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Ai miei nonni 
 
 
 
 

Muovesi l’amante per la cosa amata 
 come il senso alla sensibile,  

e con seco s’unisce e fassi una cosa medesima.  
L’opera è la prima cosa che nasce dall’unione.  

Se la cosa amata è vile, l’amante si fa vile.  
Quando la cosa unita è conveniente al suo unitore,  

li seguita dilettazione e piacere e sadisfazione.  
Quando l’amante è giunto all’amato, lì si riposa.  

Quando il peso è posato, lì si riposa.  
La cosa conosciuta col nostro intelletto. 

 
Leonardo da Vinci, Codice Trivulziano 



Abstract 

LISA, the Laser Interferometer Space Antenna, and its technology-demonstrating 
precursor LISA Pathfinder form an ESA/NASA collaborative project, selected as an 
ESA Cornerstone and included in NASA’s ‘Beyond Einstein’ initiative.  

The primary objective of the LISA mission is to detect and observe gravitational 
waves emitted from massive black holes and galactic binaries in the low-frequency 
band which ranges from 0.1 mHz up to 1 Hz with a goal of extending the measurements 
down to 30 µHz. The underlying measurement principle is a laser interferometry system 
built up with three satellites that are flying in a triangular constellation with an edge 
length of 5 million km. Each of the three identical spacecraft carries a V-shaped payload 
which is a measurement system consisting of two free-flying test masses, associated 
laser interferometer measurement systems and electronics. The two branches of the V-
shaped payload at one corner of the triangle, together with the corresponding single 
arms of the other two spacecraft, constitute one of three Michelson-Type 
interferometers. These will detect low frequency gravitational waves through the 
measurement of changes in the length of the optical path between the two reflective 
proof masses of one arm of the interferometer relative to the other arm. In order to 
ensure that the test masses are flying in a disturbance-free motion along their geodesics, 
so that an extremely small displacement due to the passage of gravitational waves is 
detectable, challenging performance requirements with respect to internal and external 
disturbance rejection must be satisfied by an overall Drag-Free-System. Detailed 
simulations are needed in order to ensure mission success and an End-to-End simulator 
is currently under development aiming at verifying the on-orbit performance. 

Nevertheless, the interferometric measurements of LISA are only possible once the 
three laser links between the three spacecraft of the LISA constellation are established. 
This phase is addressed as the constellation acquisition for LISA. LISA constellation 
acquisition is challenging, given the 5 million km distance between the spacecraft, 
inherent limits of the attitude sensors accuracy, orbit determination accuracy issues and 
the time required to phase-lock the incoming and outgoing laser signals. In order to 
counteract all these adverse constraints and make the LISA constellation acquisition 
possible, the laser pointing must satisfy challenging performance requirements during 
the whole duration of the acquisition phase. 

This thesis proposes a strategy for the acquisition control of the LISA formation 
based on the use of a Kalman filter: it pre-processes the measurement data providing 
enhanced signals for the controller, which has the very same structure used in the 
science mode. The Kalman filter is designed such that it realizes a continuous blend of 
the sensors data, providing a massive disturbance rejection. Simulations and sensitivity 
analysis are performed in order to demonstrate the feasibility of the proposed approach.
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LISA, acronimo per Laser Interferometer Space Antenna e LISA Pathfinder, la 
missione test che verificherà le tecnologie necessarie alla realizzazione di LISA, 
costituiscono un progetto in collaborazione tra ESA, che lo ha selezionato come ‘ESA 
Cornerstone’ e NASA, che lo ha incluso nell’iniziativa ‘Beyond Einstein’. 

L’obiettivo primario della missione LISA è il rilevamento e l’osservazione di onde 
gravitazionali nella banda di bassa frequenza compresa tra 0.1 mHz e 1 Hz (con il 
proposito di estendere le misurazioni fino a 30 µHz), emesse da sistemi di stelle binarie 
presenti nella nostra galassia e da buchi neri massicci. Il principio utilizzato per la 
misurazione è rappresentato da un sistema di interferometria laser realizzato mediante 
tre satelliti identici che formano una costellazione triangolare con lato di lunghezza pari 
a 5 milioni di km. Ognuno dei tre satelliti contiene un carico pagante a forma di V, 
ovvero un sistema di misurazione costituito da due masse test in moto di caduta libera, 
il sistema di misurazione ad interferometria laser e l’elettronica associata. I due rami del 
carico pagante a forma di V ad un vertice del triangolo e i due corrispondenti bracci 
appartenenti agli altri due satelliti della costellazione costituiscono uno dei tre 
interferometri di tipo Michelson. Questi ultimi rileveranno onde gravitazionali di bassa 
frequenza mediante la misurazione dei cambiamenti nella lunghezza del percorso ottico 
tra le 2 masse test riflettenti di un braccio dell’interferometro relativamente all’altro 
braccio. Allo scopo di assicurare che le masse test compiano un volo di quasi perfetta 
caduta libera lungo le geodetiche, cosicché anche un impercettibile spostamento dovuto 
al passaggio di onde gravitazionali possa essere rilevato, è necessario che stringenti 
requisiti di riduzione di effetti di perturbazione siano soddisfatti da un Drag-Free-
System. Simulazioni dettagliate sono necessarie per garantire il successo della missione 
e, a questo fine, un simulatore End-to-End è attualmente in fase di sviluppo. 

Tuttavia, le misurazioni interferometriche di LISA sono possibili solo una volta che 
siano stati stabiliti i tre collegamenti laser tra i tre satelliti della costellazione. Questa 
fase è denominata come fase di acquisizione della costellazione. L’acquisizione della 
costellazione di LISA è estremamente complessa e delicata data la distanza di 5 milioni 
di km che separa i satelliti, gli inerenti limiti di accuratezza dei sensori d’assetto e di 
precisione nella determinazione dell’orbita, nonché il tempo necessario per mettere in 
fase i segnali laser in ingresso e in uscita. Allo scopo di contrastare tutte queste 
circostanze avverse e rendere possibile l’acquisizione della costellazione, il puntamento 
laser deve soddisfare stringenti requisiti durante l’intera durata dell’acquisizione. 

Il presente lavoro di tesi propone una strategia per il controllo durante l’acquisizione 
basato sull’utilizzo di un filtro di Kalman che pre-processi le misurazioni fornendo un 
segnale migliorato al controllore, il quale ha la stessa struttura usata durante lo science 
mode. Il filtro di Kalman è progettato in modo che esso realizzi una continua fusione tra 
i dati forniti dai sensori, garantendo una massiccia riduzione del rumore e dei disturbi. 
Simulazioni e analisi di sensibilità sono stati condotti allo scopo di dimostrare la 
fattibilità dell’approccio proposto. 
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System-Level Introduction 



Chapter 1  

Introduction 

This chapter aims to provide a brief introduction to the LISA Mission in order to 

depict the scientific and technical framework this thesis is included in. 

 
1.1 Gravitational Waves 

The experimental verification and analysis of gravitational waves are among the 

most important challenges of modern physics. According to Einstein’s Theory of 

General Relativity, time and space are woven together, forming a four-dimensional 

fabric called “space-time”. Gravitation can be thought of as the motion of objects 

following the curved lines, the geodesics, of the space-time caused by the presence of 

matter and energy; consequently, the wave associated with gravitation can be regarded 

as a dynamic oscillation in this curvature of space-time. In other words, if a mass 

distribution moves in an asymmetric way it produces “indentantions” in the space-time 

fabric which travel outwards as ripples in space-time called gravitational waves.  

Gravitational waves stretch and compress space as they move through it, changing 

the distance between macroscopic bodies that are floating freely in space (i.e. isolated 

from all forces other than gravity). For this reason, one powerful technique to detect 

gravitational waves is to measure the distances between free floating masses using laser 

interferometry. Since the relative length change caused by the passage of a gravitational 

wave is exceedingly small, gravitational waves have not yet been directly detected. The 

weakness of the interaction of the gravitational waves with matter is not due to the fact 
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that they carry little energy, but rather to the fact that space-time is an extremely stiff 

elastic medium so that it takes extremely large energies to produce even minute 

distortions. Although the weakness of interaction makes the gravitational waves hard to 

detect, it implies also that they do not scattered or get absorbed by any other matter they 

may encounter on the way from their source; thus, to detect a gravitational wave means 

to see the behavior of the gravitational wave source with perfect clarity. Since 

electromagnetic waves do not have this property, gravitational waves can help to map 

the space-time geometry of the universe for the first time. 

Detection of gravitational waves requires strain sensitivities in the range 10−21-10−23 

over time scales 10−3-10+4 s and several detectors are needed on Earth and in space in 

order to cover the whole spectrum of possible sources (Figure 1.1-1).  
 

 
 Figure 1.1-1: Comparison of frequency range of sources for ground-based and space-based gravitational 

wave detectors, Ref. [17] 

 
The current status of the search for gravitational waves is that four first generation 

ground-based interferometric detectors (LIGO, VIRGO, TAMA 300 and GEO 600) are 

on-line and plans are at advanced stages for further generations. They will observe 

gravitational waves over the higher frequency regime (10-1000 Hz), which are 

produced in astronomical events that last only one second or less. They include 

supernova explosions and collisions of black holes that were formed from stars in 

earlier supernova explosions. 
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At low frequencies (below a few Hz), where lot of the most interesting gravitational 

wave sources are emitted, such as massive black holes and galactic binaries, the 

performance of ground-based detectors is limited by gravitational gradient noise, caused 

for instance by motions inside the Earth’s crust. Measurement and subtraction of this 

disturbance can only work to a certain extent, therefore, in order to enter this very 

interesting frequency range, it is necessary to go into space as is planned with the Laser 

Interferometer Space Antenna (LISA) mission. 

 

1.2 The Laser Interferometer Space Antenna Project 

 

 
 

 Figure 1.2-1: Artistic conception of LISA, Ref. [17] 

 
Approved as an ESA ”Cornerstone Mission” and a NASA ”Beyond Einstein Great 

Observatory Mission”, LISA consists of a cluster of three identical spacecraft, flying in 

a quasi-equilateral triangular formation with an edge length of 5 million km in a 

heliocentric orbit with a semi-major axis of 1 AU. The LISA constellation is trailing the 

Earth at a distance of approximately 60 millions Km or around 20° Constellation-Sun-

Earth angle. The position of the formation, 20° behind the Earth, is a result of a trade-

off between minimising the gravitational disturbances from the Earth-Moon system and 

the communications needs (Figure 1.2-2).  
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 Figure 1.2-2: LISA orbital constellation geometry, Ref. [11] 

 
The plane of the triangle is tilted by 60° with respect to the ecliptic plane which 

means that the triangular formation of the spacecraft is maintained throughout the year, 

with the triangle appearing to counter-rotate about the centre of the formation once per 

year (Figure 1.2-3). This annual motion enables the LISA system to provide angular 

information about gravitational wave sources.  

 

 
 Figure 1.2-3: Annular Motion of the LISA Constellation, Ref. [11] 

 
The current baseline is to launch all three LISA spacecraft at once in 2015. In order 

to reach the final operational orbit, each science spacecraft is equipped with an 

additional propulsion module which is separated when the target orbit is obtained after 

approximately 14 months. The mission will make continuous observation for up to 8 
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years after that. Figure 1.2-4 depicts the launch stack configuration and the composite 

spacecraft (science spacecraft and the propulsion module) with the propulsion module 

cylinder removed. 

 
 

 Figure 1.2-4: LISA launch stack under Atlas V short fairing on the B1198 launch adapter (left) and 
composite spacecraft with propulsion module cylinder removed (right) , Ref. [11] 

 
Each of the three identical spacecraft carries a V-shaped payload which is a 

measurement system consisting of two steerable telescopes each containing a free-

flying test mass, associated laser interferometer measurement systems and electronics 

(Figure 1.2-5).  

 
 

 Figure 1.2-5: Inside of a LISA science spacecraft, showing all required units for the V-shaped payload 
and for the sciencecraft bus, Ref. [11] 
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The two branches of the V-shaped payload at one corner of the triangle, together 

with the corresponding single arms of the other two spacecraft, constitute one of three 

giant Michelson-Type interferometers. The third arm is necessary to give independent 

information on the two polarisations of gravitational waves and for redundancy. These 

interferometers will detect low frequency gravitational waves through measurement of 

changes in the length of the optical path between the two reflective test masses of one 

arm of the interferometer relative to the other arm. 

While LISA can be described as a Michelson interferometer, the actual 

implementation is somewhat different from a classical interferometer that relies on the 

‘round-trip’ of a beam of reflected laser light. The distances involved are simply too 

great to use reflection, especially when compared to the available power for the laser. In 

other words, the laser light transmitted from the centre spacecraft would be much too 

faint upon reflection and return from the other spacecraft; thus, in an analogy to a 

radiofrequency transponder scheme, the laser on the receiving spacecraft is instead 

phase-locked to the incoming light, generating a return beam of full intensity. The 

transponded light from the far ‘reflector’ spacecraft is received by the centre spacecraft 

and superposed with the onboard laser light that serves as the local oscillator in a 

heterodyne detection. As this entwines laser frequency noise with a potential 

gravitational wave signal, the signal from the other arm together with a software 

algorithm for data post-processing, called time-delay interferometry, are used to take 

out the laser frequency noise and obtain the pure gravitational wave signal. 

In order to ensure that the two test masses of each spacecraft are flying in a 

disturbance-free motion along their geodesics, such that an extremely small 

displacement due to the passage of gravitational waves is detectable, challenging 

performance requirements with respect to internal and external disturbance rejection 

must be satisfied by an overall Drag-Free-System consisting of: 

• Inertial sensors (IS, Electrostatic Suspension Actuation and Capacitative 

Sensing) 

• Optical Metrology System (OMS, Laser Interferometry) 

• Field Emission Electric Propulsion (FEEP, System of  Micro-Propulsion 

Thrusters) 
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• Inertial Wavefront Sensing  (IWS, Science Interferometer) 

• Optical Assembly Tracking Mechanism (OATM) 

• On-board computer (OBC , Drag-Free Control Software) 

LISA works according to several operating modes during its lifetime; the one during 

which the science operations are performed is addressed in this work as science mode. 

 

1.2.1 Science Requirements 

The top level science requirement for LISA is given in terms of strain sensitivity. 

The strain sensitivity h is a measure for the gravitational wave amplitude and is 

proportional to the arm-length change such that 

 L h
L
δ

≈  (1.1) 

where L is the arm-length expressed in m and δL is the arm-length variation expressed 

in m/√Hz due to the passage of a gravitational wave of  ‘amplitude’ h. 

LISA sensitivity objective is a strain linear spectral density of 4·10−21 1/√Hz around 

3 mHz. Since the useful measurement bandwidth ranges between 0.1 mHz and 1 Hz 

with a goal of extending the measurements down to 30 μHz, more detailed LISA 

measurement strain sensitivity requirements are listed in Table 1.2.1-1. 

 
Frequency 

(mHz) 
Strain sensitivity with 
35% system margin 

(1/√Hz) 

Strain sensitivity 
excluding system 

margin (1/√Hz) 

0.03 2.6×10-16 1.69×10-16 

0.1 3.9×10-17 (7.8×10-17) 2.54×10-17 

1 3.2×10-19 (7.9×10-19) 2.08×10-19 

5 1.1×10-20 (1.1×10-19) 7.15×10-21 

10 1.3×10-20 8.45×10-21 

100 7.5×10-20 4.87×10-20 

1000 7.5×10-19 4.87×10-19 
 

Table 1.2.1-1: Required LISA Measurement Sensitivity (values in brackets are the minimum science 
requirements) , Ref. [11] 
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Sources of gravitational waves that can thereby be detected are e.g. galactic binaries 

(neutron stars, white dwarfs), extra-galactic targets like super-massive black hole 

binaries, super-massive black hole formations and cosmic background gravitational 

waves. 
 

 
 

Figure 1.2.1-1: Gravitational waves sources detectable by LISA, Ref. [17] 

 
1.2.2 Science Performances 

The sensitivity that can be achieved by LISA is determined by a wide variety of 

noise sources and by the degree to which their effects can be kept small. There are two 

main categories of such sensitivity-limiting noise effects: 

• Disturbance Acceleration Noise 

The disturbance acceleration noise is due to forces or accelerations acting on the 

test masses, causing displacements of them which fake the extremely small 

displacement due to the passage of gravitational waves. The sources contributing 

to the acceleration environment of the test mass arise from both direct effects on 

it and the effects on the spacecraft that are coupled to the test mass through the 

electrostatic suspension system. These are: 

 External forces on the spacecraft, among them: 

- Thruster forces and thruster noises 
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- Telescope counter-force actuation and noise 

- Difference in gravitational acceleration between test mass and spacecraft 

centre of mass 

- Solar radiation pressure 

 Internal forces acting on the test mass and the spacecraft, including: 

- Thermal noise 

- Pressure fluctuations 

- Electrostatic actuation 

- Spacecraft self gravity 

 Forces that arise from sensor noise feeding into commands 

• Optical Path-Length Measurement Noise 

The optical path-length measurement noise fakes fluctuations in the lengths of 

the optical paths. This category of disturbances includes different types of noise, 

the most prominent of which are expected to be shot noise, beam pointing 

instabilities and thermal distortions. 

Therefore, in order to meet the sensitivity goal, two key technologies are required for 

LISA: 

• A disturbance reduction mechanism must shield the test mass from the outside 

environment in such a way that only gravity waves will cause measurable 

displacements.  

• A laser interferometer for precise measurement of the variation in the distance 

between the test masses is needed: LISA is expected to detect path length 

changes of a few picometers within the measurement bandwidth. 

 

1.2.3 The Disturbance Reduction Mechanism Requirement 

It can be proved that the science requirement is achieved only if the test mass falls 

under the effect of the large scale gravitational field within an acceleration noise, 

relative to a free falling frame, whose linear spectral density is 
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in the measurement bandwidth of 

  

0.1 mHz < f < 1 Hz (goal 30 µHz as lower end) 

 

This requirement holds for the sensitive axis (nominal line of connection between 

the two test masses of one arm of the constellation) of each test mass hosted on board of 

each spacecraft. 

 

1.2.4 Optical Metrology System Requirement 

Given the strain sensitivity requirements, LISA is expected to detect path length 

changes of a few picometers within the measurement bandwidth. Therefore, the 

interferometer sensing must be able to monitor the test mass position along the sensitive 

axis with a displacement noise level of 
 

 
4

1/2
n

2.8 S 12 1pm m
fHz

⎛ ⎞
≤ ⋅ + ⎜

⎝ ⎠

Hz
⎟  (1.3) 

in the frequency range 

 
0.1 mHz < f < 1 Hz (goal 30 µHz as lower end) 

 

1.2.5 Measurement Sensitivity 

The overall LISA measurement sensitivity is shown in Figure 1.2.5-1. It illustrates 

the resulting LISA performance curve and compares it to the original science 

requirements data points. The most critical points in terms of meeting the overall 

performance are the 5 mHz requirement and the goal of meeting the 30 μHz 

requirement. At 5 mHz, the contribution from the acceleration noise and from the 

optical metrology noise are balanced such that the requirement is just met (with 35% 

system margin). At very low frequencies, the major disturbance contribution comes 
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from fluctuating charges on the test-mass which must be controlled with the charge 

measurement and discharge strategy. 
 

Critical SRD points

Acceleration 
noise dominated

Optical metrology 
noise dominated

Antenna length effect 
(5 mio km arm-length)

Critical SRD points

Acceleration 
noise dominated

Optical metrology 
noise dominated

Antenna length effect 
(5 mio km arm-length)

 
 

Figure 1.2.5-1: LISA sensitivity performance compared to science requirements, Ref. [11] 

 
1.3 End-to-End simulator 

Since LISA relies on technologies that have never been tested before and cannot be 

properly verified on ground, highly detailed performance simulations are required in 

order to ensure mission success. An End-to-End (E2E) simulator is currently under 

development. It aims at verifying the on-orbit performance of a strongly coupled 

satellite and payload system. Modelling work goes far beyond what is typically done for 

conventional satellite system simulators and involves a wide spectrum of competencies 

relating to different scientific and technical areas; the aim is to provide an accurate and 

integrated tool for performance analysis. 

Figure 1.3-1 shows the top-level architecture of the E2E simulator. The simulator is 

implemented in the Matlab/Simulink® environment (some models are written in C/C++ 

in order to speed up simulation run-time). 
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 Figure 1.3-1:  E2E simulator top-level architecture, Ref. [13] 

 
This thesis aims at providing a control system model for the acquisition phase of 

LISA that will be included in the LISA E2E simulator. The programming work has been 

realized in the Matlab/Simulink® environment (version 7.2.0.232 (R2006a)). 

 

1.4 Acquisition Phase 

The interferometric measurements of LISA are only possible once the three optical 

links between the three spacecraft of the LISA constellation are established. More 

specifically, before LISA science measurements can commence the laser signal 

transmitted from each arm of each spacecraft has to be acquired by the quadrant 

photodiode of the receiving spacecraft so that it can be phase-locked with the local 

laser. This is the process of the constellation acquisition for LISA.  

The quadrant photodiode (QPD) is an optical device whose main tasks are to 

provide the measurement of the arm-length for the science experiment and an accurate 

spacecraft inertial attitude determination in the science mode. The QPD is not available 

as an attitude sensor until the laser link is established, therefore, two auxiliary less-
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accurate inertial attitude sensors are used: a star tracker (STR) and an acquisition sensor 

(CCD). 

LISA constellation acquisition is challenging given the 5 million km distance 

between the spacecraft, inherent limits of the auxiliary attitude sensors accuracy, orbit 

determination accuracy issues and the time required to phase-lock the incoming and 

outgoing laser signals.  

In order to counteract all these adverse constraints and make the LISA constellation 

acquisition possible, the perturbations on the laser pointing must be reduced under 

stringent limits by means of a highly competitive control system design. A scheme of 

the control system design is depicted in Figure 1.4-1. It is divided in three parts: 

• Guidance law design: it consists in the design of the mathematical algorithm that 

drives the laser pointing during the whole duration of the acquisition 

• Measurement processor design: it consists in the design of a mathematical 

algorithm that processes the measurements provided by the different sensor 

devices in order to produce an enhanced estimation of the measurement data for 

the controller 

• Controller design: it consists in the design of the control algorithm that provides 

the actuation commands which force the laser to follow its pointing guidance law 

 

Guidance 
Law 

Measurement 
processor 

(Kalman Filter) 

Controller 
+ 

- 

 
1.4-1: LISA constellation acquisition control system structure 

 
The measurement processing is the essential key to reduce the perturbations on the 

laser pointing. In fact if the measurement data are not cleaned up from the noise 

introduced by the poor attitude sensor available, the controller is not able by itself to 



 
1. Introduction 15
 

fulfill the necessary perturbation reduction and the acquisition phase cannot be 

completed.  

This thesis deals with the design of the measurement processing device: a Kalman 

filter is chosen to this end. 

 

1.5 Contributions of This Work 

• A fully compliant custom tool for the implementation and performance analysis 

of several Kalman filter algorithms has been developed in the Matlab/Simulink®  

environment. An extensive research to reduce sources of numerical errors has 

been performed. 

• The application of the Kalman filtering technique to the LISA satellite model in 

the operative conditions of the acquisition has been performed. An extensive 

modeling and tuning research has been realized in order to improve the 

performance of the filter. A sensitivity analysis of the filter performance towards 

the Kalman filter algorithm, the acquisition phase duration and the sensor noise 

levels has been realized. 

• A sensitivity analysis tool based on the Monte Carlo technique has been 

developed and used to qualify the performance sensitivity of different Kalman 

filter algorithms towards model errors. To this end, an error budget of the model 

parameters has been derived. 

• The effect of constant parasitic forces and torques over the acquisition controller 

has been investigated and a drift compensation strategy has been developed. 

• The results achieved have been used to derive requirements for the sensor 

systems and for the acquisition controller. 

 
1.6 Outline of the Thesis 

The current report has been divided in two parts: the first provides a system-level 

introduction to the following design part. 
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In chapter 2, the constellation acquisition control for LISA is described in detail and 

the requirements for the control system are recollected from [7]. In chapter 3, the 

equations of motion and the measurement equations of the drag-free satellite are 

derived. In chapter 4, the controller design strategy is presented, while the controller 

design performances are analyzed in chapter 5 proving the necessity of a Kalman filter 

for the reduction of the perturbation effect due to the attitude sensor noise level. To this 

end, an overall model of the closed-loop LISA satellite dynamics is implemented in 

both Matlab® and Simulink® environments. 

The following chapters constitute the second part, concerning the Kalman filter 

design. 

In chapter 6, the main theoretical concepts for the Kalman filter design are 

introduced with particular attention to the methods to limit numerical errors. In chapter 

7, the Kalman filter for the LISA acquisition phase is designed and a Matlab®  and a 

Simulink®  tools for its implementation and its performance analysis are developed. The 

sensitivity analysis toward model errors, based on the use of the Monte Carlo technique, 

is developed in chapter 8. In chapter 9, DC parasitic forces and torques are introduced in 

the model: their effect is evaluated and a drift compensation strategy is proposed. 

Finally, chapter 10 proposes a summary of the performed work and suggests useful 

guidelines for further improvements. 

 



Chapter 2  

Constellation Acquisition Control for 
LISA 

A system-level introduction to the constellation acquisition control for LISA is provided 

in this chapter. 

 

2.1 Introduction 

As already mentioned in section 1.4, the objective of the acquisition phase is to 

bring the whole constellation to a science mode configuration which is only lacking 

some of the calibrations before the science measurements can commence. Thus, during 

the acquisition phase, all the three laser links between the three spacecraft need to be 

established (Figure 2.1-1).  
 

 
 Figure 2.1-1: LISA laser links, Ref. [10] 
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More specifically, the scope of the acquisition is to obtain the laser signal on the 

quadrant photodiode (QPD) of each arm of all the three spacecraft of the constellation 

such that the science interferometer can start to operate continuously measuring the 

arm-lengths for the science experiment, data transmission between the spacecraft can be 

established and the QPD can start to be used as a highly accurate inertial wavefront 

sensing (IWS) for the attitude control of each spacecraft. Because of several sources of 

uncertainties, that are exhaustively described in the following, the acquisition of the 

laser signal on the QPD cannot be performed directly by just switching on the laser of 

one spacecraft and shooting in the direction of the other. Therefore, the acquisition 

results in a complex ensemble of operations to achieve the signal on the QPD. 

Since the QPD is not available as an attitude sensor until it receives a continuous 

laser signal, two auxiliary inertial attitude sensors are needed during the acquisition 

phase: a star tracker (STR) and an acquisition sensor (CCD). Although the CCD has 

better performances than the STR, especially in terms of the measurement noise 

introduced, it cannot be used as an attitude sensor from the beginning of the acquisition 

phase. In fact, the CCD does not work as a ‘super star tracker’, but rather as a ‘reduced 

QPD’ in the sense that it must receive the laser signal from the other spacecraft of the 

same arm and, moreover, the local laser must be switched off, because the CCD is 

blinded by the local laser stray light. Thus, the STR is used as an attitude sensor during 

all the phases of the acquisition in which the laser link between two spacecraft is not yet 

established and/or the local laser is turned on. 

The strategy adopted for the constellation acquisition is sequential in the sense that it 

establishes one laser link at time. It stands to reason that, after one laser link is 

performed on one arm, the signal acquisition process on the second and third arm will 

be in principle the same, except for the fact that high-accuracy attitude knowledge is 

already available for one direction. Therefore, in this work, just the signal acquisition of 

the first arm is taken into account, although the feasibility of the whole constellation 

acquisition should be verified through simulation at a later stage. 

 

2.2 Acquisition Sequence 

The process for the single-link acquisition is initiated and then accomplished 

autonomously. It is divided into four main phases: 
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• Calibration phase 

• Signal acquisition on the acquisition sensor  

• Signal fine acquisition on the acquisition sensor  

• Signal acquisition on the quadrant photodiode  

 

2.2.1 Calibration Phase 

The purpose of this phase is to perform a calibration of the telescope line-of-sight 

(LOS) by referencing it to the star tracker heads, eliminating in this way the constant 

bias which causes a deviation from the nominal 30° angle between the star tracker and 

the telescope acquisition sensor (CCD) lines-of-sight.  

During the calibration phase, the spacecraft is rotated around the sun vector (Figure 

2.2.1-1). Rotations around other axis are allowed on the condition that they are small in 

order to maintain the same thermal environment. Providing that the star tracker and the 

acquisition sensor field-of-view (FOV) are large enough to find stars with sufficient 

magnitude, first a guide star can be identified by the STR allowing the complete 

knowledge of the spacecraft attitude. Then, a second guide star is found on the CCD 

and, together with the known spacecraft attitude, is used to compute and remove the 

offset angles between the expected and the real telescope line-of-sight.  

 
Sun Vector 

 
 

Figure 2.2.1-1: Telescope line-of-sight calibration process, Ref. [7] 
 

Telescope 
Line-of-Sight 

SC rotation to find 
guidance stars 

30°



 
2. Constellation Acquisition Control for LISA 20
 
 

For the reasons explained in section 2.1, during the calibration only the STR can be 

used as attitude sensor. 

 

2.2.2 Signal Acquisition on the Acquisition Sensor 

The goal of this acquisition step is to find the laser signal on the acquisition sensor 

(CCD) of both the spacecraft of one arm of the constellation.  

During this phase, one spacecraft, which is addressed as SC 1 or as sending 

spacecraft in the following, turns on its laser and performs a scanning maneuver to 

cover the uncertainty cone which represents the size of the sky where the target 

spacecraft (SC 2) is expected to be sited (Figure 2.2.2-1) The scanning is performed by 

using a given scanning law, e.g. by describing a spiral from the center, where it is more 

likely to find SC 2, to the outer boundary of the uncertainty cone. The laser is switched 

off between one scanning position and the other. Obviously, to be sure that the CCD of 

SC 2 could be intercepted by the SC 1 laser beam, the sending spacecraft must cover the 

whole uncertainty cone during the scanning procedure with a sufficient amount of 

superimposition between the scanning cones, each of which represents the size of the 

laser beam at the receiving spacecraft (Figure 2.2.2-1). 

 

Uncertainty Cone 

 
 

Figure 2.2.2-1: Scanning procedure, Ref. [7] 

 
While SC 1 is actively scanning, the target spacecraft remains in its reference 

attitude and stares into the corresponding reference direction which is based on ground- 
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provided navigation data (Figure 2.2.2-2 left side). 

 

 
Figure 2.2.2-2: Spacecraft 1 scanning, spacecraft 2 is waiting for a signal (on the left); spacecraft 1 

scanning, spacecraft 2 detects a signal (on the right); CCD2 stands for CCD of SC 2, Ref. [7] 

 
At a certain time during the scanning, SC 2 will detect a signal on its acquisition 

sensor (Figure 2.2.2-2 right side). 

Because of the errors in the ground-provided reference attitude, there will be an 

offset between the expected (ground-provided) reference position and the real position 

of the incoming laser signal. Hence this offset, which is expected to be linear, must be 

computed, using as reference the real position of the laser signal on the acquisition 

sensor, and the attitude guidance law of SC 2 must be corrected including the computed 

attitude offset angles (Figure 2.2.2-3). 
 

 
 

Figure 2.2.2-3: Signal detection on the CCD of spacecraft 2 (CCD2), Ref. [7] 
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While SC 2 is accomplishing the attitude correction, SC 1 still performs the 

scanning producing SC 2 to lose the signal from SC 1 on its acquisition sensor (Figure 

2.2.2-4) 
 

 

SC 2 

SC 1 
Scanning law 

Field of View of CCD2

 

Figure 2.2.2-4: Spacecraft 1 scanning, spacecraft 2 has performed the attitude correction (CCD2 stands 
for CCD of SC 2), Ref. [7] 

 
After having obtain the correct attitude, SC 2 can send back a laser signal to the 

scanning spacecraft. In order that SC 1 can detect the incoming laser signal on its 

acquisition sensor, two circumstances must occur: 

• The laser of SC 1 must be turned off. This condition is satisfied periodically 

between one scanning position and the next. 

• SC 2 must still be in the field-of-view of SC 1. This will be the case if the 

attitude correction of SC 2 does not take too long, since the scanning pattern 

ensures that a particular scanning location remains in the FOV of the scanning 

spacecraft for several minutes (Figure 2.2.2-5) 

 

SC 2 

Figure 2.2.2-5: Spacecraft 1 detects signal of spacecraft 2 (CCD2 stands for CCD of SC 2) , Ref. [7] 
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Upon detection of the laser signal, SC 1 must perform an attitude correction since it 

suffers from similar errors in the ground-provided attitude guidance law as SC 2. 

For the reasons explained in section 2.1, during the whole duration of this phase 

only the STR can be used as an inertial attitude sensor. 
 

2.2.3 Signal Fine Acquisition on the Acquisition Sensor 

Once both spacecraft have successfully received a laser signal on their acquisition 

sensor, a fine attitude correction can be performed. The objective of this acquisition step 

is to bring the incoming laser signal to a reference position of the CCD with high 

accuracy such that the incoming laser is within the FOV of the QPD. This ensures that a 

frequency search can be done on the QPD in the next acquisition step (Figure 2.2.3-1) 
 

 

SC 2 Field of View of CCD2

SC 1 

Field of View of CCD1 

 

Figure 2.2.3-1: Attitude fine acquisition (CCD2 stands for CCD of SC 2) , Ref. [7] 

 
In order to perform a fine acquisition of the signal on the acquisition sensor, it is 

necessary that both spacecraft (SC 1 and SC 2) perform their attitude control based on 

the read-out of the acquisition sensor itself. Since this sensor is blinded when the local 

laser is turned on, a laser on/off pattern must be implemented such that it is ensured that 

SC 1 and SC 2 have the frequent opportunity to detect the laser signal of the other 

spacecraft.  

 

2.2.4 Signal Acquisition on the Quadrant Photodiode 

The goal of this acquisition step is to obtain the laser signal on the QPD of both 

spacecraft such that both lasers can be turned on in the steady state, allowing data 
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transmission between the two spacecraft, and the QPD can be used as an highly accurate 

inertial wavefront sensing for the attitude control in the science mode. 

In order to detect a signal on its quadrant photodiode, SC 2 performs a frequency 

scan by changing the frequency of its local laser in order to reveal a beat signal on the 

quadrant photodiode. This can only be done when the local laser is turned on and light 

from SC 1 is received. As soon as the beat signal is detected, the QPD can be used as an 

attitude sensor. However, the local laser must still be turned on/off until spacecraft 1 has 

successfully found a signal on its QPD as well and, therefore, the attitude control is 

based on the read-out of the acquisition sensor.  

Since the Doppler shift, due to the relative velocities between the two spacecraft, is 

fairly accurately known in the framework of the ground-provided navigation data and 

can thus be removed by onboard data processing, SC 1 should be able to detect a signal 

on the QPD as soon as SC 2 has found the correct frequency as well. 

 

2.3 Uncertainty Cones and Requirements  

The reason for this complex strategy of acquisition stands in the fact that the laser 

link between the two spacecraft of one arm cannot be obtained just by turning on the 

laser of SC 1 and shooting in the direction of SC 2. This happens because there are 

several sources of uncertainty that require to be limited as far as possible through a 

highly demanding overall-system-design, while the not eliminable amount of remaining 

uncertainty must instead be covered by such an acquisition strategy.  

In this section, the constraints (on the spacecraft and payload system side and on the 

operational side) which cause the mentioned uncertainty will be described in detail for 

each phase of the acquisition, aiming at deriving requirements for them. A close 

examination can be found in [7]. 

In particular, since the objective of this work is to design the control system for the 

acquisition phase, all those constrains that influence directly (i.e. desired performances) 

and indirectly (i.e. available sensing and actuation systems) the control system design 

will be highlighted with special attention and specific requirements will be derived for 

them.  
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2.3.1 Preliminary Definitions 

The requirements on the spacecraft attitude and the telescope in-plane pointing angle 

refer to the error signal which represents the deviation of the real signal from the 

corresponding guidance law 

 

Error = Guidance Signal – Real Plant Signal 

 

Therefore, the long-term drift is a deviation from the guidance law which represents 

a perturbation that influences the CCD field-of-view position and it is spread over the 

whole duration of each acquisition sub-phase. 

The short-term jitter is a deviation from the guidance law that perturbs the laser 

beam position at the receiving spacecraft in the timeframe of the permanency in such 

position. 

The spacecraft attitude requirement involves the spacecraft inertial attitude (ΘB, ΗB, 

ΦB) expressed as the three rotation angles around the three body axis of the spacecraft 

reference frame ΣB defined in chapter 3. One-axis attitude requirement means that the 

same requirement is used for each one of the attitude angles.   

The telescope in-plane pointing angle requirement refers to the telescope angular 

deviation (α) from its nominal position around the orthogonal axis to the constellation 

plane expressed in the spacecraft frame. This requirement involves the articulated 

telescope (section 2.4.3) 

In-plane and out-of-plane qualify the angles that lie or not lie in the constellation 

plane defined by the three LISA satellites. 

For the definitions of the statistical variables (i.e. mean, variance, standard deviation 

(σ), root mean square (RMS), root square sum (RSS), power spectral density (PSD)) 

and their relationship refer to Appendix B.  

 

2.3.2 Uncertainty cones  

Calibration 
 

As already pointed out in section 2.2.1, sensors (CCD and STR) field-of-view and 

sensitivity are the main constraints for the calibration to be performed.  
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In particular, the STR is characterized by a large field-of-view, but also by a small 

aperture which causes the STR optics sensitivity to be the limiting factor for the 

magnitude and, consequently, the number of stars that can be seen. In other words, even 

if the STR field-of-view allows to see a large portion of sky, a reduced aperture causes 

that only few, very bright stars can be effectively detected. Thus, the main requirement 

coming from the calibration for the STR is that it must be able to use stars with enough 

magnitude.  

On the other hand, the CCD has a better sensitivity, but a poor field-of-view. 

Consequently the star that the STR has to point must be chosen such that the CCD, 

whose LOS is nominally rotated of 30° in the constellation plane from the STR’s one, 

could find another star with enough magnitude in his field-of-view. Moreover, it is 

necessary to define an uncertainty cone that need to be covered by CCD field-of-view 

during the calibration to be sure that the selected calibration star is effectively in the 

CCD field-of-view. Its main contributions are listed in Table 2.3.2-1. 

 

Contribution 
Error in plane 

(µrad) 

Error out of 
plane 

(µrad) 

Alignment Error between Star Tracker and 
Spacecraft 50 50 

Alignment Error between Spacecraft and 
Telescope Assembly 50 50 

Alignment Error between Telescope Assembly 
and Telescope Pointing Actuator 25 25 

Absolute Position Knowledge of Telescope 
Pointing Actuator 0.5 0 

Spacecraft Attitude (one axis) Long-term Drift 
(RMS 3σ) 30 30 

Telescope in-plane Pointing Angle Long-term 
Drift w.r.t. Spacecraft (RMS 3σ) 0.01 0 

Total (linear sum) 155.5 150 
 

Table 2.3.2-1: Calibration uncertainty cone budget, Ref. [7] 
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All the numeric values have to be confirmed, but it seems evident that the telescope 

field-of-view must be large enough to compensate especially the on-ground alignment 

error between the star tracker and the telescope line-of-sight. 

The spacecraft attitude long-term drift and the telescope in-plane pointing angle 

long-term drift requirements during the calibration are instead dominated by the quality 

of the star tracker read-out signal, by the DC (constant) solar forces and torques 

disturbances acting on the SC, by the DC parasitic forces and torques acting on the T/M 

and by the telescope pointing actuator and read-out noise. Therefore, it is evident that 

all these contributions influence directly the control strategy that has to be adopted in 

this phase in order to achieve the desired performances in term of spacecraft attitude 

and telescope pointing drift.  
 

Signal Acquisition on the Acquisition Sensor 
 

The uncertainty cone represents the size of sky that must be scanned by the sending 

spacecraft in order to intercept the CCD of the receiving spacecraft and also the size of 

sky that must be covered by the CCD field-of-view of the receiving spacecraft during 

the whole duration of the scanning phase in order to detect a signal from the sending 

spacecraft (Figure 2.2.2-1). Since it is larger than the scanning cone, which represent the 

size of the laser beam at the receiving spacecraft, the acquisition cannot be direct. 

However, the acquisition on CCD can be performed more quickly and more efficiently 

when the uncertainty cone is kept small and the size of the scanning cone is large. 

The size of the acquisition uncertainty half-cone angle is estimated to be around 8.9 

μrad RSS. It has contributions from uncertainties in the relative position knowledge of 

the spacecraft (inertial navigation error), spacecraft attitude long-term drift and the 

telescope in-plane pointing angle long-term drift, star tracker/telescope line-of-sight 

alignment knowledge accuracy after calibration and line-of-sight versus outgoing laser 

beam offset knowledge accuracy. Table 2.3.2-2 captures the breakdown of the 

uncertainty cone budget. Since it is very small when compared with the calibration 

uncertainty cone budget, this cone is not the leading factor for the choice of the CCD 

field-of-view. 
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Contribution Error 

(µrad) 

Navigation Error 7.2 

Star-Tracker/Telescope Line-of-Sight Alignment Knowledge 
Accuracy after Calibration  1 

Point-Ahead Angle Error (mainly due to navigation error) negligible 

Line-of-Sight versus Outgoing Laser Beam 1 

Spacecraft Attitude (one axis) Long-term Drift   5 (TBC) 

Telescope in-plane Pointing Angle Long-term Drift w.r.t. 
Spacecraft 1 (TBC) 

Total (linear sum) 15.2 

Total (RSS) 8.9 
 

Table 2.3.2-2: Uncertainty cone budget (RMS 3σ) during 
 acquisition on CCD (half-cone angle), Ref. [7]  

 
The uncertainty cone contribution εnav from the inertial navigation error is given by 

the trigonometric equation: 

2 2
arcsin

- 2min min

x x
nav L Lx

δ δ
ε

δ

⎛ ⎞
⎜ ⎟= ≈⎜ ⎟⎜ ⎟
⎝ ⎠

         (2.1) 

 
 

where δx is the maximum relative navigation error along a coordinate axis of the inertial 

heliocentric frame provided by the DSN (estimated as 25 km RMS 3σ) and Lmin is the 

minimum arm length assuming an uncertainty of ±1% on the nominal value. Eq. (2.1) 

represents the worst-case navigation error and it is illustrated in Figure 2.3.2-1.  

 
SC 1 

position uncertainty box 

Reference pointing line 

SC 2 
position uncertainty box 

Worst-case off-pointing 

 
Figure 2.3.2-1: Worst-case navigation error, Ref. [7] 
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The point-ahead angle αpa (PAA) is the difference between the laser incoming and 

outgoing direction due to the relative velocity between the two spacecraft and can be 

computed using the relative position and the relative velocity which are ground-

provided (figure 2.3.2-2). The out-of-plane point-ahead angle can be compensated by 

using a point-ahead angle mechanism. The point-ahead angle error is the offset between 

the expected PAA and the real one due to navigation error in the relative position and 

velocity knowledge. Being less than 1 nrad, this error is negligible with respect to the 

others. 

 

 
 

Figure 2.3.2-2: Illustration of the point-ahead angle definition, Ref. [7]  

 
The line-of-sight versus outgoing laser beam error is due to a number of factors, 

such as launch disturbances, thermal loading, on-ground calibration accuracies and the 

lateral stability of the fiber launcher. It must be ensured that this angle is sufficiently 

small such that a signal can be correctly sent back to the sending spacecraft when its 

real position is detected on the acquisition sensor. Potentially, the CCD acquisition 

sensor may be used to calibrate out a part of this uncertainty. 

The spacecraft attitude long-term drift and the telescope in-plane pointing angle 

long-term drift requirements during the acquisition on CCD have the same meaning of 

the correspondent calibration long-term drifts. However, in this context, the drift 

requirements are more demanding in order to reduce the size of the uncertainty cone 

and thus their influence on the control design will be greater. 
 

The size of the scanning cone is given by the ideal full-width of the emitted beam  
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reduced by the local spacecraft attitude jitter and the telescope pointing jitter (Table 

2.3.2-3) 
 

Contribution Error 

(µrad) 

Laser Beam Divergence 1.58 

Spacecraft Attitude (one-axis) Short-term Jitter (RMS 1σ) 0.1 

Telescope Pointing Short-term Jitter w.r.t. Spacecraft (RMS 1σ) 0.05 

Total (linear algebraic sum) 1.43 
 

Table 2.3.2-3: Scanning cone budget during 
 acquisition on CCD (half-cone angle), Ref. [7]  

 
All the numeric values have to be confirmed. The half-size of the emitted laser beam 

at the receiving spacecraft for a 1064 nm laser wavelength out of a 40 cm primary 

mirror must be computed at the smallest possible distance between the two spacecraft in 

order to represent the worst case condition (Figure 2.3.2-3). 

LASER BEAM 
SIZE 

LMAX

LMIN

SC1  
Figure 2.3.2-3: Worst-case and better-case laser beam divergence 

 
The spacecraft attitude and the telescope in-plane pointing angle short-term jitter 

requirements for the size of the scanning cone are dominated by the quality of the star 

tracker read-out signal and by the telescope pointing actuator and read-out noise. 

Therefore, it is evident that also these contributions, together with the long-term drift 

requirements, influence directly the control strategy that has to be adopted in the 

acquisition on CCD phase. 
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Since a sufficient overlap between scanning positions must be provided, the required 

maximum number of scan positions can be estimated as 
 

2

2
uncertainty

scan
scan

N
ε
α

=  (2.2) 

where: 

• εuncertainty : half cone angle of uncertainty cone 

• αscan:                half cone angle of scanning cone 

which yields approximately 113 scan positions. Therefore, the scan rate provided by the 

telescope pointing actuator must be sufficiently high in order to perform the scanning in 

a reasonable short duration. 

 
Signal Fine Acquisition on the Acquisition Sensor and Signal Acquisition on the 
Quadrant Photodiode 
 

The level of precision by which the incoming signal can be steered to a reference 

position on the CCD depends strictly on the resolution of CCD itself. In order to 

perform the acquisition on the QPD, the mentioned reference position must be seen by 

the QPD. Therefore, it is necessary that the field-of-view of the QPD is sufficiently 

large to comply with the resolution of the acquisition sensor and to cope with any 

misalignments (Table 2.3.3-4). 
 

Contribution Error 

(µrad) 

CCD Resolution (including centroiding) 0.06 

Spacecraft Attitude (one axis) and Telescope in-plane Pointing 
Angle Short-term (w.r.t. Spacecraft) Jitter (RMS 1σ) 0.1 

Absolute Pointing Accuracy of the Point-Ahead Angle Mechanism 8 

Misalignment between QPD and CCD 1 

Total (linear sum) 9.6 

Total (RSS) 8.1 
 

Table 2.3.2-4: Uncertainty cone budget during acquisition on QPD (half-cone angle), Ref. [7] 
All the numeric values have to be confirmed. 
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To be noted is that the navigation error is not part of the list anymore since an on-

board measurement of the correct attitude is now provided by the acquisition sensor. 

Also remarkable is that the spacecraft attitude and telescope in-plane pointing angle 

control requirements have the same meaning of the correspondent scanning cone short-

term jitter contributions, but here they are dominated by the quality of the CCD read-out 

signal and by the telescope pointing actuator and read-out noise. Therefore, they can be 

significantly relaxed in the required axes thanks to the availability of acquisition sensor 

signal which is much less noisy than the STR sensor signal. 

 
Remark 
 

From this discussion can be concluded that, in order to perform the whole 

acquisition, a switching from one attitude sensor to another must be ensured. This is 

translated in strict requirements on the field-of-view, the resolution and noise of the 

sensors. The current baseline for sensors equipment is shown in Table 2.3.2-5.  
 

 STR CCD QPD 

Field-of-View 0.3 rad 155 µrad 10 µrad 

Resolution 255 µrad/pixel 0.4 µrad/pixel 1 nrad/pixel 

Read-Out Noise 29 µrad (RMS 3σ) 60 nrad (RMS 3σ) 750 prad/√Hz 
 

Table 2.3.2-5: Performance requirements for STR, CCD and QPD; all the numeric values are TBC 

 
As can be noted, in order to enhance the field-of-view and the resolution required to 

realize the measurement chain from one sensor to another, also an increase in the read-

out noise is produced. 

 
2.3.3 Requirements for the acquisition controller design 

From the analysis performed in the previous sections, it can be concluded that the 

desired performances in terms of spacecraft inertial attitude control and telescope in-

plane pointing angle control change considerably from one acquisition step to another, 

especially as a consequence of the different inertial attitude sensors available. 

Specifically, the acquisition on CCD phase results to be the most demanding because: 
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• There are two types of required performances (long-term drift and short-term 

jitter) which must be achieved at the same time for the laser beam pointing of the 

scanning spacecraft, while, in the other phases, the requirements just belong to 

one category or to the other; 

• The requirements on the long-term drifts are more demanding than the 

correspondent requirements in the calibration phase where the same attitude 

sensor (STR) is available. 

• The requirements on the short-term jitters are of the same order of magnitude of 

the correspondent requirements for the acquisition on QPD phase where, 

however, the less noisy CCD is available as an attitude sensor. 

Therefore, it is convenient to design a controller that could be used in all the 

acquisition phases and to test it in the framework of the acquisition on CCD phase since 

it is the most demanding in terms of desired performances and available sensors. The 

performance goals to be demonstrated through the controller design for a successful 

acquisition are summarized in Tables 2.3.3-1 and 2.3.3-2. 
 

States 
Required error  

(μrad)  

RMS 1σ 

Spacecraft Attitude (one-axis) Short-Term Jitter 0.1 (TBC) 

Telescope in-plane Pointing Angle (w.r.t. Spacecraft) Short-
Term Jitter 0.05 (TBC) 

Table 2.3.3-1: Requirements on the short-term jitters from the scanning cone budget 
 

States 
Required error  

(μrad)  

RMS 3σ 

Spacecraft Attitude (one-axis) Long-Term Drift 5 (TBC) 

Telescope in-plane Pointing Angle (w.r.t. Spacecraft) Long-
Term Drift 

1 (TBC) 

Table 2.3.3-2: Requirements on the long-term drift from the uncertainty cone budget  
during acquisition on CCD 
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Note that the acquisition controller must guarantee that the laser beam along the arm 

of the constellation where the acquisition is first performed follows the pointing 

guidance law determined by the acquisition sequence previously described. The laser 

beam pointing direction coincides with the telescope line-of-sight direction. The 

telescope line-of-sight direction can be univocally determined, with reference to the 

inertial frame, by the in-plane and the out-of-plane angular deviation from its nominal 

position (Ηi, Φi where i = 1,2 indicates the i-th telescope of the spacecraft). The roll 

angle Θi, that defines the rotation of the telescope around its line-of-sight direction, can 

be also considered. Obviously this angle does not influence the laser pointing and does 

not need a requirement. In the following, the angles (Θi, Ηi, Φi) are referred as telescope 

line-of-sight inertial attitude. Therefore, the task of the controller system is to allow the 

telescope line-of-sight inertial attitude to follow its guidance law reducing the 

perturbations caused by the spacecraft attitude and telescope in-plane pointing angle 

fluctuations and keeping them within the limits stated in the several budgets presented 

above. 

Consequently, the requirements of Tables 2.3.3-1 and 2.3.3-2 must be translated in 

the reference frame of each telescope that is involved in the acquisition process (Table 

2.3.3-3) in order to be used for the controller performance verification. 

 
Short-Term Jitter 

(μrad) 
Long-Term Drift 

(μrad) Telescope 
Ηi Φi Ηi Φi 

fixed 0.1 0.1 5 5 

actuated 0.1 2 20 1 0 05 0 118. .  .+ ≈ 5 2 21 5 5 099.+ ≈
 

Table 2.3.3-3: Requirements on the telescope line-of-sight inertial attitude 

 
Since the duration of the acquisition on CCD phase has to be defined (the expected 

duration is about 15 minutes providing an adequate scan rate to the scanning 

spacecraft), the following statistical analysis is performed in order to verify the 

fulfilment of the requirements of Table 2.3.3-3: 
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• Time-series of 30000 s of the inertial attitude of each telescope line-of-sight are 

obtained through simulation and their errors in following the guidance law1 are 

computed. 

• It is defined a time interval (time-window) representing the duration of the 

acquisition on CCD phase (long-term) and, conservatively, the permanency of 

each scanning position (short-term). A time-window of 1000 s is taken as 

baseline where not explicitly mentioned otherwise. 

• The time-window is moved continuously along the time-series (moving time-

window) and, on each selected interval, the following statistic variables are 

computed after having detrended the constant bias: 

- RMS 1σ as a measure of the short-term jitter 

- Slope of the interpolating line as a measure of the long-term drift 

• Between all the statistics achieved over each time-series (2 for each moving 

time-window) the maximums are selected and compared to the corresponding 

requirements (Table 2.3.3-3) 

 

2.4 Actuators for Acquisition Control 

The actuation systems used for the acquisition control are the same that are involved 

in the science mode control since it is not useful to design dedicated systems for the 

acquisition. They are: 

• micro-propulsion system 

• electrostatic suspension system 

• telescope pointing actuator system 

The sampling rates at which actuation commands are considered available are 

limited to ~ 10 Hz. This limit is dictated by: 

                                                 
1 As mentioned before (section 1.4), the guidance of the spacecraft and the telescope states is not within 
the purpose of this work. Therefore, the correspondent reference signals are set to zero if not explicitly 
mentioned otherwise. The designed acquisition controller should be tested over the correct guidance law 
at a later stage. 
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• micro-propulsion system command update rate 

• available on-board computer power 

 
2.4.1 Micro-Propulsion System 

The micro-propulsion system must provide force and torque actuation capability of 

all 6 degree of freedom (3 linear and 3 angular coordinates) of the spacecraft. 

In order to minimize the noise at the gravitational reference sensors, the drag-free 

attitude control system (DFACS) on the LISA spacecraft requires an extremely fine 

level of actuation essentially vibration free. This will be provided by a propulsion 

system capable of attitude and position control with thrust at micro-Newton level. Field 

emission electric propulsion thrusters (FEEP), although unqualified, are currently the 

best placed technology for supplying this function. Figure 2.4.1-1 shows the power 

spectral density of the noise shape filter used to simulate the FEEP actuation noise in 

the most conservative way and Figure 2.4.1-2 compares it to the experimental data 

available. 
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Figure 2.4.1-1: FEEP noise shape filter (bilogarithmic scale) 

 
A field emission thruster is a device that uses an electric field to extract atomic ions 

from the surface of a metal. For propulsion applications, the most common source of 
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ions is a metallic liquid. In these sources, a strong electric field is established with a pair 

of closely spaced electrodes. The free surface of liquid metal exposed to this field is 

distorted into a series of conical protrusions in which the radius of curvature at the apex 

becomes smaller as the field increases. When the field reaches a threshold value, atoms 

on the surface of the tip are ionized and eventually removed. They are then accelerated 

to a high velocity by the same electric field which produced them. Expelled ions are 

replenished by the flow of liquid propellant in the capillary feed system. A separate 

neutralizer is required to maintain charge neutrality of the system (Figure 2.4.1-3). 

 

 
 

Figure 2.4.1-2: Comparison between LISA noise shape filter for he FEEP and experimental data (linear 
scale), Ref. [8] 

 

 
Figure 2.4.1-3: Operation scheme of Caesium FEEP, Ref.[17] 
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The main advantage of FEEP with respect to other µ-propulsion technology is that 

their specific impulse is high, which in turn means an increase of possible mission 

duration. Besides, the small amount of propellant required is contained in a very 

compact reservoir in the emitter module and the mass flow rate is so small that the 

gravity field variations are negligible. 
 

 
Figure 2.4.1-4: Caesium FEEP developed by Centrospazio/Alta in Pisa, Italy, Ref. [17] 

 
The current baseline FEEP system on each LISA spacecraft consists of three four-

thruster clusters positioned around the spacecraft at 120º intervals (Figure 2.4.1-5 left 

side). The thrusters in each cluster are mounted at 90º separation from each other  

(Figure 2.4.1-5 right side) and angled such that they do not act within the same plane 

and also to ensure that the thrust plumes do not impinge on the sunshield or cross the 

telescope FOVs. Additionally, a full second set of FEEP clusters is included in order to 

provide full redundancy. This FEEP configuration provides the required full 6 DOF 

control authority to the spacecraft. 
 

 
Figure 2.4.1-5: FEEP geometrical layout on the spacecraft (left) and FEEP 

cluster module geometry (right), Ref. [11] 
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2.4.2 Electrostatic Suspension System 

The electrostatic suspension system must provide force and torque actuation 

capability of all 6 degree of freedom (3 linear and 3 angular coordinates) of the test 

mass. 

The electrode configuration of the electrode housing assembly providing 

electrostatic actuation and read-out is presented in Figure 2.4.2-1. The yellow electrodes 

are the actuation electrodes in the sensitive axis. The red electrodes are the actuation 

electrodes in the non-sensitive axes and the green electrodes are the injection electrodes. 

The injection electrodes in the z-axis are split into two smaller sets due to the large hole 

for the plungers of the caging mechanism. 

 

z 

y

x
 

Figure 2.4.2-1: LISA electrode configuration 

 

 
Figure 2.4.2-2: Electrostatic actuation and measurement principle, Ref. [21] 

 
Figure 2.4.2-1 depicts the one-dimensional electrostatic actuation principle. The test 

mass, a cube made of gold-platinum, is nothing more than a solid, homogeneous piece 
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of metal. Each side of the cubic test mass can be regarded as one capacitor plate. These 

plates and the electrodes included in the housing cage result in several capacitors, thus 

the forces and torques acting on the test mass are the effect of interelectrode 

capacitance. 

The noise shape filter for the force and the torque disturbance noise introduced by 

the electrostatic suspension system is shown in Figure 2.4.2-3. Note that force noise is a 

factor 15 worse on the y axis and z axis compared to the x axis, while the torque noise, 

which is computed as the corresponding force noise multiplied for the edge length of 

the T/M, is a factor of 100 better than the y-z axis force noise. The noise increase at 

lower frequencies is designed such that the acceleration noise requirement for the 

science mode is met. 
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Figure 2.4.2-3: Electrostatic actuation system noise shape filter (bilogarithmic scale) 

 
2.4.3 Telescope Pointing Actuator System 

The telescope pointing actuator system is a single-axis mechanism that must provide 

the force to rotate around the z axis of Figure 2.4.3-1 the movable optical assembly 

(MOA), consisting of the telescope, the optical bench and the gravity reference sensor 
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containing the test mass. In this way, a change of the telescope line-of-sight is possible. 

For the baseline concept it’s assumed that the centre of rotation is near the test mass 

body frame to minimize the self gravity variations. 

This mechanism is addressed as the optical assembly tracking mechanism (OATM). 

For redundancy reason, each of the two MOA on each LISA spacecraft is equipped with 

an OATM, although just the in-plane angle of one telescope on each LISA spacecraft 

needs to be actuated. The overall operational telescope tracking range will be of ± 1.5° 

(TBC) around the mean position. This requirement comes from the science mode rather 

than the acquisition phase. In fact the angle between the two lines-of sight of the two 

telescope of one spacecraft, which is nominally 60°, is subject to seasonal variation of 

±1° due to orbital mechanics.  

 

 

Telescope 
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Figure 2.4.3-1: LISA movable optical assembly configuration, Ref. [11] 

 
The actuation disturbance noise introduced by the OATM can be represented as 

white noise with a constant power spectral density equal to 60 nN/√Hz. 
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2.5 Sensors for Acquisition Control 

The sensor systems used for acquisition control are: 

• star trackers 

• electrostatic read-out system 

• telescope pointing position sensor 

The sampling rates at which sensor data are considered available are limited to ~ 10 

Hz for the same reasons explained in section 2.4. 
 

2.5.1 Star Trackers 

The inertial attitude angles (ΘB, ΗB, ΦB) of the spacecraft are determined by using 

one autonomous star tracker (AST), even if two of them are provided for redundancy.  

The principle of this measurement system is to compare the star field seen by the 

star tracker with a known star map. Based on this comparison, it is possible to determine 

the attitude angles of the spacecraft with respect to the inertial frame. 

The STRs are approximately aligned with the x axis of the body fixed satellite frame 

(Figure 2.5.1-1) that is towards the constellation centre-point along the symmetry axis 

between the two LISA arms in their nominal 60 deg position. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5.1-1: LISA star trackers location, Ref. [11] 
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Since ΘB represents the roll angle of the spacecraft exactly around the x axis of the 

body fixed satellite frame, the read-out noise on this angle has to be considered 10 times 

worst than the other two angles read-out noise. 

The commercial star tracker used on TerraSAR-X is assumed as a baseline and its 

properties are summarized in Table 2.5.1-1. 

 

Quantity Requirement 

Field-of-View 17.5° x 13.5° 

CCD size 1360 x 1024 pixel 

Magnitude Sensitivity + 6.5 

Overall Accuracy: 

- Pitch/Yaw (RMS 3σ)

- Roll (RMS 3σ) 

 

29 μrad (6 arcsec) 

290 μrad (60 arcsec) 

 
Table 2.5.1-1: Preliminary performance requirements for the STR (TBC) 

 

2.5.2 Electrostatic Read-Out System 

The electrostatic read-out system must provide all 6 position and angular coordinate 

measurements of a test mass with respect to the housing cage.  

The electrostatic measurement is based on the same effect (interelectrode 

capacitance) as the electrostatic actuation. The electrode configuration of the electrode 

housing assembly providing electrostatic actuation and read-out was presented in Figure 

2.4.2-1. The principle for providing an electrostatic read-out is that a high-frequency 

signal is injected by the green injection electrodes. The other electrodes are used for 

electrostatic actuation and sensing. 

The noise shape filter for the read-out noise introduced by the electrostatic read-out 

system is shown in Figure 2.5.2-1. Note that the noise on the position measurements is a 

factor 1.3 worse on the y axis and 4.2 worse on the z axis compared to the x axis, while 

the noise on the angular displacement measurements is equal on all axis. 
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Figure 2.5.2-1: Electrostatic read-out system noise shape filter (bilogarithmic scale) 

 
Several options are possible for providing an additional optical read-out of the test 

mass using laser interferometry. The major benefit of an optical read-out is a reduction 

in the noise level of the sensor signal. However, the optical measurement system is not 

available during acquisition.   
 
2.5.3 Telescope Pointing Position Sensor 

The optical assembly tracking mechanism introduced in section 2.4.3 is provided by 

a sensor device which measures α, the rotation angle around the z axis (in the telescope 

frame of Figure 2.4.3-1) of the actuated telescope with respect to its nominal position. 

The read-out noise introduced by the OATM sensor can be represented as white 

noise with a constant power spectral density equal to 10 nrad/√Hz. 

 
2.6 LISA Acquisition Phase Control Principle:  

the Gyro Mode 

The process for the single-link acquisition involves two telescopes, each of which 

belongs to one of the two spacecraft aligned along a constellation arm.   
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The objective of the control system during the acquisition phase is to provide that 

the telescopes lines-of-sight attitude is able to follow the guidance law required to 

perform the acquisition sequence described in section 2.2, complying with the 

requirements on the allowable errors stated in section 2.3.3. 

For the geometry of the constellation, one of the telescopes involved is rigidly 

attached to its spacecraft and the other can be rotated in the constellation plane using the 

OATM. Taking for example in consideration the scanning spacecraft, any of its two 

arms could be used to perform the acquisition. If the arm involved is the one provided 

with the actuated telescope, the tracking of this telescope will be realised by combining 

the single-axis pointing mechanism, controlling the angle between the two telescopes of 

the SC, and the FEEP thrusters, controlling the attitude of the entire spacecraft. The 

proposed telescope pointing architecture consists in using the attitude control to realise 

the pointing of the off-plane angle of the involved telescope and in using the pointing 

mechanism to control the in-plane angle of the telescope. If instead the arm involved is 

the one with the fixed telescope, the proposed telescope pointing architecture is to use 

just the attitude control to realise a complete pointing of the telescope. Exactly the same 

could be repeated for the receiving spacecraft. In any case (actuated or fixed telescope, 

scanning or receiving spacecraft), the spacecraft attitude guidance law and control are 

coupled with the telescope pointing guidance law and control. Moreover, the spacecraft 

attitude guidance law is also determined by the orbital mechanics constraints. 

As already said, all this control architecture has to be realised ensuring the 

fulfillment of the requirements defined in section 2.3.3. Since the inertial wavefront 

sensor is not yet available during acquisition, the STR has to be used as a spacecraft 

attitude sensor and the OATM sensor has to be used as a telescope pointing sensor. 

Both are much more noisy than the IWS. For this reason, the control strategy adopted 

during the science mode is not sufficient by itself to allow the fulfilment of the 

requirements. 

The strategy proposed in this thesis is to adopt a Kalman Filter which uses attitude 

measurements from the star tracker and pointing measurements from the OATM sensor 

as well as gyro-like measurements from the two IS units in order to provide an 

enhanced estimation of the spacecraft attitude and of the telescope in-plane pointing 

angle. Then the estimations will be fed in closed loop to the controller in place of the 
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sensors measurement signals. In this way the read-out noise introduced by the STR 

(which affects all the states since it is fed back in the controller) can be suppressed in 

the high frequency range allowing the fulfilment of the requirements. This is the so 

called gyro mode. The spacecraft attitude and the telescope pointing control are 

performed by the gyro mode for both spacecraft.  

The controller design and the Kalman filter design are, therefore, considered in this 

work as two independent parts of the whole acquisition control architecture (Figure 1.4-

1); hence, they will be presented separately. First the controller design is described 

demonstrating the necessity of the use of a Kalman filter during the acquisition in order 

to achieve the requirements, then the Kalman filter design is performed over the 

existing control system. In the following, drag-free acquisition mode addresses the 

control mode that does not include the Kalman Filter and gyro mode indicates the 

control mode based on the use of the Kalman filter. 

Since the gyro mode is based on a continuous blend of sensors data (STR, OATM, 

IS), the gyro-like outputs of the IS must be available. Consequently, the test mass 

uncaging and the drag-free mode must be realised before the acquisition phase can 

commence.  

 

2.6.1 LISA Drag-Free and Attitude Control System 

The classical Drag-Free Satellite can be seen as two satellites in one. A smaller 

inner, the test mass, is located in a housing inside of a larger normal satellite. The 

housing contains sensors, which measure the position of the test mass with respect to 

the outer satellite. The main satellite has small thrusters which are fired such that the 

satellite chases the test mass which then always remains centered in the housing (Figure 

2.6.1-1). 

Since the test mass is shielded by the outer satellite from external disturbances (i.e. 

solar radiation pressure), it follows a trajectory which is determined only by gravity and 

by the very small internal disturbing forces from the main satellite. Hence the name 

Drag-Free Satellite since there is no “drag” on the inner test mass and the drag on the 

main satellite is exactly compensated by the thrusters. 
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Figure 2.6.1-1: General principle of a drag-free satellite 

 
Drag-Free Satellites offer an environment with the lowest disturbing forces in 

nature. A properly designed Drag-Free Satellite test mass is decoupled from the rest of 

the Universe to a remarkable degree. The only disturbances on the test mass arise from 

the satellite itself (self gravity, electrostatic forces, magnetic forces, brownian motion 

due to residual gas in the housing etc.) and can be reduced to tolerable values by a 

careful design and appropriate selection of materials. The satellite is thus forced to 

chase the test mass, actively shielding it from the non-gravitational forces. The largest 

of the external non-gravitational forces in case of LISA  is the solar radiation pressure. 

A more detailed description about Drag-Free Satellites in general is given in [14]. 

The Drag-Free Satellite LISA is equipped with a disturbance compensation system, 

the so-called Drag-Free and Attitude Control System (DFACS). Its task is to control the 

attitude of the spacecraft (ΘB, ΗB, ΦB), the in-plane pointing angle of telescope 1 (α) 

and the position and attitude of the two test masses (xi, yi, zi, θi, ηi, φi; i =1,2). Thus, a 

total of 16 coordinates have to be controlled. While the spacecraft attitude has to be 

controlled in the inertial frame, the telescope articulation is controlled with respect to 

the spacecraft and the test masses are controlled relatively to their housing frames. All 

coordinates are independently controlled by SISO controllers. For the control of the test 

mass coordinates, two different control principles are available, either drag-free or 

suspension control. 
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2.6.2 Drag-Free Control Principle 

As already mentioned above, in order to have pure free-fall conditions, the test 

masses must be shielded from any external influence (drag-free). This is accomplished 

by placing each test mass in a housing in the spacecraft and forcing the satellite to 

follow the test masses very fast. In other words, the displacement of the test mass in the 

housing frame is continuously sensed by using the electrostatic read-out of the IS and 

the measured deviation from the nominal position is used as an input to the propulsion 

system, that cleans out all the gravitational disturbance forces. 

Obviously, since there are two test masses inside each spacecraft, it cannot chase 

both of them at the same time. In fact the propulsion system can provide 6 force and 

torque actuation signals, thus a maximum of 6 linear independent test mass coordinates 

can be drag-free controlled. The main science requirement asks for a complete drag-free 

control along the sensitive axis (x axis) of the two test masses. Including also the 

displacement along the z direction of the first test mass in order to compensate the solar 

dynamic pressure, a set of three drag-free coordinates (x1, z1, x2) results and, therefore, 

only the translational command (forces) capability of the micro-propulsion system is 

required. 

The concept is illustrated by Figure 2.6.2-1. 

 

 
 

Figure 2.6.2-1: Principle of drag-free controller 

 
2.6.3 Suspension Control Principle 

The 9 test mass coordinates that do not have drag-free requirements have to be kept 

at their nominal position with respect to the housing cages by using the electrostatic 
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suspension actuation system of the IS. In other words, the suspension system has to 

make the suspension coordinates following the spacecraft. This is especially necessary 

due to the inherent negative stiffness of the test masses dynamics which would 

otherwise yield an unstable system.  

The principle of the electrostatic suspension system is shown in Figure 2.6.3-1. 

 

 
 

Figure 2.6.3-1: Principle of suspension controller 

 
The suspension control loop operates at frequencies below the science measurement 

bandwidth. In other words, the suspension coordinates can only be moved very “soft” 

and slow, otherwise the science measurement is influenced.  

 
2.6.4 Spacecraft Attitude Control Principle 

During the drag-free acquisition mode, the inertial spacecraft attitude control is 

performed by feeding back the attitude measurements from the star tracker to the micro-

propulsion system. Torque command capability of the FEEP can be entirely used for 

this purpose since, as already stated, only the force capability is required for the drag-

free control.  

 
2.6.5 Telescopes Pointing Control Principle 

Telescope tracking control is a process in which the telescope is moved continuously 

over its working range at extremely low velocity and at extremely high accuracy. It is 

mandatory to control this process in closed loop by feeding back the sensing signal 

provided by the OATM sensor to the telescope pointing mechanism. 
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Remark 

The acquisition controller requirements consist of spacecraft attitude and telescope in-

plane pointing angle requirements as they are presented in section 2.3.3, while there is 

no need to fulfil the science requirements in term of acceleration noise or jitter on the 

test masses during acquisition even if the acquisition controller must be design such that 

the required suspension actuation forces and torques could be reasonably provided by 

the IS. 

All the performance requirements, the sensors and actuators constraints introduced in 

this chapter have to be considered as a baseline for the controller design process. Within 

the purpose of this thesis is to verify the fulfilment of the performance requirements 

under the baseline constraints and, moreover, to derive different requirements (stricter 

or more relaxed) for the sensor system and for the acquisition controller when it is 

proved to be necessary or convenient. 



Chapter 3  

Mathematical Modelling of a Drag-Free 
Satellite 

In order to perform a control engineering design, it is mandatory to have a 

mathematical model of the plant to be controlled. In this chapter, the equations of 

motion (EoM) of a drag-free satellite are illustrated. Their analytical derivation can 

be found in [5]. 

In general, a drag-free controlled satellite consists of the following rigid bodies: 

• the rigid satellite body (6 DOF) 

• one or more rigid test masses (6 DOF each) 

• fixed or moving rigid test mass cages (6 DOF each if moving) 

Each LISA satellite is a particular case of a drag-free satellite: it features a satellite (6 

DOF) with two test masses (12 DOF), one of the test masses is floated inside a one-axis 

movable cage (1 DOF), the other is moving freely inside a fixed cage (0 DOF). This 

leads a rather complex 19 DOF system.  

 

3.1 Nomenclature, Definitions and Reference Frames 

For the derivation of the equations of motion, all necessary vector definitions are 

depicted in Figure 3.1-1. 
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 Figure 3.1-1: Definition of vectors and reference frames 

 
3.1.1 Reference Frames 

The reference frames used are hereby listed: 

• ΣJ is the inertial reference frame; 

• ΣB is the spacecraft (body fixed) reference frame; it is attached to the CoM of the 

SC with the x-axis pointing along the symmetry axis between the two LISA arms 

in their nominal 60° position, the z-axis pointing toward the solar panel and the 

y-axis augments the system to a right-handed coordinate frame (Figure 3.1.1-1);  

• ΣC is the reference frame of the moving cage (telescope, cage and telescope/cage 

have to be considered synonyms); its x-axis is parallel to the sensitive axis 

pointing from the inner to the outer of the SC, the z-axis pointing toward the 

solar panel and the y-axis augments the system to a right-handed coordinate 

frame. The moving cage, indicated as cage 1 and containing the test mass 1 

(T/M1), is located in the SC body frame on the positive yB axis side (Figure 

3.1.1-1), while the fixed cage, indicated as cage 2 and containing the test mass 2 

(T/M2), is located in the SC body  frame on the negative yB axis side; 
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• ΣHi is the IS housing reference frame; it is used for the T/M position and attitude 

measurements; 

• Σi is T/Mi (body fixed) reference frame; it is attached to the CoM of the test mass 

with its x-axis parallel to the sensitive axis, the z-axis pointing toward the solar 

panel and the y-axis augments the system to a right-handed coordinate frame.   

 

 

sensitive axis 
of telescope 1 

Figure 3.1.1-1: Definition of the spacecraft body frame, Ref. [10] 

 
Scalars are presented as small, normal letters. Vectors are presented as small, bold 

letters. Matrices are presented as capital, bold letters. 

The vector notation adopted is defined by the following rules: a vector named rX is 

the vector for the body X given in its local frame (i.e. the origin vector), as defined in 

Figure 3.1-1; a vector named rXY gives the vector position of the body X w.r.t the body 

Y in the local frame of the latter. 

Furthermore, in order to clarify the meaning of the angular velocities, the following 

definitions are given: 

• ]T
BΦ : angular velocity of the spacecraft in ΣB w.r.t. ΣJ; [Bω   B B= Θ Η

• α : angular velocity of the moving cage in ΣC w.r.t. ΣB; 

• ]  T
i i i[iω θ η φ : angular velocity of the T/Mi in Σi w.r.t. ΣHi. =

sensitive axis 
of telescope 2 

As custom, given a generic vector ν, then the definition 
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follows and, thus, it can be written ν ×r = ν r and ν ν = ν2. 

The symbols l and f are applied torques and forces. All torques are given in the 

associated body frame, while all forces are given in the inertial coordinate frame. 

Further symbols are given in Tables 3.1.1-1 and 3.1.1-2. 
 

Symbol Description 

B or SC Spacecraft Body 

C Telescope/Cage 

H Test Mass Housing 

1 Test mass 1 

2 Test mass 2 

P Reference Point for Test Mass Measurement 

R Telescope Rotation Point 

A Telescope Actuator Mounting Point 
Table 3.1.1-1: List of indices 

 
Symbol Description 

q Generalized coordinates vector 

Ei×i Unit diagonal matrix of size i 

0X×Y Matrix of zeros 

mX Mass of body X 

IX Matrix of inertia around the CoM for body X 

TXY Transformation matrix from body X frame to body Y frame   

jR Orientation vector of the cage rotational axis given in the cage frame 

iA Orientation vector of the cage actuation force given in the cage frame 
Table 3.1.1-2: Symbols and definitions 
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3.2 Equations of Motion 

In order to derive the EoM of the satellite, the test masses and the cage bodies, as 

well as for the overall system differential equations, d'Alembert's Principle is used. 

Combined with the Newton-Euler equations of rigid body dynamics, the derivation 

process for the equations of motion is done in a very formal approach and it is reported 

in reference [5]. 

The linearization, which is described in [8], is done assuming a unity matrix for the 

reference attitudes and reference positions at the equilibrium point. 

Finally, the linear second-order differential equations of motion of each LISA 

satellite are 
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(3.1) 
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The whole system of forces and torques (right hand side of Eq. (3.1)) acting on the 

satellite, the two test masses and on the telescope/cage are described, broken down and 

partially neglected according to what is reported in [13] and in [8]. The following 

outline resembles the actual way forces and torques are schematized in the simulator for 

the controller design process. 

Actions on the spacecraft are: 

• control forces and torques inputs (FEEP actuations); 

• disturbance forces and torques divided in: 

- FEEP actuation noises 

- solar pressure forces and torques noises 

- DC solar forces and torques 

• counter-forces and counter-torques due to T/M2 (electrostatic suspension 

actuations); 

• counter-forces due to telescope/cage (telescope pointing actuation and telescope 

bearing reactions). 

Controls and disturbances constitute the external forces and torques which are 

illustrated in Figure 3.2-1 together with all the other mentioned actions. The solar 

radiation force shape filter is shown in Figure 3.2-2. 
 

 
 

 Figure 3.2-1: Forces and torques acting on the spacecraft, Ref. [8] 
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 Figure 3.2-2: Solar pressure noise shape filter 

 
Actions on the telescope/cage are (Figure 3.2-3): 

• control force (telescope pointing actuation); 

• disturbance force (telescope pointing actuation noise); 

• counter-forces and counter-torques due to T/M1  (electrostatic suspension 

actuations); 

• bearing force. 

 

 

 
 Figure 3.2-3: Forces and torques acting on the telescope cage, Ref. [8] 

 



 
3. Mathematical Modelling of a Drag-Free Satellite 59
 
 

Actions on the test masses are: 

• control forces and torques inputs (electrostatic suspension actuations); 

• disturbance forces and torques (electrostatic suspension actuation noises); 

• forces and torques due to satellite and test mass coupling (i.e. stiffness); their 

origin can be: 

- gravitational 

- electrostatic 

- magnetic 

• DC parasitic forces and torques coming from the following physical phenomena: 

- electric fields 

- magnetic fields 

- thermal gradients via radiation pressure, radiometer effect or out-gassing  

- laser radiation pressure (if the optical read-out is used)  

- gravity field 

Introducing the above stated forces and torques in the right hand side of Eq. (3.1) and 

operating the simplifications described in [8], the mentioned right hand side becomes 

(3.2) 

19 19

3 3
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(3.2) 

 

where: 
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,f lFEEP FEEP  FEEP actuations 

, ,f lFEEP d FEEP d,
 FEEP actuations noise 

, ,,f lsol d sol d
 Solar disturbances 

1 1,f la a
 Electrostatic suspension actuations on T/M1 

1 1,f ld d
 Disturbances on T/M1 

2 2,f la a
 Electrostatic suspension actuations on T/M2 

2 2,f ld d
 Disturbances on T/M2 

cagef  Telescope pointing actuation 

,cage df  Telescope pointing actuation noise 
 

hIS
12 12x∈R  is a matrix that accounts for the cross-talk effect between different degrees 

freedom of the electrostatic actuation of the inertial sensors, M is the mass matrix 
 

  (3.3) SC,1 2,CM = [M    M ]

 
and Ω19×19 is the stiffness matrix which provides a coupling between the acceleration 

and the position coordinates of each test mass while it does not involve the spacecraft 

and the telescope degrees of freedom.  

Using the definitions 
 

     B  = [ SCB     12,CB ]       = [     ] F SCF 12,CF

     1 1 2 2ˆ ]αx = [r   α   r   α   r   α   T
B B  

and introducing the control input vector u 19 1x∈R and the disturbance input vector 

d 25 1x∈R  
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the complete set of linearized equations of motion can be rewritten as 

  (3.5) 19 19
ˆ ˆˆ ˆ×Mx = MΩ x + Bu + Fd

The dynamics equations (3.5) is exploited for performing the controller design in 

chapter 4; however, it is convenient to transform Eq. (3.5) into a system of first-order 

differential linear equations that, together with the measurement equations introduced in 

section 3.3, constitutes the state space realization of the LISA open-loop dynamics used 

for the digital implementation in the Matlab/Simulink® environment.  

Introducing the state vector x 38 1x∈R  

 1 1 2 2 1 1 2 2 ]T
B B B Bα αx = [r   ω   r   ω   r   ω      r   α   r   α   r   α    (3.6) 

Eq. (3.5) can be rewritten as 

 19 19 19 19

19 19 19 19 19 19 19 25

× ×

× × × ×

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

-1 -1

A B F

0 Ω M B M Fx = x + u + d
E 0 0 0

 (3.7) 

where: 

- A: dynamic matrix 

- B: control input coupling matrix  

- F: disturbance input coupling matrix 

 

3.3 Measurement Equations 

In order to complete the state space system, a set of measurement equations must be 

introduced 

  (3.8) u dy = Hx + D u + D d + ν

where x, u, d are defined in section 3.2; instead, y 16 1x∈R  is the measurement vector 

representing the measurable states of Eq. (3.7) and it is provided by the sensors system 

(Eq. 3.9). Note that are the spacecraft inertial attitude angles expressed as rotation 

around the ΣB axis and measured by the STR,  are the T/M1 and T/M2 coordinates 

measured by the suspension system in Σi w.r.t ΣHi and  is the telescope 1 in-

plane pointing angle measured by the OATM sensor in ΣC w.r.t  ΣB:  

q
mSTR

q
mIS

1mTelescopeq
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 (3.9) 

H is the measurement matrix representing the relationship between measurements 

and states. Noteworthy is that this relationship is fully linear. The term gIS 12 12x∈R  is a 

cross-talk matrix describing the cross-talk between different degrees of freedom of the 

electrostatic read-out of the inertial sensors: 

  (3.10) 
3 3 3 3 3 12 3 1 3 3 3 3 3 12 3 1

12 3 12 3 12 12 12 1 12 3 12 3 12 1

1 3 1 3 1 12 1 1 1 3 1 3 1 12 1 3

IS

× × × × × × × ×

× × × × × × ×

× × × × × × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
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0 0 0 0 0 E 0 0
H = 0 0 0 0 0 0 g 0

0 0 0 0 0 0 0 E

 

D is the input/output coupling matrix; since there is no direct relationship between 

the measurement vector and the control-disturbance inputs, this matrix is empty and will 

be omitted in the following: 

 16 44×u dD = [D    D ] = 0  (3.11) 

 

Finally, ν 16 1x∈R  is the read-out noise vector: 

 
ROnoise

ROnoise

ROnoise

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

STR
ν = IS

CAGE
 (3.12) 

 
where: 

- 3 1STR x
ROnoise ∈R is the read-out noise introduced by the STR 

- 12 1IS x
ROnoise ∈R  is the read-out noise introduced by the electrostatic read-out 

system (Inertial System, IS) 

- 1 1CAGE x
ROnoise ∈R  is the read-out noise introduced by the OATM sensor 
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The state equation (3.7) and the measurement equation (3.8) together form the state 

space dynamics equations, summarized in Figure 3.3-1. It constitutes the linear, time-

invariant model representing the LISA open-loop plant. 
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 Figure 3.3-1: Block diagram of the open-loop system 

 



Chapter 4  

Controller Design 

In this chapter, the fundamental points of the controller design strategy are 

introduced. A more detailed description can be found in [8]. 

The basic idea for the control system design is to reduce the original MIMO problem 

into a set of SISO designs by applying a control input decoupling that only relies on 

mass and geometric properties and, therefore, is completely general. Each SISO design 

is then performed individually in order to achieve the closed-loop requirements in the 

measurement bandwidth of the science mode and also in order to provide adequate gains 

and phase margins over a proper range of variations of the SISO plant parameters. 

 

4.1 Decoupling 

The starting point for the decoupling strategy is the linearized equations of motion 

derived in chapter 3 (Eq. (3.5)): 
 

19 19
ˆ ˆˆ ˆ×Mx = MΩ x + Bu + Fd  (3.5) 

 
Dividing both sides of Eq. (3.5) for the mass matrix M, yields 

 

19 19
ˆ ˆˆ ˆ×

-1 -1x = Ω x + M Bu + M Fd  

 
As far as the stiffness matrix is concerned, since it is in the form 
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×

6 6 6 6 6 6 6 1

6 6 1 6 6 6 1
19 19

6 6 6 6 2 6 1

1 6 1 6 1 6 1 1

0 0 0 0
0 Ω 0 0

Ω
0 0 Ω 0
0 0 0 0

× × × ×

× ×
×

× × ×

× × × ×
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⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
it provides a coupling between the acceleration and the position coordinates of each test 

mass, while it does not involve the spacecraft and the telescope degrees of freedom.  

Having broken down the inputs into controls and disturbances, the disturbance input 

term M-1  can obviously be cancelled out from the controller equations, while the 

control input term , indicated as  for shortness, has the following structure: 

F̂

ˆ-1M B *B

 

 Col# 1-3 4-6 7-9 10-12 13-15 16-18 19 

Row#  fFEEP  lFEEP  1f a  1l a  2f a  2l a  cagef  

1-3 VSC  … … … … … … … 

4-6 ωSC  46,13
*B  46,46

*B  … … … … 46,1919
*B  

7-18 q  718,13
*B  718,46

*B  718,79
*B 718,1012

*B 718,1315
*B 718,1618

*B  718,1919
*B  

19 α  1919,13
*B  1919,46

*B … … … … 1919,1919
*B

 

                                                                     1 ˆ *M B = B−

 
Since the feedback from the suspension actuators to the telescope degree of freedom 

and to the spacecraft degrees of freedom is negligible for the control design (as 

indicated by the dots), the following definitions can be used 
 

718,13 718,1919

1919,13 1919,1919

* *

* *

B B
B

B BDF

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

46,46
*B Batt =  

718,79 718,1012 718,1315 718,1618
* * * *B B B B Bsus ⎡ ⎤= ⎣ ⎦  
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where:  

• BDF : drag-free control matrix 

• Batt : spacecraft attitude control matrix  

• Bsus : suspension control matrix 

The previous matrices have been determined on the basis of the control principles 

described in chapter 2: 

• The three drag-free coordinates (x1, z1, x2) control is obtained by using only the 

translational command (forces) capability of the micro-propulsion system; 

• The telescope 1 in-plane pointing angle (α) is controlled by using the force 

provided by the telescope pointing mechanism, which has been included in the 

drag-free control matrix just for convenience; 

• The spacecraft inertial attitude (ΘB, ΗB, ΦB) control is performed by using the 

torque commanding capability of the micro-propulsion system; 

• The nine remaining non-drag-free coordinates of the test masses (y1, θ1, η1, φ1, 

y2, z2, θ2, η2, φ2) are controlled by using the electrostatic suspension system 

provided by the IS; 

• The spacecraft position and velocity are not controlled in closed loop and the 

corresponding terms can be neglected (as indicated by the dots).  

Since all the test mass coordinates are measured by the same electrostatic read-out 

system of the IS, two selection matrices must be defined in order to separate the drag-

free coordinates (including the telescope 1 in-plane pointing angle) from the non-drag-

free coordinates: 

 
1 2

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S    

CageTM TM

DF  
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1 2

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
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4.1.1 Decoupling Matrix for Drag-Free and Telescope Pointing 

             Control Loop 

As a consequence of the assumptions described in section 4.1, the equations of 

motion of the drag-free coordinates (including the telescope coordinate) become 
 

 DF DF DF DF DF DFΩp  - p  = S B u   (4.1) 

 
where pDF = [x1 z1 x2 α]T is the vector of the drag-free coordinates, uDF = [fFEEP, fcage]T is 

the vector of the control inputs of the drag-free control loop and ΩDF is the stiffness 

matrix associated with the drag-free coordinates. 

In order to perform a decoupling, a virtual control signal ηDF  must be introduced 

 
 DF DF DF

-1u  = (S B ) ηDF  (4.2) 

 
and substituting Eq. (4.2) in Eq. (4.3), the decoupling results completed 

 
 DF DF DF DF DF DF DF DF DΩ -1p  - p  = (S B )(S B ) η  =  η F  (4.3) 

 
In fact, applying the Laplace transform to Eq. (4.3), the design plant for each drag-

free control loop becomes 
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 2

1
DF

p

G
s 2ω

=
−

 (4.4) 

  
where 2ωp  is the main-diagonal stiffness of the corresponding control loop and it is 

obviously absent for the cage coordinate. 

Therefore, the task of designing the drag-free controllers and the telescope/cage 

controller reduces to design four independent SISO controllers for each plant, ηDF  

being a vector of four virtual signals, each of which controls one of the four SISO plants 

and  
 

-1P  = (S B )DF DF DF  

 
being the required decoupling matrix for the drag-free control loop, which returns the 

real coupled control signals uDF  given the virtual signal ηDF . Figure 4.1.1-1 shows the 

drag-free and telescope pointing control loop structure. Note that KDF is a diagonal 

matrix and its four main diagonal elements represent the SISO controllers for each of 

the four SISO plants of the drag-free control loop. 
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Figure 4.1.1-1: Drag-free and telescope pointing control loop structure 
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4.1.2 Decoupling Matrix for Spacecraft Attitude Control Loop 

Proceeding in the decoupling exactly as in the previous section, the equations of 

motion of the spacecraft inertial attitude become 
 

p = B u  att att att  

 
where patt = [ΘB ΗB ΦB]T is the vector of the SC attitude coordinates, uatt = lFEEP  is the 

vector of the control inputs of the spacecraft attitude control loop. Noteworthy is that 

the stiffness matrix is not present anymore. 

Introducing a virtual control signal  ηatt

 
1u  = B ηatt att att

−  

 
the decoupling results in 

 
  (4.5) 1

att att att att att
−p  = B (B η ) =  η

 
Applying the Laplace transform to Eq. (4.5), the design plant for each SC attitude 

control loop results in a simple double integrator plant 
 

2

1
=attG

s
 

 
Therefore, the task of designing the spacecraft attitude controller reduces to design 

three independent SISO controllers for each plant,  being a vector of three virtual 

signals, each of which controls one of the three SISO plants and  

ηatt

 
1−P  = Batt att  

 
being the corresponding decoupling matrix. Since  is approximately coincident with 

the spacecraft inertia tensor, its inversion can easily be performed. Figure 4.1.2-1 shows 

the spacecraft attitude control loop structure. Note that Katt is a diagonal matrix and its 

three main diagonal elements represent the SISO controllers for each of the three SISO 

plants of the spacecraft attitude control loop. 

Batt
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4.1.3 Decoupling Matrix for Suspension Control Loop 

The decoupling procedure for the remaining non-drag-free coordinates of the test 

masses is identical to that performed for the drag-free coordinates. The EoMs for these 

coordinates are 
 

Ωp  - p  = S B u  sus sus sus sus sus sus  

 
where psus is the vector of the non-drag-free coordinates, usus is the vector of the 

electrostatic suspension actuation and Ωsus is the stiffness matrix associated with the 

non-drag-free coordinates. 

Therefore, the design plant for each suspension control loop results in: 
 

2 2

1
ω

=
−sus

p

G
s

 

 

where 2ωp  is the main-diagonal stiffness of the corresponding control loop and the 

corresponding decoupling matrix for the suspension control loop is: 
 

-1P  = (S B )sus sus sus  

 

Since Bsus  is a diagonal matrix (when the T/M inertia tensor is assumed to be a 

diagonal matrix and the cross-talk effect between different degrees freedom of the 

Batt 2

1
s

 

Batt K att

ηattuatt - 

patt 

Spacecraft Attitude Plant 

Spacecraft Attitude Controller 

Figure 4.1.2-1: Spacecraft attitude control loop structure 
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electrostatic actuation of the inertial sensors hIS is neglected) its inversion can easily be 

performed. Figure 4.1.3-1 shows the suspension control loop structure. Again note that 

Ksus is a diagonal matrix and its nine main diagonal elements represent the SISO 

controllers for each of the nine SISO plants of the suspension control loop. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Controller Structure 

The whole controller design for LISA has been reduced to design 16 independent 

SISO controllers for the same number of SISO systems. Each SISO controller is 

designed in order to satisfy the closed-loop requirements in the measurement bandwidth 

of the science mode and also in order to provide adequate gains and phase margins over 

a proper range of variations of the SISO plant parameters (i.e. gains and stiffness). The 

purpose of the next section is to summarize the main drivers for the design of each 

control loop. 

 

4.2.1 Drag-Free and Telescope Pointing Control Loop   

Since the required bandwidth of the drag-free controllers is significantly larger than 

the expected stiffness in the controlled degrees of freedom (x1 z1 x2), the stiffness 2ωp  

can be neglected in the design and Eq. (4.4) reduces to a double integrator plant. This 

Figure 4.1.3-1: Suspension control loop structure 

S Bsus sus 2 2

1

ps ω−
 

( ) 1S Bsus sus
−  K sus

ηsususus  - 

psus 

Suspension Plant 

Suspension Controller 
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happens because the SC  has to follow the T/M very fast in order to achieve the science 

requirements. 

The main drivers for the drag-free and telescope pointing controller are: 

• Reduction of external disturbances (i.e. micro-propulsion actuation noise, solar 

pressure) 

• Available sampling rate (10 Hz) 

• Control loop time delay due to: 

- Latency of the micro-propulsion system until physical trust is realized 

- Computational delay 

- Delay in the sensor read-out 

- Communication delay between systems 

• Achievement of gain and phase margin for variations in the plant gain and poles 

 

4.2.2 Spacecraft Attitude Control Loop 

The main drivers for the spacecraft attitude controller are: 

• Achievement of the shielding of the test masses against external disturbances 

(i.e. micro-propulsion actuation noise, solar pressure) 

• Reduction of the spacecraft attitude jitter through measurement noise 

suppression and actuation noise due to read-out noise limitation 

• Control loop time delay due to: 

- Latency of the micro-propulsion system until physical trust is realized 

- Computational delay 

- Delay in the sensor read-out 

- Communication delay between systems 

• Achievement of gain and phase margin for variations in the plant gain  
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4.2.3 Suspension Control Loop 

Since the required bandwidth of the suspension control loop is below the science 

measurement bandwidth (the suspension coordinates can only be moved very slow, 

otherwise the science measurement is influenced), the diagonal terms of the stiffness 

matrix Ωsus are very close to the minimum possible bandwidth of the suspension 

controller and cannot be neglected in the controller design process.  

Consequently, the suspension control design is the most demanding and its main 

drivers are: 

• Stabilization of the non-drag free coordinates of the test masses due to the 

inherent negative stiffness 

• Reduction of the T/M jitter through measurement noise suppression and 

actuation noise due to read-out noise limitation  

• Control loop time delay due to: 

- Computational delay 

- Delay in sensor read-out 

- Communication delay between systems 

• Achievement of gain and phase margin for variations in the plant gain (T/M 

mass) and poles (T/M stiffness) 

 

4.3 Conclusions 

The whole DFACS control structure results in 16 SISO controllers which are 

provided by EADS/Astrium. The science mode, the drag-free acquisition mode and the 

gyro mode are all based on the controller structure presented in this chapter. 

 



Chapter 5  

Overall Model Architecture 

In this chapter, a linear performance analysis of the controller designs described in 

chapter 4 is presented over the operative conditions of the acquisition phase. To this 

end, an overall model, based on the linearized dynamics system given in chapter 3, the 

control system shown in chapter 4 and the noise system that is introduced in this 

chapter, is set in both Matlab® and Simulink® environments. 

The objectives of this chapter are: 

• To prove that the performances that are achievable in the drag-free acquisition 

mode (science mode controller + operative conditions of the acquisition on CCD 

phase) do not fulfil the desired requirements defined in section 2.3.3.  

• To build a Matlab® model1 and a Simulink® model for a LISA satellite, usable as 

design tools for the acquisition controller and for performance evaluations. The 

Matlab® model provides a tool for a fast linear transfer-function analysis 

allowing a rapid insight in the partitioning between different noise sources. 

However, the development of a Simulink® model is necessary since: 

- the verification of the fulfilment of the acquisition requirements (Table 2.3.3-

3) asks for a time-domain performance analysis   

- the acquisition controller has to be included in the integrated E2E LISA 

simulator  
                                                 
1 The Matlab® model presented in this work follows the Matlab® model developed by EADS/Astrium for 
the performance analysis of the science mode 
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- the dicrete-time Kalman filter implementation requires a recursive solution of 

the Riccati Equations that can be more easily managed by using a simulator. 

 

5.1 Matlab® Model 

The Matlab® model is obtained using the following procedure: 

• The continuous-time state space model given by Eq. (3.7 - 3.8) is implemented 

as first. It constitutes the linear, time-invariant system representing the LISA 

satellite open-loop plant (G) (Figure 5.1-1). 
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 Figure 5.1-1: Open-loop system architecture 

 

Note that the state equation (Eq. (3.7)) has been modified including the read-out 

noise vector ν  between the inputs in order to implement the whole system as a 

Matlab® state-space model 

 

νx = Ax + Bu + Fd + F ν  

 

where 38 16
νF x∈R  is an empty matrix. Moreover note that, although the 

measurement vector represents the only information that is physically achievable 

from the plant, several additional outputs can be obtained, for performance 
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analysis purpose, just manipulating the measurement equation (3.8), which can 

be rewritten as a more general output equation  

(3.8*) * * * * *
u d νy  = H x + D u + D d + D ν  

where the asterisk indicates the modified elements. 

• The close-loop LTI system is realised attaching sequentially, in feedback, the 

drag-free controller, the suspension controller and the spacecraft attitude 

controller to the plant (Figure 5.1-2). Each of them is represented by a LTI 

continuous-time system consisting of a selection matrix, a system of SISO 

controllers and a decoupling matrix, as illustrated in chapter 4. 
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Drag-Free Controller 
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K 

ENVd
 
ν  
 

q
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ACTd  

 

 

 
 Figure 5.1-2: Closed-loop system architecture 

 
• Finally, the Matlab® model is completed appending in series the noise system to 

the close-loop system (Figure 5.1-3). The noise system is a LTI continuous-time 

MIMO system consisting of the noise shape filters used to generate the several 

types of disturbances that affect the open-loop. These input disturbances are 

divided in three categories:  



 
5. Overall Model Architecture 77
 
 

- Environment noises 

They are represented by the solar radiation pressure and their influence over 

the plant is modelled by the first 6 elements of the disturbance input vector  

,

,
ENV

f
d  = 

l
sol d

sol d

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

- Actuation noises  

They are represented by the FEEP actuation noises, the electrostatic 

suspension actuation noises and the telescope pointing actuation noise. Their 

influence over the plant is modelled by the remaining 19 elements of the 

disturbance input vector 

,

,

( )
1

1
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- Read-out noises 

They are represented by the STR read-out noises, the electrostatic system 

read-out noises and the OATM sensor read-out noise. They are modelled by 

the read-out noise vector: 

STR
ν = IS

CAGE

ROnoise

ROnoise

ROnoise

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (3.12) 

 

Each noise of each category is generated by using a noise shape filter. A noise 

shape filter is a SISO or MIMO LTI system that, fed by one or more white 

noises, gives as output one or more coloured noises. The noise shape filters has 
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been provided by EADS/Astrium and their Bode diagrams are shown in Chapter 

2 and Chapter 3. A more detailed explanation can be found in Appendix B. 

 

ENVd

 

 Figure 5.1-3: Overall Matlab® model architecture 

 
The whole Matlab® code that performs this procedure is reported in [CD-ROM]. 

The model achieved (Figure 5.1-3) is a LTI continuous-time system whose inputs are 

white noises of unitary power (the reference signal r for the controlled states is assumed 

to be a zero vector). Since the overall model is a linear model, the principle of 

superimposition of the effects can be applied and it is possible to visualize the effect of 

each source of noise over each output. 

 

Simulink® Model 

The Simulink® model has the same structure of the Matlab® model (Figure 5.1-3). 

The main structure of the simulator is depicted in Figure 5.2-1. In the following 

sections, a description of the simulator subsystems is provided. All the simulator 

systems are considered continuous as if the sensor data and the actuation commands 

were provided continuously in time. 
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 Figure 0-1: Main structure of the LISA acquisition phase simulator 

 
 
5.1.1 LISA Dynamics 

The LISA Dynamics subsystem implements the continuous-time state space LTI 

model (SC_LTP_dist_sys) given by Eq. (3.7* - 3.8*), which represents the LISA 
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satellite open-loop plant. In other words, it simulates the dynamics of the LISA 

spacecraft including the test masses and the movable cage (telescope1). Since the 

number of differential equations to solve is very high (the state vector x of Eq. (3.6) has 

38 elements), the LTI system block, provided by the Control System Toolbox, is used in 

order to make the Simulink® model more readable.  

Figure 5.2.1-1 represents the LISA Dynamics block which receives as inputs the 

control signals provided by the controller (section 5.2.4) and the noise signals provided 

by the noise system (section 5.2.5). Within the outputs of the LISA open-loop plant, the 

measurements are selected to be sent in feedback to the controller.  

 
Figure 5.1.1-1: LISA dynamics block 

 
Noteworthy is the OUTPUT block. In fact, it selects the signals that are sent to the 

workspace for the performance analysis and computes the attitude of each telescope 

line-of-sight in its own telescope frame w.r.t. the inertial frame for the statistic analysis 

(Figure 5.2.1-2). Since the telescope 2 is fixed to the SC, its line-of-sight attitude 

coincides with the SC attitude computed in the telescope 2 body-fixed frame. It is 

calculated transforming the SC angular velocity from the SC reference frame to the 

telescope 2 frame 
 

2
2ω T ω( T ) ( B )

B P B= B  

 
The transformation matrix between the spacecraft frame and the telescope 2 frame is 

represented by a constant elementary rotation matrix of -30° around the common z-axis  
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The rotated SC angular velocity ( ) is integrated and the result represents the 

SC attitude in the telescope 2 frame (SC_attx_T2, SC_atty_T2, SC_attz_T2) and, 

consequently, the desired telescope 2 line-of-sight inertial attitude. 

2ω( T )
B

 

 
Figure 5.1.1-2: Coordinates transformation block 

 
On the contrary, since the telescope 1 can rotate around the z-axis, its line-of-sight 

attitude is given by 
  

SC_attx_T1 0
SC_atty_T1 0
SC_attz_T1 α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 

where [SC_attx_T1 SC_atty_T1 SC_attz_T1]T is the SC attitude computed in the 

telescope 1 body-fixed frame. In the Coordinate Transformation block, just the SC 

attitude in the telescope 1 frame is calculated, while the telescope 1 line-of-sight attitude 
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is computed in the analysis files. Proceeding as for telescope 2, the SC angular velocity 

is transformed from the SC reference frame to the telescope 1 body-fixed frame 
 

1
1ω T ω( T ) ( B )

B B= B  

 
The transformation matrix is represented by an elementary rotation matrix of  

(30°+α ) around the common z-axis 
 

1

30 30 0
T 30 30

0 0
B

cos( ) sin( )
sin( ) cos( )

α α
α α

+ +⎛ ⎞
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⎜ ⎟
⎝ ⎠

0
1

 

 
Since α  is small, the transformation matrix can be linearized 
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Being α  a time-varying signal,  is also time dependent and must be updated at 

each time-step. 

1T B

The rotated SC angular velocity is integrated and the results represent the SC 

attitude in the telescope 1 frame w.r.t. the inertial frame (SC_attx_T1, SC_atty_T1, 

SC_attz_T1). 

 

5.1.2 Delay Block 

The Delay Block introduces the control loop time delay (300 ms TBC) over the 

measurement vector components. An explanation of the control loop time delay can be 

found in section 4.2. 

 

5.1.3 Reference Signals Block 

The Reference Signals block introduces the guidance laws that the SC inertial 

attitude, the T/M position and attitude and the telescope 1 in-plane pointing angle are 
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driven to follow by the controller. Regarding the test masses, they are always forced to 

remain in their zero reference position as in the science mode. 

 

5.1.4 DFACS Controller 

The DFACS Controller subsystem implements the LISA controller described in 

chapter 4 (Figure 5.2.4-1). 
  

 
Figure 5.1.4-1: DFACS controller block 

 
The drag-free controller (Figure 5.2.4-2) receives as inputs the deviations of the test 

masses translational and rotational coordinates from the reference values  
 

q q q
d refIS IS ISm
= −  

 
and the telescope 1 in-plane pointing angle deviation from the nominal (reference) 

telescope pointing expressed as an angle around the telescope joint 
 

1 1d refTelescope Telescope Telescopeq q q 1m
= −  
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The T/M drag-free coordinates are selected using the selection matrix SDF  and the 

control of each coordinate is performed individually by using SISO controllers. The 

achieved control signals are converted by the decoupling matrix PDF  in force 

commands for the FEEP system and in force command for the OATM mechanism. 
 

 
Figure 5.1.4-2: Drag-free controller block 

 
The suspension controller and the spacecraft attitude controller are implemented 

likewise the drag-free controller. In particular, the suspension controller (Figure 5.2.4-3) 

receives as inputs  and provides as outputs the commanded forces and torques for 

the electrostatic suspension system. 

q
dIS

 

 
Figure 5.1.4-3: Suspension controller block 
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The spacecraft attitude controller (Figure 5.2.4-4) receives as inputs the spacecraft 

attitude deviation from the nominal attitude expressed as angles (three rotations around 

the ΣB axis) 
 

q q q
d refSTR STR STRm
= −  

 

and gives as outputs the commanded torques for the FEEP system. 
 

 
Figure 5.1.4-4: Spacecraft attitude controller block 

 
5.1.5 Noise System 

The Noise System block (Figure 5.2.5-1) generates the noise inputs for the LISA 

Dynamics block. The noise sources are divided in three categories as stated in section 

5.1 and are implemented in the simulator accordingly. Figure 5.2.5-1 shows the 

structure of the noise system model.  
 

 
Figure 5.1.5-1: Noise system block 
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The generation of the signals that resemble these various types of noises is 

performed according to [6]. As an example, Figure 5.2.5-2 depicts the way the FEEP 

actuation noise is simulated. A MIMO LTI shape filter (thr_noise) is used. 

 

 
Figure 5.1.5-2: FEEP actuation noise block 

 
5.1.6 Simulation Parameters 

The simulation parameters are the ensemble of data that are needed to initialize the 

Simulink® model described above. The mentioned initial simulation parameters are 

loaded in the Matlab® workspace by running the initialization file which is reported in 

[CD-ROM]. Whereupon it is possible to start the simulation1. 

The following simulation parameters deserve to be discussed 
 

sim

output

t 30000 s
stepsize 0.1 s
dt 0.1 s

=
=

=
  
 

 

                                                 
1 This procedure has to be repeated before launching each simulation. 
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The simulation time and the stepsize are solver configuration parameters (Figure 

5.2.6-1 represents the solver pane of the configuration parameters dialog box of the 

simulator). 

 

 
Figure 5.1.6-1: Solver pane 

 
The simulation time is chosen sufficiently high in order to reach sufficiently low 

frequencies. In this way it is possible to generate more accurate PSD plots to compare 

with the Matlab® model results and it is possible to highlight the effect of the coloured 

noises that affect the system. (In fact, LISA coloured noises behave as white noises at 

high frequency and show a significant dependency from the frequency only under 

specific frequencies (see noise shape filters)). Moreover, since the duration of the 

acquisition phase has to be determined, a longer simulation time is desiderable in order 

to perform the statistic analysis described in section 2.3.3. The stepsize is chosen in 

order to have sampling rates of 10 Hz as required in section 2.4 - 2.5. 

The last parameter represents the sample time at which the output signals are 

collected. It coincides with the stepsize (i.e. 0.1 s) in order to avoid the use of anti-

aliasing filters for the downsampling. In fact, the use of anti-aliasing filters, cutting the 

high frequencies of the signals, would fake the output time-series for the time-domain 

analysis. 
 

Remark 
The DC solar forces and torques acting on the spacecraft and the DC parasitic forces 

and torques acting on the test masses are not included in the noise systems of both 

Matlab® and Simulink® models; this topic is treated in Chapter 9. 
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5.2 Performance Analysis 

The congruence of the Matlab® model and the Simulink® model has to be verified. To 

this end, Figure 5.3-1 compares the spacecraft inertial attitude error curves obtained by 

means of two proposed models.  
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 Figure 5.2-1: Spacecraft inertial attitude error 

 
It can clearly be seen that the square root of the power spectral density plot 

generated from the Simulink® time-series coincides with the correspondent plot 

achieved from the Matlab® model. The noise spectrum of other state errors can be found 

in Appendix A. 

Note that the spacecraft inertial attitude error is given by 
 

q q q
err refSTR STR STR= −  

 
and represents the deviation of the real SC attitude from the reference attitude (to be not 

confused with ). Therefore, in the following, the term error addresses q
dSTR

 

 
Error = Reference Signal – Real Plant State 

 
if not explicitly mentioned otherwise.  
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Figures 5.3-2, 5.3-3, 5.3-4 and 5.3-5 show the time-series respectively of the test 

masses coordinates errors, the spacecraft inertial attitude error and the telescope 1 in-

plane pointing error achieved by means of the Simulink® model.  
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 Figure 5.2-2: T/M 1 position and attitude error 
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 Figure 5.2-3: T/M 2 position and attitude error 
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 Figure 5.2-4: Spacecraft inertial attitude error 
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 Figure 5.2-5: Telescope 1 in-plane pointing error 
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All the state errors behave as unbiased noisy signals with large jitters and negligible 

drifts. As consequence, the requirements on the short-term jitters are largely unsatisfied 

as it is shown in Table 5.3-1 and 5.3-2. In particular, note (Figure 5.3-4) that the 

spacecraft inertial roll angle error is an order of magnitude noisier than the others SC 

attitude angle errors because of the larger STR read-out noise on this axis. This 

influences both the inertial roll and the pitch angles errors of  telescope 1 line-of-sight 

(Table 5.3-1) and telescope 2 line-of-sight (Table 5.3-2).  

 
Error 

(reference - real) 
Requirements 

(μrad) 

Drag-free acquisition mode 
(μrad) 

1,errΘ  - 25.73 

1,errΗ  0.1 13.17 

1,errΦ  ≈2 20.1 +0.05  0.118  4.30 

CAGE,errα  0.05 3.90 
 Table 5.2-1: Comparison between the short-term jitter requirements and the short-term jitter 

performances in drag-free acquisition mode (maximum RMS 1σ over a time window of 1000 s) for the 
telescope 1 LOS attitude error ( ,1 errΘ , 1 errΗ , , 1 errΦ , ) and for the telescope 1 in-plane pointing angle error 

( CAGE errα , ) 

 
Error 

(reference - real) 
Requirements 

(μrad) 
Drag-free acquisition mode 

(μrad) 

2,errΘ  - 23.95 

2,errΗ  0.1 16.22 

2,errΦ  0.1 2.73 
 Table 5.2-2: Comparison between the short-term jitter requirements and the short-term jitter 

performances in drag-free acquisition mode (maximum RMS 1σ over a time window of 1000 s) for the 
telescope 2 LOS attitude error ( 2 errΘ , , 2 errΗ , , 2 errΦ , ) 

 
On the contrary, the requirements on the long-term drift are largely fulfilled by all 

degrees of freedom (Table 5.3-3 and 5.3-4). Note that the absence of significant drifts 

would be observed also in presence of DC force and torque disturbances (Chapter 9) 

since the controller provides a perfect DC forces and torques compensation. 
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Error 
(reference - real) 

Requirements 
(μrad) 

Drag-free acquisition mode 
(μrad) 

1,errΘ  - 5.57 

1,errΗ  5 3.12 

1,errΦ  ≈2 25 +1  5.099  0.78 

CAGE,errα  1 0.09 
 Table 5.2-3: Comparison between the long-term drift requirements and the long-term drift performances 

in drag-free acquisition mode (over a time window of 1000 s) for the telescope 1 LOS attitude error 
( , , ) and for the telescope 1 in-plane pointing angle error ( ) 1 errΘ , 1 errΗ , 1 errΦ , CAGE errα ,

 
Error 

(reference - real) 
Requirements 

(μrad) 
Drag-free acquisition mode 

(μrad) 

2,errΘ  - 5.33 

2,errΗ  5 3.42 

2,errΦ  5 0.8 
 Table 5.2-4: Comparison between the long-term drift requirements and the long-term drift performances 

in drag-free acquisition mode (over a time window of 1000 s) for the telescope2 LOS attitude error 
( 2 errΘ , , 2 errΗ , , 2 errΦ , ) 

 
Additional information can be achieved by the transfer-function analysis performed 

by means of the Matlab® model. Figure 5.3-6, 5.3-7, 5.3-8 and 5.3-9 show the square 

root of the power spectral densities respectively on the test masses coordinates errors, 

the spacecraft inertial attitude error and the telescope 1 in-plane pointing error. 

As expected, the high noise level shown by the time-series of all the error signals 

and the resulting non-fulfilment of the short-term requirements are due to the level of 

the star-tracker read-out noise. In fact, this is the major contribution which clearly 

dominates the other noise sources over all the states (since it is fed back in the 

spacecraft attitude controller, then in the torque commands for the FEEP system and 

from there, given the dynamic coupling, it is spread over all the states). Only at low 

frequencies the IS read-out noise drives the T/M coordinates and the OATM read-out 

noise drives the telescope 1 pointing angle. 
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 Figure 5.2-6: T/M 1 position and attitude error 
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 Figure 5.2-7: T/M 2 position and attitude error 
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 Figure 5.2-8: Spacecraft inertial attitude error 

 

10-5 10-4 10-3 10-2 10-1 100 101
10-10

10-9

10-8

10-7

10-6

10-5

Frequency (Hz)

ra
d 
⋅ H

z-1
/2

Noise spectrum on α

 

 

Sum
μ-Prop noise
Solar pressure
IS act noise
STR read-out
IS read-out
Cage read-out
Cage act noise

 
 Figure 5.2-9: Telescope 1 in-plane pointing angle error  
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5.3 Remarks 

The results achieved in this chapter prove that the drag-free acquisition mode, based 

on the controller developed for the science mode, is not able to fulfil the requirements 

for the acquisition on CCD phase because of the STR read-out noise that, at least in the 

high frequency range, drives all the degrees of freedom. This happens because the STR 

read-out noise is continuously sent in feedback to the plant through the measurements, 

which are directly (i.e. spacecraft attitude) or indirectly (i.e. test masses coordinates and 

telescope 1 pointing angle, through dynamic coupling) affected by the STR read-out 

noise. It stands to reason that a possible solution is to send in feedback improved 

estimations of the real system states in place of their noisy measurements. Therefore, 

the strategy proposed is to use a Kalman filter, in order to pre-process the measurement 

data and to provide the desired enhanced signals to the controller, which mantains the 

very same control structure used in the drag-free acquisition mode. 



 
 
 
 
 
 
 

Part II 
 

Kalman Filter Design 
 



Chapter 6  

Kalman Filter Theory 

The purpose of this chapter is to provide a basic knowledge of the Kalman filter 

main concepts, introducing the assumptions, the implementation equations and the 

main issues that are necessary to be aware of in order to perform the design of the 

Kalman filter for the LISA control system during the acquisition phase. More details 

about the Kalman filter design theory can be found in [26] and [27]. 

 

6.1 Introduction 

The Kalman filter is a recursive algorithm based on the least-squares method and 

developed by the Hungarian mathematician R.E. Kalman in 1960. Figure 6.1-1 

represents the application context in which the Kalman filter is typically used.  

Figure 6.1-1 shows a physical system, e.g. the LISA satellite, which is driven by a 

composition of external inputs and controls and whose outputs are evaluated by 

measuring devices or sensors. Thus, the knowledge of the system’s behaviour is solely 

given by the inputs and the observed outputs. Note that the observations convey the 

measurement noise (i.e. sensor read-out noise) and the process noise (i.e. actuation 

noise, environment noise, uncertainties in the used models, etc.). 

The task of the Kalman filter is to obtain an optimised estimate of the system states 

using the available information consisting of control inputs and measurements, which 

can be provided by different sensor devices. 
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Process error 
sources  
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system 

 
  

 Figure 6.1-1: Typical application of the Kalman Filter 

 
The elements that the Kalman filter needs to achieve the desired estimations are: 

• a mathematical model of the physical process under examination, constituted of 

a set of state equations to model the system state dynamics and a set of 

measurements equations to model the sensor devices dynamics; 

• a statistical description of the measurements noises, the process noises and the 

uncertainties in the dynamics models; 

• any available information about the initial conditions of the system states of 

interest. 

 

6.2 Mathematical Formulation 

6.2.1 The Discrete-Time Kalman Filter  

The discrete-time Kalman filter represents the original version of the Kalman filter 

presented in 1960 [30]. It can be applied to both discrete-time or continuous-time linear 

system models. In fact, if the physical system is modelled by a linear (time-variant) 

continuous-time set of stochastic equations 

sensors 
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(t) (t) (t) (t) (t) (t) (t)
(t) (t) (t) (t)

⎧
⎨
⎩

x  = A x  + B u  + G w
y  = H x  + n

 

(6.1) 
where: 

- x(t) is the system state vector that has to be estimated n 1×∈R  

- y(t) is the measurement vector m 1×∈R  

- u(t) is the control input vector r 1×∈R  

- w(t) is the process noise vector s 1×∈R  

- (t)n  is the measurement (read-out) noise vector m 1×∈R  

- A(t) is the dynamic matrix n n×∈R  

- B(t) is the control input coupling matrix n r×∈R  

- G(t) is the process noise input coupling matrix n s×∈R  

- H(t) is the measurement matrix m n×∈R  

 
it is possible to pass to the discrete form 

 
k k- k- k- k- k- k

k k k k

⎧
⎨
⎩

x  = Φ x  + Λ u  + Γ w
y  = H x  + n

1 1 1 1 1 1-  

(6.2) 
where: 

- xk is the system state vector n 1×∈R  computed at the time step tk, i.e. 1 k k(t )x x=

- wk-1 is the discrete process noise vector s 1×∈R  at the time step tk-1 

- k-1n  is the discrete measurement (read-out) noise vector m 1×∈R  at the time step 

tk-1 

- k-1Φ  is the state transition matrix n n×∈R  which relates the state at the time step 

tk-1 to the state at the time step tk in the absence of either a driving function or 

process noise 

 
by computing the following expressions  

( )
k k 1

i
k k 1(t t )if is time in var iant i

k 1 k k 1 k 1
i 0

t t
(t , t ) e

i!
A A   Φ Φ Φ A−

∞
−−

− − −
=

−
= ⎯⎯⎯⎯⎯⎯→ = =∑  

                                                 

(6.2a) 

1 The same can be repeated for yk, Hk 

(6.2b)

 (6.3) 

 
(6.1a) 
(6.1b)
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k

k 1

t

k 1 k 1 k
t

(t , ) ( ) ( )dΓ w Φ G wτ τ τ
−

− − = ∫ τ  

[ ]

k
k

k 1 k k 1
k 1

t
tAssu min g cons tan t

k 1 k 1 k k 1 k 1 k 1 kover t ,t t
t

(t , ) ( ) ( )d (t ) (t , ) ( )d u 
  Λ u Φ B u Λ u  u Φ Bτ τ τ τ τ τ

− −
−

− − − − −= ⎯⎯⎯⎯⎯⎯⎯→ =∫ ∫ τ

k, j

                                                

(6.3)(6.4)(6.5) 

Note that, the models are both constituted of a linear set of state (differential in the 

continuous case, difference in the discrete case) equations (Eq. (6.1a - 6.2a)) and a 

linear set of measurement equations (Eq. (6.1b - 6.2b)). 

 

Therefore, the discrete-time Kalman filter addresses the problem of estimating, in an 

optimal way, the states of the linear, time-varying, discrete-time stochastic system 

 
k k- k- k- k- k- k-

k k k k

k ≥⎧
⎨
⎩

x  = Φ x  + Λ u  + Γ w              
y  = H x  + n

1 1 1 1 1 1 0
 

 
independently from how the discrete dynamic model of the process (Eq. (6.2)) is 

obtained. 

The basic assumptions that must be satisfied to solve the estimation problem in an 

optimal way are the linearity of the system (state and measurement) dynamics and the 

following conditions concerning the random vector involved: 

• the process ( kw ) and the measurement ( kn ) noise have to be uncorrelated (e.g. 

white), Gaussian process, independent of each other, with zero mean and given 

covariance matrices ( d
kQ  is the discrete process noise covariance matrix and d

kR  

is the discrete measurement noise covariance matrix at time step tk)1 

 

  (6.6) d T d
k k k j kp( ) ( , ) E k - jN ⎡ ⎤= ⎯⎯→ = ⋅Δ⎣ ⎦w 0 Q         w w Q ( ) 

  (6.7) d T d
k k k j kp( ) ( , ) E k - jN ⎡ ⎤= ⎯⎯→ = ⋅Δ⎣ ⎦n 0 R         n n R ( ) 

  (6.8) T
k jE ⎡ ⎤ = ∀⎣ ⎦w n 0   

 
1 ( , )x PN indicates a n-dimensional Gaussian distribution with mean vector nsional Gaussian distribution with mean vector x  and covariance matrix P; 

 stands for the Kronecker delta function. k - j(Δ )

 (6.4) 

 (6.5) 

(6.2a) 

(6.2b) 
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• the initial system state vector x0  has to be a Gaussian random vector with 

 

 0 0p( ) ( , )N 0=x x Σ   (6.9) 

 
Defining  as the a priori state estimate (which represents the estimate of 

the state at the time step tk before the acquisition of the measurement 

n 1
kx̂− ∈R ×

kx ky  at the time 

step tk) and  as the a posteriori state estimate (which represents the estimate of 

the state at the time step tk after the acquisition of the measurement 

n 1
kx̂ ×∈R

kx ky at the time 

step tk), associating to these estimates the a priori estimate error  and the a posteriori 

estimate error   

ke−

ke
 

 -
k k ˆ−

k= −e x x  (6.10) 

 k k ˆ k= −e x x  (6.11) 

 

defining the a priori error covariance matrix kP−  and the a posteriori error covariance 

matrix , which represent the mean square errors of the correspondent estimate errors, 

as 

kP

 

 ( )( )TT -
k k k k k k kˆ ˆE E− − − -⎡ ⎤⎡ ⎤= = − −⎣ ⎦ ⎢ ⎥⎣ ⎦

P e e x x x x  (6.12) 

 ( )( )TT
k k k k k k kˆ ˆE E ⎡ ⎤⎡ ⎤= = − −⎣ ⎦ ⎢ ⎥⎣ ⎦

P e e x x x x  (6.13) 

 
the discrete-time Kalman filter is an observer in the form 
 

  (6.14) -
k k k k kˆ ˆ ˆ(= + −kx x K y H x- )

 

where the Kalman gain matrix  is chosen such that Eq. (6.14) evaluates the a 

posteriori state estimate  that minimizes the mean square error between the state and 

the a posteriori state estimate given by Eq. (6.13). The extensive derivation of the 

Kalman filter algorithm can be found in [27] and can be summarized in this way: 

kK

kx̂

• Eq. (6.14) and Eq. (6.2a) are substituted in Eq. (6.11); 
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• the result of the previous point is substituted in Eq. (6.13) and the expression of 

kP  is obtained; 

• the derivative of the trace of kP  with respect to kK  is taken and the result is set 

equal to zero; 

• the obtained equation is solved for kK . 

 

Therefore, if all the listed assumptions are satisfied, the resulting Kalman Filter is a 

linear, discrete-time, finite dimensional, time-varying system, whose inputs are the 

control inputs and the measurements and which: 

• evaluates the state estimate kx̂  that minimizes the mean square error between the 

state and the state estimate kP  

• maintains and propagates the first two moments of the state distribution: 

 [ ]kˆ E=x xk  (6.15) 

 ( )( ) [ ]( ) [ ](T T
k k k k k k k kˆ ˆE E E⎡ ⎤ )E⎡ ⎤− − = − −⎢ ⎥ ⎣ ⎦⎣ ⎦

x x x x x x x x  (6.16) 

 

The Kalman filter alghoritm is depicted in Figure 6.2.1-1. 

 

Sensor measurement yk 

 
(6.17)(6.18)(6.19)(6.20)(6.21) 

Figure 6.2.1-1: Discrete-time Kalman filter algorithm 

   Time Update (“Predict”) 
         Measurement Update (“Correct”) 

Initial estimate for 

(6.19) Compute the Kaman gain 

k k 1 k 1 k 1 k 1ˆ ˆx Φ x Λ u−
− − − −= +

T d T
k k 1 k 1 k-1 k 1 k 1 k-1P Φ P Φ Γ Q Γ−

− − − −= +

1T T
k k k k k k kK P H H P H R

−− − −
 (6.17) Project the state ahead 
 ⎡ ⎤= +⎣ ⎦

k k k k k kˆ ˆ ˆx x K [y H x ]− −= + −

[ ]k k k k
-P I K H P= −

k 1u − kx̂
 

  −
kx̂(6.20) Update estimate with measurement yk  

kP−  
(6.18) Project the error covariance ahead  

 
(6.21) Update the error covariance 
 
 

0 0x̂ , P

   Estimate

k 1x̂ −

kP−



 
6. Kalman Filter Theory 103
 
 

As can be noted, the Kalman filter has to be initialized by the initial conditions 

x̂ x=0 0 0 and 0P Σ= , then the estimation process is a form of feedback control. In fact 

the Kalman filter equation can be divided into two groups: the time update equations, 

that are responsible for projecting forward in time the current state (by using only the 

deterministic part of the state dynamic model, Eq. (6.17)) and the error covariance 

matrix (Eq. (6.18)) in order to obtain the a priori estimates for the next step, and the 

measurement update equations (Eq. (6.19-6.20-6.21)) that are responsible for the 

feedback, in other words they correct the a priori estimates incorporating a new 

measurement in order to obtain improved a posteriori estimates. After each time and 

measurement update pair, the process is repeated with the previous a posteriori 

estimates used to predict the new a priori estimates. This recursive nature is one of the 

main advantage of the Kalman filter: it needs to store only the last state estimate and the 

correspondent last error covariance matrix  in order to compute the new ones,thus 

saving memory, increasing the computational velocity and making it particularly 

suitable for real-time applications. 

As can be seen from Eq. (6.20), the Kalman gain matrix weights the innovation, 

which is the difference between the measurements and the measurement predictions   
 
  (6.22) -

k k k kˆ(= −i y H x )

 
Eq. (6.19) shows that the innovation and, in particular, the measurements are 

weighted in function of their reliability, in other words the Kalman gains are in inverse 

relation to the measurement noise level. Moreover note that the Kalman gain matrix is 

proportional to the a priori error covariance matrix. 

Again note that the discrete Riccati equations (6.18-6.19-6.21), which provided the 

error covariance matrices and the Kalman gain matrix, could be computed off-line, 

before the filter is actually run, since they are independent from the measurements, the 

controls and the states. This is not true anymore in the adaptive filtering approach where 

 and/or  depend on the innovation sequence. This adaptive technique is adopted 

when the properties of the process and the measurement noise are not known with 

sufficient accuracy and there is the necessity to adapt their amplitude during the 

process. 

d
kQ d

kR
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6.2.2 The Discrete-Time Steady-State Kalman Filter 

If the linear system (6.2) is time-invariant (i.e. all the model matrices are constant)  
 

k k- k-

k k k

⎧
⎨
⎩

x  = Φ x  + Λ u  + Γ w
y  = H x  + n

1 1 k-1  

 

with  and  mutually independent sequences of zero mean, uncorrelated, Gaussian 

noise with time-invariant discrete covariance matrices  and , and if 

k-w 1 kn

dQ dR

• ( )Td T d TΓQ Γ ΓQ Γ 0= > , i.e. is a positive-definite matrix 

• 0> , i.e. is a positive-definite matrix ( )Td dR R=

• the pair d T( is controllable, i.e. Φ, ΓQ Γ )

d T d T d T n- d Trank nΓQ Γ  | ΦΓQ Γ  | Φ ΓQ Γ  | ... | Φ ΓQ Γ⎡ ⎤ =⎣ ⎦
2 1  

• the pair (Φ, H)  is observable, i.e. 

( ) ( )n-T T T T T T Trank n
2

H  | Φ H  | Φ H  | ... | Φ H⎡ ⎤ =⎢ ⎥⎣ ⎦
1

 

then 

• the a priori error covariance matrix kP− converges to a constant symmetric 

positive-definite matrix 

kk
lim P P− −

∞→∞
=  

that represents the unique solution of the discrete algebraic Riccati equation 

-1T T T d T
k k

dP = ΦP Φ  - ΦP H HP H +R HP Φ Γ Q Γ− − − − −
∞ ∞ ∞ ∞ ∞⎡ ⎤ +⎣ ⎦

T

d

 

Since it is unique, it is independent of the initial condition  0P

• as a consequence, the Kalman gain matrix converges to 

-1T T
kk

limK  = K =P H HP H +R∞ ∞ ∞→∞
⎡ ⎤⎣ ⎦  
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The corresponding filter 
  

-
k k-1 k-1

- -
k k k k

ˆ ˆ

ˆ ˆ ˆ( )

x = Φ x  + Λ u

x x K y H x∞= + −
 

 
is known as the steady-state discrete-time Kalman filter and its dynamics is time-

invariant.  

 

6.2.3 The Continuous-Time Kalman Filter 

In analogy to the discrete-time case, the continuous-time Kalman filter (Kalman-

Bucy filter [31]) addresses the problem of estimating, in an optimal way, the states of 

the linear, time-varying, continuous-time stochastic system 
 

(t) (t) (t) (t) (t) (t) (t)
(t) (t) (t) (t)

⎧
⎨
⎩

x  = A x  + B u  + G w
y  = H x  + n

 

 

If the process ( ) and the measurement ( ) noise vectors are uncorrelated 

(e.g. white), Gaussian process, independent of each other, with zero mean and given 

covariance matrices (  is the process noise covariance matrix and  is the 

measurement noise covariance matrix) 

(t)w (t)n

(t)Q (t)R

 
Tp( (t)) ( , (t)) E (t) ( ) (t) t -w 0 Q         w w Q ( ) τ δ τ⎡ ⎤= ⎯⎯→ =⎣ ⎦N ⋅  

Tp( (t)) ( , (t)) E (t) ( ) (t) t -N τ δ τ⎡ ⎤= ⎯⎯→ = ⋅⎣ ⎦n 0 R         n n R ( )  

TE (t) ( ) t,τ τ⎡ ⎤ = ∀⎣ ⎦w n 0    

 

where t -( ) δ τ is the Dirac delta function, and if the initial system state vector  is a 

Gaussian random vector with 

x0

 

0 0p( ) ( , )x x Σ  0= N  

 
it can be shown [27] that the discrete-time Kalman filter equations can be manipulated 

in order to obtain a continuous-time Kalman estimator in the form 
 

0 0

ˆ ˆ(t) (t) (t) (t) (t) (t)[ (t) (t) (t)]
ˆ (0) E[ (0)] E[ ]
x  = A x  + B u  + K y H x
x x x x
⎧ −⎪
⎨

= = =⎪⎩

ˆ

 
(6.1a) 

 

(6.1b)
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where the Kalman gain matrix 
 

T 1(t) (t) (t) (t)K P H R−=  
 
can be computed solving previously the continuous-time Riccati equation 
 

( )( )

T T T 1

T
0 0 0 0 0

(t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)

(0) E - -

P A P P A G Q G P H R H P

P P x x x x

−⎧ = + + −⎪
⎨ ⎡ ⎤= =⎪ ⎣ ⎦⎩

 

 
In the previous expressions 

- ˆ (t)x  is the system state estimate n 1×∈R  that minimizes the mean square error 

between the state and the state estimate  

- ˆ is the estimate error (t) (t) - (t)e  = x x

- )Tˆ- (t)x( )(T ˆ(t) E (t) (t) E (t) - (t) (t)P e e x x x⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦  is the error covariance 

matrix 

 

6.2.4 The Continuous-Time Steady-State Kalman Filter 

If the linear system (6.1) is time-invariant  
 

(t) (t) (t) (t)
(t) (t) (t)

⎧
⎨
⎩

x  = Ax  + Bu  + Gw
y  = Hx  + n

 

 

with  and  mutually independent sequences of zero mean, uncorrelated, 

Gaussian noise with time-invariant covariance matrices Q  and , and if 

(t)w (t)n

R

• > , i.e. is a positive-definite matrix T T T)GQG (GQG 0=

• T , i.e. is a positive-definite matrix R R 0= >

• the pair T( is controllable A, GQG )

• the pair (A, H)  is observable  

then 



 
6. Kalman Filter Theory 107
 
 

• the error covariance matrix (t)P converges to a constant symmetric positive-

definite matrix 

t
lim (t)P P∞→∞

=  

which represents the unique solution of the algebraic Riccati equation 

 T T T 1− T
∞ ∞ ∞= + + −0 AP P A GQG P H R HP∞  (6.23) 

•         

Since it is unique, it is independent of the initial condition  0P

• as a consequence, the Kalman gain matrix converges to 

T 1

t
lim (t)K  = K  = P H R−

∞ ∞→∞
 

 
The corresponding filter  
 

0 0

ˆ ˆ ˆ(t) (t) (t) [ (t) (t)]
ˆ (0) E[ (0)] E[ ]
x  = Ax  + Bu  + K y Hx
x x x x

∞
⎧ −⎪
⎨

= = =⎪⎩
 

 
is known as the steady-state continuous-time Kalman filter (or the steady-state 

continuous-time Kalman-Bucy filter); its dynamics is time-invariant and it is identical to 

the Wiener filter.  

 

Remark 
 
Note that the process and measurement noise covariance matrices ( , ) 

appearing in the continuous Riccati equations have the same role than the discrete 

process and measurement noise covariance matrices ( , ) appearing in the discrete 

Riccati equations, but they have different physical units and different numerical values. 

The relationship between  and  is given by 

(t)Q (t)R

d
kQ d

kR

d
kQ (t)Q

 

 
k 1

k

t
d T T T

k k k k 1 k 1
t

(t , ) ( ) ( ) ( ) (t , )dτ τ τ τ τ
+

+= ∫Γ Q Γ Φ G Q G Φ τ+  (6.24) 
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while the relationship between  and  depends upon the way the discrete-time 

sensors process the noise. If they are integrating sensors, then 

d
kR (t)R

 
k

k 1

t
d
k

k k 1 t

1 ( )d
t t

R R τ τ
−−

=
− ∫  

 

6.3 Modelling Problems 

The purpose of section 6.3 - 6.4 is to explain the practical problems encountered in 

this work for the Kalman filter design process and implementation and to describe the 

adopted solutions. 

 

6.3.1 State Augmentation 

For many physical systems (e.g. the LISA satellite), the process and the 

measurement noise cannot be modelled by uncorrelated (e.g. white) Gaussian noise 

processes. Even if unbiased, correlated noises violate the signal conditions for the 

optimality of the Kalman filter. The solution to this problem is provided by the state 

augmentation technique, which consists in including the noise dynamics in the system 

dynamics using shaping filters. In fact, a correlated (e.g. coloured) Gaussian noise can 

be modelled by a linear system (i.e. a shaping filter) driven by noise with flat spectrum 

(white), which the filter “shapes” to represent the spectrum of the actual coloured noise. 

Thus, the state vector can be “augmented” by appending to it the state vector 

components of the shaping filter, with the resulting model having the form of a linear 

dynamic system driven by white noise. In this way the signal conditions are satisfied 

and the Kalman filter algorithm applied to the state augmented system provides an 

optimal estimate of the system states.  

The mathematical procedure for the state augmentation in presence of correlated 

process noise is described hereby. If the system model is  
 

  (6.25) 
(t) (t) (t) (t) (t) (t) (t)
(t) (t) (t) (t)

⎧
⎨
⎩

x  = A x  + B u  + F d
y  = H x  + n
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where  is non-white correlated Gaussian noise and can be modelled by a linear 

shaping filter 

(t)d

  (6.26) SF SF SF SF

SF SF SF

(t) (t) (t) (t) (t)
(t) (t) (t) (t) (t)

⎧
⎨
⎩

x  = A x  + B w  
d  = C x  + D w

 

where  is a white Gaussian noise, it is possible to define a new augmented state 

vector 

(t)w

[ ]TA SF(t) (t) (t)x x  x=  

 
and to combine Eq. (6.24) and Eq. (6.25) into the matrix form 

 

  (6.27) 

AA A A A

A

(t )(t ) ( t ) ( t ) ( t )

SFSF

SF SF SF SF

SF(t )

(t) (t)(t) (t) (t) (t) (t) (t)
(t) (t)

(t) (t) (t) (t)

(t)
(t) [ (t) ]

(t)

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Gx A x B

H

F Dx A F C x B
u w

x 0 A x 0 B

x
y H  0 +

x
(t)

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 n

 
The state augmented system Eq. (6.27) is a linear time-varying, stochastic system 

driven by white Gaussian noise as the Kalman filter basic assumptions require. Note 

that the size of the original dynamic system is increased by the size of the shaping filter. 

A similar development is feasible also for the case of time-correlated measurement 

noise and the detailed procedure can be found in [27]. Then it is possible to combine 

both, process and measurement noise state augmentation. 

Note that only zero-mean (white or coloured) noises satisfy the Kalman Filter 

assumptions. However several techniques exist to estimate and remove disturbance 

biases. (Chapter 9) 

The main advantage of the state augmentation technique is that, since the state 

augmented system (6.27) fulfils the Kalman filter signal conditions, it provides the 

ground for an optimal filter design. However, the disadvantages of a fully optimal filter 

are that it could impose an unacceptable computer burden (since the size of the problem 

can be considerably enlarged), it could be too sensitive to uncertainties in the dynamics 

model parameters and it could be unstable (due to a possible un-osservability and un-

controllability of the augmented system) producing divergence. In these cases, it is 
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necessary to implement suboptimal or reduced order filters by sacrificing some 

optimality. 

 

6.3.2 Suboptimal and Reduced Order Filter 

In this thesis, the design of suboptimal Kalman filters is based on two methods: 

a) State reduction: choice of simplified system models obtained by deleting process 

and/or measurement noise states. This means that the state augmentation is not 

performed at all or it is just partially performed (for the process noise or for the 

measurement noise). This technique consists in designing the noise covariance 

matrices ( (t)Q , (t)R ) as if the system was driven by “fictitious” white Gaussian 

noises which have the same overall effects of the “real” correlated noises. In 

other words, the variances of the coloured noises are computed or approximated 

in the high frequency range as it is described in Appendix B. Then, they are used 

to build the noise covariance matrices for the Riccati equations. In this way the 

filter “believes” that the process and the measurement noises are white noises 

with variances that are equal to the real variances of the coloured noises or to 

theirs values in the high frequency range. This is a good suboptimal filtering 

method if the correlated noises “behaves” as white noise at least in the frequency 

bandwidth of interest (i.e. if the shape filters are flat at high frequencies).  

b) Steady-state filtering: choice of simplified system gains approximating the 

optimal time-varying gains with the correspondent steady-state gains. This is a 

good suboptimal filtering method if the steady-state conditions (sections 6.2.2–

6.2.4) are satisfied and if the error covariance matrices and the Kalman gains 

stabilize quickly. 

The previous methods can also be combined.  

 

6.3.3 Filter Parameters and Tuning 

The Kalman filter design process is actually something more complex than the 

application of scholastic theoretical methods. In fact, it requires a fine tuning of the 
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filter parameters (that in large dimension systems, as a LISA satellite is, are really a 

lot!) which is largely heuristic. 

In fact, the performances of a the designed (suboptimal) Kalman filter can be degraded 

(sometimes till to divergence) when: 

• the designed Kalman filter does not model with sufficient accuracy the real 

system dynamics; 

• the designed Kalman filter is too sensitive towards uncertainties in the dynamics 

model parameters. 

In order to improve the performances of the Kalman filter, several tuning strategies can 

be applied: 

1. add fictitious process noise w, thus increasing one or more elements of the 

process noise covariance matrix Q 

2. introduce a lower bound for one or more elements of the (a posteriori, in the 

discrete-time filter) error covariance matrix 

maxmax( )P = P, P  

3. use an adaptive filter  

The techniques 1 and 2 produce the same effects: they increase one or more 

elements of the error covariance matrix P and, consequently, the correspondent Kalman 

gains (Eq. (6.19)). The Kalman filter has a low-pass behaviour since it weights the 

measurements in function of their noise level. Therefore,to increase the Kalman gains 

implies to enhance the filter bandwidth: the measurements are passed more and, with 

them, the noise they convey. The filter is more able to track the real states, but the 

estimates result more noisy. This procedure is particularly useful when the filter has to 

operate for long time or converge quickly to low steady Kalman gains. When the 

Kalman gains are too low, the estimates are less noisy since new measurements are very 

poorly weighted, but the filter is slow and saturate (it could also diverge). This bears the 

risk that sudden changes in the reference signals (maneuvers) may not be detected 

immediately, but only with a significant delay. The choice of the appropriate level of 

the elements of Q and P is largely heuristic and depends to a great extent upon what is 

known about the physical system, the unmodeled states, etc. The main difference 
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between the two techniques is that the second one is not applicable to the steady-state 

filters, while the first is always usable. 

The adaptive filtering technique is based on the equations reported in [34]. This 

method was studied and applied during the orientation phase of this thesis, but is not 

used in the LISA framework since it consists in a complex sensitive algorithm, with a 

poor physical meaning and with an high risk of instability. 

 

6.4 Numerical Specialties 

Truncation and roundoff errors, due to the inherently finite nature of the computer, 

can seriously degrade the performances of the Kalman filter. Hence, it is necessary to 

use implementation methods and numerical tricks which are robust against roundoff 

errors, but have an acceptable computational cost.  

The main numerical specialities that are used in this work are presented in the 

following points: 

a) Particular attention is posed into the discretization which involves the numerical 

computation of Eq. (6.3 - 6.4 - 6.5 - 6.24). In particular Eq. (6.24) is computed 

using the matrix exponential formulas that can be found in [26]. 

b) The covariance matrices are symmetrical by definition, but this condition might 

be violated by rounding errors of the update process. The symmetry of the a 

posteriori error covariance matrix is ensured by the use of the Joseph’s formula  

T d
k k k k k k k k( ) ( )P I - K H P I - K H K R K−= + T

k  

in place of Eq. (6.21). The symmetry of , ,  and of the 

correspondent continuous-time matrices is ensured by posing 

k
-P d

kR d T
k k kΓ Q Γ

T

2
S SS +

=  

at each time step. 

c) In the discrete Kalman filter, the inversion of the following matrix has to be 

performed  

  (6.28)                   T d
k k k k

− +H P H R
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If the measurement noise covariance matrix  is a diagonal matrix, meaning 

that the individual components of  are uncorrelated, the components of the 

measuring vector can be considered as independent scalar measurements rather 

than as a vector measurement. In this way, the inversion of Eq. (6.28) can be 

avoided (since it becomes a scalar) improving numerical accuracy. This 

procedure is called decorrelation of the measurement matrix and a detailed 

description of its mathematical implementation can be found in [27]. 

d
kR

kn

d) Minimize the number of calculations (e.g. by reusing partial results in the 

discrete-time implementation) 

e) The initial conditions indicated for the optimality are 

x̂ x=0 0  

0 0P Σ=  

hoever the values of x0  and  are not a priori known. If the system is stable 

and quickly convergent to the steady-state, the choice of the initial conditions 

influences only the initial transient of the filter. However, some shrewdness is 

recommended. The initial error covariance matrix  tells the filter how much it 

can trust the initial estimate . Therefore it must be ensured that  

0Σ

0P

0x̂
 

0 0 0ˆ trace( )2x - x << P  
 

On the other side, the misscaling between the initial state estimation uncertainty 

and the measurement uncertainty could case an ill-conditioning in the 

computation of 
T T

0 0 0 0 0 0 0( )K P H H P H Rd 1− − −= +  

where, if  
d

0 0P R− >>  

because of the roundoff errors, the consequence is that 
 

T d
0 0 0 0 0 0 0

− −+ ≅H P H R   H P HT  
 

And, from Eq.(6.21) follows 

1P 0=  



Chapter 7  

Kalman Filter Design for the LISA 
Constellation Acquisition Control 

7.1 Kalman Filter Design Principle: the Gyro Mode 

The objective of the Kalman filter (KF) is to process the measurements data coming 

from all the available sensors (star-tracker, OATM sensor and IS unit) providing 

enhanced estimates of the SC attitude, the telescope 1 in-plane pointing angle and the 

test masses coordinates, such that the SC and the telescope, and consequently the laser 

beams, are able to follow the acquisition guidance laws with an error1 that fulfils the 

requirements established for the acceptable jitter and drift of the telescopes line-of sight 

attitude during the acquisition on CCD phase Table(2.3.3-3). 

This control mode is addressed as the gyro mode since it is based on the same 

principle, which is often used for spacecraft attitude determination in high accuracy 

pointing applications and which relies on the hybridisation of STR and gyroscope 

measurement data. In analogy to the STR and gyros data fusion approach, the IS 

measurements are used as gyro-like measurements to filter, smoothen and propagate the 

STR data, supporting in this way the attitude control system over short-time periods. 

This can happen because the two signals have complementary error characteristics: the 

STR has a very good long-term stability but suffers from short and medium-term noise, 

on the contrary the IS (“gyro”) has a very good short-term stability but suffers from 

                                                 
1 In the sense introduced in section 5.3: Error = Reference Signal – Real Plant State 
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medium and long-term drifts1. Therefore, the goal of the Kalman filter is to obtain a 

reduction of the STR noise effect in the high frequency range of the states signals, while 

it is expected that the signals behave at low frequencies as if the filter is not applied. 

This should allow the satisfaction of the requirements in the time-domain. 

Considering the state and measurements equations of the LISA satellite Eq. (3.7-

3.8), it can be noted that the coupling between the SC and the telescope states with the 

T/M states comes from the control matrix B (i.e. there is no direct coupling between the 

states or the measurements). Therefore, the physical principle of the estimation process 

can be qualitatively explained in this way: an improved estimate of the T/M 

coordinates, which means a reduction of the STR effects over them, produces more 

accurate suspension control signals. This improves the estimate of the SC attitude 

through the dynamic coupling (since the non-drag-free T/M coordinates are obliged to 

follow the SC via the suspension controller). In other words, a better estimate and 

control of the T/M coordinates imply a better estimation and control of the SC attitude 

and the telescope in-plane pointing angle. The STR is used only in the medium and 

long-term period in order to correct the long term drift. 

In the following sections, the design of the Kalman filter is performed. Three 

suitable Kalman filters are identified: the advantages/disadvantages of each type are 

pointed out and their performances are analysed and compared. An indication for the 

final choice is provided in chapter 10 and it is also based on the results of the sensitivity 

analysis towards uncertainties in the dynamics models (chapter 8) and on the DC effects 

and compensation analysis (chapter 9). 

 

7.2 Kalman Filter Parameters (Process Models) 

A mathematical model of the states dynamics and of the sensor devices dynamics, 

together with a statistical description of the measurement noises and of the process 

noises of the LISA satellite, are required. The ensemble of this information constitutes 

the Kalman filter process model of the LISA satellite. The starting point for its 

derivation is constituted by the state equation (3.7) and the measurement equation (3.8) 
                                                 
1 This happens in particularly when the DC (constant) parasitic forces and torques acting on the T/M are 
taken in consideration. If the test masses move or rotate because of the DC actions, the spacecraft, which 
is forced to follow the T/M, also moves and rotates. Therefore a long-term drift on the satellite attitude is 
expected. 
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which represent the real model of the LISA satellite (i.e. used to simulate the real 

behaviour of the satellite).  

 

7.2.1 System State Cancellation 

The state vector has to be reduced since the position and the velocity of the 

spacecraft are not observable. The system state cancellation procedure consists in 

eliminating the equations of motion involving the SC position. Introducing the reduced 

state vector x 32 1∈R x  
 

1 1 2 2 1 1 2 2 ]x = [ω   r   ω   r   ω      α   r   α   r   α   α α T
B B  

 

and setting 

• 

3 3 3 6 3 6 3 1

6 3 1 6 6 6 1
16 16

6 3 6 6 2 6 1

1 3 1 6 1 6 1 1

0 0 0 0
0 Ω 0 0

Ω
0 0 Ω 0
0 0 0 0

× × × ×

× ×
×

× × ×

× × × ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

• 419,119
-1  is M B -1M B without the first three rows 

• 419,119
-1  is -1M F without the first three rows M F

the state equation (3.7) can be rewritten as 
 

 419,119 419,12516 16 16 16

16 16 16 16 16 19 16 25

(t) (t) (t) (t)× ×

× × × ×

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

-1 -1

A B G

0 Ω M B M Fx  = x  + u  + d
E 0 0 0

 (7.1) 

 

where u(t) and d(t) are the same of section 3.2, while the measurement equation (3.8) 

can be rewritten as 
 

  (7.2) 
3 3 3 12 3 1 3 3 3 12 3 1

12 3 12 12 12 1 12 3 IS 12 1

1 3 1 12 1 1 1 3 1 12 1 3

(t) (t) (t)
× × × × × ×

× × × × ×

× × × × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

0 0 0 E 0 0
y  = 0 0 0 0 g 0 x  + ν

0 0 0 0 0 E

 

where y(t) and  are the same of section 3.3. (t)ν
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Eq.(7.1) and Eq. (7.2) constitute a linear, time-invariant, continuous-time stochastic 

system driven by the read-out noise vector  and the disturbance input vector d(t). 

This model is linear, but it does not satisfied the Kalman filter signal conditions since 

the elements of the measurement vector and the disturbance input vector are not all 

white Gaussian process. In order to solve this problem, the state augmentation (section 

6.3.1) or the state reduction (section 6.3.2 a)) modelling strategies are adopted. 

(t)ν

 

7.2.2 Preliminary Remarks 

The LISA satellite real model is continuous-time. Therefore, the Kalman filter 

process models are continuous-time. 

 The LISA satellite real model is time-invariant. Therefore, the Kalman filter process 

models are time-invariant. All the matrices are time-invariant and their time dependence 

is omitted in the following. 

All the measurement and process noise components are assumed to be uncorrelated 

between them. Therefore, the measurement noise covariance matrix R and the process 

noise covariance matrix Q are diagonal 
 

TE (t) ( ) t,w n 0   ⎡ ⎤ = ∀⎣ ⎦τ τ  

 

1

m

2
n

2
n

0

0
R

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

σ

σ

 

 

1

m

2
w

2
w

0

0
Q

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

σ

σ

 

 

where 
i

2
nσ  is the variance of the i-th component of the measurement noise vector and  

i

2
wσ  is the variance of the i-th component of the process noise vector. 
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The Kalman filter parameters that are necessary to define a Kalman filter process 

model are summarised in Table (7.2.2-1). 

 

KF parameters Task 

x(t) system state vector 

y(t) measurement vector 

u(t) control input vector 

A dynamic matrix 

B control input coupling matrix 

G process noise input coupling matrix 

H measurement matrix 

Q process noise covariance matrix 

R measurement noise covariance matrix 
 

Table 7.2.2-1: Continuous-time Kalman filter parameters 

 
The vectors y(t), u(t) for the Kalman filter process models are the same of Eq.(7.1) 

and Eq. (7.2) for all the proposed models. 

 

7.2.3 Model 1: State Reduction 

The matrices A, B, G, H and the system state vector x(t) for the KF process model 

are the same of Eq.(7.1) and Eq. (7.2) 

The state reduction (section 6.3.2 a)) modelling strategy is adopted in order to define 

the noise covariance matrices Q and R. The process noise w(t) and the measurement 

noise n(t) of the KF process model are assumed to be coincident with the disturbance 

input vector d(t) and the read-out noise vector  of Eq.(7.1) and Eq. (7.2) (even if 

they are not all white noises) respectively and their variances are computed according to 

what is reported in Appendix B. 

(t)ν

The achieved KF process model has to estimate 32 states since . 32 1(t)x ×∈R
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7.2.4 Model 2: State Augmentation for the Process Noise 

The state augmentation (section 6.3.1) modelling strategy is applied for the process 

noise. The shaping filters that are used to model the disturbance input vector of  

Eq.(7.1) are added to the system dynamics according to the procedure described in 

(section 6.3.1). The KF process model results in 
 

  (7.3) 

AA A A A

A

(t ) ( t )

SFSF

SF SF SF SF

SF

(t) (t)
(t) (t)

(t) (t)

(t)
(t) [ ] (t)

(t)

⎧
⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ = + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎨
⎪ ⎡ ⎤

=⎪ ⎢ ⎥
⎪ ⎣ ⎦⎩

Gx A x B

H

FDx A FC x B
u w

x 0 A x 0 B

x
y H   0 + ν

x

 
where 25 1(t)w ×∈R  is a vector of unitary power, white, Gaussian noise. 

The matrices A, B, G, H and the system state vector x(t) for the KF process model 

are those indicated with the subindex “A” in Eq. (7.3); R is computed as in Model 1; Q 

is a diagonal matrix whose elements are the variances of the components of . (t)w

The achieved KF process model has to estimate 100 states since 100 1
A (t)x ×∈R , but 

only the first 32 are of interest.  

 

7.2.5 Model 3: State Augmentation for the Measurement Noise 

The state augmentation (section 6.3.1) modelling strategy is applied for the 

measurement noise. The procedure to obtain the KF process model is basically the same 

as for Model 2. The achieved KF process model has to estimate 44 states, but the 

performances of the filters implemented with this model are of the same order than 

those achievable with Model 1. In fact, the read-out noise vector of Eq. (7.2) is 
 

 

STR
ν = IS

CAGE

ROnoise

ROnoise

ROnoise

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.12) 

 

where only the IS read-out noises are correlated. Moreover, their shaping filters (Figure 

2.5.2-1) show a flat spectrum down to 10-4 Hz. Thus, a white noise approximation is 

suitable for the considered simulation times.  
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7.2.6 Model 4: State Augmentation for Process and Measurement 

Noise 

The state augmentation (section 6.3.1) modelling strategy is applied for both, 

process and measurement noise. The procedure to obtain the KF process model is 

basically the same as for Model 2. The achieved KF process model has to estimate 112 

states, but the performances of the filters implemented with this model are of the same 

order than those achievable with Model 2 for the same reasons explained in the previous 

section. 
 

Remark 

Model 3 and Model 4 produce an increase of computational cost (due to an increase 

of the size of the KF process model) without providing better performances. Their use is 

avoidable and, in this work, only the results achieved with Model 1 and Model 2 are 

presented.   

 

7.3 Kalman Filter Algorithm 

7.3.1 Algorithm 1: Time-Varying Discrete-Time Kalman Filter 

The time-varying discrete-time Kalman filter algorithm (Figure 6.2.1-1) represents 

the usual approach for Kalman filtering. 

 

Discretization 

As it is known from chapter 6, in order to apply the discrete-time Kalman filter 

algorithm to the continuous-time models of the LISA satellite derived in the previous 

sections, they have to be discretized. The discretization of the models is performed as 

indicated in section 6.2.1 and uses the numerical specialties mentioned in section 6.4-a). 

 

Implementation 

The time-varying discrete-time Kalman filter algorithm implementation is 

performed in the Simulink® environment. The main structure of the simulator for the 

LISA acquisition phase is depicted in Figure 7.3.1-1.  



 
7. Kalman Filter Design for the LISA Constellation Acquisition Control 121
 
 

 
Figure 7.3.1-1: Main structure of the LISA acquisition phase simulator 

 
Note that it is identical to the one presented in chapter 5, except for the addition of 

the Kalman Filter block, which is illustrated in Figure 7.3.1-2.  
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Figure 7.3.1-2: Kalman filter block 

 
The KF subsystem inputs are the measurement data, coming from the STR, the 

OATM sensor and the IS unit, as well as the control commands, provided by the 
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controller before they are sent to the FEEP system, the OATM actuator and the IS 

actuator. The KF output ports are the estimates of the SC attitude, of the telescope in-

plane pointing angle and of the T/M coordinates, which are selected between the 

components of the a posteriori state estimate vector  (whose composition depends on 

which model is implemented). The estimated states are sent to the controller in place of 

the measurements.  

kx̂

The KF block implements the discrete-time Kalman filter algorithm. The Time 

Update subsystem implements the time update equations, which project forward in time 

the current state  and the error covariance matrix  kx̂−
k
-P

 

k k 1 k 1 k 1 kˆ ˆx Φ x Λ u−
1− − −= + −

k-1

 

T T
k k 1 k 1 k-1 k 1 k 1P Φ P Φ Γ P Γ−

− − − −= +  

 
and the Measurement Update subsystem (Figure 7.3.1-3) implements the measurement 

update equations, which accomplish a weighted correction of the prediction  and the 

error covariance matrix  by means of the respective sensor measurements . 

kx̂

kP ky

 
1T T

k k k k k k kK P H H P H R
−− − −⎡ ⎤= +⎣ ⎦  

k k k k k kˆ ˆ ˆx x K [y H x ]− −= + −  

[ ]k k k
-P I K H P= − k  

 
The time update block requires as inputs the control command vector u(t), provided 

by the controller, the state transition matrix (in Figure 7.3.1-2, ), the discrete 

control input matrix and the discrete process noise covariance matrix. These matrices, 

coming from the discretization of a time-invariant system, are time-invariant and are 

loaded by running the initialization file. The measurement update block requires as 

inputs the measurement vector y(t), provided by the sensors, the measurement matrix 

and the discrete measurement noise covariance matrix. These matrices are also time-

invariant.  

KFΦ = A

Note that the KF block is a completely general tool for the implementation of the 

discrete-time Kalman filter algorithm. Therefore, it could be used to estimate the states 
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of any system, also time-varying, just by changing the model matrices (and the size of 

some selector). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.3.1-3: Measurement update subsystem 
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Additional logic 

The KF algorithm is implemented using the numerical specialities described in 

section 6.4-b) and d).  

The decorrelation of the measurement matrix technique (section 6.4-c)) has been 

also tested. The violet block of Figure 7.3.1-3 has to be replaced by the algorithm that 

performs the mentioned decorrelation. The performances achieved are of the same order 

than the actual implementation’s, while the computational time is considerably 

increased.  

The Filter Desaturation block in Figure 7.3.1-3 allows the use of the tuning 

technique described in section 6.3.3-2 and consists in the introduction of an upper 

bound for the elements of . In order to activate the desaturation block, it is sufficient 

to click on the manual switch and select the components of  on which apply the 

desaturation. The logic of this block could be improved in a later stage. 

kP

kP

 

Initialization 

A study of the filter sensitivity towards the initial conditions ( , ) has been 

performed. Since the process models satisfy the conditions for the existence of the 

steady-state solution of the Riccati equations, the initial conditions influence only the 

transient period after which Pk and Kk reach the same steady values.  

x̂0 0P

Therefore, different choices of  influence only the duration of the transient. For 

example, choosing  the transient is very fast, while choosing any different 

value for  implies a much longer transient especially for the spacecraft attitude 

dynamics, which is much slower than the T/M or the telescope pointing angle dynamics.  

0P

0 nP 0 ×= n

n

0P

Physically, to choice 0 nP 0 ×=  means that the initial guess for the estimate  is 

correct because the error covariance is zero and this is obviously false. It can be shown 

that, if the last measurement is taken as initial estimate, to choose  produces a 

stable, convergent result.  

x̂0

0 nP 0 ×= n

However, in literature [40], it is found that it is always preferable to choose a  

different from zero (also because, otherwise, the desaturation procedure is not 

0P
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applicable). Therefore, remembering the discussion of section 6.4-e), it is suitable to 

choose 

n nx̂ 0 ×=0  

1
n n 0 n n100 < P E−
× ×< ⋅  

 
The choice and the loading of the other simulation parameters proceed as described 

in section 5.2.6 

 

7.3.2 Algorithm 2: Steady-State Continuous-Time Kalman Filter 

The continuous-time KF process models of the LISA satellite satisfy the conditions 

of existence of a steady-state solution of the Riccati equations. The Matlab® command 

of the Control System Toolbox 
 

[ ∞P ,L, ,report] = care(AT,HT,GQGT,R,0nxn,Enxn) ∞
TK

 
is used to solve the continuous-time algebraic Riccati equation (6.23) and the 

Matlab® command  
 
        [Kalmf, , ]= kalman(KF_sys_mod, Q, R) ∞K ∞P

 
where KF_sys_mod is the state-space representation of the Kalman filter process 

model, returns the steady-state Kalman gain matrix ∞K , the steady-state error 

covariance  and an LTI state-space representation of the continuous-time Kalman 

estimator (Kalmf) 

∞P

 

[ ]

m r m m

n n n r n m

t
t t

t

t t
t

t t
× ×

× × ×

⎧ ⎡ ⎤
= +⎪ ⎢ ⎥

⎣ ⎦⎪
⎨

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩

u( )ˆ ˆx( ) (A - KH)x( ) B K
y( )

ˆ H 0 0y( ) u( )
x̂( )

ˆ E 0 0x( ) y( )

 

 
 

which can be implemented in both Matlab® and Simulink® environments. Note that the 

Kalmf outputs are the state estimates  and the measurement estimates . Since tx̂( ) tŷ( )
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H is almost the identity matrix, to propagate  instead of  does not produce 

considerable changes in the performances, but reduces the algorithm sensitivity to the 

uncertainties on the cross-talk coefficients of the electrostatic read-out system and 

therefore, it is preferable. 

tx̂( ) tŷ( )

 

Matlab® Implementation 

The procedure used to obtain a Matlab® model that simulates the behaviour of the 

whole closed-loop including the Kalman filter is basically the same described in chapter 

5. The only difference is that the measurement data, obtained by the LISA open-loop 

plant, are not sent directly in feedback to the controller by they have to be pre-processed 

by the Kalman filter system (Kalmf). Figure 7.3.2-1 illustrates the overall Matlab® 

model architecture including the Kalman filter.  
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Figure 7.3.2-1: Overall Matlab® model architecture including the Kalman filter 

 
Therefore, after having implemented the LISA open-loop equations, the Kalman 

filter LTI system is attached in parallel to the LISA plant (Figure 7.3.2-2)  
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Figure 7.3.2-2: Step 1 for the introduction of the Kalman Filter in the Matlab® model 

 
and the measurement outputs of the plant are connected to the filter inputs with positive 

feedback (Figure 7.3.2-2). 

 

Additional Outputs 
u 

LISA 
Satellite 

d 
 
ν  
 

 
 

Figure 7.3.2-3: Step 2 for the introduction of the Kalman Filter in the Matlab® model 

 
In this way, it is achieved a new “plant” that receives as inputs the same inputs of 

the LISA plant and which produces as outputs the same outputs of the LISA plants plus 

the outputs of the Kalman filter system (state and measurement estimates).  

The state estimates of interest are sent in feedback to the controller and the noise 

system is added in the same way described in chapter 5. 

 

Simulink® Implementation 

The main structure of the simulator is the same of Figure 7.3.1-1, where the Kalman 

Filter block (Figure 7.3.2-4) contains the Kalman filter estimator which is implemented 

Kalman 
Filter 

y 

ŷ  

x̂  

new “plant” 
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by means of an LTI system block. 

 

 
Figure 7.3.2-4: Kalman filter block 

 
 

Remarks 

• Comparison between the algorithms implemented: 

 Time-varying discrete-time KF algorithm 

- Advantages: optimal filter (if the signal conditions are fulfilled, but, in 

any case, it is the best filtering approach for linear system); all the tuning 

strategies (section 6.3.3) are applicable. 

- Disadvantages: complex algorithm, time-consuming simulations required 

(state augmented models realistically not implementable), additional logic 

necessary for tuning strategies, problem of the initial conditions choice, 

round-off errors introduced by the discretization, high number of 

parameters to tune. 

 Steady-state continuous-time KF algorithm 

- Advantages: linear transfer-function analysis possible thanks to the 

Matlab® model, reduced complexity, shorter-time simulations (state-

augmented model implementation possible), no additional logic required, 

no dependence from the initial conditions, no discretization required, 

reduced number of parameters to tune 
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- Disadvantages: suboptimal filter, steady-state existence conditions must 

be verified in order to solve the Riccati equation, only the tuning of the 

process noise covariance matrix is possible (no desaturation, no adaptive 

filtering strategies applicable) 

 
Since the time required for the simulation is considerably reduced in the steady-

state filter case, it provides a tool for a fast analysis of the role of the tuning 

parameters. 

• In the Simulink® implementation of both algorithms, the “run out of memory” 

problem was encountered since the use of anti-aliasing filters has to be avoided 

in order to not lose the high-frequency information. Therefore, an effort in 

saving memory is mandatory. 

• A steady-state discrete-time KF was also designed and implemented in order to 

have a complete scenario. This algorithm has the same advantages and 

disadvantages of the continuous-time type, but the models are continuous-time 

(they have to be discretized introducing roundoff errors) and the tuning is more 

complex in the discrete case (the discrete process noise covariance matrix is full, 

while the continuous one is diagonal). Therefore, the performances of this filter 

are lower than the continuous ones.  

 

7.4 Kalman Filter Design 

The Kalman filter process models derived in section 7.2 are combined with the 

Kalman filter algorithms, whose implementation is described in section 7.3, producing 

four different Kalman filters: 

1) Model 1 + Algorithm 1: time-varying discrete-time Kalman filter without state 

augmentation 

2) Model 2 + Algorithm 1: time-varying discrete-time Kalman filter with state 

augmentation for the process noise 

3) Model 1 + Algorithm 2: steady-state continuous-time Kalman filter without state 

augmentation 
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4) Model 2 + Algorithm 2: steady-state continuous-time Kalman filter with state 

augmentation for the process noise 

The Kalman filters without state augmentation (filters 1) and 3) require additional 

tuning because the error between the real states and their estimate is too large. In 

particular, the SC inertial roll and pitch angles ( BΘ , BΗ ) result as the states worst 

estimated together with the T/M roll and pitch angles ( 1θ , 1η , 2θ , 2η ). This is not 

surprising since, from a dynamic point of view, BΘ  and BΗ  are related to the 

correspondent T/M attitude coordinates ( 1θ , 1η , 2θ , 2η ) and to 2z . In fact, if a test mass 

rotates around the x or y axis of ΣC, the suspension controller produces a torque around 

that axis in order to bring the test mass back in its reference position. The corresponding 

counter torque generated on the SC influences the SC attitude in the constellation plane 

(i.e. BΘ  and BΗ ). In analogy, if T/M 2 moves in the z direction of ΣC, the suspension 

controller produces a force along that direction that causes a torque around the x and y 

axis of ΣC. For the same reason, the SC inertial yaw angle BΦ  is influenced especially 

by 1φ  and 2φ , while the telescope in-plane pointing angle α  is influenced by all the 

states that can induce a rotation around the z axis of ΣC. Therefore, a better estimate of 

the T/M coordinates implies a better estimation and control of the SC attitude and the 

telescope in-plane pointing angle.  

From a theoretical point of view, the explanation for this non-optimal behaviour of 

the filter is that the error covariance matrix elements P and the Kalman gains K 

converge to values that are too small and, thus, all the new measurements are very 

poorly weighted and not only the STR ones as it is desired. Therefore, the objective of 

the tuning is to increase the ‘right’ Kalman gains in order to produce a better estimation 

of the T/M coordinates (and consequently of all the states), but being careful in not 

reintroducing the STR read-out noise in the estimates. 

In the model without state augmentation, the measurement and the process noise 

states are not modelled. Neglecting the measurement noise states is not a problem 

(section 7.2.5-7.2.6). Considering the process noise covariance matrix Q, its diagonal 

elements, computed according to Appendix B are 
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3 75e 013 3 75e 013 4 50e 013 1 62e 013 1 62e 013 3 25e
diag 5 58e 021 2 24e 019 1 37e 016 2 56e 020 6 33e 022 5 24e 024

1 87e 028 3 83e 026 3 8
013

3

=
. -  

(Q) [ . -   . -   . -   . -   . -   . -
                  
         

 . -   . -   . -    . -
         . -   . -  

 
 

 
.

. -
e 026 2 82e 030 2 82e 030 2 82e 030

1 87e 028 3 83e 026 3 83e 026 2 82e
3 60e 014

030 2 82e 030 2 82e 030
-   . -   . -   . -

                  . -   . -   . -   . -   . -   . -
               . -   ]

 

 
The dominant noise sources are the FEEP actuator (blue) and the OATM system 

(green). Their variances are several order of magnitude larger than the variances of the 

solar noise and of the IS actuation noise. The telescope pointing actuation noise is white 

and satisfies the Kalman filter assumptions. On the contrary, the shape filter for the 

FEEP actuation noise is a MIMO LTI system with 24 states which are completely 

neglected. Moreover, its noise spectrum (Figure 2.4.1-1) rises up already at 10-1 Hz. 

Concluding, the FEEP actuation noise is badly modelled in the filters without state 

augmentation and this produces the observed degradation in the filter performances.  

The adopted solution consists in adding fictitious process noise on the FEEP 

actuation noise components: taking variances of the same order as the FEEP shaping 

filter gains (i.e. 10-8, this means to increase the corresponding process noise covariance 

matrix elements with a factor of 105), all the error estimates of all the states (especially 

, , ,  and consequently 1θ 1η 2θ 2η BΘ , BΗ ) decrease considerably. Moreover, considering 

the Kalman gain matrix, its elements are increased, but not proportionally: the gains that 

weight the STR measurements are almost unmodified, while the IS gains are 

considerably increased. The actual tuning choice derives from a long optimization 

process and provides the best performances. 

Note that the same results could be obtained with the desaturation technique or 

introducing an adaptive filter for the process noise. However, since the physical reason 

of the problem is found in the unmodelled states of the FEEP actuation noise, this is the 

most physical way to proceed. 

 

The continuous-time KF with state augmentation (filters 4)) provides the desired 

results already without tuning (in fact, the process noise is modelled correctly). 

However, it is possible to choose 

with 1 c 5
c

≤ ≤
Q              
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in order to reduce the Kalman gains and, consequently, the noise that the measurements 

convey over the estimates. 

The discrete case (filters 2)) is numerically ill-conditioned, since its convergence 

depends on the choice of the initial conditions. It was decided not to spend too much 

time in the investigation of this problem since the implementation time of this filter is 

unacceptable, even when it converges, and also because the other filters achieve already 

suitable results.  

 

7.5 Performances Analysis 

In the previous section, three Kalman filters are selected as the most qualified for the 

gyro mode. Their main features are summarized in Table 7.5-1; an identification 

number is associated to each filter (1, 2, 3) and it is often used in the following in place 

of the complete filter descriptive name.  
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Table 7.5-1: Designed Kalman filter characterization 
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Note that in the time-varying discrete-time Kalman filter (KF 1) the sensor data are 

considered as if they were provided continuously in time and, as consequence, the 

corresponding measurement noise covariance matrix is not discretized. 

Since the correct guidance laws are TBD, the filter performances are tested over 

several reference signals. The following ones are taken as exemplification 

 

State Reference Law 
Spacecraft Inertial Attitude 6 2r 10 sin(10 t)− −= ⋅  

Test Masses Coordinates r 0=  

Telescope 1 in-plane pointing angle r 0=  
 

 Table 7.5-2: Reference laws used for the simulation  

 
Figure 7.5.1 depicts the time-series of the SC inertial pitch angle achieved in the 

drag-free acquisition mode conditions (i.e. without the use of a Kalman filter), 

compared with its reference signal, which represents the ideal performance. The signal 

of the SC pitch angle is completely submerged by the noise and the sinusoidal trend is 

not even recognizable. 
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 Figure 7.5-1: Spacecraft inertial pitch angle without Kalman filter 
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Figures 7.5-2, 7.5-4 and 7.5-6 show the time-series of the SC inertial pitch angle1 

achieved respectively with the use of the Kalman filter 1, 2 and 3. The reference and the 

estimated signals are also represented. Figures 7.5-3, 7.5-5 and 7.5-7 provide a zoom 

and Figures 7.5-8, 7.5-9 and 7.5-10 represent the SC pitch angle error in following its 

guidance law for the same filters. The noise on the real signal of  is sensitively 

reduced such that the signal is able to follow its reference.  

SCΗ

The error signals show that the residual long-term drifts are very small once DC 

forces and torques are compensated and the fulfilment of the long-term drift 

requirements is not a matter in these circumstances (refer to Appendix A for the 

statistical analysis involving the long term-drifts). Therefore, in the following of the 

current chapter, only the short-term jitters are analyzed.  

Comparing the plots of the error for the three different Kalman filters, it can be said 

that the KF 3 produces the best performances.  
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 Figure 7.5-2: Spacecraft inertial pitch angle with Kalman filter 1 
 

                                                 
1 Analogous plots for the other SC inertial attitude angles can be found in Appendix A 
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 Figure 7.5-3: Zoom of the spacecraft inertial pitch angle with Kalman filter 1 
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 Figure 7.5-4: Spacecraft inertial pitch angle with Kalman filter 2 
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 Figure 7.5-5: Zoom of the spacecraft inertial pitch angle with Kalman filter 2 
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 Figure 7.5-6: Spacecraft inertial pitch angle with Kalman filter 3 
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 Figure 7.5-7: Zoom of the spacecraft inertial pitch angle with Kalman filter 3 
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 Figure 7.5-8: Spacecraft inertial pitch angle error with Kalman filter 1 
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 Figure 7.5-9: Spacecraft inertial pitch angle error with Kalman filter 2 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

-4

-3

-2

-1

0

1

2

3
x 10-7 Error on HSC in Body Frame (Reference - Real)

H
SC

,e
rr 

[ra
d]

time (s)  
 

 Figure 7.5-10: Spacecraft inertial pitch angle error with Kalman filter 3 
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Short-term jitter: maximum RMS 1σ in μrad over a time window 
of 1000 s of the signal error (reference - real) 

 
1,errΘ 1,errΗ 1,errΦ 2,errΘ 2,errΗ 2,errΦ      

 

CAGE,errα
 

Requirements - 0.1 0.118≈  - 0.1 0.1 0.05 

Drag-free 
acquis. mode 25.73 13.17 4.30 23.95 16.22 2.73 3.90 

Kalman 
Filter 1 0.1958 0.1404 0.0269 0.1599 0.1730 0.0254 0.0107 

Kalman 
Filter 2 0.1045 0.1154 0.0134 0.5990 0.1452 0.0097 0.0104 

G
yr

o 
m

od
e 

Kalman 
Filter 3 0.0778 0.0709 0.0176 0.0730 0.0764 0.0154 0.0087 

 
 Table 7.5-3: Comparison between the short-term jitter requirements, the short-term jitter performances 

in the drag-free acquisition mode and the short-term jitter performances in the gyro mode 

 
The statistical analysis, whose results are reported in Table 7.5-3, is in perfect 

agreement with the conclusions derived from the time series: the Kalman filter 3 has the 

better performances and this depends on the fact that the state augmentation provides to 

the filter a better model of the ‘real’ satellite dynamics. The performances of filter 1 are 

degraded with respect to the performance of the filter 2. This depends on the fact that, 

even if the first 4000 s of simulation are not considered for the computation of the time-

varying filter statistics, the transient effects have a longer permanency especially on 

, , and consequently on the corresponding telescope line-of-sight inertial SCΘ SCΦ



 
7. Kalman Filter Design for the LISA Constellation Acquisition Control 141
 
 

attitude angles ( 1Θ , , ,1Φ 2Θ 2Φ ), since the convergence time of the corresponding 

error covariance elements is the longest. 

However, even if the Kalman filter 3 is the only one that provides a complete 

fulfilment of the requirements, all the filters show a great improvement in the 

performances with respect to the drag-free acquisition mode. The physical reason 

stands in a better estimation of the test mass states, as it is confirmed by Figures 7.5-11 

and 7.5-12 which show the test mass coordinate errors for the Kalman filter 3: the TM 

jitter is reduced of at least 2 orders of magnitude with respect to the corresponding 

Figures 5.3-2 and 5.3-3 of chapter 5. For completeness, the other SC attitude angle 

errors and the telescope 1 in-plane pointing angle error are shown for the Kalman filter 

3 in Figures 7.5-13, 7.5-14 and 7.5-15. The error signals of the other filters are of the 

same kind and can be found in Appendix A. 
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 Figure 7.5-11: Test mass 1 position and attitude error with Kalman filter 3 
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 Figure 7.5-12: Test mass 2 position and attitude error with Kalman filter 3 
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 Figure 7.5-13: Spacecraft inertial roll angle error with Kalman filter 3 
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 Figure 7.5-14: Spacecraft inertial yaw angle error with Kalman filter 3 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

-4

-3

-2

-1

0

1

2

3

4
x 10-8 Error on αCAGE in Telescope1 Frame (Reference - Real)

α
C

AG
E,

er
r [

ra
d]

time (s)

 
 Figure 7.5-15: Telescope 1 in-plane pointing angle error with Kalman filter 3 

 
Additional information can be achieved by a frequency domain analysis. Figures 

7.5-16 and 7.5-17 show the effect of the application of the Kalman filter 3 to the drag-

free acquisition controller, comparing the square root of the power spectral densities of 



 
7. Kalman Filter Design for the LISA Constellation Acquisition Control 144
 
 

the SC attitude error (Figure 7.5-16) and of the telescope 1 in-plane pointing angle error 

(Figure 7.5-17) obtained with the application of the Kalman filter 3 (red line) and 

without the application of the filter (blue line). It can be noted a large noise reduction in 

the high frequency range, while, as expected, the curves tend nearly to coincide at low 

frequencies.  
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 Figure 7.5-16: Spacecraft inertial attitude error with and without Kalman filter 3 
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 Figure 7.5-17: Telescope 1 in-plane pointing angle error with and without Kalman filter 3 
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In particular, note that the telescope 1 in-plane pointing angle signals differs for a 

factor of 2 in the low frequency range for the Kalman filter 3, while the other filters do 

exactly approach the unfiltered signals (ref. Appendix A). 

More detailed information comes from the transfer-function analysis performed by 

means of the Matlab® model. Figure 7.5.18 has the scope to validate the Matlab® model 

by observing that the square root of the power spectral density plots generated from the 

Simulink® time-series coincide with the corresponding plots achieved from the Matlab® 

model. Then, Figures 7.5.19, 7.5.20, 7.5.21 and 7.5.22 show the results of the detailed 

transfer-function analysis. In the high-frequency range, the STR noise is not anymore 

the leading factor and this produces the noise reduction observed in Figures 7.5.16 and 

7.5.17. In particular, the IS read-out noise drives the SC inertial attitude error 

confirming that the gyro mode principle is applied. The telescope 1 in-plane pointing 

angle error is instead mainly dominated by the OATM read-out noise indicating that, 

once the STR noise effect is reduced, the OATM sensor is not so bad for the control of 

the articulated telescope (see also Table 7.5-4). In the low frequency range, the STR 

noise is still the dominating noise source for the SC attitude, again confirming the 

expectations. Similar results for the others filters can be found in Appendix A. 
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 Figure 7.5-18: Spacecraft inertial attitude error obtained with the Simulink® model and with the Matlab® 

model of Kalman filter 3 
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 Figure 7.5-19: Test mass 1 position and attitude error with Kalman filter 3 
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 Figure 7.5-20: Test mass 2 position and attitude error with Kalman filter 3 
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 Figure 7.5-21: Spacecraft inertial attitude error with Kalman filter 3 
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 Figure 7.5-22: Telescope 1 in-plane pointing error with Kalman filter 3 
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Finally, a sensitivity analysis towards the noise levels of the sensors dedicated to the 

acquisition phase (the star tracker and the OATM sensor) and towards the acquisition 

phase duration is performed. 

The effect of increasing the OATM sensor noise level by a factor of 100 is shown in 

Table 7.5-4. As it is expectable, the impact on the spacecraft attitude jitter is negligible 

(and consequently on the telescopes LOS attitude), since the OATM sensor noise effect 

on the SC attitude is absolutely secondary (Figure 7.5-21). On the contrary, the impact 

on the telescope 1 in-plane pointing angle and, consequently, on the telescope 1 LOS 

yaw angle is more consistent, but still far from approaching the requirements. 

Therefore, the telescope 1 in-plane pointing angle, the telescopes (1 and 2) in-plane 

attitude angle requirements could be more stringent and/or the OATM sensor 

requirements could be relaxed. 

 
Kalman Filter 1 Kalman Filter 2 Kalman Filter 3  

OATM 
noise level 

 

OATM 
noise level 

nrad10
Hz

 

OATM 
noise level 

 

OATM 
noise level 

nrad10
Hz

 

OATM 
noise level 

nrad1000
Hz

nrad1000
Hz

nrad1000
Hz

 

OATM 
noise level 

nrad10
Hz

 

1,errΘ  0.19590 0.19580 0.10429 0.10449 0.07755 0.07762 

1,errΗ  0.14049 0.14041 0.11503 0.11543 0.07095 0.07092 

1,errΦ  0.03826 0.02688 0.02786 0.01341 0.02970 0.01716 

2,errΘ  0.15993 0.15988 0.05985 0.05990 0.07300 0.07301 

2,errΗ  0.17318 0.17299 0.14494 0.14518 0.07654 0.07644 

2,errΦ  0.02543 0.02537 0.00993 0.00967 0.01540 0.01539 

CAGE,errα  0.03984 0.01069 0.02871 0.01039 0.02777 0.00874 
 

 Table 7.5-4: Kalman filter short-term jitter (maximum RMS 1σ in μrad over a time window of 1000 s of 
the signal errors) sensitivity towards OATM sensor noise level 

 
Figures 7.5.23, 7.5.24, 7.5.25, 7.5.26 show the sensitivity of the Kalman filter 3 towards 

the duration of the scanning phase (i.e time-window length) and towards the STR noise 

level. Star trackers with an increased quality (noise level reduced by a factor of 2.5 and 

5 with respect to the baseline) are considered. The plots show a large sensitivity of 
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2 err,Θ  to the star tracker noise level which increases with the scanning duration. 2 err,Η  

and  have qualitatively the same behaviour than 2 err,Φ 2 err,Θ , but with a reduced 

sensitivity.  is insensitive to the STR noise level, but quite sensitive to the time-

window length. These results must not surprise. In fact, 

CAGE err,α

CAGE err,α  is independent from 

the STR measurements (Figure 7.5-22) and it behaves as a white noise (Figure 7.5-15) 

with constant variance (since the variance is defined as stated in Appendix B, the real 

variance of the signal appears when a sufficient number of points is considered, i.e. over 

1500 s). The attitude results depend on the fact that, augmenting the time-windows 

length, a considerably part of the residual drift enters in the computation of the short-

term jitter and, therefore, the corresponding curves arise with the time-window length. 

On the other hand, the STR read-out noise still dominates the low frequency range (i.e. 

the long-term drift). Reducing the STR noise, the residual drifts also reduce since the 

STR measurements are more able to correct the drifts in shorter times. Therefore, 

keeping constant the time-window length, the drift reduces and the short-term 

performances increase as the STR noise decreases. This is particularly true for 2 err,Θ  

since the STR noise level is 10 times worse on this angle. In any case, the Kalman filter 

3 fulfils the requirements even for longer duration of the acquisition on CCD phase. 
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 Figure 7.5-23: Telescope 2 line-of sight inertial roll angle error with Kalman filter 3 
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 Figure 7.5-24: Telescope 2 line-of sight inertial pitch angle error with Kalman filter 3 
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 Figure 7.5-25: Telescope 2 line-of sight inertial yaw angle error with Kalman filter 3 
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 Figure 7.5-26: Telescope 1 in-plane pointing angle error with Kalman filter 3 

 
Figure 7.3.2-27 depicts the sensitivity of the maximum short-term jitter of the telescope 

2 LOS pitch angle error  towards STR noise level and acquisition duration 

achieved with the Kalman filter 2. It can be noted that, even by choosing a better STR, 

the requirement (0.1 μrad) is not met. 

2 err,Η
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 Figure 7.5-27: Telescope 2 line-of sight inertial pitch angle error with Kalman filter 2 



 
7. Kalman Filter Design for the LISA Constellation Acquisition Control 152
 
 

Remark  

A test of the filter performances on the correct guidance law is highly recommended 

when the mentioned guidance law are available. In fact, the Kalman gains are kept 

voluntarily low in order to increase the filter performances. This low-pass behaviour 

reduces the reactivity of the filter in presence of fast maneuvers and, as usual, could be 

cured with a different tuning by sacrificing some performances. In presence of modest 

and slow guidance laws, the behaviour of the filter is excellent (as shown by Figure 7.5-

2, 7.5-4 and 7.5-6). 



Chapter 8  

Sensitivity Analysis towards Model 
Errors using the Monte Carlo Technique 

In chapter 7, the Kalman filter process models have been derived directly from the 

LISA satellite dynamic model, that is also used for the simulation of the real satellite 

behaviour, without introducing any errors. In reality, the LISA satellite model is an 

approximation of the real satellite dynamics: the model parameters are affected by 

uncertainty (the real masses, the real geometrical constraints, etc. are known with a 

certain accuracy) and the non-linearity of the real system is neglected in the model.  

The purpose of this chapter is to understand what happens to the filter performances 

when the filter itself is applied to a more realistic system, still linear, but different 

from the model that the filter uses. To this end, the Monte Carlo technique is used. It 

consists in performing a great extent of tests in order to achieve a statistical 

knowledge of the performance modifications.  

Kalman filter 2 and Kalman filter 3 designed in chapter 7 are used for this analysis. 

Kalman filter 1 is not used because it has a behaviour very similar to filter 2, except 

for the transient. 

 

8.1 Sensitivity Analysis Procedure 

218 parameters of the LISA satellite ‘real’ dynamics model (Eq. 3.7-3.8) which are 

affected by uncertainty are selected. A model error budget is set out: it is defined an 
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interval in which each parameter can vary. It is further assumed that the error sources 

are uncorrelated Gaussian processes. Therefore, each model parameter can randomly 

change, independently from the others, in the interval given by its error budget  (section 

8.2). 

The Monte-Carlo sensitivity analysis is then implemented by the Matlab-Simulink® 

tool provided in [CD-ROM], which performs the following procedure: 

• 3000 simulations are performed. The LISA satellite open-loop plant is changed 

in each simulation by changing randomly the whole set of selected model 

parameters. All the other systems and parameters are kept constant (the filter, the 

controller, the noise system, the simulation parameters, etc.) 

• A set of 8 performance parameters are computed for each simulation and 

compared with a reference performance vector  (section 8.3) 

• The outputs provided by the Monte Carlo sensitivity analysis tool are: 

- a matrix 3000x8 whose rows contain the performance parameters of each 

simulation  

- a matrix 3000x219 whose rows contain the simulation number (first element) 

and the model error parameters of each simulation 

- the time-series signals of the 16 simulations corresponding to the 8 worst and 

to the 8 best results for each performance parameter 

- the time-series signals of all the simulations where at least one of the 

performance parameters exceeds the correspondent element of the reference 

performance vector  

 

8.2 Model Error Budget 

The 218 parameters of the LISA satellite dynamics model that are affected by 

uncertainty are listed together with their budget error in the following sections. 
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8.2.1 Mass Error Budget 

Symbol Description 
Nominal Value 

(kg) 
Error 

mB Spacecraft mass 350 ± 10 % 

m1 T/M 1 mass 1.96 ± 10 % 

m2 T/M 2 mass 1.96 ± 10 % 

mC Telescope 1 mass 80 ± 10 % 
 

Table 8.2.1-1: Mass error budget 

 
The mass error budget provides 4 parameters for the sensitivity analysis. 

 

8.2.2 Moment of Inertia (MoI) Error Budget 

Symbol Description 
Nominal Value 

( ⋅ 2kg m ) 
Error 

IB Spacecraft MoI 
158.0997    -8.6262     0.8819
-8.6262     163.0932    0.1913
0.8819       0.1913    297.0684

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ± 20 % 

I1 T/M 1 MoI 
6.9130e-004            0                     0

           0           6.9130e-004            0
          0                    0           6.9130e-004

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ± 20 % 

I2 T/M 2 MoI 
6.9130e-004            0                     0

           0           6.9130e-004            0
          0                    0           6.9130e-004

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ± 20 % 

IC Telescope 1 MoI 
 5        0        0
  0       15       0
 0        0       15  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ± 20 % 

 
Table 8.2.2-1: Moment of inertia error budget 



 
8. Sensitivity Analysis towards Model Errors using 
the Monte Carlo Technique 156

 
 
 

Since the test masses are cubic and the telescope is modelled as a cylindrical body, it 

is supposed that theirs shapes are not affected by errors, therefore, the MoI tensor of 

each test mass can just vary proportionally (1 parameter) and the telescope MoI tensor 

has to remain diagonal (3 parameters). On the contrary, all the components of the 

spacecraft MoI can vary independently. 

The moment of inertia error budget provides 11 parameters for the sensitivity 

analysis. 

 

8.2.3 Position Vector Error Budget 

Symbol Description 
Nominal Value 

(m) 

Error 

(m) 

rP2 
Vector from spacecraft CoM 
to telescope 2 rotation point 

expressed in ΣB 

0 3
0 3
0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

.

.  ±  

0 03
0 03
0 03

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.

rR 
Vector from spacecraft CoM 
to telescope 1 rotation point 

expressed in ΣB 

0 3
0 3
0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
.  ±  

0 03
0 03
0 03

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.

rC 
Vector from telescope 1 

rotation point to telescope 1 
CoM expressed in ΣC 

0 1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
 ±  

0 02
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

rP1 
Vector from telescope 1 
CoM to T/M 1 reference 
position expressed in ΣC 

0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ±  
0 02

0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

rAR 
Vector from telescope 1 

rotation point to its actuation 
point expressed in ΣC 

0 5
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
 ±  

0 005
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

 
Table 8.2.3-1: Position vector error budget 
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The error budgets on rP2 and rR are based on the uncertainty in the spacecraft CoM 

position. It is assumed that the spacecraft CoM can stand in a cube with a side of 60 mm 

centred in its reference position. 

The error budgets on rC and rP1 are based on the uncertainty in the telescope 1 CoM 

position which can vary 20 mm from its reference position along the telescope 

symmetry axis. 

Finally, the error budget on rAR comes from the fact that the distance between the 

rotation and the actuation point of telescope 1 has 5 mm tolerance because of mounting 

errors. 

The other position vectors are derived from these, therefore the position vector error 

budget provides 9 parameters for the sensitivity analysis. 

 

8.2.4 Telescope Symmetry Axis Angular Position Error Budget 

Symbol Description Nominal Value Error 

βT1 
Angle between the telescope 1 

symmetry axis and the spacecraft xB 
axis measured in ΣB 

30° ± 0.1° 

βT2 
Angle between the telescope 2 

symmetry axis and the spacecraft xB 
axis measured in ΣB 

-30° ± 0.1° 

 
Table 8.2.4-1: Telescope symmetry axis angular position error budget  

 
The telescope symmetry axis angular position error budget provides 2 parameters 

for the sensitivity analysis. 

 

8.2.5 Stiffness Matrix Error Budget 

The stiffness matrix accounts for several parasitic effects, the most important of 

which is the self-gravity. It is in the form 
 

6 6

6 6

×

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

1

2

Ω 0
Ω = 

0 Ω
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where  and  are the stiffness matrices that influence respectively the T/M 1 and 

T/M 2 coordinates. It would be desirable that they were zero matrix, but a plausible 

interval of variation for their elements is 

1Ω 2Ω

 

4 000e 7 2 000e 8 1 350e 8 1 150e 9 1 150e 9 1 150e 9
1 350e 8 1 050e 6 1 350e 8 1 150e 9 1 150e 9 1 150e 9
1 350e 8 2 000e 8 2 700e 6 2 530e 9 2 530e

± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ±

=1

. -    . -    . -    . -    . -     . -

. -    . -    . -     . -     . -    . -  

. -    . -    . -    . -    .
Ω

9 2 530e 9
2 609e 6 9 130e 6 2 609e 6 2 000e 6 1 600e 7 1 600e 7
2 609e 6 9 130e 6 2 609e 6 1 600e 7 2 000e 6 1 600e 7
2 609e 6 9 130e 6 2 609e 6 1 600e 7

±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ±

-    . -
. -    . -    . -    . -    . -    . -
. -    . -    . -    . -    . -    . -
. -    . -    . -    . -    1 600e 7 2 000e 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

± ±⎣ ⎦. -    . -

 
4 000e 7 2 000e 8 2 000e 8 1 150e 9 1 150e 9 1 150e 9
1 350e 8 1 050e 6 2 000e 8 1 150e 9 1 150e 9 1 150e 9
1 350e 8 2 000e 8 4 000e 6 2 530e 9 2 530e

± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ±

=2

. -    . -    . -    . -    . -     . -

. -    . -    . -     . -     . -    . -  

. -    . -    . -    . -    .
Ω

9 2 530e 9
2 609e 6 9 130e 6 9 130e 6 2 000e 6 1 600e 7 1 600e 7
2 609e 6 9 130e 6 9 130e 6 1 600e 7 2 000e 6 1 600e 7
2 609e 6 9 130e 6 9 130e 6 1 600e 7

±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ±

-    . -
. -    . -    . -    . -    . -    . -
. -    . -    . -    . -    . -    . -
. -    . -    . -    . -    1 600e 7 2 000e 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

± ±⎣ ⎦. -    . -
 

The stiffness matrix error budget provides 72 parameters for the sensitivity analysis. 

 

8.2.6 Cross-Talk Electrostatic Read-Out Matrix Error Budget 

The cross-talk electrostatic read-out matrix accounts for the cross-talk between 

different degrees of freedom of the electrostatic read-out of the inertial sensors and it is 

in the form 
 

6 6

6 6

×

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

IS1
IS

IS2

g 0
g  = 

0 g
 

 
where IS1g  and IS2g  are the cross-talk matrices that affect respectively the T/M 1 and 

the T/M 2 coordinate measurements. Nominally, they are identity matrices but a 

plausible interval of variation for their off-diagonal terms is 
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1 3 000e 3 3 000e 3 5 980e 4 5 980e 4 5 980e 4
3 000e 3 1 3 000e 3 5 980e 4 5 980e 4 5 980e 4
3 000e 3 3 000e 3 1

± ± ± ± ±
± ± ± ± ±
± ±

=IS1

                   . -    . -    . -    . -    . -
. -                        . -    . -    . -    . -  
. -    . -                  

g
5 980e 4 5 980e 4 5 980e 4

8 696e 2 8 696e 2 8 696e 2 1 1 000e 3 1 000e 3
8 696e 2 8 696e 2 8 696e 2 1 000e 3 1 1 000e 3
8 69

± ± ±
± ± ± ± ±
± ± ± ± ±
±

     . -    . -    . -
. -    . -    . -                        . -    . -
. -    . -    . -    . -                        . -
. 6e 2 8 696e 2 8 696e 2 1 000e 3 1 000e 3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

± ± ± ±⎣ ⎦-    . -    . -    . -    . -           
 

The off-diagonal elements of IS2g  can vary in the same intervals of the 

corresponding IS1g  elements, but independently from them.  

Therefore, the cross-talk electrostatic read-out matrix error budget provides 60 

parameters for the sensitivity analysis. 

 

8.2.7 Cross-Talk Electrostatic Actuation Matrix Error Budget 

The cross-talk electrostatic actuation matrix describes the cross-talk between 

different degrees of freedom of the electrostatic actuation of the inertial sensors and it is 

in the form 

6 6

6 6

×

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

IS1
IS

IS2

h 0
h  = 

0 h
 

 

where  and  are the cross-talk matrices that affect respectively the T/M 1 and 

the T/M 2 force and torque actuations. Nominally, they are identity matrices, but their 

off diagonal terms can vary between 

IS1h IS2h

 

1 5 000e 3 5 000e 3 2 174e 1 2 174e 1 2 174e 1
5 000e 3 1 5 000e 3 6 522e 1 6 522e 1 6 522e 1
5 000e 3 5 000e 3 1

± ± ± ± ±
± ± ± ± ±
± ±

=IS1

                   . -    . -    . -    . -    . -
. -                        . -    . -    . -    . -  
. -    . -                  

h
6 522e 1 6 522e 1 6 522e 1

3 680e 5 3 680e 5 3 680e 5 1 5 000e 3 5 000e 3
3 680e 5 3 680e 5 3 680e 5 5 000e 3 1 5 000e 3
3 68

± ± ±
± ± ± ± ±
± ± ± ± ±
±

     . -    . -    . -
. -    . -    . -                        . -    . -
. -    . -    . -    . -                        . -
. 0e 5 3 680e 5 3 680e 5 5 000e 3 5 000e 3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

± ± ± ±⎣ ⎦-    . -    . -    . -    . -            

 

 
These values depend basically on the sensor configuration.  

The off-diagonal elements of  can vary in the same intervals of the corresponding 

elements , but independently from them. 

IS2h

IS1h



 
8. Sensitivity Analysis towards Model Errors using 
the Monte Carlo Technique 160

 
 
Therefore, the cross-talk electrostatic actuation matrix error budget provides 60 

parameters for the sensitivity analysis. 

 

8.3 Performance Parameters 

The performance parameters for the sensitivity analysis are: 

• the maximum RMS 1σ over a time-window of 1000 s of the telescope 2 line-of-

sight attitude error ( 2 errΘ , , 2 errΗ , , 2 errΦ , ) and of the telescope 1 in-plane pointing 

angle error ( CAGE errα , ) as a measure of the short-term jitter for the corresponding 

signals (section 2.3.3 for more details) 

• the maximum slope of the interpolating line over a time-window of 1000 s of the 

same states as a measure of the long-term drift (section 2.3.3 for more details) 

The performance parameters are compared with a reference performance vector. For the 

sensitivity analysis based on the Kalman filter 3, its components are the short-term jitter 

and the long-term drift requirements of the states 
 

[ ]0 1 0 1 0 1 0 05 5 5 5 1.    .    .    .               
 

Since a requirement is not defined for 2 errΘ , , it is chosen the same than  . 2 errΗ ,

For the Kalman filter 2 case, the short-term requirement over 2 errΗ ,  has been relaxed, 

since it is not fulfilled even in the case without model errors. The corresponding 

reference performance vector is 
 

[ ]0 1 0 2 0 1 0 05 5 5 5 1.    .    .    .               

 

8.4 Performance Analysis 

8.4.1 Kalman Filter 2: Steady-State Continuous-Time Kalman Filter  

without State Augmentation 

The histograms of the short-term performance parameters of the 4 states under 

analysis are shown in Figure 8.4.1-1. They represent the number of simulations that 

have produced a certain level of short-term jitter. The mean, the standard deviation (1σ) 
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and the relative percentage variation of each distribution shown in Figure 8.4.1-1 are 

computed and reported in Table 8.4.1-1 together with the requirements and the baseline 

performances. The baseline represents the case in which the ‘real’ plant and the filter 

are both computed with the same, nominal values of the model parameters. In all the 

other simulations, the filter uses a process model based on the nominal values of the 

parameters and remains constant, while the ‘real’ plan model changes. 
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Figure 8.4.1-1: Histograms of the number of simulations vs the short-term jitter for the Kalman Filter 2 

 

Error  
 

Requirements 
(μrad) 

Baseline 
(μrad) 

Mean 
(μrad) 

Standard 
Deviation 

(μrad) 

Max-Min ×100
Baseline

2,errΘ  - 0.0578 0.0605 0.0054 61.6 % 

2,errΗ  0.1 0.1453 0.1481 0.0163 52.2 % 

2,errΦ  0.1 0.0099 0.0122 0.0026 176.8 % 

CAGE,errα  0.05 0.0104 0.0200 0.0099 567.5 % 
 

Table 8.4.1-1: Statistics of the sensitivity analysis for the Kalman filter 2 
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The vertical red line in Figure 8.4.1-1 shows that the telescope 1 in-plane pointing 

angle error does not satisfied the requirement in some simulations. The percentage of 

requirement violation is 1.3 %. The telescope 2 LOS pitch angle violate the requirement 

in each simulation, but this is due to the filter design (in fact, also the baseline does not 

fulfil the requirement on this state) more than to the sensitivity towards model errors. 

In fact, the telescope 2 LOS roll and pitch angle errors are quite insensitive towards 

variations of the model parameters, as it is confirmed by their relative percentage 

variation (4th column of Table 8.4.1-1). Further investigations show that they are both 

sensitive to reduction of the principal moment of inertia of the spacecraft in the yB 

direction (IBy). 

On the contrary, the telescope 2 LOS yaw angle error and the telescope 1 in-plane 

pointing angle error are very sensitive towards model errors and, in particular, towards 

geometrical errors. If the z components of rP2 and of rR vary in the opposite direction, 

or in other words if there is an arm along zB between the test masses, the estimate of 1φ  

and , and consequently the estimate of 2φ α  and SCΦ , get considerably worse. The 

telescope 1 in-plane pointing angle α  is also negatively influenced by a reduction of IBz 

and ICz, but this effect is of the second order. 

However, the system is always stable. 

The long-term drifts histograms and table can be found in Appendix A. Long-term 

drifts are very small once DC forces and torques are estimated and subtracted (Chapter 

9) and their increase due to model errors is still far from reaching the requirements.  

 

8.4.2 Kalman Filter 3: Steady-State Continuous-Time Kalman Filter  

with State Augmentation on the Process Noise 

The histograms of the short-term performance parameters of the 4 states under 

analysis are shown in Figure 8.4.2-1. The mean, the standard deviation (1σ) and the 

relative percentage variation of each distribution shown in Figure 8.4.2-1 are computed 

and reported in Table 8.4.2-1 together with the requirements and the baseline 

performances (plant and filter computed with the nominal value of the model 

parameters).  

The results provided by the Kalman filter 3 are inverted with respect to the previous 
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case involving the Kalman filter 2. In fact, the telescope 2 LOS yaw angle error and the 

telescope 1 in-plane pointing angle error are quite insensitive towards model errors and 

satisfy the requirements. On the contrary, the telescope 2 LOS roll and pitch angle 

errors show a large sensitivity towards variations of the model parameters and, in 

particular, towards the stiffness and the cross-coupling coefficients more than towards 

the others geometrical parameters. 
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Figure 8.4.2-1: Histograms of the number of simulations vs the short-term jitter for the Kalman Filter 3 

 

Error  
 

Requirements 
(μrad) 

Baseline 
(μrad) 

Mean 
(μrad) 

Standard 
Deviation 

(μrad) 

Max-Min ×100
Baseline

2,errΘ  - 0.0711 0.0751     0.0102      123.8 % 

2,errΗ  0.1 0.0779 0.0813 0.0127 403.8 % 

2,errΦ  0.1 0.0154 0.0156   0.0011   122.4 % 

CAGE,errα  0.05 0.0087 0.0090 0.0004 27.1 % 
 

Table 8.4.2-1: Statistics of the sensitivity analysis for the Kalman filter 3 
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'

The percentage of requirement violation is 4.1 % and is due to the pitch angle error 

(vertical red line in Figure 8.4.2-1).  

Moreover, in some of the un-satisfactory cases, the system becomes unstable. The 

instability can be recovered by changing the tuning of the filter. It has been proved that 

un-stable cases can be recovered by choosing c < 5 (c is the proportional factor that 

scales the Q  matrix in the steady-state filter with state augmentation). In fact, ‘model 

errors’ mean that the plant is different from the filter process model. In order to make 

the filter model congruent to the reality, fictitious process noise can be added 
 

Real Plant Kalman Filter Process Model

(t) (t) (t) (t) (t) (t) (t) (t) (t)
(t) (t) (t) (t) (t) (t

+⎧
↔⎨

⎩

' ' '

'

                                                  

x  = Ax  + Bu  + Gw x  = A x  + B u  + G w w
    

y  = Hx  + n y  = H x  + n )

⎧⎪
⎨
⎪⎩

 

 

Therefore, in order to remediate the unstable cases, the usual tuning strategies can be 

adopted: 

• Look for a better tuning of the baseline (adding process noise or desaturating the 

error covariance matrix) trying to maintaining the acquired performances 

• Use an adaptive filter 

The long-term drifts histograms and table can be found in Appendix A. 



Chapter 9  

Compensation of the DC Forces and 
Torques Effect 

This chapter suggests two different methods to cancel or reduce the influence that 

the parasitic constant forces and torques, that are acting on the test masses, have on 

the performances achieved by means of the acquisition control system based on the 

Kalman filter designed in chapter 7. The same methods could be adopted with slight 

variations for the problem of the compensation of the DC solar forces and torques 

acting on the spacecraft.   

 

9.1 Introduction 

In the drag-free acquisition mode, the potential influence of the disturbance biases is 

suppressed by the controllers. In particular, the suspension controller requires around 

7000 s to compensate completely the bias effect over the non-drag-free test mass 

coordinates, while the bias compensation is much faster (few seconds) over all the other 

controlled states (SC inertial attitude, telescope 1 in-plane pointing angle and test mass 

drag-free coordinates). 

In the gyro mode, the Kalman Filter noise signal assumptions are violated (the 

process noises are not zero-mean processes as required) and, as a consequence, the filter 

is not able to estimate the controlled states properly. This happens because the Kalman 

filters designed for the gyro mode (chapter 7) use the test masses as accelerometers, i.e. 

they use the control commands (combined with the measurements) for the state 
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estimation. Nevertheless, the control commands are partly generated to compensate the 

disturbance biases, while the Kalman filter process models do not include the 

information that DC forces and torques are acting on the test masses. The Kalman filter 

is ‘deceived’ by such control commands and the result is an incorrect estimate. The 

methods suggested to recover the gyro mode performances are: 

1) estimate the biases and modify the Kalman filter process model by including the 

estimated biases within the deterministic inputs. When the Kalman filter ‘knows’ 

the biases intensity and the way they influence the LISA satellite dynamics, it is 

able to perfectly subtract their effect from the control commands. In this way, 

the same gyro mode performances shown in chapter 7 are achievable. Some 

additional filter tuning could be required in order to compensate the uncertainties 

over the biases estimates; 

2) compensate the biases effect by changing the tuning of the filter without 

modifying the Kalman filter process model. This strategy consists essentially in 

increasing the Kalman gains and enhancing the filter bandwidth. The filter 

‘relies’ more on the measurements and corrects the wrong information it 

receives from the control commands. The main consequence is a degradation of 

the gyro mode performances shown in chapter 7. 

 

9.2 Method 1: Biases Estimation and Correction 

9.2.1 Estimation Procedure 

Including the DC forces and torques in the state vector x 44 1∈R x   
 

( ) (2)
1 1 2 2 1 1 2 2 1 1 2 2 ]x = [ω   r   ω   r   ω      α   r   α   r   α     f   l   f  lα α C T

B B DC DC DC DC  

 
Eq. (7.1) and Eq. (7.2) can be rewritten as 
 

 
419,1324 419,119 419,12516 16 16 16

16 16 16 16 16 12 16 19 16 25

12 16 12 16 12 12 12 19 12 25

(t) (t) (t) (t)
× ×

× × × × ×

× × × × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

-1 -1 -1

B GA

0 Ω M F M B M F
x  = E 0 0 x  + u  + d0 0

0 0 0 0 0

   (9.1) 
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  (9.2) 
3 3 3 12 3 1 3 3 3 12 3 1 3 12

12 3 12 12 12 1 12 3 IS 12 1 12 12

1 3 1 12 1 1 1 3 1 12 1 3 1 12

(t) (t) (t)
× × × × × × ×

× × × × × ×

× × × × × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

0 0 0 E 0 0 0
y  = 0 0 0 0 g 0  0 x  + ν

0 0 0 0 0 E 0

 
where the symbols have the same meaning as in section 7.2.1.  

Eq. (9.1) and Eq. (9.2) include the biases dynamics and are used as a Kalman filter 

process model for the biases estimation. The state reduction modelling strategy is 

adopted in order to define the noise covariance matrices Q and R. 

The system (9.1) - (9.2) is observable, but not controllable in the sense expressed in 

section 6.2.4. This means that the biases are observable, but a unique steady solution of 

the Riccati equation does not exist. Therefore, the time-varying discrete-time Kalman 

filter algorithm has to be used.  

The resulting filter requires additional tuning over the FEEP actuation noise for the 

same reasons explained in section 7.4. 

The main filter features are summarized in Table 9.2.1-1. 

 

Initial Conditions Tuning 
Kalman Filter

x̂0  0P  Q R 
State Augmentation

T
im

e-
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ry
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di

sc
re

te
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im
e 

0 ×44 44  10
44 4410 E−
×⋅ 2 5

FEEP 10σ ⋅ d =R R NO 

 
Table 9.2.1-1: Designed Kalman filter characterization 

 
Note that the biases do not have a proper dynamics. Therefore, the corresponding 

elements of the initial error covariance matrix ( ) have to be chosen unequal to zero. 0P

Using the designed filter, the DC torques are estimated with a high level of accuracy 

(Table 9.2.1-2 compares the DC torques real values and the DC torques estimated 

values after 3000 s. It also shows the percentage error of the estimates). The estimation 

principle is the same used in the gyro mode, i.e. the test masses are employed as 
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accelerometers. In fact, the attitude coordinates of the T/M are suspension controlled. 

This means that each DC torque is compensated directly by a corresponding constant 

actuation torque provided by the inertial sensor. The total actuation torque, which also 

includes the compensation of other disturbances acting over the same coordinate, is sent 

to the Kalman filter which, having a state dynamic model and a disturbances model, is 

able to distinguish the bias effect from that of the other disturbances and, consequently, 

produces a very accurate bias estimation. 

 

DC torques 
Real 
(Nm) 

Estimated 
(Nm) 

real - estimatederror = ×100
real

lx1 1.86651e-011 1.866425e-011 4.52495e-003 % 

ly1 1.58999e-011 1.590037e-011 2.94692e-003 % T/M 1 

lz1 1.10608e-011 1.106078e-011 1.24623e-004 % 

lx2 1.86651e-011 1.866435e-011 3.98501e-003 % 

ly2 1.58999e-011 1.589941e-011 3.10053e-003 % T/M 2 

lz2 1.10608e-011 1.106081e-011 8.33945e-005 % 
 

Table 9.2.1-2: DC torque estimation performance 

 
The same criteria is used for the DC forces estimation, but the filter is not able to 

produce a reliable estimate in this case (Table 9.2.1-3). In fact, the DC forces acting on 

the non-drag-free coordinates (y1, y2, z2) are compensated by the corresponding 

suspension force commands, while the DC forces acting on the drag-free coordinates 

(x1, z1, x2) are compensated by the FEEP force commands. The main problem is that, 

since the SC position is not controlled, the force commands for the T/M also account for 

the external force disturbances acting on the satellite (i.e. FEEP noise and solar 

pressure). In particular, the FEEP force actuation noises are much higher than the 

acceleration caused by the DC forces over the test masses. Therefore, the FEEP noise, 

conveyed in the filter by the force commands, masks the effect of the DC forces. If, just 

for testing purpose, the FEEP force actuation noise is switched off, it is possible to 

verify that the filter is able to estimate the DC forces with the same accuracy than the 

DC torques. 
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Therefore, the suggested solution to the problem of estimate the DC forces is to 

define a control mode where the test mass coordinates are all suspension controlled such 

that the FEEP force command capability is not used at all. 

 

DC forces 
Real 
(Nm) 

Estimated 
(Nm) 

real - estimatederror = ×100
real

fx1 2.548e-009 1.315e-008    616.2 % 

fy1 4.312e-009 4.927e-009  14.3 % T/M 1 

fz1 7.252e-009 1.927e-008 165.8 % 

fx2 2.548e-009 5.835e-009   329.0 % 

fy2 4.312e-009 8.978e-009   308.2 % T/M 2 

fz2 7.252e-009 1.928e-008 165.9 % 
 

Table 9.2.1-3: DC force estimation performance 
 

9.2.2 Correction Procedure 

Once the DC forces and torques estimates are available, the correction procedure 

consists of including the bias estimates in the Kalman filter process model. To this end, 

Eq. (7.1) has to be modified by including the estimated biases within the deterministic 

inputs 
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(9.3) 
 

Then, the derivation of the Kalman filter process models proceeds as in chapter 7.  

As already said, if the biases are estimated with the accuracy of Table 9.2.1-2, the 

gyro mode performances are maintained. If less accurate bias estimates are expected, it 

is convenient to modify the tuning of the filter, e.g. by adding fictitious process noise on 

the suspension actuation noise channels (note from Eq. (9.3) that the biases act in the 

same way as the suspension actuation noises act ( ); therefore, the process 

noise related to the biases has to be added to the suspension process noise). 

419,1324
-1M F
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9.3 Method 2: Biases Compensation 

The Kalman filter benefit is that it does not need a perfect model of the real system 

in order to work correctly, but just the best model that can be provided and a statistical 

quantification of the reliability of the model provided. Therefore, in presence of 

unestimated biases, it is possible to maintain the Kalman filter process models 

introduced in chapter 7 and to introduce a statistical information about the unmodelled 

biases. In other words, the process and the measurement covariance matrices have to be 

partially redesigned in order to keep in consideration the unmodelled states. The 

purpose of this retuning is to get better estimates of the T/M coordinates, since the test 

masses are used as accelerometers for the estimation of the other states. This can be 

obtained by adding process noise on the suspension actuation noise channels and by 

reducing the STR elements of the measurement covariance matrix R, forcing artificially 

the filter to rely more on the STR measurements. In this way, the filter is able to correct 

the wrong information it receives from the control commands and, consequently, it is 

able to produce better estimates.  

 

Short-term jitter: maximum RMS 1σ in  μrad over a time window 
of 1000 s of the signal error (reference - real) 

 
1,err 1,err 1,err 2,err 2,err 2,errΘ  Η  Φ  Θ  Η  Φ  

 

CAGE,errα
 

Requirements - 0.1 0.118≈  - 0.1 0.1 0.05 

Kalman 
Filter 1 0.4406 0.3448 0.1015 0.4271 0.3383 0.1014 0.0134 

Kalman 
Filter 2 0.3455 0.2325 0.0573 0.2742 0.2871 0.0565 0.0113 

G
yr

o 
m

od
e 

Kalman 
Filter 3 0.8069 0.4279 0.4543 0.6442 0.5983 0.4541 0.0135 

 
 Table 9.3-1: Comparison between the short-term jitter requirements and the short-term jitter 

performances when the bias compensation strategy is adopted 
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The performances achieved with the three types of Kalman filter designed in chapter 

7 are shown in Tables 9.3-1, 9.3-2. The same models and the same algorithms are used 

with a different tuning. The main consequence of this strategy is a large degradation 

with respect to the gyro mode performances shown in chapter 7. In particular, the short-

term performances are highly degraded because of the drift produced by the biases. 

Moreover, a long transient (15000 s or more for the SC inertial roll angle which has the 

slowest dynamics) is needed before the filters are able to follow the real system states. 

The tuning performed for each filter represents a compromise between the need to 

maximize the performances and the need to minimize the transient duration. 
 

Long-term drift in  μrad over a time window of 1000 s of the 
signal error (reference - real) 

 
1,errΘ 1,errΗ 1,errΦ 2,errΘ 2,errΗ 2,errΦ      

 

CAGE,errα
 

Requirements - 5 5.099≈  - 5 5 1 

Kalman 
Filter 1 1.3189 0.9021 0.3116 1.2803 0.9238 0.3140 0.0029 

Kalman 
Filter 2 1.0516 0.6414 0.1767 0.8003 0.7697 0.1773 0.0040 

G
yr

o 
m

od
e 

Kalman 
Filter 3 2.6278 1.2347 1.5618 1.8660 1.9622 1.5619 0.0059 

 
 Table 9.3-2: Comparison between the long-term drift requirements and the long-term drift performances 

when the bias compensation strategy is adopted 
 

9.4 Conclusions 

The estimation and correction method over the filters designed in Chapter 7 reduces 

sensitively the influence of the parasitic constant forces and torques acting on the test 

masses and maintains the performances achieved. The use of this strategy is highly 

recommended even though the definition of a different control mode is required for the 

DC forces estimation. 



Chapter 10  

Summary and Prospects for Future 
Work 

10.1 Conclusions 

Three suitable Kalman filters are provided for the LISA acquisition on CCD phase: 

• The steady-state continuous-time Kalman filter with state augmentation on the 

process noise (Kalman filter 3) satisfies the requirements with a margin larger 

than 23 % over the laser beam out-of-plane pointing angle and larger than 80 % 

over the laser beam in-plane pointing angle and the articulated telescope in-plane 

pointing angle w.r.t the spacecraft. Several efficient strategies to reduce the filter 

sensitivity or to stabilize its behaviour in presence of dynamics model errors 

have been identified and applied. 

• The time-varying discrete-time and the steady-state continuous-time Kalman 

filters (Kalman filter 1 and Kalman filter 2) show a slight violation of the laser 

beam out-of-plane pointing angle requirements, while the desired requirements 

on the laser beam in-plane pointing angle and on the articulated telescope in-

plane pointing angle w.r.t the spacecraft are fulfilled with a large margin. The 

key point for the successful design of these filters has been identified in the 

modelling of the FFEP actuation noise which heavily influences the achievable 

performances. These filters are more robust against dynamics model errors than 

the filter that relies on the state augmentation technique. Moreover, the 
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geometrical constraints that influence the filters performances have been 

identified providing precious information for the mechanical design and 

verification.  

The performances achieved and the results of the sensitivity analysis towards sensor 

noise levels show that the requirements on the laser beam in-plane pointing angle, on 

the articulated telescope in-plane pointing angle and on the OATM sensor noise level 

could be more stringent. 

The sensitivity analysis towards the sensor noise levels points out also that the use of 

a more accurate star-tracker could be useful to enforce the performances acquired. 

The sensitivity analysis towards the acquisition phase duration shows that a longer 

duration does not constitute a problem.  

The worth of this work stands principally in the reusability. In fact, the proposed 

Kalman filters can be adapted to different operative conditions, to different system and 

noise dynamics models since the Kalman filter design process has been divided in three 

mutually independent parts: a system and noise modelling phase, an algorithm 

implementation phase and a tuning phase. A fully compliant custom tool for the 

implementation and performance analysis of the Kalman filter algorithms has been 

developed in the Matlab/Simulink®  environment. As far as the modelling and the tuning 

phase is concerned, the guidelines for a remodelling are provided and the physical and 

theoretical principles for a retuning are extensively illustrated. 

 

10.2 Future Work 

The Kalman filter performances should be accurately tested on the correct guidance 

law for the acquisition phase on CCD phase, since the inherent low-pass behaviour of 

the Kalman filter reduces its reactivity in presence of fast maneuvers. Several strategies 

can be adopted in case of unsatisfactory behaviour: the tuning techniques, the design of 

a time-varying continuous-time Kalman filter. 

The Kalman filter performances need to be tested on the non-linear equations of 

motion of the LISA satellite in order to verify theirs insensitivity towards the 

unmodelled non-linearities. 
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A sensitivity analysis towards errors in the noise dynamics models is also 

recommended, especially for the steady-state continuous-time Kalman filter with state 

augmentation on the process noise, since its improved performances are mainly based 

on the better way it models the FEEP actuation noise. 

The definition of a dedicated control mode for the estimation of the parasitic 

constant forces acting on the test masses is required. Moreover, the applicability to the 

DC solar forces and torques acting on the spacecraft of the estimation and correction 

method developed for the DC forces and torques acting on the test masses should be 

proved. 

Once the acquisition phase on CCD is completed, the feasibility of the other single-

link acquisition phases has to be verified by using the gyro mode strategy. However, the 

operative conditions of the other single link sub-phases are less demanding in terms of 

desired performances and available sensors.  

Finally, the feasibility of the acquisition control of the whole LISA constellation 

must be proved by simulation. Nevertheless, after one laser-link is performed on one 

arm, the signal acquisition process on the second and third arm will be in principle the 

same, except for the fact that high-accuracy attitude knowledge is already available for 

one direction. 
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Appendix A  

Results: Tables and Plots 

Figures and Tables, which are discussed in the present thesis, are reported in this 

appendix for reason of space. 

 

Figures and Tables relative to chapter 5 

Verification of the congruence between the Matlab® model and the Simulink® 

model: noise spectrum of state errors (reference-real). Figure A-1, A-2, A-3. 
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Figure A-1: Telescope 1 in-plane pointing angle error (no Kalman filter applied) 
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Figure A-2: T/M 1 position and attitude error (no Kalman filter applied) 
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Figure A-3: T/M 2 position and attitude error (no Kalman filter applied) 
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Figures and Tables relative to chapter 7 

Comparison between the time-series of the SC inertial attitude achieved in the drag-

free acquisition mode conditions (i.e. without the use of a Kalman filter) and theirs 

reference signals which represent the ideal performances. Figure A-4. 
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Figure A-4: Spacecraft inertial attitude without Kalman filter 
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Time-series of the SC inertial attitude achieved respectively with the use of the 

Kalman filter 1, 2 and 3. The reference and the estimated signals are also represented. 

Figure A-5, A-6, A-7. 
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Figure A-5: Spacecraft inertial attitude with Kalman filter 1 
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Figure A-6: Spacecraft inertial attitude with Kalman filter 2 
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Figure A-7: Spacecraft inertial attitude with Kalman filter 3 

 
Time-series of the test mass coordinate errors, the spacecraft inertial attitude errors 

and the telescope 1 in-plane pointing angle error achieved respectively with the use of 

the Kalman filter 1 and 2. Figure A-8, A-9, A-10, A-11, A-12, A-13, A-14, , A-15, A-

16, A-17, A-18, A-19. 
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Figure A-8: Test mass 1 position and attitude error with Kalman filter 1 
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Figure A-9: Test mass 2 position and attitude error with Kalman filter 1 
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Figure A-10: Spacecraft inertial roll angle error with Kalman filter 1 
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Figure A-11: Spacecraft inertial pitch angle error with Kalman filter 1 
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Figure A-12: Spacecraft inertial yaw angle error with Kalman filter 1 
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Figure A-13: Telescope 1 in-plane pointing angle error with Kalman filter 1 
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Figure A-14: Test mass 1 position and attitude error with Kalman filter 2 
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Figure A-15: Test mass 2 position and attitude error with Kalman filter 2 
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Figure A-16: Spacecraft inertial roll angle error with Kalman filter 2 



 
A. Results: Tables and Plots 185 
 
 

0 0.5 1 1.5 2 2.5 3

x 104

-8

-6

-4

-2

0

2

4

6
x 10-7 Error on HSC in Body Frame (Reference - Real)

H
SC

,e
rr 

[ra
d]

time (s)

 
 

Figure A-17: Spacecraft inertial pitch angle error with Kalman filter 2 
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Figure A-18: Spacecraft inertial yaw angle error with Kalman filter 2 
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Figure A-19: Telescope 1 in-plane pointing angle error with Kalman filter 2 

 
Statistical analysis of the Kalman filter performances over the long-term drift 

requirements. Table A-1. 
 

Long-term drift in μrad over a time window of 1000 s of the signal 
error (reference - real) 

 
1,errΘ  1,errΗ  1,errΦ  2,errΘ  2,errΗ  2,errΦ  

 

CAGE,errα
 

Requirements - 5 5.099≈  - 5 5 1 

Kalman 
Filter 1 0.56 0.28 0.06 0.51 0.38 0.06 0.003 

Kalman 
Filter 2 0.12 0.13 0.03 0.13 0.14 0.03 0.004 

G
yr

o 
m

od
e 

Kalman 
Filter 3 0.24 0.20 0.05 0.24 0.20 0.05 0.006 

 
Table A-1: Comparison between the long-term drift requirements and the long-term drift performances in  

the gyro mode 
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Effect of the application of the Kalman filter 1 and 2 to the drag-free acquisition 

controller, comparing the square root of the power spectral densities of the SC attitude 

error and of the telescope 1 in-plane pointing angle error obtained with the application 

of the Kalman filters (red line) and without the application of the filters (blue line). 

Figure A-20, Figure A-21, Figure A-22, Figure A-23. 
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Figure A-20: Spacecraft inertial attitude error with and without Kalman filter 1 
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Figure A-21: Telescope in-plane pointing angle error with and without Kalman filter 1 
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Figure A-22: Spacecraft inertial attitude error with and without Kalman filter 2 
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Figure A-23: Telescope in-plane pointing angle error with and without Kalman filter 2 
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Transfer-function analysis performed by means of the Matlab® model over the 

performances of the Kalman filter 2. Figure A-24, A-25, A-26, A-27. 
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Figure A-24: Test mass 1 position and attitude error with Kalman filter 2 
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Figure A-25: Test mass 2 position and attitude error with Kalman filter 2 
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Figure A-26: Spacecraft inertial attitude error with Kalman filter 2 
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Figure A-27: Telescope 1 in-plane pointing error with Kalman filter 2 
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Sensitivity of the maximum long-term drift of the telescope 2 LOS inertial attitude 

errors and of the telescope 1 in-plane pointing angle error towards STR noise level and 

acquisition duration, achieved with the Kalman filter 3. Figure A-28, A-29, A-30, A-31. 
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Figure A-28: Telescope 2 line-of sight inertial roll angle error with Kalman filter 3 
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Figure A-29: Telescope 2 line-of sight inertial pitch angle error with Kalman filter 3 
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Figure A-30: Telescope 2 line-of sight inertial yaw angle error with Kalman filter 3 
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Figure A-31: Telescope 1 in-plane pointing angle error with Kalman filter 3 
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Sensitivity of the maximum short-term jitter and of the maximum long-term drift (of 

the telescope 2 LOS inertial attitude errors and of the telescope 1 in-plane pointing 

angle error) towards STR noise level and acquisition duration, achieved with the 

Kalman filter 2. Figure A-32, A-33, A-34, A-35, A-36, A-37, A-38, A-39.  
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Figure A-32: Telescope 2 line-of sight inertial roll angle error with Kalman filter 2 
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Figure A-33: Telescope 2 line-of sight inertial pitch angle error with Kalman filter 2 
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Figure A-34: Telescope 2 line-of sight inertial yaw angle error with Kalman filter 2 
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Figure A-35: Telescope 1 in-plane pointing angle error with Kalman filter 2 
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Figure A-36: Telescope 2 line-of sight inertial roll angle error with Kalman filter 2 
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Figure A-37: Telescope 2 line-of sight inertial pitch angle error with Kalman filter 2 
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Figure A-38: Telescope 2 line-of sight inertial yaw angle error with Kalman filter 2 
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Figure A-39: Telescope 1 in-plane pointing angle error with Kalman filter 2 
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Figures and Tables relative to chapter 8 

Long-term drifts histograms and table of the Kalman filter 2 sensitivity towards 

model errors. Figure A-40 and Table A-2. 
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Figure A-40: Histograms of the number of simulations vs the long-term drift for the Kalman Filter 2 

 
Error  

 
Requirements 

(μrad) 
Baseline 
(μrad) 

Mean 
(μrad) 

Standard 
Deviation 

(μrad) 

Max-Min ×100
Baseline

2,errΘ  - 0.1168 0.1214     0.0109      59.2 %        

2,errΗ  5 0.1338 0.1498 0.0163 75.2 % 

2,errΦ  5 0.0308 0.0307 0.0017 36.4 % 

CAGE,errα  1 0.0037 0.0046 0.0008 122.6 % 
 

Table A-2: Statistics of the sensitivity analysis for the Kalman filter 2 
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Long-term drifts histograms and table of the Kalman filter 3 sensitivity towards 

model errors. Figure A-41 and Table A-3. 
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Figure A-41: Histograms of the number of simulations vs the long-term drift for the Kalman Filter 3 

 
Error  

 
Requirements 

(μrad) 
Baseline 
(μrad) 

Mean 
(μrad) 

Standard 
Deviation 

(μrad) 

Max-Min ×100
Baseline

2,errΘ  - 0.2340 0.2433     0.0331      132.5 %      

2,errΗ  5 0.2084 0.2211 0.0488 554.7 % 

2,errΦ  5 0.0490 0.0492 0.0039 144.5 % 

CAGE,errα  1 0.0062 0.0093 0.0025 258.4 % 
 

Table A-3: Statistics of the sensitivity analysis for the Kalman filter 2 
 

 



Appendix B  

Random Processes  

B.1 Statistical Properties of Random Processes 

A continuous-time random variable x(t) with an arbitrary distribution is usually 

characterized by the following statistical properties: 
 

 Mean 

x x(t) x E[x(t)] x(t)f (x, t)dx(t)
+∞

−∞

μ = = = ∫  

 Variance 

2 2 2
x x x x(t) E[(x(t) (t)) ] (x(t) (t)) f (x, t)dx(t)

+∞

−∞

σ = −μ = −μ∫  

 Standard deviation 

2
x x(t) (t)σ = σ  

 Mean square value 

2 2 2 2
x x(t) E[x (t)] x (t)f (x, t)dx(t) (t) (t)

+∞

−∞

ψ = = = μ +σ∫ 2
x x  

 Root mean square value 

2 2 2
x x xRMS(t) (t) (t) (t) (t)= ψ = ψ = μ +σx  
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 Correlation function 

xy 1 2 1 2 1 2 xy 1 2 1 2R (t , t ) E[x(t )y(t )] x(t )y(t )f (x(t ), y(t ))dx(t )dy(t )
+∞ +∞

−∞ −∞

= = ∫ ∫  

 Auto-correlation function 

xx 1 2 1 2 1 2 xx 1 2 1 2R (t , t ) E[x(t )x(t )] x(t )x(t )f (x(t ), x(t ))dx(t )dx(t )
+∞ +∞

−∞ −∞

= = ∫ ∫  

 Covariance function 

xx 1 2 1 x 1 2 x 2Cov (t , t ) E[(x(t ) (t ))(x(t ) (t ))]= −μ −μ  

 

where:  
 

xf (x, t)                    Probability density function of the random variable x(t) 

xy 1 2f (x(t ), y(t ))      Joint probability density function of the random variable x(t) and y(t) 

 

The Chebycheff Inequality demonstrates that, for every distribution, the 3± σ  

interval around the mean value xμ contains at least the 88.9 % of the distribution. If xμ  

is anticipated to be small compared to σ  or even zero, the RMS is close or equal to σ .  

Therefore, the expression RMS1σ  is used to indicate the conventional definition of the 

root mean square value, while the expression RMS 3σ  is used to indicate 

 
2 2

3 xRMS (t) (t) 3 (t)σ = μ + σx  

 
When x(t) is a n-vector random process, the previous definitions can be applied to 

each component of the random process vector. In particular, the correlation function 

becomes the correlation matrix 
 

1 1 1 2 1 1 n 2
T

1 2 1 2

n 1 1 2 n 1 n 2

E[x (t )x (t )] E[x (t )x (t )]
R(t , t ) E[ (t ) (t )]

E[x (t )x (t )] E[x (t )x (t )]
x x

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

…
 

 
and, in perfect analogy, the covariance function becomes the covariance matrix. When 

the components of the x(t) vector are zero-mean random variables, the correlation and 

the covariance matrices coincide. Besides, when the components of the x(t) vector are 
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uncorrelated between them, the correlation matrix becomes a diagonal matrix whose 

elements are the auto-correlation functions of each vector component. 

When x(t) is a stationary and ergodic random variable, its statistical properties are 

invariant with respect to translation in time and they can be computed for a time interval 

of length T as 
T

x T
0

1lim x(t)dt
T→∞

μ = ∫  

T
2 2
x xT

0

1lim (x(t) ) dt
T→∞

σ = −μ∫  

T
2 2
x T

0

1lim x (t)dt
T→∞

ψ = ∫  

 
Etcetera 

 

All the previous definitions and considerations can be adapted to discrete-time 

random variables and vectors; e.g. the root mean square value for a discrete-time 

stationary ergodic random variable is given by 

 
N

2
i

i 1
x N

x
lim

N
=

→∞
ψ =

∑
 

 
Obviously, T and N cannot be infinite, therefore a properly large time-interval 

length (T) or a properly large number of samples (N) have to be taken in consideration 

in order to obtain a good approximation of the desired statistics. 

 

B.2 Power Spectral Density 

When x(t) is a stationary random variable, it is defined the power spectral density 

function (PSD) xxG ( )f , which represents the rate of change of the mean square value 

with frequency 
 

 2 2 2
x x x xx

0

G ( )df f
∞

ψ = μ + σ = ∫  (B.1) 
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Considering a linear, time invariant, SISO system described by a frequency response 

function H( j2 )πf , the relationship between the power spectral density of the system 

input x(t) and the power spectral density of the system output y(t) is given by 

 
 2

yy xxG ( ) H( j2 ) G ( )f f= π f  (B.2) 

  

B.3 White Noise and Noise Shaping 

A zero-mean white Gaussian noise is an uncorrelated random process with a 

Gaussian probability density function, zero-mean and a constant PSD over all 

frequencies 

x

xx xx

1 2 1 2 1 2 1

0

G ( ) G

R(t , t ) Cov(t , t ) R(t ) (t t )

μ =

= ∀

= = δ −

     f f  

 
where  is the Dirac delta function. In particular, a white noise with unitary 

power is characterized by 

2 1(t t )δ −

 xxG 1=  (B.3) 

 
A white noise is a mathematical abstraction, since it has an infinite mean square 

value (i.e. infinite power), but it is a useful theoretical approximation when the real 

noise disturbance has a correlation time that is very small relative to the natural 

bandwidth of the system. 

A noise shape filter is a SISO or MIMO LTI system that, fed by one or more zero-

mean white Gaussian noises, gives as output one or more zero-mean coloured 

(correlated) Gaussian noises. In the SISO case, indicating with H( j2 )πf  the frequency 

response function of the shape filter, with x(t) the white noise of unitary power used as 

input and with y(t) the coloured noise obtained as output, it follows from Eq. (B.2) and 

Eq. (B.3) that 
 

 2
yyG ( ) H( j2 )f f= π  (B.4) 
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B.4 Covariance Matrix 

For the Kalman filter implementation, it is necessary to compute the elements of the 

covariance matrix of zero-mean white or coloured Gaussian random process vectors by 

means of the shape filter frequency response matrix. When the noise vector components 

are uncorrelated between them (as usually happens), the problem reduces to compute 

the variances of the vector components.  

When the n-th noise component is generated by means of a single input shape filter 

(e.g. IS read-out noise, solar pressure noise, etc.) with given frequency response 

function H( j2 )πf , the variance can be computed by combining Eq. (B.1) and Eq. (B.4) 

and by solving the resulting integral 
 

 22
x xx

0 0

G ( )d H( j2 ) d
sample samplef f

f f fσ = = π∫ ∫ f  (B.5) 

 
where  is the simulation sampling rate (10 Hz). Sometimes it is useful to 

approximate the power spectrum with its constant high frequency value 

fsample

 
2 22 2

xx xx H( j2 ) x H( j2 )G lim G ( ) lim H( j2 ) K Kπ π→∞ →∞
≈ = π = ⎯⎯→σ ≈f ff f

f f fsample  

 
where H( j2 )K πf  is the gain of the frequency response function. 

When the n-th noise component is one or the only output of a multiple input shape 

filter (e.g. FEEP actuation noise), Eq. (B.5) is not valid. However, the variance of this 

noise component can be approximated with the following procedure. Indicating with 

ijH ( j2 )πf  the frequency response function that relates the j-th white noise input  to 

the i-th coloured noise output  of the shape filter such that 

jI

iO
 

m

i ij j
j 1

O H ( j2 ) I
=

π ⋅∑ f  =

 

considering the following relationship between the inputs and the output variances 
 

O Ii j

2
m

2 i

j 1 j

O
I=

⎛ ⎞∂
σ = σ⎜ ⎟⎜ ⎟∂⎝ ⎠

∑  
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and approximating the frequency response function with its gain, the variance of the 

noise component can be approximated by 
 

Oi

m 22
ij

j 1
K

=

σ ≈∑ fsample  
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