleation and Melting

After the general description given in chapter 1 regarding polymer crystallization,

here we focus our attention on the early stages of the formation of an ordered

crystalline structure. Before entering into the results gained with our simulations

[129, 130], a brief introduction to this field is furnished. After that, we go on to

describe the behaviour of a single polymer chain, composed by 500 monomers,

in solution via MD simulations. For details on the model, readers can refer to

chapter 2. Here we are interested in the crystalline structure obtained, and in the

processes followed in order to come to the final state. A description of the whole

process in terms of Free Energy Landscapes will be given in chapter 4. At the end

of this chapter a concise study of the melting process is presented. The results

here showed, appeared in ref. [129, 130].

3.1 A glimpse at the birth of a crystal

In this section an account of the experimental observations involving the early

stages of crystallization is reviewed. Most of them appeared recently, because of

the development of techniques that make possible to extract local information

from the sample, instead of global ones (such as growth rate). Incidentally, it is

worth noticing that the Lauritzen-Hoffman theory (the most accepted theoretical

31
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Figure 3.1: The birth of a homogeneous nucleus which develops into a
lamella.[131].

description) relies its predictions on the growth rate measurements almost ex-

clusively; thus, the new developed techniques are able to open a completely new

perspective on the microscopical picture of crystallization.

3.1.1 Early stages

The nucleation can start when a density fluctuation in the sample is sufficient

to provide a nucleus which is wide enough to begin to spread out (see chapter

5). This starting event, due to density fluctuation, is called homogeneous nucle-

ation. Fig. 3.1 presents one example of homogeneous nucleation: the dot in the

left hand picture is a nucleus which subsequently develops into a single lamella

[131]. As it is shown in the picture on the right hand side, in the case of a melt-

grown crystal, the first branches develop when the lamella reaches a size of the

order of 1 µm. The branching is repeated also at later stages and the final struc-

ture is a spherulite with a pair of “eyes” (the two black holes) at its center (fig.

3.2). Another way to start nucleation is the presence of an heterogeneity in-

Figure 3.2: Homogeneously nucleated growing spherulite [132].
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Figure 3.3: Heterogeneously nucleated growing spherulite [132].

side the sample. This case is called heterogeneous nucleation. Now, more nuclei

start spreading at the same time; as it can be seen in fig. 3.3, several lamellae

develop simultaneously, emanating from the surface of the heterogeneity; the nu-

cleus shows a quasispherical symmetry and this symmetry is retained up to the

end. An interesting feature of the growing spherulites, see figure 3.4, is the exis-

tence of dominant and subsidiary lamellae: in the first image a bounce of rapidly

advancing lamellae is shown. Afterward, an in-filling process starts, by means

of subsidiary lamellae. The concept of dominant and subsidiary lamella was in-

troduced by Bassett and co-workers in order to explain TEM experiments [133].

Nowadays, the same process can be seen by AFM [134, 135], micro-beam X-ray

scattering [136], SAXS [137], the linear attenuation coefficient of light [138, 139].

Figure 3.4: AFM images related to the in-filling process which happens during
the growth of spherulites. [134].
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Figure 3.5: sPPc015: crystallization (filled symbols) and melting (open symbols)
line versus d−1

c [155].

3.1.2 Crystal structure

The crystals produced during the crystallization process, can be characterized by

means of their thickness. Several investigations describe a very interesting picture

of the thickness evolution in time. Usually a time invariant crystal thickness is

observed [29, 140–142], but if a polymer has longitudinal chain mobility [143] in

the crystalline state, it shows spontaneous crystal thickening at the crystallization

temperature. This is true for polyethylene, whose crystal thickness increases with

time [144].

Another well-known feature of lamellae is their blocky substructure [145, 146,

153, 154]: this means that looking at a lamellae very closely, a granular structure

is visible. This is the reason for the theory proposed by Strobl (section 1.5.4).

Despite of the uniform lamellar thickness obtained at a certain temperature,

this does not imply an analogous uniform stability of the crystallites [155]. Ac-

tually, conventional views often associated melting point variations with a cor-

responding distribution of lamellar thickness only, but recent experiments now

point to further causes. For example, subsidiary lamellae melt before dominant

lamellae [156]; in general crystals formed later melt much earlier [157–161]. Other

important aspects are the interactions with neighbors [162], and stability within

a single lamella [163, 164].
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Figure 3.6: PEc014: crystallization (filled symbols) and melting (open symbols)
line versus d−1

c . the connecting lines show the temperature dependence of d−1
c

[169].

3.2 Melting: the presence of metastable phases?

The melting of a polymer is usually described by means of the Gibbs-Thompsom

equation:

T (dc) = T∞ − 2σacT
∞

∆hfdc
(3.1)

where ∆hf is the heat of fusion and σac the surface free energy, dc the crystal

thickness and T is the melting temperature. This equation suggests plotting the

melting points as a function of d−1
c . It also suggests using the same representation

for the relation between the crystallization temperature and the thickness of the

resulting crystal. In figures 3.5 and 3.6 are given two examples of the plot: the

experimental points are reported together with their crystallization and melting

lines. In addition, thin lines which connect respective points on this two lines are

drawn: the lines are vertical when the thickness remains constant and are curved

when the crystal thickness increases during heating.

As the two lines come to an intersection, it is interesting to understand what

happens around the intersection points. In figure 3.7 is possible to see that: the

points deviate from the crystallization line before reaching the intersection point.

This representation with the crystallization and melting line is also useful

to study the behaviour of polymers with the presence in the chain of co-units
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Figure 3.7: sPPc020: relation between crystallization temperature and crystal
thickness near the point of intersection between the melting and the crystalliza-
tion line. [41].

[144, 155, 165, 166], or stereo defects that cannot be included in the crystal.

Polymer mixed with low molar mass diluent [140] or a second non-crystallizable

polymer [167] have also been studied with this technique. In the same way the

effect of the molar mass of the polymer has been considered [168]. In many of

this experiments an attractive feature is found: the remarkable constancy of the

crystal layer thickness which depends only on the crystallization temperature.

Another interesting aspect of melting is the the recrystallization process: heating

an isothermally crystallized polymer is not always accompanied just by melting

of the crystallites, but in many cases, the melting is immediately followed by

formation of a new crystal. In this case two different scenarios are found:

• if the crystal is formed at high temperature, which means near the inter-

section between crystallization and melting line, the melting is followed by

a new crystallization process [170], before the final melting. If the sample

is heated fast enough, on the order of 10Km−1, the sample melts without

recrystallization.

• For low temperature crystals, the situation is quite different. Now is not

possible to identify a melt-crystallization-melt process, but after the “first”

melt the system starts a continuous crystal thickening, which stops only
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when the final melting arise [171–173]. In this case, in order to avoid the re-

crystallization, the heating rate has to be very high [174], such as 105Km−1.

The experimental description of the melting-crystallization by means of the

crystallization and melting lines addresses Stobl’s idea of the presence of a me-

somorphic phase which turns up between the crystal and the point of melting

[29, 41, 172].

Is there any evidence of this (or these) mesomorphic phase(s) in literature?

Early in the 1990s, Keller and his co-workers [175] carried out crystallization

experiments on polyethylene at elevated pressure using a polarizing optical mi-

croscope. Crystals nucleate into a hexagonal phase, and then grow to sizes in

the micrometer range before they transform into the orthorhombic phase after a

statistically initiated, second nucleation step. The authors interpreted their ob-

servation as an example of Ostwald’s rule of stages [176]. The presence of an

hexagonal metastable phase has also been revealed in other experiments on PE

[177–179], sometimes in connection with the “rotator phase”, which is found in

n-alkanes [180, 181]; this mesophase is also present in other polymers, such as

sPP [182–187].

3.3 Introduction

In order to understand the events that take place in the early stage of the crys-

tallization process, we perform large scale molecular dynamic simulations. Our

target is a deep analysis of the crystallization from very dilute solutions, where

is expected that each crystal is obtained initially from the folding of one single

molecules. Afterward, other chains can depose themselves on the one molecule

nucleus in order to develop, at long time, the typical lamellar crystal [124].

For oligomers, once-folded or extended conformations of the chain are observed

in the crystallized melts of relatively long monodisperse n- alkanes ( CnH2n+2,

150 ≤ n . 390 ) while up to four foldings per chain were observed in dilute
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solutions [188–191]. The number of foldings increases with supercooling. It is

believed that for multi-chain crystallites the extended conformation of the single

chain corresponds to the global minimum of the free-energy, which may be reached

from the original kinetically-selected minimum via a series of transitions through

less and less folded conformations ( each corresponding to different local minima

) if the involved free-energy barriers can be overcome [189].

Transitions are evidenced by heating solution-grown crystals ( n = 168, 240

[189, 192] ) or melts ( n = 198, 246 [190] ) . Furthermore, aging behavior yielding

transitions from folded to extended states were observed in the melt of n- alkanes

by prolonged isothermal crystallization at small supercoolings ( 198 ≤ n ≤ 390

[188, 190] ).

The primary nucleation of polymers and oligomers has been investigated in

the melt both by experiments [190, 193] and simulations [194]. Nonetheless, very

few groups have challenged the rather problematic and related issue of the prepa-

ration of single-molecule single crystals [195, 196]. Understanding if the primary

nucleation is kinetically or thermodynamically controlled is nontrivial.

The difficult characterization of the primary nucleation regime in dilute solu-

tions motivated several simulations [121, 123–125, 129, 197–205]. For relatively

short chains, the primary nucleation of single-molecule n-alkanes with a num-

ber of monomers N = n ≤ 300 were found to end up in the global mini-

mum of the free-energy , i.e. in thermodynamic equilibrium, at a quench depth

∆T ≡ Tm − T ∼ 0.2 Tm, where Tm is the melting temperature [123, 124]. How-

ever, the eventual kinetic arrest of the nucleation in one state during the primary

nucleation of longer single-molecules cannot be excluded due to the increasing

number of entanglements and, consequently, larger energy barriers.
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Figure 3.8: Thermal histories leading to the final temperature Tf

3.4 Simulation details

The model has been already presented in chapter 2. The runs are performed

according to the following protocol: seventeen random chain conformations are

initially equilibrated at Teq = 15 for at least ten times the time needed for the

self correlation function of the end-to-end vector to vanish. The equilibrated chain

does not exhibit any local orientational order ( see Sec. 3.5 for details ).

The final temperature Tf is reached via different thermal histories (see fig.

3.8):

• instantaneous direct quenches Teq → Tf .

• instantaneous quenches with intermediate annealing at Tann, Teq → Tann →
Tf . Annealing times were 3× 104 at Tann = 9, 10 and 6× 104 at Tann = 11.

The overall scheme of the thermal paths is summarized in Fig. 3.8. The total num-

ber of direct quenches ( 17 ) and quenches with intermediate annealing leading

to one specific Tf was 28.

Memory effects were also investigated by preparing a sample in the “all-trans”
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Figure 3.9: Wire-frame snapshots
of the crystallization of a sin-
gle polyethylene chain with N =
500 monomers for two different
initial states: chain equilibrated
at Teq = 15 and quenched at
Tf = 9 (top); chain initially in the
fully-stretched configuration (all-
trans) and isothermally annealed
at T = 9 (bottom). For the latter
case note the presence of initial
distinct nucleation sites merging
at later times.

fully-extended conformation and isothermally annealing it at T = 9. Having

reached Tf , data were collected during evolution times of 3 × 104 at T = 9, 10

and 6×104 at T = 11. The all-trans conformation was monitored after the initial

preparation for 3 × 104 time units.

The force field enforces the local stiffness of the chain yielding a Kuhn segment

length ℓk ∼= 1.2 [11, 51], corresponding to segments with about four beads. There-

fore, the polymer is sketched as a succession of about Nk = 125 rigid segments.

3.5 The crystallization process

The kinetics of the crystallization process is nontrivial and depends on the chain

conformation. Fig. 3.9 shows some representative snapshots evidencing that the

chain gathers relatively long straight sections ( the so-called stems ) to form the

overall ordered structure.

The nucleation may involve either the whole chain or separate portions merg-

ing at later times by reeling in their connector. The latter process has been

already noted for much longer chains ( N = 2000 )[122, 123]. Fig. 3.9 shows that
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Figure 3.10: Top: time evolution of
the order parameter S ( eq.3.3) for
all the investigated thermal histo-
ries leading to Tf = 9 (top): di-
rect quenches from Teq = 15 (dot-
ted lines ) and quenches after an-
nealing at Tann = 10 (solid lines).
The thicker lines are the average or-
der parameter for each set of curves.
The dot-dashed line refers to the
chain initially in the fully-stretched
configuration and then annealed at
T = 9. Bottom: order-parameter dis-
tributions PS (dotted lines) gathered
for times t > 2×104 for all the ther-
mal histories. The solid line is the
average distribution.

it also occurs in shorter chains. In principle, owing to the different scenarios of

the nucleation, the kinetic arrest in different states cannot be ruled out .

Tracking the amount of alignment between different sections of the chain by

means of suitable order parameters is of help in order to assess that hypothesis.

To this aim, one defines

bi =
ri+1 − ri−1

|ri+1 − ri−1|
(3.2)

bi is thus a unit vector locally aligned with the chain backbone. The order pa-

rameter is defined as [121]

S = 〈P2(bi · bj)〉i>j (3.3)

where P2(x) denotes the second Legendre polynomial in the variable x and the

average is computed for all the pairs of inner monomers. Fully disordered and

ordered states yield S = 0 and S = 1, respectively.

Fig. 3.10 ( top) shows the time evolution of the order parameter S of the

chain for all the investigated thermal histories leading to Tf = 9. Direct quenches
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Figure 3.11: Tomography of the
crystal state with a number of
stems µ = 10. The azure zone is
the stem region. The red zones
are the two caps. The left-side
column plots the averaged den-
sity profiles in the cross sections
marked by the dashed lines. Note
the absence of ordered structures
on the crystal surface and the two
caps.

from Teq = 15 and quenches after the annealing at Tann = 10 exhibit at short

times ( t . 5) the pre-quench order parameters 〈S〉Teq
= (1.31 ± 0.03) × 10−2,

〈S〉Tann
= (3.4 ± 0.18) × 10−1, respectively. For the all-trans initial conformation

S drops from the unit value.

Note that the spread of the curves is much larger at intermediate times than

immediately after the quench evidencing that the crystallization paths may be

somewhat different from each other. Nonetheless, at long times the paths become

closer and , after a transient period of about 2 × 104 time units, independently

of the thermal history, the chain exhibits the order parameter 〈S〉T=9 = (5.10 ±
0.18)×10−1, i.e. at long times the time average of a single history coincides within

the errors with the ensemble average over all the different histories. Henceforth,

the chain conformations at Tf = 9 after the transient period will be referred to

as belonging to the crystalline final state.

Fig. 3.11 shows one conformation of the final state. It is a well-defined lamella

with two small-sized caps where the loops connecting the stems are localized. The

stems have approximately equal length. In Sec. 3.6 it will be seen that they are



3.5. THE CRYSTALLIZATION PROCESS 43

arranged into a regular, hexagonal pattern and their number µ is well defined (

µ = 10 ), i.e. the general features of the final state are largely independent of the

thermal history.

In fact, Fig. 3.10 shows that the order-parameter distributions PS for the final

states of all the thermal histories are quite similar within the statistical errors.

PS peaks at S ∼ 0.52 evidencing considerable chain order. The distribution is

skewed to the low S-values. This is ascribed to the disorder localized in the two

crystal caps as well as in the crystal surface ( see Sec. 3.6 and fig. 3.11).

To characterize the different kinetic pathways leading to the final crystal

state the inertia tensor of the conformations was considered. The principal axes

{1, 2, 3} are ordered according to the magnitude of the corresponding eigenvalue

which are labelled as I1, I2 and I3, I1 being the largest one. Fig.3.12 ( top panel

) plots the time -dependence of I1 of both selected quenches at T = 9 and the

isothermal annealing of the initially fully-extended conformation at the same

temperature.

The plot gives insight into the typical structural changes leading to the final

crystal state. It is seen that the changes occur as fast transitions in about few

hundreds of time units between states with different, discrete I1 values. Such

states are identified by visual inspection as ordered conformations with different

number of stems. At long times all the pathways converge to a single state with

I1 ∼= 104, i.e. the final state with a number of stems µ = 10. The time -dependence

of I1 evidences transitions with changes of the number of stems ∆µ = ±1,−2 and

even a quasi-transition with ∆µ = −4, i.e. two transitions with ∆µ = −2 being

very close to each other. Transitions with ∆µ = ±1 involve stems terminated by

one of the two chain ends. Transitions with ∆µ = −2 involve stems built by inner

portions of the chain. Transitions with ∆µ = +2 were not observed. Notice that

the approach to the final state ( µ = 10 ) is not monotonous, e.g. in Fig.3.12

a transition is seen from one state with µ = 11 to one with µ = 9. Fig.3.12 (

middle panel) shows selected snapshots of one transition with ∆µ = −1 involving
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Figure 3.12: Kinetic pathways of the crystal formation. Top: Pathways of selected
thermal histories leading to the final crystal state as characterized by the time
dependence of the largest eigenvalue of the inertia tensor I1. The time starts
102 time units after either the quench at T = 9 or, for the ”all-trans” curve,
the beginning of the isothermal annealing of the fully-extended conformation at
T = 9. The horizontal dashed lines mark the I1 values corresponding to crys-
tal structures with a number of stems equal to ( from the top to the bottom )
9, 10, 11, 12, 13, 14. The inset is a magnification of two transitions involving the
disappearance of either one ( T1 ) or two stems ( T2 ). Middle: Snapshots of the
molecular conformations during the T1 transition occurring at times 8200 (A),
8420 (B),8450 (C),8600 (D) being marked by dots in the top panel. The cartoons
below the wire-frame view sketch the rearrangements of the thick portion of the
chain end involved in the transition. Bottom: Snapshots of the molecular confor-
mations during the T2 transition occurring at times 14800 (E), 14900 (F),15000
(G),15200 (H). The cartoons below the wire-frame view sketch the rearrange-
ments of the thick portion of the chain involved in the transition. Notice that the
stems disappearing in both the T1 and T2 transitions are located on the crystal
surface.
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Figure 3.13: The distribu-
tions of the moments of in-
ertia along the transverse
x1, x2 (top) and the longi-
tudinal x3 (bottom) axes in
the final state at T = 9(
see Fig. 3.11) . The dot-
ted lines refer to the differ-
ent thermal histories . The
solid lines are the averages.

a chain end ( transitions with ∆µ = +1 are quite analogous to the same sequence

in reverse time order ). Fig.3.12 ( bottom panel) shows selected snapshots of one

transition with ∆µ = −2. It is interesting to note that the stems disappearing

(or being created ) during the transitions are always seen to be located on the

crystal surface.

3.6 The crystalline final state

3.6.1 Moments of inertia.

In order to get a deeper understanding of the structure of the crystallized chains,

the inertia tensor of the configurations in the final state at T = 9 was ana-

lyzed. Fig. 3.13 plots the distributions of the three eigenvalues I1, I2 and I3 for

all the thermal histories. The principal axes {1, 2, 3} are ordered according to

the magnitude of the corresponding eigenvalue. The average values over all the

thermal histories are 〈I1〉 = 10097± 58, 〈I2〉 = 9885± 51, 〈I3〉 = 1148± 11. Since
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Figure 3.14: The number of intersections of the chain with the plane at x3 =
z, N||(z), in the final crystalline state at T = 9. The plane is perpendicular
to the approximate cylindrical symmetry axis x3. The different curves refer to
all the thermal histories ending at T = 9. The dashed line is the distribution
corresponding to the ideal case of ten parallel and fully extended stems with fifty
monomers each. The number of stems µ is equal to N||(0) = 10. Note the steep
decrease at the end region evidencing the small size of the loops connecting the
stems.

〈I1〉 & 〈I2〉 ≫ 〈I3〉, the ellipsoid of inertia of the crystal exhibits approximate

cylindrical symmetry around the 3 axis, as it may be seen by visual inspection

(see Figs. 3.9, 3.11, 3.15). Fig. 3.13 shows that the shape of the distributions for

the largest eigenvalues P1 and P2 is nearly symmetric with small width whereas

the distribution for the smallest eigenvalue P3 is rather asymmetric, larger and

skewed to higher I3 values. The skewness must be ascribed to the structural

changes occurring on the crystal surface ( see below ).

3.6.2 Longitudinal monomer distribution: small caps

In order to analyze the crystal structure one defines the monomer distribution

function ρ(r) as

ρ(r) =
1

N

N∑

i=1

〈
δ(r − r

(cm)
i )

〉
(3.4)
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where r
(cm)
i is the position of the i-th bead with respect to the center of mass of

the chain and the brackets denote a suitable average. In particular, one defines

the quantity

N||(x
3) = N d×

∫
ρ(x1, x2, x3) dx1dx2 (3.5)

where d ≡ r0 sin
(

θ0

2

)
≃ 0.31 is the distance along the chain backbone between two

adjacent beads of the fully-extended chain and xk is the projection of r along the

k−th principal axis. The quantityN||(z) denotes the number of intersections of the

chain with the plane at x3 = z, namely a plan perpendicular to the approximate

cylindrical symmetry x3 axis. Fig. 3.14 plots the quantity N||(z) in the final

crystalline state at T = 9 for all the thermal histories. It is apparent that the

dependence of N||(z) on the thermal history is negligible. A fortiori, this holds

true for the number of stems µ = N||(0) = 10, corresponding to the conformation

yielding the global minimum of the free-energy ( fig. 4.3 ). Three different regions

are seen in Fig. 3.14:

• the central region, |z| . Lc/2 with Lc = 8, where N|| ≃ 10;

• the transition region, Lc/2 . |z| . Lc/2 + 2 where the average orientation

of the stems departs from the one of the x3 axis;

• the end region, |z| & Lc/2 + 2, where the stems join each other by forming

loops.

Fig. 3.14 shows that the shape of N||(z) is very close to the ideal one corre-

sponding to ten parallel, all-trans stems of fifty monomers each. The comparison

makes it more apparent both the order in the final state and the small size

of the two crystal caps. In fact, the longitudinal size of the loops, ∆z ∼ 3, is

fairly smaller than the crystal length 2Lc = 16 . Notice that, since I3 ≪ I⊥

with I⊥ = (I1 + I2)/2 ≃ 9990, the folded chain may be sketched as a rigid

rod with length 2L, mass N and negligible thickness. The approximation yields

L =
√

3I⊥/N ≃ 7.74, to be compared with Lc ∼ 8, as drawn from Fig. 3.14.



48 CHAPTER 3. PRIMARY NUCLEATION AND MELTING

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 3.15: Tomography
of the crystal final state.
The transverse distributions
ρ⊥,centr (top), ρ⊥,trans (center)
and ρ⊥,term (bottom) (Eqs.
3.6-3.8), for one particular
thermal history, i.e. a direct
quench from T = 15, (left
panels) and averaged over all
the thermal histories (right
panels). Note: i) the indepen-
dence of the tomography on
the thermal history, ii) the
absence of ordered structures
on the crystal surface and the
two caps.

Both previous experimental [188] and numerical [203] works pointed out the

sharpness of the loops connecting the different stems and motivated a recent

model of the FEL global minimum of the single-molecule polymer crystals [129]

( see chapter 4 for a detailed description).

3.6.3 Transverse monomer distribution: surface mobility

In order to study the monomer distribution in planes perpendicular to the x3 axis

one defines

ρ⊥,centr(x⊥) =

∫ Lc/2

−Lc/2

ρ(x⊥, z) dz (3.6)

ρ⊥,trans(x⊥) =

∫ Lc/2+2

Lc/2

[ρ(x⊥, z) + ρ(x⊥,−z)] dz (3.7)

ρ⊥,term(x⊥) =

∫ ∞

Lc/2+2

[ρ(x⊥, z) + ρ(x⊥,−z)] dz (3.8)

where x⊥ = x11 + x22 denotes the position vector in the transverse plane.
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ρ⊥,centr(x⊥), ρ⊥,trans(x⊥) and ρ⊥,term(x⊥) are the transverse monomer distribu-

tions in the central, transition and end regions, respectively. Fig. 3.15 shows the

tomography of the crystal structure.

First, the crystal structure achieved after one particular thermal history ( left

panels ) is compared with the average of all the investigated thermal histories (

right panels ). Data are collected during a lapse of time of about 5 × 103 time

units. The absence of any significant difference is apparent and proves once again

the absence of any memory effect, namely that at T = 9 the final crystalline state

corresponds to the global minimum of the free-energy which is seen in Fig. 4.3

in chapter 4 (in the same chapter a deeper study of the FEL is given).

The tomography evidences several features of the crystal structure. The ten

stems of the crystalline nucleus arrange themselves into an hexagonal structure (

top plots ). Noticeably, there is virtually no order on the crystal surface. Moving

to the caps of the crystal structure the amount of order decreases. The transition

region ( center plots ) still retains a partially ordered structure, visible in the two

central stems, whereas the remaining eight external stems become more mobile.

In the end regions ( bottom plots), where the loops connecting the stems are

located , any ordered structure is lost. It must be pointed out that the absence

of order on the crystal surface and the two caps is due to the mobility of the

chain in that regions, as it may be appreciated in the left plots of Fig. 3.15, which

monitor the monomer transverse distribution for a single chain over a finite time

interval. The presence of a disordered “corona” surrounding the ordered fraction

of the nucleus has been noted by MonteCarlo simulations [206]. In the present

case the direct inspection of several snapshots shows that the crystal surface is

highly mobile and includes the chain ends which are excluded from the crystal

interior. The confinement of the end groups on the surface avoids the impairment

of lattice perfection and agrees with previous experimental findings [188].

The results discussed in the present section allow one to conclude that in the

final crystalline state at T = 9 the chain packs into ten stems, of approximately
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Figure 3.16: Top: time evolution
of the order parameter S for dif-
ferent thermal histories ending at
T = 11 (top); the dotted lines re-
fer to quenches from T = 15, the
solid lines to reheating from the
crystalline final state at T = 9.
The thick lines represent the av-
erage of the corresponding group
of curves. Bottom: Fluctuations
of the order parameter for one
selected thermal history at long
times. For some selected S val-
ues the corresponding chain con-
formations are shown.

equal length, arranged into a regular pattern with hexagonal symmetry. The

ordered structure cannot include all the beads because of the chain connectivity

and of the local potentials, which e.g. generically do not allow a regular packing

of chain bendings. The disorder is expelled into the two caps and on the surface,

where the structural fluctuations take place. Remarkably, the end regions where

the loops connecting the stems are located have small size ( see figs. 3.11 and

3.14).

3.7 Melting

The equilibrium melting temperature T
(eq)
m is, by definition [205], the temperature

where the free-energies of the ordered and the disordered states are equal. An

estimate is given by melting the crystal in the limit of vanishing heating rates.

By following that method the single-molecule crystal was found to melt at Tm =
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11 ± 0.2 for the force-field in use [122, 123].

T = 11 was reached by:

• instantaneously quenching three equilibrated configurations at T = 15

• instantaneously heating three configurations of the crystalline final state at

T = 9.

Fig. 3.16 shows the subsequent temporal changes of the order parameter S. Af-

ter the sudden heating, the melting of the crystal is signaled by the large drop

in the order parameter S and exhibits large fluctuations at long times. Similar

fluctuations are also observed for the quenched configurations. The inspection of

several snapshots suggests that the long-time behaviour at T = 11 is independent

of the thermal history. Fig. 3.16 shows the fluctuations of the order parameter

for one selected thermal history at long times and the corresponding chain con-

formations. It is seen that the large fluctuations are due to infrequent attempts

to crystallize of the chain. This behaviour, leading to large energy fluctuations (

not shown ), is a consequence of the proximity of T
(eq)
m to T = 11 [204, 205]. The

FEL (see chapter 4) at T = 11 shows that thermal fluctuations of about 3kBT

are needed for ordering the structure, i.e. for increasing I1 from about 5 · 103 to

about 104. To characterize the process, the waiting-time distribution ψ(t) between

two successive crystallization attempts was evaluated. An attempt is defined as

an event with average order parameter S̄ > Sthreshold = 0.12 over 50 time units.

The waiting-time distribution is found to be roughly exponential ( Fig. 3.17 ),

suggesting that the attempts are independent events.

The results discussed in this section provide upper limits for the degree of

superheating/supercooling of the present PE model. One defines ε = (T ∗
m −

T ∗
f )/T ∗

f ≥ 0, T ∗
m and T ∗

f being the melting temperature on heating and the freez-

ing temperature on cooling, respectively. Being 10 < T ∗
m, T

∗
f < 11, it is found

ε < 0.1. i.e. small hysteresis.
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Figure 3.17: Waiting-time distribution of the crystallization attempts at T = 11
(see text for details). The solid line is a fit with an exponential decay with time
constant τ = 805 ± 5.

The melting of crystalline polymers has been recently studied by MonteCarlo

simulations [204, 205, 207]. In particular, the superheating of the single crystals,

as well as the supercooling of the disordered state, have been noted for single

chains with a number of monomers N & 100 resulting in large hysteresis and

dependence on the thermal history [204, 205]. To proceed with a comparison

with the present results some remarks must be done. The MonteCarlo simulations

sketch the polymer as a fully flexible linear chain of N rigid segments [204, 205]. It

is natural to identify that segments with the Kuhn segments. As noted in Sec.3.3

) the number of Kuhn segment of the present PE model is about Nk = 125. For

N ∼= 125 the results of refs. [204, 205] yield ε ∼= 0.1 in good agreement with the

present ones.



Chapter 4

Free Energy Landscape

In this chapter the results presented in the previous chapter will be interpreted

by means of the key concept of the Free Energy Landscape. Before entering the

description of our findings a brief introduction of the various “energy landscapes”

will be briefly given. In literature appeared nice reviews which can introduce the

workers in different disciplines to this instruments, such as [208, 209].A very

comprehensive book is the one written by Wales [210].

4.1 Energy landscapes

The term “energy landscape” was probably first introduced in the context of free

energy surfaces [211–221]. The potential energy landscape (PEL) represents the

potential energy of a given system as a function of all the relevant atomic or molec-

ular coordinates. In general the PEL is a high-dimensional function compared to

a free energy landscape (FEL), which is obtained from the PEL by averaging over

all the other degrees of freedom for fixed values of the order parameters [222].

This averaging is repeated to provide an interpolation over the range for which

the order parameters have physically interesting values. The PEL is perhaps a

more fundamental object, since there is no requirement for a subjective choice of

order parameters. FEL are also temperature dependent, whereas the PEL is not.

53
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A minimum on either a FEL or a PEL is a point from which a small displacement

in any direction increases the energy; a displacement corresponds to changes in

atomic coordinates for the PEL and in order parameters for the FEL.

Equilibrium thermodynamic properties only depend on the relative potential

energies of the local minima in the PEL, and the volumes of configuration space

associated with them, whereas the relaxation dynamic is related to the pathways

between minima, the so-called connectivity. Understanding how some system can

relax to particular structures requires a global view of the landscape. Even knowl-

edge of the distribution of barrier heights that separate the local minima is not

generally sufficient to understand the global dynamics, unless we also know which

minima the barriers actually separate. In term of FEL, local minima represents

likely kinetics traps.

Pictorially, the trajectory of the system can be represented as a motion of a

representative point ~rN in the 3N space on the V (~rN) surface (see figures 4.1).

It is important to stress that the PEL does not depend on T. It is also im-

portant to realize that the exploration of the PEL (i.e. which parts of the surface

are explored) is strongly T dependent. As the surface is in 3N-dimensional space,

the characterization of the surface can only be performed on a statistical basis,

and one of the aims of the PEL studies is indeed to estimate the number of local

minima and their distribution in energy, and to estimate the shape of the surface

around the local minimum and the hypervolume in configuration space associated

with each of these minima. The number and energy depth of the local minima

are indeed the basic ingredients of the PEL thermodynamic formalism, put on a

firm basis by the work of Stillinger and Weber [223–225]

Stillinger and Weber provided a formally exact partitioning of the configura-

tional space as a sum of distinct basins, associating with each local minimum of

the potential energy surface (named an inherent structure, IS) all points in con-

figuration space connected to the minimum by a steepest descent path. This set

of points is named a basin. The definition of a basin proposed by Stillinger and
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Figure 4.1: Examples of PEL. (top)
The collinear hydrogen exchange re-
action HA + HB −HC → HA −HB +
HC. In this case the PEL is func-
tion only of the two internuclear dis-
tances RAB and RBC (in Å). (bot-
tom) A more complex example is
the case of lysozyme where the pic-
ture has been constructed by aver-
aging over all the solvent and pro-
tein coordinated except for the na-
tive contacts present (Q) and the
compactness (P). For the exact def-
inition of the last two quantities we
address the reader attention to the
paper where they come from. E is
the free-energy, so the surface is a
free energy surface. Worth of notic-
ing is the fact that more than one
trajectory are available in order to
arrive in the global minimum [219].

Weber provides the essential ingredient for developing a thermodynamic formal-

ism since — except for a set of points of zero measure (the saddles and the ridges

between different basins) — all points in configuration space are associated with

a local minimum. The Stillinger and Weber definition also provides an algorithm

suited for numerical studies of the landscape properties.

the FEL has established significance in the field of proteins folding. In 1969

Levinthal first pointed out that the reversible refolding observed for some glob-

ular proteins should be viewed as a remarkable achievement, since the observed

folding times were entirely incompatible with a random search of all the minima

in the PEL (the so-called Levinthal’s paradox [226]). It is generally recognized

that the flaw in Levinthal’s original analysis is to regard the search through con-
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Figure 4.2: An example of a folding funnel. Schematic representation of the
changes in internal entropy and potential energy on folding, and the correspon-
dence between these thermodynamic parameters and the ensembles of configura-
tions to which they correspond. [222].

formational space as random, which corresponds to a flat potential or free energy

surface. However, the introduction of an energy bias toward the native state has

a profound effect on the kinetics, and can reduce the relaxation time scale to a

realistic value in simple models [227–229]. It is worth noticing that natural pro-

teins can fold to a well defined native state (which is the minimum energy level

[214]), whereas artificial proteins are not expected to do this [211, 230–234].

The presence of a well-defined FEL minimum for the native state is not in

itself sufficient for a protein to fold efficiently, since the minimum must also be ki-

netically accessible [211, 227, 235–238]. It has been proposed that the native state

of a natural protein may correspond to the terminus of a collection of convergent

kinetic pathways, and envisaged a “folding funnel” (fig. 4.2) where the free en-

ergy decreases systematically in the vicinity of the target structure [215]. Efficient

folding also requires the absence of local free energy minima that would act as

kinetic traps and prevent relaxation to the native state [227]. The funnel concept

has been developed in a number of further studies [214, 216, 217, 220, 239–246].



4.2. FREE-ENERGY LANDSCAPE OF A SINGLE MOLECULE 57

FEL and PEL play an important role also in other field [210, 247], such as

glasses and supercooled liquids [248–257], clusters [258], aging phenomena [208,

259], ions transport [260], metals [261], chemical reactions [262].

4.2 Free-energy landscape of a single molecule

In our studies on the polymer crystallization, we try to understand the behaviour

of a single molecule crystal from a dilute solution. In order to grasp a deep

view of this phase transition we decide to move toward the analysis of the FEL

[123, 124, 204, 205, 207, 263].

In order to characterize the reorganization of the chain, both the free energy

F and the potential energy U are sampled and their average over all the avail-

able configurations correlated to the order parameter I1 . In order to evaluate

the Landau free energy F (X) = −kBT lnZ(T,X) of a macroscopic state being

characterized by the order parameter X at temperature T leading to a parti-

tion function Z(T,X), one relates the latter to the probability P (X) to find the

observable with value X via [264]

P (T,X) = Z(T,X)/Z(T ) (4.1)

and Z(T ) is the partition function. Then, up to an additive constant c(T ) de-

pending on the temperature F (X) is given by [128, 204, 205]

F (X) = −kBT lnP (T,X) + c(T ) (4.2)

Since only the shape of F (X) is of interest here, the constant c(T ) will be ne-

glected henceforth.

In the present case the choice X = I1 is made in agreement with others

[123, 124]. In fact, the crystalline structures are rod-like with foldings having, ap-

proximately, equal length [130]. Consequently, the metastable states are well iden-

tified by the length of their stems m and then by I1, the latter being roughly pro-

portional to m2. Efficient Monte Carlo simulations may be also used to evaluate
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landscape ( FEL ) at T =
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µ of the ordered structures
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ima.

the free energy. However, MD techniques, which were already extensively used to

investigate the crystallization dynamics of the present system [129, 130, 265, 266],

proved to be accurate enough to the present purposes.

4.2.1 Free energy landscape when changing temperature

Fig. 4.3 shows the free-energy landscape ( FEL ) at T = 9, 10, 11 as a function

of the largest moment of inertia of the chain I1. At T = 11 a single minimum

is observed at I1 = I∗1 ∼ 4900. On decreasing the temperature and entering the

supercooled regime at T = 10 the minimum at I∗1 disappears and a series of

shallow minima is observed at higher I1 values ( I1 & 5500 ) . They correspond
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Figure 4.4: Snake-like displace-
ment of two stems ( bold ) sliding
on the crystal surface. The car-
toon below the wire-frame view
sketches the next move of the two
stems to get the optimal align-
ment with the ordered substrate
of the inner stems ( grey lines ).
The black dashed line is the new
position of the displaced portion
of the stems after the move [266].

to the formation of metastable crystal structures with different number of stems

µ ( see Sec. 4.2.3 ). The direct inspection of the dynamical behaviour of the

chain at T = 10 shows that a continuous interconversion between the metastable

structures occurs with no well-defined single final state. At T = 9 the FEL exhibits

a richer structure with several minima. A well-defined global minimum is apparent

corresponding to the final state with µ = 10 ( see Sec. 3.6 ). It is also seen that

lowering the temperature allows the appearance of new metastable ordered states

which, as at T = 10, may be labeled by the number of stems. The comparison

with the FEL of shorter chains at T = 9 [123, 124] shows that the number of

metastable states increases with the chain length. The presence of metastable and

long-lived crystalline forms is supported by a number of experimental facts, e.g.

the observation of the transient phases that convert to more stable forms during

the folding process [180] and the demonstration of stable folded structures for

long alkanes, N & 150, [11, 28, 188, 190].

4.2.2 Crystal structure

The structural changes of the crystalline structures are twofold:

• changes due to the increase or decrease of the number of stems [130](for

example, figure 3.12);
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• changes which leave the number of stems unaltered [130, 266](see figures

4.4 and 4.5).

The former are effectively characterized by the moment of inertia I1 and are

activated. The latter do not lead to either appreciable changes of I1 or the internal

energy.

Examples of such processes are provided by the reorganizations taking place

on the crystal surface, e.g. two stems are seen to slide on the crystal surface while

preserving their alignment with the ordered substrate (figure 4.4) . Another kind

of restructuring with no change of the number of stems is the position exchange

between aligned stems, e.g. the expulsion of a stem terminated by one chain-

end from the inside of the crystal (figure 4.5). Notice that the above kinds of

rearrangements leave the potential energy largely unaffected, i.e. they are entropic

processes, with negligible changes of the moments of inertia.

Figure 4.5: The expulsion of one stem terminated by a chain-end ( united-atoms
) by the inside of the crystal. The snapshots are taken at times (in reduced
units): tA = 26240, tB = 26260, tC = 26270, tD = 26280. The two cartoons below
the snapshots are schematic cross-sections of the ordered middle portion of the
crystal at tA and tD. The circles denote the stems. The light-colored circle is the
stem terminated by the chain-end [266].
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It is worthwhile to appreciate the role of the mobile fraction of monomers of

the crystalline final structure at T = 9. In thermodynamic equilibrium, fixed-

volume systems minimize the Helmholtz free-energy. Correspondingly, the state

point moves between several potential-energy minima ( the mechanical equilib-

rium states ) in a region of PEL determined by the temperature. When the tem-

perature decreases, the state point spends more time in the deeper, rarer minima

of PEL. If crystallization occurs, the state point becomes localized in the global

minimum of PEL. The global minimum is usually not degenerate and the shape

of the corresponding minimum of F stems from vibrational dynamics providing

suitable contributions to both the internal energy and the entropy. In the present

case the region of PEL where the state point localizes at T = 9 is highly degen-

erate due to the different surface configurations of the crystallized chain. Thus,

the configurational contributions to F are not negligible even in the crystalline

state.

The FEL ( fig. 4.3 ) shows that 10 < T
(eq)
m < 11 since the ordered states (

I1 & 5500 ) have higher ( lower ) F values at T = 11 ( T = 10 ) than the disordered

one ( I1 ∼ 5000 ). Noticeably, at T = 10 the crystal is not stable but it undergoes

frequent interconversions between different ordered structures as signaled by the

shallow minima of the FEL and visual inspection of the snapshots ( data not

shown ).

Both the single minimum of F corresponding to the disordered state at T = 11

and the small barrier heights at T = 10 suggest the negligible superheating of

the crystal.

4.2.3 The crystalline metastable states

Fig. 3.9 presents some representative snapshots showing that the chain, after the

quench at T = 9, undergoes large conformation changes in order to reach the

crystalline final state. The FEL structure at T = 9 , Fig. 4.3, elucidates the
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superimposed line is eq.4.4 with λ = 4.0 ± 0.1. In the table is presented Eq.4.5
with λ = 4

state evolution starting at some point characterized by a certain I1 value, going

through a number of transient ordered phases with well-defined number of stems,

and ending in the global minimum. n- alkanes are known to have intermediate

metastable forms on the path to the final crystalline state [180].

For the different metastable crystalline states at T = 9, evidenced by the

minima of FEL ( Fig. 4.3 ), Fig. 4.6 shows the number of intersections of

the chain N||(z) with the plane at x3 = z, perpendicular to the approximate

cylindrical symmetry x3 axis. The flatness ofN||(z) shows that the central sections

of the metastable structure are well ordered. It is also apparent that the monomer

distribution in the end sections does not depend in a marked way on the number

of stems µ = N||(0). To be more quantitative, we consider the crystalline fraction

φcry of a crystal with µ stems. φcry is estimated by the ratio
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φcry =

∫ z2
max

z1
max

N||(z)dz∫∞

−∞
N||(z)dz

(4.3)

where z1
max and z2

max are the points where N||(z) reaches the maximum values,

see Fig. 4.6. Obviously, the amount of crystalline order in a single-molecule crys-

tal may be defined in alternative ways, e.g. in terms of bunches of orientationally

ordered trans segments, ”trans domains” [125]. However, we found that the defini-

tion eq.4.3 is quite fruitful to our purposes. In fact, let us assume that an average

number of Kuhn segments λ is located in each of the µ− 1 loops connecting the

stems. Then, the crystalline fraction is given by

φcry = 1 − (µ− 1)
λ

Nk
. (4.4)

The inset of Fig. 4.6 shows the best-fit of φcry from eq.4.3 with eq.4.4 having

adjusted λ. It proves that the number of monomers forming the loops do not

change appreciably from one transient structure to the other. At the highest

number of stems ( shortest crystal longitudinal size ) eq.4.4 overestimates φcry

suggesting that the disorder of the end sections affects the ordered part more

effectively ( or, alternatively, that λ increases).

As further test of the negligible changes of λ with µ we note that the number

of Kuhn segments per stem m is expressed as m = (z2
max−z1

max)/ℓk. On the other

hand, if λ is nearly constant

m∗ =
Nk − λ (µ− 1)

µ
(4.5)

Table in Fig. 4.6 compares m with m∗ as taken from Eq.4.5 with λ = 4.

4.2.4 Energy contributions to FEL

Figure 4.8 plots the free-energy landscape ( FEL) at T = 9, the overall potential

energy and its torsional and LJ contributions as functions of the largest moment



64 CHAPTER 4. FREE ENERGY LANDSCAPE

12

10

8

6

4

2

0

 D
ih

ed
ra

l 
to

rs
io

n
al

 e
n

er
g

y
  

( 
k

 B
T

 )

-180 -120 -60 0 60 120 180

 Torsional angle ( degree )

g - g +t

∆ U

Figure 4.7: The dihedral torsional energy as function of the dihedral torsional
angle in units of kBT with T = 9 in reduced units. ∆U is the energy change in a
g± ↔ t transition [267].

of inertia of the chain I1. For a given I1 value the above quantities are the averages

over all the configurations with equal I1 assumed by the crystal during the time

evolution. Since bond angles and length exhibit negligible changes, the related

energies are not considered. The range of I1 values and the FEL statistics in

Fig.4.8 is much improved with respect to previous reports [130, 266], thus allowing

for a more detailed view of the metastable structures. Several minima of the free

energy, corresponding to well-defined metastable crystals with different number

of stems, are seen. The global minimum corresponds to the equilibrated lamella

with ten stems. Figure 4.8 shows that the free-energy exhibits minima close to

the potential energy ones.

First, we focus on the potential energy with contributions from both the tor-

sional and the LJ potentials. The decrease of the torsional energy by increasing

I1, i.e. by decreasing the number of stems, which is seen in Fig. 4.8 is due to

the conversion of g± torsional states into t states ( see fig.4.7 ) leading to longer
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stems. On the other hand, increasing I1 leads to more prolate crystals where the

attractive tail of the LJ potential becomes more important. This explains the in-

crease of the LJ energy by increasing I1 which is seen in Fig. 4.8. The different I1

dependencies of the torsional and LJ potential energies set the overall curvature

of the total potential energy. Fig. 4.8 also shows that the latter has the global

minimum when the crystal has seven stems. This differs from the FEL global

minimum being found for crystals with ten stems. The effect is due to entropic

effects shaping the gross features of the FEL. It was shown in chapter 5 that the

combinatorics of the stems and of the loops provides a convenient model.



Chapter 5

Nucleation and growth

This chapter is devoted to the study of the primary nucleation, and the imme-

diately following growth, of single crystals in dilute solution. Before starting we

report a brief review on the classical theory of nucleation and growth in macro-

molecular systems; after that we present the new ideas we introduced in order to

explain the equilibrium conformation of single molecule polymer crystals [129];

worth of noticing is that the considerations we proposed in that paper, were

subsequently reproposed in a number of papers [268, 269].

5.1 Classical nucleation and growth

As said in the previous chapters, the crystalline state of polymers is very different

from that of other materials because of the need to arrange in an ordered way

a large number of monomers linked to each other sequentially. This results in

a wide range of possible hierarchical morphologies where the basic unit is the

lamella, which is a few hundred Ångstrom thick [11, 28, 41, 48, 52, 270]. The

backbone of a single polymer chain, which is several thousand Ångstrom long, is

folded inside the lamella to form the socalled stems; these are perpendicular to

the basal surfaces of the lamella where the foldings are localized [28, 48, 52].

The polymer crystal is assumed to have transverse isotropy, its shape repre-

67
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Figure 5.1: Schematic representation of a homogeneous nucleus of a macro-
molecule: a) dimension and surface energies; b) illustration of a chain inside the
crystal [268].

sented by a square tablet or column of width W and thickness L as in Figure

5.1.

The total free energy of this crystal with respect to the disordered melt or

solution state is:

F = −W 2Lǫ+ 4WLσs + 2W 2σe (5.1)

Here ǫ is the bulk free energy of melting (or dissolution) per unit volume, σs is the

lateral surface free energy and σe is the basal surface free energy. See also fig. 5.1.

We can see that the total free energy is a combination of an always favourable

term, the bulk free energy, and an antagonistic term, the surface free energies. This

means, that in order be stable, the nucleus has to achieve a minimum dimension

which guarantees the dominant role of the bulk component. In particular, at the

beginning, the surface free energy is dominant, and the crystal unstable; if the

nucleus is not able to growth enough in order to overcame the free energy barrier,

it disappears. For the competition between the surface and bulk free energy, see

fig. 1.8, which deals with a spherical distribution of matter.

The maximum of the free energy can be localized by means of partial differ-

entiation of F with respect to L and W :
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Lc =
4σe

ǫ
; Wc =

4σs

ǫ
(5.2)

where Lc and Wc are the critical dimensions of the nucleus. For a sample of a

dimension V = W 2L the values which minimize the free energy are:

L∗ =

(
σe

σs

)2/3

V 1/3; W ∗ =

(
σs

σe

)1/3

V 1/3 (5.3)

The derivation is trivial: for example, to obtain L∗ is sufficient to substitute

W =
√

(V/L) in eq. 5.1; putting (∂F/∂L) = 0 in the same equation, L∗ follows.

Crystal volume V and equilibrium dimensions L∗ and W ∗ increase in tandem

by accretion of monomers from either the nucleating chain or from other chains.

The minimum-energy aspect ratio is independent of crystal size and is the same

for both the critical nucleus and a stable crystal of arbitrary volume:

L∗

W ∗
=

Lc

Wc
=
σe

σs
(5.4)

This equation can be recognized as an example of Wulff’s law [271, 272] for

equilibrium crystal shapes. It should be noted that the same surface energies are

used for critical nuclei and for mature crystals, a common simplifying assumption

that may not be correct in all cases.

Although the free energy of the supercritical nucleus decreases during growth,

it remains higher than that of the melt until the stability dimensions Lst and Wst

are achieved for which F = 0 in eq. 5.1:

Lst =
6σe

ǫ
; Wst =

6σs

ǫ
(5.5)

To obtains this rules is sufficient to substituting W or L in eq. 5.1 using eq. 5.4;

when F = 0 the result follows.

Summarizing: the crystal evolution is driven by the action of both bulk and

surface effects (eq. 5.1). In the first stage of his formation, the nucleus is charac-

terized by an increasing F > 0, until its dimension reached some critical values Lc

and Wc (eq. 5.2). If the nucleus is not able to reach this values, it dissolves. After
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overcoming the free-energy barrier, a further increasing in its volume (eq. 5.3),

means a decreasing in total free energy (again F > 0). The total free-energy is

positive until eq. 5.5 is fulfilled. Further increasing means F < 0, i.e. the nucleus

becomes stable and a new crystal starts to spread.

5.2 Analytic model of FEL global minimum

The equilibrium dynamic presented until now is obtained without any consid-

eration on the polymeric nature of the sample: the only important parameters

are the geometrical properties of the macromolecular crystal. In what follows we

are interested in desvealing the polymeric nature of the crystal. In particular

the attention is addressed to understand the behaviour of a single polymer chain

crystal, grown from a dilute solution. Comparison is made with our molecular dy-

namic simulations (see Chapters 2,3,4 for further details.) The model described

below appeared in ref. [129].

The experimental evidence suggests that long alkanes fold in integral recipro-

cals of the extended chain length. In particular, this implies that large portions of

the chain are mostly contributing to the straight stems, i.e. the size of the loops

connecting different stems is short [188]. In our simulations, this is apparent from

selected configurations (figure 3.11) as well as from the analysis of the longitu-

dinal monomer distribution (figure 3.15). The average length of the loops ℓloop

is relatively small and involves a short sequence of Kuhn segments, ℓloop/ℓk ∼ 4

[130, 265]. Based on these remarks, a very simple model which incorporates the

above feature and accounts for the existence of equilibrium folded structures has

been developed.

A crystallized chain of Nk Kuhn segments is pictured as formed by a nucleus

with µ stems, µ − 1 loops and the two cilia. When a segment is included in one

stem of the nucleus the energy gain is ǫ > 0 in units of kBT . The lateral surface

free-energy contribution per unit area is σ′ in units of kBT . If m denotes the
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average number of segments per stem, the overall free energy Fm,µ of the nucleus

is written as
Fm,µ

kBT
= −µmǫ+ σ

√
µm− lnWm,µ (5.6)

with σ = ασ′r2
0, α being a numerical factor. Wm,µ denotes the number of

distinct ways to arrange the Nk segments in µ stems, each of m segments, µ− 1

loops and two tails. To evaluate Wm,µ one assumes that each loop has only one

conformation. This roughly accounts for the both the expected stiffness of the

short loops and their mutual steric constraints. We factorize Wm,µ as

Wm,µ =

(
Nk − µm+ µ

µ

)
× pµ−1 (5.7)

The binomial coefficient enumerates the distinct ways to get a one-dimensional

arrangement of (Nk − µm) segments separated by µ walls. The second term is

a weighting factor accounting for the entropic limitations to bend the linear ar-

rangement and form a crystalline nucleus with µ − 1 loops. One expects that

conformations with a large number of loops are inhibited by jams occurring in

the compact caps of the nucleus (see figure 3.11). Owing to the roughness of the

present model p is left as an adjustable parameter. Equation 5.7 sets the entropic

contribution lnWm,µ to the free energy. Small variants, e.g. by neglecting the

two cilia, do not improve the model appreciably. Muthukumar proved that the

entropy role is crucial to enforce the minimum of Fm,µ and estimated Wm,µ by

resorting to a Gaussian model of the loops and to a field-theoretic approach [123].

Although the Gaussian model is expected to work nicely for long loops, it may

overestimate Wm,µ in the case of short loops. The present model cuts the en-

tropy due to the loop conformations, i.e. the so called entropy of disorientation,

and limits the entropy to the mixing of the µ stems of the crystalline nucleus

(with m segments each) along the polymer chain. The resulting free energy has

one adjustable parameter less than that of [123]. Representative plots of the

free-energy landscape (FEL) and the contour plot of the minimum are shown in

figures 5.2 and 5.3, respectively. Qualitatively similar plots were also presented
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Figure 5.2: The free energy landscape (FEL) of the model. m is the number of
Kuhn segments belonging to one of the µ stems. Nk = 125, ǫ = 0.6, σ = 0.97, p =
0.06 [129].

Figure 5.3: Contour plot of the FEL of figure 5.2. The minimum is located at
m∗ = 9.68, µ∗ = 9.94 [129].
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in [123]. The FEL is limited to the region µm < Nk where segments are available

to form both the loops and the two cilia. At µm . Nk a steep ridge is found,

due to the small entropy of conformations with very short loops/cilia. Figure 5.3

shows the contour plots of the FEL of figure 5.2. The minimum is located at

m∗ = 9.68, µ∗ = 9.94. This must be compared with µ = 10 from the MD re-

sults. If Lstem is the stem length, the average number of Kuhn segments per stem

is m = Lstem/ℓk. From figure 3.14 one estimates Lstem = 2z∗, where z∗ is the

positive non-trivial solution of the equation N‖(z) = 10, i.e. the intercept with

z 6= 0 between the distribution N‖(z) = 10 from the simulation and that from the

ideal case of ten fully stretched stems. One finds m = 10 with Lstem = 12 to be

compared with m∗ = 9.68 of the model. Finally, one notes that the coordinates

of the FEL minimum correspond to an average number of segments located in

each loop equal to (Nk − µ∗m+∗)/(µ∗ − 1) = 3.22. The value is consistent with

the basic assumption of the model, i.e. short loops, and compares well with the

value from the MD simulations, about 3-4 4.2.3.

Figure 5.4 is a parametric plot of the number of stems µ∗(ǫ, σ) and the seg-

ments per stem m∗(ǫ, σ) of the FEL minimum with p=0.06 for different ǫ and

sigma values. On increasing the surface tension σ, the minimum moves from very

prolate crystals (few and very long stems) to more spherical crystals (more and

shorter stems) to minimize the exposed surface by keeping the total volume con-

stant (Nk constant). The presence of a maximum number of stems for a given ǫ

must be considered with caution, in that it corresponds to a very small number

of segments per stem and a very large number of segments located in the loops,

therefore pushing the model to its limits.

The existence of a minimum of Fm,µ relies on the limitations of having confor-

mations with a large number of loops. This is understood by noting the relation

Fm,µ = Fmµ
(p = 0)−(µ−1) ln p(p < 1) which makes explicit the entropic penalty

for conformations with a large number of stems µ. In fact, if the entropy is removed

by setting p = 1, Fm,µ with the same parameters as figure 5.2 has no minimum
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Figure 5.4: Plot of the coordinates µ∗, m∗ of the FEL minimum with Nk =
125, p = 0.06 for different ǫ and σ values. For ǫ = 0.4, 0.6 and 0.8, σ is in the
interval 0.5 6 σ 6 0.95,0.6 6 σ 6 1.655 and 0.8 6 σ 6 2.4, respectively. m∗

always decrease on increasing σ [129].

(data not shown). At constant p, the minimum disappeared at high temperatures

(small ǫ and σ). As an example, for Nk = 125, p = 0.06 and σ/ǫ = 0.22, 2.2 and

3 the minimum disappears for ǫ < 0.062, 0.2953, and 0.8275, respectively. This

shows that increasing σ enforces higher energy gain ǫ to make the crystal nucleus

stable. Note the approximate scaling ǫ/σ2.



Chapter 6

Conclusions and further studies

6.1 Conclusions

Part I of this work presented numerical results from extensive MD simulations

of the crystallization process of a single PE chain with N = 500 monomers. The

chain, after suitable equilibration at high temperature is cooled at the final tem-

perature Tf by quenches involving or not intermediate annealing steps at Tann.

In addition, it is also isothermally annealed at Tf after initial preparation in the

fully-stretched “all-trans” configuration. At Tf = 11 the chain remains amorphous

for most time with occasional attempts to crystallize. For Tf < 11 the develop-

ment of the ordered structure proceeds along different routes involving either

the global reorganization of the chain or, alternatively, well-separated connected

nuclei. The latter process was previously observed only for much longer chains.

Differently from the early crystallization stages, no dependence on the thermal

history was observed at late stages. At Tf = 10 the chain does not reach a single

stationary state but continuously converts between different ordered configura-

tions. At Tf = 9 the folding process of the chain involves several intermediate

ordered metastable states in strong analogy with the experiments on n-alkanes

[180] which finally yields a well-defined long-lived lamella with ten stems of ap-
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proximately equal length, arranged into a regular, hexagonal pattern. We take

the evidence of metastable intermediate states as a microscopic manifestation of

the Ostwald step rule stating that in the course of transformation of an unsta-

ble ( or metastable ) state into a stable one the system does not go directly to

the most stable conformation but prefers to reach intermediate stages having the

closest free-energy to the initial state [273]. Both the metastable states and the

long-lived one are well evidenced as local and global minima of the free-energy

landscape ( FEL ), respectively.

The characterization of the microscopic organization of the lamella evidenced

that the two caps are rather flat, i.e. the loops connecting the stems are short, a

conclusions which may be also drawn from other experimental [188] and numerical

studies [203]. Interestingly, annealing the chain through the different metastable

states leaves the average number of Kuhn segments per loop λ nearly unchanged.

It is also seen that the chain ends, the so-called cilia, are localized on the sur-

face of the lamella, in agreement with the experiments [188], and that structural

fluctuations take place on the lamella surface, as noted by recent MonteCarlo

simulations [204]. This shows that the global minimum of FEL corresponds to a

set of microscopic states with the same crystalline core and different surface con-

figurations of the cilia and the two caps. The findings will be of help to improve

a recent analytic model of the global minimum of the FEL [129].

Finally, the study of the melting process evidenced that the degree of hys-

teresis is small, in agreement with other MonteCarlo studies. Furthermore, at

temperatures a little bit higher than the freezing one, independent attempts to

crystallize the chain have been observed.

A major issue in polymer crystallization is the dispute between kinetic and

equilibrium theories. The prevailing kinetic was viewed as successful because of

its ability to fit experimental data. Nowadays, new techniques, both experimen-

tal and simulative, start questioning this prevalence. Concerning the simulation

presented in this thesis, the simulations seem to support the equilibrium hypoth-
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esis, but we have to appreciate a fundamental difference: the simulations span a

range of time scales which is much shorter than the ones experimentally accessi-

ble. This means that statements that are valid when a crystal has already started

growing, do not necessarily apply for nucleation, where a crystal does not yet

exist. The LH theory, indeed, explains what happens during the growth process,

when the crystal has a surface which is large enough to be considered infinite in

comparison with the dimension of a single molecule. This situation (crystal much

more extended than a single molecule) never realises in our simulations. Thus,

our work must be considered as part of tentative initial efforts to study polymer

crystallization and we must admit that results of significance for understanding

polymer melt crystallization by MD do not exist. Our results might have some

significance for crystallization from solution where a few chains are involved and

where the crystallization process is relatively fast.

6.2 Further studies

From the work until here done, some questions arise which ask for an answer.

Follows a quick list of the main issues:

• all the data presented deal with one single polymer chain of molecular weight

corresponding to 500 monomers. This situation shows up that the chain is

able to achieve an equilibrium conformation of ten stems. Increasing in

the number of monomers, may generate a more complex crystallization

behaviour, and the equilibrium conformation can probably be replaced by

a kinetic one. In our knowledge, the longest chain employed until now for

a model like us, correspond to a macromolecules of 2000 monomers [122],

where an equilibrium conformation was found.

• Also an increasing of the number of chains can be intriguing [121, 274, 275].

In this case we can study the importance of entanglements among chains,
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the growing front and the organization of the multichain crystal.

• Another limit in our tractation concerning the use of one molecule: this case

is very interesting, but it is provided to the molecule all the time it needs to

find a comfortable disposition which corresponds to the minimum of the free

energy landscape. If molecules are very long and they start colliding with

each other after a short time, probably the situation can be more complex,

and the possibility to reach the minimum of the free energy potential could

decrease to zero.

• The melting temperature is exceedingly high and calls for refinements of the

force field (section 2.2). From ref. [123], pag 555 (answer to A.H. Windle),

can be inferred that using an all atom model is possible to compare directly

the results with the experimental findings.

• The theory developed in chapter 5 was devoted only to the determination

of the minimum of the FEL, i.e. the equilibrium final structure. The model

can be made more interesting including a finer description of the chain,

hopefully considering the contribution of more than one chain [268, 269].

• In sections 1.2 and 3.2 was introduced how the molecular structure affects

the stability of the crystal, which leads to changes in the melting temper-

ature. With the use of molecular simulation would be possible shaping the

potentials, chain lengths, and other properties of the model in order to test

the effect of all these parameters on the melting point. This has to be con-

sidered as a major issue for following studies. An interesting experimental

study on this problem can be found in refs. [276, 277], and in references in

the sections cited above.
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Chapter 7

Algorithms for stochastic

simulations

This chapter deals with the problem of the integration of the equations of mo-

tion. The chapter begins with a quick survey on the problem related with the

simulations of polymeric (and biological) materials, where the different strate-

gies employed to reproduce the correct dynamics of the system on a computer

are reported. From this beginning, we move in the specific field of molecular dy-

namics simulation. The first aspect is related to the integration of the equation

of motion in a deterministic way, which is a necessary introduction in order to

develop quasi-symplectic stochastic algorithms. The last part is devoted to the

description of the particular problem of integrating the Langevin equation. The

results here presented, appeared in ref. [278].

7.1 Computer simulations of polymers

The physics of macromolecules is a major research field with extremely impor-

tant applications to both the material science and the biology, In recent years,

computer simulations have developed into a powerful tool for studying the dy-

namic, structural, and topological features of macromolecular systems. A major
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challenge in these studies is the large spectrum of length and time scales charac-

terizing both the molecular structure and the motion.

From this respect, one is interested in algorithms which may make use of long

time steps in the integration of the equations of motion, in order to investigate

the slow dynamics, with limited or no loss of accuracy to sample the short time

dynamics in an accurate way. That issue will be discussed in what follow by

referring us to the case of polymers where a large number of monomers are linked

together by covalent bonds.

The polymer physics is dominated by interactions over several space/time

scales, particularly when the molecular weight (MW) of the constituent chains ex-

ceeds the characteristic value for the formation of entanglements [7–9, 11]. Hereto-

fore, molecular dynamics simulation studies of polymer systems have been limited

to relatively short chains, and short time spans, rarely exceeding a few decades

of nanoseconds. However, a robust sampling of the configuration space of truly

polymeric substances is a prerequisite for the reliable prediction of their physical

properties and the development of computer-aided materials design strategies.

The Monte Carlo (MC) method offers an excellent alternative to molecular

dynamics (MD) for the simulation of dense polymer systems. Through the de-

sign of clever moves, configurational sampling can be dramatically enhanced. MC

moves such as concerted rotation [279], configurational bias [280, 281], and in-

ternal configurational bias [282] have thus successfully addressed the problem of

equilibrating polymer systems of moderate chain lengths. However, even these

moves prove incapable of providing equilibration when applied to polymer melts

of molecular length exceeding about one hundred monomers.

A solution to this problem was given by the development and efficient im-

plementation of a chain-connectivity altering MC move, end-bridging (EB) [283–

285]. Using EB, atomistic systems consisting of a large number of long chains, up

to one thousand monomers, have been simulated in full atomistic detail [284, 285].

Similar efforts, employing chain-connectivity altering segmental rearrangements,
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include the cooperative motion algorithm (CMA) [286] used in lattice-based simu-

lations of complex polymer systems and an off-lattice MC study of the interphase

between crystals with freely rotating chains [287].

Despite its remarkable efficiency in equilibrating long chain polymer melts,

EB suffers from three shortcomings: (a) It cannot equilibrate monodisperse poly-

mer melts; a finite degree of polydispersity is necessary for the move to function.

While this is not a drawback in modeling industrial polymers, which are typically

polydisperse, the ability to equilibrate strictly monodisperse polymers is highly

desirable for comparing against theory or experiments on anionically synthesized

model systems. (b) It relies on the presence of chain ends. Thus, it does not of-

fer itself for dense phases of chains with nonlinear architectures containing long

strands between branch points such as H-shaped polymers, for cyclic molecules,

or for model polymer systems of infinite chain length. (c) Its performance drops

considerably as the stiffness of chains increases or in the presence of chain ori-

entation. In order to overcome these problems, new connectivity-altering moves,

involving two bridging trimers among four properly chosen monomers along one

or two chains in the system were developed [288, 289].

Many problems in complex soft matter systems are inherently multiscale in

nature, i.e., microscopic interactions are coupled strongly to meso- and macro-

scopic properties. Despite the increasing computational power and ongoing efforts

to enhance the efficiency of MD integration algorithms [290–294], all-atom MD

simulations are often incapable to cover the time and length scales needed in order

to reach relaxation in a typical molecular system, such as a polymer solution or

melt. In many cases it is also questionable whether a huge amount of detailed in-

formation is needed ( e.g. the chemical details affect the prefactors of the universal

power laws only ), and might not even obscure the relevant information.

One first way to tackle this is to reduce the number of degrees of freedom

by systematic coarse graining, which retains only those degrees of freedom that

are relevant for the particular property of interest. Since some specific chemical
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details are usually lost in the coarse-graining procedure, much effort has been

devoted recently to the development of multiscale modeling approaches, where

different parts of the system are modeled at different levels of detail to account for

the local resolution requirement [295–300]. The dynamics of a polymeric liquids

are typically described in terms of the Rouse and reptation models [7–9, 11].

For short chains the topological constraints do not play a dominant role. For

a given chain, the presence of the other chains is accounted for by a stochas-

tic background. The dynamics of the chain is described by a Langevin equation

augmented by the constraints due to the chain connectivity ( Rouse model )

[301, 302]. That model describes the long-time behaviour very well and belong

to the class of models where the stochastic behaviour pictures the coupling with

a thermal bath ( alternatively, one may modify the equations of motion by cou-

pling the system to an additional degree of freedom [303–306] ). In the Langevin

dynamics formalism, the degrees of freedom of the bath are eliminated by using

the Mori-Zwanzig projection technique [307, 308]. The result is a set of stochas-

tic differential equations describing the dynamic state of the target system [309].

Langevin dynamics has been also used to accelerate the exploration of the high-

dimensional configuration space of macromolecules [310].

Within an approach based on stochastic differential equations, symplectic al-

gorithms are noteworthy. Symplectic integrators are numerical integration schemes

for Hamiltonian systems, which conserve the symplectic two-form dp∧dq exactly,

so that (q(0), p(0)) → (q(τ), p(τ)) is a canonical transformation. For both explicit

and implicit integrators it was shown that the discrete mapping obtained de-

scribes the exact time evolution of a slightly perturbed Hamiltonian system and

thus possesses the perturbed Hamiltonian as a conserved quantity. That feature

is of interest in common integration schemes which conserve not the complete

Hamiltonian, but some other quantity which slightly differs from it [311–315].

Symplectic algorithms guarantee that, in spite of the local truncation error, the

total energy (which should be conserved exactly in the original flow) exhibits
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limited errors growing in time, the so called secular errors. If the integrator is

not symplectic, secular errors of the total energy are usually observed. Dedicated

symplectic algorithms were derived for studying the monodimensional motion of

a single brownian particle [311, 316]. In that case the equation of motion is:

v̇ = F (x) − γv + ξ(t) , (7.1)

where the mass of the particle is unitary, x is the position, v = ẋ the velocity,

F (x) the force, γ is the damping factor and ξ(t) is a random Gaussian noise, with

zero average and standard deviation

〈ξ(t)ξ(s)〉 = 2γTδ(t− s) (7.2)

where T is the temperature of the system. It will be proved in chapter 8 that

the above dedicated algorithms are also well-suited for studies of multi-particle

systems in the usual 3D space. To this aim, the dynamics of a single polymer

chain in dilute solution will be considered [7, 11, 28]. Trajectories were generated

by the above symplectic algorithms and compared with some popular alternatives

.

7.2 Symplectic integrators

First of all we start describing the physical problem we want to solve: having

defined the initial positions and velocities of the system, we want to compute

the time evolutions of the system. This problem is very common in physics and

various analytical formulations are available.

For example we can consider the Liouville operator L for a system with f

degrees of freedom:

iL = {Γ, ...} =

f∑

j=1

[
ẋj

∂

∂xj

+ Fj
∂

pj

]
(7.3)

where Γ = {xj , pj} are the positions and conjugate momenta of the system, Fj

is the force on the j degree of freedom and {..., ...} is the Poisson bracket of
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the system. L is a linear Hermitian operator on the space of square integrable

functions of Γ. The state of the system at time t is given by

Γ(t) = U(t)Γ(0) (7.4)

where the classical exact propagator is defined as:

U(t) = exp(iLt) (7.5)

Everything said until now in this section is well known by every physician, so

is not necessary to enter into deep details, but underline some aspects which will

be interesting in what follows:

1. U(t) is time reversible

2. in the microcanonical NV E ensemble the energy < H > is conserved

3. U(t) is symplectic (see below).

7.2.1 Symplecticity

A transformation in phase space from positions x and momenta p

x̄ = α(x, p), p̄ = β(x, p) (7.6)

is said to be symplectic [317–320] if its Jacobian matrix (of partial derivatives)

satisfies 


∂α
∂x

∂α
∂p

∂β
∂x

∂β
∂p




T 

 0 I

−I 0








∂α
∂x

∂α
∂p

∂β
∂x

∂β
∂p



 =



 0 I

−I 0



 (7.7)

where I is the identity matrix. If this is true, then the trasformation (x, p) 7→
(α, β) preserves symplectic structure as follow [313, 320–322]:

dα ∧ dβ = dx ∧ dp (7.8)

It is straightforward to show that the composition of symplectic transformation

is symplectic.
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Now it is appropriate to consider first the question of what kind of accuracy

is expected from a simulation. Trajectories of molecular dynamics (MD) simu-

lations are chaotic. That is, very small perturbations to initial conditions grow

exponentially in time until they completely overwhelm the trajectory itself [126].

Hence, it is inappropriate to expect that accurate trajectories be computed for

more than a short time interval. Rather, it is expected only that the trajectories

have the correct statistical properties, which is sensible if, for example, the initial

velocities are randomly generated from a Maxwell distribution.

The use of a numerical integrator to approximate the exact propagator of

a system of ordinary differential equations (ODEs) yields a numerical solution

which can be interpreted as the exact solution of a slightly different system of

ODEs (backward error interpretation) [324–326]. If the given system is a Hamil-

tonian system (as it is for the constant-energy NVE ensemble in MD), then the

slightly different system is Hamiltonian if and only if the integrator is symplectic

[320]. In particular, this implies that any given energy surface in phase space is

changed only slightly by the use of symplectic numerical integration, and it sug-

gests that statistical properties of long time dynamics are retained. On the other

hand violations of this property such as that produced by velocity rescaling lead

to skewed energy distributions [323].

The exact propagator for a Hamiltonian system for any given time increment

is symplectic. As a consequence it possesses the Liouville property of preserving

volume in phase space. The most tangible benefit of symplecticity is stability,

which follows from the near conservation of energy [318].

As said in ref. [327] “ an algorithm which transforms properly with respect

to a class of transformations is more basic than one that does not. In a sense the

invariant algorithm attacks the problem and not the particular representation

used.”
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7.2.2 Time reversibility

Reversibility is another important property that the numerical integrator should

preserve. Any method which is based on the splitting of the Hamiltonian, is

symplectic. This does not yet, however, guarantee that the method is also time

reversible, which may also be considered as a strong requirement for the inte-

grator. This property is guaranteed by symmetric methods, which also provide a

better numerical stability [328].

It has been stated [328] that any lack of perfection of such reversal should

be due to rounding-off errors only, not the program. Many symplectic integrators

are reversible. Additional evidence favoring the use of symplectic integrators is an

observation [329] concerning hybrid Monte Carlo methods: to get the property

of detailed balance needed for valid sampling, it is enough to use a numerical

integrator which is volume preserving and reversible. As was just mentioned,

symplectic integrators preserve volume in phase space and many are reversible.

7.2.3 Operator splitting methods

Knowing eq. 7.5 we can try to develop a symplectic integration scheme.

First, let us consider the following problem [313, 330]. Let A and B be non-

commutative operators and τ be a small real number. For a given n integer (

later to be identified with the order of the integrator ), find a set of real numbers

(c1, c2, ..., ck) and (d1, d2, ..., dk) such as

exp[τ(A +B)] =

k∏

i=1

exp(ciτA) exp(diτB) + o(τn+1) (7.9)

As an example, for n = 2 and k = 2, one finds:

exp[τ(A +B)] = exp(
1

2
τA) exp(τB) exp(

1

2
τA) + o(τ 3) (7.10)

The above general problem is directly related to the symplectic integrator of a

Hamiltonian H(p, q) = T (p) + V (q) [313].



7.2. SYMPLECTIC INTEGRATORS 89

In a symplectic algorithm one key step is the separation of the Liouvillian in

two terms L1 and L2 such as L = L1 + L2. For second-order integrators ( n = 2,

k = 2 ) the total propagator allows to be decomposed as [313, 330–333]:

exp [i(L1 + L2)t] = {exp [iL1(h/2)] exp [iL2(h)] exp [iL1(h/2)]}P (7.11)

where h = t/P . From this one defines the discrete time propagator as:

G(h) = U1

(
h

2

)
U2 (h)U1

(
h

2

)
= exp [iL1(h/2)] exp [iL2(h)] exp [iL1(h/2)]

(7.12)

Notice that the propagatorG(h) is time reversible and symplectic. As an example,

the Liouvillian, Eq.7.3, may be separated as [335]:

iL1 =

f∑

j=1

ẋj
∂

∂xj

; iL2 =

f∑

j=1

Fj
∂

∂pj

(7.13)

The above choice leads to the Velocity Verlet algorithm ( VV ) which in one

dimension takes the form [336] (see also section 2.4):

x(t+ h) = x(t) + hv(t) +
1

2
h2v̇(t)

v(t+ h) = v(t) +
1

2
h [v̇(t) + v̇(t+ h)] (7.14)

where h is the integration time step and v̇ is given by the deterministic equation

of motion. If iL1 and iL2 are exchanged, the position Verlet algorithm is obtained

[334]. Both algorithms are correct to second order.

7.2.4 Accuracy

Now we move to analyse another, more subtle problem: the accuracy. In order

to grasp the main ideas we have to understand the process followed in order to

write down an integration scheme. For our purpose we consider the generic form

of a time-reversible symplectic algorithm with n = 2 and k = 3 [335]:

ei(L1+L2)h = eiL1χheiL2h/2eiL1(1−2χ)heiL2h/2eiL1χh + Ch3 +O(h4) (7.15)
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following from eq. 7.9 at c1 = c3 = χ, c2 = 1 − 2χ, d1 = d2 = 1/2 ad b3 = 0.

Again iL1 and iL2 can be exchanged. Formula 7.15 represents a whole family of

symplectic time-reversible integrators of the second order in which a particular

member can be extracted by choosing a value for the free parameter χ. The case

χ = 0 reduces to the VV algorithm. In the case χ 6= 0, the main difference from

VV is the requirements of two force evaluations instead of one. For this reason,

we can come to an incorrect conclusion that such a propagation has no advantage

over the Verlet algorithms.

In order to prove that the above conclusion is indeed incorrect, let us analyze

in more detail the influence of truncation errors Ch3 on the result. Expanding

both the sides of Eq. 7.15 into Taylor’s series with respect to h, one finds

C = α(χ)[A, [B,A]] + β(χ)[B, [B,A]] (7.16)

where

α(χ) =
1 − 6χ+ 6χ2

12
, β(χ) =

1 − 6χ

24
(7.17)

The norm of C with respect to the third-order commutators [A, [B,A]] and

[B, [B,A]] is

γ(χ) =
√
α2(χ) + β2(χ) (7.18)

Then the norm of local uncertainties Cρh3 appearing in phase trajectory ρ during

a single-step propagation given by Eq. 7.15 can be expressed in terms of γ and

h as g = γh. During a whole integration over a fixed time interval t, the total

number P of such single steps is proportional to h−1. As a result, the local third-

order uncertainties will accumulate step by step leading at t ≫ h to the second

order global errors ε = gh−1, i.e.,

ε(χ, h) = γ(χ)h2 (7.19)

Now, we are able to make comparisons.

First of all we can suppose that minimizing the global error is the main purpose

of this tractation. The minimum of ε can be found [335] and this algorithm is 11
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times more accurate than VV (case ε(χ = 0, h)). Remembering that the extended

propagation requires two force evaluation per time step h, it should be performed

with double step size 2h with respect to that of the Verlet algorithms, in order to

provide the same number of total force recalculations during the integration over

the same time interval. In this case the accuracy is 3 times better that VV. This

means that algorithms with more than one force evaluation (and so slower) could

be preferred because they can obtain longer time step and also an increasing in

accuracy.

A second point is that position and velocities can be computed with a different

accuracy [335].

For instance, some MD applications are aimed exclusively at the investigation

of structural properties of the system. Then the accuracy of determining parti-

cle positions will play a more important role than that of velocities. In such a

situation, it is quite natural to increase the precision in evaluation of the posi-

tions. In this way we lose accuracy on velocities (in fact, it is not possible to have

simultaneously α(χ) = β(χ) = 0).

7.2.5 Summarizing

Before leaving the presentation of symplectic integrators, we summarize the main

points, which will be important in what follows:

• Algorithms which are developed in order to preserve some symmetries of

the system are preferable because of less “deformation” of the exact phase

space. See section 7.2.1.

• Time reversibility is not usually guarantee: it has to be explicitly requested

during the algorithm developed. See section 7.2.2.

• Algorithm with less force evaluation are faster, but algorithm with more

force evaluation can achieve longer time steps, with even best accuracy. See
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section 7.2.4.

• The algorithms can be fine tuned imposing additional requests in order to

achieve a better computation of the important variables of the problem to

be solved. See section 7.2.4.

With this considerations we can leave the field of deterministic algorithms

and move to the field of stochastic integration schemes. We will concentrate our

attention on Langevin-type equations.

7.3 Stochastic methods

When we talk about stochastic processes, in general we describe the process by

means of its statistical properties. This lead straightly to the heart of the prob-

lem: stochastic algorithm has to reproduce statistical properties (i.e. distribution)

correctly. Instead, in deterministic algorithms, the attention is usually pointed at

their ability to conserve some constant of the motion, such as energy or moments.

In particular, we remember that the Langevin equation (eq.7.1) is equivalent

to a Fokker-Plank equation for the phase space density function [337, 338], which

has the canonical ensemble distribution as a stationary solution:

P (x, v) = N exp(−(v2/2 + V (x))/T ) (7.20)

where N is the normalization constant, v is the velocity, x the position, T the

temperature, and V the potential.

Follows a brief introduction on the ability of the algorithms to reproduce the

correct distribution.

7.3.1 Reproducing equilibrium distribution

Obviously an algorithm reproduce the correct distribution eq 7.20 only with a

partial accuracy.
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Considering a general integration pattern [311, 312]:

yi(t+ h) = yi(t) +Gi(yi, ξ, h) (7.21)

where yi is the i-th degree of freedom andGi is generally different for every degrees

of freedom. Then the probability distribution of yi satisfies the Kramers-Moyal

expansion [339]

P (yi, t+ h) − P (yi, t) =

∞∑

n=1

∑

yi

∂

∂yi
. . .

∂

∂yn
K1...nP (yi, t) (7.22)

with

K1...n = (−1)n 1

n!
〈G1 . . . Gn〉ξ (7.23)

where < · · · >ξ means averaging over the noise realizations.

When the system reaches the equilibrium state, clearly

P (yi, t+ h) − P (yi, t) = 0 (7.24)

and the system achieves an equilibrium distribution, that differ from eq. 7.20

[311, 312]:

P (x, v)sim = P (x, v) × exp

(
∞∑

n=1

hnSn(x, v)

T

)
(7.25)

where P (x, v) is the canonical ensemble distribution. The first nonzero Sn yields

the corrections to the true equilibrium distribution generated by the numerical

scheme.

Putting eqs. 7.24 and 7.25 in 7.22 the result is:

∞∑

n=1

∑

yi

∂

∂yi
. . .

∂

∂yn
K1...nP (x, v)sim = 0 (7.26)

This equation is, substantially, a differential equation for the Sn. We come back

to it after a rapid review of commonly used algorithms.
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7.3.2 Requests for integration schemes

A lot of different routes can be followed to write down numerical integration

schemes. In particular one has to bear in mind the particular problem he wants

to solve. A simple observation is that eq. 7.1, when γ → 0, becomes symplectic.

This means that for small values of γ it will be reasonable working with algorithm

which in the case γ = 0 works fine, for example symplectic algorithms [311,

340](see section 7.2). An example of such a problem follows.

A straightforward method of conducting stochastic simulations has been de-

veloped by Ermak [341, 342]:

x(t+ h) = x(t) + c1hv(t) + c2h
2F (x(t)) + ξ1

v(t+ h) = c0v(t) + c1hF (x(t)) + ξ2 (7.27)

where

c0 = eγh c1 =
1 − c0
γh

c2 =
1 − c1
γh

(7.28)

and the two stochastic variables ξ1 and ξ2 are two random gaussian variables with

zero average and moments

〈
ξ2
1

〉
=

Th

γ

(
2 − 3 − 4e−γh + e−2γh

γh

)

〈
ξ2
2

〉
= T

(
1 − e−2γh

)
(7.29)

〈ξ1ξ2〉 =
T

γ

(
1 − e−γh

)2

Ermak’s algorithm is an attempt to treat properly both the systematic dynamic

and stochastic elements of the Langevin equation. The problems arise when γ →
0: in this limit the eqs. 7.27 become a simple Taylor series predictor algorithm,

which is not a particularly accurate method of conducting simulations [126]. In

fact, for the case when V (x) = ω2x2/2, the numerical equilibrium distribution at

lowest order in h is [311]

P (x, v) = N exp[−(v2/2 + ω2x2/2)/T̂ ] (7.30)
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where

T̂ =
T

1 + ω2h
2γ

This example shows that the numerical equilibrium distribution is similar to the

correct one, but with a renormalization of the temperature. If γ → 0, then T̂ → 0;

thus, for small values of γ the algorithm stops working properly.

In order to overcame these problems, what is needed is a stochastic general-

ization of the velocity Verlet algorithm [126](from now called Li):

x(t+ h) = x(t) + c1hv(t) + c2h
2F (x(t)) + ξ1

v(t+ h) = c0v(t) + (c1 − c2)hF (x(t)) + c2hF (x(t+ h)) + ξ2 (7.31)

where the coefficients and the random variables are the same as in eqs. 7.27. This

algorithm reproduces the correct equilibrium distribution at O(h), but there are

still corrections O(h2) in the exponent [311].

7.3.3 Quasi symplectic stochastic integration

In this section we want to test a series of new algorithms, which can be helpful in

the integration of the Langevin equation. First of all we start with a symplectic,

deterministic algorithm:

x̄ = x(t) +
h

2
v(t)

v(t+ h) = v(t) + hF (x̄) (7.32)

x(t+ h) = x̄+
h

2
v(t+ h)

This algorithm is known as leap-frog or position Verlet (see section 7.2.3 for

its derivation). In order to reintroduce both the dissipation and the noise, it is

possible to write the previous scheme in the generic form [311]:

x̃ = x(t) +
h

2
v(t)

v(t+ h) = c2 [c1v(t) + hF (x̃) + d1ξ]

x(t+ h) = x̃+
h

2
v(t+ h) (7.33)
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where ξ is a random Gaussian variable with unitary standard deviation and zero

average. Putting this scheme into eq.7.26 and imposing that the term S1 vanishes,

we can determine the unknown coefficient c1 and c2 [311]:

c1 = 1 − γh

2
c2 =

1

1 + γh/2
d1 =

√
2Tγh

This algorithm is able to reproduce the probability distribution of position up to

an order O(h) (which has not to be confused with the order of the integrator),

and we will refer to it as SLO, from Symplectic Low Order.

Looking at the structure of the previous algorithm, it is possible to derive

an algorithm of higher order. The idea is that if one could increase the number

of unknown quantities, one might be able to make the terms O(h2) vanish. To

obtain this, two steps of the forms eq. 7.33 with time step h/2 are combined [311]:

x1 = x(t) +
h

4
v(t)

v1 = c2

[
c1v(t) +

h

2
F (x1) +

√
γTh (a1ξ1 + a2ξ2)

]

x2 = x1 +
h

2
v1 (7.34)

v(t+ h) = c2

[
c1v1 +

h

2
F (x2) +

√
γTh (b1ξ1 + b2ξ2)

]

x(t+ h) = x2 +
h

4
v(t+ h)

with:

c1 = 1 − γh

4

c2 =
1

1 + γh/4

a1 = −1.0691860043307065...

a2 = −0.1533230407019893...

b1 = 0.3044913128854065...

b2 = −1.0363164126095790...

here ξ1 and ξ2 are two random Gaussian variables with unit standard deviation

and zero average. This algorithm will be referred as SHO, Symplectic High Order.
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Equation 7.33 can be used to obtain quasi-symplectic algorithms of arbitrar-

ily high order in the frictionless deterministic limit which reproduce the correct

equilibrium distribution of to O(h) order in the exponent (i.e. the same order of

SLO scheme above). Given a generic deterministic symplectic scheme of order N

p(i) = p(i− 1) + hbiF (q(i− 1))

q(i) = q(i− 1) + haip(i) (7.35)

there is a corresponding quasi-symplectic algorithm which reads(one dimensional

case) [312]

p(i) = c2,i [c1,ip(i− 1) + bi(hF (q(i− 1)) + ξ)]

q(i) = q(i− 1) + haip(i) (7.36)

where i = 1, N and

c1,i = 1 − h

2
γbi c2,i =

1

1 + γhbi/2
(7.37)

and where ξ is a random gaussian variable with average zero and standard devi-

ation 2Tγh. It is important to stress that the variable ξ is the same for each of

the i steps within the integration step h.

7.3.4 Summarizing

In this section we underline the main issues treated in the above analysis of

stochastic algorithms:

• Stochastic algorithm can reproduce the exact equilibrium distribution only

partially (see section 7.3.1); with a suitable choice of the parameters is

possible, in some cases, to obtain more accurate schemes, which are usually

more complex than low order schemes (see section 7.3.3).

• Working with low values of γ, algorithms which are symplectic in the limit

γ → 0 are preferable (see section 7.3.2).
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• In section 7.3.3, eq. 7.36 make possible obtain quasi-symplectic algorithm

from the research on symplectic, deterministic schemes.



Chapter 8

Benchmark of the new algorithms

In the previous chapter were presented the main ideas behind the integration

schemes for both deterministic and stochastic dynamics; for some of these algo-

rithms a detailed derivation has been proposed, and comments on their properties

has also been done. Now we are interested to know their performance in the inte-

gration of the Langevin equation for the system presented in chapter 3, in order

to check if any improvement is possible over the VV scheme.

8.1 New algorithms

The algorithm we want to test are the SLO (eq. 7.33) and SHO (eq. 7.34) schemes.

In addition, by means of eq. 7.36 presented in chapter 7, it is possible to write

the stochastic scheme for a fourth-order Hamiltonian Runge-Kutta (from now,

HRK4) [312, 343]:

vi = c
(2)
i

[
c
(1)
i vi−1 + bi(F (xi−1)) + d1ξ

]

xi = xi−1 + haivi

99
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where 1 ≤ i ≤ 4 and:

x0 = x(t) , v0 = v(t)

x4 = x(t+ h) , v4 = v(t+ h)

a1 = 0.515352837431123 , b1 = 0.134496199277431

a2 = −0.085782019412974 , b2 = −0.224819803079421

a3 = 0.441583023616467 , b3 = 0.756320000515668

a4 = 0.128846158365384 , b4 = 0.334003603286321

c
(1)
i = 1 − γh

2
bi

c
(2)
i =

1

1 + γh
2
bi

8.2 Benchmark algorithms

The performance of the above presented algorithms are compared with other

widely used algorithm. These are the VV (eq. 2.4 and eq. 7.14) and the Li (eq.

7.31) algorithms. Another very common algorithm is the BBK scheme developed

by Brünger, Brooks, Karplus [344]:

ṽ = v(t) +
h

2
F (x(t))

x(t+ h) = x(t) +
[1 − exp(−γh)]

γ
ṽ +

√
2T/γζ2

v(t+ h) = exp(−γh)ṽ +
h

2
F (x(t+ h)) +

√
2Tγζ1 (8.1)

The stochastic variables ζ1, ζ2 are defined as:

ζ1 =
√
τ2ξ1

ζ2 =
τ1 − τ2√

τ2
ξ1 +

√

h− τ 2
1

τ2
ξ2
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where ξ1 and ξ2 are two uncorrelated gaussian variables with zero average and

unit standard deviation and

τ1 =
1

γ

[
1 − e−γh

]
τ2 =

1

2γ

[
1 − e−2γh

]

8.3 Model and details of simulations

The system to be used to test the different algorithms presented is the model

already presented in chapter 2. It describe a single polymer chain with M = 20

monomers in solution. It was studied in detail by the present [129, 130, 265] and

other authors [121, 122, 345]. The difference from the model presented in chapter

2 is that now the Lennard-Jones cutoff is located at rcut = 21/6σ (that is the

Lennard-Jones minimum), in order to have an increase in computational speed.

What is worth noticing now is that the motion is described by the Langevin

equation

r̈i = −∇i U − γṙi − ξi (8.2)

where ri denotes the position vector of the i-th bead, ∇i U is the sum the internal

forces acting on it, −γṙi is the frictional force and ξi is a gaussian noise with zero

average and delta-like correlation:

〈ξi(t) · ξj(t
′)〉 = 6γkBTδijδ(t− t′) (8.3)

It is understood that the different cartesian component are mutually independent

for i = j. All the simulations have been performed according to the following

protocol. The system was initially equilibrated at the temperature T = 9. Then,

a single configuration was singled out and used as seed for all the production runs

with the different algorithms.

About the choice of the model, a point warrant emphasis. This model permits

to check the performance of the algorithm on a system composed of different

potentials mutually interacting. With respect to an harmonic solvable model it
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presents the advantage that anharmonic features can also be addressed. Another

aspect, more technical, is related to the equipartition of the energy, which is

reached very slowly in the harmonic approximation. In this situation a well equi-

librated configuration can alleviate that drawback [309].

8.4 Results and discussion

Below, we discuss our results splitting them into two parts pointing out the global

and detailed aspects of the algorithms.

8.4.1 Global aspects

Stability and numerical efficiency

To compare the different algorithms, the integration time step, h, was changed

to identify the largest value hmax above which each algorithm is unstable. The

algorithm is defined as unstable if it crashes before 104 iterations . Usually this

happens when the algorithm is unable to integrate in a correct way the faster

degrees of motion (i.e. the bond potential in the present case ); in that case

a fast increase in global energy ( driven by the increase in the bond energy)

is observed which leads the simulations to crash. From this respect, different

behaviors were observed. SVV, SLO, BBK, Li become unstable for hmax
∼= 3.4 ·

10−3 whereas SHO ( hSHO
max

∼= 6.6·10−3) and HRK4 ( hHRK4
max

∼= 4.4·10−3) are stable

for longer time steps. The main instability source stems from the fast oscillations

triggered by the potential setting the bond length, Eq. 2.1. However, differently

from the other algorithms where only one force evaluation per integration step is

needed, SHO and HRK4 require two and four force evaluations per integration

step, respectively, i.e. they are computationally slower. It must be also noted

that different algorithms involve the evaluation of different numbers of random

variables. Even if the force evaluation is one crucial part of each integration step,
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Figure 8.1: The average
temperature < T > and
the first and fourth mo-
ments of the probability
distribution of the mod-
ulus of the velocity <
v > and < v4 >, respec-
tively. The superimposed
dashed lines are the ex-
pected theoretical values.
The absence of error bars
from the present figure
and the next ones implies
that they are smaller
than the symbol size.

the evaluation of random variables by using reliable routines [343, 347] may affect

the performance of the integration routines for small systems [311].

As outlined in Sec. 7, the number of stochastic variables is different for each

algorithm: SHO, BBK and Li require two random variables, whereas SVV, SLO,

HRK4 involve only one random variable. As it will be evident in section 8.4.2,

no systematic differences are evidenced at short h values. Increasing the h value

leads to instabilities, which are related with the integration scheme of the different

algorithms.

Stabilization of the deterministic part

In the low friction regime, of interest here, the effective integration carried out

by both the stochastic and the deterministic parts of the algorithm is crucial.

Augmenting symplectic algorithms by adding stochastic and dissipative terms
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seem to be a viable way to achieve this purpose [311, 312]. Here, we want to clarify

the improvement in the stabilization of the algorithms due to their stochastic part.

It is possible to classify the algorithms in two groups: Li, BBK, stochastic

VV, come from the VV splitting eq. 7.13; whereas SLO, SHO are a stochastic

derivation of the PV splitting which exchanges the definitions of the liouvillians L1

and L2 with respect to the VV one; HRK4, instead, is a symplectic derivation of

the standard Runge-Kutta schemes [348, 349]. It is known that the deterministic

VV splitting is better at small time steps, but, on increasing the time step, it

becomes unstable more quickly than the deterministic PV splitting [334]. For

this reason it is usually thought that PV factorization is better than VV one for

developing algorithms in order to reach longer time steps [350, 351].

Another approach to stabilize integration schemes with long time steps was

pointed out by several authors who suggested the use of a Langevin coupling as a

device to dump numerical resonances associated with symplectic algorithms [350–

355]. In order to illustrate the Langevin stabilization let us compare the SVV and

SLO algorithms both employing one single stochastic variable. The comparison

is made, as usual, by evaluating the different kinetic and potential energy terms,

see figs. 8.1 and 8.2 to be discussed in greater detail in Sec. 8.4.2. It is seen that

the SVV algorithm is less stable as far as the potential energy is concerned, but

the kinetic energy is more stable. On the other hand, SLO, derived by a PV

splitting, performs as SVV to evaluate the potential energy, but it is worse as far

as the kinetic energy is concerned. The total energy, as evaluated by SVV, is more

stable. These findings suggest that the conclusions drawn for the deterministic

algorithms ( see above ) cannot be extended to the stochastic counterparts in a

straightforward way.
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Figure 8.2: Dependence of the different energy terms on the integration step h.
The quantities which are plotted are the average values per monomer of : the
overall energy < H >, the overall potential energy < U > and its different
contributions, < Ubond > ( Eq. 2.1) , < Uangle > ( Eq. 2.2) and < Utorsion > ( Eq.
2.3), as well the Lennard-Jones average energy < ULJ > ( Eq. 2.4 ). The total
energy fluctuations and the energy drift ∂ < H > /∂t were also plotted.
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Figure 8.3: The first two moments of the bond length distribution.

8.4.2 Detailed aspects

Energy conservation

The energy conservation is an important goal in MD simulations and the symplec-

tic algorithms are designed to achieve this target. Fig. 8.2 plots the average values

of the overall energy < H >, the overall potential energy < U > and its different

contributions, < Ubond > ( Eq. 2.1), < Uangle > ( Eq. 2.2) and < Utorsion > ( Eq.

2.2), as well the Lennard-Jones average energy < ULJ > ( Eq. 2.4 ). The total

energy fluctuations and the energy drift ∂ < H > /∂t were also plotted. Monitor-

ing the different components of the total energy is useful in order to search the

sources of instabilities since each potential term has a characteristic time scale.

From this respect, Fig. 8.2 shows that the energy contributions involving faster

degrees of freedom, i.e. the bond potential, are more critical.

Fig. 8.2 shows that BBK is the most accurate in its stability region ( h <

3.4 ·10−3 ). SHO and Li have comparable performances. As we noted above, SHO

is the most stable algorithm together with HRK4. However, the latter, a fourth-
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order algorithm, does not perform better than the lower-order algorithms, such

as BBK or SHO. It is also seen that, even if SLO and Li gets the probability

distribution of the position with the same accuracy, the latter performs better.

The limited accuracy of SVV is expected since it was developed for accurate

evaluation of the velocity, see Sec. 8.4.2. Table 9.1 summarizes the above remarks.
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Figure 8.4: The first four moments of the bond angle distribution.

Structural properties

All the algorithms under study, apart from SVV, were designed to give accurate

evaluations of the position distributions. To test the related performances, we

computed the first two moments of the distribution of the bond length (Fig. 8.3),

and the first four moments of the distributions of both the bond angle (Fig. 8.4)

and the torsional angle (Fig. 8.5). Higher moments of the bond length distribution

were found to be negligibly small. The evaluation of these structural properties

evidences the better accuracy of SHO with respect to the other ones. HRK4



108 CHAPTER 8. BENCHMARK OF THE NEW ALGORITHMS

performs better than BBK. It must be noted that SVV and SLO, which have

comparable low accuracy to evaluate both the potential energies ( see fig. 8.2 )

and the even moments of the distribution of the torsional angle ( see fig.8.5 ), are

rather different when both the bond length (Fig. 8.3) and the bond angle (Fig. 8.4)

are considered . In fact, SLO underperforms the evaluation of the average values

of both quantities but it has better accuracy for their higher moments, whereas

SVV behaves in the opposite way. Table 9.1 summarizes the above remarks.
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Figure 8.5: The first four moments of the torsional angle distribution.

Temperature and moments of the velocity distribution

Finally, we compared the performances of the different algorithms when they have

to evaluate the molecular velocity or related quantities like the temperature. The

results are presented in Fig. 8.1. The distribution of the modulus of the velocity

is found to be maxwellian in shape with first and fourth moments given by [356]:

< v >= 2
√

2T/π
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< v4 >= 15T 2

As expected, SVV algorithm is quite accurate to evaluate both the temper-

ature and the moments of the velocity distribution. SHO, Li and HRK4 exhibit

similar accuracy. From this respect, they are better than BBK.

Table 9.1 summarizes the above remarks.
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Chapter 9

Conclusions and further studies

9.1 Conclusions

Part II of this work deals with the effectiveness of employing stochastic algorithms

in order to stabilise longer molecular dynamics simulations. This issue is of great

importance, as can be guessed from section 7.1, where several alternative methods

are presented which cope with the problem.

With this respect, we compare different algorithms to test both the accuracy,

the numerical efficiency and the stability of the MD simulations of a polymer

solution with long integration time steps. HRK4 and the quasi-symplectic SHO

algorithm are the most stable. This feature is ensured by their greater accuracy

to evaluate the position and, consequently, to follow the fast dynamics. However,

the numerical efficiency is affected, especially for HRK4, by the increased number

of evaluations of the forces per integration step. Differently, the popular BBK

algorithm is found to be faster with limited accuracy loss but with poorer stability.

The dependence of the accuracy on the quantity to be evaluated was noted. As

shown by Table 9.1, the SHO algorithm exhibits better overall accuracy and

stability than the other ones. As far as the computing efficiency is concerned, it

also compares well with the faster ( but less stable ) BBK algorithm.

111
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Table 9.1: Summary of the performances of the algorithms under study. Apart
from the last three rows, the entries denote the ranks of the algorithms. The
superscript denotes the sign of the positive/negative deviation from the best
value. τX is the time needed by the X algorithm to complete one integration
step. hmax is the integration time step above which the algorithm is unstable.

Quantity
Algorithm

SHO BBK HRK4 Li SVV SLO

< H > 2+ 1+ 2− 2+ 3+ 4+

< U > 1+ 2+ 2− 3+ 4+ 4+

< ULJ > 1+ 1+ 2− 2+ 3+ 3+

bond distance 1+ 2+ 1− 3+ 4+ 4+

bond angle 1+ 2+ 1− 3+ 4+ 4+

torsional angle 1+ 1+ 2− 2+ 3+ 3+

velocity 2+ 3− 2− 2− 1+ 4+

τX/τSV V 2 1 4 1 1 1

hmax × 103 6.6 3.4 4.4 3.4 3.4 3.4

9.2 Further studies

The algorithms we have just presented, have been chosen from a selection of single

step methods, which come in use to perform simulation in a canonical ensemble.

Considering these remarks, several proposals for further studies are brought to

mind:

• Stochastic methods can be useful also when an isobaric-isothermal ensem-

ble is required. This can be an interesting field where future tests can be

performed.

• The methodology of employing symplectic schemes, can also be transferred

in the field of deterministic molecular dynamics simulations in order to
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speed up the simulations in NTV/NTP ensembles.

• Obviously, an extension of the above methods in case of multiple time step

integrators will be valuable.
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Part III

Glass transition





Chapter 10

The glass transition

Although glass is the oldest artificial material utilized by man, new discoveries and

applications continue to appear. Thus the glassy state of pharmaceuticals [357]is

being recognized as more effective than the crystalline form because it dissolves

more quickly; the glass transition is important in providing stability to otherwise

labile materials and the glass transition plays a central role in the preservation of

food [358–360]. Traditional applications of glasses and glass science include, e.g.,

optical fibers or glass ceramics, and glass is still extensively used for windows and

containers.

This chapter starts describing what we intend for glass transition; then are

presented quickly the more common theories dealing with glass transition; finally

we present the elastic models for glass transition, the aim of our studies.

10.1 The glass transition

A glass is formed by cooling a liquid fast enough to avoid crystallization. At

continued supercooling the liquid viscosity increases dramatically, and at some

point the liquid freezes continuously into a noncrystalline solid. This is termed the

glass transition, although it is not a phase transition with a well-defined transition

temperature Tg [361–363].

117
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Many liquids require fast cooling to avoid crystallization, e.g., most alloys,

but there are also many liquids that are easily supercooled and, in fact, difficult

to crystallize, e.g., silicates and numerous organic liquids. Any liquid is able to

form a glass if cooled rapidly enough. In view of this universality, the glassy state

may be regarded as the fourth state of conventional matter: glass is solid as is

the crystalline state, but isotropic and without long-range order as is the liquid

state. This unique combination of properties explains the immense importance

of glasses for a variety of applications. Indeed, it is glass’ lack of long-range

order, rather than the traditional properties of transparency, brittleness, and low

electrical conductivity, that is the defining characteristic of this type of material

[364].

10.2 Glass features

Figure 10.1(a) shows the specific volume of selenium as a function of temperature

during cooling. The gradual shrinking of the liquid continues unaffected by the

freezing temperature Tm. At some point the expansion coefficient, i.e. the slope of

the curve, decreases to a value close to that of the crystalline state at Tg. This is

the glass transition, which takes place at a slightly lower temperature if the cooling

is slower. A similar observation is made for the enthalpy. Figure 10.1 (b) shows a

schematic drawing of the enthalpy during cooling and subsequent reheating. The

glass transition is continuous and cooling-rate dependent, and there is hysteresis

upon reheating. The glass transition is similar to a second-order phase transition

in the Ehrenfest sense with continuity of volume and entropy, but discontinuous

changes of their derivatives [365]. But the transition is continuous and cooling-

rate dependent, so it cannot be a genuine phase transition.

A system falls out of equilibrium when its relaxation time is so long that it

cannot equilibrate within a given time. The relaxation time τ of a liquid was first
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Figure 10.1: Thermodynamic characteristics of the glass transition. (a) Volume
of selenium measured during cooling from liquid phase. (b) Schematic drawing
of the enthalpy H and specific heat Cp by cooling from the liquid phase and
subsequently reheating (selenium). [364]
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identified by Maxwell in 1867 [366], and defined as

τ =
η

G∞
(10.1)

where η is the viscosity of the sample and G∞ the instantaneous or infinite-

frequency shear modulus; it has to be noted that τ and η are roughly proportional

since G∞ is much less temperature dependent than η or τ . It is a general property

of Eq. 10.1 that the liquid is solid-like on time scales much shorter than τ ; generic

liquid behavior is only predicted on time scales much longer than τ . The Maxwell

relaxation time τ provides the key to understanding the glass transition. Typical

values of G∞ are in the 109 − 1010 Pa s range, so since η ∼ 1012 Pa s at the glass

transition, τ is here of order 100-1000 s. Thus the glass transition takes place

when the Maxwell relaxation time becomes comparable to the cooling time.

The Maxwell relaxation time not only determines how fast a macroscopic

stress relaxes. Numerous experiments show that τ also determines the typical time

between molecular displacements or reorientations. This confirms that the glass

transition takes place when the liquid is unable to equilibrate on the experimental

time scale, i.e., when some process in the amorphous material occurs too slowly

at low temperatures to permit thermodynamic equilibrium to be established in

all degrees of freedom [364, 367].

What happens at the glass transition is that molecular motion virtually ceases

(and so any structural relaxation), except for thermal vibrations[364]; however,

some vacancy-driven diffusion can still be found, in the same manner as it occurs,

at finite temperature, in a crystalline solid phase [368, 369]. This explains several

observations:

• The ability to form glasses is universal and not a specific atomic or molecular

property; once the extremely viscous liquid state has been arrived at, glass

formation is unavoidable upon continued cooling.

• Volume, enthalpy, and entropy are continuous across the glass transition,

and no changes of the molecular structure are observed at Tg. It must be
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pointed out that as the equilibrium cannot be reached within the experimen-

tal time-scale, these quantities are not well defined in the thermodynamic

sense, and depends on the sample’s history. The non-ergodic thermodynam-

ics can still be defined on a restricted ensemble [370, 371].

• The glass expansion coefficient and specific heat are lower than those of

the liquid: this is because below Tg molecular reorientations and effective

motions cease to contribute to these quantities.

• Tg is lower when the cooling rate is reduced in fact Tg has no exact definition,

even for a given cooling rate.

• Hysteresis effects are inherently associated with the glass transition; these

derive from the fact that upon reheating the structure relaxes slightly before

Tg is reached.

Glasses may form from all liquids, however, with liquid helium as the outstanding

exception. A good glass former is a liquid which is readily supercooled, i.e., char-

acterized by very low rates of crystal nucleation and growth at all temperatures

[372, 373].

The glassy state has several challenging questions which need an answer; how-

ever, here we address our attention only toward that aspects relevant for our

studies. In literature good reviews can be found, such as refs. [374–377].

10.3 Non-Arrhenius behaviour

A fingerprint of the glassy state is the non-Arrhenius temperature dependence of

the Maxwell alpha relaxation time τ or viscosity η (eq. 10.1).

Figure 10.2 is the original Angell plot [378] showing the logarithm of the

viscosity for a number of viscous liquids as a function of inverse temperature

normalized to unity at Tg, where Tg is defined as the temperature at which the
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Figure 10.2: The Angell fragility plot showing the viscosity as a function of inverse
temperature normalized to 1 at Tg. The lower left corner marks the approximate
high-temperature limit of the viscosity that is common to all liquids. An Arrhenius
viscosity gives a straight line in this plot. Inset: Specific-heat jumps at the glass
transition. [378]

equilibrium liquid viscosity is 1012 Pa s. If, as is generally assumed, dynamics are

dominated by barriers to be overcome by thermal fluctuations, one would expect

η ∼ exp(∆E/kBT ) [379], corresponding to the diagonal line. This is referred to

as an Arrhenius temperature dependence, after Arrhenius [380] who discovered

that chemical reaction times usually follow this law. The Arrhenius law, however,

only works for a few liquids, e.g., pure silica SiO2 or phosphor pentoxide P2O5

[381]. In the vast majority of cases viscous liquids show a stronger than Arrhenius

increase of the viscosity upon cooling toward the glass transition. If one neverthe-

less accepts the Arrhenius expression, the activation energy must be temperature

dependent: ∆E(T ) is defined by( where τ0 ∼ 1013 s is a typical microscopic time)

τ = τ0 exp

(
∆E(T )

kBT

)
(10.2)

More correctly ∆E defines the free energy of activation, but for simplicity we
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use the traditional term activation energy. The message of Fig. 10.2 is that the

activation energy increases when temperature decreases. There seem to be no

examples of viscous liquids with an activation energy that decreases upon cooling.

For some viscous liquids τ increases by more than one order of magnitude

when the temperature is lowered by just 1%. Such strongly non-Arrhenius liquids

are called fragile (no connection to glass fragility), while those closer to Arrhenius

behavior are termed strong [378]. Non-Arrhenius data are often fitted by the so-

called Vogel-Fulcher-Tammann expression [382–384]

τ = τ0 exp

(
A

T − T0

)
(10.3)

Equation 10.3 implies that the liquid’s equilibrium relaxation time becomes infi-

nite at T0, a prediction that cannot be verified because, if correct, the system is

bound to fall out of equilibrium as T0 is approached. Equation 10.3 has inspired

leading theorists to speculate on its origin[385]. Stillinger [386] argued that a

liquid cannot have an infinite relaxation time at a finite temperature. When com-

pared to experiment, eq. 10.3 generally breaks down in the highly viscous regime

by predicting too large relaxation times [361, 372, 387–389]. An alternative fit to

data with the same number of parameters is provided by [390–393]:

τ = τ0 exp

(
C

T n

)
(10.4)

The traditional measure of non-Arrhenius behavior is the fragility m defined

[394–396] by

m =
d log10 τ

d(Tg/T )

∣∣∣∣
Tg

(10.5)

10.4 Models of the glass transition

All molecules of a viscous liquid have the thermal velocities prescribed by the

canonical ensemble, but virtually all motion goes into vibrations. Thus it has

been suggested that a viscous liquid is to be regarded more as “a solid that
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flows” than as a conventional liquid [397–399]. This is consistent with the long-

standing assumption that viscous-liquid thermodynamics may be separated into

a vibrational and a configurational part. The dynamics also separates into vibra-

tions on the short time scale and inherent dynamics, i.e., jumps between potential

energy minima on the long time scale [208, 248, 400, 401].

Up to date several theories have been put forward in order to tackle the prob-

lem of glass transition. The most important are the Adams-Gibbs theory [402–

404], which states that the long relaxation times at low temperatures are brought

about by a dearth of configurations and the free volume models [405, 406],

which assert that molecules need “free” volume in order to be able to rearrange;

as the liquid contracts upon cooling, less free volume becomes available.

In the literature other interesting models have been proposed, such as the

mode coupling theory [407–409]; a quick review can be found in [364] and

reference therein.

In this work we are not interested in exploring the features of the different

theories. We concentrate our attention on what is commonly called harmonic

approximation; but this is the subject of the chapter 12.



Chapter 11

Simulation details

In this chapter we describe the model employed in order to perform a molecular

dynamic simulation of a melt of polymer chains. Again we employed a bead spring

model: in this model we lose the atomistic details of the molecules, preserving

only the connectivity and the excluded volume effect; each monomer of the chain

is mimicked by a bead, see chapter 2 for further details.

11.1 Force field

A coarse-grained model of a linear polymer chain is used. Torsional potentials are

neglected. Each monomer is pictured as a soft sphere interacting via a suitable

pair potential with the other non-bonded monomers. Bonded monomers interact

with a potential which is the sum of the FENE (Finitely Extendible Nonlinear

Elastic) potential and the Lennard-Jones potential [12, 302]:

ULJ(r) = ǫ

[(
σ∗

r

)12

− 2

(
σ∗

r

)6
]

(11.1)

UFENE(r) = −1

2
kR2

0 ln

[
1 −

(
r

R0

)2
]
, R0 = 1.5σ, k =

30ǫ

σ2
(11.2)

where r is the monomer-monomer distance and σ∗ = 21/6σ. With the above

parameters the bond length is b = 0.97σ within few percent.
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Non-bonded monomers interact via a truncated parametric Lennard-

Jones potential [422]:

Up,q(r) =






ǫ

q − p

[
p

(
σ∗

r

)q

− q

(
σ∗

r

)p]
+ Ucut r 6 rc

0 Otherwise

(11.3)

where the value of the constant Ucut is chosen to ensure Up,q(rc) = 0 at r = rc =

2.5σ. The minimum of the potential Up,q(r) is at r = σ∗, with a constant depth

U(r = σ∗) = ǫ. We set σ = 1, ǫ = 1. The time unit is τMD = (mσ2/ǫ)1/2, with m

being the mass of the monomer. Temperature is in units of ǫ/kB, where kB is the

Boltzmann constant. We set m = kB = 1.

11.2 Statistical ensembles

The simulations were performed using three distinct ensembles: isothermal-isobaric

ensemble (NPT), canonical ensemble (NTV) and microcanonical ensemble (NVE)

[126]. NPT and NTV ensembles have been used for equilibration runs while NVE

ensemble has been used for production runs.

11.2.1 NVE ensemble

In this ensemble the system evolves under its internal forces, without any in-

teraction with the surrounding environment (as it happens in NTV and NPT

ensembles revised later). The Hamiltonian of the system reads:

H =
N∑

i=1

P 2
i

2mi

+ U(Q) (11.4)

where N is the number (constant) of interacting particles in the system, mi

the mass of the i-th monomer; P and Q being conjugate momenta. From the
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Hamiltonian H follows the equations of motion:

Q̇i =
Ṗi

mi
(11.5)

Ṗi = −∇QU(Q) (11.6)

where Q̇ and Ṗ signify the time derivative of positions and momenta.

11.2.2 NTV ensemble

In order to simulate a constant temperature system, the Hamiltonian H which

describes the dynamics of the particles, is augmented by adding and extra term

which accounts for a thermal piston. For this reason the system gain an extra

degree of freedom. The extended Hamiltonian is:

HNTV =

N∑

i=1

P 2
i

2mi
+ U(Q) +

π2
s

Qs
+ gkBT ln s (11.7)

where πs is the extra degree of freedom which account for the thermal piston,

Qs is its thermal inertia (which works as a mass), and g is the total number of

degrees of freedom of the system. Again we can derive the equation of motion

[426]:

Q̇i =
Ṗi

mi
(11.8)

Ṗi = −∇QU(Q) − Piξ (11.9)

η̇ = ξ (11.10)

ξ̇ =
1

Qs

(
N∑

i=1

P 2
i

mi
− (g − 1)kBT

)

(11.11)

where ξ = πs/Qs and η = ln s

11.2.3 NPT ensemble

For isobaric-isothermal system is used the technique of the extended Hamiltonian,

which now reads:

HNPT =

N∑

i=1

P 2
i

2mi
+ U(Q) +

π2
s

2Qs
+ gkBTζ +

π2
V

2QV
+ PextV (11.12)
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The new variables πV and QV account for the dynamics of the pressure piston, in

the same way as the thermal piston met in the NTV ensemble. Pext is the external

pressure applied on the system, and V the varying volume of the system. Now

the equation of motion can be written down as[128, 427]:

Q̇i =
Ṗi

mi
+
πV

QV
Q (11.13)

Ṗi = −∇QU(Q) − Pi
πs

Qs

−
(

1 +
3

g − 1

)
πV

QV

Pi (11.14)

V̇ = 3V
πV

QV
(11.15)

π̇V = 3V (Pint − Pext) +
3

g − 1

N∑

i=1

P 2
i

mi

− πV
πs

Qs

(11.16)

ζ̇ =
πs

Qs

(11.17)

π̇s =

N∑

i=1

P 2
i

mi
+
π2

V

QV
− gkBT (11.18)

and

Pint =
1

3V

[
N∑

i=1

(
P 2

i

mi

−Qi · ∇QU(Q)

)]

11.3 Algorithm

NPT and NTV ensembles have been simulated with the extended system method

introduced by Andersen [428] and Nosé [429]. Within this approach, additional

degrees of freedom are added to the Hamiltonian of the system, to be interpreted

as the degrees of freedom associated to the thermal piston and the mechanical

one. The numerical integration of the augmented Hamiltonian has been performed

through the reversible multiple time steps algorithm (i.e. the r-RESPA algorithm)

developed by Tuckerman et al.[334]. In particular, the NPT and NTV Liouville

operators corresponding to the aforementioned extended Hamiltonian have been

factorized using the Trotter theorem [331] separating the short range and long

range contributions of the potential Up,q(r), Eq. 11.3, according to the WCA
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decomposition [430]. The simulations have a drift of the total energy less than

∼ 5 · 10−8ǫ/τMD and a standard deviation of the total energy less than 2 · 10−4

with an integration time step 3 · 10−3τMD. The latter was kept constant in all

the production runs to limit systematic errors. To speed-up the simulations, we

exploited the neighbour lists method and, to reduce the finite-size effects, periodic

boundary conditions have been used.

11.4 Simulation protocol

In this section the simulation protocol is described. Each state point (labelled by

the multiplets {T, ρ,M, p, q}) has been obtained through four stages:

1. Placement of the chains in a regular lattice preventing monomer-monomer

overlap.

2. NPT-ensemble simulation to get the number density of interest ρ.

3. NTV-ensemble equilibration of the system. The equilibration time is ten

times longer than the longest relaxation time, i.e. the time needed by the

end-to-end correlation function to decay to less than 0.1 times its initial

value.

4. NVE-ensemble production run.

11.5 Data set

We investigated 121 independent states. Both the temperature T , the number

density ρ, the monomers per chain M and the parameters p, q in the force field,

eq. 11.3, are changed. ρ = N/V where N is the total number of monomers, and

V is the volume of the cubic box. N = 2000 in all cases but M = 3 where

N = 2001. For each case averages on at least five independent configurations are
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performed. For M = 10 the least number of independent configurations is ten.

Below, the different state points are listed. In addition to the systematic scan of

some parameters, other cases were added to ensure the optimum definition of the

master curve plotted in Fig. 12.3.

T = 0.7:

• p = 6. All the combinations with M = 2, 3, 5, 10, ρ = 1.033, 1.056, 1.086

and q = 7, 8, 10, 12. The case M = 2, ρ = 1.086, q = 12 equilibrates very

slowly and was discarded.

• p = 6,M = 3. The pairs (ρ, q): (1.090,12), (1.033,11), (1.039,11), (1.041,11),

(1.045,11), (1.051,11), (1.056,11), (1.086,11), (1.033,9),

(1.056,9), (1.063,9), (1.071,9), (1.079,9), (1.086,9).

• p = 5, q = 8. All the combinations with M = 2, 3, 5, 10 and ρ = 1.133, 1.156,

1.186, 1.2. Furthermore, M = 2 , ρ = 1.033.

• p = 11, q = 12,M = 2 with densities ρ = 0.980, 0.990, 1.0.

T 6= 0.7, p = 6:

• T = 0.5, ρ = 1.033, All the combinations with: M = 2, 3, 5, 10, q = 7, 8, 10.

• T = 0.6, ρ = 1.033, All the combinations with: M = 2, 3, 5, 10, q = 8, 10.

• q = 12 , ρ = 1.033, the pairs (M,T ): (2,0.5), (3,0.5), (2,0.55), (3,0.55),

(2,0.6), (3,0.6), (5,0.6), (3,0.65), (5,0.65), (10,0.65).

• q = 12, ρ = 1.086 , the pairs (M,T ): (2,0.75), (3,0.75), (5,0.75), (10,0.75),

(2,0.8), (3,0.8), (5,0.8).

• q = 12, ρ = 1.090,M = 3, with T = 0.75, 0.8.

Finally, p = 5, q = 8,M = 2, ρ = 1.033, T = 0.5.
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11.5.1 Data sets of Fig. 12.2

What follows is a list of the data represented in Fig. 12.2 (multiplets (M, ρ,

T, q, p)):

• Set A (blue): (2,1.086,0.7,7,6), (3,1.086,0.7,7,6), (10,1.086,0.7,7,6),

(10,1.033,0.7,8,6)

• Set B (black): (2,1.033,0.7,10,6), (3,1.039,0.7,11,6), (3,1.041,0.7,11,6)

• Set C (red): (2,1.033,0.5,10,6), (3,1.056,0.7,12,6), (5,1.033,0.6,12,6),

(10,1.056,0.7,12,6)

• Set D (green): (3,1.086,0.7,12,6), (5,1.086,0.7,12,6), (10,1.086,0.7,12,6)

• Set E:(2,1.0,0.7,12,11)

These data are presented here, instead that in chapter 12, in order not to interrupt

the discussion there reported.
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Chapter 12

The glimpse of an universal

scaling

This chapter is devoted to the presentation of the original results achieved dur-

ing this work concerning the glass transition. At the beginning an overview of

the harmonic approximation is given; this section is then followed by the data

obtained by molecular dynamic simulation in order to assess the validity of the

harmonic approximation. A final comparison with experimental data closes this

chapter.

12.1 Harmonic approximation

The first paper suggesting that the activation energy is determined by short-

time elastic properties appears to be the work by Tobolsky, Powell and Eyring

[410] basically arguing as follows. The viscosity is determined by the rate of

molecules moving from one equilibrium position (energy minimum) to another.

In the schematic situations of fig. 12.1 the energy barrier to be overcome is clearly

overestimated by the intersection of the parabolic extrapolations from the min-

ima. Comparing the situations of figs. 12.1a and 12.1b, however, the barrier is

overestimated by the same numerical factor. Thus the estimated barrier is pro-

133
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Figure 12.1: Comparing two cases
of potential energy minima with
different curvatures at the min-
ima. The full curve is the po-
tential energy; the thin curve
gives the potential estimated by
second-order Taylor expansions
around the minima. The barri-
ers estimated from the intersec-
tion of thin curves are consider-
ably larger than the actual barri-
ers; however, going from (a) to (b)
the estimated and actual barriers
are proportional [364]

portional to the actual barrier (a only changes insignificantly). According to rate

theory [411] the average time between jumps τ is a microscopic time τ0 divided by

the statistical mechanical probability to find the system around the energy max-

imum. In the harmonic approximation the energy is quadratic in the reaction

coordinate; this leads to a Gaussian statistical-mechanical probability distribu-

tion ∝ exp(−x2/2 < x2 >), where x is the reaction coordinate deviation from

its value at the minimum and < x2 > is the vibrational mean-square thermal

average around one minimum. Thus for some numerical factor of order one λ1, if

a is the average intermolecular distance, the harmonic approximation leads to

τ = τ0 exp

(
λ1

a2

< x2 >

)
(12.1)

Using eq. 10.2 the activation energy is given by

∆E = λ1kBT
a2

< x2 >
(12.2)

The vibrational mean-square displacement < x2 > depends on temperature.

For a harmonic, temperature independent system the intermolecular potential
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is parabolic and classical equipartition implies that x2 ∝ T , so ∆E is temper-

ature independent. For most glass-forming liquids < x2 > decreases faster than

T upon cooling, resulting in an activation energy that increases upon cooling.

During the last 20 years eq. 12.1 or related expressions were derived and dis-

cussed by a number of authors in different contexts of viscous liquid dynamics

[412, 413, 417–423]. Eq. 12.1 has also been used for diffusion in crystals [424, 425].

12.2 Universal scaling between structural relax-

ation and vibrational dynamics

When liquids, polymers, bio-materials, metals and molten salts are cooled, if the

crystallization is avoided, they freeze to a microscopically disordered solid-like

state, a glass [221, 372]. As the glass transition temperature Tg is approached

from above, the kinetic unit spends an increasing fraction of time rattling on

picosecond time scales into the cage of the first neighbours. To escape, the unit

must await an average lapse of time τα, the so called ”structural relaxation time”,

which, on approaching Tg, increases from a few picoseconds up to thousands of

seconds. In spite of that huge time scale separation old [410, 431, 432] and recent

theoretical [372, 412, 423, 433–435], experimental [413, 436–438] and numerical

[421, 422, 439] studies suspected correlations between the rattling process and

the relaxation.

The solid state of matter is characterized by well-defined elastic properties

settled by the interatomic potentials driving at a microscopic level the oscillatory

motion of the atoms with mean square amplitude < u2 > around their equilibrium

positions (henceforth to be referred to as the Debye-Waller (DW) factor). On in-

creasing the temperature, depending on the structural degree of order, solids meet

different fates. In crystalline solids the ordered structure melts at Tm, whereas

in amorphous solids the disordered structure softens at the glass transition tem-
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Figure 12.2: MD simulations of a polymer melt by the bead-spring FENE model
[15]. The structural relaxation time τα is marked with a large dot on each curve.
Top: time-dependence of the monomer mean squared displacement < r2(t) > in
selected cases. To improve the readability curves are multiplied by constant fac-
tors. Inset: the time when the system leaves the balistic regime and meets the cage,
is defined as the appeareance of a discontinuity in the slope; three values of the
time have been chosen. Bottom: corresponding ISF Fs(qmax, t). Non-trivial sets
of potential parameters, density, temperature and chain length lead to clusters of
sumperimposable MSD and ISF curves. As an example four different clusters are
shown. The superimposability breaks down for t > τα and at short times in the
ballistic regime, i.e. t . 0.1. If the cluster groups cases has the same tempera-
ture, the superimposability extends at shorter times. Inset: superimposability of
the shifted ISF; the horizontal line is drawn at e−1.



12.2. UNIVERSAL SCALING 137

perature Tg above which viscous flow occurs. Elasticity seems to be involved in

both phenomena. This motivated extensions to glasses of the Lindemann criterion

for crystalline solids [440]. In addition, approaches linking the elastic properties

of amorphous solids with the viscous flow observed above Tg [410, 431–434] are

paralleled by results reporting [422, 435–439], or denying [441], correlations be-

tween the fragility (an index of how fast the viscosity η or τα increase close to Tg

[372]) and the elastic/vibrational properties. On the other hand, the old models

[410, 432] correlated η or τα to the instantaneous shear modulus G∞, at any tem-

perature above Tg. More recently, this viewpoint has been considered by picturing

the glass transition as a freezing in an aperiodic crystal structure (ACS ) [412].

There, the viscous flow is originated by activated jumps over free-energy barriers

∆E ∝ kBTa
2/ < u2 > where a is the displacement to reach the transition state (

a2 ∝ Nm(δ∆)2, with Nm and (δ∆)2 being the number of particles that move and

their mean squared displacement, respectively ) and kB the Boltzmann constant.

The usual rate theory leads to [412, 434]:

τα, η ∝ exp

(
a2

2 < u2 >

)
(12.3)

Tests of Eq. 12.3 were carried out in several systems [413–416]. However, either

the crystal or the glass contributions after extrapolation in the liquid regime

are usually subtracted from < u2 > . In selenium, if < u2 > is used, log η vs.

1/ < u2 > is concave, whereas if the glass or the crystal contribution are removed,

a convex curve or a straight line, the latter agreeing with Eq.12.3, are seen,

respectively [413]. The fact that many glass-formers have no underlying crystalline

phases, as well as the fact that in many studies removing the glass contribution,

differently from Se, leads to Eq. 12.3, raises some ambiguities about the above

subtractions. The ACS model is expected to fail when τα becomes comparable

to the typical rattling times of each atom in the cage of the surrounding atoms.

That condition is quite mild, e.g. in Se it occurs at Tm + 104K corresponding to

picosecond timescales [413]. It seems natural to generalize Eq.12.3 by adopting
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Figure 12.3: The structural relaxation time τα vs the DW factor < u2 >≡< r2(t =
1.022) >. Circles identify the cases plotted in Fig.12.2. The superimposed curve
is Eq. 12.4 log10τα = α + β < u2 >−1 +γ < u2 >−2 with α = −0.424(1), β =
a2/2 ln 10 = 2.7(1) · 10−2, γ = σ2

a2/8 ln 10 = 3.41(3) · 10−3. MD results on the
collective relaxation time τ of a polymer melt with M = 20 from [421]. The
dotted curve is obtained by shifting vertically the best-fit curve of τα with α′ =
α + 0.205(5), β ′ = β, γ′ = γ. The straight line represents the best fit using eq.
12.3

a suitable distribution p(a2) of the squared displacement to reach the transition

state. In particular, averaging Eq.12.3 over p(a2) ∝ exp[−(a2 − a2)2/2σ2
a2 ] leads

to:

τα, η ∝ exp

(
a2

2 < u2 >
+

σ2
a2

8 < u2 >2

)

(12.4)

Eq.12.4 yields the leading dependence on < u2 > even if the gaussian is trun-

cated below ac ≥ 0 to account for e.g. a minimum number of particles that

move and/or a minimum mean squared displacement. Beyond the Central Limit

Theorem, other motivations support the gaussian form of p(a2). If the kinetic

unit is undergoing a harmonic motion due to an effective spring with constant k,

< u2 >∝ kBT/k and Eq.12.4 reduces to a form already reported for both super-

cooled liquids [392] and polymers [442], and predicted by a coarse-grained model
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of glass formers [443]. Furthermore, along the same line of reasoning, one may

reinterpret the gaussian form of p(a2) as a gaussian form of the energy barriers

∆E ∝ ka2 which has been assumed by the trap model [444] and others [445].

Evidence will be given that the dependence of the structural relaxation time on

the DW factor collapses on a universal master curve provided by Eq.12.4. We de-

vised a two-step strategy. First, a master curve is built by resorting to extensive

Molecular-Dynamics (MD ) numerical simulations of a polymer melt by changing

the temperature T , the density ρ, the interatomic potential and the connectiv-

ity of the system (all these parameters but T affect the fragility of the system

[422, 437, 439, 446]). Then, motivated by the Lindemann criterion [440, 447, 448],

a suitable scaling of both the numerical and experimental data is introduced to

convert the MD master curve into the universal one, including both strong and

fragile glasses [372] and polymers, the latter considered less by other studies[436–

438, 441].

12.2.1 Simulations

Let us discuss the MD simulations. To characterize the short-time dynamics and

the structural relaxation we use the monomer mean squared displacement <

r2(t) > ( MSD, < r2(t) >= N−1 <
∑Nm

j=1[rj(t) − rj(0)]2 > where the sum runs

over the total number ofN monomers and the brackets denote a suitable ensemble

average ) and the incoherent intermediate scattering function Fs(qmax, t) ( ISF,

Fs(q, t) = N−1
m <

∑Nm

j=1 exp{−iq · [rj(t) − rj(0)]} > ), qmax being the q-vector

of the maximum of the static structure factor. Fig. 12.2 shows typical MSD and

ISF curves. At short times MSD increases according to < r2(t) >∼= 3υ2t2 −
υ2Ω2

0 t
4/4 where υ =

√
kBT/m is the thermal velocity. Correspondingly, ISF

initially decays as Fs(q, t) ∼= 1−Ω2
qt

2/2 + (3Ω4
q + Ω2

qΩ
2
0)t

4/24 with Ωq = qυ [449].

Ω0 is an effective frequency of collisions , i.e. the frequency at which the tagged

monomer would vibrate if it were undergoing small oscillations in the potential
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well produced by the the other surrounding monomers when kept at their mean

equilibrium positions [449]. In Fig.12.2 2π/Ω0 is located close to the time t ∼ 0.1

when MSD starts to deviate from the ballistic regime < r2(t) >∼= 3υ2t2. At

longer times, after a knee, MSD exhibits a quasi-plateau region, also apparent

in ISF, which is more apparent when the temperature is lowered and/or the

density increases evidencing the increasing caging of the monomer. On average,

the latter escapes after a time τα ( defined by the relation Fs(qmax, τα) = e−1

). For t > τα MSD increases more steeply. The monomers of short chains (

M . 3 ) undergo diffusive motion < r2(t) >∝ tδ with δ = 1. For longer chains,

owing to the increased connectivity, the onset of the diffusion is preceded by a

subdiffusive region ( δ < 1 , Rouse regime ) [51]. The dynamics of the model

polymer depends in a non trivial way upon the temperature T , the densityρ, the

chain length M and the interaction potential Up,q(r). Nonetheless, Fig.12.2 (top)

shows that cases ( labelled by multiplets {T, ρ,M, p, q}) exist which exhibit nearly

perfect superimposability of MSD curves from times being a little bit longer than

2π/Ω ≃ 0.1 up to times longer than τα (if the cluster groups cases with equal

temperature, the superimposability extends at shorter times). Notably, in the

same time window the corresponding ISF curves superimpose as well ( Fig.12.2,

bottom ). The finding suggests that, after few collisions with frequency Ω0, a

correlation between the structural relaxation and the fast dynamics sets in. To

better evidence the correlation, a proper definition of the DW factor < u2 > is

needed. Notice that Eq.12.3 was derived under the ansatz that the motion of the

atoms crossing the energy barriers is virtually unidirectional [412]. That picture

relies on the fact that the atomic MSD during the structural relaxation is less

than one atomic radius. Indeed, Fig.12.2 shows that < r2(t = τα) >1/2. σ/2. The

ansatz suggests to identify < u2 > with < r2(τv) > , τv being the time needed

by the velocity correlations to vanish. Due to the limited changes of τv ∼ 1 and

the extension of the superimposability region of the MSD and ISF curves around

t ∼ 1, the practical definition < u2 >≡< r2(t = 1.022) > is adopted [421]. In view
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of the comparison with the experiment this choice is also motivated by noting

that the experimental DW factor < u2 >exp is collected during few picoseconds

( e.g. see [413] ), i.e. in a lapse of time consistent with our definition, since one

MD time unit σ
√
m/ǫ corresponds to about 1− 10ps, depending on the polymer

of interest [15].

Fig.12.3 plots the dependence of the structural relaxation time τα on the

mean square amplitude < u2 >. The data collapse on a well-defined master curve

nicely fitted by Eq.12.4. Additional data about the collective relaxation time τ

from [421] are also shown and fitted by the same master curve after a suitable

vertical shift. The best fit values of Eq.12.4 ( a2
1/2 ∼ 0.35 and σ2

a2 ∼ 0.25 ) are

consistent with the previous discussion, i.e. the MSD involved in the structural

relaxation is, with some spread, a fraction of the molecular radius.

12.2.2 Comparison with experiments

Now we prove that the scaling evidenced by simulations may be extended to

the experimental results. For each system the temperature dependencies of the

mean square displacement < u2 > and τα or η are used. The pairs (< u2 >, τα)

or (< u2 >, η) are preferably taken from the same source, if possible. In the

absence of a single paper, the pairs are taken from different sources provided that

the temperature ranges of the two studies overlap meaningfully and include the

glass transition region. For some systems both viscosity and structural relaxation

data were considered. The mean square displacements < u2 > are drawn from

incoherent neutron scattering ( INS ) and Mössbauer spectroscopy ( MS ). The

former takes < u2 > from the Debye-Waller Factor, the latter from the Lamb-

Mössbauer factor f ∝ exp(−q2 < u2 >) with q = 7.3Å
−1

. The fragilities were

drawn from refs. [395, 450]. The structural relaxation ( in seconds ) and the

viscosity ( in Pa·s) were scaled to the MD master curve by logarithmic vertical

shifts in Fig. 3. Table 12.1 lists in order of increasing fragility the systems, the data
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Table 12.1: Relevant information about the investigated systems ( in order of

increasing fragility ) and the MD simulations. The structural relaxation time

(ps)is taken via either dielectric spectroscopy or, for a part of the data set of B2O3,

data aggregated from different techniques. The mean square displacement (in Å)

is taken from Incoherent Neutron Scattering ( INS ) or Mössbauer Spectroscopy

(MS). The logarithmic vertical shifts to scale the experimental curves to the MD

master curve in Fig. 3 and the mean square displacement at Tg, < u2
g > ( or

− ln fg for MS ), are also given.

system

τα, η < u2 >

quantity shift ref. technique
< u2

g >
ref.

− ln fg

MD MD 0 MD 0.01667

B2O3 η -2.2 [451] INS 0.065 [452]

B2O3 τ
†

α +8.4 [453] INS 0.065 [452]

Zr46.8Ti8.2Cu7.5Ni10Be27.5 η +1 [454] MS 0.885 [455]

Glycerol η +1 [456] INS 0.022 [457]

PI τα +12 [458] INS 0.427 [459]

TNB η +2 [460] INS 0.315 [461]

Fe+DBP τα +11 [462] MS 3.15 [462]

Fe+DBP η +2 [463] MS 3.05 [462]

OTP τα +11 [461] INS 0.215 [464]

OTP η +1 [464] INS 0.232 [464]

Selenium η +1.66 [413] INS 0.155 [413]

1,4 PBD τα +11 [465] INS 0.102 [466, 467]

a-PP τα +11.5 [468] INS 0.13 [469]

PMMA τα +11.5 [470] INS 1.1 [471]

PVC τα +11 [472] INS 0.51 [471]

† data aggregated from different techniques.
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Figure 12.4: Scaling of the structural relaxation time τα (in MD units) vs. x̃ =<
u2

g > / < u2 >. The grey area marks the glass transition. The continuous (central)

line is log10τα = α + β̃x̃+ γ̃x̃2 with β̃ = β/0.129 and γ̃ = γ/0.1292; α, β, γ from
Fig.12.3. The numbers in parenthesis denote the fragility m covering the range
from very strong to very fragile systems. Data about the structural relaxation
(in seconds) and the the viscosity (in Pa·s) were scaled to the MD master curve
by logarithmic vertical shifts +11.5 ± 0.5 and +1.5 ± 0.5, respectively, apart
from B2O3 (+8.4(5) and -2.2(5)). Data of polymers refer to τα. Data related
to B2O3, OTP, Ferrocene/Dibutylphthalate include two independent sets, one
for τα, the other for η, which for simplicity are presented with the same symbol.
Magenta(bottom) and orange(top) lines represent the extrapolation of simulation
data in case a different value of the time for the evaluation of < u2 > is chosen:
t=0.6 (magenta) and t=1.4 (orange); see also fig. 12.2, inset in top figure.

sources for τα or η, the vertical shifts, the experimental technique used to measure

< u2 > and its value at Tg, < u2
g > ( or − ln fg for Mössbauer experiments ).

Notice that for B2O3 two independent sets concerning τα and η were considered.

The shifts of τα and η of B2O3 differ about three orders of magnitude with respect

to the ones of the other systems. However, the difference between the shifts of

the two sets ( +10.6 ) is close to the difference of the shifts of the other systems

( ≃ +10.0(7) ).

As a preliminary step, let us locate < u2 > at Tg of the model polymer system
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assuming that eq. 12.4 with the best-fit parameters from Fig.12.3. For the MD

simulation the time unit corresponds to 1 − 10 ps, as noted above. Then, the

customary definition of Tg according to the equation τα(Tg) = 102s in laboratory

units [372] corresponds to τα(Tg) = 1013−1014 in dimensionless MD units. Eq.12.4

with the best-fit parameters from Fig.12.3 yields
√
< u2

g > = 0.129(1) at Tg

(< u2
g > being the DW factor at the glass transition). This amplitude corresponds

to the ratio v0
∼= (2

√
< u2

g >)3 = 0.017 between the volume which is accessible

to the monomer center-of-mass and the monomer volume. Flory and coworkers

proposed that the glass transition takes place under iso-free volume conditions

with the universal value v0
∼= 0.025 [51, 474, 475]. Furthermore, an extension of

the ACS model (leading to Eq.12.3) predicts that, just as for a crystalline solid

[447, 448], there is a Lindemann criterion for the stability of glasses stating that

at Tg the ratio f between
√
< u2

g > and the average next neighbor distance of

the atoms in the lattice is a quasi-universal number ( f ∼= 0.1 )[440]. From this

respect, the ratio f ≃ 0.12−0.13 at Tg for our data supports this expectation and

is close to f = 0.129 for the melting of a hard sphere fcc solid [448]. After this

preliminary analysis, we are now in a position to test the scaling of the available

experimental data. Both experiments [447] and simulations [448] show that the

Lindemann ratio (weakly) depends on both the given type of interaction potential

and the given crystal structure. With the purpose of removing both this (small)

effect and the evaluation of the average next neighbor distance of the atoms ( not

trivial for molecular systems ) we plot the structural relaxation time τα versus the

reduced variable x̃ =< u2
g > / < u2 >. For MD data we set < u2

g >= 0.129. The

underlying hypothesis is that the curve log10τα = α+ β̃x̃+ γ̃x̃2 with β̃ = β/0.129

and γ̃ = γ/0.1292 ( α, β, γ from Fig.12.3 ) is a universal master curve. Fig.12.4

puts under test that scaling hypothesis for several glassformers and polymers in

a wide range of fragility ( 32 ≤ m ≤ 191 ) which compares well with the range

covered by ref. [436] ( 20 ≤ m ≤ 87 ) and [437] ( 20 ≤ m ≤ 100 ). We were unable

to find other data in the available literature. The result proves that the reduced
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variable x̃ yields good scaling and that information about it is found in the liquid

state. Connections between the dynamics far from and close to the glass transition

were previously noted [437] and motivated the search of correlations between the

fragility and the Poisson’s ratio [437] which was disputed [441]. The fact that the

metallic glass Zr46.8Ti8.2Cu7.5Ni10Be27.5 which does not support that correlations

( see [441]; it corresponds to the point with coordinates m=44, νl/νt=2.08 in their

Fig.1), fits our scaling plot seems to offer a way for reconciliation.
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Chapter 13

Conclusions and further studies

13.1 Conclusions

Here we have shown, by computer simulations and comparison with the exper-

iment, a scaling between τα (the structural relaxation time and hence a global

property of the sample) and the rattling amplitude < u2 > (which refers to

localized fast dynamics) over almost fifteen decades of relaxation times which

unravels a universal curve with simple analytical form obeyed by both fragile and

strong systems [372]. The results clarify recent correlations between liquids and

glasses[437], offer a reconciliation with contrasting evidence [441], and prove that

known correlations between the relaxation very close to Tg, setting the fragility,

and the vibrational glassy-like dynamics [422, 435–439] extend very much above

Tg. Furthermore, they readdress the old idea that the glass transition takes place

under iso-free volume conditions [51], also inherent in the ”glassy” Lindemann

criterion [440].

13.2 Further studies

Several possibility for future studies can be explored:

147
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• Concerning the simulative point of view, it is of great importance testing

the presumed universality of the scaling between global and local motion

just presented against other samples; possible choices for suitable system

could be water, which requires a long range electrostatic potential, and the

widely used binary mixture. More complex systems, like network forming

materials, such as silica, would be of great interested to be investigated.

• An aspect not touched in the present work is the relation between crys-

tallization and glassy state; in the present case, this can be achieved, for

example, with a deep analysis of the effects of changing the torsional poten-

tial used in the Part I of this work. A glimpse of that can be caught from

ref. [473].

• Improving the temperatures sampled, would be also possible to test the

variations in fragility and glass transition temperature due to chain legth.

A possible way to evaluate these two thing can be borrowed from [422].



Appendix A

Gibbs-Thomson equation

The notation employed in the following text is mutuated by chapter 5.

As known from basic thermodynamic, the free energy at a given temperature

T can be written as:

F = H − TS (A.1)

Where H is the enthalpy and S the entropy at some temperature T . When the

system melts:

F (T 0
m) = H(T 0

m) − T 0
mS(T 0

m) = 0 (A.2)

Where T 0
m is the melting temperature of a perfect crystal. From this equation

follows:

S(T 0
m) =

H(T 0
m)

T 0
m

(A.3)

If the system is at a temperature T not far from the melting temperature T 0
m,

it is fair to suppose that H and S are substantially unchanged. Substituting eq.

A.3 in eq. A.1 :

F (T ) =
H(T 0

m) (T 0
m − T )

T 0
m

(A.4)

Coming back to the problem of polymer crystallization, we focalize our atten-
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tion on eqs. 5.5. If we represent the bulk free energy using A.4, we can write:

Tm = T 0
m

(

1 − 6σ
1/3
e σ

2/3
s

H(T 0
m)V 1/3

)

= T 0
m

(
1 − 6σe

H(T 0
m)L∗

)

= T 0
m

(
1 − 6σs

H(T 0
m)W ∗

)
(A.5)

This equations are correct only around the melting temperature and make

possible to link the expected melting temperature Tm with the geometrical prop-

erties of the crystal. In particular, T 0
m can be inferred as the temperature of a

crystal of infinite size. Equations A.5 are known as the Gibbs-Thomson equation.

For its applications see section 3.2.



Bibliography

[1] H.F. Mark, K.H. Meyer; Der Aufbau der hochpolymeren organischen

Naturstoffe (Akademische Verlagsgesellschaft, Leipzig, 1930).

[2] D.I. Bower; An Introduction to Polymer Physics (Cambridge University

Press, Cambridge, 2002).

[3] P.J. Flory; Principles of Polymer Chemistry (Cornell University Press,

Ithaca, New York, 1953).

[4] P.J. Flory; Statistical Mechanics of Chain Molecules (Interscience, New

York, 1969).

[5] P.J. Flory; Nobel Lecture 1974. Available on

http://nobelprize.org/nobel_prizes/chemistry/laureates/

1974/flory-lecture.pdf

[6] I.M. Lifshitz, A.Y. Grosberg, A.R. Khokhlov; Rev. Mod. Phys. 50, 683

(1978).

[7] A. Yu. Grosberg, A. R. Khokhlov; Statistical Physics of Macromolecules

(AIP Press, New York, 1994).

[8] M. Doi, S.F. Edwards; The Theory of Polymer Dynamics (Academic Press,

New York, 1986).

[9] P.G. de Gennes; Scaling Concept in Polymer Physics (Cornell University

Press, Ithaca, New York, 1979).

[10] http://www.mpcfaculty.net/mark_bishop/addition_polymers.htm

[11] G. Strobl; The Physics of Polymers (Springer, New York, 1997).

[12] J. Baschnagel, F. Varnik; J. Phys.: Condens. Matter 17, R851 (2005).

151



152 BIBLIOGRAPHY

[13] H. Meyer, F. Müller-Plathe; J. Chem. Phys. 115, 7807 (2001).

[14] H. Meyer, F. Müller-Plathe; Macromolecules 35, 1241 (2002).
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[259] G. Diezemann, R. Bömer; J. Chem. Phys. 124, 214597 (2006).

[260] S. Sen,T. Mukerji; J. Non-Cryst. Solids 351, 3361 (2005).

[261] L. Hu, X. Bian, W. Wang, G. Liu, Y. Jia; J. Phys. Chem. B 109, 13737

(2005).

[262] C. Li,Y. Matsunaga, M. Toda, T. Komatsuzaki; J. Chem. Phys. 123, 184301

(2005).

[263] J.P.K. Doye; Polymer 41, 8857 (2000).

[264] J. Lee, J.M. Kosterlitz; Phys. Rev. Lett. 65, 137 (1990).

[265] L. Larini, A. Barbieri, D. Leporini; Physica A 364, 183 (2006).

[266] L. Larini, D. Leporini; J. Non-Cryst. Solids 352, 5021 (2006).

[267] L. Larini, D. Leporini; Philos. Mag. 87, 411 (2007).

[268] B. Crist; Macromolecules 39, 1971 (2006).

[269] J. Sommer; Eur. Phys. J. E 19, 413 (2006).

[270] M. Muthukumar; Eur. Phys. J. E 3, 195 (2000).

[271] G. Wulff; Z. Kristallogr. 34, 449 (1901).

[272] B. Wunderlich; Macromolecular physics (Academic Press, New York, 1973).

[273] W. Ostwald; Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 22, 289 (1897).

[274] S. Fujiwara, T. Sato; Comput. Phys. Comm. 142, 127 (2001).

[275] S. Fujiwara, T. Sato; Comput. Phys. Comm. 147, 346 (2002).

[276] W.C. Bunn; J. Polym. Sci. 16, 323 (1955).

[277] A. Keller; J. Polym. Sci. B 34, 797 (1996).

[278] L. Larini, R. Mannella, D. Leporini; J. Chem. Phys. 126, 104101 (2007).

[279] L.R. Dodd,T.D. Boone, D.N. Theodorou, Mol. Phys. 78, 961 (1993).

[280] J.I Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992).

[281] J.J. de Pablo, M. Laso, U.W. Suter, J. Chem. Phys. 96, 2395 (1992).

[282] A. Uhlherr, Macromolecules 33, 1351 (2000).

[283] P.V.K. Pant, D.N. Theodorou, Macromolecules 28, 7224 (1995).



164 BIBLIOGRAPHY

[284] V.G. Mavrantzas, T.D. Boone, E. Zervopoulou, D.N. Theodorou, Macro-

molecules 32, 5072 (1999).

[285] V.G. Mavrantzas, D.N. Theodorou, Comput. Theor. Polym. Sci. 10, 1

(2000).

[286] S. Geyler, T. Pakula, J. Reiter, J. Chem. Phys. 92, 2676 (1990).

[287] S. Balijepalli, G.C. Rutledge, J. Chem. Phys. 109, 6523 (1998).

[288] N.C. Karayiannis, V.G. Mavrantzas, D.N. Theodorou, Phys. Rev. Lett. 88,

105503 (2002).

[289] V.A. Harmandaris, V.G. Mavrantzas, D.N. Theodorou, M. Kröger, J.
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[415] S. Magazù, G. Maisano, F. Migliardo, C. Mondelli; Biophys. J. 86, 3241

(2004).

[416] E. Cornicchi, G. Onori, A. Paciaroni; Phys. Rev. Lett. 95, 158104 (2005).

[417] A.P. Sokolov, A. Kisliuk, D. Quitmann, A. Kudlik, E. Rössler; J. Non-Cryst.
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