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Abstract

The GIS revolution and the increasing availability of GIS databases emphasize the

need to better understand the typically large amounts of spatial data. Clustering is

a fundamental task in Spatial Data Mining and many contributions from researchers

in the field of Knowledge Discovery are proposing solutions for class identification

in spatial databases. The term spatial data refers to a collection of (similar) spatial

objects, e.g. areas, lines or points. In addition to geographic information, each

object also possesses non-spatial attributes. In order to apply traditional data mining

algorithms to such data, the spatial structure ans relational properties must be made

explicit. SCOT deals with the special case of grouping German towns. The towns

are related to each other by the various streets connecting them. Each town also

possesses an inner spatial structure, the local street network, and further non-spatial

information. This thesis considers all three kinds of information for the clustering

of towns. It exploits the concept of neighborhood to capture relational constraints,

measures the similarity of the structures of local street networks and transforms the

most important non-spatial attributes. SCOT is part of a project at Fraunhofer IAIS,

Germany, and has been successfully applied in practice.
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Introduction

The emergence of geographical Information Systems (GIS) with convenient and af-

fordable methods for storing large amounts of spatial data has accelerated the rate at

which sheer quantity of spatially referenced information is collected in electronic and

magnetic media. It is argued that the GIS revolution and the increasing availability of

GIS databases emphasizes the need for exploratory (discovery) rather than confirma-

tory methods of analysis [16]. Spatial Data Mining [14] is the discovery of interesting

relationships and characteristic that may exist implicitly in spatial databases. Data

mining in spatial databases aims at a) extracting interesting spatial patterns and

features, b) capturing intrinsic relationships between spatial and non- spatial data, c)

presenting data regularity concisely and at higher conceptual levels, and d) helping

to reorganize spatial databases to accommodate data semantics and to achieve better

performance. Current research seeks techniques for artificial searches that are able to

hunt out localized patterns or database anomalies in geographically referenced data

by reducing the need for direction (”where” to look or ”what” to look for). In the

following we describe the context of this thesis and formulate the problem setting.

Fraunhofer IAIS developed within an industry project a frequency map for towns

with more than 50.000 inhabitants (big towns) in Germany. A frequency map is a

map layer which states for each street segment the average number of passing vehicles

and pedestrians per hour. It is impossible to take this frequency for all streets in Ger-

many, in fact only a few were measured in loco, the others were inferred by statistical

models. Therefore, at the beginning for each of 182 big towns a number of frequency

measurement for street segments were available. They are been used to infer through
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a statistical model the frequencies of comparable street segments in the same town.

The goal of the proceeding project was to build a frequency map for towns between

10 and 50 thousands inhabitants which will be refered to as focus towns.

In Germany, a total number of 2482 focus towns exist. This amount does not allow

to measure frequencies at selected places within each city. Therefore, the technique

of inferring frequencies from comparable street segments of the same town, as had

been done previously, could not be applied in this project. The solution was to infer

the frequency of a certain street segment from the frequency of a comparable street

segment in another comparable town. In consequence, it is necessary to identify

similar towns before the inference of traffic frequencies can take place. The task of

SCOT is therefore to find groups of comparable towns within Germany.

Clustering is the task of identifying groups in a data set by some natural criteria

of similarity. The idea behind the use of clustering of spatially referenced data is that

it provides a means of generalization of the spatial component of the data associated

with a GIS [4].

What characterizes the spatial data mining is the crucial role played by the implicit

relations among the objects [13].The literature in spatial data mining offers interesting

approaches for the spatial clustering problem.

A solution to mine geo-referenced data for a spatial clustering is to group struc-

tured objects, collected at different sites, such that data inside each cluster models

the continuity of socio-economic or geographic environment, while separate clusters

model variation over the space [11]. This solution did not fit our problem because

the objects should have a spatial contiguity to be grouped.

In [15] a method is applied by considering the spatial and the non-spatial data

separately and by applying two different approaches: one (named SD-CLARANS)

computes the clusters considering first the spatial data and then it characterize the

clusters using the non-spatial data; the other (named NSD-CLARANS) extract the

spatial clusters from groups of non-spatial data, i.e. the clustering is performed

first on the non-spatial attributes of data. The two approaches gives different results
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according if we first compute the spatial information or non-spatial. For our purposes

the two approaches each with its weight should be complementary in one process and

not constraining.

A typical group of algorithms for the clustering of spatial data are density-based

algorithms. For example DBSCAN [3], finds arbitrarily shaped clusters of objects

that are close in space. The spatial role in the algorithm is not sufficient for our

problem. Could be interesting to group towns of a certain area, but it should be not

constraining. For example there could be two towns in two different areas of Germany

that could be similar.

The approaches presented did not fit our problem so we decided to bring to life

SCOT. The similarity between the frequency level of two towns depends on the inner-

city structure, the relationships between towns and other non-spatial information as

the number of inhabitants. Therefore, SCOT extracts spatial characteristics and

relationships explicitly and applies traditional clustering algorithms to the resulting

features.

The figure 1 represent the SCOT’s workflow. On the left we can see the three

main topics touched with this thesis: Urban Geography, Computer Vision and Graph

theory. Urban Geography helps us to focus our efforts on what is discriminating to

classify towns. For example Urban Geography literature remarks the importance of

street networks to characterize a town, there are towns with radial and grid street

networks. Computer Vision provides the approaches to represent a spatial object.

It answer to the question: How can I represent spatial information? The answer

is the Graph Theory which offers a useful data structure in order to compute such

information. It supplies the means to handle street networks and relationships be-

tween towns. These three topics are discussed in chapter 1, section 1.1, 1.2 and 1.3

respectively.

The figure 1 shows a database containing spatial and non-spatial information.

On the middle left this information is used for spatial data preparation. Spatial

data preparation is the core of SCOT, this task makes explicit characteristics and

relationships of towns. It is threaten in chapter 2 and it is divided in three main
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Figure 1: Workflow of the project

sub-tasks: Service Level, Paths and Structures. The goal of task Service Level in

section 2.3 is to discover for every town the level of services (i. e. goods or public

services) which is offered by close towns. In section 2.4 we identify the focus towns

which lie in a main street (motor-way or federal highway) between two big towns. It

is interesting because the frequency of such towns could be different from a frequency

of a town which does not lie in a main street between two big towns. In fact the traffic

from a big town to another could increase the frequency of the town in between. The

third sub-task exploits the town street network similarities. A representation of street

network for each focus town is given, then they are are compared each other in order

to find groups of towns with similar street network.

On the middle right of figure 1 we have non-spatial data preparation, section 2.6,

which threat non-georeferenced data, for example points of interest or number of

houses in each town.

The final application of clustering algorithms is presented in chapter 3. The results
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obtained from spatial and non-spatial data preparation are merged and given in input

to traditional clustering algorithms, bottom part of figure 1.
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Chapter 1

RELATED WORK

1.1 Urban Geography

Cluster Analysis cannot prescind from a basis-knowledge of domain. In this chapter

a brief summary of urban form and structure study in Germany [8] will be shown,

pointing out what is considered relevant for the analysis in the specific domain.

1.1.1 Main Studies

When geography became established as a scientific discipline in German universities

in the 1880s, the undertaken problems were concerned with the two basic questions

of where and why urban places had come into existence. A good example of the

methodology of this generation of geographers was the Ratzel’s treatise [17]. With

the turn of the century the dominant topic changed modifying the focus on the layout

of urban places, the street patterns, transportation lines, squares, open spaces and

the three-dimensional building fabric. So the following three decades became known

as the morphological or physionomic ephoc of German urban geography.

As to the methodology of urban geographers during the morphological epoch, the

town plan became the characteristic instrument of their endeavours. The scientists
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1. RELATED WORK

underlined the importance of historical town plans for tracing the original settlement

layout.

The various publications on the layout of German towns stressed two issues that

initiated a vigorous discussion among German geographers. First, by means of com-

parison of the layout of towns in various parts of Germany some authors came to the

conclusion that not only rural villages but also towns looked different on either side of

the so called Elbe-Saale-Line. These two rivers were, for many centuries, the dividing

line between the regions to the west, settled by Germanic tribes, and the regions to the

east, settled by Slavic tribes and only after 1200 colonized by Germanic people from

farther west. Consequently, towns to the west of the Elbe-Saale-Line were believed

to have grown over a number of centuries with the result that their street patterns

were more or less irregular. In contrast, the towns east of the Elbe-Saale-Line were

founded by the colonizing people under the rule of particular governing authorities

on the basis of some prepared plan so that they had a much more regular street

pattern, if not an exact grid. The second issue was the significance of market places

and town walls in the layout of towns. It was argued that the market had developed

over several centuries from a mere widening of the main street to a centrally-located

square of increasing size, and in some towns there were even several market places

each devoted to the trade in a particular commodity, such as horses or other animals,

meat, grain, vegetables, fish or forest products. There was, indeed, certain evidence

of the market place becoming more prominent with increasing distance east of the

Elbe-Saale-Line.

Almost every German town that existed by 1200, or was founded after 1200, was

a walled town. In many cases the wall followed a roughly circular line, and this had

an impact on the direction of at least a few streets. Some streets ran parallel to the

wall while others ended in front of it. One or two thoroughfares were oriented toward

the gates, which were the only entry points into town.

When, after 1500, a number of towns were fortified with large ramparts and

bastions, these fortifications had a still greater impact on the layout of towns. Some

newly-founded fortresses, such as Neuf Brisach near the French-German border, had
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a spectacular layout dominated by a huge centrally-located place des armes and an

exact grid pattern of streets. When in more recent years those fortifications were

dismantled, the open spaces were often used for ring roads and railway lines.

A special category of towns in Germany were the numerous court-towns of the

royalty and high nobility of the former German sovereign territories. These towns

used to be designed according to the founder’s conception, the streets being oriented

toward the royal palace. Some such layouts were a combination of both a radial street

pattern and a grid.

The period from 1928 to the mid-1950s was dominated by research on urban func-

tions and urban structure. Christaller’s Central place theory of 1933 is a milestone;

it plays a central role in this thesis and a detailed description is supplied in section

1.1.2.

Lafrenz [10] used the city of Lübeck as an example for what he called Bewer-

tungszyklen (evaluation of cycles of buildings). According to his findings there have

been two such cycles in this town’s recent past. The economic growth during the

nineteenth century led to lot sizes, street widths and building heights that differed

from the traditional street pattern and building fabric of the old town. From the

beginning of the twentieth century through to the 1920s, people made attempts to

correct those errors. A second cycle started after the Second World War when, during

the course of reconstruction, many old and partially destroyed buildings were torn

down and replaced by modern structures, these usually being out of proportion to

the traditional building stock. After 1970, the urban conservation movement made

people sensitive to such blunders, and another revaluation in favour of traditional

forms led to a more subtle treatment of townscapes.

Although urban form has not, in recent years, received adequate attention from

German geographers.
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1. RELATED WORK

1.1.2 Central Place Theory

Central Place Theory [19] attempts to explain the spatial arrangement, size, and

number of settlements. By examining and defining the functions of the settlement

structure and the size of the hinterland, Christaller found it possible to model the

pattern of settlement locations using geometric shapes. Christaller made a number of

assumptions such as: all areas have an isotropic (all flat) surface, an evenly distributed

population, evenly distributed resources, the purchasing power of all consumers is

similar and consumers will patronize the nearest market, transportation costs equal

in all directions and are proportional to distance, there are no excess profits (perfect

competition).

The theory consists of two basic concepts, threshold and range. The threshold is

the minimum population that is required to bring about the provision of certain good

or services. The range of good or services is the average maximum distance people

will travel to purchase goods and services. From these two concepts, see figure 1.1,

the lower and upper limits of goods or services can be found. With the upper and the

lower limits, it is possible to see how the central places are arranged in an imaginary

area.

Figure 1.1: Christaller’s Central Place Theory - Threshold and Range

The central place hierarchy is defined from Christaller as shown in table 1.1

However, the circular shape of the market areas results in either un-served areas or

13



1. RELATED WORK

Towns hierarchy Population Radius

Marktort 1000 4.0

Amtsort 2000 6.9

Kreissstadt 4000 12

Bezirkstadt 10000 20.7

Gaustadt 30000 36

Provinzstadt 100000 62.1

Landstadt 500000 108

Table 1.1: Christaller’s Central Place Hierarchy

over-served areas. To solve this problem, Christaller suggested the hexagonal shape

of the markets. Within a given area there will be fewer high order cities and towns

in relation to the lower order villages and hamlets. For any given order, theoretically,

the settlements will be equidistance from each other. The higher order settlements

will be further apart than the lower order ones.

Christaller noted three different arrangements of central places according to: the

marketing principle, the transportation principle and the administrative principle.

According to the transport principle, the central places would thus be lined up on

straight traffic routes which fan out from the central point and the lower order centers

are located at the midpoint of each side of a hexagon. Central places are nested as

shown in Figure 1.2.

The market area of a higher-order place includes a half of the market area of

each of the six neighbouring lower-order places, as they are located on the edges of

hexagons around the high-order settlements. This generates a hierarchy of central

places which results in the most efficient transport network.

The theory does a reasonably good job of describing the spatial pattern of urban-

ization. No other economic theory explains why there is a hierarchy of urban centers.

How the theory helps us to better define town typologies according to their market

influences, will be explained in chapter 2.3.

14
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Figure 1.2: Christaller’s Central Place Theory - Transportation Principle
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1. RELATED WORK

1.2 Computer Vision

Computer vision is the science and technology of machines that see. As a scientific

discipline, computer vision is concerned with the theory and technology for building

artificial systems that obtain information from images [20].

Object recognition is one of the most important aspects of computer vision. In

order to recognize and identify objects, the vision system must have one or more stored

models of the objects that may appear in the universe it deals with. This chapter

discusses the object models used by vision systems and the matching procedures

used for recognizing objects. The topic covered is the two-dimensional models. This

section has an important role, it helps us to represent the spatial information, local

street networks and relationships between towns.

1.2.1 Two-dimensional Object Representation

Two-dimensional object representation and recognition by computers began in the

1960s and has been an active area of research ever since. Two-dimensional shape

analysis is useful in a number of applications of machine vision, including medical

image analysis, aerial image analysis, and manufacturing. The method used for shape

recognition often depends on the particular representation selected. Thus we begin by

looking a the various representations that have been used. They fall loosely into four

classes: representation by global features, by local features, by boundary description

and by skeleton. We will present them in this section based on [7].

Global Feature Representation

A two-dimensional object can be thought of as a binary image. The pixel of the

object have value 1, and the pixels outside the object have value 0. Because of this

relationship, it is natural to represent shapes by using some of the features which are

used for representing binary images. Commonly used features for two-dimensional

16



1. RELATED WORK

shape representation include area, perimeter, moments, circularity, and elongation.

Some of the earliest shape recognition work utilized moments and Fourier descriptors.

Fourier descriptors provide a meaning for extracting global features from two-

dimensional shapes. Rather than characterizing the entire area of the shape, Fourier

descriptors usually are defined to characterize the boundary. The main idea is to

represent the boundary as a function of one variable φ(t), expand φ(t) in its Fourier

series, and use the coefficients of the series as Fourier descriptors (FDs). A finite

number of these FDs can be used to describe the shape.

There have been several different suggestions for defining φ and constructing the

FDs. We follow Persoon and Fu in their modification of Granlund’s FD definition for

curves represented by polygons, the most common representation in computer vision.

Let y be a clockwise-oriented, simple closed curve represented by the parameterized

function

Z(l) = [x(l), y(l)], 0 ≤ l ≤ L (1.1)

where l is the arc length along γ. A point moving along the curve generates the

complex function

u(l) = x(l) + jy(l) (1.2)

which is a periodic function with period L. The Fourier series expansion of u(l)

is given by

u(l) =
∞∑
−∞

ane
jn(2π/L)l

(1.3)

The FDs are the coefficients {an} defined by

an =
1

L

∫ L

0

u(l)e−j(2π/L)nl

(1.4)
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Persoon and Fu assume that the two-dimensional shape to be described is rep-

resented as a sequence of m points < Vo, V1, ..., Vm = Vo >. From the sequence of

points, they define a sequence of unit vectors

bk =
Vk+1 − V k
|Vk+1 − Vk|

(1.5)

and a sequence of cumulative differences

lk =
k∑
i=1

|Vi − Vi−1|, k > 0 (1.6)

The FDs are then defined by

an =
1

L(n1π
L

)2

m∑
k=1

(bk−1 − bk)e−j(2π/L)nl

(1.7)

Using these FDs, Persoon and Fu defined a distance measure to be used in shape

comparison. Suppose α and β are two curves to be compared and that {an} is the

sequence of FDs of α, {βn} is the sequence of FDs of β, and M is the number of

harmonics used. Then the distance measure is given by

d(α, β) =

[
M∑

n=−M

|an − bn|2
] 1

2

(1.8)

In order to compare an unknown curve α to a model curve β , they developed a

numeric procedure that solves for the scale, rotation, and starting point that mini-

mizes d(α, β). The resultant distance is a measure of the similarity between α and

β. Profitt (1982) discusses a normalization technique that can be used in conjunc-

tion with FD representation. Chellappa and Bagdazin (1984), using an autoregressive

model, obtain estimates of the variances of the Fourier coefficients. Lin and Chellappa

(1987) give a procedure for estimating the Fourier coefficients under the constraint of

a known value for perimeter2/area. This improves the estimate even when some part

of the true boundary has been occluded. Stracklee and Nagelkerke (1983) note that
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when the shape is represented as the tangent angle of the boundary as a function of

arc length, then truncating the Fourier coefficient representation can produce a rep-

resentation in which the reconstructed boundary does not close on itself. They give

a procedure for the estimation of the Fourier coefficient representation of the tangent

angle function that guarantees the reconstructed boundary will close on itself.

Local Feature Representation

A two-dimensional object can also be characterized by its local features, their at-

tributes, and their interrelationships. The most commonly used local features in

industrial-part recognition are holes and corners. Holes can be detected by a con-

nected component procedure followed by boundary tracing or, if the shapes of the

holes are known in advance, through the operations of binary mathematical mor-

phology. Corner detection can be performed on a binary image or on a gray tone

image. Local features must be organized into some type of structure for matching.

The most common type of structure is a graph whose nodes represent local features

and their properties or measurements and whose edges represent relationships among

the features. For example, if the features are all corners, then the angle at which the

lines meet is a feature property, and each corner can be related to its two adjacent

one spatial relationship that is the obvious one to use for describing the relationships

among holes or among holes and corners. Distance from hole to hole or from hole to

corner is one possibility. If the object will not be occluded, then the centroid can be

used as a focal point and the positions of all other features expressed in relation to

the position of the centroid.

A feature-based system for recognition of industrial parts that uses both holes and

corners was developed by Bolles and Cain (1982). Their local-feature-focus method

finds one key feature, the focus feature, in an image and uses it to predict a few nearby

features to look for. It uses graph matching to find the largest cluster of image features

matching a cluster of object features near the focus feature. Once such a cluster is

found, a hypothesis verification procedure adds more features and also checks the

boundary of the object. The features used in their example system were regions that
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had properties of intensity (black or white), area-to-axis ratio, and corners in which

the size of the included angle was the measured property. The system’s knowledge

of the most important features to look for in each object and of a cluster of other

features that should stand in certain relationships to the focus feature was generated

automatically from training images. The training program identified similar local

features in different objects, computed symmetries, marked structurally equivalent

features that could not be distinguished locally, built feature-centered descriptions,

selected nearby features, and ranked the focus features according to the size of the

graph that would have to be matched.

Boundary Representation

Boundary representation is the most common representation for two-dimensional ob-

jects. There are three main ways to represent the boundary of an object: as a sequence

of points, by its chain code, and as a sequence of line segments.

If the Boundary as a Sequence of Points is represented as the points of the bound-

ary generally come from some kind of border-following or edge-tracking algorithm

performed on a digital image. The result of such an operation is a list of pixel co-

ordinates. The list can be maintained as a whole, converted into one of the other

two main boundary representations, or processed to produce a smaller list of interest

points. Interest points are points on the boundary that have some special property

that makes them useful in a given matching algorithm. The affine-invariant matching

algorithm, defined later in this chapter, requires a set of interest points that are de-

scribed as being sharp convexities or deep concavities of the boundary of the shape.

One method of extracting these interest points from the original sequence of bound-

ary points of the curve is the curve-partitioning algorithm described in Phillips and

Rosenfeld (1987). Given a point P on the curve and a fixed arc length k, that in-

cludes P , and let M(P,C) be the maximum distance from P to all such chords. P is

a partitioning point of the curve, if the value of M(P,C) is a local maximum (for the

given k) and also exceeds a threshold t(k). This method finds points of high curvature

along the boundary. It can be modified to select a point P that is the median point
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in a sequence of points < P1, ..., Pn > for which M(Pi, C), i = 1, ..., n are all local

maxima. In this way it detects not only very sharp corners but also points of high

curvature along the boundary that are part of a section of approximately constant

curvature.

The Chain Code Representation says that an ordered list of the coordinates of

boundary pixels is a sufficient representation for any boundary, however, it may be

too fine a representation for many applications. Freeman (1961, 1974) developed a

representation called chain encoding that can be used at any level of quantization

and that saves space required for the row and column coordinates. A boundary (or

any curve) to be encoded is first quantized by placing over it a square grid whose side

length determines the resolution of the encoding.

The Boundary as a Sequence of Line Segments is the third common representa-

tion for the boundary of a two-dimensional shape. Although any sequence of points

can be thought of its a sequence of line segments, this representation is generally

used after the original sequence of boundary points has been segmented into a set

of line segments representing near-linear portions of the boundary. Pavlidis’ split-

and-merge algorithm (Pavlidis and Horowitz, 1974) is one possible way to achieve

such segmentation. Fitting line segments to the clusters of adjacent collinear points

detected by a Hough transform or grouped together by a line-finding procedure such

as the Burns line detector (Burns, Hanson, and Riseman, 1986) is another possi-

bility. Once the sequence of line segments has been computed by some method, it

can be converted into a model of the shape that can be used in shape recognition

or other matching tasks. A model for representing and matching sequences of line

segments was given by Davis (1979). Davis represented a line segment sequence by

the sequence of junction points < Xi, Yi, αi > where a pair of lines meet at coordi-

nate location (Xi, Yi) with angle magnitude αi. Given a sequence O = 01, 02, ..., 0n

of junction points representing the boundary of a model object 0 and a similar se-

quence T = T2, T2, ..., Tn representing the boundary of a test object T , the goal

is to find an association F : {1, 2, ...,m} → {1, 2, ..., n} ∪ {missing} that satisfies

i < j → F (i) < F (j) or either F (i) = missing or F (j) = missing. Davis used con-
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straints on both sides (line segments) and angles to define what is meant by a best

mapping for this problem. Let M(i, j) be a local evaluation function that measures

the goodness of the match of junction i of T to junction j of 0, based on the difference

between the angles αi and αj. Let Sij(i
′, j′) be a measure of the consistency of map-

ping junction i to junction i′ and junction j to junction j′, based on the difference

between the segment lengths of TiTj and Oi′Oj′ . The cost of a mapping F is given by

C(F ) =
m∑
i=1

M [i, F (i)] +
m∑
i=1

m∑
j=1

Sij [F (i), F (j)] + P (mT ) + P (mO) (1.9)

where P is a penalty function for missing angles.

Skeleton Representation

Although the boundary of a two-dimensional object gives full information on the

shape of the object, this may not be the most suitable information for matching.

Particularly for shapes that can be thought of as a union of long, sometimes thin

parts called strokes, the essence of the shape can be described as a sequence of the

line segments that capture the linearity of the strokes. Blum (1973) and Blum and

Nagel (1978) defined the symmetric axis transform of a two dimensional object as the

set of maximal circular disks that fit inside the object. The object can b represented

by its symmetric axis (the locus of the centers of these maximal disks) plus the set

of distances of these centers to the boundary of the object. The symmetric axis is

one example of a skeleton description of a two-dimensional object. The symmetric

axis is not always completely representative of the strokes of an object. Notice that

the symmetric axis of a rectangle, rather than being a single line, consists of five line

segments. This property and the fact that the symmetric axis is extremely sensitive

to noise make it difficult to use in matching.
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1.3 Graph Theory

1.3.1 Graph definitions

A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E

are 2-element subsets of V . To avoid notational ambiguities, we shall always assume

tacitly that V ∩ E = 0. The elements of V are the vertices (or nodes, or points)

of the graph G, the elements of E are its vertex edges (or lines). The usual way to

picture a graph is by drawing a dot for each vertex and joining two of these dots by

a line if the corresponding two vertices form an edge. Just how these dots and lines

are drawn is considered irrelevant: all that matters is the information of which pairs

of vertices form an edge and which do not. An example of Graph is given in Figure

1.3.1 where V = {1, ..., 7} and edges set E = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}.

Figure 1.3: Graph example

A graph with vertex set V is said to be a graph on V . The vertex set of a

graph G is referred to as V (G), its edge set as E(G). These V (G), E(G) conventions

are independent of any actual names of these two sets: the vertex set W of a graph

H = (W,F ) is still referred to as V (H), not as W (H). We shall not always distinguish

strictly between a graph and its vertex or edge set. For example, we may speak of a

vertex v ∈ G (rather than v ∈ V (G)), an edge e ∈ G, and so on [2].

We have a labeled graph when a vertex labeling function or an edge labeling func-

tion is associated. Given a graph G := (V,E) such that V is the set of vertices and E

is the set of edges, a vertex labeling is a function from some subset of the integers to
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the vertices of the graph. Likewise, an edge labeling is a function from some subset

of the integers to the edges of the graph [22].

A weighted graph associates a label (weight) with every edge in the graph. Weights

are usually real numbers. They may be restricted to rational numbers or integers.

Certain algorithms require further restrictions on weights; for instance, the Dijkstra

algorithm works properly only for positive weights. The weight of a path or the

weight of a tree in a weighted graph is the sum of the weights of the selected edges.

Sometimes a non-edge is labeled by a special weight representing infinity.

1.3.2 Paths

A path is a non-empty graph P = (V,E) of the form V = {x0, x1, ..., xk} and E =

{x0x1, x1x2, ..., xk−1xk}, where the xi are all distinct. The vertices x0 and xk are

linked by P and are called its ends; the vertices x1, ..., xk−1 are the inner vertices of

P . The number of edges of a path is its length, and the path of k is length denoted

by P k. Note that k is allowed to be zero. We often refer to a path by the natural

sequence of its vertices, writing, say, P = x0x1...xk and calling P a path from x0 to

xk (as well as between x0 and xk )[2].

Depht-First-Search

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree struc-

ture, or graph [23]. Intuitively, one starts at the root (selecting some node as the

root in the graph case) and explores as far as possible along each branch before

backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first

child node of the search tree that appears and thus going deeper and deeper until

a goal node is found, or until it hits a node that has no children. Then the search

backtracks, returning to the most recent node it had not finished exploring. In a
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non-recursive implementation, all freshly expanded nodes are added to a LIFO stack

for exploration.

Time complexity is proportional to the number of vertices plus the number of

edges in the graph it traverses (O(|V |+ |E|)).

When searching large graphs that cannot be fully contained in memory, DFS

suffers from non-termination when the length of a path in the search tree is infinite.

The simple solution of ”remember which nodes I have already seen” does not always

work because there can be insufficient memory. This can be solved by maintaining an

increasing limit on the depth of the tree, which is called iterative deepening depth-first

search.

Dijkstra’s algorithm

Dijkstra’s algorithm, named after its discoverer, the dutch computer scientist Edsger

Dijkstra, is a greedy algorithm that solves the single-source shortest path problem for

a directed graph with non negative edge weights [21].

For example, if the vertices (nodes) of the graph represent cities and edge weights

represent driving distances between pairs of cities connected by a direct road, Dijk-

stra’s algorithm can be used to find the shortest route between two cities.

The input of the algorithm consists of a weighted directed graph G and a source

vertex s in G. We will denote V the set of all vertices in the graph G. Each edge of

the graph is an ordered pair of vertices (u, v) representing a connection from vertex

u to vertex v. The set of all edges is denoted E. Weights of edges are given by a

weight function w : E → [0,∞); therefore w(u, v) is the cost of moving directly from

vertex u to vertex v. The cost of an edge can be thought of as (a generalization of)

the distance between those two vertices. The cost of a path between two vertices is

the sum of costs of the edges in that path. For a given pair of vertices s and t in V ,

the algorithm finds the path from s to t with lowest cost (i.e. the shortest path). It

can also be used for finding costs of shortest paths from a single vertex s to all other

vertices in the graph.
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In figure 1.3.2, u := extract min(Q) searches for the vertex u in the vertex set Q

that has the least dist[u] value. That vertex is removed from the set Q and returned

to the user. length(u, v) calculates the length between the two neighbor-nodes u and

v. alt on line 10 is the length of the path from the root node to the neighbor node

v if it were to go through u. If this path is shorter than the current shortest path

recorded for v, that current path is replaced with this alt path.

Figure 1.4: Dijkstra’s algorithm pseudocode

If we are only interested in a shortest path between vertices source and target, we

can terminate the search at line 9 if u = target. Now we can read the shortest path

from source to target by the iteration in figure 1.3.2.

Figure 1.5: Dijkstra’s algorithm pseudocode

Now sequence S is the list of vertices constituting one of the shortest paths from

source to target, or the empty sequence if no path exists.

Here we discuss the relational distance as a framework for matching.
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1.3.3 Graph matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges;

that is, no two edges share a common vertex [18].

We say that a vertex is matched if it is incident to an edge in the matching.

Otherwise the vertex is unmatched.

A maximum matching is a matching that contains the largest possible number of

edges. There may be many maximum matchings. The matching number of a graph

is the size of a maximum matching. A maximal matching is a matching M of a graph

G with the property that if any edge not in M is added to M , it is no longer a

matching, that is, M is maximal if it is not a proper subset of any other matching in

graph G. In other words, a matching M of a graph G is maximal if every edge in G

has a non-empty intersection with at least one edge in M . Note that every maximum

matching must be maximal, but not every maximal matching must be maximum.

A perfect matching is a matching which covers all vertices of the graph. That

is, every vertex of the graph is incident to exactly one edge of the matching. Every

perfect matching is maximum and hence maximal. In some literature, the term

complete matching is used.

In most case the matching is not complete, so we need a measure which indicate

how a graph matches another, in the following we define the concept of Relational-

Distance.

Relational-Distance Definition

A relational description Dx is a sequence of relations Dx = R1, ..., RI, where for each

i = 1, ..., I, there exist a positive integer ni with Ri ⊆ Xni for some set X. Intuitively

X is a set of the parts of the entity being described, and the relations Ri indicate

various relationships among the parts [7].

Let Da = R1, ..., RI be a relational description with part set A and Db = S1, ..., SL

a relational description with part set B.
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Let f be any one-one, onto mapping from A to B. For R ⊆ AN , N a positive

integer, the composition R ◦ f of relation R with function f is given by

R◦f =
{

(b1, ..., bN) ⊆ BN | there exist (a1, ..., aN) ⊆ R with f (an) = bn, n = 1, ..., N
}

This composition operator takes N -tuples of R and maps them, component by

component, into N -tuples of Bn.

The function f maps parts from set A to parts from set B. The relational distance

of f for the relations (SI and SL ) in DA and DB is given by

RD(A,B) =
I − |(R− (S ◦ f−1)|

I
+
L− |(S − (R ◦ f)|

L

The relational distance indicates a value according how many tuple in R match

with f the tuples in S and how many tuples in S match with f−1 the tuples in R .
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1.4 Data Mining and Knowledge Discovery

This chapter has the goal to present the concept of data mining and the state-of-art

techniques we are going to use in the next chapters. Witten and Frank in [24] offer a

complete panoramic on data mining practical tools and Miller and Hanh [12] discusses

the process of geographic data mining. In the first subsection we present non-spatial

data mining techniques, the second subsection focuses on the case in which the data

is geo-referenced.

Data mining is only one step of the knowledge discovery from databases (KDD)

process. Data mining involves the application of techniques for distilling data into

information or facts implied by the data. KDD is the higher level process of obtaining

facts through data mining and distilling this information into knowledge or ideas and

beliefs about the mini- world described by the data. This generally requires a human-

level intelligence to guide the process and interpret the results based on pre-existing

knowledge [12]. The KDD process typically involves the following major steps: back-

ground knowledge, data pre-processing, data mining and knowledge construction. So

data mining as the part of KDD process has been defined as ”the nontrivial extraction

of implicit, previously unknown, and potentially useful information from data” [5] and

”the science of extracting useful information from large data sets or databases” [6].

The data mining topic in which we are interested in Clustering, the identification of

heterogenous groups that contain objects with similar characteristics. In section 1.4.1

we present partitioning clustering algorithms and in 1.4.2 Agglomrative Hierarchical

clustering.

1.4.1 Partitioning Clustering

Given a data set D of n objects in a d-dimensional space, and an input parameter

k, a partitioning algorithm organizes the objects into k clusters such that the total

deviation of each object from its cluster centre, or from a cluster distribution, is min-

imized. The deviation of a point can be computed differently in different algorithms
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and is more commonly called a similarity function. We will present two partitioning

algorithms which have different ways to represent their clusters: K-means and EM.

Despite the difference in the representation of the clusters, the two partitioning algo-

rithms share the same general approach when computing their solutions. To see the

similarity, we first observe that the two algorithms are effectively trying to find the

k centers or distributions that will optimize an objective criterion. Once the optimal

k centers or distributions are found, the membership of the n objects within the k

clusters are automatically determined. However, to find the global optimal k centers

or k distributions is known to be NP-hard (Garey and Johnson 1979). Instead the

two algorithms adopt an iterative relocation technique which will find a local optimal.

This technique is shown in figure 1.4.1. The two algorithms, however, differ in the

criterion function and in the way they handle steps 3 and 4 of the algorithm.

Figure 1.6: Generalized iterative relocation

K-MEANS

The K-means algorithm (MacQueen 1967) uses the mean value of the objects in a

cluster as the cluster centre. The objective-criterion used in the algorithm is typically

the squared-error function defined as

E =
k∑
i=1

∑
x∈Ci

|x−mi|2 (1.10)
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where x is an object which belongs to cluster Ci, and mi is the mean of cluster Ci. The

K-means algorithm basically follows the structure of the algorithm in figure 1.4.1. In

step 3 of the algorithm, K-means assigns each object to its nearest centre, forming

a new set of clusters. In step 4, all centers of these new clusters are then computed

by taking the mean of all objects in each cluster. This is repeated until the criterion

function E does not change after an iteration.

The K-means algorithm is relatively scalable and efficient in processing large data

sets because the computational complexity of the algorithm is O(nkt), where n is the

total number of objects, k is the number of clusters, and t is the number of iterations.

Normally, k << n and t << n. The method often terminates at a local optimum.

Besides the general weakness of partitioning-based algorithm, the K-means algo-

rithms is also very sensitive to noise and outlier data points, since a small number of

such data can substantially influence the mean value [9].

EM

Insted of representing each cluster using a single point, the EM algorithm represent

each cluster using a probability distribution. Typically, the Gaussian probability

distribution is used because according to density estimation theory, any density dis-

tribution can be effectively approximated by a mixture of Gaussians (Scott 1992;

Silverman 1986). A d-dimensional Gaussian distribution representing a cluster Ci is

parametrized by the mean of the cluster µi, and d ∗ d covariance matrix Mi. Given

a cluster distribution for Ci, the probability of an object occurring at location x is

denoted as P (x|i) where

P (x|i) =
1√

(2)πd|Mi|
e(1/2)(x−µi)

T (Mi)
−1(x−µi) (1.11)

where the superscript T indicates the transpose to a row vector, |Mi| is the determi-

nant of Mi and M−1
i is its matrix inverse. By combining the effect of the different

cluster distributions at x, the mixture model probability density function will be:
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P (x) =
i=1∑
k

WiP (x|i) (1.12)

where Wi is the fraction of the database represented by Ci. Unlike the K-means, an

object in EM clustering can be a member of each of the k clusters with different

probabilities of membership. Probability of an object at x belonging to cluster Ci

can be computed as:

P (i|x) = Wi
P (x|i)
P (x)

(1.13)

Referring back to the algorithm in figure 1.4.1, after the random initialization of

the model, the EM algorithm will compute the membership of each object in step 3

by applying formulae 1.11, 1.12 and 1.13. the new values of Wi, µi and Mi are then

computed in step 4 using the following formulae:

Wi =
1

n

∑
x∈D

P (i|x) (1.14)

µi =

∑
x∈D xP (i|x)∑
x∈D P (i|x)

(1.15)

Mi =

∑
x∈D P (i|x)(x− µi)(x− µi)T∑

x∈D P (i|x)
(1.16)

As a criterion function, EM clustering tries to maximize the log likelihood of the

mixture model computed as

E =
∑
x∈D

log(P (x)) (1.17)

.

When the increase in the log likelihood between two successive iterations is neg-

ligible, the algorithm terminates [9].
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1.4.2 Agglomerative Hierarchical Clustering

Hierarchical clustering techniques are a second important category of clustering meth-

ods. As with K-means, these approaches are relatively old compared to many cluster-

ing algorithms, but they still enjoy widespread use. There are two basic approaches

for generating a hierarchical clustering:

• Agglomerative: Start with the points as individual clusters and, at each step,

merge the closest pair of clusters. This requires defining a notion of cluster

proximity.

• Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster

until only singleton clusters of individual points remain. In this case, we need

to decide which cluster to split at each step and how to do the splitting.

Agglomerative hierarchical clustering techniques are by far the most common, and,

in this section, we will focus exclusively on these methods. A hierarchical clustering

is often displayed graphically using a tree-like diagram called a dendrogram, which

displays both the cluster-subcluster relationships and the order in which the clusters

were merged (agglomerative view) or split (divisive view). Figure 1.4.2 shows an

example of a dendogram for a set of four two-dimensional points.

Many agglomerative hierarchical clustering techniques are variations on a single

approach: starting with individual points as clusters, successively merge the two

closest clusters until only one cluster remains. This approach is expressed more

formally in the algorithm in figure 1.4.2.

The key operation of algorithm 8.3 is the computation of the proximity between

two clusters, and it is the definition of cluster proximity that differentiates the var-

ious agglomerative hierarchical techniques that we will discuss. Cluster proximity

is typically defined with a particular type of cluster in mind. For example, many

agglomerative hierarchical clustering techniques, such as MIN, MAX, and Group Av-

erage, come from a graph-based view of clusters. MIN defines cluster proximity as the

proximity between the closest two points that are in different clusters, or using graph
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Figure 1.7: example of a dendogram

Figure 1.8: Basic agglomerative hierarchical clustering algorithm
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terms, the shortest edge between two nodes in different subsets of nodes. Alterna-

tively, MAX takes the proximity between the farthest two points in different clusters

to be the cluster proximity, or using graph terms, the longest edge between two nodes

in different subsets of nodes. (If our proximities are distances, then the names, MIN

and MAX, are short and suggestive. For similarities, however, where higher values

indicate closer points, the names seem reversed. For that reason, we usually prefer

to use the alternative names, single link and complete link, respectively). Another

graph-based approach, the group average technique, defines cluster proximity to be

the average pairwise proximities (average length of edges) of all pairs of points from

different clusters. Figure 1.4.2 illustrates these three approaches.

Figure 1.9: Graph-based definitions of cluster proximity

If, instead, we take a prototype-based view, in which each cluster is represented

by a centroid, different definitions of cluster proximity are more natural. When using

centroids, the cluster proximity is commonly defined as the proximity between cluster

centroids. An alternative technique, Ward’s method, also assumes that a cluster is

represented by its centroid, but it measures the proximity between two clusters in

terms of the increase in the SSE that results from merging the two clusters. Like

K-means, Ward’s method attempts to minimize the sum of the squared distances of

points from their cluster centroids.

The Calinski and Harabasz Stopping Rule

In [1] a method for identifying clusters of points in a multidimensional Euclidean

space is presented. An informal indicator of the best number of clusters k is also

calculated. The method supposes there are n individuals with values of the same
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v variables for each individual. These individuals can be represented by n points

in a v-dimensional Euclidean space. An n ∗ n distance matrix is then calculated.

Next, the method needs to calculate the Minimum Spanning Tree (MST), so that the

enormous number of possible partitions of a set of points is reduced to those which

are obtainable by splitting the MST.

This tree is then partitioned by removing some of its edges. If we want to divide the

n points into k clusters, k− 1 edges have to be removed. For each possible partition,

the within-cluster sum of squared distances about the centroids is computed. In order

to calculate the optimal value of k, first k = 2 is taken, then k = 3, and so on. For

each value of k, the best partition is calculated with the minimum W GS S and the

Variance Ratio Criterion (V RC):

V RC =
BGSS
K−1
WGSS
n−k

(1.18)

where BGS S is the total between-cluster sum of squared distances. The authors

suggest using V RC as an informal indicator for the best value of k. They also

suggest the computation of V RC for k = 2, 3, ... choosing the value on k for which

the VRC has an absolute or local maximum. The computation can be stopped when

the first local maximum is reached. Although of working with the minimum spanning

tree instead of the whole graph reduces the number of partitions to be examined, this

number, (
n− 1

k − 1

)
(1.19)

is high enough to use this method with even moderate value of n.
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Chapter 2

DATA PREPARATION

2.1 Data sets description

Before starting with data manipulation and transformation we give a brief description

of the database we have to work with. In figure 2.1 we give a conceptual diagram

according to Calinsk notation for geo-referenced databases.

In next subsections we will describe in detail each entity in showed figure.

2.1.1 Data set of streets

The data set of streets has a crucial role in our project, it is the starting point of

many following tasks. In fact its manipulation could be intended as the core of new

ideas presented with this thesis.

Cermit Knoten Gem 05 is a street network, a digitalized map of all streets in

Germany. The smallest units are street segments, which usually denote the part of a

street between two intersections. Each unit is identified by a geometric shape (line)

which belongs to a topologically correct Geographic Information System. Each row in

the data set describes a Navteq street segment with a geometry (line) and attributes.
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Figure 2.1: The E-R Diagram for the geo-referenced database
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The data set is provided by DDS (Digital Data Services GmbH) and consists of

5475436 segments and 4390984 intersections. In the following we trace in detail the

interesting attributes in the format Attribute name[data type]: description:

• Prim name[Char (40)]: official denomination of the street;

• Sek name[Char (40)]: alternative name of the street;

• Type[Short Integer]: the type stays for the driving speed permitted in that street

segment. type 1-3: highway (Autobahn) fast/medium/slow - type 4-6: federal

road (Bundesstrae) fast/medium/slow - type 7-9: country road (Landstrae)

fast/medium/slow - type 10-13 city road (Stadtstrae) fast/medium/slow - type

13: ferry - type 14: slow inner city road - type 15: special cases (Zone 30,

pedestrian area, forest road);

• Kat [Short Integer]: the category gives the meaning of importance to the street.

The smaller the number, the more important the road. kat 1: main roads

(highways) - kat 2: first class roads - kat 4: second class roads - kat 5: third

class roads - kat 7: fourth class roads (side road);

• Von[Integer]: starting point of the street segment;

• Nach[Integer]: ending point of the street segment;

2.1.2 Data set of towns

The whole Germany is divided into 12503 territorial entities representing towns, in our

data set uniquely identified in the table Gemeindeauswahl by a GKZ (postal code).

Each territorial entity is described by a geometrical shape (area). The data provided

by DDS (Digital Data Services GmbH) have a certain quality, they are topologically

correct. This means there are no gaps between two adjacent areas, geographical

primitives of town territorial entities.
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The SCOT’s goal concern to find groups in a subset of towns. Therefore the object

of our work will not be the whole data set, but a subset which is easier to call focus

towns. The focus towns are 2482, figure 2.1.2, mainly the towns between 10 and 50

thousands inhabitants plus a number of towns with less than 10 thousands. Anyway

the whole data set of towns will be useful for our purposes.

2.1.3 Data set of nodes

The table Cermit Knoten Gem 05 maps the town membership for the starting or

ending point of street segments. If a point belongs to two towns, it means that it lies

on a boundary line, there are two rows associating the same point to two different

towns.

2.1.4 Data set of points of interest

The data set includes all points of interest in Germany. The table has a unique

identifier(ID) of the point of interest, the name(Name), the type(Typ) and the geom-

etry(Geometry), which is normally a point, marking the location in space. The table

of points of interest contains circa 150.000 observations provided by DDS (Digital

Data Services GmbH). The table 2.1 has a point of interest called ( Central Station)

identified by a type and a point in a bi-dimensionl space x = 12, 5 and y = 58.

ID Name Typ Geometry

1 Central Station 10 (12,5 ; 58)

Table 2.1: Table - Point of interest

2.2 Spatial object representation

Two-dimensional object representation and recognition by computer began in the

1960s and has been an active area of research ever since. The method used for
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Figure 2.2: The focus towns
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recognition often depends on the particular representation selected. The topic covers

a deep variety of object representation: representation by global features, by local

features, by boundary description, by skeleton. We focus on the one wich best fits

the problem faced: representation by local features.

A two-dimensional object can be characterized by its local features, their at-

tributes, and their interrelationship. The most commonly used local features are

corners that imply a certain connection. Local features must be organized into some

type of structures for matching. The most common type of structure is a graph whose

nodes represent local features and their properties or measurements and whose edges

represent relationship among the features 1.2.

In the following two sections we will describe the two representations used to

infer on spatial objects. The first subsection describes the fundamental data set used

in this section (data set of streets), the second shows the representation of global

relationship between towns and the third the representation of inner street network.

2.2.1 Global representation between towns

The global representation between towns intends to give a basic structure, represent-

ing the street connections between all towns in Germany, which is useful to infer

new information on spatial objects (German towns), in order to find some similarity

between them with respect to their traffic frequencies. In fact we will exploit such

representation as the starting point of section 2.3 and 2.4. In the next three sections

we will describe how we have found the connecting towns, how we defined distance

as the main property of relationships, and how we stored the computed data in an

adjacency matrix representing a graph.

Connecting towns

Given the previous data, 2.1.1, there are three cases (figure 2.2.1) in which two towns

are connected and handling them we are able to find all relationship between towns.
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To facilitate the understanding we assume that the starting point of a segment is

always the nearest to the centroid of a town area.

Figure 2.3: The three cases of connected towns

The first case catches all connections in which there is a segment having a starting

point belonging to one town and an ending point belonging to another. In the figure

2.2.1 case 1 the segment 10 has the starting point in TOWNA and the ending point

in TOWNB. This case is solved with a SQL query and the resulting output pertain

to 93.448 connections. The rows of output table are in the form TOWN A, TOWN

B, segment 10.

In CASE 2 of figure 2.2.1 there are two segments collapsing in a boundary line.

In the figure 2.2.1 CASE 2 the segment 20 has the starting point in TOWNA, the

ending point on the boundary line, the segment 21 has the starting point in TOWNB,

the ending point on the boundary line. The complexity grows, but we are still able

to solve the problem with a SQL query. The output table contains 8699 connections,

and it is in the form TOWN A, TOWN B, segment 20, segment 21.

The third case include all remaining connections between towns. In this situation

we have a segment with starting and ending point belonging to both towns, so lying
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on a boundary line. In the figure 2.2.1 CASE 3 the segment 31 has the starting and

ending point on a boundary line and the segments 30, 32 converge into them. A SQL

query could not handle the problem, therefore we opted for R-Project statistical tool

that offers a wide range of tools to manage database in an easy way. The results

table shows 1876 connections, obtained aproximately within a time of approximately

60 hours.

The algorithm creates a list for each boundary street. We remember that a street

may also consist of many segments. If there are two street segments with starting

point belonging to two different towns and their ending point belong to the same list

of boundary segments, it is recognized as connection. In figure 2.2.1 CASE 3 the list

of boundary segments consists only of segment 31. Then the algorithm checks if there

are segments with starting point belonging to different towns and having the ending

point equal to a point in the same list. They are segments 30 and 32 that have their

ending points equal to two points of 31 and they belong respectively to TOWN A

and TOWN B. The connection will be traced by: TOWN A, TOWN B, segment 30,

segment 32.

The aim of discovering connections was only to know which towns are connected,

so it was not necessary to preserve information on segments. In any event we consid-

ered that this information may be useful for future work. Anyway the result of this

task is a database table in which we know all the connecting adjacent towns for a

certain town.

Defining distance

At this point all the connections between towns are available. The discovery of a rela-

tionship between two towns is interesting, but a more accurate information could be

more helpful. Therefore we defined a distance property for each relationship, based on

the Kilometer unit. Oracle has a set of tools available to handle spatial information :

Oracle Spatial. In particular we used the function SDO GEOM.SDO DISTANCE

(d.geo 1, d.geo 2, 0.005,′ unit = km′) that computes the distance between any two
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objects (points, lines, areas), in this case the objects d.geo 1 and d.geo 2, in respect

of their reference system.

After computation the resulting output will be in the form TOWNA, TOWNB,

DISTANCE. It represents all the information we need to start inferring service

level, section 2.3, and paths, section 2.4, but its data structure does not fit the

computation we are going to apply efficiently. In the following we describe the matrix

data structure of the graph, a useful way to represent the relationships.

Graph representation

The relationships found could be stored in a graph. We know there are many ways

to represent a graph. One is the adjacency list, which is more efficient in memory

storage. However an adjacency matrix data structure is more suitable for our purposes

because we will need a memory usage of n ∗ n (n as number of vertices) to store the

distance from all possible town connections, section 2.3, and secondly because it is a

trade-off in order to optimize the two algorithms, one is the last mentioned and the

other is the discovering path algorithm in section 2.4.

So the graph is defined by G(V,E), where nodes V are towns and edges E are

relationships between towns. The distance(u, v), where u, v ∈ V , is the property of

every edge describing the distance in kilometers of the connection. Now we explain

how we stored the graph G in an adjacency matrix data structure. The number of

vertices V and edges E in G amount respectively to 12503 and 48339.

The graph G is stored in a matrix that contains in first column and first row the

list of vertices in V in G. For each relationship TOWNA, TOWNB,DISTANCE

we look for the cell location of TOWNA in the first column and the location of

TOWNB in the first row. In the corresponding cell, localized by the couple of

coordinates found, we store the respective distance. If there is no connection between

two towns we store the value 0. The resulting matrix has in its diagonal a list of zeros

because a vertex has no connections with itself, and it is an upper triangular matrix.

The storage space is relevant: 596.4Mb.
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2.2.2 Inner street network representation

As in the previous spatial representation, the medium to infer new information is a

graph. It intends to represent street networks of a georeferenced database, in a way

in which is possible to infer useful and more general information. First only main

streets are selected, then a new topology is defined and in the third subsection they

are stored in a graph data structure.

Selecting main streets

Even relatively small have big amounts of street segments that could disturb the

discovering of street network structures. For this reason we decided to choose a higher

level of detail and select only main streets. The importance of a street segment is

explicated by its category, the smaller the category, the more important the street.

Accordingly the streets segments are selected with categories from 1 to 4 and as a

consequence the ones from 5 to 7 are removed. In figure 2.2.2 left a town with all

its street segments is presented and in figure 2.2.2 right the same town selecting only

streets with category 4 or less.

Figure 2.4: Example selecting main streets
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Defining a new topology

The street selection brings to light the need of a new topology. First we analyse

the figure 2.2.2 left where is possible to see the topology with all streets segments,

with categories from 1 to 7. If a street has a shared point with another street, it is

divided into more segments. In the example a street is divided into segments 4 and 5

because of a shared point with segment 3. In fact even if the segments 4 and 5 belong

to a unique street, we have two distinct entities. The selection implies avoiding all

segments with category higher than 4 as in the example of figure 2.2.2 right. The

red segment 3 is category 5, so in the new topology it is not represented. Therefore

the street in the old topology formed by segments 4 and 5 actually has no further

shared points with segment 3, and it is represented in the new topology with only the

segment 4.

Figure 2.5: Example new topology

Graph representation

The remaining geo-referenced segments need to be represented in a way in which the

inference of more general information is possible. Every town is computed as a Graph

G := (V,E) where u ∈ V is a set of vertices representing street segment, and E is a

set of edges E = u, v|u, v ∈ V that represent two connecting segments. Each vertex
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u ∈ V has its category given by the function category(u). In figure 2.2.2 we give an

example. The town has two streets intersecting in the red point, therefore there are

four street segments: b , c , d , e.

Figure 2.6: Street network graph extraction example

The street segments become vertices: V = b, c, d, e, figure 2.2.2. The street seg-

ment identified by b has a shared point with segments c, d and e, therefore in the

graph there will be three edges: (b, e), (b, c) and (b, d). The same reasoning is used

for segments c, e and d discovering respectively (c, e),(c, d) for c and (e, d) for e.

Figure 2.7: Street network graph extraction example 2
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Could be more intuitive to define the street segments as edges and the intersections

as nodes of the graph, but this representations do not fit the matching algorithm for

relational distance 1.3.3 we are going to apply in the section 2.5.1.
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2.3 Service Level

The chapter inteds to describe in detail service level task, one of three main tasks

of spatial data preparation. Service level could be intended as an index denoting

how a town is served by the neighborhood towns. For example in terms goods,

administrative or political issues or just entertainment, in other words all can make

the people move from a town to another.

The Central Place Theory 1.1.2 is a geographical theory that seeks to explain the

size and spacing of human settlements. It rests on the notion that centralization is a

natural principle of order and that human settlements follow it [19]. It gives us the

basic notions on how to extract the Service Level from data, we explain this task in

the section 2.3.1.

The goal of task is to group together towns with the same service level. If fact

two towns with the same service level probably have some towns around which offer

equal kind of services. This means that the inhabitants in both towns could drive

with same frequencies to neighborhood towns. So after tracing the meaning of service

level in next section, the 2.3.2 groups together towns with similar service level.

2.3.1 The algorithm for discovering service level

We obtained a graph G(V,E), where nodes V are towns and edges E are streets

connection between two towns, by computing all the streets in Germany . The graph

is the starting point and the fundamental tool of the algorithm. In its matrix form

whether the connection is direct it has a connection, an edge (u, v). In other words

the street that connects the towns u and v does not cross another town z. The

following will present the two steps of the algorithm, the first is the computation

of a graph including indirect street connections and the second is the application of

Central Place Theory conditions.
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Obtaining a Graph with indirect street connections

We were looking for the shortest paths so the Dijkstra algorithm was the obvious

choice of method to use as it harmonizes simplicity and efficiency 1.3.2. It is a greedy

algorithm that solves the single-source shortest path problem for a directed graph

with nonnegative edge weights. The input of the algorithm consists of the weighted

directed graph G. Weights of edges are given by a weight function w : E → [0,∞);

distance in Kilometers. The distance of a path between two vertices is the sum of

distances of the edges in that path. For a given pair of vertices s and t in V , the

algorithm finds the path from s to t with shortest distance. It computes shortest

paths from the vertex u of V to all other V \{u} vertices in the graph, and then the

same for all remaining V \{u} vertices. In the resulting output each town is connected

to all remaining towns with the shortest path.

Applying Central Place Theory conditions

In this step the minimum population and the radius examined in Central Places

Theory play a crucial role. According to the conditions of theory 1.1.2, every town u

in V has a category (from MARKTORT to LANDSTADT ) defined by its population,

and that implies a proper radius, radius(u). Then the amount of vertices x in V with

an edge (x, u) which satisfy the condition distance(x, u) < radius(x) are counted for

each vertex u in V . The output of this phase is a table in which columns from one to

seven contain the number of towns, from Marktort to Landstadt, covering the town

identified in the corresponding row, an example of which is shown in figure 2.8. The

columns define the service level for each city in the row. Explaining the example,

TOWN 1 is within the radius of two towns classified as MAKTORT, of four towns

classified as AMTSORT and of five towns classified as LANDSTADT.

Computational time

The algorithm is run on a computer with an Intel R© CoreTM2 Duo Processor and with

2 GB Ram DDR. While most of time it is used for indirect connection computation,
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Figure 2.8: Table example output applying Central Place Theory coditions

this algorith in fact, Dijkstra 1.3.2, has a O(e ∗ lg(e)) complexity, where e is the

number of edges in the graph. So the complexity depends on the number of edges,

48339, that bring about a total computational time of circa 20 hours.

2.3.2 Service level clustering

In this section the output of previous algorithm is given as input to a hierachical clus-

tering algorithm to discover any similarity between towns according to their service

level. The average linkage algorithm 1.4.2 suits our problem well. A useful method

to acquire knowledge about the best number of clusters is the Calinski and Harabasz

method 1.4.2. The resulting number is seven, so the dendogram obtained by the

average linkage algorithm is cut where the groups are equal to such number. In figure

2.3.2 left we can discern the number of elements, the mean and deviation standard

of variables in each cluster; in figure 2.3.2 right we see the distribution of towns in a

thematic map of Germany corresponding to cluster affiliation.

Evaluation

On closer inspection of figure 2.3.2 left we realize that cluster seven is strongly served

especially by big towns. Its mean values for Landstadt (5.0), Provinzstadt (22.0),

Gaustadt (42.8) and Bezirkstadt (21.1) are higher than total mean, respectively (0.4),

(1.8), (1.0) and (7.6). Cluster six is served over total mean by big towns, but in a less

extensive way; we could call it ’cluster substantially served by big towns’. In fact its

mean values are Landstadt (3.8), Provinzstadt (15.2) and Gaustadt (8.5) are higher

than the total mean, respectively (0.4), (1.8), (1.0) and (7.6). This could mean that
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Figure 2.9: Service level clustering analysis

clusters seven and six are quite close from big towns and depend on them a great deal

for service. The colors turquoise and reddish purple in figure 2.3.2 right correspond

to towns belonging to cluster six and seven. In fact this area is called ”Ruhrgebiet”.

It is located in western Germany and it is a densely populated industrial area. The

industry grew historically from mining and steel production during the industrial

Revolution and now districts have grown into a large complex forming an industrial

landscape of unique size, inhabited by some 5.3 million people, the fifth largest urban

area in Europe.

Clusters five and four have higher mean values for emphAmstort being (23.6) and

(19.8) respectively, and emphKreissstadt (39.0), (15.1) than total mean, emphAm-

stort (2.8) and emphKreissstadt (5.3). We could call cluster five ’independent covered

by medium-small towns’ because the towns in this group are quite far from big ones;

cluster four ’independent isolated covered by medium-small towns’ because of its lower

mean values than cluster five.

The remaining three clusters accord generally with the total mean, with some vari-

ation for cluster one that seems to have towns more served by big towns, Provinzstadt

(3.7) and Gaustadt (10.3), and for cluster three that seems to have towns served by

medium-small ones, emphKreissstadt (14.8) and emphBezirkstadt (12.9).These two
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clusters, the blue and red towns in figure 2.3.2 right, below follow the river Rhein,

which also indicates populated area. Water for ancients was synonym of life and

many big towns with old origin are located along the Rhein and its main tributary

Main: Kln, Bonn, Koblenz, Frankfurt, Wiebaden, Mainz, Mannheim, Ludwigshafen,

Karlsruhe. Cluster two is the biggest with 1899 towns and for this reason it is more

difficult to characterize it.
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2.4 Discovering paths

The second main task of spatial data preparation is the discovering of paths and it

will be presented in detail in this chapter.

At the beginning the idea was to discover all frequent patterns of town relation-

ships. Relationships could be for example a small town on a river or in a mountain,

and therefore to make them explicit adding new dimensions to our final data set. It

could be really interesting, but we had to optimize the trade-off between time (oper-

ative and computational) and quality of results. For this reason we decided to carry

on considering only the patterns of paths we are going to describe, we think they can

give the best results for our problem.

The global relationships between towns is relevant, the capturing long distance

traffic and paths of commuters is the implicit aim of this model. If we can discover

long paths we can determine which towns belong to the paths. So we are able to

discover which towns are in path between two other towns. In particular we consider

only the focus towns between two bigger (in term of number of inhabitants) towns.

We are supposing that focus towns could have some common characteristics where

they lie in a path defined by main streets between two bigger towns. It easy to imagine

that the frequency of Federal highway that passes a focus town between two bigger

towns might be higher due to commuters than a Federal highway in a focus town of

comparable size that lies by itself.

That is why the goal of this task is marking such focus towns. The output is a

flag field for each town denoting if the town is a town in a path or not, so 1 or 0. In

the next sections we describe the algorithm and its evaluation.

2.4.1 Algorithm

The graph obtained G(V,E) in 2.3.1, where nodes V are towns and edges E are streets

connection between two towns, is filtered by including only streets that are motorways

(Autobahn) or federal highways (Bundesstrasse). There is an edge between vertices
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u and v of V only if the edge (u, v) is extracted by a street with type 1 or 2. The next

step computes a Depht-first search (DFS, 1.3.2 ) with deep limit 15 for every vertex

u on Graph V where the function inhabitants(u), giving the number of inhabitants

of u, is bigger than 50 thousands. This means it is considering for starting point of

a DFS only towns bigger than focus towns. In fact focus towns have a number of

inhabitants smaller than 50 thousands.

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree

structure, or graph. Intuitively, one begins at the starting node and explores as far as

possible along each branch before backtracking. Beginning from vertex u each time

it explores another vertex x where inhabitants(x) ≥ 50.000 it stores the path from u

to x. The shortest path for that couple u and x is examined: if there are one or more

focus towns in it the algorithm marks them as focus towns in a path. The resulting

output of the algorithm is a value, one or zero, for each focus town denoting if it

lies in a path or not. An example is given in the figure 2.10; the green towns have

more than 50.000, the blues and reds are focus towns, not in a path and in a path

respectively. It means that in the shortest path between green towns there is a focus

town, the one marked in red.

Figure 2.10: Example of focus towns in a shortest path
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computational time

The amount of data is important, the total number of nodes is 12.503, of which 192

have more than 50.000 thousands inhabitants, and the total number of edges is circa

9.000. For each of 192 towns a DSF is computed and the total time needed is about

48 hours in a Intel R© CoreTM2 Duo Processor with 2 GB Ram DDR.

2.4.2 Evaluation

The algorithm discovers 359 focus town in a path, the red towns in figure 2.11. It

captured the western north-south connection along the river Rhein, and also found

many focus towns in the densely populated Ruhrgebiet. There are traces of east-west

connection from Ruhrgebiet over Hannover to Berlin. But connections in eastern

Germany are rare. It captured also focus towns between Dresden, Chemnitz, Zwickau

and Plauen, which are alongside the mountain Erzgebirge. On closer examination we

could say that there are better results when the depth of DFS is shorter, anyway even

longer, until depth 15 we find the results a good approximation.

If the algorithm finds two paths with the same cost, it marks focus towns in a path

all towns in both paths. This is our choice, however in future works the algorithm

could be improved in order that the paths are chosen analyzing other variables which

discriminate the best one. For example the best path between two towns could be

the quicker in term of time.
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Figure 2.11: Output of discovering paths algorithm in a thematic layer

58



2. DATA PREPARATION

2.5 Street network structures model and matching

Urban Geography provides a plentiful literature about the street networks of German

towns. As presented in 1.1 there are different kinds of street networks. The idea is to

examine this evidence to find another dimension of similarity for focus towns. The

final goal is to find clusters of towns with street network similarities, and it is not

difficult to realize that there is dissimilarity between the two towns in figure 2.5.

Figure 2.12: Street network structure examples

Object recognition plays an important role in this chapter. In order to recognize

and identify objects, we must have one or more models of the object, in our case the

street network model, that may appear in the universe it deals with, and we do not

have such models. It is an unsupervised task, which is why we are going to identify

some models through a clustering of the street network. Section 2.2.2 discusses how to

represent a street network. Here we describe the matching process and the discovery

of street network models through a clustering.
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2.5.1 Matching and Clustering Street network representa-

tions

Presently the goal is to compare graphs and find groups with some similarity. The

concept of Matching in section 1.3.3 is fundamental here. Matching means finding

a correspondence between two entities, and it can be done by a relational distance

1.3.3 that can compare two structures determining their relational similarity.

The result of section 2.2.2 is a number of 2482 graphs concerning focus towns. At

this point the vertices of the graph are the intersecting point between streets, and

the edges are streets with category 4 or less. It is not an intuitive solution, someone

could say that could be better to switch the representation of streets in nodes and

of intersecting points in edges. But we do not think so, this representation fits the

relational distance 1.3.3 which needs an attribute for edges, in our case the category

of the street.

Matching with Relational distance

At this step every graph is compare with each other. We will use as an exam-

ple the graphs q and d in Figure 2.5.1, the first having six edges end the second

two. We know that the nodes 1, 2, 3, 4 ∈ q and a, b, c ∈ d have properties de-

fined by function p(node); respectively p(1) = x, p(2) = y, p(1) = z, p(1) = x and

p(a) = x, p(b) = y, p(c) = w. The edges for q and p are respectively < 1, 2 >;<

1, 3 >;< 1, 4 >;< 2, 3 >;< 2, 4 >;< 3, 4 > and < a, b >;< a, c >. A possible

mapping f from A to B is f(1) = a; f(2) = b. For this mapping we have

|(R− (S ◦ f−1)| = |{< 1, 2 >;< 1, 3 >;< 1, 4 >;< 2, 3 >;< 2, 4 >;< 3, 4 > +

− (< a, b >;< a, c > ◦f−1)}|

= |{< 1, 2 >;< 1, 3 >;< 1, 4 >;< 2, 3 >;< 2, 4 >;< 3, 4 > − < 1, 2 >}|

= |{< 1, 3 >;< 1, 4 >;< 2, 3 >;< 2, 4 >;< 3, 4 >}| = 5
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Figure 2.13: Graph q and d for example of relational distance

|(S − (R ◦ f)| = |{< a, b >;< a, c > +

− (< 1, 2 >;< 1, 3 >;< 1, 4 >;< 2, 3 >;< 2, 4 >;< 3, 4 > ◦f)}|

= |{< a, b >;< a, c > − < a, b >}|

= |{< a, c >}| = 1

GD(q, d) =
I − |(R− (S ◦ f−1)|

I
+
L− |(S − (R ◦ f)|

L

=
6− 5

6
+

2− 1

2
= 0.666

The perfect matching results in a score of GD(q, d) = 2. In this case q and d

have the same number x = y of edges, the x edges in d match the y edges in q and

vice-versa. The maximum dissimilarity results in GD(q, d) = 0, when no one edge of

q matches edges in d and vice-versa.

The computational time is about 8 hours and the resulting output is a similarity

matrix n ∗ n, where n = 2482 is the number of focus towns.
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Street network models

Many attemps with different algorithms are made. The tight range of discance values

(0-2) and the big number of observations do not help to find a small number of

groups. Hierarchical algorithms like average linkage and single linkage 1.4.2 could

not compute reasonable results. The final number of groups with such algorithms is

not less than 500, a number too big if we think that it brings about a mean of five

observations per group in a dataset of 2482 observations. Single linkage has better

results because of its kind of reasoning. This clustering results in a number of 312

groups, a better result, but not exciting.

The reduction of groups is an hard task with the similarity matrix of graphs. For

this reason we worked to a less sophisticated way to threat street network information.

This alternative solution consists of ignoring the adjacency between street segments

and to compute only the amount of segments for each category. Each of 2482 rows

will have four columns, one for each street category, containing the amount of street

segment of a certain category. With such dataset the final number of groups is

reasonable. We find it just maximising the similarity within groups and minimizing

the similarity between groups with Calinski-Harabaz method 1.4.2. The best number

results in 12.

Really we do not know at the moment which of two solutions presents better

results because the models have to investigated with future works. Paradoxically

could be that the more sophisticated solution has worse results.
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2.6 Non-spatial data preparation

The synthesis of the geographical information has to be merged with available non

spatial information. But first the non-spatial information needs to be manipulated.

The Data mining technologies have the objective to wring use and meaning out

of data. Technologies themselves are not an answer, they are tools to help find an

answer. Data has equally importance, It has to be readied to find the best answer

to the question asked. In the following two sections we tackle this problem both for

tourist information and for further town information.

2.6.1 Tourist information

The tourist information proves interesting. It could add a meaningful dimension to

our domain. In other words where two towns have the same tourist information

they will be closer in the n-dimensional space and so more similar. Same tourist

information in our case means to have the same number of tourist attractions. For

example a town with seven tourist attractions will be more similar to a town having

five tourist attractions than another having three. The number of points of interest

is 150.000 and the towns are 12.503; the computational time could be rather long.

Selecting only the focus towns and only the tourist information we obtained specific

results in a reasonable time. We have found 233 focus towns with from one to seven

tourist attractions that are merged to the data extracted previously.

It could be strange that there is no field to tell us to which town it belongs, but we

have found it stimulating. Actually we had to use the Oracle Spatial tools to discover

the point of interest affiliations. With a simple SQL query, given the two geometries

(area for town and point or area for points of interest), we can extract if the area of

the town contains the point of interest, touches the point of interest or if they are

disjoint. For example we have a point of interest which identify a central station and

we want to know in which town. The result of the spatial query will attach a GKZ

denoting the town membership to the point of interest.
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2.6.2 Data extraction from varying geographic units

Some further information about towns was available in a old database of 2002. In

this the information of a town is described in seven variables:

• HAUSER(quantitative): number of houses;

• BETRIEBE(quantitative): number of companies;

• ZENTRALITT(qualitative): qualitative value of centrality;

• BODENPREIS STADT(qualitative): ground price of down-town;

• BODENPREIS LAND(qualitative): ground price of country-town;

• MIETPREIS(qualitative): rent price;

Such database did not fit the new one because after 2002 there were 2 town

divisions and 338 town unions. In figure 2.6.2, considering case 1, we can observe an

example of a territorial division. In fact on the left a territorial area is covered by two

towns labeled by GKZ 1, GKZ 2 and on the right the same territorial area is covered

by three towns labeled by GKZ 1, GKZ 2 and GKZ 3. In figure 2.6.2, considering

case 2 instead, we can observe the opposite situation: a town union. A territorial

area is covered by three towns labeled by GKZ 1, GKZ 2, GKZ 3 and on the left the

same territorial area is covered by two towns labeled by GKZ 1 and GKZ 2.

In the following we will explain how we handled both town divisions and unions.

Town divisions

Now assuming to be as in figure 2.6.2 case 1, the variables of territorial entitity

labeled as GKZ 1 on the left have to be transformed into valid variables for GKZ 1

and GKZ 3 on the right. The qualitative variables remain coherent, for instance if

MIETPREIS = 1 in GKZ 1 left, the variables respectively of GKZ 1 and GKZ 3
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Figure 2.14: Town division and union example

right will be MIETPREIS = 1 and MIETPREIS = 1. So for the four qualitative

variables we just copied the corresponding values.

The variable HAUSER is a quantitative variable and the values assumed with

a division are wrong. In fact, if we copy HAUSER = 10.000 of GKZ 1 left into

GKZ 1 and GKZ 3 right, it is absurd that the same territorial area has double

number of houses 10.000 + 10.000. Our approach to tackle this problem has been

to compute a weighted average on the number of inhabitants, the resulting output

is not completely taccurate, but preserves the consistency. Assuming the value of

variable INABITANTS = 30.000 for GKZ 1 left and INABITANTS = 20.000,

INABITANTS = 10.000 for GKZ 1, GKZ 3 right, the two new values of HAUSER

will be 10.000 ∗ 20.000
30.000

= 6.666, 66 and 10.000 ∗ 10.000
30.000

= 3.333, 33. The same weighted

average on the number of inhabitants is computed for the other quantitative variable

BETRIEBE.

Town unions

For town unions as shown in figure 2.6.2 case 2, the variables of territorial entitities

labeled as GKZ 1 and GKZ 2 on the right have to be transformed into valid variables

for GKZ 1 on the left. To compute the quantitative variables an addition is needed,
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for instance if HAUSER = 100 and HAUSER = 150 in GKZ 1 and GKZ 2 right,

the variable of GKZ 1 left will be HAUSER = 100 + 150 = 300. Then this step is

repeated for the other quantitative variable BETRIEBE

Therefore the problem to compute consistent value in this case is actually for qual-

itative variables. There are situations in which two towns that should be merged into

one have different values for a qualitative value, the question is: Which value should I

take? We have chosen to take the highest value for BODENPREIS STADT because

it is relative to the price of the main center in the area. thus if two towns are unified

we will need only the value of the main center and it is more probable the highest one.

For the remaining qualitative variables ZENTRALITÄT, BODENPREIS LAND and

MIETPREIS a weighted average is computed on the number of houses, then the re-

sulting value is approximated. Assuming the value of variables HAUSER = 10.000,

HAUSER = 15.000 and MIETPREIS = 2, MIETPREIS = 3 for GKZ 1, GKZ

3 right, the new value of MIETPREIS will be 2 ∗ 10.000
25.000

= 0, 8 + 3 ∗ 15.000
25.000

= 1, 8,

giving an approximate result of MIETPREIS = 3.
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Chapter 3

CLUSTERING MODEL

The previous chapter deals with data transformations, abstracting more general infor-

mation for spatial data and adapting data set structures for non spatial data. At this

point we obtained more useful data for our purposes, but before starting to build the

clustering model we need to select the variables which explain better the domain and

normalize them by the medium of statistical tools. We obtained 2482 observations

with following variables:

• SERVICE LEVEL(nominal): output of section 2.3 . It assumes values from 1

to 7.

• PATH (nominal): output of section 2.4. It assumes 1 if the town lies in a path

between two bigger towns, 0 otherwise.

• STREET NET (nominal): output of section 2.5. It assumes values from 1 to

312.

• TOURIST (numeric): output of section 2.6. Number of tourist attractions.

• EW (numeric): number of tourist attractions.

• QKM (numeric): town area.
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• HAEUSER 05 (numeric): number of houses.

• BETRIEBE 05 (numeric): number of companies.

• ZENTRALITAET 05 (nominal): it denotes the centrality of the town. It as-

sumes from 1 (minimum) to 4 (maximum).

• BODENPREIS S 05 (nominal): foundation price for houses in the town. From

1 (cheapest price) to 7 (most expensive price).

• BODENPREIS L 05 (nominal): foundation price for houses in the town periph-

ery. From 1 (cheapest price) to 7 (most expensive price).

• MIETPREIS 05 (nominal): rent price for houses. From 1 (cheapest price) to 7

(most expensive price).

In figure 3 for each variable we have the correlation with all the others.

Figure 3.1: Correlation between variables

The curse of dimensionality is the problem caused by the exponential increase in

volume associated with adding extra dimensions to a (mathematical) space. It is a

problem which could obstacle the success of a good model. For this reason we decided

to reduce dimension of our mathematical space dropping the variables BETRIEBE

and HAUSER which have a correlation equal to circa 0.95 with the variable EW.
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The numeric variables have different unit of measurement, therefore a normaliza-

tion to make them homogenous is needed. The remaining variables are 11, of which

3 numeric normalized and 8 nominal.

In the following we give the results of the two clustering algorithms, EM and

K-MEAN.

The Data Mining tool Weka offers an easy way to compute clustering algorithms

for text files containing the data set. For the EM algorithm is sufficient to specify the

variables to be computed. At this point the results of the EM clustering groups the

towns in 13 clusters a thematic layer identifying the cluster memberships is shown in

figure 3

The results of K-means algorithm is shown in figure 3, for the number k of clus-

ters is chosen the best number of clusters (13) found in previous section with EM

algorithm.

3.1 Evaluation

For all clustering algorithms in this thesis we have done a deep analysis and evaluation

of results. The evaluation of the final clustering is not part of our competences.

In fact at the moment we are not able to evaluate such models because we have

not the statistical tools for frequency computations to do it. We showed the best

models according variance infra and inter clusters, but it could be not be best one

for computing of street segment frequencies. For example the measured frequencies

available could not cover all clusters. We remember that we infer a frequency of a

street segment by computing comparable street segments in comparable towns. In

this case the inferred frequencies could not be cover all towns because we have not

at least a measured frequency for each cluster. So a solution could be to change the

input number of clusters to the clustering algorithm.

A complete evaluation could be possible only at the end of frequency map 10-50

project.
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Figure 3.2: Results of the EM algorithm
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Figure 3.3: Results of the K-means algorithm
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Chapter 4

CONCLUSIONS

In all the thesis we described each task in a sequential order, here we invert this order:

we start from the obtained clustering model and we go backwards.

Each of the obtained 13 groups of towns has at least a town with measured fre-

quencies of its street segments, we call it for simplicity measured town. The measured

towns are the basis of the statistical model which infers the frequencies of compa-

rable street segments in comparable towns (in the same cluster). Imagine to focus

our attention to a single cluster. Taking a random street segment x with frequency c

belonging to a measured town, equal frequency c to all comparable street segments in

the cluster are assigned. We think it is a good way to proceed. Anyway we ask why

should we have good results? Or better, why the towns in a certain cluster should

have similar frequencies? The principle base of a clustering algorithm is that the

similarity within a cluster is maximized. The similarity is in term of the values of

the variables forming the data set. It means that the number of tourist attractions

and the value of other non-spatial information should have not a big variance. This

support our hypothesis, for example if the towns have the same number of tourist

attractions, they could attract the same number of tourists and create a certain traffic

on their streets. It is valid for the other variables concerning the spatial information

too. The service level value should be more or less the same, therefore it could mean

for example that the tows in such cluster could be most ”isolated towns”, theoreti-
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cally with low frequencies. The street network structures should match each other,

they should have similar street pattern, radial for example. They should have most

the same path value, for example not being in between two big towns, so having lower

frequency. We think that this kind of reasoning support our purposes, in fact the

results has been successfully applied in practice.

The SCOT’s core is the spatial data preparation, how we make explicit the spatial

information. There are ready and successful algorithms to threat a spatial clustering

in which the spatial contiguity is a constraint. But they did not fit our problem,

we wanted that two towns in two opposite places in Germany could be grouped in

the same cluster. SCOT in substance deals with the special case of German towns,

but it could be extended to general objects, exploiting the structure of the object

and its relationships with other objects where the contiguity is not fundamental. For

example we want to cluster buildings. After making explicit their structures, shape

and plant, we will discover their relationship with other objects: the building y is

surrounded to all sides by a park. SCOT could be applied to all the cases in which

we need to cluster spatial objects and their structure and their relationships are more

important than the localized place in which they lie.
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[1] Arantza Casillas, Mayte Teresa González de Lena, and Raquel Mart́ınez. Docu-

ment clustering into an unknown number of clusters using a genetic algorithm.

In TSD, pages 43–49, 2003.

[2] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,

August 2005.

[3] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In In Proceedings of

2nd International Conference on Knowledge Discovery and Data Mining, 1996.

[4] A. T. Estivill-Castro, V. Murray. Mining spatial data via clustering. Technical

Report FIT-TR-1997-05, 11, 1997.

[5] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus.

Knowledge discovery in databases: An overview. In Knowledge Discovery in

Databases, pages 1–30. AAAI/MIT Press, 1991.

[6] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of data mining.

MIT Press, Cambridge, MA, USA, 2001.

[7] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1992.

[8] B. Hofmeister. The study of urban form in germany. Urban Morphology, 8:3–12,

2004.

77



Bibliography

[9] J. Han M. Kamber and A. K. H. Tung. Spatial clustering methods in data mining:

A survey in Geographic Data Mining and Knowledge Discovery. New York, 2001.

[10] J. Lafrenz. Bewertungszyklen vorindustriller stadtgestalt im industriezeitalter.

Die alte Stadt, 16:39–57, 1987.

[11] Donato Malerba, Annalisa Appice, Antonio Varlaro, and Antonietta Lanza. Spa-

tial clustering of structured objects. In ILP, pages 227–245, 2005.

[12] Harvey J. Miller and Jiawei Han. Geographic Data Mining and Knowledge Dis-

covery. Taylor & Francis, Inc., Bristol, PA, USA, 2001.

[13] M. Nanni and S. Rinzivillo. State-of-art of spatial and spatio-temporal data

mining. 2005.

[14] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data

mining. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, editors, 20th

International Conference on Very Large Data Bases, September 12–15, 1994,

Santiago, Chile proceedings, pages 144–155, Los Altos, CA 94022, USA, 1994.

Morgan Kaufmann Publishers.

[15] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for

spatial data mining. IEEE Transactions on Knowledge and Data Engineering,

14(5):1003–1016, 2002.

[16] S. Openshaw. Two exploratory space-time-attribute pattern analysers relevant

to gis. In Spatial Analysis and GIS, pages 83–104, 1994.

[17] Friedrich Ratzel. Die geographische Lage der grossen staete. 1903.

[18] A. Rosenfeld. Image analysis and computer vision: 1997. Computer Vision and

Image Understanding, 70(2):239–284, May 1998.

[19] Wikipedia. Central place theory — wikipedia, the free encyclopedia, 2007. [On-

line; accessed 6-luglio-2007].

78



Bibliography

[20] Wikipedia. Computer vision — wikipedia, the free encyclopedia, 2007. [Online;

accessed 10-luglio-2007].

[21] Wikipedia. Depht-first search — wikipedia, the free encyclopedia, 2007. [Online;

accessed 10-luglio-2007].

[22] Wikipedia. Graph labeling— wikipedia, the free encyclopedia, 2007. [Online;

accessed 10-luglio-2007].

[23] Wikipedia. Graph matching — wikipedia, the free encyclopedia, 2007. [Online;

accessed 10-luglio-2007].

[24] Ian H. Witten and Eibe Frank. Data mining: practical machine learning tools

and techniques with Java implementations. ACM Press, New York, NY, USA,

2002.

79


	Contents
	RELATED WORK
	Urban Geography
	Main Studies
	Central Place Theory

	Computer Vision
	Two-dimensional Object Representation

	Graph Theory
	Graph definitions
	Paths
	Graph matching

	Data Mining and Knowledge Discovery
	Partitioning Clustering
	Agglomerative Hierarchical Clustering


	DATA PREPARATION
	Data sets description
	Data set of streets
	Data set of towns
	Data set of nodes
	Data set of points of interest

	Spatial object representation
	Global representation between towns
	Inner street network representation

	Service Level
	The algorithm for discovering service level
	Service level clustering

	Discovering paths
	Algorithm
	Evaluation

	Street network structures model and matching
	Matching and Clustering Street network representations

	Non-spatial data preparation
	Tourist information
	Data extraction from varying geographic units


	CLUSTERING MODEL
	Evaluation

	CONCLUSIONS
	List of Figures
	List of Tables
	Bibliography

