
Optimization of a Self-Stabilizing Role Assignment

Algorithm for Actuator/Sensor Networks

Vincenzo Curatola

Universitá degli studi di Pisa

Tesi di laurea specialistica

Maggio 2007

2

Universitá degli Studi di Pisa

Facoltá di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Optimization of a Self-Stabilizing Role Assignment

Algorithm for Actuator/Sensor Networks

Tesi di

Vincenzo Curatola

Relatori:

Prof. Marco Avvenuti
Prof. Luigi Rizzo
Prof. Dr.-Ing. Hans Ulrich Heiss

Candidato:

Vincenzo Curatola

4

... é lo stupore che prende le cose,
come dopo l’amore

A. Bertolucci

6

Questo progetto é nato in una tiepida primavera pisana durante i mattinieri
appuntamenti delle Colazioni. Ha conosciuto uno dei piú gelidi inverni berlinesi
per poi posarsi, lieve, sulla tortuosa strada delle parole in una calda e familiare
mansarda pisana. Tra le righe di questo lavoro si celano emozioni, paure e
speranze di questo lunghissimo anno, e con esse i tanti amici con cui ho avuto la
fortuna di condividerle.
Un sentitissimo grazie a Stefano, compagno di viaggio, esempio di come si possa
diventare adulti senza mai smettere di sognare.
Grazie a Giulia, per come sa guardare oltre, per come sa poi trovare la dolcezza
per arrivarci.
Grazie ad Alice ed Emilie: quando la vita mi sorride é alla loro gioia sincera che
ritorno.
Grazie a Rob, spalla di tante avventure, perennemente innamorato della vita.
Grazie a Ciccio, prezioso amico. Senza clamori l’ho sempre ritrovato sui tutti i
miei passi.
Grazie a Bresci, perché le imprese non riescono se non c’é qualcuno con cui
poterle celebrare.
Grazie ad Alessio e Giammatteo, fraterni amici. A partire dalla Settimana del
buongusto e tornando indietro negli anni hanno sempre saputo condividere
serenitá e allegra familiaritá.
Grazie a Tony, con cui ho condiviso tutti i momenti di questi anni universitari.
Tra promozioni sudate e boccioni esilaranti ho imparato molto dalla sua genuina
sinceritá e coerenza.
Grazie a Nicola, capace di raro affetto e solare ironia.
Grazie a Germana, é nella luce dei suoi occhi che spesso ho ritrovato la strada.
Grazie a Petro, forza vitale e lucida leggerezza. Quando il cercare motivazioni
per se stesso si trasforma in un prezioso stimolo per chi ti sta intorno.
Grazie a Raffo, per la sua incontenibile curiositá, per la semplicitá e il gusto con i
quali la soddisfa.
Grazie ad Angelo, iniezione costante di gioia e voglia di vivere.
Grazie a Stefano, Giacomo, Kristina, Fabio e Fabrizio, amici e coinquilini in
quella piazza Guerrazzi 2 che rimarrá per me un carissimo luogo dell’anima.
Grazie al prof. Avvenuti e al prof. Heiss, per aver creduto a questo progetto.
Grazie ad Helge, per la guida precisa e attenta di questo lavoro.
Grazie a mia sorella Irma, esempio di come si possano sposare estrema forza di
volontá e grande dolcezza. Grazie a mio fratello Eugenio, speranza gioia e
amicizia. Grazie ad i miei genitori, per come mi hanno aiutato a coltivare i miei
sogni, lasciandomi andare quando lo chiedevo, preparandomi nel frattempo
sempre buoni motivi per tornare.
Piú lunga sará la strada e piú grande sará la voglia di fare a voi ritorno.

8

Contents

1 Introduction 11
1.1 A Scenario: Smart Home . 11
1.2 Motivations and Goals . 13
1.3 Thesis Outline . 15

2 Background 17
2.1 Actuators/Sensors Networks . 17

2.1.1 Typical devices . 18
2.2 Distributed Systems . 19

2.2.1 Middleware . 20
2.3 Fault-Tolerance . 22

2.3.1 Designing for Self-Stabilization 23
2.4 Self-Organization . 24
2.5 Communication Paradigm . 25

2.5.1 Publish/Subscribe . 25
2.5.2 Broker Systems . 27

3 Role Assignment Algorithm 33
3.1 Algorithm Overview . 33
3.2 Design . 35

3.2.1 Algorithm Stack . 37
3.3 Self-Stabilizing Spanning Tree . 38
3.4 Hierarchical Publish/Subscribe . 40
3.5 Self-Stabilizing Role Assignment . 42

4 Optimizations 47
4.1 Optimizations Overview . 47
4.2 Energy Consumption . 48

4.2.1 Message Piggybacking . 48
4.2.2 Heartbeats Decoupling . 49
4.2.3 Count to Infinity Problem 49

10 CONTENTS

4.2.4 The Code . 50
4.3 Stabilization Time . 55

4.3.1 Fast Notifications . 55
4.3.2 Double Activation Problem 56
4.3.3 Role Reassignment . 57
4.3.4 Let’s keep in touch . 57
4.3.5 Code Changes . 58

4.4 Synthesis . 63
4.4.1 Drawing . 63
4.4.2 Classes . 64
4.4.3 Assignments Policy . 66
4.4.4 Idle Status . 66
4.4.5 Code Changes . 68

5 Implementation 71
5.1 Simulator Engines . 71
5.2 Network Simulator 2 . 74
5.3 Simulator Implementation . 76
5.4 Simulation Setup . 77

5.4.1 Topology . 77
5.4.2 Load Model . 79

6 Evaluation 81
6.1 Simulations Overview . 81
6.2 Stabilization Time . 82

6.2.1 Spanning Tree . 82
6.2.2 Publish/Subscribe . 83
6.2.3 Role Assignment . 83

6.3 Traffic Effect . 84
6.4 Energy Consumption . 86
6.5 Memory Consumption . 92

7 Conclusions 95
7.1 Summary . 96
7.2 Outlooks . 98

Chapter 1

Introduction

Actuator and sensor networks (AS-Nets) are going to play a crucial role in chang-
ing the way to interact with our living sphere. Basically, AS-Nets consist of embed-
ded controllers and sensor boards, working jointly with other computing devices,
either mobile ones (like PDAs and Smart-Phones) or fixed ones (PCs). Applica-
tions running on a AS-Net are pervasive with the scenario in which they work.
Their behavior depends on determined environmental parameters, figured out by
sensors, and through actuators they can enable actions to change part of the en-
vironment itself.

Applicative range of AS-Nets is strictly related to the number of parameters
analyzed, as well as to the types of actions possible to perform. An higher grade
of integration of such technologies with the surrounding environment determines
even wider applicative scenarios. Taking as example our own homes, technology
is entering in all the components. Fridges, washing machines, ovens are already
furnished with sensors and computing capabilities, some of them are even able
to connect to the Internet. Objects around us are becoming even more “smart”,
and the possibility to let them communicate with our computing devices, whether
mobile or not, opens new pervasive interactions with our surrounding sphere.

1.1 A Scenario: Smart Home

The Smart Home consists in a global integration among the electronic technology
and household tasks. Its aim is to improve the quality of life by making easier the
user interaction with domestic environments.

To make our home “smart”, it has to be able to analyze the reality, and to
autonomously trigger proper actions. Once an action is automatized it can be
easily tuned on the user’s habits and on his way of living. If we think of our
daily tasks there is a long series that we do repeatedly, and always with the same

12 Introduction

logic. Watering the plants, feeding of domestic animals, the most part of the
food shopping, as well as the heating schedule are examples of tasks that can be
automatized and easily customized. The smart home analyzes the reality through
sensors disseminated in the house, then figures out the state of all the components
under its control and, based on applications working on the system, triggers proper
actions through actuators.

Figure 1.1: Smart Home Project

The possibility to control household tasks makes the system able to plan en-
ergy saving features in the daily heating schedule, by monitoring the usual fam-
ily’s habits. Moreover, electrical appliances usage may automatically coordinated
(e.g. washing machine, dishwasher) in order to shape the energy consumption, al-
lowing the user to stipulate more convenient contracts with the electrical company.
Through position detection besides to support the alarm system, it is possible to
make automatic the light turning on (off), depending on the user’s presence (not
presence) in a particular room. Furthermore, if the house is equipped with an
integrated audio system, it would be possible to select an audio source (PC in the
study, or HI-FI in the living room), and to redirect the audio stream right in the

1.2 Motivations and Goals 13

room in which the user stays.

Food Management can be realized by equipping the kitchen by appropriate
sensor boards. The fridge, the freezer and larders are in fact provided with sensors
able to detect the presence of particular foods, and to estimate their expiry date
as well. Moreover, such sensors are linked to a network interface, enabling them
to communicate each other. By querying them, a food management application
is able to say if a product is missing, or still present but getting too old. After-
wards, for instance through the pc in the study that is connected to internet, the
application could send an email to the shopkeeper asking for the missing products,
with a quantity proportioned to the computed family’s usage. When this would
not be possible, maybe because it is sunday or tuesday in the afternoon (italian
shopkeeper’s closing turn), a sms could be send to the mobile of a family member
which is not at home yet, through the home phone.

Smart houses give answers to problems belonging to social assistance as well.
In the health care for elderly people and in general for people with health problems,
several projects are in researchers’ consideration. CodeBlue [MFJWM05] is a
project dealing with the continuous monitoring of patient’s vital signs (e.g. blood
pressure), by the use of small wearable and in-body wireless sensors. In this way
the control on the disease signs is almost total, even if the intrusiveness in the
person’s life is considerably contained. CodeBlue, and related approaches, find in
smart house a natural complement, actually extending its potentialities.

AS-Nets fit very well in such a scenario, light and position sensors support the
most part of the smart house features, and actuators give the ability to the system
to perform needed actions. Furthermore, AS-Nets are exploited by more powerful
systems (like web applications), creating a unique coordinated system which is
easily available for the user by his mobile phone, or by web.

1.2 Motivations and Goals

Smart homes show how AS-Nets can be used to improve our quality of life. Our
surrounding adapts itself to our habits and changing the approach to our home.
The goal of this thesis is to propose a platform over which developers can build
even more impressing and user-friendly applications, without needing to deal them-
selves with the several design problems that a scenario like smart home presents.
Which design problems? First, nodes need to communicate. In AS-Nets, and in
particular in smart home, nodes are mainly wireless, and then battery charged.
Wireless sensor boards have a bounded lifetime therefore often someone “dies”.
Moreover, not all the devices are dedicated for the smart home system. Actually,
mobile phones, PDAs could be present or not, and when present they can change

14 Introduction

positions in the scenario. The communication protocol has to care about such
aspects. And when a device that was carrying out a particular task (e.g. the
phone through which sms are sent) is no more present in the network, say because
the user has taken it away, how the system can realize it and which node will
substitute it? Furthermore, who will configure the new one? The system needs to
be reconfigured, and given that such eventuality is intrinsic in this network type,
such problem cannot be solved relying on the user intervene. He has to be un-
aware of all the network problems, in particular in a scenario like the smart home,
which aim is to make easier and more relaxing the approach to the everyday life.
In AS-Nets such problems have to be tackled in the best possible way, proposing
solutions able to allow applications running without dealing with them.

The goal of this thesis is to answer to these problems and to propose an al-
gorithm, that, based on applications needs, facilitates the self-organization of the
network and its applications in AS-Nets. Taking the algorithm of Weis, Parzyiegla,
Jaeger and Mühl [WPJM06] as starting point, and following all the design phases,
its effectiveness and its efficiency have to be validated. Afterwards, it has to be
optimized for the following requirements:

Self-Stabilization. Fault-tolerance has to be implemented in the way that the
system is able to recover from any possible transient fault. Such property is called
self-stabilization and in AS-Nets it represents a crucial goal. In fact, given that the
system cannot rely on the user intervene, a fault would heavily affect the system
effectiveness.

Heterogeneity. AS-Nets base on the concept of heterogeneity. Actually several
types of devices are used, with different capabilities and power constraints. The
algorithm has to take care of such peculiarities, in order that such differences do
not represent a limitation for the system efficiency. Instead, the algorithm has to
get advantages from a differentiated use of resources available in the network.

Devices’ Lifetime. In AS-Nets nodes are mostly wireless, then furnished with
constrained power. The algorithm has to focus on such point, in the way to
minimize the energy consumption in all the aspect of its functioning. From this
point depends the effectiveness of the network, and its applicative range as well.

Scalability. As in all the networks scalability is a crucial issue. An algorithm
is scalable when, raising the number of nodes, its complexity stays maintainable.
In particular in our case complexity is represented by the number of exchanged
messages, and by the data stored by nodes. Protocols have to be devised in order
to be scalable with respect to them.

1.3 Thesis Outline 15

1.3 Thesis Outline

Chapter 2 provides a survey of the necessary background to understand the tech-
nologies and the protocols treated in this work. First, types of actuator/sensor
networks are analyzed, then the discussion passes to analyze possible solutions to
build the algorithm. For each technology taken into consideration a short resume
of the actual progress report available in literature is discussed.

Chapter 3, based on the considerations made in the previous chapter, proposes
an architecture to implement the algorithm. First the choice between the possible
solutions is made and argued, then the preferred one is better specified, and the
algorithm design is outlined.

Following the main project requirements, Chapter 4 proposes optimizations of
the algorithm identified in the previous chapter. Among the optimization goals,
devices’ lifetime clashes with stabilization time. In order to find the best trade-off
two versions of the algorithm, one optimized for each issue, are deployed. Conse-
quentially, based on the previous considerations a unique algorithm is pointed out.

Chapter 5 describes the implementation phase in order to simulate the algorithm’s
versions. Onwards first the simulator is chosen, then accordingly the programming
language and the program structure. The simulation parameters are identified in
order to best study the quality of the proposed optimizations.

Chapter 6 presents the simulations’ results. Issues that better characterize the
algorithms’ behavior are showed and put in relation, in the way to lead the reader
to a meaningful and comprehensive analyze of them.

Finally, Chapter 7 draws the conclusions of this work and provides a survey on
the obtained results. Furthermore, points over which future works could focus on
are identified, giving an outlook on possible solutions as well.

16 Introduction

Chapter 2

Background

In this chapter the technologies used by the algorithm are explained. Beginning
with a quick introduction needed to understand their functioning, the state of the
art is analyzed as well. First, actuator/sensor networks are presented, their recent
growth and future outlooks. In such a network the system has to be structured
as a distributed one, and the second section explains why, introducing middle-
wares as well. In the third section the forms of fault-tolerance are studied, and
self-stabilization is defined and explained. A crucial property of the algorithm is
the self-organization, and it is argued in the fourth section. Finally, in the fifth
section possible solutions to build the communication paradigm are pointed out
and analyzed.

2.1 Actuators/Sensors Networks

In recent years research advances in highly integrated and low-power hardware per-
mitted a new category of network to emerge. These are called sensor networks and
are composed from an high number of tiny devices (sensors) able to monitor some
physical properties of their environment. They are provided with small compu-
tation capabilities and with a network interface to perform basic communication.
More recently they were provided of a simple wireless interface, creating new ap-
plicative scenarios and letting applications to be more pervasive. A system is said
to be pervasive when it is able to integrate computation into the environment.

In order to equip such a network with the ability not just to detect and sense a
property, but also to perform actions based on the sensed inputs actuators make
their entry in this kind of networks. An actuator is exactly a device that, in re-
sponse to proper inputs, performs a particular action. Actuator/sensor networks
(AS-Nets) extend the sensor networks capabilities, and incorporates in the model
design features such as to permit the development of applications able to au-

18 Background

tonomously perform actions in response to inputs. The applications range results
wider meeting automotive and robotics scenarios. Actually, even if actuator/sen-
sor networks are an up-and-coming technology, it is already used in a growing
number of contexts.

The devices’ power supply is generally provided by batteries which represent
a limited energy resource, thus, the optimization of power consumption takes a
fundamental importance in application designing. However, in such networks node
failures frequently occur. In response to such a topic usually an high number
of devices is used. The network should exploit this redundancy to maintain its
function, therefore scalability and robustness become crucial issues. Up to now,
to deal with limitations of the nodes’ capabilities solutions answering to uniform
devices have been deployed. In other words the network is usually assumed to be
homogeneous.

Actually, sensors and actuators are available with different radio coverage,
power capacity and processing capabilities, moreover not all devices are mobile.
System design has to care about the particular properties of a node, in this way
the system can comply with the heterogeneity of the network, increasing the per-
formances as well. Especially in AS-Nets the heterogeneity is strictly part of the
system. Actuators and sensors are right different device types, furthermore not all
the nodes are intended as wireless. Hence some components could be connected to
the electric equipment or using a wired communicating interface. It is now plain
that an heterogeneous approach to AS-Nets is of crucial importance.

2.1.1 Typical devices

Up to now several device types have been developed. Most used are motes, by
Intel in collaboration with the University of Berkley [Kli], Shockfish’s TinyN-
odes [DFFMM06], Moteiv’s Telos [PSC05], UCLA’s iBadge [PLS02] and Scatter-
web’s ESB [SRWV05]. On this field the research advances , and crucial issues on
the device are the trade-off between computational power, battery lifetime and
dimension. The cost is a decreasing parameter as well, and it is possible to foresee
devices with a dimension of some centimeters at a price less then 10$ over the next
five years. A very interesting project of the University of Berkley called “Smart
Dust” [WLLP01] aims to develop devices of the dimension order of a millimeter
over the next ten years. It follows that, by such improvements SA-Nets are going
to spread their application area with an impressive rate. Actually devices are com-
monly provided with a micro controller, usually it is a 16-bit type, with a typical
clock of 8 Mhz. As storage memory there are several combinations between Flash
memory, common SRAM and EEPROM, providing up to 1024 Kb. The trans-
mission is carried out by a transceiver with common transmission range of about
100 meters in open space. Other interfaces are available, like Bluetooth,serial and

2.2 Distributed Systems 19

Figure 2.1: An Intel mote

USB. The charging is usually supported by batteries of type AA, AAA or of button
type.

2.2 Distributed Systems

The traditional way to structure a network is represented by the centralized archi-
tecture. In such a scheme each node of the network is programmed to perform a
particular task and communicates with the other ones by message exchanging. The
main application program is installed on a prearranged node which, by collecting
data from the network, performs the needed actions. In the 1980s distributed sys-
tems came up thanks to the greater accessibility to informatics which spread the
use of local area networks (LAN) in a very considerable way. A more formalized
definition is given by Tanenbaum [TS07]:

A distributed system is a collection of independent computers that ap-
pear to the users of the system as a single computer.

By deploying distributed applications, instead of traditional centralized ones, the
scalability, the efficiently and the flexibility of systems were significantly increased.
As drawback, a considerable time is spent to synchronize and coordinate the dif-
ferent network entities. Therefore, when the distributed approach is not needed
the advantage of such a scheme has to be checked. However, for our aims the
centralized approach does not fit well, definitively. Actually, in AS-Nets all nodes
could be weak, and the need of a master node on which the main program will run
represents a critical point for this kind of system. Moreover the need to program

20 Background

each node in a different way to perform a particular task makes the system diffi-
cult to scale. For these reasons the system will be implemented as a distributed
system, in which the computation is spread on the whole network.

2.2.1 Middleware

The distributed approach brought also the problem to make different platforms
able to communicate among them. Applications must be developed to run without
distinction on all the platforms present in the network, leading programmers to a
very expensive work of applications adaption. It followed the necessity to build
a middleware layer between the operating system and the applicative layer. The
middleware layer enables the components to coordinate their activities in such a
way that programmers perceive the system as a single, integrated computing facil-
ity. Middleware takes a fundamental importance in modern distributed systems,

Figure 2.2: Middleware

its main purpose is to manage the communication between components, even if
other characteristics like congestion control, concurrency and programming lan-
guage integration are commonly featured. Some features are designed to improve
the efficiency of the system, others to provide an easily usable programming inter-
face. Actually a commercial middleware cannot set aside the usability to assert
itself on the market. In WSNs for instance, TinyDB[MHH] is an often used middle-
ware thanks to its tightly coupling with TinyOS[LLWD], the most used operating

2.2 Distributed Systems 21

system in these kind of networks, but also for the programmer-friendly interface,
which permits to investigate easily data disseminated in the network.

In AS-Nets middleware structural characteristics take an importance even big-
ger. Fault-tolerance becomes a crucial point, as well as power saving and light-
weightness. Moreover, for the AS-Nets nature itself, which are designed to mask
the network complexity to the final user, the ability to auto-manage changing envi-
ronments represents a very big improvement. A system able to do this is a system
self-organizing. In this work we will concentrate on the middleware just from its
structural point of view, which is the one which mostly determines its efficiency.
Topics which we address as actually dealing with the middleware’s structure are
fault-tolerance, self-organization and the communication paradigm.

Fault-Tolerance

Fault-Tolerance is a crucial issue in AS-Nets. A system is fault-tolerant as much
as it is able to recover once a failure has occurred. Actually, two approaches to
fault-tolerance may be distinguished. The first tries to mask faults, in the way
that the system can go on working without any service interruption. If this is not
enough, and a service interruption happens, the second approach tries to recover
leading the system to a new legal state. Intervening in two different times, such
approaches could be combined in a complementary form, composing a unique two-
gears instrument. The goal is to continuously push the system towards a correct
state again. In section 2.3 fault-tolerance topic is better argued.

Self-Organization

A growing up topic in middleware deploying is self-organization, which is the ability
of the system to organize itself and to adapt its structure to changing environments,
all this without user intervention. In particular, self-organizing services perform
operations to mask the network complexity to programmers permitting to manage
network dynamics. In a system which aim is to keep out the user from the system’s
working, self-organization is one of the most important challenge for these kind of
networks. Self-organization enters in the model design bringing big advantages in
AS-Nets, even if, as for self-stabilization, it loads considerably the system. Several
services supported by a middleware could be made self-organizing, and in literature
some proposals have been already presented. In 2.4 self-organizing services actually
dealing with our scenarios are taken into consideration.

Communication Paradigm

Even though, the feature which mostly characterizes a middleware and mostly
contributes to its efficiency remains the communication paradigm. The commu-

22 Background

nication paradigm represents the way by which messages are exchanged in the
network. Actually two schemes may be distinguished. In ID-centric approach
to retrieve data from network a node has to know where such information is lo-
cated. Afterwards, it can request such data by addressing the interested node.
On the contrary in data-centric approach, nodes are unaware of data location.
Actually messages are routed to right nodes just basing on the characteristics of
requested data. In actuator/sensor networks the ID-centric approach is neither
feasible neither needed. It is not feasible because of the high dynamism of the
network: devices frequently die due to batteries exhaustion and new devices can
be deployed as replacement. It is not needed because an application for this kind
of network generally is not interested in who actually does the action but just in
performing it. For these reasons we speak of data centric systems.

Moreover, in ID-centric communication model, a session for each interacting
party has to be maintained. It is clear that in networks composed from thousands
of nodes such a scheme doesnt scale at all. Instead, in data-centric networks, the
set of interacting nodes is addressed defining the characteristics of requested data.
This permits to abstract from single nodes giving a strong advantage when the sizes
of the network grow. In section 2.5 the choice of a data-centric communication
paradigm is made and properly argued.

2.3 Fault-Tolerance

Solutions to mask faults usually are designed for specific problems, actually, where
the system is more exposed to faults instruments of redundancy can be used. Data
particularly important could be in part replicated, in the way that if one copy is
corrupted, by the other copy it would be possible to obtain the original again.
Error correction code (ECC) is an example of such instrument and it is largely
used in computer data storage. To check the data coherency proper algorithms are
used. Basing on the data transmitted an additional field is filled with a code, in
the way that afterwards, by applying the same algorithm on the data, it is possible
to compare the result with that field. In such a way it is possible to check the
received data effectiveness. For instance, cyclic redundancy checks (CRC) is an
instrument of such a type.

Usually such approaches are used to check exchanged messages, and some im-
portant stored data. A good point of this approach is that it doesn’t need to change
the system working, the model design remains untouched and just additional in-
struments are used. On the other hand a different dedicated solution has to be
thought for each possible problem, and anyway it is not ensured that even if an
error is detected, it is possible to correct it. Actually, to implement fault-tolerance
in a more effective way we need to make the system self-stabilizing.

2.3 Fault-Tolerance 23

The concept of self-stabilization was introduced by Dijkstra in 1973, he defined
a system as self-stabilizing when “regardless of its initial state, it is guaranteed to
arrive at a legitimate state in a finite number of steps”[Dij74]. In other words by
self-stabilization we mean the property of a system to recover from any possible
transient fault. A transient fault is an event that may change the global state
in a system by corrupting the local state of a node as represented by memory
or program counter or by corrupting nodes’ connection status or shared memory.
Stigmatizing the system as composed of nodes and edges, the union of all the
components’ state defines the global state of the system itself. It is important to
underline that the topology of a system is part of its global state, given that it
determines the status of the nodes’ connections. Moreover, from these considera-
tions it follows that a self-stabilizing system does not need to be initialized. This
is a fundamental feature, in particular for ad-hoc networks and dynamic systems.

Self-stabilization incorporates the fault-tolerance topic into the design model,
and treats it by a unique vision. This is quite at the opposite with respect to
traditional ways, in which every possible fault-cause is treated as stand-alone one
by a piecemeal approach. Actually, while they are a tentative to mask errors trying
to avoid service interruptions, self-stabilization accepts that an interruption can
happen, and guarantees to recover in a bounded time. The two approaches are so
complementary, even if only the second one gives the certainty for the system to
can go on working. Self-stabilization enters in the model design, addressing new
rules in the programming way, and in data and protocols definitions.

2.3.1 Designing for Self-Stabilization

About the design is demonstrated[Sch93] that asymmetry has to be maintained
in systems where processes may synchronize among them. This is our case, given
that applications could use resources in mutual exclusion. In fact, a node can take
simultaneously two roles of two different applications, and an exclusive use of the
device’s resources have to be guaranteed.

Actually, asymmetry can be maintained in a system by two methods. A system
is asymmetric by state when all of its component are identical, but they have
different initial local states. In this way the system can be realized by identical
programs. A system is asymmetric by identity when not all of its components are
identical. This may be realized by different programs, or by identical programs
parameterized by a local id. In general, systems asymmetric only by state cannot
be self-stabilizing, in such a case a central demon is needed as well[Sch93].

About data and protocol definitions a system can be self-stabilizing only if
it is ensured that a memory corruption, a message not delivered, a node failure
don’t compromise the system working. This could be realized by asynchronous
protocols, and by periodical refresh-phases of the system state in each node. In

24 Background

this way a fault can be discovered, and in case corrected, letting the system to
achieve another stable configuration. Evidently cyclic state dependencies have to
be avoided during the protocols definition. The program could be stored in a ROM
support, in this way it cannot be corrupted.

Furthermore, in the case the wished system is composed by several compo-
nents, the fair composition theory[Dol00] ensures that if such components are
self-stabilizing the system that they implement is self-stabilizing too. This point
takes a crucial importance in our case, given that the role assignment algorithm
we want to build actually bases on other components. Thus, the self-stabilization
design of the whole system may be performed just by making self-stabilizing its
single elements.

2.4 Self-Organization

In distributed systems the computation organization is a crucial issue and in AS-
Nets this point takes an importance even stronger. Usually a configuration phase
by the system administrator is needed, which has to set nodes in the proper way,
and the network topology as well. Several forms of auto-configurating services
coordinated by a proper algorithm are present in literature. In [SAJG00] authors
propose a suite of algorithms for self-organize routing and election, other aspects
taken into consideration are data aggregation [SK00], coverage [SM01] and lookup
services [HMJ05]. Such functionalities do not need of a configuration phase, fur-
thermore they are able to adapt to changing environments.

A different approach, which deals with self-organization by a wider view bases
on the concept of roles. A role is an application’s task possible to carry out by a
single node. Applications are analyzed drawing out requisite roles, around which
the computation is organized. Once their definition have been done, a proper al-
gorithm is responsible to assign roles to nodes. Römer and Frank [RFMB04] pro-
posed a self-organizing algorithm to assign roles to nodes for a generic task. Such
algorithm exploits a rule-based language to define properties a node must have to
be assigned for a certain role. In examples provided by authors clustering, coverage
and in-network aggregation are topics in which their algorithm find its applica-
tion. Another project which addresses the same topic is TinyCubus [MLM+05].
The ability of nodes to carry out particular operations is discovered by sending
code updates along the network. However, with respect to the previous work any
concrete algorithm to self-organize the system has been proposed.

2.5 Communication Paradigm 25

2.5 Communication Paradigm

As argued in section 2.2.1, in AS-Nets the data-centric communication paradigm
is the most suitable, definitely. In such a model nodes do not have to know where
parts of application are executed, they are actually unaware of their interacting
parties. Among the proposed data-centric communication paradigms publish/sub-
scribe stands out thanks to its efficiency for such a network type.

2.5.1 Publish/Subscribe

Publish/Subscribe is an asynchronous data-centric messaging paradigm. The gen-
eral structure of a PS system is shown in the figure 2.3. Subscribers are nodes
interested in some kind of information, they show their intention to receive data
issuing a subscription message containing a description of what they are inter-
ested in. By issuing an unsubscription message, a subscriber declares he is no
more interested in receiving notifications. At the other end of the scheme there
are publishers, they produce and diffuse data (events) in form of notification mes-
sages. The interaction between publishers and subscribers is implemented by the

Figure 2.3: Publish/Subscribe System

use of a broker system, which collects and correctly forwards notifications sent
by publishers, according to the subscriptions received from subscribers. Actually,
publish/subscribe well supports our requirements, in particular by the broker sys-
tem identities and synchronizations result totally decoupled. And in this way a
publisher and a subscriber act knowing anything about each other.

26 Background

Different Approaches have been proposed. The main difference between them
is about the notification selection. That is the way by which nodes select the
interesting notifications. There are several approaches, and by analyzing them is
clear there is a tradeoff between Expressiveness vs. Scalability. Actually an higher
selectivity of notifications leads to a lower scalability of the system. The most
known approaches are:

• Channel-Based declare explicitly the notifications’ type. This is a simple
way, easy to implement and to map on network’s address. By associating
channels to addresses all things published are delivered without any filtering
operations. Of course the expressiveness is considerably limited and produc-
ers and consumers are not decoupled. On the other hand the scalability is
assured, given that a new notification type can be mapped on one of the
pre-existing types, of course decreasing the selectivity.

• Subject-Based organize in a hierarchical way the notification types, which are
better identified from level to level. For instance, the first level “news” in
the second one would be split in “italian news” and “german news”, and so
on. In this way we gain something on the expressiveness, but producers and
consumers are not yet decoupled, and if the tree changes, in order to insert
a new subject or something else, the tree representation has to be changed
in all the devices.

• Type-Based extends the selective potentiality introducing the concept of
event classes. By that a new data type can be mapped in a pre-existing
event class, and so the scalability is preserved. Anyway producers and con-
sumers are still coupled, even if loosely, in fact data structure has to be the
same in all the devices. After all this approach is quite the same with respect
the previous one.

• Content-Based makes the selection by a mathematical expression, composed
by attributes, operations, and values. An attribute identifies properties in
which a subscriber is interested in, they can be composed by operations
which returns a boolean value, and are confronted with fixed values. By
forcing to describe desired data with this so fine grain level, it permits to
filter out unwanted events. On the other hand such system needs a huge
space to store filter rules, thus the scalability is considerably limited.

2.5 Communication Paradigm 27

2.5.2 Broker Systems

As explained in the previous section the broker system characterizes the publish/-
subscribe implementation, providing decoupling properties which actually improve
the system efficiency. Such system is composed by a set of nodes called brokers,
connected among them. Each broker is connected to a set of host nodes, from
which it collects subscriptions, and to which it forwards published messages if a
checking subscription is present. Brokers could be nodes dedicated to carry out
such a job, or nodes that besides their tasks provide broker functionalities as well.
The ways to implement the broker network, and to forward messages in there,
characterize the several proposals available in literature.

Flooding

In the most part of publish/subscribe implementations flooding is used. Flooding
represents a light-weight solution, given that does not need any communication
overhead to keep the system organized. In fact, in flooding-based publish/sub-
scribe, brokers forward received notifications to all other neighbor brokers, and
each processed notification is delivered to all local clients with a matching sub-
scription. Hence a coordination between neighboring brokers is not necessary and
no additional traffic is generated. Another significance issue is that a subscription
becomes active at once as submitted. On the other hand, duplicated messages are
sent to the same node, which has to take care to break possible cycles. Further-
more messages are sent to all the brokers, also if some of them have no matching
requests. This approach sets aside from energy aware topic as well.

Spanning Tree

The broker network can be implemented in a tree format by using a spanning tree
algorithm, which structure the network creating a cycle free connected graph. A
broker network structured as a tree gives form to a hierarchical publish/subscribe,
as the one proposed by[MJH+05]. The network could be formalized as a graph
G = (N, L) where N is the nodes’ set, and L is the set of communication links
between nodes. A spanning tree T = (N, L′) of G is a graph consisting of the
same set of nodes N , but only a subset L′ ⊆ L of links such that there exists
exactly one path between every pair of network nodes. Basically, this means that
the graph is connected (there is at least one path between any two nodes). One
of the basic theorems of spanning tree states that in a network of n nodes, the
tree contains exactly n − 1 communication links. The usage of spanning tree to
structure the network improves the efficiency of the network protocols, in particular
in the case of broadcast messages. In fact, in this case a message is transmitted
n − 1 times instead of the L times in flooding. Two kinds of spanning trees may

28 Background

Figure 2.4: Spanning Tree: DFS (a) and BFS (b)

be distinguished, the first is Breadth-First Search (BFS), and the tree results from
a breadth-first traversal of the underlying network topology. Starting from the
root node the tree is built in a parallel way going away from the root (fig. 2.4
b). The second is called Depht-First Search (DFS) and the tree is obtained from
a depth-first traversal, this means that the algorithm, still starting from the root
node, analyzes the set composed by nodes not yet visited, and then step-by-step
builds the edge to a new one in a recursive way (fig. 2.4 a).

Rooted spanning tree have a notion of “parent” and they result from the execu-
tion of semi-uniform algorithms. An algorithm is called semi-uniform when there
is one process which executes a different algorithm. In literature there are several
proposals for spanning tree algorithms. Actually they are almost of BFS type, and
they difference each other for the way to detect and to break cycles, finally for the
way to exchange messages to keep the algorithm operative [Gär03].

Distributed Hash Tables

Distributed Hash Tables(DHT) is a scalable data structure for building large-scale
distributed applications. Strongly used in peer-to-peer systems it builds decentral-
ized, self-organizing, fault-tolerant and scalable systems, consisting of symmetric
nodes called peers. DHT maps data location to nodes by the use of a particular
key. Peers have the knowledge of a subset of existing nodes, by such knowledge
they are able to recover data from the network, provided that the node depositary
is still present. The DHT implementation we take into consideration for this thesis
is Pastry.

2.5 Communication Paradigm 29

Pastry[RD01] was proposed in 2001, actually several universities participate in
such project jointly with Microsoft Research. Pastry assigns to each node a nodeID
of l bits, that is usually 128-bit long and is interpreted in a 2b base (usually b = 4).
For example, with b = 4 the identifier 1000111111010 is interpreted as 8FA. In this
way the name space is grouped in three parts and hash keys are equally distributed
on it. Each hash key is associated to the node with the closest nodeID value to it,
and if two nodes have the same distance the key is replicated in both of them.

To perform routing operations each node stores two data structures: a routing
table and a leaf set. A routing table has log2bN rows with 2b− 1 entries each. The
2b − 1 entries in row n refer each to a node whose nodeID matches the present
nodeID in the first n digits, but then differs in the n + 1th. Moreover, each node
stores in its leaf set information about nodes with the l/2 numerically closest larger
nodeIDs, and the l/2 nodes with numerically closest smaller nodeIDs.

Figure 2.5: Pastry Functioning

Basically to route a message, node A checks the presence of the receiver in the
leaf set, if it is not there, node A compares receiver with its nodeID and with the
numerically closer entry in the routing table. If the former is the closest node A
intends the message for itself, otherwise the latter is chosen as the next hop to
deliver the message. In figure 2.5 there is an example on how pastry delivers a
message with hash key d46a1c starting from the nodeID 65a1fc.

Messages take O(logbN) hops on average, where N is the number of nodes in
the Pastry network. The factor b is chosen has a tradeoff between the average hops
and the routing table complexity. As before said usually b = 4. About the fault
tolerance the delivery is guaranteed unless l/2 or more nodes with adjacent nodeIDs
fail simultaneously. In fact, in such a case the leaf set looses its consistency.

30 Background

Directed Diffusion

Directed diffusion [IGE00] is a particular implementation of publish/subscribe
paradigm. Actually, it is not just a broker system, moreover it interpreters in
a different way publishers and subscribers as well. Directed diffusion establishes
efficient n−way communication between one or more sources and sink. As source
it is intented every node which produce data, and sinks are nodes interested in.
Directed diffusion is characterized by a good level of scalability also in large scenar-
ios. It also well supports fault-tolerance and power-saving features, furthermore it
carries out routing, and structures the network as well.

Directed diffusion is performed by the usage of: interests, data messages, gradi-
ents and reinforcements. By an interest message a node can specifies data in which
it is interested in, such node is called a sink for the corresponding data type. A
data type is expressed by using attribute-value pairs, in this way the expressiveness
of the request can be modulated on the node necessity. Interest messages are dis-
seminated through the network setting up gradients between nodes. Specifically,
a gradient direction state is created in each node that receives an interest. The
gradient direction is set toward the originators of interests along multiple gradient
paths and is characterized by a specific interval, which determines the refresh time
of the gradient itself.

At the beginning a sink sends an interest message of the appropriate data type
with a low refresh interval. Each node that receives an interest message stores
belonging informations like sender, interest type and refresh interval in a table,
called interest cache, and then it forwards the message. Moreover, thanks to the
interest cache it is possible to do not create loop in the network. The figure 2.6
shows an example.

Figure 2.6: Directed Diffusion

When the source node produces a data, it looks in its interest cache, and
if a matching entry is present it forwards the message to matching nodes. For

2.5 Communication Paradigm 31

each entry in the interest cache, a data cache is created, in which information
about received data messages are stored. When a node receives a data message it
analyzes the correspondent data cache, and if that message was already received
nothing is done, otherwise the message is forwarded to interested nodes. Each node
(source node included) forwards (or sends) data messages following the requested
refreshing rate specified in the interest description.

In a bounded time data messages start to reach the sink node by multiple
routes. At this point the sink, discovered that a source node for its data really
exists in the network, reinforces a particular route (it is sensible to reinforce the
first one by which arrived the data message), by sending an interest message with
an higher refresh time. Received such message, the selected node performs the
same operation, and step by step all the edges of that particular gradient reinforce
their refresh times. Now a route with the needed refresh time is created, others
n− 1 routes are anyway refreshed with a slower rate.

This redundancy is needed to keep effective the network paths, and so to make
faster the reaction to topology changes. In fact, when some topology change
happens the sink node can reinforce in negative a gradient, selecting another one
as the main one. This system seems to be quite expensive, actually each interest
has to be refreshed along the network, on the other hand the fault-tolerance is
well manageable. Furthermore, given that the network is not structured in a
hierarchical way, traffic is distributed with just an inevitable greater stress on the
topology center.

32 Background

Chapter 3

Role Assignment Algorithm

This chapter presents a basic role assignment algorithm, structured as an algo-
rithms stack. The first section shows an overview of the algorithm, pointing out
the main features and the quality requirement. Section 3.2 bases on the analyze
made in the previous chapter, and accordingly with requirements makes design
choices to build the algorithm stack. Then the description goes deeper analyz-
ing the structure of the chosen algorithm stack layer by layer. For each of them
the algorithm working is described, with particular focus on the self-stabilizing
property.

3.1 Algorithm Overview

This work is part of a project [MOD], which aim is to provide algorithms and tools
for self-organizing and self-stabilizing pervasive applications for AS-Nets, especially
for a model-driven development. The complete work will be represented by a light-
weight middleware able to investigate capabilities needed by applications to run,
and accordingly to manage nodes in order to well support distributed computation.
Thus, developers will be able to implement distributed applications without having
to deal with self-organization and self-stabilization themselves.

The heart of this project is represented by a role assignment algorithm, which,
based on the capabilities available in the network, provides to assign roles to nodes.
As introduced in section 2.4 a role is an application’s task possible to carry out
by a single node. Applications are analyzed drawing out requisite roles, around
which the computation is therefore organized.

For instance, in the food managing application (see section 1.1) five roles may
be distinguished. The fridge inspection, the freezer and larder ones, an internet
interface (e.g. the pc), finally a telephonic one (e.g. home phone). Nodes have the
knowledge of their capabilities, and they announce them. If in the network enough

34 Role Assignment Algorithm

Figure 3.1: Role Assignment Architecture

capabilities are available to run an application the algorithm provides to assign
roles. Afterwards, exploiting communication protocols the algorithm features nec-
essary functions to let nodes assigned for a role to interact, thus supporting the
application working.

Whether because of redundancy or for multiple possible choices, a role could
be carried out by more than one node in the same moment. The algorithm has to
choose right one node for each role among the capable ones. In the food managing
application the “internet access” role can be assumed by the pc in the study, by the
microwave oven and by the smart-phone. Considered the situation in which it has
been assigned to the pc, when the user switches it off, the “internet access” role is
no more available in the network. At this point the algorithm detects such situation
and therefore tries to reassign the role if another capable device is available, for
instance the microwave oven. The reassignment is performed without involving
the food managing application, which is kept unaware of such reconfigurations, as
well as without relying on the user intervene.

The role assignment algorithm is proposed together with communication proto-
cols, forming a stack of layered algorithms, based directly on network interfaces
(fig. 3.1). This is to ensure that the whole proposed system is optimized for our
requirements, which were already introduced in 1.2. Such points represent the
criteria by which fitting technologies to build the algorithm can be identified, and
they are:

3.2 Design 35

Self-Stabilization Fault-tolerance has to be implemented in the self-stabilizing
form. This property represents the first design criteria, and has to be followed
during all the implementation phases. This means that the system is able to
recover from any possible transient fault. Time spent to lead the system in a
new valid state is called stabilization time. For the applications efficiency it is
important to reduce such time as much as possible.

Heterogeneity Role Assignment algorithm bases on the concept of network
heterogeneity. It has to be able to discriminate the different capabilities of nodes
in order to assign roles. Furthermore, another aspect of heterogeneity taken into
consideration is the different power capacity of nodes. In this way the algorithm
can try to load mostly on powerful nodes rather then weaker ones.

Devices Lifetime Devices lifetime is a crucial issue in AS-Nets as already argued
in 2.1. Design has to be founded on the devices weakness, therefore protocols and
applications have to be planned in order to be power saving as much as possible.

Scalability Issues actually affected by increasing nodes number are devices life-
time and memory consumption. Role Assignment algorithm has to be built in
order to minimize their growth with respect to the topology increase.

3.2 Design

To implement role assignment two approaches are feasible: a node can take the
role of leader, and then it will be responsible to collect capabilities available in the
network and to assign roles to capable nodes. Or the assignment can be performed
in a distribute way, in which the state of capabilities available in the network and
then the assignment are obtained by a close messaging among nodes.

The latter case, even if seems to be more profitable given that the assignment
is spread on the whole network, it is very hard to implement. Actually, any
self-stabilizing system like that is ever been proposed, and the theory of self-
stabilization
citeSchneider:1993:SelfStab explains why: depending on the cases, often that is
not feasible.

Hence, role assignment will follow the first approach, and a leader node will
be used. Actually some coordinative abilities could be spread over other nodes,
however a leader node is needed. Consequentially the flowing assignments scheme
could be represented as a first flow in which messages containing capabilities reach
the leader node, subsequently a second flow from the leader node sees to assign
roles to nodes (fig. 3.2).

36 Role Assignment Algorithm

Figure 3.2: Assignments Flowing

The communication paradigm used for this work is publish/subscribe. It is data-
centric and is particularly suitable for AS-Nets. The approaches proposed in the
previous chapter to implement the broker network are: a) flooding, b) distributed
hash tables, c) directed diffusion, d) hierarchical pub/sub + spanning tree.

Flooding is too coarse, actually the network is not structured and a message
delivery is quite expensive in terms of hops to achieve the receiver. Distributed
hash tables have the lower hops number to deliver a message, therefore stabi-
lization time would result increased, as well as devices’ lifetime. Moreover, being
a peer-to-peer algorithm, it loads equally on all the nodes, thus scalability is en-
sured. However, any self-stabilizing DHT algorithm is present in literature, hence
such solution has to be thrown away.

Two publish/subscribe implementations remain among the ones analyzed in
the previous chapter, distributed diffusion, and the hierarchical publish/-
subscribe over a spanning tree. The main difference among them is in the way
to build the broker network, which in directed diffusion is totally decentralized
and builds n − 1 ways for each interest, reinforcing afterwards the needed ones.
While in the hierarchical publish/subscribe the broker network is structured as a
tree with n − 1 links totally, actually with an higher hops number to deliver a
message.

In the case of role assignment algorithm the information flowing of the avail-
able capabilities in the network has as termination point the leader node, from
which another information flow starts again to assign roles. The natural flowing
scheme suggests so a hierarchical approach to disseminate messages. By this
point of view, the latter approach better fits with our aims. In fact, the same
routes established to exchange data are exploited to assign roles. Thus, just n− 1
communications ways are built, therefore routing tables result optimized.

Actually, directed diffusion would build n − 1 communication ways for each
available role only to support the role assignment, plus other n − 1 for each pair
sink-producer (see section2.5.2). Therefore, interest cache and data cache would
have a higher complexity than hierarchical publish/subscribe’s ones. Generally a
hierarchical approach is not always the best solution, given that data exchanged

3.2 Design 37

load mostly on nodes as much as closer they are to the top, while in directed diffu-
sion traffic is better distributed. Event though, in this case the better assignments
flowing offsets to the asymmetry of load distribution.

However, some interesting points of directed diffusion may be taken into consid-
eration as cue for our publish/subscribe implementation. As in directed diffusion,
it is sensible to make the broker network totally distributed, spreading such
task all over the network. In this way, each node is at the same time host node
for its parent, and broker for children.

Actually, we start from the consideration that all the nodes could be weak,
and a broker would be provided with higher power capacity due to the higher
message exchanged rate. Moreover, the hierarchical publish/subscribe system on
which our is based [MJH+05] is self-stabilizing, but not self-organizing. This means
that brokers should be initialized in a different way with respect to other nodes.
Furthermore, their position should be prearranged in order to form a dedicate
broker network. This is totally in contrast with our goals, therefore the dedicated
broker network approach is not pursued.

The algorithms stack that comes out follows the one proposed by [WPJM06].
From now onwards, the algorithm described by tizio and caio is taken into consider-
ation as model. In the following sections its functioning is described and explained,
while in the next chapter optimizations to it are proposed and analyzed.

3.2.1 Algorithm Stack

Figure 3.3: Algorithm’s Stack

The algorithm stack, which comes out from the previous considerations, is com-
posed as shown in 3.3. The spanning tree structures the network in a hierarchical
way, electing the root node as well. Based on this structure, publish/subscribe

38 Role Assignment Algorithm

implements the routing algorithm disseminating messages following a top-down
scheme. Role assignment uses such mechanism to investigate available capabili-
ties in the network and accordingly assigns roles to nodes. In this section layers
structure are defined as well as mechanisms to make them self-stabilizing. Intercon-
nections among them are implemented in order to avoid cyclic state dependencies,
following the concept of fair composition (see section 2.3.1).

Message structure

The message format is structured in a fixed header plus a variable payload. The
first field is MsgType and specifies the type of message sent. Two fields contain
the information about the Sender and the Receiver. Finally there is the Payload.
The MsgType can refer to the spanning tree algorithm (TreeMsg) or to publish/-
subscribe algorithm (SubMsg or PubMsg). Role Assignment algorithm exploits
publish/subscribe mechanism to communicate. Besides published data, the pay-
load can contain also further information needed by the algorithm protocols.

Figure 3.4: Structure of the message

3.3 Self-Stabilizing Spanning Tree

Starting from the bottom the spanning tree algorithm is the first layer of the al-
gorithm stack, it bases directly on the radio interface. In order to allow the use of
very simple radio interfaces, the spanning tree requires just elementary radio fea-
tures, actually is needs only broadcast transmissions, plus a common timer. The
preferred spanning tree is of BFS type, in this way the tree is quickly built, and
dependencies among nodes are looser with respect to DFS. Following considera-
tions made about self-stabilization in section 2.3.1 the algorithm is implemented
as asymmetric by identities, this is realized by the use of the local ID of each node.
The root is elected as the node with the highest ID.

Periodically each node sends a message containing information about the sup-
posed root node, and the distance in hops to it. By receiving such messages nodes
can check their connection status. Actually, if a node does not receive anymore

3.3 Self-Stabilizing Spanning Tree 39

messages from the parent, it can suppose to be no more connected to the tree.
For this reason messages of such type, which keep network connections alive, are
called heartbeats. The proposed spanning tree algorithm is an adaptation of the
algorithm published by Afek, Kutten, and Yung [AKY91].

Spanning Tree Algorithm

Besides the root information, every node selects a parent node as well, that is the
node by which it is connected to the root. The parent is chosen as the node with the
lowest distance (measured in hops) to the supposed root. At the beginning nodes
have no information about each other, so they assume to be the root node and
sends an heartbeat. A heartbeat message contains two information in the payload,
the supposed root node, and the distance to it. By receiving another heartbeat
a node can understand if there is a better root node then itself. If this happens,
such node changes its information about the supposed root node, and then chooses
as parent the node by which received the message. Afterwards, if an heartbeat
with a shorter distance to the root is received, the sender is chosen as new parent
node. Accordingly, the distance is updated as well. The heartbeats propagation
is performed at once as their reception from the parent. In this way the network
is quickly structured, and afterwards updated owing to topology changes. The
image 3.5 shows an example.

Figure 3.5: Spanning Tree Working

In the first image (a) the first node that sends an heartbeat is the node 5.
Nodes 2 (5 > 2) and 3 (5 > 3) lying in its transmission range, chooses node 5 as
root and as parent as well. Then the node 3 forwards the heartbeat (b) and the
node 4 takes 5 as root too (5 > 4), assuming node 3 as parent. In (c) node 2
forwards the heartbeat causing node 1 to choose node 5 as root (5 > 1) and node

40 Role Assignment Algorithm

2 as parent. Node 6 goes on thinking itself as root (5 < 6). In (d) node 6 sends
an heartbeat taking at once node 1 and 2 as children. Nodes 3 and 5 assumes 2
as parent and 6 as root when the heartbeat by the node 2 comes (e). Finally, (f)
node 4 consequentially to the 1 ’s heartbeat receiving takes it as parent and 6 as
root. In fact node 1 is a parent with a shorter distance to the root (1 hop) with
respect to the node 3 (2 hops).

Self-Stabilization

To support self-stabilization nodes’ state has to be continuously refreshed, this is
achieved by the periodically sending of heartbeats. In particular, heartbeats are
issued by the root node, and subsequently forwarded from parent to children.

By heartbeats reception nodes can continuously check the tree coherency, and
so be sure to be still connected to the network. When a node does not receive
the heartbeat anymore it resets itself, assuming itself as root node. In particu-
lar the period following which the root node issues an heartbeat transmission is
determined by a timer running out. Supposed that nodes set their timeout at δ,
root node needs a shorter timeout, in the way to send the heartbeat before the
children’ timer running out.

Furthermore, in order to improve the system fault-tolerance it is sensible to
allow a certain flexibility margin with respect to possible missed deliveries. Thus,
the root node will set its timeout to δ/3, in this way a normal node would receive
two heartbeats in a timeout period. Finally, if the root node fails, after δ seconds
since last heartbeat reception, nodes’ timer run out. Hence, they reset themselves
and issue a heartbeat. In such a way the algorithm rebuild the tree and the node
with the highest ID, among the nodes still working, is elected to be the new root
node.

3.4 Hierarchical Publish/Subscribe

The publish/subscribe algorithm is the second layer of the stack. Using the edges
of the tree built by the spanning tree algorithm it exports a communication mech-
anism in the form of a hierarchical publish/subscribe system.

Publish/Subscribe works on the same hierarchical structure of the spanning
tree , and so the root node becomes the center of the messages’ dissemination as
well. The publish/subscribe type chosen is between the subject-based model and
the type-based one. This choice comes out as trade-off between scalability and
expressiveness, as pointed out in [MJH+05], moreover it is motivated by the data
type used by the role assignment algorithm. Tasks and correlations among them
are in fact already structured based on the concept of role. It follows that the

3.4 Hierarchical Publish/Subscribe 41

great expressiveness of the content-based model is unnecessary and would bring
unjustifiable scalability constraints. In literature proposed works to implement
a self-stabilizing hierarchical publish/subscribe system are present, and the pub-
lish/subscribe adopted in this work bases on [MJH+05].

Publish/Subscribe Algorithm

Nodes subscribe for the message types in which they are interested in through
sending a SubMsg to the parent. The parent at his turn subscribes to his parent
with its own subscriptions combined with the subscriptions of its children. By the
subscriptions combination, each type of them is sent just once behalf of the sender,
thus scalability is pursued. Subscriptions bubble up along the edges of the tree
until they reach the root node, and on their way nodes store arrived subscriptions
in a routing table. Thus, nodes know their children’s subscriptions, and the root
node has a complete view of the subscription’s state. In 3.6 nodes 4, 3 and 5 send

Figure 3.6: Publish/Subscribe

their subscription to parent (a), which combine them with their own subscriptions,
sending the result to root node(b). Finally, root node has the complete view of
the subscriptions in the network c.

The publish/subscribe exports three functions:

• Subscribe(PSType)

• Publish(PSType,message)

• PublishSingle(PSType,message)

The first function subscribes the node for message type in which it is interested.
The second one is used to publish a message of a certain type, that will be received
by all the nodes subscribed in that particular PSType. Published message bubbles
up till the root node, which routes it towards children with a matching entry in
the routing table. The last function publishes a message of a certain PSType too,
but the receiver will be only one, and is chosen by using an hash function among
the children with a matching entry in the routing table.

42 Role Assignment Algorithm

Self-Stabilization

To support self-stabilization the approach consists in making routing entries just
leased. This means that after a leasing period π, if an entry in the routing table is
not renewd it is erased. To support such a mechanism a second-chance algorithm
is used. Therefore, in addition to the ID of the Subscriber and to the PSMsgType
for which it made the request, another field it is used to check the entry’s age. Such

ID PSMsgType TTL

3 B 1
45 G 2
23 S 1

field is called TimeToLive (TTL), and each time that a subscription is inserted or
refreshed the corresponding TTL field is set to 1. After a time of π, all the TTL
fields are checked, if someone is already set to 0 the corresponding entry is erased,
otherwise it is set to 0. Thus, to unsubscribe from a certain message type, nodes
can just stop to renew its subscription. In this way not only publish/subscribe
system is able to recover from internal faults but also from certain external faults.
For example, if a client crashes, its subscriptions are automatically removed after
their leases have expired.

About the leasing period π, it is sensible to do not count it as an absolute time,
but in relation with received heartbeats. Hence, TTL fields are checked every
heartbeat reception, and they address how many heartbeats the subscription can
stay alive without being renewed. This is to set aside non-critic problems of the
layers below, therefore a single one missed heartbeat or transmission delays do not
affect publish/subscribe.

3.5 Self-Stabilizing Role Assignment

The role assignment algorithm is at the top of the stack, and bases on the concept
of roles. A role is an application task able to be carried out by a single node. Ap-
plications are split into several collaborating roles; accordingly nodes capabilities
are analyzed in order to identify roles which a node is able to carry out. Using the
functions exported by publish/subscribe nodes announce their capabilities, and
based on them role assignment assigns roles to nodes. Afterwards it continuously
checks their activation, and in case a node assigned for a role faults the algorithm
detects it and provides to reassign that role.

As argued in section 3.2, a node is chosen as leader, such node has the task
to collect nodes capabilities and then to assign roles. Considering the hierarchical

3.5 Self-Stabilizing Role Assignment 43

structure built by spanning tree and on which the publish/subscribe works, it is
sensible to choose the root node as leader for our algorithm.

Assuming rx1, rx2, rx3, ... as the roles set Rx for the application X, and Z the
number of applications, the roles’ set R of all the applications is:

R = {RA ∪RB ∪RC ∪ ... ∪RZ} = {ra1, ra2, ..., rb1, rb2, ..., rc1, ..., rz1, ..., rzm}
(3.1)

Roles are mapped into PSTypes as a combination of a specific role and a flag
that specifies a particular meaning for the algorithm. The flag can be of two values:
possible or active. Hence each role refers to two publish/subscribe message types
and so: PSType ∈ {rzm|flag}. Assuming as Sy the roles that the node y can
take, the whole set of available roles in the network D:

D = {S1 ∪ S2 ∪ S3 ∪ ... ∪ SN} ⊆ R (3.2)

where N is the number of nodes in the network. As Py we also refer to the set of
roles the node y took. In the case all the roles are correctly assigned it will result:

R = {P1 ∪ P2 ∪ P3 ∪ ... ∪ PN} (3.3)

Role Assignment Algorithm

The role assignment algorithm consists of six phases. It can find itself in a different
phase of the first five for each application running on the system. Actually, an
application might have all its roles successfully running, while another not. Only
when the algorithm reaches the fifth phase for all the applications it passes to the
sixth.

In phase 1, devices analyze their own Sy set of roles able to perform, and
through publish/subscribe they send a SubMsg subscribing for message types cor-
responding to such roles with the flag set to possible. In this way roles availabilities
bubble up from child to parent, and each node subscribe for their own availabilities
plus the ones received from children (SRCV set). Thus, node y sends a SubMsg
subscribing for:

PSTypes =
⋃

rxm∈(Sy∪SRCV)

(rxm|possible) (3.4)

Following the publish/subscribe mechanism subscriptions bubble up to the root
node, which has the complete view of subscriptions in the network, and then the
knowledge of the available roles set D (fig. 3.7 a).

44 Role Assignment Algorithm

In phase 2 , the root node compares the D set with the Rz sets of roles into
which each application is split. If a Rx ⊆ D this means that there are available
nodes for all roles of application x. Therefore, the algorithm passes to phase 3,
otherwise it stops without performing any other operation.

Figure 3.7: Role Assignment

In phase 3 , the root node assigns roles ∀x ∈ Z|Rx ⊆ D. In other words
it assigns roles for each application which roles are available in the network. It
is done by sending a publish-single message exactly to one node for each role.
The PSType is (rxn|possible) (fig. 3.7 b). In the payload we have to put another
information about the meaning of such publish-single message, and so there is a
field operation set to activate.

In phase 4 , nodes chosen for a role receive a publish-single message, and
if the operation field in the payload is set to activate they understand to have
been assigned for such roles. Thus, they reply subscribing for the message type
(rxn|active) (fig. 3.7 c). From now on, nodes will subscribe for such message types:

PSTypes =
⋃

rxm∈(Sy∪SRCV)

(rxm|possible) +
⋃

rxm∈(Py∪PRCV)

(rxm|active) (3.5)

where PRCV is the set containing the children’s subscriptions for activated roles.

In phase 5 , applications, which roles have been successfully assigned, are
correctly running and to send a message it is enough to publish a message of the
type (rxn|active). When all the applications find them selves in such a phase the
role assignment algorithm passes to phase 6.

3.5 Self-Stabilizing Role Assignment 45

Phase 6 is the active status of the algorithm. In the case that a role would
result missing, the algorithm returns to the second phase. Moreover, it might hap-
pen that two activations for the same role are detected. In such a case the node
that has realized it sends a message to children telling to remove such activations
and the algorithm passes to phase 2.

Self-Stabilization

To make the role assignment algorithm self-stabilizing is used the same approach
of publish/subscribe. Therefore, the information stored about the available roles
along the network have to be continuously refreshed. Actually, being roles mapped
into publish/subscribe message types, such mechanism is automatically performed.
Periodically nodes subscribe for message types corresponding to their availabili-
ties, and to the roles for which they are assigned. In this way a failure of a node
assigned for a certain role can be detected in a short time span, and accordingly
the root can reassign such role. If a node able to carry out a role is not available
in the network the algorithm lays in the phase 5, in which some applications are
running, and some others not correclty. This is anyway a form of fault-tolerance:
if a role is missing the whole system is not blocked.

46 Role Assignment Algorithm

Chapter 4

Optimizations

The algorithm shown in the previous chapter answers to our requirements. How-
ever, section 4.1 shows how it is not optimized for them. Among such requirements
two result in contrast: devices’ lifetime and stabilization time. The algorithm op-
timization is pursued by taking one of the previous criteria at a time, and for each
of them an extremely tuned algorithm version is deployed. The trade-off between
the two versions is afterwards made jointly with the optimizations dealing with
the other requirements.

In section 4.2 mechanisms to reduce the energy consumption are pointed out.
Therefore, the algorithm is shown in pseudo-code and commented. On the con-
trary, section 4.3 analyzes and implements ways to speed up the stabilization time,
showing the differences with the previous version’s code as well. Finally, section
4.4 proposes a unique algorithm that, merging the devices’ lifetime and the sta-
bilization time versions, is also optimized for another important requirement: the
network heterogeneity.

4.1 Optimizations Overview

The algorithm described in the previous chapter follows the one proposed by
[WPJM06], and well fits with the requirements pointed out in1.2. However, in
order to find a fine-tuned trade-off between energy consumption and stabilization
time, a deeper analyze is suitable. In the algorithm presented in the previous
section several points are object of trade-off.

Looking at the algorithm from the publish/subscribe point of view, to improve
the stabilization time faster methods to build routing tables would be needed.
Furthermore, the role assignment algorithm would exploit mechanisms of fast
events notifications, in the way to make the algorithm in condition of stabilize
in a shorter time span. However, such improvements would use a bigger rate of

48 Optimizations

exchanged messages, leading to an higher energy consumption. During the al-
gorithm working stabilization phase is the most expensive in term of messages
exchanged. Actually, a more regular temporal traffic shape would help the algo-
rithm to minimize the number of collisions, saving on useless configuration phases
and on energy consumption as well. Even though, to realize it rules to limit the
messages transmission should be adopted, lowering the stabilization time.

In order to find the best solution for our role assignment algorithm, allowing it
to better reply to the AS-Nets challenge, optimizations are performed by a single
point of view at a time. This means that two version will be implemented, one
focused on energy consumption, the second one on the stabilization time.

4.2 Energy Consumption

The issue which mostly affects energy consumption is the messages exchange (both
transmitted and received). Thus, to increment the devices’ lifetime this point has
to be reduced as much as possible.

4.2.1 Message Piggybacking

Figure 4.1: Devices’ Lifetime Message Format

A solution could be to piggyback information of different protocols in the
same transmitted message. In particular, a point in which it is possible to use
such operation is in the periodically messages exchange to refresh data structures.
Actually, nodes receive and forward heartbeats, afterwards they send a SubMsg to
their parent to refresh subscriptions. SubMsgs and heartbeats can be englobed in
one, piggybacking the heartbeat on the SubMsg. To make this the message format
has to be changed. Information about the supposed root node and the distance to
it has to be present in every message. The new format is in the figure 4.1.

4.2 Energy Consumption 49

4.2.2 Heartbeats Decoupling

Heartbeats are usually transmitted at once they are received, this means that
nodes geographical close forward the heartbeat in the same time span. Hence,
the collisions probability in such time span is considerably higher. In our case,
in which the communication is not reliable, a collision is very expensive in terms
of system efficiency. Actually, two sequential collided heartbeats bring underlying
nodes to thing broken the link to the parent.

A possible approach to reduce the collisions probability is to decouple the
heartbeat forward from its reception. This means that it is not forwarded at once
it is received, but after a time independent from all the other nodes. This can
be done by using a timer initialized randomly. By reducing the collisions number,
useless configuration phases are avoided as well. This point assumes a significant
importance, given that during a configuration phase nodes send more messages,
therefore using more energy.

4.2.3 Count to Infinity Problem

Expedients introduced in this section actually improve the devices lifetime, but
introduce some problems as well. In figure 4.2 the count to infinity problem is
shown. Numbers next to each node represent the supposed root node and the
distance to it. Moreover, each node has got a timer set with the same time span
but in different moments. In (a) the node 5 faults, and after a certain time span

Figure 4.2: Count to Infinity Problem

node 3’ s timer runs out, in particular such time corresponds to (δ + delay3−5)
after the last heartbeat reception, where δ is the timeout period (see sec. 3.3), and

50 Optimizations

delay3−5 is the difference between the 3’ s timer and the parent’s one. Also the
1’ s timer runs out and so both nodes reset themselves (b). In (c) also the node
4 reset itself, so it is passed a time corresponding to (δ + delay3−5 + delay4−3).
But node 2, which delay2−3 is longer with respect to delay4−3, is still connected to
node 3, thinking still alive the root node 5. At (d) just before its timer running
out, node 2 sends a message.

Given that all the messages are now used to build the tree, other nodes, by
receiving a message containing root node 5, assume node 2 as parent (e). In the
picture (f) node 4 sends a message and node 2, by receiving a message containing
as root node 5, takes node 4 as parent (g). At this point a chain it is formed, with
all the nodes that are thinking as root node a faulted node. Furthermore, nodes
1,3 and 4, increment the supposed distance to the root (h), and node 2 does the
same given that its parent is node 4. Thus, the chain bring nodes to increment
the distance value, message after message, up to count to infinity.

To solve this problem, spanning tree algorithm has to be changed in order to
do not permit such an occurrence. In particular the only solution is that nodes
which timer runs out, before to choose a new parent with a greater or equal dis-
tance to the previous root node, have to wait for a certain time span. During such
interval, timers of nodes in the same transmission range, and with the same or
inferior distance to the previous root node, will run out definitely. Such interval
has to be set to two timeout periods. Actually the first is needed to let timers run
out in normal environments, the second consider the case in which the node lost
three regular heartbeats before the parent’s reset.

4.2.4 The Code

The starting-point of the algorithm is represented by the Recv() function (list.
4.1). Such function is called to manage a message reception. As first the function
Count to Infinity Problem sees to manage the homonymous effect described in the
previous subsection. If such function returns a positive value the computation goes
on, otherwise the message is discarded (cf. line 2).

Going on the message is analyzed by the spanning tree, which compares the
root and the distance field of the message with the node’s ones. If a better root (cf.
line 3) or a parent with a shorter distance to the root (cf. line 10) it is detected,
node’s fields root , parent and distance are updated. The timer is reset and an
heartbeat is sent as well. Otherwise, if the sender is the node’s parent (cf. line
16), the flag recv is set, and the distance is updated as well. Recv is read by the
Time out() to know if an heartbeat was received. By renewing the distance field
such information is kept effective in the case the path to the root changes.

4.2 Energy Consumption 51

1 void Recv (message mes){
i f (Count to In f in i ty Prob l em (mes . sender , mes . d i s t anc e)){

3 i f (mes . root > r o o t){
r o o t ←mes . root ;

5 parent ←mes . sender ;
d i s t an c e ←mes . d i s t anc e ;

7 Timer (timeout) ;
Send (TreeMsg) ;

9 }
else i f (mes . root=roo t && mes . d i s t anc e < d i s t an c e){

11 parent ←mes . sender ;
d i s t an c e ←mes . d i s t anc e ;

13 Timer (timeout) ;
Send (TreeMsg) ;

15 }
else i f (mes . root=roo t && parent =mes . sender){

17 r e cv ←0 ;
d i s t an c e ←mes . d i s t anc e ;

19 }
i f (mes . root=roo t && (mes . r e c e i v e r=here | |

21 (mes . r e c e i v e r = CHILDREN && mes . sender=parent))){
OnProcessMessage (mes) ;

23 }
}

25 }
Listing 4.1: Receive

Finally, if the message is intended for the node itself the spanning tree algo-
rithm passes the message to the publish/subscribe, by calling the OnProcessMes-
sage function (cf. line 22). This happens if the receiver field contains exactly the
node’s address, or a special address, which generically indicates the children, and
the sender is the node’s parent.

The OnProcessMessage() function (list.4.2) is responsible to process re-
ceived messages. A message can be a SubMsg, or a PubMsg. In the first case
(cf. lines 2-12) it contains child’s subscriptions, and they have to be inserted
in the routing table, or simply updated if already present. In the routing table
the update is made by setting the TTL value of the corresponding entry. If the
SubMsg has the flag set to ReplyingSingle it is a subscription telling that a child
is accepting a role. Thus, it has to be forwarded at once without waiting for the
timer running out, like usually is done for normal subscriptions. If the message

52 Optimizations

26 void OnProcessMessage (message mes){
i f (mes . type=“SubMsg′′){

28 i f ((mes . type , mes . sender)∈ (Shere
⋃

SRCV)){
Ref r e shSubsc r ip t i on (mes . type , mes . sender) ;

30 }
else {

32 Inser tNewSubscr ipt ion (mes . type , mes . sender) ;
i f (DecodeFlag (mes . f l a g)=“ReplyingSingle′′)

34 Send (SubMsg , mes . f l a g) ;
}

36 }
else i f (mes . type=“PubMsg′′){

38 i f (DecodeFlag (mes . f l a g)=“DataMsg′′){
i f (mes . type ∈ Phere)

40 OnConsumeMsg(message mes) ;
else i f (mes . type ∈ PRCV)

42 Send (PubMsg , message mes) ;
}

44 else i f (DecodeFlag (mes . f l a g)=“SingleMsg′′){
i f (mes . type ∈ Shere){

46 OnActivateRole (mes . type) ;
Send (PubMsg , EncodeType (mes . type , “Active′′) ,

48 EncodeFlag (“ReplyingSingle′′)) ;
}

50 else i f (mes . type ∈ SRCV)
Send (PubMsg , mes . type , mes . f l a g) ;

52 }
else i f (DecodeFlag (mes . f l a g)=“Remove′′){

54 i f (mes . type ∈ Phere | | mes . type ∈ PRCV){
Remove Roles Activat ion (mes . type) ;

56 i f (mes . type ∈ PRCV)
Send (PubMsg , mes . type , mes . f l a g) ;

58 }
}

60 }
}

Listing 4.2: On Process Message

is a PubMsg it can contain data or transporting particular meanings of the role
assignment algorithm. The algorithm understands the difference thanks to a flag
(mes.flag) inserted in the payload. In the first case, if the node is subscribed for
that message type it is analyzed by the OnConsumeMsg() function(cf. line 40),

4.2 Energy Consumption 53

otherwise, if a child subscribed for it exists, it is forwarded to children. Data mes-
sage are sent only to nodes featuring a role, and so the mes.type is searched just
in P sets. Furthermore, given that a role is featured in the same instant only by
a node, the message is forwarded only if the node itself is not subscribed for it. A
published message is also used to assign roles to nodes (Publish Single ones), or to
say to nodes to remove the activation for a particular role. In the former case(cf.
lines 44-52), if the message is intended for the node itself the role is activated and
a SubMsg with a particular flag is instantaneously sent towards the root node.
The particular flag is important in order to say to parents to forward it at once.
Otherwise, if a child is subscribed for it, the message is forwarded down exactly
to it. Finally, if the mes.flag is Remove (cf. lines 53-57), nodes have to remove
the activation for the type contained in mes.type, if some subscription it is present
in the routing table for that message type, the routing entry is erased, and the
message is forwarded down.

The function Time out() is called by the timer, when it runs out. At the
beginning this function checks if in the last two timeout periods (2*δ)the node’s
changed root node. If yes it decrement a counter, in the way to let the node free

62 void Time out (){
Timer (timeout) ;

64 Count To Inf in i ty Problem (s e t) ;
i f (r o o t 6= here && recv < l i m i t){

66 r e cv ++;
OnHeartbeat () ;

68 Send (SubMsg) ;
}

70 else i f (r e cv =l i m i t && here 6= roo t){
Count To Inf in i ty Problem (r e s e t) ;

72 Remove Roles Act ivat ions () ;
r e cv ←0 ;

74 r o o t ←he r e ;
parent ←here ;

76 d i s t an c e ←0 ;
Send (TreeMsg) ;

78 }
else i f (he r e =root){

80 Prepare (TreeMsg) ;
OnHeartbeat () ;

82 }
}

Listing 4.3: Time Out

54 Optimizations

when such a counter runs out. Such operations are performed by the function
Count To Infinity Problem(), with the parameter set. Such a call is different with
respect to the one in the Recv() function, where the parameters are two. For
all the nodes which are not the root node, such a function has to check if an
heartbeat was received during last limit times it ran out. If this happened,
the OnHeartbeat() function is called, which updates the routing table, then the
heartbeat and subscriptions are forwarded in a SubMsg. If the node has any
subscriptions, and the routing table is empty, just a TreeMsg is sent. If during the
last limit times the timer ran out any heartbeat was received, the node reset itself.
Hence, the recv counter is reset, the root node is assumed as the node itself, and
the parent node as well. The root node just updates the routing table and sends
an heartbeat.

The OnHeartbeat() function performs the update of the routing table. This
means that the TTL field of every entry is decremented. If such a value is zero,
the corresponding entry is erased from the routing table. Finally, once the routing
table is rebuilt, the RoleAssignment() function is called.

The RoleAssignment() function has two different behaviors, depending if the

84 void OnHeartbeat (){
Age Routing Table () ;

86 Remove Old Entries () ;
RoleAssignment () ;

88 }
void RoleAssignment (){

91 for (∀(x,m) | rxm ∈ R){
i f (∃ y, z ∈ PRCV | y ≡ rxm & z ≡ rxm){

93 Remove Roles Activat ion (rxm|active) ;
Send (PubMsg , EncodeType (rxm, “Active′′) ,

95 EncodeFlag (“Remove′′)) ;
}

97 }
i f (he r e =roo t){

99 for (∀x | Rx ∈ R)
i f ((SRCV ⊇ Rx)

101 for (∀m | rxm ∈ Rx)
i f ((rxm ∈ PRCV))

103 Send (PubMsg , EncodeType (rxm, “Possible′′) ,
EncodeFlag (“SingleMsg′′)) ;

105 }
}

Listing 4.4: OnHeartbeat and Role Assignment

4.3 Stabilization Time 55

node is the root one or not. If the node is not the root, just the first part of the
function is executed. In particular it checks the routing table, if more subscriptions
for the same role with the flag active are present, it sends a message down to say
to remove the activation of that particular node. If the node is the root node,
it has to assign roles too. If subscriptions for all the roles of an application are
present, for all of them a single message is sent to one of the child who subscribed
for that. The choice of a particular node is performed randomly.

4.3 Stabilization Time

Assuming the system in every possible status, the stabilization time is the time the
algorithm spends to bring the system in a status in which every role is correctly
assigned. The longest time to stabilize takes place during the first configuration
phase, in which none role is yet assigned. Stabilization time is time lost for the
system, and it is important to make it as shorter as possible.

By such a point of view all the considerations made in the previous section
change definitely. Actually, it is very expensive to support heartbeats decoupling.
In fact, a node can be forced to wait two heartbeat periods before to stabilize.
In this section those solutions are put aside, and as starting point the original
algorithm in taken into consideration.

A point on which we want to intervene is the time spent to keep effective
the routing table. In particular, the modifications have to aim to make the role
assignment algorithm aware of the real subscription status as faster as possible.

4.3.1 Fast Notifications

Figure 4.3: Notifications Delay

56 Optimizations

The time the algorithm spends to stabilize is affected from the time a new
information bubble up towards the root node, definitely. Information concerning
with the stabilization time are: a) New availabilities found, b) Faults detection.
The first type is typical of topology changes and it describes the time that a node’s
subscription spends to bubble up towards the root node. In particular, when the
algorithm is not yet in the active phase, maybe because an availability misses,
stabilization time can depends in a strong way from this parameter.

Assuming that any heartbeat is missed, and ignoring the transmission delays,
a change in a node’s routing table is learned by parents only after a time of two
heartbeat periods (2

3
∗δ), for level. The problem is that if a role is no more active,

for instance because the relative node at the fifth level turned off, the root node
needs 10

3
∗ δ seconds before to be aware of it. In figure 4.3 the fault notification

delay is better pointed out. Node 4, which is assigned for role A1, faults and the
root registers it only during the following fourth heartbeat. Such delay definitely
affects unjustifiably the stabilization time, therefore has to be strongly reduced.

A solution to speed up such operations is that a node which removes a routing
entry or inserts a new one, sends a particular message to communicate it to the
parent. It has to be done just if any other entry of the same type is present among
its and children’s subscriptions. Other nodes along the route can update their
routing table as well. In this way a new availability can be notified in just one
heartbeat period. To make the root aware of a role missing, just 2

3
∗ δ seconds plus

the delay to deliver the message are needed. This means that in a time less than
δ the root node can provide to reassign a missed role.

4.3.2 Double Activation Problem

Figure 4.4: Double Activation Problem

When two (or more) activations of the same role are detected, the algorithm
intervenes telling to the interested nodes to deactivate that particular role. Such

4.3 Stabilization Time 57

operation is needed to ensure a correct algorithm working, but in terms of time
spent is considerably expensive. Hence, when a situation that can bring to such a
situation happens, a mechanism to avoid a double activation should be adopted.
A particular scenario in which a double activation happens definitely is the one in
figure 4.4. Node 4 is assigned for role A1, and node 3 faults. Assuming that any
heartbeat is missed, and ignoring the transmission delays, the faulted node’s parent
(in this case the root) is aware of the fault after 2

3
∗ δ seconds. Consequentially it

opens a new assignment for the missed A1 role. After δ seconds since the failure,
the faulted node’s children reset themselves, choosing another path towards the
root node.

The problem is that When the 4 ’s subscriptions bubbles up to the root a
double activation is detected. On the whole 2 ∗ δ seconds are spent and besides
the first 2

3
∗ δ ones, necessary for the root to detect the fault, others are actually

wasted.

The solution consists in removing the roles activation interested by the fault.
When a node reset itself, it has to remove its activations, moreover, it has to send
a message to children telling to make the same. In this way after δ seconds from
the node’s fault, the role is correctly assigned again.

4.3.3 Role Reassignment

In order to further speed up the stabilization time, every node should be able
to assign again a missed role. Actually, a node along the path between the root
node and the faulted node, which has the capability to take that role or it has
a matching entry in the routing table, has all the information needed to perform
such operation. In this way if ξ is the delay to transmit a message and A is the
node which could reassign the missed role, a time 2 ∗ (ξ ∗ hopsA−>root) is saved.
The first ξ ∗ hopsA−>root term refers to the fault notification, while the second one
to the subsequent assignment message.

4.3.4 Let’s keep in touch

When the topology changes, a node might find a parent with a shorter route
towards the root node. In such a case, the node should advice the previous parent,
in order to let him removing the interested routing entries. In this way it can
update its routing table in the same time its child breaks the link, saving at least
2
3
∗ δ seconds, it would have waited before to know it. If the node that changes

parent is assigned for a role, the algorithm takes ξ ∗ (hopsA−>B + 2 ∗ hopsB−>C)
to assign the missed role again, where A is the “jilted” node, B is the node which
has a matching routing entry and C is the node assigned for the missed role.

58 Optimizations

4.3.5 Code Changes

1 void Recv (message mes){
i f (mes . type=TreeMsg){

3 i f (mes . root > r o o t){
r o o t ←mes . root ;

5 parent ←mes . sender ;
d i s t an c e ←mes . d i s t anc e ;

7 Timer (timeout) ;
Send (TreeMsg) ;

9 }
else i f (mes . root=roo t && mes . d i s t anc e < d i s t an c e){

11 parent ←mes . sender ;
d i s t an c e ←mes . d i s t anc e ;

13 Timer (timeout) ;
Send (TreeMsg) ;

15 }
else i f (mes . root=roo t && parent =mes . sender){

17 OnHeartbeat () ;
Timer (timeout) ;

19 d i s t an c e ←mes . d i s t anc e ;
}

21 }
else i f (mes . root=roo t && (mes . r e c e i v e r=here | |

23 (mes . r e c e i v e r = CHILDREN && mes . sender=parent))){
OnProcessMessage (mes) ;

25 }
}

Listing 4.5: Receive

The algorithm starts with the Recv() function (list. 4.5). This version is pretty
different from the lifetime one. In particular it analyzes the message arrived in
every case, while in the lifetime version the count to infinity problem could block it
before processing. The timer of normal nodes is set to timeout instead of timeout/3
seconds. This is because the timer is used only to reset the node in the case that
the link to the parent broke, and not as clock like in there. Finally, if an heartbeat
is received (cf. lines 16-19), the OnHeartbeat() function is called. Actually in the
lifetime version such function was called by the timer running out in the TimeOut()
function. Such version of the Recv() function is the same of the original algorithm,
given that the spanning tree algorithm is not changed.

The OnProcessMessage() function (listing 4.6), is different from the life-
time version as well. The first point consists in the actions opened by a SubMsg

4.3 Stabilization Time 59

void OnProcessMessage (message mes){
28 i f (mes . type=“SubMsg′′){

i f ((mes . type , mes . sender)∈ (Shere
⋃

SRCV)){
30 Ref r e shSubsc r ip t i on (mes . type , mes . sender) ;

}
32 else {

Inser tNewSubscr ipt ion (mes . type , mes . sender) ;
34 Send (SubMsg , mes . f l a g) ;

}
36 }

else i f (mes . type=“PubMsg′′){
38 i f (DecodeFlag (mes . f l a g)=“DataMsg′′)

(...)
44 else i f (DecodeFlag (mes . f l a g)=“SingleMsg′′)

(...)
53 else i f (DecodeFlag (mes . f l a g)=“Remove′′)

(...)
60 else i f (DecodeFlag (mes . f l a g)=“Lets′′){

PSType∗ r i s←Remove(mes . sender) ;
62 int l enght←how long (r i s) ;

for (int i← 0 ; i < l enght ; i++){
64 i f (I s a r o l e (r i s [i])=1)

i f (Reass ign (r i s [i]=1)
66 continue ;

i f (r i s [i]
⋂

(SRCV
⋃

Shere)≡ ∅)
68 Send (PubMsg , r i s [i] , EncodeFlag (“TypeLost′′)) ;

}
70 }

else i f (DecodeFlag (mes . f l a g)=“TypeLost′′){
72 Remove(mes . sender , mes . type) ;

i f (I s a r o l e (r i s [i])=1)
74 i f (Reass ign (r i s [i]=1) ;

return ;
76 i f (mes . type

⋂
(SRCV

⋃
Shere)≡ ∅)

Send (PubMsg , mes . type , EncodeFlag (“TypeLost′′)) ;
78 }

}
80 }

Listing 4.6: On Process Message

reception. If the arrived subscription is a new one the message is forwarded at
once, accordingly to the fast notification technique. Moreover, a PubMsg takes in

60 Optimizations

this version more different meanings. In particular two more flags could be en-
crypted in a PubMsg, one to implement the fault notification, the other one for the
LetsKeepInTouch functionality. In the case the published message has the “Lets”
flag, the node removes all the sender subscriptions by the Remove() function. Such
function returns a list of all the removed types and, for each of them, if any other
child is subscribed for the same type, and the node itself as well, a PubMsg with
the flag “TypeLost” is sent to the parent (cf lines 67,68). Otherwise, if the type
lost is a role, and the node has a checking availability among the children or its
ones, it reassign the role (cf. lines 63-65). Such operation is carried out by the
Reassign() function, which takes in entry a PSType of a role and tries to reassign
it. If it succeeds it returns 1, otherwise 0.

The other new flag introduced by this version is the TypeLost one. If a pub-
lished message with such a flag is received, a child has expressly removed the
subscription for a particular type, so the Remove() function is called (cf. line 72).
Then, if the removed subscription was a role activation, the algorithm tries to
reassign that role. If it does not succeed, or the type was not a role and the node
and its children are not subscribed for that type, the message is forwarded to the
parent (cf. lines 76,77).

void Time out (){
82 i f (he r e 6= roo t){

Remove Roles Act ivat ions () ;
84 for (∀(x,m) | rxm ∈ R Λ rxm ∈ PRCV)

Send (PubMsg , EncodeType (rxm|“Active′′) ,
86 EncodeFlag (“Remove′′)) ;

r e cv ←0 ;
88 r o o t ←he r e ;

parent ←here ;
90 d i s t an c e ←0 ;

Send (TreeMsg) ;
92 Timer (timeout/3) ;

}
94 else i f (he r e =root){

Send (TreeMsg) ;
96 OnHeartbeat () ;

Timer (timeout/3) ;
98 }
}

Listing 4.7: Time Out

4.3 Stabilization Time 61

100 void OnHeartbeat (){
Age Routing Table () ;

102 PSType∗ r i s← Remove Old Entries () ;
RoleAssignment (r i s) ;

104 i f (he r e 6= roo t)
Send (SubMsg) ;

106 }

108 void RoleAssignment (PSType∗ l o s t){
for (∀(x,m) | rxm ∈ R){

110 (. . .)

115 }
i f (he r e 6= roo t){

117 int l enght←how long (l o s t) ;
for (int i←0 ; i < l enght ; i++){

119 i f (I s a r o l e (l o s t [i])=1)
i f (Reass ign (l o s t [i])=1)

121 continue ;
i f (mes . type

⋂
(SRCV

⋃
Shere)≡ ∅)

123 Send (PubMsg , mes . type , EncodeFlag (“TypeLost′′)) ;
}

125 }
else i f (he r e =roo t){

127 (. . .)

133 }
}

Listing 4.8: OnHeartbeat and Role Assignment

The function TimeOut() (listing 4.7), changes its functionality in a signifi-
cant way. In the lifetime version it was used like a clock for the most part of the
algorithm features. Actually, the OnHeartbeat() function was called by here, and
heartbeats and subscriptions were sent by this function. In this version such func-
tion is called by a normal node only when the link to the parent results broken,
and by the root at the timer running out (this point is the same). Accordingly
with the double activation problem when a node resets itself it removes the roles
activations for which it was assigned (cf. line 83), telling to children to make the
same (cf. lines 85-86).

The OnHeartbeat() function (listing 4.8), is quite the same with respect to

62 Optimizations

int Reass ign (PSType t ipo){
136 PSType app = TypeConversion (t ipo) ;

i f (app ∈ Shere){
138 OnActivateRole (app) ;

return 1 ;
140 }

else i f (app ∈ SRCV){
142 Send (PubMsg , app , EncodeFlag (“SingleMsg′′)) ;

return 1 ;
144 }

return 0 ;
146 }

Listing 4.9: Reassign

the lifetime version. The only difference is that it passes to the RoleAssignment()
function a list of the removed types. Basing on such a list the RoleAssignment()
function tries to reassign possible missed roles activation (cf. lines 116-120), if
this is not possible a message with the flag TypeLost is sent to the parent. The
notification is sent also for “normal” missed subscriptions. The other parts of this
function are exactly the same with respect to the lifetime version.

The Reassign() function is a new function, it provides to try to reassign roles
when a missing one is detected. The operations carried out by such a function are
to check if the node itself is able to take the missed role (cf. lines 136-138), or if
a matching entry exists in the routing table (cf. lines 140-142). If it succeeds to
reassign the role returns 1, otherwise 0.

4.4 Synthesis 63

4.4 Synthesis

In this section a unique algorithm version is proposed. Basing on the analysis
made in the previous ones the better trade-off between stabilization time and
energy consumption versions is pointed out. They have been realized extremely
optimized for their aims, therefore they represent the two edges in the middle of
which final version’s issues can sweep. Besides such a trade-off, the final version
proposes optimizations also focusing on the network heterogeneity.

4.4.1 Drawing

Analyzing the proposed optimizations, it is possible to see that they does not
exclude each other. Let us now consider the possibility to compose them. Actually,
heartbeats decoupling and message piggybacking increase the stabilization time,
however not in a considerable way if coupled with fast notifications methods. On
the other hand the stabilization time methods are used only during a network
reconfiguration, therefore even if the device lifetime is reduced, it is not in a critic
way. Thus, taken into consideration the base version the two algorithms can be
merged together. Optimizations proposed for energy consumption can be adopted
without big problems also in the final version, while optimizations used for the
stabilization time actually affect the devices lifetime.

Besides stabilization time and energy consumption another important require-
ment is the network heterogeneity. Such a concept can be used to try to improve
the energy consumption efficiency in the network, offsetting on what we lost merg-
ing the two algorithm versions.

An interesting point of directed diffusion (see sec. 2.5.2) is that, when nodes
set up gradients they tune the gradients refreshing time interval by their own
capabilities. Afterwards, the more efficient routes are preferred to the other ones.
Hence, the system exploits powerful nodes, saving on the weak ones energy. In our
system nodes closer to the root node are more loaded with respect to the other
ones, and given that powerful nodes would exist in the network, they could be
used to carry out an higher traffic rate.

Through the concept of heterogeneity of power capacity, it is possible to reorga-
nize also the rules to assign roles to capable nodes, in order to prefer the powerful
ones. The results of such operations would lead to concentrate computation on a
limited number of subtrees, composed by an high percentage of powerful nodes.
Nodes belonging to the other subtrees could slow down their heartbeat periods,
thus saving even more energy with respect to the other ones.

64 Optimizations

4.4.2 Classes

In a heterogeneous network not all the nodes have the same energy capabilities.
From this point of view it is sensible to load mostly on powerful nodes, trying to
reduce the energy consumption of weak nodes. Therefore, we can now think to
change the algorithm in order to consider two devices classes, one powerful and one
weak, and to exploit mostly powerful ones. Among the algorithms composing the
stack the spanning tree is the one which more can make use of such information.
In particular in figure 4.5 there is tree structure we would to achieve.

Figure 4.5: Aimed Tree Structure Format

In such a structure powerful nodes represent a backbone for the whole tree.
Nodes should always prefer powerful nodes as parents, therefore weak nodes are
always leaves, excepting when any powerful node is available in the same transmis-
sion range. Moreover, in order to make such choice more effective, nodes should be
able to select the parent basing on the number of powerful nodes along the whole
path to the root. To do this a new information has to be coded in messages, and
available in every message exactly like the distance field.

While distances being equal, the parent with an higher powerful factor has to
be preferred, but the contrary not always lead to effective tree buildings. Actually,

4.4 Synthesis 65

Figure 4.6: Parent Choosing

in figure 4.6 node 2 must prefer 7 as parent, even if any powerful node is available
in that path. By choosing node 3 as parent, nothing would be improved, given
that anyway node 7 would have new subscriptions in its routing table. Moreover,
node 2 in such a way would stay at the sixth level instead of its natural third,
leading the system to waste energy instead to save it.

To identify the convenience in choosing parents, we can define two parameters:

Gaindistance = distancenew − distancepresent (4.1)

Gainpower = descentnew − descentpresent (4.2)

The Gaindistance is the parameter used up to now to choose a parent, while
Gainpower points out the parent which have a path to the root with the higher
number of powerful nodes (descent). Actually, we can be sure that the new path
is more convenient of the present one only if what we loose from the hops number
point of view, is compensated by a greater number of powerful nodes. Moreover,
by using such a criteria, the creation of cycles is avoided. Parent is therefore chosen
so:

parent = ((Gainpower −Gaindistance) > 0)?new : present (4.3)

To implement such a mechanism a new information has to be present in every
message header. However any new field is needed in the header message format.
Actually the decimal part of each distance field can be used to encrypt it. Nodes
will add to the distance field of sent messages a term equal to the weight average
between the parent’s descent and 0.0 or 0.9, depending if the node is a weak one
or not. Receivers, by such information and by the hops distance, are actually able
to obtain the composition of the path to the root node.

66 Optimizations

4.4.3 Assignments Policy

To reduce the number of packet transmissions needed to deliver a published mes-
sage, we can consider to change the policy to assign roles. When more nodes are
available for a role, the algorithm chooses one in a random way. However, if all
the roles of an application are assigned to the same subtree the message does not
need to bubble up till the root before to be routed to the right node. In the worst
case, in which the sender and the receiver are two leaves which branches meet
themselves just by the root, a message has to be routed along the whole topology.

For instance, in figure 4.5 nodes 1 and 3 have been assigned for two roles
of the same application. When node 1 sends a message to node 3 it has to be
transmitted nine times before to get it, besides weighing on the root node. Such
worst case cannot be changed, but the average time to deliver a message can be
reduced. In the example in figure 4.5 node 2 has the same availability of node 3.
By choosing it instead of 3, a great number of transmissions are saved, as well as
the root is relieved of such a traffic.

The new policy follows these points: if any role of the application have been
assigned in the tree (subtrees), the role is assigned to the matching child with the
higher number of availabilities for such application. Otherwise, the role is assigned
to the matching child with the greater number of roles already assigned for that
particular application.

4.4.4 Idle Status

This point takes into consideration the algorithm active status, therefore when
all the roles have been successfully assigned. In this case, nodes which are not
assigned for any role, and which have any child assigned for a role, might slow
down the subscriptions refresh interval, and then the heartbeat period. Actually,
up to the moment in which a role results missing, and then a new configuration
phase is opened, a lower heartbeat period can be used. In such a situation the
node is assumed to be in idle status.

In order to do that each node, during the active phase, must set the TTL field
of entries not linked to active roles to a double value with respect to the normal
one. Even if such point can increase the stabilization time, nodes not assigned
for roles can save much energy during the algorithm active phase. For instance,
let’s assume node 2 as capable to take the role A1, and temporarily idle. In this
moment the 2 ’s parent has a subscription for the type (A1, possible), with a TTL
set to the double of the normal value. If node 2 faults, the parent detect it, and
then removes its entries, only after the double of the normal time. Stabilization
time may be higher if node 2 faults right when the role A1 results missing, and
the algorithm choses just it to take it such role.

4.4 Synthesis 67

Figure 4.7: Active Algorithm Status

However, this is quite a complicate occurrence, while adopting such strategy
unused nodes save during active phases about a 1

4
of the energy consumption.

Moreover, by using the tree structure outlined before, a weak node has got a lower
probability to have a child assigned for a role. Actually weak nodes have a lower
probability to have children given that powerful nodes are chosen as parent with
an higher rate. Therefore, right weak nodes mostly take advantages of the idle
status introduction.

In figure 4.7 the same topology of figure 4.5 is shown when the algorithm is
in the active status. To encode information about the algorithm status in the
message header, the distance field is used again. In fact, the sign of such value
will identify if the algorithm is active (positive) or not (negative). To do this, from
now on the root node will sends a distance equal to 0.001 (−0.001) instead of the
usual 0.0.

68 Optimizations

4.4.5 Code Changes

Accordingly with the changes proposed in the previous sections, this Recv() func-
tion (listing 4.10) takes the lifetime one (listing 4.1) as starting point. Once solved
the count to infinity problem, the activation status of the algorithm is checked
(cf. line 3). Therefore the sender’s descent is obtained (numapp) and then used to
calculate the eventual gain in choosing the sender as parent (cf. line 6). The choice
of the root node does not change with respect to the lifetime version, while the

void Recv (message mes){
2 i f (Count to In f in i ty Prob l em (mes . sender , mes . d i s t anc e)){

a c t i v e ←(mes . d i s t anc e > 0)? 1 : 0 ;
4 int factapp←abs (mes . d i s t anc e − (int)mes . d i s t anc e) ;

int numapp←(abs ((int)mes . d i s t an c e)∗ factapp) / 0 . 9 ;
6 int gain←(numapp−de s c en t)−(abs ((int)mes . d i s t anc e)−d i s t an c e) ;

i f (mes . root > r o o t){
8 r o o t ←mes . root ;

parent ←mes . sender ;
10 d i s t an c e ←abs ((int)mes . d i s t anc e) ;

de s c en t ←numapp ;
12 Timer (timeout) ;

Send (TreeMsg) ;
14 }

else i f (mes . root=roo t & gain > 0){
16 parent ←mes . sender ;

d i s t an c e ←abs ((int)mes . d i s t anc e) ;
18 de s c en t ←numapp ;

Timer (timeout) ;
20 Send (TreeMsg) ;

}
22 else i f (mes . root=roo t & parent =mes . sender){

r e cv ←0 ;
24 d i s t an c e ←abs ((int)mes . d i s t anc e) ;

de s c en t ←numapp ;
26 }

i f (mes . root=roo t & (mes . r e c e i v e r=here | |
28 (mes . r e c e i v e r = CHILDREN & mes . sender=parent))){

OnProcessMessage (mes) ;
30 }

}
32 }

Listing 4.10: Receive

4.4 Synthesis 69

parent choice takes the gain parameter instead of the simple distances information
(cf. line 15).

The OnProcessMessage() takes the stabilization time one (listing 4.6) as start-
ing point and does not changes it effectively, therefore it is not shown here. Listing
4.11 shows the TimeOut() function, it actually results as a combination of the
two previous versions (listings 4.3 and 4.7). The first if block (cf. lines 89-97),
takes into account the case in which the node is still connected to its parent, the
only difference with respect to the lifetime version is represented by lines 93-95.

void Time out (){
88 Count To Inf in i ty Problem (s e t) ;

i f (r o o t 6= here && recv < l i m i t){
90 r e cv ++;

OnHeartbeat () ;
92 Send (SubMsg) ;

i f (a c t i v e & (PRCV
⋃

Phere) = ∅)
94 Timer (timeout) ;

else
96 Timer (timeout /3) ;

}
98 else i f (r e cv =l i m i t && here 6= roo t){

Count To Inf in i ty Problem (r e s e t) ;
100 Remove Roles Act ivat ions () ;

for (∀(x,m) | rxm ∈ R Λ rxm ∈ PRCV)
102 Send (PubMsg , EncodeType (rxm|“Active′′) ,

EncodeFlag (“Remove′′)) ;
104 r e cv ←0 ;

r o o t ←he r e ;
106 parent ←here ;

d i s t an c e ←0 ;
108 de s c en t ←0 ;

Send (TreeMsg) ;
110 Timer (timeout /3) ;

}
112 else i f (he r e =root){

Prepare (TreeMsg) ;
114 OnHeartbeat () ;

Timer (timeout /3) ;
116 }
}

Listing 4.11: Time Out

70 Optimizations

Depending on the activation algorithm status, and on the roles activation presence
among the children and the node itself, timer is set to two different values. The
second if block (cf. lines 99-110), represents the case in which the link to the par-
ent is assumed as broken. Count to infinity problem is evaluated first, therefore
role activations are removed. For each role activated by a child, a message is sent
to it in order to make it removing such activation. Finally status variable are set
to their default value.

The algorithm goes on with the OnHeartbeat(), the RoleAssignment() and the
Reassign() functions. Actually, they follow the corresponding ones for the stabi-
lization time version (listings 4.8 and 4.9), therefore they are not further shown
here.

Chapter 5

Implementation

In this chapter the algorithm versions are implemented in order to evaluate the
proposed optimizations To make this, in section 5.1 a simulator engine is chosen
basing on the characteristics of the available ones. Such simulator is then in section
5.2 better described. Section 5.3 points out the way to implement the algorithm,
while section 5.4.1 identifies a load model in order to show the functioning under
different stress conditions. Metrics and issues expected by the simulations are
characterized as well.

5.1 Simulator Engines

Several simulators have been developed to evaluate wireless systems. It is of primer
importance to point out the one which can outline information we search in the best
way. Criteria to identify it are the possibility to obtain the system’s issues to which
such thesis is interested in, the respective accuracy, finally the facility to obtain
them. Therefore, trifling parameters like the available literature and the popularity
of a simulator are taken into consideration together with the fundamental ones,
like the results quality, customizability and scalability. Actually, a distinction may
be done, between emulators and simulators. Following analyze bases on the work
of [Cur04].

Emulators are engine which accurately reproduce the devices functioning. This
means that, fixed a device, say Mica2 mote, the emulator reproduces the oper-
ations made exactly by the device’s machine language. Moreover some of them
lets the user specify customized hardware architectures. These systems can be
used to study the detailed behavior of dedicated systems, in which applications,
communication protocols and devices’ hardware architecture are already known.
Emulation is very useful for fine-tuning and looking at low-level results.

72 Implementation

Simulators are engine which reproduce the system behavior leaving the internal
device implementation out of consideration. Actually, simulators are extensible in
order to let users to better describe particular hardware implementation. How-
ever, simulators do not use effective machine languages, therefore internal devices
functioning can be studied just in a quite rough way. Simulators are properly used
when looking at things from a high view. The effect of routing protocols, topology
and data aggregation can be see best at a top level and would be more appropriate
for simulation.

Among emulators one of the most used is Tossim [LLWC03]. Tossim is designed
specifically for TinyOS applications, which is an operating system running on
MICA Motes. Tossim owes much to its tightly coupling with TinyOS, which is
one of the most used operating system for sensors. As drawback, Tossim is not
extensible, or rather its extension for other platforms results very difficult [Nic06],
and completely left to users. The emulator architecture is component-based. This
brings a good scalability of the system, which can emulate networks with a very
large nodes number. A trade-off between emulation speed and accuracy is done,
however ensuring an effective level of both.

ATEMU [PBM+04] is compatible with the MICA platform as well. However, it
improves the accuracy with respect to Tossim, thanks to a cycle-by-cycle strategy
to run application code. This is possible because the MICA CPU functioning is
emulated as well. While the emulation results more fine-grained, ATEMU sacri-
fices speed and scalability. In the middle between Tossim and ATEMU is placed
Arvora [TLP05], emulator implemented in Java and characterized by an object ori-
ented architecture. Arvora lets the user to modulate the trade-off between speed
and accuracy. Such emulator is quite new, and no literature is available.

Among simulators Network Simulator 2 (NS-2) [ns206] stands out definitely,
given that on the way became quite a standard for algorithms simulation. The
architecture is object oriented, and the whole system is thought to be as modular as
possible. Actually, NS2 benefits of a large developers community, which, thanks
to the platform extensibility, ensures new modules for coming technologies. As
drawback of its extreme modularity, scalability is considerably restricted.

GloMoSim [ZBG98] is designed specifically for mobile wireless networks. Re-
alized with an architecture object oriented and modular, unlike ns-2 GloMoSim
preserves scalability thanks to a different computation organization. Actually,
such is particularly optimized for parallel environment, it is written in Parsec, an
extension of C for parallel programming. However just IP networks can be simu-
lated, and this really restricts its use for sensor networks. Furthermore, last free
update was released in 2000, and now it is updated as a commercial product.

5.1 Simulator Engines 73

OMNet++ [MSK+05] is a modular component-based simulator. To simulate
sensor networks OMNet++ uses a model called SensorSim. The component-based
architecture is particularly efficient and it is significantly faster than ns-2. Further-
more, it accurately models most hardware and includes the modeling of physical
phenomena. Actually, very little published work has been done using SensorSim,
and very few protocols have been implemented yet.

Finally, Sidh [Car04] is a recent component-based simulator written in Java.
Specifically designed for wireless networks, its modularity is one of the best. Sys-
tems can be described in a very accurate way, and propagation and hardware
models are easily exchangeable. As drawbacks, its large memory consumption re-
stricts the scalability, moreover any literature is available yet.

Engine Type Scalab. Accur. Exten. Popul. Facil.

Tossim em. very good good no good avg

ATEMU em. avg. very good no low good

NS-2 sim. low avg. very good very good good

GloMoSim sim. good avg. avg. avg. good

OMNet++ sim. good avg. avg. low low

Sidh sim. good avg. avg. low good

Table 5.1: Engines Comparison

Our aim is to obtain good and reliable information about the algorithm work-
ing. It sets aside from particular hardware realization, and we are not interested in
knowing the detailed device’s internal mechanism as well. Rather, the algorithm
complexity, load distribution and routing efficiency are the points by which we can
validate the algorithm. Thus, emulators are not taken into consideration. Among
simulators the possibility to compare the results with a large literature, to rely on
a sound community of developers, drive the choice to the network simulator 2.
Furthermore, its extensibility guarantees in future the possibility to evaluate the
algorithm in different environments from the ones decided in a first moment.

74 Implementation

5.2 Network Simulator 2

Ns-2 is an object oriented simulator, written in C++, with an OTcl interpreter as
a frontend. The simulator is composed by a class hierarchy in C++, and a similar
class hierarchy within the OTcl interpreter. The two hierarchies are closely related
to each other. From the users point of view, there is a one-to-one correspondence
between a class in the interpreted hierarchy and one in the compiled hierarchy.
The root of this hierarchy is the class TclObject .

Users create new simulator objects through the interpreter; these objects are
instantiated within the interpreter, and are closely mirrored by a corresponding
object in the compiled hierarchy. The interpreted class hierarchy is automatically
established through methods defined in the class TclClass. user instantiated ob-
jects are mirrored through methods defined in the class Tcl Object. There are
other hierarchies in the C++ code and OTcl scripts; these other hierarchies are
not mirrored in the manner of TclObject.

Ns-2 uses two languages because simulator has two different kinds of things it
needs to do. On one hand, detailed simulations of protocols requires a systems
programming language which can efficiently manipulate bytes, packet headers, and
implement algorithms that run over large data sets. For these tasks run-time speed
is important and turn-around time (run simulation, find bug, fix bug, recompile,
re-run) is less important.

On the other hand, a large part of network research involves s lightly varying
parameters or configurations, or quickly exploring a number of scenarios. In these
cases, iteration time (change the model and re-run) is more important. Since
configuration runs once (at the beginning of the simulation), run-time of this part
of the task is less important.

Events Schedulator Ns-2

tclcl
Network

OTcl Components

tcl

Table 5.2: Ns-2 Architecture

5.2 Network Simulator 2 75

Ns-2 meets both of these needs with two languages, C++ and OTcl. C++ is
fast to run but slower to change, making it suitable for detailed protocol implemen-
tation. OTcl runs much slower but can be changed very quickly (and interactively),
making it ideal for simulation configuration. Ns-2 (via tclcl) provides glue to make
objects and variables appear on both languages. The architecture is represented
in table 5.2

For example, links are OTcl objects that assemble delay, queueing, and pos-
sibly loss modules. To use a particular configuration of them OTcl is enough.
But to use a special queueing dicipline or model of loss a new C++ object is
needed. Afterwards, such new module can be used through the OTcl interface.
A representative tree structure of the OTcl interface is in figure 5.1. The root is
the class TclObject, from which all the objects are derived. Most notable is the
class NsObject, and its subclass Connector, which are the base for all the networks
components. Among these Delay and Queue model the link behavior, while Agent

Figure 5.1: OTcl Interface Structure. In evidence classes that have been changed
to implement the algorithms

76 Implementation

is the base for all the protocols.

5.3 Simulator Implementation

To evaluate the algorithm we need to implement it as a C++ module. Such mod-
ule consists of a collection of classes, among which the main one has to be derived
from the agent class. In this way the module inherits all the properties needed to
represent a ns-2 object. Such class features links to the simulation interface; in
particular it can check values of a simulation parameter, and can be called by the
simulation interface in order to trigger particular actions. The agent is linked to
the underlying and overlying protocol layers as well. Such links are not fixed by
the agent itself, actually they are declared and bound through the configuration
interface. To implement the agent the procedure addressed by [ns2] is followed.
Moreover, a new packet format has to be declared as well.

About the architecture, we choose to use a 802.11 wireless channel to simulate.
This choice is due to the opportunity of future comparison, even if other wireless
technologies are recently developed right for sensor networks. Actually, our goal
(see sec. 1.2) is to propose an algorithm effective for the most part of radio imple-
mentation. For this reason, 802.11 represents the more sensible choice. However,
from this point of view ns-2 shows a lack of customization. In fact, the 802.11
module is tightly coupled with the IP stack, hindering its use with others over-
lying protocols. To avoid such a difficulty, our agent is placed above an IP layer
modified in the way to do not affect our algorithm behavior. A problem concern-
ing with 802.11 is the lack of preset broadcast collision avoidance mechanism. To
limit such a problem, the agent models a rough delay profile in packet transmitting.

As already said in the previous section, ns-2 is as a simulator with a low scalabil-
ity. Therefore, in order to use a nodes number larger as possible, all the operations
able to expedite simulator computation have to be adopted. Actually, opera-
tions which slows down a simulation are the object binding and tracing. About
object binding all the needed operation are compacted and made at the beginning
of the simulation. In this way time spent to carry out them is minimized. About
the tracing, it is fundamental to analyze system behavior. The point which really
slows down simulations is the continuous memory writing. Using ns-2 with default
trace mechanism means that every node writes all the network events, like packets
transmission and reception, and node faults. Furthermore, collisions are traced at
the MAC layer, while packets can be analyzed only at overlying layers. This means
that to take into consideration all the wanted issues, both MAC and Agent layer
have to be traced, bringing a node to write twice for a single packet transmitted.

5.4 Simulation Setup 77

These considerations make evident the need of data aggregation before tracing.
Two types of trace data may be distinguished, the first addresses issues affected by
general network properties. Traffic profile, nodes’ energy and memory consumption
belong to such a category. Actually, they does not concern with particular instants
of the simulation, therefore they can be traced just at the end of the simulation.
The other category represents data which meanings is tightly linked with temporal
events. For them the solution is to use a tracing format which can minimize the
memory writings number.

5.4 Simulation Setup

In order to best evaluate the algorithm, a proper analyze of parameters which
affect its behavior is needed. Two topics may be distinguished, the first deals with
the network topology, that is the number of devices and their distribution. The
way by which topology changes the algorithm efficiency is argued in section5.4.1.
The second topic refers to the stressing conditions that may change the algorithm
behavior and is analyzed in section 5.4.2.

5.4.1 Topology

The topology determines the number and the position of nodes along the area,
effectively changes the behavior of the whole system. By increasing the number
of nodes the entity of memory and energy consumption grows as well. Actually
the former because more availabilities are in the network and so nodes closer to
root node will have more subscriptions definitely. The latter because each node
has more neighbor, and so it will receive more packets. Furthermore, collision
probability grows up, making the system generally weaker. The chosen interval of
nodes numbers is from 100 up to 500. The steps will be of 10 nodes, in order to
have a fine-grained study.

Also the position of nodes significantly affects the network behavior. Fixed
to 2 kilometers per 2 kilometers the simulation area, and using a transmitting
range of 250 meters, the existence of nodes at the extreme position of the area is
assumed. Moreover, topologies are planned in the way that all the nodes are in the
transmission range of someone else. Assuming that availabilities are equally dis-
tributed and fixed the root node, three main topology types may be distinguished.
An uniform nodes distribution, a distribution more dense around the root node,
and the last one in which root node is at the quite at the opposite of the main
part of nodes.

78 Implementation

With a uniform nodes distribution (fig. 5.2 a) the spanning tree builds a tree
with the minimum number of levels. This means that leaves have a minimum
distance in hops with respect to every other distribution. Furthermore, each node
has the same number of nodes in its transmission range and so quite an equal
number of children. In such a condition, publish/subscribe creates routing tables
with a similar number of entries. Hence the memory consumption is equally spread
over the network, and depends almost only on the distance in hops from the root
node. Just from a probabilistic point of view this means that, fixed a level (all the
nodes with same distance in hops to the root) roles are assigned in a uniform way
as well. The consequence of this is that data traffic, accordingly with the other
traffic types, in the same level will result equally distributed. Uniform distribution
of nodes represents the best topology, given that all the algorithm’s components
never assume pick values.

Unbalanced distribution with the root node far from the most part of other
nodes (fig. 5.2 b) is characterized by a greater stress on nodes closer to the root.
Actually, starting from the area in which nodes are more dense and going towards
the root, the number of nodes decreases and the routing tables of them grows up
to the same order of the root’s one. Collision probability is lower around the root
and much greater on the opposite side.

Unbalanced distribution with the most part of nodes close to the root (fig.
5.2 c) node, is characterized by a very high density. Actually the most part of
the network is grouped in a small area, therefore subscriptions are very good
distributed, and routing tables never reach the root’s one order. However, collision
probability is high, moreover around the root as well. This means that all the
network activities are affected by a further weakness.

Figure 5.2: Topologies

5.4 Simulation Setup 79

5.4.2 Load Model

As load model we mean all the parameters which can characterize the stress of
the network traffic. Apart from topology other issues which can contribute are the
number of roles and faults, and the publishing rate as well. The number of faults
stresses the network forcing the system to reconfigure. In order to study the effect
of redundancy (the progressive higher number of nodes), such term is fixed. At
the beginning it represents almost an half of the total number of nodes (45), up
to the last step, in which it will represent just 1

10
of the total nodes.

The number of roles affects the system efficiency as well. More roles means
a greater stabilization time and frequenter unstable phases. Moreover, an higher
number of published messages will be routed through the network. To study the
system reaction to different entities of such a term it will assume values of 20, 40,
60, 80 and 100 roles. About roles, the number of nodes capable to take the same
role is important as well. In order to better study the effects of redundancy on the
algorithm ,such field is linked to the number of nodes. In a gradually way it starts
from 2 in correspondence of 100 nodes, up to 6 nodes when 500 nodes are present
in the network. The capabilities are distributed in a way that in every time an
available node for a role is always present. This means that for each role at a least
a node capable to perform it cannot fault ever.

The last issue is the publishing rate. In order to effectively model the load
effect each node assigned for a role will publish a data message with a certain rate.
Actually, a constant bandwidth model is chosen. Given that heartbeats represent
a metric for the most part of system performances, it is sensible to use it in this
case too. Nodes assigned for a role will publish data message every heartbeat,
every two heartbeats, finally a more relaxing one, with just a message every five
heartbeats.

Parameter Values Step

Number of Nodes from 100 to 500 10

Topology 3 types -

Number of Faults 45 faults -

Number of Roles from 20 to 100 20

Availabilities for Role gradually from 2 to 6 -

Publishing Rate every 1,2 or 5 heartbeats -

Table 5.3: Simulation Parameters

80 Implementation

Chapter 6

Evaluation

This chapter presents the simulations’ result for the three optimized algorithm
versions, the stabilization time version, the devices’ lifetime and the finale ones.
They are compared with the base version, which results to be the implementation
of [WPJM06]. For each issue of interest the algorithm versions are compared,
and their behavior analyzed. Section 6.1 gives an overview of the issues taken
into consideration, and the analyze method. Based on them, sections 6.2 and 6.4
shows the results for the stabilization time and the energy consumption. While,
section 6.3 makes in relation different load shapes with the algorithm behaviors,
and section 6.5 shows the memory consumption for different working conditions.

6.1 Simulations Overview

Simulations’ goals are to study the algorithms’ behavior, in order to understand the
efficiency of the optimizations proposed in the chapter 4. The first two algorithms
have been optimized respectively for the time to stabilize (TTS) and the devices’
lifetime (Lifetime). Consequentially, a unique version (Finale) composes the two
aspects proposing further optimizations by taking care of the network heterogene-
ity. Optimized algorithms are compared with the Base version, which represents
the starting point of such work. TTS and Lifetime represent the two edges in the
middle of which Finale’s issues are expected to sweep. Therefore, first stabiliza-
tion time and energy consumption, that are issues object of trade-off, are analyzed.
Afterwards, the behavior of the algorithms under different working conditions is
studied. Finally, the memory consumption confirms the degree of scalability of
the system. In order to better identify the different components forming results,
each algorithm has been simulated activating one layer at a time. Thus, first with
only spanning tree running, then with also publish/subscribe activated, finally the
whole stack.

82 Evaluation

6.2 Stabilization Time

Stabilization time is the time the algorithm spends to recover from a transient
fault. As explained in 5.4.2 45 faults are induced during the simulation. The
stabilization time might be assumed as composed by three components, one for
each algorithm of the stack. In the following subsections the spanning tree of the
three algorithm versions are compared.

6.2.1 Spanning Tree

In figure 6.1 the time the three algorithm versions spend to structure the span-
ning tree are compared. The spanning tree algorithm, that represents the base of

Figure 6.1: Spanning Tree Stabilization Time

the stack, stabilizes in a very short time span, and it does not actually affect the
overlying algorithm stabilization time. The time is measured in heartbeat periods
(δ

3
), and the 10% of nodes are assumed as powerful ones. The TTS version, which

spanning tree algorithm is the same with respect to the base one, stabilize in the
shortest time. Lifetime version is slower, actually it pays the delay introduced
to face the count-to-infinity problem, as well as the heartbeat decouple. Finale
version’s spanning tree has the lifetime one as starting point, therefore its stabi-
lization time as well. Moreover, a component due to the more laborious parent’s
choose is added. In fact, while the other versions just choose the shortest path to
the root, finale takes care of the highest number of powerful nodes along the path
as well.

6.2 Stabilization Time 83

6.2.2 Publish/Subscribe

For publish/subscribe the stabilization time represents the time span the algorithm
spends to update nodes’ routing tables, in the way that each of them correctly con-
tains children subscriptions. In response to a missing subscription, the minimum
stabilization time is of two heartbeat periods, that is the time by which routing
table entries’ TTL is set. In figure 6.2 the three publish/subscribe versions are
simulated. The time is expressed again in heartbeat periods, and the number
of PSTypes is assumed as 40, while powerful nodes are considered as the 10% .
Lifetime, which publish/subscribe version is the same of the base one, is consider-

Figure 6.2: Publish/Subscribe Average Stabilization Time

ably slower with respect to the other ones. Finale and TTS use fast notifications,
accelerating in this way the routing tables update, while lifetime not. In lifetime
version when a routing entry is erased, such information spends two heartbeats
periods for each layer before to reach the root node. Actually, in a denser topol-
ogy (high nodes numbers) such issue decreases. This happens because with more
nodes it is more possible to find a shorter path to the root, thus less hops to the
root node. In lifetime version this leads to a considerable difference, given its
dependency from the distance to the root node. In the same way also the other
two algorithm versions reduce their publish/subscribe stabilization time, even if
by a less important rate. In fact their stabilization times are already close to the
minimum possible (2 heartbeat periods), and just the small component due to the
message propagation is reduced.

6.2.3 Role Assignment

For the role assignment algorithm the stabilization time represents the time the
algorithm spends to reassign a role, once it The simulations of the role assignment

84 Evaluation

Figure 6.3: Role Assignment Average Stabilization Time

algorithm stabilization time (fig. 6.3) synthesizes issues pointed out by the pub-
lish/subscribe . Actually, a role missing is a lost subscription. With respect to
the time needed by the publish/subscribe to update the routing tables, the role
assignment spends an higher time to reassign the role. Among the three optimized
algorithm versions, lifetime confirms its slowness, in fact the role assignment sta-
bilization time is more than the double with respect to the other two. Finale,
together with TTS, assumes the best possible result and, aside from lower nodes’
numbers, its stabilization time is about a third of the base version one. Moreover,
the higher nodes number does not reduce such term, on the contrary the algorithm
exploits it to perform faster stabilization phases.

6.3 Traffic Effect

In this section the efficiency of the algorithm in delivering data messages is taken
into consideration. Assuming 40 roles and a publishing rate of one data message
every heartbeat period (the more stressing case), the behavior of the algorithms
are studied. To deliver a data message the packet has to bubble up along the
edges of the tree, up to the node that has the checking subscription, thus that
has the receiver in its subtree. Closer to the root it will be the node by which
the sender’s and the receiver’s subtrees cross each other, and higher it will result
the number of transmissions to deliver the message. In figure 6.4 the maximum
number of data messages transmitted by the publish/subscribe algorithm is shown.
Thanks to the different assignment policy, Finale optimizes such issue, such as for
higher nodes’ numbers it is almost an half with respect to the other two optimized

6.3 Traffic Effect 85

versions. Actually, in the finale version nodes, when possible, assign roles of the
same application to the same subtree. In this way to deliver a message an inferior
number of transmission is needed.

Figure 6.4: Publish/Subscribe Exchanged Data

An higher number of transmissions increases in a linear way the number of
collisions as well, as shown in figure 6.5. In fact, the finale’s number of collisions
results an half with respect to the Lifetime version and less than a fourth of the
Base and TTS ones.

Such results lead the finale’s probability of successful transmission much more
higher, as the message error rate in figure 6.6 shows. In such a graph, the number
of missed data messages is represented in percentage, with a roles’ number of
40. The final version improves such issues as long as the nodes’ number grows,
exploiting in this way the redundancy of availabilities in the network.

86 Evaluation

Figure 6.5: Collisions Number

6.4 Energy Consumption

Nodes energy consumption is substantially determined by the transmitted mes-
sages, and in part by the received messages as well. Analyzing our algorithm we
can identify three components due to the three layers of the algorithm. The first
one is correlated with the spanning tree , and in particular with the heartbeat
messages. The second part belongs to the publish/subscribe mechanism, therefore
to the number of subscribe messages. Finally, the third component represents the
messages transmission due to the role assignment functioning and data exchanged.

Given that energy consumption strongly depends from several factors, among
which the distance to the root it is not sensible to use the average values. Instead,
the maximum energy consumption is adopted in order to study the worst case
possible in the network.

In figure 6.7 the first component is shown. It has been obtained by simulating
the spanning tree algorithm alone. Results shows how such issues is quite the
same for all the algorithm’s versions. Just for high nodes’ numbers Finale is
characterized by a little higher energy consumption. Actually it is due to an
higher number of reconfigurations, due to a more complex choice of the parent.
For the same reason Lifetime in the last steps consumes slightly more with respect

6.4 Energy Consumption 87

Figure 6.6: Message Error Rate

to the TTS spanning tree version, which has not to front the count-to-infinity
problem.

The second component belongs to the publish/subscribe mechanism. In fig-
ure 6.8 the algorithm is simulated with the role assignment disabled. Therefore
the shown energy consumption is due to exchanged messages for heartbeat and
subscriptions. Lifetime spends less than the other ones. This thanks to the heart-
beats piggybacking, that permits to consume just a few more with respect to the
spanning tree algorithm consumption. TTS spends the triple of the Lifetime ver-
sion. Here subscription messages and heartbeats are sent separately, moreover
fast notifications methods provides to send an higher number of messages when
a reconfiguration happens. In the middle there is Finale. Also it performs fast
notifications, however combined with heartbeats piggybacking.

In figure 6.9 the dependence between number of roles and energy consumption
is shown for the Finale’s whole role assignment algorithm. Actually, the load
model assumed for such simulations considers that each node assigned for a role
publishes message with a certain rate. In figure 6.9 it is assumed a slow rate of a
message every five heartbeat periods.

In figure 6.10 the four algorithm versions are compared with respect to the
energy consumption level with a roles’ number of 20. Looking at the graph, the

88 Evaluation

Figure 6.7: Spanning Tree Maximum Energy Consumption

Figure 6.8: Publish/Subscribe Maximum Energy Consumption, with 40 roles

great efficiency of the final version leaps out, definitely. Not only it optimizes the
energy consumption with respect to the TTS version, but, in this case and for an
high nodes number, it makes better than the lifetime version as well.

This could appear in contrast with results previously shown. The reason is
that optimizations featured to the role assignment algorithm make the system
not only able to have a faster stabilization time, but also to save on messages
transmission, thus on the energy consumption. With respect to the energy spent
by the publish/subscribe algorithm (see fig. 6.8), fast notifications methods and
the reassignment function allow to the TTS version to make up for a third of the
difference with Lifetime. Finale adds to such improvements the better network
structure and the clever assignment policy that brings the system to save on data
messages exchanged, as previously shown in figure 6.4.

With higher numbers of roles, the number of exchanged messaged raises, and
the collisions as well. However, Finale’s collisions shape (see fig. 6.5) does not

6.4 Energy Consumption 89

Figure 6.9: Max Energy Consumption with 20,40 and 80 Roles

Figure 6.10: Max Energy Consumption with 20 Roles

90 Evaluation

Figure 6.11: Max Energy Consumption with 80 Roles

affect in a consistent way the message delivering (see fig. 6.6), thus the energy
consumption increases. On the contrary in the Lifetime, TTS and Base versions
more exchanged messages bring to a consistent number of failed delivers, hence
the energy consumption do not increase as much as it should. Therefore, for high
roles’ numbers, the spread at high nodes number between the final version and
the Lifetime results quashed. In figure 6.11 the maximum energy consumption of
the three algorithms, level with 80 roles, is shown. Such argue is confirmed by
analyzing the averages instead of the maximum values. In figure 6.12 the average
energy consumption level with 20 roles is depicted. Here, the efficiency of Finale
version results much more stronger. Looking at figure 6.13 we can see that such
gap is filled, again by the Lifetime inefficiency in messages delivering.

In all these graphics Base version assumes values between the Lifetime and the
TTS ones, actually closer to TTS. This because it does not feature both messages
piggybacking and fast notifications.

6.4 Energy Consumption 91

Figure 6.12: Average Energy Consumption with 20 Roles

Figure 6.13: Average Energy Consumption with 80 Roles

92 Evaluation

6.5 Memory Consumption

In this work as memory consumption is intended the number of entries stored in
the publish/subscribe routing tables. It represents the most important index of
scalability of the system. Based on the concept of heterogeneity, Finale introduced
the concept of powerful nodes (see section 4.4.2), through which it structure the
network in backbones, over which the most part of traffic should be routed. The
result of such operation leads to an higher number of routing entries into powerful
nodes, in favor of weak ones. Globally, considering all the routing tables in the
network, we expect a lower number of routing entries.

Figure 6.14: Memory Consumption with 10% of powerful nodes

In figure 6.14 the memory consumption in the Finale version is analyzed, in
the situation in which all the nodes are weak, and with the 10% of powerful nodes.
The result is that actually aggregation is made. Powerful nodes get higher routing
entries numbers, thus backbones really relieve weak nodes.

In figure 6.5 the percentage of powerful nodes is brought to 30%, while in back-
ground remain the previous results. Here the situation become more consistent,
and the backbone setting up appears in a plainer way. Routing tables of weak
nodes are even more relieved, while the ones of the powerful nodes assume in av-
erage values close to the “no-powerful” situation. Globally, this means that the
total number of routing entries in the network is reduced, and weak nodes result
to have an half of the routing entries experienced in absence of backbones.

6.5 Memory Consumption 93

Figure 6.15: Memory Consumption with 30% of powerful nodes

94 Evaluation

Chapter 7

Conclusions

Actuator/Sensor Networks (AS-Nets) emerged in recent years thanks to research
advances in highly integrated and low-power hardware. They are composed by tiny
devices able to monitor physical properties of their surroundings (sensor boards),
embedded controllers and computing devices, whether mobile or not. Primary goal
is to monitor and control environments, based on the user’s information and needs.
Diffusion margins of such networks are spreading over an even higher number of
applicative scenarios. Actually, a large part of an AS-Net components would be
already “out there”. Mobile devices equipped with even more powerful computing
facilities are almost in all our pockets, sensors and embedded controllers are already
entered in our houses (electrical appliances), with several aims in our cars, finally
in our urban environments (surveillance cameras, electrical gates).

To manage the distributed computation in such an heterogeneous network new
architectures and protocols are needed. Actually, they have to be devised in order
to care of the bounded lifetime of the most part of devices, considering also the
always changing network structure and the inability of users and network admin-
istrators to manage configuration phases. For these reasons self-organization and
self-stabilization play in AS-Nets a crucial role, becoming fundamental for a large
part of applicative scenarios.

This thesis presents a self-stabilizing role assignment algorithm, able to facili-
tate self-organization of the network and its application. Taking as starting point
the work of Weis, Parzyiegla, Jaeger and Mühl [WPJM06], first goal was to evalu-
ate its effectiveness. To do this related available literature has been analyzed and
possible alternatives to structure the algorithm identified. Such study does not led
to change the algorithm architecture but brought to several reflections that gave
hints for the second goal of this thesis: the algorithm optimization.

Criteria identified as mostly affecting the AS-Nets efficiency are the devices’
lifetime, the stabilization time and the network heterogeneity. The first one is a
structural point, too small is the battery charge in the most part of devices and a

96 Conclusions

non-care of such a limit could bring to ineffective networks. The stabilization time
characterizes the quality of service, it is the time the algorithm spends to adapt
itself to changing environments. Finally, the network heterogeneity is indicative
of the ability of the algorithm to well exploit resources available in the network.
Following such criteria an improved version of the algorithm has been studied and
implemented. In order to well evaluate the quality of proposed optimizations a
simulator engine (NS2) has been used.

Simulations results pointed out the effectiveness of the presented algorithm for
all the optimization goals. With respect to the algorithm of [WPJM06] the devices’
lifetime has been improved of more than the double, and the time spent to stabilize
the algorithm reaches values lower than a third. Moreover, the algorithm exploits
the different power constraints of available nodes, allowing weak ones to save on
consumed energy and memory space. For all these reasons the algorithm that we
propose here results to better fit for the AS-Nets challenge, which is going to lead
us towards a trustable and even pervasive interaction with our surroundings.

7.1 Summary

In order to better identify requirements our algorithm had to fulfill we began with
a complete overview of AS-Nets. In particular, applicative scenarios and typical
devices have been presented and analyzed. Afterwards, we argued the need of a
distributed architecture that, in such networks, implies the implementation of a
middleware layer between the operating system and the applicative layer.

Aspects of a middleware that are actually implemented by our algorithm are
the communication paradigm, the fault-tolerance and the self-organization. Thus,
we focused on them, analyzing available literature and pointing out several ways
to build the algorithm as well. Among these choices, we found that the ones made
by [WPJM06] were the most sensible for the algorithm’s aims.

In particular, the algorithm resulted built in a stack fashion, composed by three
layers and directly based on the radio interface. Starting from the bottom first
two layers implement the communication paradigm in the form of publish/sub-
scribe mechanism. The first one is a spanning tree algorithm and builds a totally
distributed broker network in a tree fashion. Over it, the hierarchical publish/-
subscribe mechanism implements needed functions to deliver subscriptions and
published messages. Finally, on the top the role assignment algorithm manages
to assign roles to nodes, implementing a self-organized service for the distributed
computation. All the layers of the stack have been devised as self-stabilizing ones.

However, several points resulted to be actually restricting the algorithm effi-
ciency, from the energy consumption point of view, as well as focusing on the time
to perform operations.

7.1 Summary 97

Therefore, we identified an optimization procedure based on three optimiza-
tion goals: Stabilization Time, Devices’ Lifetime and Network heterogeneity. Given
that first two resulted in conflict each other the procedure consisted in deploying
two algorithms (TTS and Lifetime) extremely optimized respectively for each of
the first two issues. Thus, based on analysis, the final algorithm (Finale) has been
developed, incorporating optimizations tuned on network heterogeneity as well.
In order to evaluate the quality of the proposed algorithm all the four versions
(Base, TTS, Lifetime and Finale) have been implemented for a simulator engine.
Among the available ones NS2 has been chosen thanks to its extensibility and its
renowned reliability. With respect to the other three algorithm’s versions, and for
each optimization goal, simulations gained the following results:

Stabilization Time. Stabilization time has been analyzed for each of the three
algorithm’s layer. components belonging to the three layers of the algorithm.
The spanning tree of Finale results to have an higher stabilization time than
the other versions. This is because it structures the network in a more com-
plex way, actually more efficient. However, the implemented optimizations
in the other two algorithm’s layers led Finale to reduce the stabilization time
over than an half with respect to the base version. Actually, it achieved the
same performances as TTS, which was developed with the only goal to speed
up stabilization.

Devices’ Lifetime. The algorithm’s Lifetime version has been optimized for in-
creasing the network’s lifetime. It represents the point of reference for this
optimization criteria and it is characterized by an energy consumption less
than a third with respect to TTS, and about an half to Base. For small num-
bers of nodes Finale results to be in the middle between TTS and Lifetime,
as one would expect. However, increasing the number of nodes, the Finale
network structure and its different role assignment policy exploit in a clever
way the nodes redundancy. In low traffic situations Finale succeeds to get
results even better than Lifetime version. Even whit higher traffic situations
even if Lifetime has the same energy consumption of Finale it suffers of a
much more higher number of undelivered messages. Hence, normalized to
the same number of delivered messages Finale consumes less energy per mes-
sage. Such results stands out definitely, getting results considerably beyond
expectations.

98 Conclusions

Network Heterogeneity. In a actuator/sensor network nodes are supposed to
be not furnished with the same capabilities.Finale version takes into con-
sideration the different power and memory constraints of nodes in all three
algorithm layers. In particular such information are used to build up a back-
bone formed by stronger nodes, over which the most part of traffic is routed.
In this way weaker nodes are allowed to save energy and memory space.

We can conclude that simulations results pointed out great improvements of the
final version with respect to the base one, for all the chosen optimization goals. The
energy consumption has been reduced of more than an half and the stabilization
time results to be three time faster than the base algorithm version. Furthermore,
data messages are delivered by a lower number of transmissions and with a much
more higher success rate. Moreover, by taking care of the heterogeneity of the
network powerful nodes are better exploited, allowing weak ones to save energy
and memory space.

7.2 Outlooks

There are several aspects of the algorithm we proposed that could be deepened
and extended, mostly dealing with the algorithm itself. About them we address
possible ways to further improve the algorithm efficiency.

Role Placement. Final version already features an assignment policy studied
to improve the efficiency of the distributed computation. In particular, without
exchanging further information it tries to assign roles belonging to the same ap-
plication to the same subtree. A deeper analyze could be make, by taking care
of the subscribers’ classes. Actually, the optimum would be to assign roles of the
same application to powerful nodes close among them and connected each other
through other powerful nodes. This would bring an higher computation cost, that
a dedicated analyze could point out.

Routing. Hierarchical publish/subscribe is a good way to implement the com-
munication paradigm. We argued this choice as the most sensible given the hi-
erarchical flowing of subscriptions. However, depending on the traffic conditions
other approaches could result to be more efficient. A deeper study could identify
more flexible routing algorithms, able to optimize the message delivering.

Tree Structure. In our algorithm the network is structured in a tree fashion.
The possibility to build not just one, but several trees could be taken into consid-

7.2 Outlooks 99

eration. In this way the load on the tree upper levels would better spread over the
network, allowing weak nodes to save even more energy and memory space.

Security. Transmission security was not a goal of this thesis. However, in order
to propose services for commercial use the security has to be implemented in the
most affordable way. Actually, AS-Nets deal with user’s more intimist information.
Its position, its habits could be available to malicious listeners in every moment.
We conceive AS-Nets as an instrument to easy people everyday life, and not to
observe them. Further works could focus on such theme, proposing mechanisms
to feature secure transmission able to guarantee users’ private information.

100 Conclusions

Bibliography

[AKY91] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing
protocols for general networks. LNCS, 486:15–28, 1991.

[Car04] T. Carley. Sidh: A wireless sensor network simulator. ISR Techical
Reports, 2004.

[Cur04] D. Curren. A survey of simulations in sensor networks. Technical
report, University of Binghamton, 2004.

[DFFMM06] Henri Dubois-Ferriére, Laurent Fabre, Roger Meier, and Pierre Me-
trailler. Tinynode: a comprehensive platform for wireless sensor
network applications. In IPSN ’06: Proceedings of the fifth inter-
national conference on Information processing in sensor networks,
pages 358–365, New York, NY, USA, 2006. ACM Press.

[Dij74] E. W. Dijkstra. Self stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 1974.

[Dol00] S. Dolev. Self-Stabilization. MIT Press, 2000.

[Gär03] F. C. Gärtner. A survey of self-stabilizing spanning tree con-
struction algorithms. Swiss Federal Institute of Technology (EPFL)
School of Computer and Communication Sciences Technical Report
IC/2003/38, 2003.

[HMJ05] K. Herrmann, G. Mühl, and M. A. Jaeger. A self-organizing lookup
service for dynamic ambient services. 25th International Conference
on Distributed Computing Systems (ICDCS 2005), Columbus, USA,
2005.

[IGE00] C. Intanagonwiwat, R. Govindan, and D. Estring. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
MobiCom 2000, Boston, USA, 2000.

102 BIBLIOGRAPHY

[Kli] R. M. Kling. Mote: An enhanced sensor network node,
http://www.intel.com/research/exploratory/motes.htm.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and
scalable simulation of entire tinyos applications. Proceedings ot the
1st international conference on embedded networked sensor systems,
pages 126–137, 2003.

[LLWD] P. Levis, N. Lee, M. Welsh, and D.Cullers. TinyOS: An Operating
System for Sensor Networks.

[MFJWM05] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. Codeblue:
An ad hoc sensor network infrastuscture for emergency medical care.
Technical report, Harvard University, 2005.

[MHH] S. Madden, J. Hellerstein, and W. Hong. TinyDB: In-Network Query
Processing in TinyOS.

[MJH+05] G. Mühl, M. A. Jaeger, K. Herrmann, T. Weis, L. Fiege, and A. Ul-
brich. Self-stabilizing publish/subscribe systems: Algorithms and
evaluation. Euro-Par 2005, LNCS 3648, Lisbon, Portugal, 2005.

[MLM+05] P.J. Marron, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, and
K. Rothermel. Tinycubus: A flexible and adaptive framework for
sensor networks. EWSN 2005, Istanbul, Turkey, 2005.

[MOD] Modoc - model-driven development of self-organizing control appli-
cations. http://kbs.cs.tu-berlin.de/projects/modoc.htm.

[MSK+05] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan,
and A. Durresi. Simulating wireless sensor networks with omnet++.
submitted to IEEE Computer, 2005.

[Nic06] Stefano Niccolai. Evaluation of two different schemes for subscrip-
tions and notifications disseminated in a component-based publish/-
subscribe system for wsns. Master’s thesis, University of Pisa, June
2006.

[ns2] The ns manual (formerly ns notes and documentation).

[ns206] Network Simulator 2 Internet: www.nsnam.isi.edu/nsnam/index.php,
2006.

BIBLIOGRAPHY 103

[PBM+04] J. Pollet, D. Blazakis, J. McGee, D. Rusk, and J. Baras. Atemu:
A fine-grained sensor network simulator. Proceedings of SECON’04,
First IEEE Communications Society Conference on Sensors and Ad
HOC Communications and Networks, 2004.

[PLS02] S. Park, I. Locher, and M. Srivastava. Design of a wereable sensor
badge for smart kindergarten. In 6th International Symposium on
Wereable Computers (ISWC2002), Seattle, WA, October 2002.

[PSC05] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: en-
abling ultra-low power wireless research. In IPSN ’05: Proceedings of
the 4th international symposium on Information processing in sensor
networks, Los Angeles, California, page 48, Piscataway, NJ, USA,
2005. IEEE Press.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. IFIP/ACM
International Conference on Distributed Systems Platforms, Novem-
ber 2001.

[RFMB04] K. Römer, C. Frank, P. J. Maron, and C. Becker. Generic role as-
signment for wireless sensor networks. 11th ACM SIGOPS European
Workshop. Leuven, Belgium, 2004.

[SAJG00] K. Sohrabi, V. Ailawadhi, J.Gao, and G.Pottie. Protocols for self-
organization of a wireless sensor network. Personal Communication
Magazine 7, 2000.

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, Vol. 25,
No. 1, 1993.

[SK00] L. Subramanian and R.H. Katz. An architecture for building self-
configurable systems. MobiHoc’00. Boston,USA, 2000.

[SM01] S. Slijepcvevic and M.Potkonjak. Power efficient organization of
wireless sensor networks. ICC’01, Helsinki, Finland, 2001.

[SRWV05] J. Schiller, H. Ritter, R. Winter, and T. Voigt. Scatterweb - low
power sensor nodes and energy aware routing. System Sciences,
2005. HICSS ’05. Proceedings of the 38th Annual Hawaii Interna-
tional Conference, page 286c, 2005.

[TLP05] B.L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor
network simulation with precise timing. Proceedings of IPSN’05,

104 BIBLIOGRAPHY

Fourth International Conference on Information Processing in Sen-
sor Networks, 2005.

[TS07] Andrew S. Tanenmbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall, 2007.

[WLLP01] B. Warneke, M. Last, B. Liebowitz, and KSJ Pister. Smart dust:
communicating with a cubic-millimeter computer. Computer, 34:44–
51, January 2001.

[WPJM06] Torben Weis, Helge Parzyjegla, Michael A. Jaeger, and Gero Mühl.
Self-organizing and self-stabilizing role assignment in sensor/actua-
tor networks. The 8th International Symposium on Distributed Ob-
jects and Applications (DOA 2006), 4276:1807–1824, October 2006.

[ZBG98] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for paral-
lel simulation of large-scale wireless networks. Workshop on Parallel
and Distributed Simulation, 1998.

