
UNIVERSITÀ DI PISA

Facoltà di Ingegneria
Laurea Specialistica in Ingegneria dell’Automazione

Tesi di laurea

Distributed Intrusion Detection for
Secure Consensus Computations

Candidato:

Fabio Pasqualetti

Relatori:

Antonio Bicchi

Francesco Bullo

Sessione di Laurea del 10/07/2007
Archivio tesi di Laurea Specialistica in Ingegneria dell’Automazione etd-06142007-103838

Anno accademico 2006/2007
Consultazione consentita

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14693798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This work focuses on trustworthy computation systems and proposes a novel intrusion
detection scheme for consensus networks with misbehaving nodes. This prototypical control
problem is relevant in network security applications. The objective is for each node to
detect and isolate the misbehaving nodes using only the information flow adopted by
standard consensus protocols. We focus mainly on the single misbehaving node problem.
Our technical approach is based on the theory of Unknown Input Observability. First, we
give necessary and sufficient conditions for the misbehavior to be observable and for the
identity of the faulty node to be detectable. Second, we design a distributed unknown input
estimator, and we characterize its convergence rate in the “equal-neighbor” model and in
the general case. Third and finally, we propose a complete detection and isolation scheme
and provide some remarks on the filter convergence time. We also analyze the multiple
misbehaving nodes problem, and we propose an algorithm to deal with it. We conclude
the document with the numerical study of a consensus problem, of a robot deployment
problem, and of an averaging problem.

4

Sommario

Data una rete di agenti autonomi, si propone un nuovo sistema di monitoraggio per
garantire l’efficacia degli algoritmi di consenso in presenza di nodi non cooperanti. Questo
problema di controllo è rilevante per migliorare la sicurezza nei sistemi multi agente.
L’obiettivo è di permettere ad ogni agente di rilevare, identificare e (possibilmente) isolare
gli agenti intrusi dalla rete, facendo uso soltanto delle informazioni previste dall’algoritmo
di controllo. Questo documento tratta in dettaglio il caso in cui è presente un solo agente
intruso nella rete, e alla fine viene proposto un algoritmo adatto al caso generale, in cui
vi sono più intrusi. Il metodo sviluppato si basa sul concetto di osservabilità di un sis-
tema lineare in presenza di un ingresso non noto (Unknown Input Observability). Dopo
aver descritto le condizioni necessarie e sufficienti per rilevare il malfunzionamento nella
rete, viene sintetizzato uno stimatore decentralizzato che permette di identificare l’identità
del nodo intruso. Viene inoltre caratterizzata la velocità di convergenza del filtro per un
particolare modello di rete (“equal-neighbor”) e nel caso generale. Infine viene descritta
una procedura distribuita per la risoluzione del problema di Intrusion Detection, e vengono
proposti alcuni esempi numerici.

6

Contents

1 Introduction 11

2 Basic Notions 15
2.1 Preliminary Concepts and Notation . 15
2.2 An introduction to Markov Chains . 16

2.2.1 Absorbing Markov Chains . 22
2.3 Asymptotic (Average) Consensus . 23

2.3.1 Convergence Rate and Convergence Time 25

3 Unknown Input Observability: The Geometric Approach 27
3.1 Geometric Tools . 27
3.2 Unknown Input Observation of a Linear Function of the State 30

4 Single Intruder Detection and Isolation 33
4.1 Solvability Conditions . 33
4.2 Convergence Rate Analysis . 36

4.2.1 Equal - Neighbor Case . 36
4.2.2 Upper Bound for Weighted Digraph 39

4.3 Intrusion Detection Procedure . 40
4.3.1 Analysis of the Iteration Error . 40
4.3.2 Intrusion Detection Algorithm . 41

5 Multi Intruders Detection and Isolation 43
5.1 An Exact Solution . 44

5.1.1 Absorbtion Probability and Iteration Error 45
5.1.2 Constant Unknown Inputs . 47

5.2 Distributed Robust Averaging Algorithm 47
5.2.1 Reduced Unknown Input Filter . 50
5.2.2 Intrusion Detection and Filter Initialization 51
5.2.3 Convergence Time . 52

6 Applications 53
6.1 Agreement Evaluation . 53

8 CONTENTS

6.1.1 Numerical Example . 53
6.2 Linear Deployment . 55

6.2.1 Numerical Example . 58
6.3 Maximum Likelihood Estimation . 59

6.3.1 Numerical Example . 62

7 Conclusions 67

Bibliography 69

List of Figures

3.1 Internal and external stability of an invariant subspace. 29

5.1 Consensus network. 44
5.2 Iteration error. 44
5.3 Filter weights. 50
5.4 Filter initialization. 51
5.5 Error propagation: error detected by node 5 (right), and by node 6 (left). . 51

6.1 Consensus network. 55
6.2 Identification of the misbehaving node. 55
6.3 Modified consensus network. 56
6.4 Deployment initialization . 57
6.5 Identification of the misbehaving node. 59
6.6 A sensor network with 12 nodes (blue) and 4 intruders (red) 62
6.7 Network assembly (1) . 63
6.8 Network assembly (2) . 64
6.9 Network assembly (3) . 64
6.10 Network assembly (4) . 65

Chapter 1

Introduction

In recent years, mobile ad-hoc networks have received much attention due to their
potential applications and the proliferation of mobile devices. Specifically, mobile ad-hoc
networks refer to wireless multi-hop networks formed by a set of mobile nodes without
relying on a preexisting infrastructure. The problem of controlling a system comprising a
large number of autonomous agents has attracted substantial attention, and has lead to
the development of several distributed algorithms to solve tasks as varied as parameter
estimation, average consensus, rendezvous, sensor coverage and simultaneous localization
and mapping ([14]). The term distributed covers a large variety of concurrent algorithms
used for a wide range of applications. Originally, this term was used to refer to algorithms
that were designed to run on many processors “distributed” over a large geographical area,
but over the years, the usage of this term has been broadened, so that it now includes also
algorithms that run on autonomous agents networks.

The distributed consensus problem has historically appeared in many diverse areas,
such as parallel computation [31],[4], control theory [16],[27], and communication networks
[27]. Recently, the problem has attracted significant attention [29],[1], motivated by new
contexts and open problems in communications, sensor networks, and networked control
theory. We briefly describe some more of the more recent applications.

Reputation management in ad hoc networks: It is often the case that the nodes
of a wireless multi-hop network are not controlled by a single authority or do not have a
common objective. Selfish behavior among nodes (e.g., refusing to forward traffic meant
for others) is possible, and some mechanism is needed to enforce cooperation. One way to
detect selfish behavior is reputation management: each node forms an opinion by observing
the behavior of its neighbors. One is then faced with the problem of combining these
different opinions into a single globally available reputation measure for each node. The
use of distributed consensus algorithms for doing this was explored in [21], where a variation
of one of the methods we examine here - the ”agreement algorithm” - was used as a basis
for an empirical investigation.

Sensor networks: A sensor network designed for detection or estimation needs to
combine various measurements into a decision or into a single estimate. Distributed com-
putation of this decision/estimate has the advantage of being fault-tolerant (network op-

12 Introduction

eration is not dependent a small set of nodes) and self-organizing (network functionality
does not require constant supervision) [32, 2, 3, 12].

Control of autonomous agents: It is often necessary to coordinate collections of
autonomous agents (e.g., cars or UAVs). For example, one may wish for the agents to
agree on a direction or speed. Even though the data related to the decision may be
distributed through the network, it is usually desirable that the final decision depend on
all the known data, even though most of them are unavailable at each node. A model
motivated by such a context was empirically investigated in [33].

Algorithms that solve the distributed consensus problem provide the means by which
networks of agents can be coordinated. Although each agent may have access to different
local information, the agents can agree on a decision (e.g., on a common direction of motion,
on the time to execute a move, etc.). Such synchronized behavior has often been observed
in biological systems [11].

For a detailed description and formulation of the distributed consensus problem we
refer to [2]. Given a set N = {1, 2, . . . , n} of agents embedded, at each time t, in a directed
graph G = (N, E), where E represents the edge set and t lies in some discrete set of times.
Each agent i starts with a scalar value xi(0); the vector with the values of all agents at
time t will be denoted by x(l) = (x1(l), . . . , xn(l)). The agreement algorithm updates x(l)
according to the equation x(l + 1) = F (l)x(l), or

xi(l + 1) =
n∑

j=1

fij(l)xj(l), (1.1)

where F (l) is a nonnegative matrix with entries fij(l). The row-sums of F (l) are equal to
1, so that F (l) is a stochastic matrix. In particular, xi(l + 1) is the weighted average of
the values xj(l) held by the agents at time t. If there is a positive constant α such that

1. fii(l) ≥ α, for all i, t;

2. fij(l) ∈ {0} ∪ [α, 1], for all i, j, t;

3.
∑n

j=1 fij(l) = 1, for all i, t;

and if, following an arbitrary time t, for any i, j, there is a sequence of communications
trough which node i will influence (directly or indirectly) the value held by node j, then
the agreement algorithm guarantees asymptotic consensus, that is, there exists some c
(depending on x(0) and on the sequence of graphs G(.)) such that liml→∞ xi(l) = c, for all
i.

The iteration x := Fx that solves the consensus problem can be used in a simple
manner to provide a solution to the average consensus problem as well. The (distributed)
average consensus problem is to compute the average (1/n)

∑n
i=1 xi(0) at every node, via

local communication and computation on the graph, as in the agreement algorithm [17].
With the time-invariant agreement algorithm x(l + 1) = Fx(l), we have

lim
l→∞

xi(l) =
n∑

i=1

πixi(0), ∀i, (1.2)

13

where π is the steady-state probability vector of the Markov chain associated with the
stochastic matrix F . It follows that we obtain a solution to the averaging problem if and
only if πi = 1/n for every i. Since π is a left eigenvector of F , with eigenvalue equal to
1, this requirement translates to the property 1T F = 1T , where 1 is the vector with all
components equal to 1. Equivalently, the matrix F needs to be doubly stochastic. An
elegant solution to the problem is given by the Metropolis rule [18], while a new method
based on the execution of two agreement algorithm is proposed in [2].

For any such algorithm to be practical, the nodes are assumed to cooperate and to
follow exactly the control protocol, otherwise the task is not guaranteed to be fulfilled. It
is of increasing importance to design distributed systems capable of performing trustworthy
computations in the face of failures and intrusions.

In the literature we can find several results, mostly based on reputation systems, that
deal with cooperation issues among nodes of an ad-hoc network. The reputation, as defined
in [26], is an index for the reliability of a node in the network, i.e., for the contribution
to common network operations, and it is used to exclude uncooperative and misbehaving
nodes from the network. Intentional non-cooperation is mainly caused by two types of
nodes: selfish ones, that want to save power, and malicious nodes, that are not primarily
concerned with power saving but that are interested in attacking the network [5]. In [6],
[7], [8], [9], authors develop security systems, where trust relationship and routing decision
are based on routing and forwarding behavior of the nodes.

In the fault detection and isolation literature, we find several strategies to construct
model-based fault detection systems [13]. One of them is the observer-based technique,
whose main idea is to make the decision on possible faults in the process on the basis of
the residuals generated by estimating the outputs of the process. The detection system
should be immune to faults, such that the differences between the outputs of the process
and those of the observer give information about faults in the system.

In [12], a distributed consensus algorithm is implemented by a sensors network to design
a distributed fault diagnosis procedure for dynamic system, but the fault diagnosis of the
consensus protocol is not considered.

In the agreement algorithms we are considering, agents use the information coming
from the neighbors to update their state. Since there are no forwarded messages, reputa-
tion systems are not applicable, unless we add a communication structure to the control
mechanism. Consider for instance the prototypical problem of uniform deployment on a
segment [24]. A malicious agent moving towards an extreme of the segment would push all
agents on that side to the extreme point, without them being able to detect the misbehavior
from the information they possess (i.e., the distance from their immediate neighbors).

The main contributions of this work are as follows. We apply a technique based on
unknown-input observers to the problem of intrusion detection for a linear averaging al-
gorithm. We give conditions for the solvability of the problem in relation to the topology
of the network, and we prove that if the network is 2-connected, then a faulty node can
be detected, identified and finally isolated from the network, to preserve the functionality
of the algorithm. We design an embedded filter, which, only considering the information
coming from the neighbors, asymptotically estimates the state of the other nodes of the

14 Introduction

network, and we analyze the properties of the estimation error, which is strictly related to
the fault induced in the system. The estimation rate of the filter is also considered, and
we prove that, in the “equal-neighbor” model, as the number of agents grows, the largest
eigenvalue of the observer has the same upper bound of the second largest eigenvalue of the
iteration matrix of the algorithm, which determines the convergence rate of the protocol.
We also compute an estimation of the convergence rate of the filter in a more general case,
i.e., when the associated graph is weighted and directed.

We also address the Intrusion Detection problem in the case of many faulty proces-
sors. It is shown that the solution proposed in the single intruder case is not usable, and
an algorithm to assemble a secure network for the asymptotic agreement computation is
proposed. The algorithm can be used, by properly choosing the weight matrix, to perform
the distributed Maximum Likelihood estimation as described in [19].

Chapter 2

Basic Notions

2.1 Preliminary Concepts and Notation

A directed graph, in short a digraph, of order n is a pair G = (V, E) where V =
{v1, . . . , vn} is a set with n elements called vertices or nodes, and E is a set of ordered pair
of vertices called edges, i.e., E ⊆ V × V . We call V and E the vertex set and the edge
set respectively, and we let V (G) and E(G) denote the vertices and the edges of a graph
G. For u, v ∈ V , the ordered pair (u, v) denotes an edge from u to v. A digraph is called
undirected if (u, v) ∈ E anytime (v, u) ∈ E.

A weighted digraph is a triplet G = (V, E, A) where V and E are a digraph and where
A is an n × n A weighted adjacency matrix whose entries aij correspond to the cost of
the edge from i to j, i.e., aij > 0 only if (i, j) ∈ E. A weighted digraph is undirected if
aij = aji. A digraph G = (V, E) can be thought of as a weighted digraph by defining the
weighted adjacency matrix A as

aij =

{
1, if (vi, vj) ∈ E
0, otherwise.

(2.1)

Clearly G is undirected if and only if A is symmetric.
In a weighted digraph G = (V, E, A) with V = {v1, . . . , vn} the weighted out degree and

the weighted in degree of vertex vi are defined by

dout(vi) = Σn
j=1aij, and din(vi) = Σn

j=1aji. (2.2)

The weighted out-degree matrix Dout(G) and weighted in-degree matrix Din(G) are the
diagonal matrices defined by (Dout(G))ii = dout(vi) and (Din(G))ii = din(vi). The graph
Laplacian of the weighted digraph G is

L(G) = Dout(G)− A(G). (2.3)

Immediate consequences of these definitions include L(G)1n = 0n, and the weighted di-
graph is undirected if and only if L(G) is symmetric.

16 Basic Notions

A path in a digraph is a sequence of vertices such that from each of its vertices there is
an edge to the next vertex in the sequence.

A digraph is called strongly connected if for every pair of vertices (vi, vj) ∈ V there is
a path from vi to vj.

Let T ∈ Z≥0, a digraph is called T − connected if and only if it contains T internally
disjoint paths between any two vertices.

2.2 An introduction to Markov Chains

A Markov chain is a sequence of random variables X1, X2, X3, . . ., taking values in
{S1, . . . , Sn}, that satisfies the Markov property, i.e.,

Pr(Xt+1 = Sj | Xt = Sit , Xt−1 = Sit−1 , . . . , X0 = Si0) = Pr(Xt+1 = Sj | Xt = Sit). (2.4)

The Markov property asserts that the process is memoryless in the sense that the state of
the chain at the next time period depends only on the current state and not on the past
history of the chain.

Let the value pij = Pr(Xt = Sj | Xt−1 = Si) be the probability of being in the state Sj

at time t given that the chain is in state Si at time t− 1, so pij(t) is called the transition
probability of moving from Si to Sj at time t. The matrix of transition probabilities
Pn×n(t) = [pij(t)] is clearly a nonnegative row stochastic matrix. When the transition
probabilities do not vary with time, the chain is said to be stationary, and the transition
matrix is the constant stochastic matrix P = [pij]. Conversely, every stochastic matrix
Pn×n defines a n − state Markov chain because the entries pij define a set of transition
probabilities, which can be interpreted as a stationary Markov chain on n states.

A probability distribution vector is defined to be a nonnegative vector pT = [p1, p2, . . . , pn]
such that

∑
k pk = 1. For an n− state Markov chain, the kth step probability distribution

vector is defined to be

pT = [p1(k), p2(k), . . . , pn(k)], k = 1, 2, . . . , where pj(k) = Pr(Xk = Sj). (2.5)

In other words, pj(k) is the probability of being in the jth state after the kth step, but
before the (k + 1)th step.

The kth step distribution is easily described by using the laws of elementary probability
− in particular, recall that P (E∨F) = P (E)+P (F) when E and F are mutually exclusive
events, and the conditional probability of E occurring given that F occurs is P (E | F) =
P (E ∧F)/P (F) (its convenient to use ∧ and ∨ to denote AND and OR, respectively). To

2.2 An introduction to Markov Chains 17

determine the jth component pj(1) in pT (1) for a given pT (0), write

pj(1) = Pr(X1 = Sj) = Pr
[
X1 = Sj ∧

(
X0 = S1 ∨X0 = S2 ∨ · · · ∨X0 = Sn

)]
(2.6)

= Pr [(X1 = Sj ∧X0 = S1) ∨ (X1 = Sj ∧X0 = S2) ∨ · · · ∨ (X1 = Sj ∧X0 = Sn)]
(2.7)

=
n∑

i=1

Pr [X1 = Sj ∧X0 = Si] =
n∑

i=1

Pr[X0 = Si]Pr[X1 = Sj | X0 = Si] (2.8)

=
n∑

i=1

pi(0)pij for j = 1, 1, . . . , n. (2.9)

Consequently, pT (1) = pT (0)P . This tells us what to expect after one step when we start
with pT (0). But the no memory Markov property tells us that the state of affairs at the
end of two steps is determined by where we are at the end of the first step - it is like
starting over but with pT (1) as the initial distribution. In other words, it follows that
pT (2) = pT (1)P , and pT (3) = pT (2)P , etc. Therefore, successive substitution yields

pT (k) = pT (k − 1)P = pT (k − 2)P 2 = = pT (0)P k, (2.10)

and thus the kth step distribution is determined from the initial distribution and the tran-
sition matrix by the vector - matrix product

pT (k) = pT (0)P k. (2.11)

Notice that if we adopt the notation P k = [p
(k)
ij] , and if we set pT (0) = eT

i = 1 in the

equation above, then we get pj(k) = p
(k)
ij for each i = 1, 2, . . . , n, and thus we arrive at the

following conclusion.

• The (i, j)−entry in P k represents the probability of moving from Si to Sj in exactly
k steps. For this reason, P k is often called the k−step transition matrix.

Since P is a probability transition matrix, its entries are nonnegative. An important
result in the theory of nonnegative matrices is the Perron-Frobenius Theorem, as follows:

Theorem 2.2.1 (Perron-Frobenius). If An×n ≥ 0 is irreducible, then each of the following
is true.

• r = ρ(A) > 0.

• ρ(A) is an eigenvalue of A

• There exists an eigenvector x > 0 such that Ax = rx

• The unique vector defined by

Ap = rp, p > 0, and ‖p‖1 = 1, (2.12)

is called the Perron vector. There are no nonnegative eigenvectors for A except for
positive multiples of p, regardless of the eigenvalue.

18 Basic Notions

Recall that a nonnegative irreducible matrix A having only one eigenvalue, r = ρ(A),
on its spectral circle is said to be a primitive matrix, and that for a primitive matrix A
yields

lim
k→∞

(
A

r

)k

=
pqT

qT p
> 0, (2.13)

where p and q are the respective Perron vectors for A and AT .
We are now ready to analyze the limiting properties of certain Markov chains. In case

the matrix P is primitive, i.e., irreducible, we know exactly what limk→∞ P k looks like.
The Perron vector for P is e/n (the uniform distribution vector), so if π = [π1, π2, . . . , πn]T

is the Perron vector for P T , then

lim
k→∞

P k =
(e/n)πT

πT (e/n)
=

eπT

πT e
=


π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn

 > 0, (2.14)

because πT e = 1. Therefore, if P is primitive, then a limiting probability distribution
exists, and it is given by

limk→∞pT (k) = limk→∞pT (0)P k = pT (0)eπT = πT . (2.15)

Notice that because
∑

k pk(0) = 1, the term P T (0)e drops away, so we have the conclusion
that the value of the limit is independent of the value of the initial distribution pT (0).

In the case the matrix P is imprimitive, i.e., P is irreducible and has h > 1 eigenvalues
on the unit spectral circle, the limit limk→∞ P k does not exist, and hence limk→∞ pT (k)
cannot exist [25]. However, each eigenvalue on the unit circle is simple, and this means
that P is Cesàro summable. Moreover, e/n is the Perron vector for P , and, if πT =
(π1, π2, . . . , πn) is the left-hand Perron vector, then

lim
k→∞

I + P + · · ·+ P k−1

k
=

(e/n)πT

πT (e/n)
= eπT =


π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn

 , (2.16)

which is exactly the same form as the limit for the primitive case. Consequently, the kth

step distributions have a Cesàro limit given by

lim
k→∞

[
pT (0) + pT (1 + · · ·+ pT (k − 1))

k

]
= lim

k→∞
pT (0)

[
I + P + · · ·+ P k−1

k

]
(2.17)

= pT (0)eπT = πT , (2.18)

and, just as in the primitive case, this Cesàro limit is independent of the initial distribution.
We can summarize the properties of irreducible Markov chains as follows:

2.2 An introduction to Markov Chains 19

Remark 1. Let P be the transition probability matrix for an irreducible Markov chain on
states S1, S2, . . . , Sn (i.e., P is an n × n irreducible stochastic matrix), and let πT denote
the left-hand Perron vector for P . The following statements are true for every initial
distribution pT (0).

• The kth step transition matrix is P k because the (i, j) -entry in P k is the probability
of moving from Si to Sj in exactly k steps.

• The kth step distribution vector is given by pT (k) = pT (0)P k.

• If P is primitive, and if e denotes the column of all 1s, then

lim
k→∞

P k = eπT and lim
k→∞

pT (k) = πT . (2.19)

• If P is imprimitive, then

lim
k→∞

I + P + · · ·+ P k−1

k
= eπT (2.20)

and

lim
k→∞

[
pT (0) + pT (1 + · · ·+ pT (k − 1))

k

]
= πT . (2.21)

• πT is often called the stationary distribution vector for the chain because it is the
unique distribution vector satisfying πT P = πT .

Because the PerronFrobenius theorem is not directly applicable to reducible chains
(chains for which P is a reducible matrix), the strategy for analyzing reducible chains is
to deflate the situation, as much as possible, back to the irreducible case as described
below. If P is reducible, then, by definition, there exists a permutation matrix Q and

square matrices X and Z such that QT PQ =

[
X Y
0 Z

]
. For convenience, denote this by

writing P ∼
[

X Y
0 Z

]
. If X or Z is reducible, then another symmetric permutation can

be performed to produce[
X Y
0 Z

]
∼

 R S T
0 U V
0 0 W

 , where R,U, W are square. (2.22)

Repeating the process eventually yields

P ∼


X11 X12 · · · X1k

0 X22 · · · X2k
...

. . .
...

0 0 · · · Xkk

 , where each Xii is irreducible or Xii = [0]1×1. (2.23)

20 Basic Notions

Finally, if there exist rows having nonzero entries only in diagonal blocks, then symmetri-
cally permute all such rows to the bottom to produce

P ∼



P11 P12 · · · P1r P1,r+1 P1,r+2 · · · P1m

0 P22 · · · P2r P2,r+1 P2,r+2 · · · P2m
...

. . .
...

...
... · · · ...

0 0 · · · Prr Pr,r+1 Pr,r+2 · · · Prm

0 0 · · · 0 Pr+1,r+1 0 · · · 0
0 0 · · · 0 0 Pr+2,r+2 · · · 0
...

... · · · ...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Pmm


(2.24)

where each P11, . . . , Prr is either irreducible or [0]1×1, and Pr+1,r+1, . . . , Pmm are irreducible
(they cant be zero because each has row sums equal to 1). The effect of a symmetric
permutation is simply to reorder the states in the chain. When the states of a chain have
been reordered so that P assumes the form above, we say that P is in the canonical form
for reducible matrices. When P is in canonical form, the subset of states corresponding
to Pkk for 1 ≤ k ≤ r is called the kth transient class (because once left, a transient class
cant be reentered), and the subset of states corresponding to Pr+j,r+j for j ≥ 1 is called
the jth ergodic class. Each ergodic class is an irreducible Markov chain unto itself that is
imbedded in the larger reducible chain. From now on, we will assume that the states in
our reducible chains have been ordered so that P is in canonical form.

Suppose now that P =

[
T11 T12

0 T22

]
is a reducible stochastic matrix that is in the

canonical form, where

T11 =

 P11 · · · P1r

. . .
...

Prr

 , T12 =

 P1,r+1 · · · P1m
...

...
Pr,r+1 · · · Prm

 (2.25)

and

T22 =

 Pr+1,r+1

. . .

Pmm

 (2.26)

Observe that

ρ(Pkk) < 1 for each k = 1, 2, . . . , r. (2.27)

This is certainly true when Pkk = [0]1×1, so suppose that Pkk (1 ≤ k ≤ r) is irreducible.
Because there must be blocks Pkj, j 6= k, that have nonzero entries (otherwise Pkk would
be an ergodic class), it follows that

Pkke < e where e is the column of all 1’s. (2.28)

2.2 An introduction to Markov Chains 21

If ρ(Pkk) = 1, then, for the Perron-Frobenius Theorem, would be Pkke = e, which is
impossible, and thus ρ(Pkk) < 1. It follows that ρ(T11) < 1, and hence [25]

lim
k→∞

I + T11 + · · ·+ T k−1
11

k
= lim

k→∞
T k

11 = 0. (2.29)

Furthermore, Pr+1,r+1, . . . , Pmm are each irreducible stochastic matrices, so if πT
j is the

left-hand Perron vector for Pjj, r + 1 ≤ j ≤ m, then our previous results tell us that

lim
k→∞

I + T22 + · · ·+ T k−1
22

k
=

 eπT
r+1

. . .

eπT
m

 = E. (2.30)

Furthermore, limk→∞ T k
22 exists if and only if Pr+1,r+1, . . . , Pmm are each primitive, in which

case limk→∞ T k
22 = E. Therefore, the limits, be they Cesàro or ordinary (if it exists), all

have the form

lim
k→∞

I + P + · · ·+ P k−1

k
= G =

[
0 Z
0 E

]
= lim

k→∞
P k when it exists. (2.31)

To determine the precise nature of Z, use the fact that Im(G) = Ker(I −P) (because G is
the projector onto Ker(I − P) along Im(I − P)) to write

(I − P)G = 0 ⇒
[

I − T11 −T12

0 I − T22

] [
0 Z
0 E

]
= 0 ⇒ (I − T11)Z = T12E. (2.32)

Since I − T11 is nonsingular (because ρ(T11) < 1), it follows that

Z = (I − T11)
−1T12E. (2.33)

Remark 2. If the states in a reducible Markov chain have been ordered to make the tran-
sition matrix assume the canonical form

P =

[
T11 T12

0 T22

]
, (2.34)

and if πT
j is the left-hand Perron vector for Pjj (r + 1 ≤ j ≤ m), then (I − T11) is

nonsingular, and

lim
k→∞

I + P + · · ·+ P k−1

k
=

[
0 (I − T11)

−1T12E
0 E

]
, (2.35)

where

E =

 eπT
r+1

. . .

eπT
m

 . (2.36)

Furthermore, limk→∞ P k exists if and only if the stochastic matrices of the ergodic classes
are primitive, in which case

lim
k→∞

P k =

[
0 (I − T11)

−1T12E
0 E

]
. (2.37)

22 Basic Notions

2.2.1 Absorbing Markov Chains

The preceding analysis shows that every reducible chain eventually gets absorbed
(trapped) into one of the ergodic classes, i.e., into a subchain defined by Pr+j,r+j for some
j ≥ 1. If Pr+j,r+j is primitive, then the chain settles down to a steady-state defined by
the left-hand Perron vector of Pr+j,r+j, but if Pr+j,r+j is imprimitive, then the process will
oscillate in the jth ergodic class forever. There is not much more that can be said about
the limit, but there are still important questions concerning which ergodic class the chain
will end up in and how long it takes to get there. This time the answer depends on where
the chain startsi.e., on the initial distribution.

For convenience, let Γi denote the ith transient class, and let Λj be the jth ergodic class.
Suppose that the chain starts in a particular transient state, say we start in the pth state
of Γi. Since the question at hand concerns only which ergodic class is hit but not what
happens after it is entered, we might as well convert every state in each ergodic class into
a trap by setting Pr+j,r+j = I for each j ≥ 1. The transition matrix for this modified chain

is P̃ =

[
T11 T12

0 I

]
, and we know that limk→∞ P̃ k exists and has the form

lim
k→∞

P̃ k =

[
0 (I − T11)

−1T12

0 I

]
=



0 0 · · · 0 L1,1 L1,2 · · · L1,s

0 0 · · · 0 L2,1 L2,2 · · · L2,s
...

. . .
...

...
... · · · ...

0 0 · · · 0 Lr,1 Lr,2 · · · Lr,s

0 0 · · · 0 I 0 · · · 0
0 0 · · · 0 0 I · · · 0
...

... · · · ...
...

...
. . .

...
0 0 · · · 0 0 0 · · · I


. (2.38)

Consequently, the (p, q)-entry in block Lij represents the probability of eventually hitting
the qth state in Λj given that we start from the pth state in Γi. Therefore, if e is the vector
of all 1 s, then the probability of eventually entering somewhere in Γj is given by

• Pr(absorbtion into Λj | start in pth state of Γi)=
∑

k[Lij]pk = [Lije]p.

If pT
i (0) is an initial distribution for starting in the various states of Γi, then

• Pr(absorbtion into Λj | pT
i (0))=pT

i (0)Lije.

Its often the case in practical applications that there is only one transient class, and the
ergodic classes are just single absorbing states (states such that once they are entered, they
are never left). If the single transient class contains r states, and if there are s absorbing

2.3 Asymptotic (Average) Consensus 23

states, then the canonical form for the transition matrix is

P =



p11 p12 · · · p1r p1,r+1 p1,r+2 · · · p1m

0 p22 · · · p2r p2,r+1 p2,r+2 · · · p2m
...

. . .
...

...
... · · · ...

0 0 · · · prr pr,r+1 pr,r+2 · · · prm

0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

... · · · ...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1


and Lij = [(I − T11)

−1T12]ij.

(2.39)

The preceding analysis specializes to say that every absorbing chain must eventually reach
one of its absorbing states. The probability of being absorbed into the jth absorbing state
(which is state Sr+j) given that the chain starts in the ith transient state (which is Si) is

• Pr(absorbtion into Sr+j | start in Si for 1 ≤ i ≤ r)=[(I − T11)
−1T12]ij.

2.3 Asymptotic (Average) Consensus

In this work, we focus on a particular class of iterative algorithms for consensus, widely
used in the applications cited above. Each node updates itself with the weighted sum of
the states of its immediate neighbors:

wi(l + 1) =
∑

j∈Ni(l)

fij(l)wj(l), i = {1, . . . , n}, l ∈ Z≥0. (2.40)

Here, fij(l) is a weight associated with the edge j, i. These weights are algorithm parame-
ters, and can be chosen according to the particular problem to be solved. Setting fij(l) = 0
for j 6∈ Ni(l) and fii(l) = 1−

∑
j∈Ni(l)

fij(l), the iterative method can be expressed as the
simple linear iteration

w(l + 1) = F (l)w(l), l ∈ Z≥0. (2.41)

By construction, the weight matrix F (l) is row stochastic, i.e., satisfies the properties

n∑
j=1

fij(l) = 1 and fij(l) ≥ 0, i, j = {1, . . . , n}. (2.42)

If the weights are assigned such that fij(l) = fji(l), then the weight matrix is symmetric
and the asymptotic value of each node correspond to the average (1/n)

∑n
i=1 wi(0) (Section

2.2).
In the literature there are at least two alternative ways in which consensus algorithms

are introduced. Let G = (V, E, A) be a weighted digraph. Then,

24 Basic Notions

i) a first form of agreement algorithm is given by

w(l + 1) = [I − εL(G)]w(l), l ∈ Z ≥ 0 (2.43)

where L(G) is the weighted Laplacian matrix associated with G. In order for the
matrix [I − εL(G)] to be stochastic, the constant ε must satisfy the bound 0 < ε ≤
mini∈I1/dout(i). We term this type of agreement algorithm Laplacian-based.

ii) a second form of agreement algorithm is given by

w(l + 1) = [In + Dout(G)]−1[In + A(G)]w(l), l ∈ Z ≥ 0 (2.44)

where Dout(G) and A(G) are respectively the out-degree and the adjacency matrices
of G. Observe that the resulting stochastic matrix has always non-zero diagonal
entries. We term this type of agreement algorithm adjacency based.

We next state some conditions under which the agreement algorithm is guaranteed to
converge.

Assumption 1. There exists a positive constant α such that:

1. fii(l) ≥ α, for all i,j,l.

2. fij(l) ∈ {0} ∪ [α, 1],for all i,j,l.

3.
∑n

j=1 fij(l) = 1,for all i,j,l.

Intuitively, whenever fij(l) > 0, node j communicates its current value xj(l) to node i.
Each node i updates its own value, by forming a weighted average of its own value and the
values it has just received from other nodes. We represent the sequence of communications
between nodes by a sequence G(l) = (N, E(l)) of directed graphs, where (j, i) ∈ E(l) if
and only if fij(l) > 0. Note that (i, i) ∈ E(l) for all l. Our next assumption requires
that following an arbitrary time l, and for any i, j, there is a sequence of communications
through which node i will influence (directly or indirectly) the value held by node j, i.e.,
the graph G = (N, E(l)) is strongly connected.

We note various special cases of possible interest.
Time-invariant model : In this model the set of arcs E(l) is the same for all l; further-

more, the matrix F (l) is the same for all l. In this case, we are dealing with the iteration
x := Fx, where F is a stochastic matrix; in particular, x(l) = F lx(0). Under the assump-
tions above, F is the transition probability matrix of an irreducible and aperiodic Markov
chain. Thus, F l converges to a matrix all of whose rows are equal to the (positive) vector
π = (π1, . . . , πn) of steady-state probabilities of the Markov chain. Accordingly, we have
liml→∞ xi(l) =

∑n
i=1 πixi(0).

Bidirectional model : In this case, we have (i, j) ∈ E(l) if and only if (j, i) ∈ E(l), and
we say that the graph G is symmetric. Intuitively, whenever i communicates to j, there is
a simultaneous communication from j to i.

2.3 Asymptotic (Average) Consensus 25

Equal-neighbor model : Here

fij =

{
1/di(l), if j ∈ Ni(l),

0, if j 6∈ Ni(l),
(2.45)

where Ni(l) = {j | (j, i) ∈ E(l)} is the set of nodes j (including i) whose value is taken
into account by i at time l, and di(l) is its cardinality.

Under the assumptions above, the agreement algorithm guarantees asymptotic consen-
sus, that is, there exists some c (depending on x(0) and on the sequence of graphs G(.))
such liml→∞ xi(l) = c, for all i.

Average consensus is an important problem in algorithm design for distributed comput-
ing. Let G = (V, E) be an undirected connected graph with node set V = {v1, . . . , vn} and
edge set E, where each edge (i, j) ∈ E is an ordered pair of distinct nodes. Let wi(0) be a
real scalar assigned to node i at time l = 0. The (distributed) average consensus problem
is to compute the average (1/n)

∑n
i=1 wi(0) at every node, via local communication and

computation on the graph. Thus, node i carries out its update, at each step, based on its
local state and communication with its neighbors Ni = {j|j, i ∈ E}. Distributed average
consensus has been extensively studied in computer science, for example in distributed
agreement and synchronization problems [22]. It is a central topic for load balancing (with
divisible tasks) in parallel computers [10]. More recently, it has also found applications in
distributed coordination of mobile autonomous agents [28], and distributed data fusion in
sensor networks [33]. There are several simple methods for distributed average consensus.
For example, each node can store a table of all initial node values known at that time. At
each step each pair of neighbors exchange tables of initial values (or just the entries the
other node does not have), and update their tables. In this simple flooding algorithm, all
nodes know all initial values in a number of steps equal to the diameter of the graph, at
which point each can compute the average (or any other function of the initial values). In
this work we focus on averaging algorithms that come directly from the agreement algo-
rithms described above, i.e., we modify the iteration matrix F in order to compute the
average of the initial values and not a simple consensus. In Section 6.3 we present three
methods to solve the average consensus problem.

Many variation of the consensus algorithm have been studied. These include for ex-
ample problems where the weights are not symmetric and problems where the final node
value have a specified non-uniform distribution. Convergence conditions have also been
established for distributed consensus on dynamically changing graphs with asynchronous
communication and computation. The problem of the fastest distributed linear averaging
has been studied, in which the weights are chosen to obtain the fastest convergence rate
[32].

2.3.1 Convergence Rate and Convergence Time

An important aspect of agreement algorithms is the convergence time, i.e., the amount
of time the algorithm needs to get arbitrarily close to the asymptotic distribution. Recall

26 Basic Notions

that F is an irreducible stochastic matrix, i.e., 1 > λ2 ≥ λ3, . . . ,≥ λn are its eigenvalues
sorted in order of decreasing magnitude. Let X be the set of vectors of the form c1, i.e.,
with equal components. The convergence rate is defined as

ρ = sup
x(0) 6∈X

lim
l→∞

(
‖x(l)− x∗‖2

‖x(0)− x∗‖2

)1/t

, (2.46)

where x∗ stands for liml→∞ x(l). As is well known, we have ρ = max{|λ2|, |λn|}, and, if
fii > 0, we have ρ = |λ2|. The convergence time is consequently defined by

Tn(ε) = min

{
τ :

‖x(l)− x∗‖∞
‖x(0)− x∗‖∞

≤ ε, ∀t ≥ τ, ∀x(0) 6∈ X

}
. (2.47)

For the equal neighbor, time invariant, bidirectional model, tight bounds on the con-
vergence rate were derived in [20].

Theorem 2.3.1. [20] Consider the equal-neighbor, time invariant, bidirectional model, on
a connected graph with n nodes. The convergence rate satisfies

ρ ≤ 1− γ1n
−3, (2.48)

where γ1 is a constant independent oh n. Moreover there exists some γ2 > 0 such that for
every positive integer n, there exists a n− node connected graph for which

ρ ≤ 1− γ2n
−3. (2.49)

Theorem 2.3.1 is provided in [20] for the case of symmetric graphs without self-arcs. It’s
not hard to check that essentially the same proof goes trough when self-arcs are present,
the only difference being in the value of the constant γ1 and γ2. This is intuitive because
the effect of the self-arcs is essentially a slowing down of the Markov chain by a factor of
at most 2, and therefore the convergence rateshould stay the same.

Using some additional results, Theorem 2.3.1 leads to a tight bound on the convergence
time [2].

Corollary 2.3.1. The convergence time for the equal-neighbor, time invariant, symmetric
model on a connected graph on n nodes, satisfies

Tn(ε) = O(n3log(n/ε)). (2.50)

Furthermore, for every positive integer n, there exists a n−node connected graph for which

Tn(ε) = Ω(n3log(1/ε)). (2.51)

The Ω(n3) convergence time is not particularly attractive. Authors in [2] explores
possible improvements in the convergence time by using different choices for the weight
matrix F . It is shown that the convergence rate can be brought arbitrarily close to zero,
with the drawback of numerical instability.

Chapter 3

Unknown Input Observability: The
Geometric Approach

The essence of the geometric approach consists of developing most of the mathematical
support in coordinate-free form, to take advantage of simpler and more elegant results,
which facilitate insight into the actual meaning of statements and procedures; the compu-
tational aspects are considered independently of the theory and handled by means of the
standard methods of matrix algebra, once a suitable coordinate system is defined. The
cornerstone of the approach is the concept of invariance of a subspace with respect to a
linear transformation. In this chapter the properties and geometric meaning of invariants
are presented and investigated in order to solve the Unknown Input Observation problem
[23].

3.1 Geometric Tools

Consider a linear trasformation A : X → X with X = Rn. Recall that an A-invariant
is a subspace J ⊆ X such that

AJ ⊆ J. (3.1)

Invariant subspaces define the structure of linear transformations, thus playing an impor-
tant role in linear dynamic system analysis. Consider the discrete time system described
by the equations

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

. (3.2)

It may be proved that in the absence of control action (i.e., when function u() is identically
zero) a subspace of the state space X is a locus of trajectories if and only if it is an
A-invariant. The extension of this property to the case in which the control is present
and suitably used to steer the state along a convenient trajectory leads to the concept
of (A,B) − controlled invariant: a subspace V ⊆ X is said to be an (A,B) − controlled
invariant if

AV ⊆ V⊕B with B = Im(B). (3.3)

28 Unknown Input Observability: The Geometric Approach

The dual of the controlled invariant is the conditioned invariant, which is defined as follows:
a subspace S ⊆ X is said to be an (A,C)− conditioned invariant if

A(S ∩C) ⊆ S with C = Ker(C). (3.4)

Note that any A-invariant is also an (A,B) − controlled invariant for any B and an
(A,C)− conditioned invariant for any C: in particular, the origin {∅} and the whole space
X are so. Furthermore, the (A, {∅}) − controlled invariants and (A,X) − conditioned
invariants are, in particular, A-invariants.

Recall that the reachability subspace of (3.2) is the set of all the states that can be
reached from the origin in any finite time by means of control actions, and let < denote
that subspace, then it can be proven that

< = minJ(A,B) B = Im(B), (3.5)

where minJ(A,B) denotes the minimal A-invariant containing B. The dual result concern-
ing observability is geometrically approached in a similar way. Let Q be the unobservability
subspace of (3.2), i.e., the set of all the initial states that cannot be recognized from the
output function, then

Q = maxJ(A,C) C = Ker(C), (3.6)

where maxJ(A,C) denotes the maximal A-invariant contained in C.
Controlled and conditioned invariants are very important in connection with synthesis

problems because of their feedback properties: in fact a controlled invariant can be trans-
formed into a simple invariant by means of a suitable state feedback, just as a conditioned
invariant can be transformed into a simple invariant by means of a suitable output injec-
tion. Formally we say that a subspace S ⊆ X is an (A,C) − conditioned invariant if and
only if there exists at least one matrix G such that (A + GC)S ⊆ S.

Still referring to the system (3.2) when the control input is identically zero, we shall
now introduce the concept of stability of an invariant. We recall that system (3.2) is
(asymptotically) stable if and only if all the eigenvalues of matrix A belong to the unit
circle. By extension, in this case A is said to be a stable matrix. Since an A-invariant
J ⊆ X is a locus of trajectories, stability can be split with respect to J. Consider the
similarity transformation T such that

Ã = T−1AT =

[
Ã11 Ã12

0 Ã22

]
, (3.7)

where Ã11 is an h × h matrix with h = dim(J). Let x = Tz, in the new coordinate we
obtain the system [

z1(t + 1)
z2(t + 1)

]
=

[
Ã11 Ã12

0 Ã22

] [
z1(t)
z2(t)

]
, (3.8)

3.1 Geometric Tools 29

which is equivalent to the original system. Consider an initial state x0 ∈ J, the correspond-
ing transformed state z0 = T−1x0 decomposes into [z01, 0]T . The motion on J is described
by

z1(t + 1) = Ã11z1(t), z1(0) = z01, (3.9)

while z2(t) remains identically zero. Therefore, the motion on J is stable if and only if
submatrix Ã11 is stable. On the other hand, consider an initial state x0 6∈ J, so that

Figure 3.1: Internal and external stability of an invariant subspace.

z02 6= 0; the time evolution of the second component of the transformed state is described
by

z2(t + 1) = Ã22z2(t), z2(0) = z02. (3.10)

This means that the projection of the state along J on any complement of J has a stable
behavior if and only if Ã22 is a stable matrix. In other words, in this case the canonical
projection of the state on the quotient space X/J tends to the origin as t approaches
infinity: this means that the linear variety parallel to J , which contains the state, tends
to coincide with J for t approaching infinity. By definition, an A-invariant J ⊆ X is said
to be internally stable if A|J is stable, externally stable if A|X/J is stable.

The concepts of internal and external stabilizability of A-invariants, introduced refer-
ring to the asymptotic behavior of trajectories of linear free dynamic systems, can be
extended to controlled and conditioned invariants. Clearly, an (A,B) − controlled invari-
ant subspace V is internally stabilizable if, for any x(0) ∈ V, there exists at least one

30 Unknown Input Observability: The Geometric Approach

admissible trajectory of the pair (A, B) belonging to V and converging to the origin. The
external stabilizability of V is guaranteed if for any x(0) ∈ X there exists at least one
trajectory of the pair (A, B) converging to the subspace V. If we find a matrix F which
turns the (A,B) − controlled invariant into an A + BF invariant, then the internal and
external stabilizability are given by the property of the matrix A + BF . In particular, if
and only if there exists a real matrix F such that (A + BF)V ⊆ V, with A + BF stable,
then the controlled invariant V is both internally and externally stabilizable. By duality,
an (A,C) − conditioned invariant S is both internally and externally stabilizable if and
only if there exists at least one real matrix G such that (A + GC)S ⊆ S, with A + GC
stable.

3.2 Unknown Input Observation of a Linear Function

of the State

We consider in this section the problem of asymptotically estimate a linear function of
the state when the system is affected by some unknown inputs. Consider the linear discrete
time system

x(l + 1) = Hx(l) + Bu(l), (3.11)

y(l) = Cx(l), (3.12)

and recall the structure of the Luenberger observer

z(t + 1) = (A + GC)z(t) + Bu(t)−Gy(t). (3.13)

Defining the estimation error as

e(t + 1) = z(t + 1)− x(t + 1), (3.14)

we obtain

e(t + 1) = (A + GC)z(t) + Bu(t)−Gy(t)− Ax(t)−Bu(t) (3.15)

= (A + GC)z(t)−GCx(t)− Ax(t) (3.16)

= (A + GC)e(t). (3.17)

It is clear that, if the matrix (A + GC) is stable, the estimation error converges to zero so
that z(t) → x(t). In the case the input u(t) is unknown, the equation of the observer is

z(t + 1) = (A + GC)z(t)−Gy(t). (3.18)

and the estimation error becomes

e(t + 1) = (A + GC)e(t)−Bu(t), (3.19)

3.2 Unknown Input Observation of a Linear Function of the State 31

which does not converges to zero even if the matrix (A+GC) is stable. Since the estimation
error converges asymptotically to minimal (A + GC)-invariant containing Im(B), i.e., to
the reachable set of (3.19), it is convenient to choose G to make this subspace of minimal
dimension. The best choice corresponds to transforming into an (A + GC)-invariant the
minimal externally stabilizable (A, C)− conditioned invariant containing Im(B). Let S be
the minimal (A+GC)-invariant containing Im(B) and assume that (A+GC) is stable. The
observer provides an asymptotic estimate of the state modulo S or, in more precise terms,
an asymptotic estimate of the state canonical projection on X/S (similarly, the direct use
of output without any dynamic observer would provide knowledge of state modulo C, or its
canonical projection on X/C). This incomplete estimate may be fully satisfactory if, for
instance, it is not necessary to know the whole state, but only a given linear function of it:
in this case the asymptotic estimate of this function is complete if and only if S is contained
in its kernel (in the kernel of the matrix describing the function to be estimated). If the
information about the system that is not reconstruct by the observer is retrieved through
the direct output of the system, i.e., the estimation is obtained combining the output of
the system and those of the observer and the unknown input is directly observable through
the output of the system, then the whole state can be estimated. The following theorem
summarize these considerations.

Theorem 3.2.1 (Unknown Input Observability). [23] Assume that the pair (A, C) is
detectable, the problem of asymptotically estimating the whole state, in the presence of
the unknown input u, has a solution if and only if

• S∗ ∩Ker(C) = ∅;

• S∗ is externally stabilizable.

where where S∗ is the minimal (A, Ker(C))− conditioned invariant containing Im(B).

Chapter 4

Single Intruder Detection and
Isolation

In order to implement an agreement algorithm, it should be ensured that the failure
of one agent to perform its designated duties, or the presence of an intruder among the
nodes, does not block the task completely. Some failure modes have been defined in [14]
as follows:

1. stopping failure: the agent fails simply ceasing to communicate with other agents;

2. constant failure: the agent fails by setting its value to a constant value;

3. function failure: the agents alters the control input generating function setting its
state to an arbitrary value at every time step. If the sequence is chosen maliciously,
then this failure is referred as Byzantine failure.

Let {e1, . . . , en} be the canonical base of Rn, the failure or the misbehavior of a node can
be modeled as an external input, so that the system becomes

w(l + 1) = Fw(l) + eiū(l), l ∈ Z≥0. (4.1)

The index i and the input ū are unknown to every node, if the model describes a fault in
the system, and to every node except i, if agent i is an intruder. Because of the presence
of an exogenous input ū, the network is not able to achieve agreement.

The objective is for each node to detect and isolate the misbehaving nodes using only
the information flow adopted by standard averaging protocols.

4.1 Solvability Conditions

Given a linear averaging algorithm with weight matrix F , we associate the linear dis-
crete time system Σ

w(l + 1) = Fw(l) + eiū(l) (4.2)

yj = Cjw(l), (4.3)

34 Single Intruder Detection and Isolation

and we denote it with Σij = (F, ei, Cj). The matrix Cj denotes the information about
the status of the network available to the agent j, where Cj = [ek1 · · · ekp]

T , k1, . . . , kp ∈
Nj, p ∈ Z≥0.

Recall that a discrete system described by matrices (A, B, C) is unknown input observ-
able (UIO), if it is possible to estimate the whole state in the presence of the unknown
input ū, then

Theorem 4.1.1. (Unknown input observability for averaging systems): Given a linear
averaging algorithm, the system Σij is UIO, for all (i, j) ∈ {1, . . . , n}, if and only if the
associated digraph is strongly connected and i ∈ Nj.

Proof. Since i ∈ Nj, the minimal (F,Cj) − conditioned invariant containing ei coincides
with ei. In fact F (ei ∩Cj) = F (∅) = 0, and hence the first condition of Theorem 3.2.1
is verified. The external stabilizability of S∗ is provided by finding a matrix G such that
(F + GCj)ei ⊆ ei, with (F + GCj) stable. Being i ∈ Nj, we can choose G in order to
nullify the ith column of F , so that

(F + GCj)ei = 0. (4.4)

Because of the connectivity of the associated digraph, F is irreducible, and since F ≥|
F +GCj | , F 6=| F +GCj |, we have ρ(F +GCj) < ρ(F) = 1, so that the matrix (F +GCj)
is stable [15]. Because of the stability of (F + GCj), the pair (F, Cj) is detectable [3].

Suppose now that Σij is UIO, then S∗ ∩Cj = ∅, and ei ⊆ S∗. We deduce ei ⊆ Im(Cj),
and thus i ∈ Nj. Furthermore, if the digraph associated with F is not strongly connected,
then there is at least a node j that does not receive information from a partition of the
network, and that node obviously can not estimate the whole state of the system, even if
the unknown input is constantly zero. We conclude that the digraph associated with F is
strongly connected.

We shall consider now the problem of isolating the misbehaving node, in order to
guarantee that the task is accomplished at least by all working agents of the network.
Once a node has detected an intruder, it simply ceases keeping into consideration the
information coming from that agent, and adjusts the weights of the remaining incoming
messages. The resulting matrix is row stochastic, and thus describes an averaging algorithm
that converges to an agreement configuration, if the associated digraph is connected. Note
that only the neighbors of the faulty node modify the topology of the network, so that no
communication among the agents is needed to detect, identify and isolate the misbehaving
node. The following Theorem formalizes these considerations.

Theorem 4.1.2. (Convergence in 2-connected faulty networks): Let Σij be an UIO system.
If the associated digraph is 2-connected, then there exists M ∈ Rn×n, with entries mrk = 0
if k 6∈ Ni, r ∈ {1, . . . , n}, such that the algorithm

w(l + 1) = (F + M)w(l) + eiū(l) (4.5)

achieves agreement for all wr, r 6= i, and for all possible trajectories ū.

4.1 Solvability Conditions 35

Proof. Choose M such that (F + M)r,i = 0 and (F + M)r,r = Fr,r + Fr,i, if r ∈ Ni \ {i}.
Since (F + M)r,i = 0 for all r 6= i, the unknown input does not affect the variables wr,
r 6= i. Moreover the submatrix obtained deleting the ith row and column from (F + M)
is, by construction, row stochastic and its associated digraph is strongly connected, since
the one associated with F is 2-connected. These conditions are sufficient for achieving
agreement among the variables wr, r 6= i.

The filter can be designed in many ways. We could be interested in minimizing the
convergence rate of the estimation process, by placing the eigenvalues of the filter as close as
possible to the origin. However, given an UIO system Σij, the dimension of the observability
subspace depends on the topology of the network, so that it is not always possible to place
all the eigenvalues of the filter. For this reason, we describe a design that is applicable to
every topology of network, and then we investigate its convergence rate.

Theorem 4.1.3 (Filter design). Let Σij be an UIO system. If a filter is designed as

z(l + 1) = (F + GCj)z(l)−Gyj(l),

w̃(l) = Lz(l) + Kyj(l),

with

G = −FNj
, K = CT

j , L = In −KCj,

being FNj
the columns of F with indexes Nj, then

w̃(l) → w(l), (4.6)

as l → +∞, for all possible input trajectories ū.

Proof. Consider the equation of the estimation error,

r(l + 1) = z(l + 1)− w(l + 1) (4.7)

= (F + GCj)z(l)−Gyj(l)− Fw(l)− eiū(l) (4.8)

= (F + GCj)z(l)−GCjw(l)− Fw(l)− eiū(l) (4.9)

= (F + GCj)r(l)− eiū(l). (4.10)

We choose G = −FNj
, in order to nullify the Nj columns of F . Using the same procedure

as in Theorem 4.1.1, we note that the matrix (F + GCj) is stable, and the reachable set of
r is the minimum (F + GCj) invariant containing ei. Since

(F + GCj)ei = 0, (4.11)

36 Single Intruder Detection and Isolation

the reachable set of the error r is ei. Let K = CT
j , L = In −KCj, and consider the

estimated function w̃:

w̃(l) = Lz(l) + KCjw(l) (4.12)

= L(w(l) + r(l)) + KCjw(l) (4.13)

= (KCj + L)w(l) + Lr(l) = w(l) + Lr(l). (4.14)

Being ei ⊂ Ker(L), the term Lr(l) will converge to zero, so that, as l → +∞,

w̃(l) → w(l). (4.15)

4.2 Convergence Rate Analysis

Given an n×n matrix F describing an agreement algorithm, construct the n×n matrix
F̃ such that F̃r,r = 1, F̃r,k = 0, and F̃ = F in all the other entries, being r ∈ Nj, and
k ∈ {1, . . . , n}. Compute now the matrix F +GCj as described in Theorem 4.1.3, and recall
that its largest eigenvalue is positive and smaller than 1. Let λmax be the largest eigenvalue
of F + GCj, and λ2 = max λ(F̃), where the maximum is taken over all eigenvalues λ of F̃
different than 1. We note that F̃ and F + GCj are block diagonal matrices, so that their
eigenvalues are the union of the eigenvalues of the two blocks. The first block is respectively
the identity and the zero matrix of dimension n0, being n0 the cardinality of the set Nj,
and the other block is in common in the two matrices. We conclude that λmax = λ2. Let

F̃ x2 = λ2x2. (4.16)

Since λmax = λ2 < 1, the Nj components of x2 must be equal to 0, while the other entries
are positive (Perron Frobenius Theorem). The eigenvalue λ2 can be computed as

λ2 = max(〈F̃ x, x〉), (4.17)

subject to 〈x, x〉 =
∑n

k=1 x2
k = 1, and xNj

= 0. We first analyze the convergence rate of
the filter applied to the equal - neighbor consensus problem, and then we present a more
general result valid for any kind of averaging algorithm.

4.2.1 Equal - Neighbor Case

We denote with equal - neighbor consensus algorithm the agreement procedure, when
the graph is un-weighted and un-directed, so that the entry (i, j) of the adjacency matrix
is equal to 1, if there is a directed link from j to i, 0 otherwise. In this case the iteration
matrix F of the consensus algorithm can be expressed as

F = (In + D)−1(In + A), (4.18)

4.2 Convergence Rate Analysis 37

where D, A are, respectively, the out - degree and the adjacency matrices of the graph.
Consequently, all the entries of Fk,j are equal to 1/(dout(k) + 1). The iteration matrix of
the filter is

F + GCj = F − [0 FNj
0], (4.19)

being FNj
the Nj columns of F . The graph associated with (F +GCj) is obtained from the

one associated with F , after deleting the edges from the node Nj to every other node of
the network. A trivial lower bound for λmax is obtained from Perron Frobenius Theorem:

λmax ≥ 1− 1

∆
, (4.20)

where ∆ is the maximum vertex degree, while an upper bound must be investigated with
other techniques, because ‖ F ‖∞=‖ F + GCj ‖∞= 1, for all agreement algorithms of
dimension n > 3.

Theorem 4.2.1 (Convergence rate). Let Gr be the digraph associated with an UIO system
Σij. Let n be the number of vertices, ∆ the maximum out-degree including self-loops, and
d the diameter of the digraph, then

λmax ≤ 1− 1

nd∆
. (4.21)

Proof. Construct F̃ as previously described, we use the methods of [20] to find an upper
bound for λ2(F̃). The problem

λ2 = max(〈F̃ x, x〉), (4.22)

subject to
∑n

k=1 x2
k = 1 and xNj

= 0, can be rewritten as

λ2 = max(〈Ax, x〉), (4.23)

subject to
∑n

k=1 dkx
2
k = 1 and xNj

= 0, being dk the out-degree of vertex k, and A the
adjacency matrix, both including self-loops. Our next step is to rewrite 〈Ax, x〉 in a more
revealing form. By expanding 〈Ax, x〉, we find

〈Ax, x〉 =
n∑

t=1

xt

(∑
k∈Nj

xk

)
=
∑

(t,k)∈E

xtxk, (4.24)

38 Single Intruder Detection and Isolation

where E denotes the set of all the edges of the graph. Moreover, we have∑
(t,k)∈E

xtxk =
1

2

∑
(t,k)∈E

2xtxk (4.25)

=
1

2

∑
(t,k)∈E

x2
t + x2

k − (xt − xk)
2 (4.26)

=
1

2

(
n∑

t=1

2dtx
2
t −

∑
(t,k)∈E

(xt − xk)
2

)
(4.27)

= 1− 1

2

∑
(t,k)∈E

(xt − xk)
2. (4.28)

On combining this with (4.23), we find

λ2 = 1− 1

2
min

∑
(t,k)∈E

(xt − xk)
2, (4.29)

subject to
∑n

k=1 dkx
2
k = 1 and xNj

= 0. Let xm denote the component of x which is largest
in magnitude, and let ∆ = maxk dk. Since dk ≤ ∆, we find

1 =
n∑

k=1

dkx
2
k ≤ n∆x2

m, (4.30)

so that

xm ≥ (n∆)−
1
2 . (4.31)

Since xNj
= 0, we have xm = xm − xs ≥ (n∆)−

1
2 , being s ∈ Nj. Given the connectivity

of the graph, there is a sequence of vertices of length r ≤ d, which joins vertex m to s.
Letting {xk1 . . . xkr} denote the set of vertices traversed by this chain, we have

(n∆)−
1
2 ≤ (xm − xs) = (xm − xk1) + · · ·+ (xkr − xs). (4.32)

The inequality can be rewritten as

(n∆)−
1
2 ≤ (xm − xk1)1 + · · ·+ (xkr − xs)1, (4.33)

and by Cauchy’s inequality

(n∆)−1 ≤ r

2

∑
(t,k)∈E

(xt − xk)
2 ≤ d

2

∑
(t,k)∈E

(xt − xk)
2. (4.34)

Combining (4.34) and (4.29) shows that

λ2(F̃) ≤ 1− 1

nd∆
. (4.35)

4.2 Convergence Rate Analysis 39

4.2.2 Upper Bound for Weighted Digraph

The matrix F̃ is an absorbing Markov chain, with absorbing nodes Nj. Given an
arbitrary absorbing Markov chain, renumber the states so that the transient states come
first. If there are r absorbing states and t transient states, then the transition matrix will
have the following canonical form

F̃c =

[
Q R
0 I

]
, (4.36)

where I is an r× r identity matrix, 0 is an r× t zero matrix, R is a nonzero t× r matrix,
and Q is an t× t matrix. The first t states are transient and the last r states are absorbing.
A standard matrix algebra argument shows that F̃ l

c is of the form

F̃ l
c =

[
Ql

(∑l−1
j=0 Qj

)
R

0 I

]
. (4.37)

The form of F̃ l
c shows that the entries of Ql give the probabilities for being in each of the

transient states after l steps, for each possible transient starting state. It has been proven
that Ql → 0 as l → +∞, and we say that the process is absorbed with probability 1.

Theorem 4.2.2. (Convergence rate of an absorbing Markov chain): Let F̃ ∈ Rn×n be the
transition matrix of an absorbing Markov chain, and let xNj

be the absorbing states of the

chain. Let Gr be the associated weighted digraph, such that the entry F̃k,j represents the
weight of the edge from k to j. Let d be the diameter of Gr, and ∆ the maximum vertex
degree including self-loops, then

λ2(F̃) <
(
1− n̄

∆d

)1/d

, (4.38)

being n̄ the cardinality of the set Nj \ {j}.

Proof. Let F̃c be the canonical form of F̃ . Recall that the largest eigenvalue of F̃c is 1,
with multiplicity n0. Consequently λ2(F̃c) = λmax(Q), where Q is the transient matrix of
F̃c. Recall that

λ(Q) ≤ ρ(Q) ≤ ‖Qk‖1/k, k = 1, 2, . . . , (4.39)

being ρ the spectral radius of the matrix.
The entry (j, i) of F̃ k

c gives the probability to be in the node i after k steps, being started
from node j. Suppose we start a random walk on Gr from the node k more distant to one
of the nodes belonging to Nj: it takes at most d steps before reaching a node belonging to
Nj, with probability greater or equal to 1/∆d. This means that

(F̃ d
c)k,s ≥

1

∆d
, s ∈ Nj \ {j} (4.40)

40 Single Intruder Detection and Isolation

that leads to

ρ(Q) ≤ ‖Q̃d‖1/d
∞ ≤

(
1− n̄

∆d

)1/d

, (4.41)

being n̄ = n0 − 1. The difference between n0 and n̄, is due to the fact that we need to
reach a node of Nj \ {j} before reaching j. Since nodes of Nj \ {j} are absorbing states,
it is not possible to reach j, so that the jth column of F̃ k

c is 0 for every k.

Remark 3. Given an UIO system Σij, if the pair (F, Cj) is observable, then all the eigen-
values of the matrix (F + GCj) can be assigned, i.e., the estimate of the current state can
be arbitrarily fast. The complete assignability of the eigenvalues of the observer is feasible
for instance for a regular directed cycle graph of n nodes, where Nj = {j, j − 1}. Consider
in fact a random walk on the graph starting from node j, it takes n− 1 steps to reach node
j−1. The walk can be represented by the Krilov sequence generated by the transpose of the
agreement algorithm iteration matrix F and ej, i.e.,

S = [ej F T ej (F T)2ej . . . (F T)n−1ej]. (4.42)

Since the entry skl > 0 only if the node k can be reached in l steps, and since we only
visit a new node at each time step, the matrix S has full rank. The rank of the matrix ST

coincides with the dimension of the observability subspace of the pair (F, ej), so that we
conclude that the system is observable.

4.3 Intrusion Detection Procedure

By analyzing the property of the iteration error, we describe a methodology to detect
and identify a misbehavior for an UIO system. The working conditions of the network are
then restored through the exclusion of the faulty agent, i.e., by modifying the topology of
the network, such that the information he provides is not considered.

4.3.1 Analysis of the Iteration Error

Consider the linear discrete time UIO system described by the algorithm

w(l + 1) = Fw(l) + Biū(l), (4.43)

yj(l) = Cjw(l), (4.44)

and the filter built by the node j

z(l + 1) = (F + GCj)z(l)−Gyj(l), (4.45)

w̃(l) = Lz(l) + Kyj(l). (4.46)

4.3 Intrusion Detection Procedure 41

Reorder the states variables, such that index set Nj comes first. The filter can be rewritten
as

z(l + 1) = F

[
wNj

(l)
zp(l)

]
, (4.47)

w̃(l) =

[
wNj

(l)
zp(l)

]
, (4.48)

with p 6∈ Nj. Consider the iteration error

ε(l) =| w̃(l + 1)− Fw̃(l) | (4.49)

=

∣∣∣∣[wNj
(l + 1)

zp(l + 1)

]
− F

[
wNj

(l)
zp(l)

]∣∣∣∣ . (4.50)

Recall that L = In −K, and K = CT
j Cj; we can rewrite ε as

ε(l) =

∣∣∣∣LF

[
wNj

(l)
zp(l)

]
+ Kw(l + 1)− F

[
wNj

(l)
zp(l)

]∣∣∣∣ (4.51)

=

∣∣∣∣[[w(l + 1)− Fw̃(l)]Nj

0

]∣∣∣∣ (4.52)

=

∣∣∣∣[ε̄
0

]∣∣∣∣ . (4.53)

Since w̃(l) → w(l) as l → +∞, (w̃(l + 1)− Fw̃(l)) → Biū(l), so that we can detect and
identify the intruder. The following three cases are possible:

1. there is no unknown input in the system. In this case ‖ ε̄(l) ‖→ 0, as l → +∞;

2. there is a faulty node i and i ∈ Nj. In this case the ith component of ε̄(l) → ū(l),
while the other components converge to zero as fast as the convergence rate of the
filter;

3. there is a faulty node i and i 6∈ Nj. In this case ε̄ do not converge to zero in more than
1 component. In fact, the estimation error is r(l + 1) = (F + GCj)r(l)−Biū(l), and
its reachable set is not included into Ker(L). We deduce w̃(l) = w(l) + Lr(l) does
not converge to w(l).

4.3.2 Intrusion Detection Algorithm

Consider the iteration error ε̄, we have

ε̄(l) ≤ λl
maxε0, l ∈ Z≥0, (4.54)

where ε0 = max(| w̃(1)− Fw̃(0) |). The iteration error can be written as

ε(l) = e(l) + eu(l), (4.55)

42 Single Intruder Detection and Isolation

where e denotes the error due to the estimation process, while eu is due to the unknown
input. If

e(l) + eu(l) ≥ λl
max, (4.56)

then we can detect a fault in the system. Since λl
max vanishes as l → +∞, the recognizable

misbehavior becomes smaller with l. The amount of time l̄ we need to wait to ensure a
correct estimation of the misbehavior, depends on the minimal unknown input we want
to recognize and on λl

max. We do not specify this parameter, and we consider that after l̄
steps the estimation error is small enough to identify the intruder. Note that this problem
does not arise, if we consider that the initial conditions of the nodes are known to all the
network, or if the unknown input enters the system when the estimation error is small
enough. A possible procedure is:

1. each node j builds an observer as described in Theorem 4.1.3;

2. each agent computes ε̄ =| w̃(l + 1)− Fw̃(l) |, l ≥ l̄; calling ε̄k the kth variable of the
vector ε̄, and letting δ = λl

max,

(a) if ε̄k < δ for all k ∈ Nj, then no fault is detected;

(b) if ε̄k < δ for all k ∈ Nj \ {i}, then the ith agent is an intruder;

(c) if ε̄k ≥ δ for more than one k ∈ Nj, then there is a misbehavior in the network,
but it is does not belong to Nj (see ??).

3. while no intruder is found, step 2 is repeated. Otherwise, as soon as agent j detects
that agent i is an intruder, agent j changes the topology of the network according to
Theorem 4.1.2.

If the original network was k-connected, with k > 2, then all the neighbors of the faulty
node can propagate the new topology over the remaining network, so that each agent (after
that the new topology has been validated by all the neighbors of the intruder) starts the
procedure from step 1.

Chapter 5

Multi Intruders Detection and
Isolation

In this section we consider the problem of intrusion detection for a sensor network intro-
ducing some reputation algorithms and distributed procedures. We address in particular
two problems: the consensus problem in the presence of many intruders, and the maximum
likelihood distributed estimation of a parameter, which requires a consensus on the exact
average of the initial values, still in the presence of many intruders. Reputation mecha-
nisms are adopted to avoid dealing with filters and matrices whose dimensions grow with
the number of nodes. In Section 4 we describe a filter which gives an exact estimation of
the network state under certain conditions, but the dimensions of the filter depend on the
number of nodes, that is not desiderate. A better scenario is the one in which intruders are
identified and isolated by their neighbors, while distant nodes not even feel the presence
of those faulty processors. The described Unknown Input Filter is not suitable for such
task, since it requires a long time to converge, so that the error propagates in the network
and every node feels the presence of the intruders. On the other side, the iteration error of
the Unknown Input Filter is a good parameter to judge the behavior of a node. Consider
the consensus network shown in Fig. 5.1, in which nodes are disposed and connected as
a two dimensional grid, and suppose that every node runs an Unknown Input Filter and
computes the iteration error, whose components can be interpreted as the reputation of the
corresponding node. Collect the iteration errors of all the nodes, and plot the largest value
for every node. We obtain the result of Fig. 5.2, where the picks correspond to estimation
error referring to the faulty processors. It is clear that, if a central unit had the estimation
error of every node, then it could be easy for it to detect the intruders. Since we do not
consider central unit, we will try to reconstruct that surface in a distributed way, in order
to identify and isolate the intruders.

44 Multi Intruders Detection and Isolation

Figure 5.1: Consensus network.

Figure 5.2: Iteration error.

5.1 An Exact Solution

We describe in this section some properties of the iteration error in a consensus network.
Some of these results may be used to develop algorithms able to solve the consensus
problem for a connected sensor network in the presence of several intruders, under a set of
assumptions on the possible input function ū.

Consider the system described in Section 4, and suppose there are p > 1 intruders. The
system is described by

w(l + 1) = Fw(l) + Bū(l), B = [ek1 · · · ekp], k1, . . . , kp ∈ {1, . . . , n}. (5.1)

The UIO property can be generalized to the case of many faulty nodes, as follows

Corollary 5.1.1. Consider the system described by

w(l + 1) = Fw(l) + Bū(l), l ∈ Z≥0, (5.2)

5.1 An Exact Solution 45

with B ⊆ Rn×p defined as

B = [ek1 · · · ekp], k1, . . . , kp ∈ {1, . . . , n}. (5.3)

the system (F, B, Cj) is UIO, if and only if B ⊆ Im(Cj), and the digraph associated with
F is strongly connected.

Proof. We use the same strategy as in Theorem 4.1.1. If B ⊆ Im(Cj), then we have
B ∩Cj = ∅, that is, S∗ = B. Hence, S∗ ∩Cj = ∅. We compute G in order to nullify the
kth columns of F , such that

(F + GCj)B = 0. (5.4)

The matrix (F + GCj) is stable, because of the connectivity of the graph, and because
F ≥| F + GCj |, F 6=| F + GCj |, and therefore the system is detectable. Now, if the
system is UIO, then S∗ ∩Cj = ∅, so that B ⊆ Im(Cj). Moreover, being the system UIO,
it is also observable, so that the associated digraph is strongly connected.

Theorem 5.1.1 asserts that, for the UIO property, all the intruders must be neighbors
of all their neighbors, i.e., Im(B) ⊆ Im(Cj), B = [ek1 , . . . , ekp], ∀j ∈ {Nk1 ∪ · · · ∪ Nkp}.
This condition is not desiderate because it forces the network to have an huge number of
edges. If this condition is not satisfied, then the iteration error does not converges to zero,
and the estimation of the network status in not correct.

However the iteration error can be used to retrieve information about the position of
the intruders in the network, as it will be explained in the next sections.

5.1.1 Absorbtion Probability and Iteration Error

Consider a consensus network formed by n−p nodes and p intruders Ik = {ik1 , . . . , ikp}.
Let j 6∈ Ik, and consider the system Σij related to the consensus algorithm

w(l + 1) = Fw(l) + Bū(l), (5.5)

yj(l) = Cjw(l), (5.6)

where B = [ek1 · · · ekp], k1, . . . , kp ∈ {1, . . . , n}. Suppose that Im(B) * Im(Cj), so that
Corollary 5.1.1 can not be applied. Recall that the iteration error gives information only
about the Nj components, then the term Bū(l) is not visible in ε(l). Hence we have

ε(l) =

∣∣∣∣∣
l−1∑
τ=0

(F + GCj)
l−τBū(τ)

∣∣∣∣∣ . (5.7)

Suppose now that ū is a constant signal, we can rewrite ε(l) as

ε(l) =

∣∣∣∣∣
l−1∑
τ=0

(F + GCj)
l−τ

∣∣∣∣∣ |Bū| . (5.8)

46 Multi Intruders Detection and Isolation

Reorder the state variables so that the index set Nj comes first, the structure of F + GCj

becomes the following:

F + GCj =

[
0 R
0 Q

]
, (5.9)

and

ε(l) =

∣∣∣∣∣
l−1∑
τ=0

(F + GCj)
l−τ

∣∣∣∣∣ |Bū| =

∣∣∣∣∣
l−1∑
τ=0

[
0 R
0 Q

]l−τ
∣∣∣∣∣ |Bū| (5.10)

=

∣∣∣∣∣
l−1∑
τ=0

[
0l−τ

∑l−τ−1
j=0 0jRQl−τ−1−j

0 Ql−τ

]∣∣∣∣∣ |Bū| (5.11)

=

∣∣∣∣∣
l−1∑
τ=0

[
0 RQl−τ−1

0 Ql−τ

]∣∣∣∣∣ |Bū| , (5.12)

(5.13)

so that

ε(l)Nj
=

∣∣∣∣∣
l−1∑
τ=0

RQτ−1

∣∣∣∣∣ |Bpū| , p 6∈ Nj. (5.14)

Consider now the reducible absorbing Markov chain defined as

F̃ =

[
I R
0 Q

]
, (5.15)

where I is the identity matrix of dimension equal to the cardinality of the set Nj, and R,Q
are of appropriate dimensions. The probability of being after l steps in the state j being
started in the state i is given by the entry (j, i) of F̃ l. We have

F̃ l =

[
I
∑l−1

τ=0 IτRQl−τ−1

0 Ql

]
(5.16)

=

[
I R

∑l−1
τ=0 Ql−τ−1

0 Ql

]
. (5.17)

By comparing this expression with ε(l), we note that, if ū = 1, ε(l)k = Pk,i, k ∈ Nj, being
Pk,i the probability of being absorbed by the state k being started from node i, where i
denotes an intruder in the system, i.e., the entry equal to 1 in B. If ū = const 6= 1, then
ε(l)k = Pk,iū. Moreover, if B = [ek1 · · · ekp], k1, . . . , kp ∈ {1, . . . , n}, and ū = [K1 · · ·Kp]
is a constant matrix, then ε(l)k =

∑p
j=1 Pk,jKj.

This property can be used to improve the performance of the single intruder detection,
and to develop some algorithms for the multiple intruder case. For example, in the linear
deployment problem (Section 6.2), we have that every node can say who the intruder is,
by only analyzing the structure of the iteration error.

5.2 Distributed Robust Averaging Algorithm 47

5.1.2 Constant Unknown Inputs

Given a consensus network, build at every node an Unknown Input Filter as described in
Section 4, and define the absorbtion probability matrix associated with the filter iteration
matrix as

P = R(I −Q)−1, (5.18)

where P, R,Q are defined above. We know that, if there are no intruders, the iteration
error of each filter converges to zero, while converges to ε(l)k =

∑p
j=1 Pk,jKj if there are p

intruders that act with a constant disturb function K. To identify the intruders a node j
has to find the matrix P̃ , formed by p columns of the matrix

P̃ =
[

P In

]
, (5.19)

such that

rank(
[

P̃
... ε

]
) = rank(P̃). (5.20)

Let P̃ = [Pi1 ,
..., Pip], where {i1, . . . , ip} are the indexes of the columns chosen to determine

P̃ , then {i1, . . . , ip} are the identifiers of the intruders in the networks. Depending on the
topology of the network, there are many solutions to the problem, i.e., many matrices P̃
that can locally produce the iteration error ε. The more information we know about the
inputs ū, the better our identification is, so that it is possible to assign a reputation (an
index of reliability) to every node.

As drawbacks, this method requires strong assumptions, in particular it forces the
external input to be constant, and it needs a lot of computation to identify the intruders.

5.2 Distributed Robust Averaging Algorithm

We describe in this section a possible procedure to compute the average in a sensor
network in the presence of faulty processors. The method can be also used to reach con-
sensus in the network, since the average consensus problem includes the simple consensus
task.

Consider a sensor network with n nodes V = {v1, . . . , vn}. A sensor in the network is a
device with some memory, able to perform some computations and capable of transmitting
values to its neighbors, i.e., a set of nodes within a certain distance. Each node in particular
has a variable xj containing the estimated parameter, a variable Sj representing the working
state of the node, and an Unknown Input Filter Σj to detect possible intruders in the
network. The following three cases are possible:

• Sj = TEST, if j is testing a neighbor;

• Sj = WAIT, if Sk = TEST, k ∈ Nj;

48 Multi Intruders Detection and Isolation

• Sj = RUN in the other situations.

When the algorithm starts there are no communication edges among the nodes, or equiva-
lently, all the existing edges are secure, i.e., there are no intruders among them. Each node
aims to build the edges towards its neighbors in order to compute the desired average. For
security issues, a node can build an edge only if all its neighbors are in RUN state. Every
time a link is created, all the nodes in TEST and WAIT mode modify their Unknown
Input Filter by considering the new link and the node introduced in the network. If the
added node is recognized as intruder, then it is excluded from the network, and it is not
considered again, otherwise the WAIT and TEST nodes return to the normal operating
state. Let Rj the set of nodes within communication range from the node vj, Nj the set
of actual neighbors of the node vj, ε the iteration error vector, and δ a decision threshold.
The set E indicates as usual the set of edges in the graph, and the operation E+ = (vj, vh)
means that the undirected edges form vj to vh is added to the network, and Rj− = {i}
means that the node vi as been recognized as intruder by the node vj and it is permanently
excluded from the neighbors set Rj. We summarize the procedure as follows:

5.2 Distributed Robust Averaging Algorithm 49

Algorithm 1 Secure network assembly for consensus computation

Each node j
while 1 do

Send xj, Sj to all its neighbors;
Execute the consensus step (weighted average);
if (The intruder i is detected) then

if (Sj == TEST) then
Nj− = {i};
Update the Unknown Input Filter;
Sj = RUN

else
Nj− = {i};
Update the Unknown Input Filter;

end if
end if
if (Sj == TEST and ‖ε‖ < δ) then

Sj = RUN;
end if
if (Sk == TEST, k ∈ Nj,) then

Sj = WAIT;
Update the Unknown Input Filter;

else
if (Sk == RUN, for all k ∈ Nj and Rj 6= ∅) then

Sj = TEST;
E+ = (vj, vh), h ∈ Rj;
Nj+ = {i};
Rj− = {i}
Update the Unknown Input Filter;

else
Sj = RUN;

end if
end if

end while

50 Multi Intruders Detection and Isolation

Remark 4. With the proposed algorithm only a finite error can enter the system. The
average estimated by each node is

1

n

(n∑
i=1

(xi(0)) + ε

)
, (5.21)

where ε represents the error introduced in the system. Letting n →∞ we have

lim
n→∞

1

n

(n∑
i=1

(xi(0)) + ε

)
=

1

n

n∑
i=1

(xi(0)). (5.22)

5.2.1 Reduced Unknown Input Filter

The filter can be computed in several ways, depending upon the amount of information
we have about the network. We suppose a node knows only the information it can retrieve
from its neighbors, i.e., the degree and the state value. Each node j builds the Unknown
Input Filter considering a two hops network, in which each node k ∈ Nj has nodes {j, pk}
as neighbors. The weight of the edges {k, pk} are chosen according to the degree of k in
the real network. We call this network Gj. Fig. 5.3 explains the procedure when j = 2.
The iteration matrix related to this network is by construction row stochastic, and, since

Figure 5.3: Filter weights.

the filter takes the its input from the real network, the iteration error converges to zero
only in the absence of external inputs. In particular we define

ε(l) = x̃(l + 1)− Ffilterx̃(l) (5.23)

where Ffilter is the iteration matrix of the algorithm defined on Gj. Since ε converges to
zero in the absence of faulty processors, the action of an intruder is forced to converges
to zero as fast as the estimation error, otherwise the node corresponding to the biggest
component in ε is recognized as faulty. The error an intruder can introduce in the system
depends on the moment the unknown input enters the system. It is clear that the maximum
disturb can be introduced during a transition, i.e., when a new link is created. Anyway,
since the amount of error is finite, when the number of nodes n grows, the estimation
algorithm converges to the exact average of the initial values.

5.2 Distributed Robust Averaging Algorithm 51

5.2.2 Intrusion Detection and Filter Initialization

To assign the correct value to the state of the unknown input filter is of crucial impor-
tance, because, by reducing the initial estimation error, we reduce the amount of error that
can enter the system without being detected. The problem of initializing the filter arises
when an edge is added to the network. Consider for simplicity the situation of Fig. 5.4, in
which the link {4, 5} has been added. Every node has to modify its filter since the change

Figure 5.4: Filter initialization.

in the network has occurred within two hops of distance. Node 5 in particular add two
variable to its filter, corresponding respectively to node 4 and to its neighbor p4. Since the
network where 4 belongs to is supposed to be at steady state, the value of p4 in the filter
is set as the one received by node 4. Node 6 add just a node corresponding to p5, and sets
its value to ∆/2, where ∆ indicates the range where variables xj take value, since it has
no information about the state value of node 4.

Fig 5.5 shows the propagation delay of the error when the intruder is the node number
4. It is clear that node number 5 detects the presence of the faulty node one step before
node number 6, so that it can exclude the faulty processor and preserve the functionality
of the network. Similar considerations can be done for the other nodes of the network.

Figure 5.5: Error propagation: error detected by node 5 (right), and by node 6 (left).

52 Multi Intruders Detection and Isolation

5.2.3 Convergence Time

If we use two parallel passes of the agreement algorithm (Section 6.3) to perform the
average consensus task, then, every time a new link is created, the weights are adjusted
according to the equal neighbors model. It is known [2], that for the equal neighbor,
time-invariant, bidirectional model, the convergence rate satisfies

ρ ≤ 1− γ1n
−3, (5.24)

where γ1 is a constant independent of n, and the convergence time satisfies

Tn(ε) = O(n3log(n/ε)). (5.25)

Using this result we can estimate the convergence time of the proposed procedure when the
number of nodes of the network approaches infinity. Since the algorithm builds the network
incrementally, and since a new node can be added only when the network has reached the
steady state, the averaging algorithm is executed every time a node is introduced in the
network. The maximum number of executions of the averaging algorithm is n−1, because,
starting from a node j and adding a node at a time, we need n− 1 steps to introduce all
the nodes. In this case we say that the procedure convergence time satisfies

Tn(ε) = O(n4log(n/ε)). (5.26)

It is possible to execute the averaging algorithm a less than n− 1 times, because in a large
network the assemble process starts from many point far from each other, so that many
links are created at each time step. Finding a tighter bound on the convergence time is
one of the issue we are studying.

The equal neighbor consensus rule does not have the optimal convergence rate, but
has the advantage that can be easily computed. Other simple averaging heuristics, as the
Max-Degree or the Metropolis rules, produce in simulation a worse convergence rate [2].

Chapter 6

Applications

We present in this Section some numerical examples to show how the proposed proce-
dures work. We consider in particular three problems: the Agreement Evaluation, where
the nodes simply have to agree on a parameter, the Linear Deployment, where a group
of mobile agents want to uniformly deploy on a circle, and finally an estimation problem,
where a set of sensor want to evaluate the average of their measurements.

6.1 Agreement Evaluation

The agreement algorithm is an iterative procedure for the solution of the distributed
consensus problem. Consider a set N = {1, 2, . . . , n} of nodes. Each node i starts with a
scalar value xi(0); the vector with the values of all nodes at time t is denoted by x(l) =
(x1(l), . . . , xn(l)). The agreement algorithm updates x(l) according to the equation x(t +
1) = F (l)x(l), or

xi(l + 1) =
n∑

j=1

fij(l)xj(l), (6.1)

where F (l) is a nonnegative matrix with entries fij(l). The row-sums of F (l) are equal to
1, so that F (l) is a stochastic matrix. In particular, xi(t + 1) is a weighted average of the
values xj(l) held by the nodes at time t.

6.1.1 Numerical Example

Suppose we have 8 nodes disposed on a digraph as in Fig. 6.1 and suppose the node
number 6 is the faulty node. Considering the node number 5 as observer, the system is
described by

w(l + 1) = Fw(l) + B6ū(l) (6.2)

y5(l) = C5w(l), (6.3)

54 Applications

where

F =



1/3 0 0 1/3 1/3 0 0 0
1/3 1/3 0 0 0 1/3 0 0
0 1/3 1/3 0 0 0 1/3 0
0 0 1/3 1/3 0 0 0 1/3

1/3 0 0 0 1/3 1/3 0 0
0 1/3 0 0 0 1/3 1/3 0
0 0 1/3 0 0 0 1/3 1/3
0 0 0 1/3 1/3 0 0 1/3


, (6.4)

B6 =



0
0
0
0
0
1
0
0


, C5 =

 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 . (6.5)

Note that the conditions of Theorem 4.1.1 are verified, such that we can build a whole
state unknown input observer, whose matrices are

G =



−1/3 −1/3 0
−1/3 0 −1/3

0 0 0
0 0 0

−1/3 −1/3 −1/3
0 0 −1/3
0 0 0
0 −1/3 0


, K =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0


, (6.6)

L =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (6.7)

Let ū = constant = 10, we initialize the state of the nodes with random variables, and
we simulate the system for 40 steps. Fig. 6.2 shows the iteration error related to the
estimation of the variables 1 and 6. As we see, the iteration error for the variable 6
converges to ū = 10, while the error for the variable 1 goes to zero, so that the observer
can detect the fault, and identify the misbehaving node. The same procedure is applied

6.2 Linear Deployment 55

by the other neighbor of the faulty node, the agent 2, so that the intruder is isolated from
the network (Fig. 6.3).

Figure 6.1: Consensus network.

Figure 6.2: Identification of the misbehaving node.

6.2 Linear Deployment

The system consists of n robot that have to reach an uniform distribution over the
unit circle. We assume that angles are measured counterclockwise and that the sensors

56 Applications

Figure 6.3: Modified consensus network.

are placed in counterclockwise order (we adopt the convention that ηn+1 = η1 and that
η0 = ηn). The sensors motion is described by a discrete-time control system:

ηi(l + 1) = ηi(l) + ui (6.8)

where ui is the scalar control magnitude of the ith sensor. We assume that ui is a function
only of the relative angular distances in the counterclockwise direction dcounterclock,i =
ηi+1 − ηi > 0 and clockwise direction dclock,i = ηi − ηi−1 > 0. We also assume that each
sensor obeys the same motion control law u : [0, 2π][0, 2π] → R, so that the closed- loop
system becomes:

ηi(l + 1) = ηi(l) + u(dcounterclock,i(l), dclock,i(l))
dcounterclock,i(l) = ηi+1(l)− ηi(l)

dclock,i(l) = ηi(l)− ηi−1(l).
(6.9)

The rule we consider is the “Go Toward the Midpoint of Voronoi Segment”:

umidpointV oronoi(dcounterclock, dclock) =
1

4
(dcounterclock − dclock). (6.10)

So the system becomes:

η(l + 1) = Aη(l) + Ku(l) (6.11)

where

A = In, (6.12)

6.2 Linear Deployment 57

K =
1

4



1 0 · · · · · · 0 −1

−1 1
. 0

0
.

...
...

.
...

...
. 0

0 · · · · · · 0 −1 1


(6.13)

and

u =



d1

d2
...
...

dn−1

dn


, di = ηi+1 − ηi. (6.14)

The situation is shown in figure 6.4.

Figure 6.4: Deployment initialization

58 Applications

To perform a convergence analysis, it is convenient to define the relative angular dis-
tances di = ηi+1 − ηi, for i ∈ 1, ..., n (and adopt the usual convention that dn+1 = d1 and
that d0 = dn). So long as the counterclockwise order of the sensors is not violated, we
have (d1, ..., dn) ∈ S2π = x ∈ <n | xi ≥ 0, Σn

i=1xi = 2π. The change of coordinates from
(η1, ..., ηn) to (d1, ..., dn) and the control law uk jointly lead to the closed-loop system

di(k + 1) =
1

4
di+1(k) +

1

2
di(k) +

1

4
di−1(k). (6.15)

This is a linear time-invariant dynamical system with state d = (d1, ..., dn), transition
matrix A 1

4
given by 

1
2

1
4

0 · · · 0 1
4

1
4

1
2

1
4

. 0

0 1
4

1
2

.
...

...
. 0

0
. 1

4
1
2

1
4

1
4

0 · · · 0 1
4

1
2


(6.16)

and governing equation

d(k + 1) = A 1
4
d(k), for k ∈ N ∪ {0}. (6.17)

The properties of this system has been studied in [30], where they prove that, for k ∈]0, 1/2[,
the solutions to the corresponding closed-loop system 6.17 preserve the counter-clockwise
order of the sensors and converge exponentially fast to (2π/n, . . . , 2π/n).

6.2.1 Numerical Example

We consider 6 agents that are moving on the unit circle in order to reach an uniform
distribution over it, and we refer to the algorithm described in the Section 6.2. Suppose the
agent number 4 is the intruder, and consider the estimation made by its neighbor number
3. Matrices describing the system are:

F =


1/2 1/4 0 0 0 1/4
1/4 1/2 1/4 0 0 0
0 1/4 1/2 1/4 0 0
0 0 1/4 1/2 1/4 0
0 0 0 1/4 1/2 1/4

1/4 0 0 0 1/4 1/2

 , (6.18)

B4 =


0
0
0
1
0
0

 , C3 =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 . (6.19)

6.3 Maximum Likelihood Estimation 59

Theorem 4.1.1 is verified, and the related filter is characterized by

G =


−1/4 0 0
−1/2 −1/4 0
−1/4 −1/2 −1/4

0 −1/4 −1/2
0 0 −1/4
0 0 0

 , K =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 , (6.20)

L =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (6.21)

Fig. 6.5 shows the iteration error, which leads to the identification of the malicious agent,
when the unknown input is a sinusoidal signal with amplitude 0.3 and unitary frequency.

Figure 6.5: Identification of the misbehaving node.

6.3 Maximum Likelihood Estimation

[19] Given a set of n sensor performing measurements of a parameter θ, taking value in
a compact set Γ = {γ1, . . . , γn}, we aim to compute the average of the taken measurement
in the presence of some faulty processors. Let xi(l) be the measurement of sensor i at time

60 Applications

t, then the desired value is

1

n

n∑
i=1

xi(0). (6.22)

There are at least three methods to choose the weight matrix F in order to compute
the average:

1. Using a doubly stochastic matrix. With the time-invariant agreement algorithm
x(l + 1) = Fx(l), we have

lim
l→∞

xi(l) =
n∑

i=1

πixi(0), ∀i, (6.23)

where π is the steady-state probability vector of the Markov chain associated with
the stochastic matrix F . It follows that we obtain a solution to the averaging problem
if and only if πi = 1/n for every i. Since π is a left eigenvector of F , with eigenvalue
equal to 1, this requirement translates to the property 1T F = 1T , where 1 is the
vector with all components equal to 1. Equivalently, the matrix F needs to be doubly
stochastic.

A possible choice for the weight matrix is given by the Metropolis rule, as follows

fij =


1/(1 + max{di, dj}) {i, j} ∈ E
1−

∑
k∈Nifik

i = j

0 othewise
(6.24)

In other words, the weight on each edge is one over one plus the larger degree at
its two incident nodes, and the self-weights fii are chosen so the sum of the weights
at each node is 1. The metropolis weights are very simple to compute and are well
suited for distributed implementation. In particular, each node only needs to know
the degrees of its neighbors to determine the weights on its adjacent edges.

2. The scaled agreement algorithm. Suppose that the graph G is fixed a priori and
that there is a system designer or other central authority who chooses a stochastic
matrix A offline, computes the associated steady-state probability vector (assumed
unique and positive), and disseminates the value of nπi to each node i. Suppose next
that the nodes execute the agreement algorithm x = Fx, using the matrix F , but
with the initial value xi(0) of each node i replaced by

x̄i(0) =
xi(0)

nπi

. (6.25)

Then, the value xi(l) of each node i converges to

lim
l→∞

x̄i(l) =
n∑

i=1

πix̄i(0) =
1

n

n∑
i=1

xi(0), (6.26)

6.3 Maximum Likelihood Estimation 61

and we therefore have a valid averaging algorithm. This establishes that any (time
invariant) agreement algorithm for the consensus problem translates to an algorithm
for the averaging problem as well. There are two possible drawbacks of the scheme
we have just described:

• If some of the nπi are very small, then some of the initial x̄i(0) will be very
large, which can lead to numerical difficulties.

• The algorithm requires some central coordination, in order to choose F and
compute π.

3. Using two parallel passes of the agreement algorithm. Given a fixed graph G,
let F be the matrix that corresponds to the time-invariant, equal-neighbor, bidirec-
tional model; in particular, if (i, j) ∈ E, then (j, i) ∈ E, and fij = 1/di, where di is
the cardinality of Ni. Assume that the stochastic matrix F is irreducible (the graph
G is strongly connected) and aperiodic (because of self loops). Let D =

∑n
i=1 di. It

is easily verified that the vector π with components πi = di/D, satisfies πT = πT F ,
and is therefore equal to the vector of steady-state probabilities of the associated
Markov chain. The following averaging algorithm employs two parallel runs of the
agreement algorithm, with different, but locally determined, initial values:

• Each node i sets yi(0) = 1/di and zi(0) = xi(0)/di.

• The nodes run the agreement algorithms y(l + 1) = Fy(l) and z(l + 1) = Fz(l).

• Each node sets xi(l) = zi(l)/yi(l).

We have

lim
l→∞

yi(l) =
n∑

i=1

πiyi(0) =
n∑

i=1

di

D

1

di

=
n

D
, (6.27)

and

lim
l→∞

zi(l) =
n∑

i=1

πizi(0) =
n∑

i=1

di

D

xi(0)

di

=
n

D

n∑
i=1

xi(0). (6.28)

This implies that

lim
l→∞

xi(l) =
1

n

n∑
i=1

xi(0), (6.29)

i.e., we have a valid averaging algorithm. Note that the iteration y(l + 1) = Fy(l)
need not be repeated if the network remains unchanged and the averaging algorithm
is to be executed again with different initial opinions. Finally, if n and D are known
by all nodes, the iteration y(l + 1) = Fy(l) is unnecessary, and we could just set
yi(l) = n/E.

62 Applications

Figure 6.6: A sensor network with 12 nodes (blue) and 4 intruders (red)

The algorithms described above are not robust to the presence of faulty processors, i.e.,
those algorithms do not converge to the average if some node do not follow the nominal
procedure. The faulty processors are modeled as an unknown input in the system, that
becomes

x(l + 1) = Fn(l)x(l) + Bū(l), B = [ek1 , . . . , ekp], (6.30)

where B identifies the p faulty processors and ū denotes the error introduced in the sys-
tem. If the faulty processors are not excluded from the network, then the average is not
computed.

We use Algorithm 1 to solve the faulty processors average computation.

6.3.1 Numerical Example

Consider a sensor network with its communication graph shown in Fig. 6.6. This graph
is generated as follows. We first randomly generate n = 16 sensor nodes, distributed on
the unit square [0, 1] × [0, 1]; then we choose randomly 4 intruders among the nodes of
the network. Each node can communicate with all the nodes within a certain distance
(0.4 in this simulation), which correspond to the transmission range of the sensor. At
the beginning of the simulation there is no communication among the agents, and the

6.3 Maximum Likelihood Estimation 63

Figure 6.7: Network assembly (1)

procedure aims to assemble a network to evaluate the exact average of the initial values
of the agents of the network. Each time an edge is created, nodes updates the weight
matrix using the Metropolis rule, so that it is always symmetric and doubly stochastic.
The following pictures show the status of the network during the task execution.

64 Applications

Figure 6.8: Network assembly (2)

Figure 6.9: Network assembly (3)

6.3 Maximum Likelihood Estimation 65

Figure 6.10: Network assembly (4)

Chapter 7

Conclusions

We considered consensus networks in the presence of a misbehaving node, and we
proposed a technique based on the theory of Unknown Input Observability to detect,
identify, and isolate the misbehavior from the network. We designed an embedded filter,
which, only considering the information used by the control protocol, estimates the state
of the nodes in the network, allowing the identification of the faulty agent. We analyzed
the property of the iteration error of the unknown input filter, and we finally proposed a
complete procedure to perform the intrusion detection and isolation task.

We also consider the multiple intruders detection and isolation problem, and we propose
an algorithm that aims to assemble a secure network while performing the consensus task
among the nodes. With such a procedure, the error an intruder introduces is finite, so
that it becomes unimportant when the number of the nodes of the network grows, and the
consensus is reached under week assumptions.

The work can be extended in several directions to improve the performance of the
security procedure and to include more general situations.

Bibliography

[1] S. Martinez F. Bullo A. Ganguli, S. Susca and J. Cortes. On collective motion in sensor
networks: sample problems and distributed algorithms. IEEE Conf. on Decision and
Control and European Control Conference, 2005.

[2] J.N. Tsitsiklis A. Olshevsky. Convergence speed in distributed consensus and aver-
aging. In Proceedings of the 45th Conference on Decision and Control, San Diego,
California, 2006.

[3] G. Basile and G. Marro. Controlled and Conditioned Invariants in Linear System
Theory. Prentice Hall, Englewood Cliffs, NJ, 1991.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, Belmont, MA, 1997.

[5] S. Buchegger and J.-Y. L. Boudec. Cooperative routing in mobile ad-hoc networks:
Current efforts against malice and selfishness. Proceedings of Mobile Internet Work-
shop. Informatik, pages 513–517, September 2002.

[6] S. Buchegger and J.-Y. L. Boudec. Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks. In 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing, pages 403–410, Canary Islands,
Spain, January 2002.

[7] S. Buchegger and J.-Y. L. Boudec. Performance analysis of the CONFIDANT protocol.
In IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC),
pages 226–236, Lausanne, Switzerland, June 2002.

[8] L. Buttyan and J. P. Hubaux. Enforcing service availability in mobile ad-hoc WANs.
In IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC),
pages 87–96, Boston, MA, August 2000.

[9] L. Buttyan and J. P. Hubaux. Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM Journal for Mobile Networks (MONET), 8(5):579–592, 2003.

[10] G. Ctbenko. Load balancing for distributed memory multiprocessors. Journal of
Parallel Computing, 7:279–301, 1989.

70 BIBLIOGRAPHY

[11] S. Viscido D. Grunbaum and J. K. Parrish. Extracting interactive control algorithms
from group dynamics of schooling fish. Lecture Notes in Control and Information
Sciences, 2004.

[12] E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou. Distributed fault di-
agnosis using sensor networks and consensus-based filters. In IEEE Conf. on Decision
and Control, pages 386–391, San Diego, CA, December 2006.

[13] P. M. Frank and X. Ding. Survey of robust residual generation and evaluation methods
in observer-based fault detection systems. Journal of Process Control, 7(6):403–424,
1997.

[14] V. Gupta, C. Langbort, and R. M. Murray. When are distributed algorithms robust?
In IEEE Conf. on Decision and Control, San Diego, CA, December 2006. To appear.

[15] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cam-
bridge, UK, 1985.

[16] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, 2003.

[17] S.-J. Kim L. Xiao, S. Boyd. Distributed average consensus with least-mean-square
deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.

[18] S. Lall L. Xiao, S. Boyd. Distributed average consensus with time-varying metropolis
weights. Automatica, 2006. submitted.

[19] S. Lall L. Xiao, S. Boyd. A space-time diffusion scheme for peer-to-peer least-square
estimation. Proceedings of the Fifth International Symposium on Information Proess-
ing in Sensor Networks (IPSN), Nashville, TN, April 2006.

[20] H. J. Landau and A. M. Odlyzko. Bounds for eigenvalues of certain stochastic matrices.
Linear Algebra and its Applications, 38:5–15, 1981.

[21] Y. Liu and Y. R. Yang. Reputation propagation and agreement in mobile ad-hoc
networks. In IEEE Conf. on Wireless Communications and Networking, pages 1510–
1515, New Orleans, LA, March 2003.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA,
1997.

[23] G. Marro. The Geometric Approach to Fault Detection and Isolation: Motivation,
Setting, and Historical Perspective. DEIS, University of Bologna, Italy, July 2004.
CIRA Summer School ”Antonio Ruberti”.

BIBLIOGRAPHY 71

[24] S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks
– Part I: Models, tasks and complexity notions. & Part II: Time complexity of ren-
dezvous and deployment algorithms. IEEE Transactions on Automatic Control, April
2005. To appear. Short versions were presented at the 2005 CDC/ECC in Seville,
Spain.

[25] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA,
2001.

[26] P. Michiardi and R. Molva. CORE: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc network. In Communications and Multimedia
Security Conference (CMS), Portoroz, Slovenia, September 2002.

[27] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in multi-
agent networked systems. Proceedings of the IEEE, January 2007. Special Issue on
Networked Control Systems. To appear.

[28] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Control,
49(9):1520–1533, 2004.

[29] B. Prabhakar S. Boyd, A. Ghosh. Gossip algorithms: Design, analysis, and applica-
tion. IEEE INFOCOM, 2005.

[30] F. Bullo S. Martinez. Optimal sensor placement and motion coordination for target
tracking. Automatica, 42(4):661–668, April 2006.

[31] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD
thesis, MIT, November 1984. Technical Report LIDS-TH-1424, Laboratory for Infor-
mation and Decision Systems.

[32] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems &
Control Letters, 53:65–78, 2004.

[33] L. Xiao, S. Boyd, and S. Lall. A scheme for asynchronous distributed sensor fusion
based on average consensus. In International Conference on Information Processing
in Sensor Networks (IPSN’05), pages 63–70, Los Angeles, CA, April 2005.

	Introduction
	Basic Notions
	Preliminary Concepts and Notation
	An introduction to Markov Chains
	Absorbing Markov Chains

	Asymptotic (Average) Consensus
	Convergence Rate and Convergence Time

	Unknown Input Observability: The Geometric Approach
	Geometric Tools
	Unknown Input Observation of a Linear Function of the State

	Single Intruder Detection and Isolation
	Solvability Conditions
	Convergence Rate Analysis
	Equal - Neighbor Case
	Upper Bound for Weighted Digraph

	Intrusion Detection Procedure
	Analysis of the Iteration Error
	Intrusion Detection Algorithm

	Multi Intruders Detection and Isolation
	An Exact Solution
	Absorbtion Probability and Iteration Error
	Constant Unknown Inputs

	Distributed Robust Averaging Algorithm
	Reduced Unknown Input Filter
	Intrusion Detection and Filter Initialization
	Convergence Time

	Applications
	Agreement Evaluation
	Numerical Example

	Linear Deployment
	Numerical Example

	Maximum Likelihood Estimation
	Numerical Example

	Conclusions
	Bibliography

