A Multiple Cell Proportional Counter for Continuous Airborne Radon Assessment

*፞*ኇ፠ኇ፠ኇ

Table of Content

INTRODUCTION	5
References	8
Section I : The NORM/TENORM Problem and Radon	10
Assessment	
1. Introduction	10
2. About the NORM-TENORM problem	11
3. Activities that lead to the technological enhancement of NORM	11
4. Analysis of Pathways Associated with NORM	12
5. The regulatory and normative policies in radiation protection	13
6. Radon Concentration Measurement	13
6.1. A short history of Radon	13
6.2. Radon and its progeny	14
6.3. Special quantities and units	14
6.3.1. Potential alpha energy	14
6.3.2. Concentration in air	15
6.3.3 The equilibrium equivalent concentration in air	15
6.3.4 The equilibrium factor F	15
6.3.5 Inhalation exposure of individuals (The Working level month)	16
7. Radon gas measurement methods	17
7.1. Activated Charcoal Adsorption	17
7.2. Alpha Track Detection (filtered)	17
7.3. Unfiltered Track Detection	17
7.4. Charcoal Liquid Scintillation	18
7.5. Continuous Radon Monitoring	18
7.6 Electret Ion Chamber: Long-Term	18
7. 7. Electret Ion Chamber: Short-Term	19
7.8. Grab Radon/Activated Charcoal	19

7.9. Grab Radon/Pump-Collapsible Bag	19
7.10. Grab Radon/Scintillation Cell	19
7.11. Three-Day Integrating Evacuated Scintillation Cell	20
7.12. Pump-Collapsible Bag (1-day)	20
8. Radon decay products measurement techniques	20
8.1 Continuous Working Level Monitoring	20
8.2 Grab Working Level	20
8.3 Radon Progeny (Decay Product) Integrating Sampling Unit	21
9. Conclusion and the special orientation of our contribution	21
References	22
Section II : The use of gas-filled detectors for radon activity	24
concentration measurement	
1. Introduction	24
2. Application to airborne radon monitoring	25
3. The use of gas-filled detectors for radon measurement in air	27
4. The electron attachment effect in air-mixed counting gases	29
5. The gas amplification compensation	29
6. Experimental set-up and procedure	32
7. Experimental results and discussion	35
8. Applicability for radon measurements and achievable sensitivity	40
9. Conclusions	41
References	42
Section III : Design and construction of the Multiple Cell	45
Proportional Counter (MCPC)	
1. Introduction	45
2. Design criteria and description of the MCPC	47
2.1. General Features	47
2.2. The designed MCPC	51
2.3. The operation principle of the MCPC	52
3. The MCPC characteristics and parameters definition	54
3.1. Alpha counting efficiency	54
3.2. Radon counting efficiency	54
3.3. The minimum detectable activity concentration of radon	54

3.4. Radon sensitivity	55
3.5. The wall effect loss, WEL	55
3.6. The attachment effect loss, <i>AEL</i>	55
3.7. The grid opacity effect loss, GOEL	56
3.8. The end cell contribution, <i>ECC</i>	56
3.9. The spectrometric and counting quality factors	56
4. The Monte Carlo simulation code RADON-MCPC	57
5. Design optimization and performance requirements	58
5.1 Maximum air fraction allowed	58
5.2 Cell inner radius selection	60
5.3 Selection of the number of effective counting cells, NECC	62
6. Operating high voltage	62
7. Selection of the optimum discrimination level	67
8. Selection of the suitable gas flow rate	67
9. Response to a short duration varying radon pulse	69
10. Conclusion	70
References	71
Section IV : The Monte Carlo Simulation code RADON-MCPC	73
1. Simulation of gas-filled detectors	73
2. Description of the Monte Carlo simulation code RADON-MCPC	75
3. The ²²² Rn and progenies activity evolution inside the counter	77
3.1. The radioactive equilibrium inside the counter	79
3.2. Response to a stepwise variation of radon activity concentration	81
3.3. Response to a Gaussian-shaped radon pulse transient	83
4. The derivation of the electric field distribution	84
5. Random alpha particles emission and the stopping process	89
6. Modeling of the wall effect and the grid opacity effect	95
7. The electron attachment effect and gas amplification mechanism	97
7.1 The electron attachment coefficient distribution	98
7.2 The gas amplification mechanism	101
8. The alpha pulse height spectra	103
9. Convergence study of the code	107
10. Conclusion	108

References	109
Section V : Simulation results and experimental tests the MCPC	111
prototype	
1. Introduction	111
2. Experimental setup and measurement procedures	111
2.1. Counter calibration procedure	111
2.2. Associated electronics and data acquisition procedure	115
3. Results and discussion	116
4. Comparison with other gas-filled measuring devices	121
4.1. Brief review of some developed airborne radon monitors	121
4.1.1. The ATMOS (Gammadata Metteknik) Radon gas monitor	121
4.1.2. The PTB MultiWire Pulse Ionization Chamber (MWPIC)	122
4.1.3. The Genitron Instruments GmbH AlphaGUARD radon monitor	123
4.1.4. The Durridge Inc. RAD7 radon monitor	123
4.2. Comparison of the MCPC performances to those of other devices	123
5. Conclusion	125
References	126
CONCLUDING SUMMARY	129
Appendix – A : RADON-MCPC , source file (ultimate version)	132
$\operatorname{Appendix} - \operatorname{B}$: RADON-MCPC, structure of input data file	181
$\operatorname{Appendix} - \operatorname{C}$: RADON-MCPC, structure of output data file	183
Appendix – D : List of Publications and communications	185

፞ቝ፞፞፞፞፞፞፞፞፞፞፞ቝቝቝ