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Gratitude - is not the mention

Of a Tenderness,

But it’s still appreciation

Out of Plumb of Speech -

When the Sea return no Answer

By the Line and Lead

Proves it there’s no Sea, or rather

A remoter Bed?

Emily Dickinson





In 1951, I had the good fortune of listening to Professor Racah’s lecture

on Lie groups at Princeton. After attending these lectures, I thought,

“This is really too hard. I cannot learn all this . . .

All this is too damned hard and unphysical!”

Abdus Salam

Seminars on Theoretical Physics - Trieste (Italy), 1962.
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Introduction

Representation theory of classical Lie groups (unitary, orthogonal and symplec-

tic groups) plays a fundamental role in many areas of physics and chemistry. Orthogonal

and symplectic group representation theory arises, for example, in the description of sym-

metrized orbitals in quantum chemistry and in fermion and boson many-body theory [1],

grand unification theories for elementary particles [2], supergravity [3], interacting boson

and fermion dynamical symmetry models for nuclei [4, 5], nuclear symplectic models [6, 7],

and so on.

In particular, the importance of coupling and recoupling coefficients (Clebsch-

Gordan coefficients, 6j-symbols, Racah coefficients, 9j-symbols and general 3nj-symbols)

is evident in the study of angular momentum theory which is built on the well known

representation theory of SU(2). Furthermore, Racah-Wigner calculus of SU(2) group has

notable applications in the theory of orthogonal polynomials and other special functions.

The Racah coefficients and other recoupling coefficients of unitary SU(n), orthogo-

nal SO(n) and symplectic Sp(2m) groups of different rank are quite useful when calculating

energy levels and transition rates in atomic, molecular and nuclear theory (for example, in

connection with the Jahn-Teller effect and structural analysis of atomic shells, see Judd

and co-workers [8, 9] and, for a description of multi-bosonic and multi-fermionic systems

and applications in the microscopic nuclear theory, consider [10, 11]), and in conformal field

theory [12].

There are many approaches to the Racah coefficients, but the problem is that there

are no general methods for treating various kind of coupling and recoupling issues. Any

given technique applies only to a particular problem and for a particular group. Not only
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Introduction 2

do the tecniques for dealing with unitary, orthogonal and symplectic groups all drastically

differ from each other, but the methods for finding the various Wigner coefficients, which we

are interested in, also vary from one to the other. Furthermore, analytical expressions are

difficult to come by for general Lie groups, mainly because there is a multiplicity problem

in the reduction of Kronecker products of pair of irreducible representations. Some missing

labels need to be added in, for which a procedure is often difficult to do systematically.

Finally, although several efficient computer codes and numerical procedures exist, they

often do not permit any insight in the mathematical structure of such coefficients and,

however, a general and efficient closed algorithm is still needed. Therefore, citing Jin-Quan

Chen in his book Group representation theory for physicists, “in many cases, these methods

are more of an art than a science”.

The aim of this thesis is to provide a systematic and comprehensive approach to

deal with the structure of coupling coefficients for classical Lie groups. The most promising

strategy, from this point of view, seems to be the one building on the well-known and

tight connection between symmetric and unitary groups which is called in literature Schur-

Weyl duality and which was first pointed out by Schur at the beginning of the twentieth

century [13]. Schur proved that the image of each group under its representation equals the

full centralizer algebra and that the two actions are omeomorphic. This observation was

developed ten years later by Brauer [14] who found the full centralizer algebra for orthogonal

and symplectic groups and completed the construction of the full centralizer algebras for

the classical series of the Lie groups.

Weyl used these results, gave numerous theorems concerned with irreducible repre-

sentations of both classical Lie group and its centralizer algebras, and also gave application

to the many-body sistems of f equivalent particles. However, the duality goes further than

the one originally expressed by Schur and Weyl. Many powerful equalities between various

tranformation factors of the centralizer algebras and those of the corresponding Lie group

can be established. This is one of the main aims of the invariant theory.

Kramer [15] used explicit transformations between the bases defined in terms of
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different symmetric group chains (so called Gelfand-Tzetlin chains) to define his f symbol

(our subduction factor) for a symmetric group. He showed that the f symbols were equiv-

alent to recoupling coefficients (6j and 9j symbols) for any unitary group and further that

f symbols were also equal to coupling coefficients for U(p + q) ⊃ U(p) × U(q). Later [16]

such results were generalized to Brauer centralizer algebras and to the corresponding ortho-

symplectic groups, making the problem of finding coupling and recoupling coefficients for

classical Lie groups equivalent to the subduction problem for centralizer algebras.

Subduction coefficients for symmetric groups were first introduced in 1953 by Elliot

et al to describe the states of a physical system with n identical particles as composed

of two subsystems with n1 and n2 particles respectively (n1 + n2 = n) and then they

were soon generalized to Brauer algebras [17]. Since Elliot’s work, many techniques have

been proposed for calculating the subduction coefficients, but the investigation is until now

incomplete. The main goal to give explicit and general closed algebraic formulas has not

been achieved. Only some special cases have been solved for symmetric groups. There are

also numerical methods which are used to approach the issue, but, again as in the case of

recoupling coefficients, no insight into the structure of the trasformation coefficients can be

obtained. Another outstanding problem is the resolution of multiplicity separations in a

systematic manner, indicating a consistent choice of the indipendent phases and free factors.

In this thesis, we choose an algebraic approach to the subduction problem in sym-

metric groups Sn ↓ Sn1 × Sn2 and in Brauer algebras Bf (x) ↓ Bf1(x) ×Bf2(x) and we

analyze in detail the linear equation method [18], an efficient tool for deriving algebraic solu-

tions for fixed values of n1, n2 and f1, f2 respectively. Thus we give a suitable combinatorial

description of the equation system arisen from the method and we provide a new algorithm

to solve it. Therefore, by solving the subduction problem for centralizer algebras, we have

the solution for a unified approach to the Racah-Wigner calculus for classical Lie groups.

There are at least three possible interesting developments for this thesis:

• Racah-Wigner calculus for quantized enveloping algebras.

Centralizer algebras (i.e. Birman-Wenzl and type A Iwahori-Hecke algebras) for quan-
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tized enveloping algebras are well characterized both from the algebraic and combi-

natorial point of view and there exists an explicit construction of their irreducible

representations [19]. Thus, the linear equation method can be directly applied to this

issue without any particular difficulty.

• Racah-Wigner calculus for projective representations of classical Lie groups.

Projective (spinor) representations of a classical Lie group G are very useful in many

situations. Finding such representations is equivalent to determining the tensorial

irreducible representations of the universal enveloping group of G (which is another

classical Lie group). An alternative approach is to find the projective representations

of Brauer algebras. The Gelfand-Tzetlin basis for such representations is described

in terms of combinatorial objects which are known as stable-up-down tableaux [20]

(they are permutation lattices with null elements, in our language). Unfortunately,

the explicit action on the irreducible invariant spaces is still unknown.

• Racah-Wigner calculus for exceptional Lie groups

Racah-Wigner calculus for exceptional Lie groups also has many applications both in

physics and mathematical physics. The study of the subduction problem for this case

would be important for a comprehensive knowledge of Racah-Wigner calculus for all

Lie groups. The centralizer algebras for exceptional Lie groups are still unknown.

The layout of the thesis is the following.

In chapter 1, we review some basic results in representation theory of classical

Lie groups which are necessary to deal with the coupling and recoupling problem. We

mainly consider the construction of standard Gelfand-Tzetlin bases and the explicit action

of classical Lie algebras on such bases.

The definitions of classical coupling and recoupling coefficients for the groups

SU(2) and SO(3) are also given and then generalized to generic classical Lie groups.

In chapter 2, we deal with Schur-Weyl duality and its general formulation. Be-
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sides classical duality, a description of quantum deformation groups and the corresponding

centralizer algebras is given.

After that, we specialize the discussion on the Bf (εn) − SO(n)/Sp(2n) duality

and we highlight the relation between subduction and Racah coefficients.

In chapter 3, we investigate the linear equation method for symmetric groups,

proposed by Chen et al. for the determination of the subduction coefficients as solution

of a linear system. We prove that such a system, which is constituted by a complicated

primal structure of dependent linear equations, can be simplified by choosing a minimal

set of sufficient equations related to the concept of subduction graph. Furthermore, the

subduction graph provides a very practical way to choose such equations and it suggests that

subduction coefficients may be seen as a subspace of Rfλ ⊗Rfλ1fλ2 (where fλ, fλ1 , fλ2 are

the dimensions of the irreducible representations involved in the subduction Sn ↓ Sn1×Sn2)

obtained by the intersection of only n − 2 explicit subspaces (each one in corrispondence

with an i-layer) instead of the original (n−2)fλfλ1fλ2 ones. Consequently, we have a more

explicit insight into the structure of the transformation from the standard basis to the split

basis.

Furthermore, we propose a general form for the subduction coefficients resulting

from the only requirement of orthonormality and we note that the multiplicity separation

can be described in terms of the Sylvester matrix of the positive defined quadratic form τ

describing the scalar product in the subduction space. Thus we are able to link the freedom

to fix the multiplicity separation to the freedom to choose of the Sylvester matrix. The

number of phases and free factors of the general multiplicity separation can be expressed

as functions of the multiplicity µ (i.e. the dimension of the subduction space). A crucial

question is the possibility to fix the Sylvester matrix to obtain all the requirements of

simplicity given in [21] for the form of each coefficient. We conjecture that such a form only

depends on the form of the eigenvalues and eigenvectors of τ .

(These results are published in [22].)

In chapter 4, we consider transformations between split bases and standard bases
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of the symmetric group Sn. A selection rule which allows to determine the vanishing sub-

duction coefficients and to organize the other ones in blocks (named islands) is given. We

prove that all islands produce the same values for the subduction coefficients and thus

only a much smaller number of them really needs to be evaluated. Thus, the linear equa-

tion method, described in terms of a reduced subduction graph, provides a systematic and

optimizated tool to calculate the unknown transformation coefficients.

As a significative example, the first multiplicity-three cases, [4, 3, 2, 1] ↓ [3, 2, 1] ⊗
[3, 1] and its conjugate [4, 3, 2, 1] ↓ [3, 2, 1]⊗ [2, 1, 1] for S10 ↓ S6 ×S4, were dealt in detail:

we give the suitable orthonormalized transformation coefficients relative to each multiplicity

copy descending from the Yamanouchi phase convention.

(These results are published in [23])

Finally, in chapter 5, we describe the subduction problem for Brauer algebras.

This problem is clearly a generalization of the corresponding one for symmetric groups be-

cause the group algebra CSf is strictly included in Bf (x). After the suitable combinatorial

description for the Gelfand-Tzetlin basis by the introduction of Bratteli diagrams and per-

mutation lattices (which generalize the concept of standard Young tableau), we provide the

explicit action of Brauer algebra generators on the irreducible invariant spaces. This allows

us to write the explicit form of the subduction equations deriving from the linear method.

A description of the solution of such equations is given trhough the concept of a

generalized i-layer. We find four possible configurations for the subduction space and we

can provide a definition of subduction graph analogous to that one given in chapter 3.

Finally, as in chapter 3, the form for the orthonormalized subduction coefficients is

discussed with a special emphasis on the choice of Young-Yamanouchi phase and the other

free factors.

(These results are in preparation to be submitted for publication.)

I wish to thank Massimo Campostrini for introducing me into this interesting

research topic and for his valuable support during the progress of this thesis.



Chapter 1

Classical Lie algebras, classical Lie

groups and Racah-Wigner calculus

This chapter is devoted to a rapid review of Racah-Wigner calculus for classical Lie

groups and the envolved representation theory. In section 1, we deal with Gelfand-Tzetlin

bases and explicit actions of Lie groups and algebras on such bases. In section 2, the basic

results of Racah-Wigner calculus for SU(2) group are presented and, in section 3, they are

generalized to classical Lie groups.

1.1 Bases and operators

The simple Lie algebras over the field of complex numbers were classified in the

works of Cartan and Killing in the 1930’s. There are four infinite series An, Bn, Cn, Dn

which are called the classical Lie algebras, and five exceptional Lie algebras E6, E7, E8, F4,

G2. The structure of these Lie algebras is uniformly described in terms of certain finite sets

of vectors in a Euclidean space called the root systems. Due to Weyl’s complete reducibility

theorem, the theory of finite-dimensional representations of the semisimple Lie algebras is

largely reduced to the study of irreducible representations.

The irreducible representations are parametrized by their highest weights. The

characters and dimensions are explicitly known by the Weyl formula. The reader is ref-

7



Chapter 1: Classical Lie algebras, classical Lie groups and Racah-Wigner calculus 8

ered to, e.g., the books of Bourbaki [24], Dixmier [25], Humphreys [26] or Goodman and

Wallach [27] for a detailed exposition of the theory.

However, the Weyl formula for the dimension does not use any explicit construction

of the representations. Such constructions remained unknown until 1950 when Gelfand and

Tzetlin1 published two short papers [28] and [29] (in Russian) where they solved the problem

for the general linear Lie algebras (type An) and the orthogonal Lie algebras (types Bn and

Dn), respectively. Baird and Biedenharn employed the calculus of Young patterns to derive

the Gelfand-Tzetlin formulas. Their interest to the formulas was also motivated by the

connection with the fundamental Wigner coefficients.

A year earlier (1962) Zhelobenko published an independent work [30] where he

derived the branching rules for all classical Lie algebras. In his approach the representa-

tions are realized in a space of polynomials satisfying the “indicator system” of differential

equations. He outlined a method to construct the lowering operators and to derive the

matrix element formulas for the case of the general linear Lie algebra gln. An explicit

“infinitesimal” form for the lowering operators as elements of the enveloping algebra was

found by Nagel and Moshinsky [31] (1964) and independently by Hou Pei-yu [32] (1966).

The latter work relies on Zhelobenko’s results [30] and also contains a derivation of the

Gelfand-Tzetlin formulas alternative to that of Baird and Biedenharn. This approach was

further developed in the book by Zhelobenko [33] which contains its detailed account.

The work of Nagel and Moshinsky was extended to the orthogonal Lie algebras oN

by Pang and Hecht [34] and Wong [35] who produced explicit infinitesimal expressions for

the lowering operators and gave a derivation of the formulas of Gelfand and Tzetlin [29].

During the half a century passed since the work of Gelfand and Tsetlin, many

different approaches were developed to construct bases of the representations of the classical

Lie algebras. New interpretations of the lowering operators and new proofs of the Gelfand-

Tzetlin formulas were discovered by several authors. In particular, Gould [36, 37, 38,

39] employed the characteristic identities of Bracken and Green [40, 41] to calculate the

Wigner coefficients and matrix elements of generators of gln and oN . The extremal projector

discovered by Asherova, Smirnov and Tolstoy [42, 43, 44] turned out to be a powerful
1Some authors and translators write this name in English as Zetlin, Tzetlin, Cetlin, or Tseitlin.



Chapter 1: Classical Lie algebras, classical Lie groups and Racah-Wigner calculus 9

instrument in the representation theory of the simple Lie algebras. It plays an essential role

in the theory of Mickelsson algebras developed by Zhelobenko which has a wide spectrum

of applications from the branching rules and reduction problems to the classification of

Harish-Chandra invarian irreducible spaces; see Zhelobenko’s expository paper [45] and

his book [46]. Two different quantum minor interpretations of the lowering and raising

operators were given by Nazarov and Tarasov [47] and the author [48]. These techniques

are based on the theory of quantum algebras called the Yangians and allow an independent

derivation of the matrix element formulas.

1.1.1 Gelfand-Tzetlin basis

We now discuss the main idea which leads to the construction of the Gelfand-

Tzetlin bases. The first point is to regard a given classical Lie algebra not as a single object

but as a part of a chain of subalgebras with natural embeddings. We illustrate this idea

using representations of the symmetric groups Sn as an example. Consider the chain of

subgroups

S1 ⊂ S2 ⊂ · · · ⊂ Sn, (1.1)

where the subgroup Sk of Sk+1 consists of the permutations of the set {1, 2, . . . , k+1} with

the index k + 1. The irreducible representations of the group Sn are indexed by partitions

λ of n. A partition λ = (λ1, . . . , λl) with λ1 ≥ λ2 ≥ · · · ≥ λl is depicted graphically as a

Young diagram which consists of l left-justified rows of boxes so that the top row contains

λ1 boxes, the second row λ2 boxes, etc. Denote by V (λ) the irreducible representation of

Sn corresponding to the partition λ. One of the central results of the representation theory

of the symmetric groups is the following branching rule which describes the restriction of

V (λ) to the subgroup Sn−1:

V (λ)|Sn−1
= ⊕

µ
V ′(µ), (1.2)

summed over all partitions µ whose Young diagram is obtained from that of λ by removing

one box. Here V ′(µ) denotes the irreducible representation of Sn−1 corresponding to a

partition µ. Thus, the restriction of V (λ) to Sn−1 is multiplicity-free, i.e., is contains

each irreducible representation of Sn−1 at most once. This makes it possible to obtain a
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natural parameterization of the basis vectors in V (λ) by taking its further restrictions to

the subsequent subgroups of the chain (1.1). Namely, the basis vectors will be parametrized

by sequences of partitions

λ(1) → λ(2) → · · · → λ(n) = λ, (1.3)

where λ(k) is obtained from λ(k+1) by removing one box. Equivalently, each sequence of

this type can be regarded as a standard tableau of shape λ which is obtained by writing the

numbers 1, . . . , n into the boxes of λ in such a way that the numbers increase along the rows

and down the columns. In particular, the dimension of V (λ) equals the number of standard

tableaux of shape λ. There is only one irreducible representation of the trivial group S1

therefore the procedure defines basis vectors up to a scalar factor. The corresponding basis is

called the Young basis. The symmetric group Sn is generated by the adjacent transpositions

gi = (i, i + 1). The construction of the representation V (λ) can be completed by deriving

explicit formulas for the action of the elements gi in the basis which are also due to A. Young.

This realization of V (λ) is usually called Young’s orthogonal (or seminormal) form. The

details can be found, e.g., in James and Kerber [49] and Sagan [50]; see also Okounkov and

Vershik [51] where an alternative construction of the Young basis is produced.

Quite a similar method can be applied to representations of the classical Lie alge-

bras. Consider the general linear Lie algebra gln which consists of complex n× n-matrices

with the usual matrix commutator. The chain (1.1) is now replaced by

gl1 ⊂ gl2 ⊂ · · · ⊂ gln, (1.4)

with natural embeddings glk ⊂ glk+1. The orthogonal Lie algebra oN can be regarded as

a subalgebra of glN which consists of skew-symmetric matrices. Again, we have a natural

chain

o2 ⊂ o3 ⊂ · · · ⊂ oN . (1.5)

Both restrictions gln ↓ gln−1 and oN ↓ oN−1 are multiplicity-free so that the application of

the argument which we used for the chain (1.1) produces basis vectors in an irreducible rep-

resentation of gln or oN . With an appropriate normalization, these bases are precisely those

of Gelfand and Tzetlin given in [28] and [29]. Instead of the standard tableaux, the basis
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vectors here are parametrized by combinatorial objects called the Gelfand-Tzetlin patterns.

However, this approach does not work for the symplectic Lie algebras sp2n since the re-

striction sp2n ↓ sp2n−2 is not multiplicity-free. The multiplicities are given by Zhelobenko’s

branching rule [30] which was re-discovered later by Hegerfeldt [52]. Various approaches to

fix this problem were made by several authors [53, 54, 55, 56, 57].

1.1.2 Explicit operatorial construction for gln

Now, we give some classical results of representation theory with special regard to

the construction of the action of the algebra generators on irreducible invariant spaces.

Let Eij , i, j = 1, . . . , n denote the standard basis of the general linear Lie algebra

gln over the field of complex numbers. The subalgebra gln−1 is spanned by the basis elements

Eij with i, j = 1, . . . , n− 1. Denote by h = hn the diagonal Cartan subalgebra in gln. The

elements E11, . . . , Enn form a basis of h. Finite-dimensional irreducible representations of

gln are in a one-to-one correspondence with n-tuples of complex numbers λ = (λ1, . . . , λn)

such that

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1. (1.6)

Such an n-tuple λ is called the highest weight of the corresponding representation which we

shall denote by L(λ). It contains a unique, up to a multiple, nonzero vector ξ (the highest

vector) such that Eii ξ = λi ξ for i = 1, . . . , n and Eij ξ = 0 for 1 ≤ i < j ≤ n.

The following theorem is the branching rule for the reduction gln ↓ gln−1.

Theorem 1.1.1. The restriction of L(λ) to the subalgebra gln−1 is isomorphic to the direct

sum of pairwise inequivalent irreducible representations

L(λ)|gln−1
' ⊕

µ
L′(µ), (1.7)

summed over the highest weights µ satisfying the betweenness conditions

λi − µi ∈ Z+ and µi − λi+1 ∈ Z+ for i = 1, . . . , n− 1. (1.8)

The rule could presumably be attributed to I. Schur who was the first to dis-

cover the representation-theoretic significance of a particular class of symmetric polynomi-

als which now bear his name. The subsequent applications of the branching rule to the
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subalgebras of the chain

gl1 ⊂ gl2 ⊂ · · · ⊂ gln−1 ⊂ gln (1.9)

yield a parameterization of basis vectors in L(λ) by the combinatorial objects called the

Gelfand-Tzetlin patterns. Such a pattern Λ (associated with λ) is an array of row vectors

λn1 λn2 · · · λnn

λn−1,1 · · · λn−1,n−1

· · · · · · · · ·
λ21 λ22

λ11

where the upper row coincides with λ and the following conditions hold

λki − λk−1,i ∈ Z+, λk−1,i − λk,i+1 ∈ Z+, i = 1, . . . , k − 1 (1.10)

for each k = 2, . . . , n. The Gelfand-Tzetlin basis of L(λ) is provided by the following

theorem. Let us set lki = λki − i + 1.

Theorem 1.1.2. There exists a basis {ξΛ} in L(λ) parametrized by all patterns Λ such that

the action of generators of gln is given by the formulas

Ekk ξΛ =

(
k∑

i=1

λki −
k−1∑

i=1

λk−1,i

)
ξΛ, (1.11)

Ek,k+1 ξΛ = −
k∑

i=1

(lki − lk+1,1) · · · (lki − lk+1,k+1)
(lki − lk1) · · · ∧ · · · (lki − lkk)

ξΛ+δki
, (1.12)

Ek+1,k ξΛ =
k∑

i=1

(lki − lk−1,1) · · · (lki − lk−1,k−1)
(lki − lk1) · · · ∧ · · · (lki − lkk)

ξΛ−δki
. (1.13)

The arrays Λ ± δki are obtained from Λ by replacing λki by λki ± 1. It is supposed that

ξΛ = 0 if the array Λ is not a pattern; the symbol ∧ indicates that the zero factor in the

denominator is skipped.

The vector space L(λ) is equipped with a contravariant inner product 〈 , 〉. It is

uniquely determined by the conditions

〈 ξ, ξ 〉 = 1 and 〈Eij η, ζ 〉 = 〈 η, Eji ζ 〉 (1.14)



Chapter 1: Classical Lie algebras, classical Lie groups and Racah-Wigner calculus 13

for any vectors η, ζ ∈ L(λ) and any indices i, j. In other words, for the adjoint operator for

Eij with respect to the inner product we have (Eij)∗ = Eji.

Proposition 1.1.3. The basis {ξΛ} is orthogonal with respect to the inner product 〈 , 〉.
Moreover, we have

〈 ξΛ, ξΛ 〉 =
n∏

k=2

∏

1≤i≤j<k

(lki − lk−1,j)!
(lk−1,i − lk−1,j)!

∏

1≤i<j≤k

(lki − lkj − 1)!
(lk−1,i − lkj − 1)!

. (1.15)

The formulas of Theorem 1.1.2 can therefore be rewritten in the orthonormal basis

ζΛ = ξΛ/‖ ξΛ‖, ‖ ξΛ‖2 = 〈 ξΛ, ξΛ 〉. (1.16)

1.1.3 Gelfand-Tzetlin bases for the other classical Lie algebras

Let gn denote the rank n simple complex Lie algebra of type B, C, or D. That is,

gn = o2n+1, sp2n, or o2n, (1.17)

respectively. Let V (λ) denote the finite-dimensional irreducible representation of gn with

the highest weight λ. The restriction of V (λ) to the subalgebra gn−1 is not multiplicity-free

in general. This means that if V ′(µ) is the finite-dimensional irreducible representation of

gn−1 with the highest weight µ, then the space

Homgn−1
(V ′(µ), V (λ)) (1.18)

need not be one-dimensional. In order to construct a basis of V (λ) associated with the

chain of subalgebras

g1 ⊂ g2 ⊂ · · · ⊂ gn (1.19)

we need to construct a basis of the space (1.18) which is isomorphic to the subspace V (λ)+µ

of gln−1-highest vectors of weight µ in V (λ). The restriction of V (λ) to the subalgebra gn−1

is given by

V (λ)|gn−1
' ⊕

µ
c(µ) V ′(µ), (1.20)

where V ′(µ) is the irreducible finite-dimensional representation of gn−1 with the highest

weight µ. The multiplicity c(µ) coincides with the dimension of the space V (λ)+µ , and its
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exact value is found from the Zhelobenko branching rules [30]. In the formulas below we

use the notation

li = λi + ρi + 1/2, γi = νi + ρi + 1/2, (1.21)

where the νi are the parameters defined in the branching rules. A parameterization of basis

vectors in V (λ) is obtained by applying the branching rules to its subsequent restrictions

to the subalgebras of the chain

g1 ⊂ g2 ⊂ · · · ⊂ gn−1 ⊂ gn. (1.22)

This leads to the definition of the Gelfand-Tzetlin patterns for the B,C and D types. Then

we give formulas for the basis vectors of the representation V (λ). We use the notation

lki = λki + ρi + 1/2, l′ki = λ′ki + ρi + 1/2, (1.23)

where the λki and λ′ki are the entries of the patterns defined below.

B type case. The multiplicity c(µ) equals the number of n-tuples (ν ′1, ν2, . . . , νn) satisfying

the inequalities

− λ1 ≥ ν ′1 ≥ λ1 ≥ ν2 ≥ λ2 ≥ · · · ≥ νn−1 ≥ λn−1 ≥ νn ≥ λn,

− µ1 ≥ ν ′1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ · · · ≥ νn−1 ≥ µn−1 ≥ νn

(1.24)

with ν ′1 and all the νi being simultaneously integers or half-integers together with the λi.

Equivalently, c(µ) equals the number of (n + 1)-tuples ν = (σ, ν1, . . . , νn), with the entries

given by

(σ, ν1) =





(0, ν ′1) if ν ′1 ≤ 0,

(1,−ν ′1) if ν ′1 > 0.

(1.25)

Lemma 1.1.4. The vectors

ξν = zσ
n0

n−1∏

i=1

zνi−µi
ni zνi−λi

i,−n ·
γn−1∏

k=ln

Zn,−n(k) ξ (1.26)

form a basis of the space V (λ)+µ .
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Define the B type pattern Λ associated with λ as an array of the form

σn λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn

σn−1 λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · · · · ·
σ1 λ11

λ′11

such that λ = (λn1, . . . , λnn), each σk is 0 or 1, the remaining entries are all non-positive

integers or non-positive half-integers together with the λi, and the following inequalities

hold

λ′k1 ≥ λk1 ≥ λ′k2 ≥ λk2 ≥ · · · ≥ λ′k,k−1 ≥ λk,k−1 ≥ λ′kk ≥ λkk (1.27)

for k = 1, . . . , n, and

λ′k1 ≥ λk−1,1 ≥ λ′k2 ≥ λk−1,2 ≥ · · · ≥ λ′k,k−1 ≥ λk−1,k−1 ≥ λ′kk (1.28)

for k = 2, . . . , n. In addition, in the case of the integer λi the condition

λ′k1 ≤ −1 if σk = 1 (1.29)

should hold for all k = 1, . . . , n.

Theorem 1.1.5. The vectors

ξΛ =
→∏

k=1,...,n


z

σk
k0 ·

k−1∏

i=1

z
λ′ki−λk−1,i

ki z
λ′ki−λki
i,−k ·

l′kk−1∏

j=lkk

Zk,−k(j)


 ξ (1.30)

parametrized by the patterns Λ form a basis of the representation V (λ).

C type case. The multiplicity c(µ) equals the number of n-tuples of integers (ν1, . . . , νn)

satisfying the inequalities

0 ≥ ν1 ≥ λ1 ≥ ν2 ≥ λ2 ≥ · · · ≥ νn−1 ≥ λn−1 ≥ νn ≥ λn,

0 ≥ ν1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ · · · ≥ νn−1 ≥ µn−1 ≥ νn.
(1.31)
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Lemma 1.1.6. The vectors

ξν =
n−1∏

i=1

zνi−µi
ni zνi−λi

i,−n ·
γn−1∏

k=ln

Zn,−n(k) ξ (1.32)

form a basis of the space V (λ)+µ .

Define the C type pattern Λ associated with λ as an array of the form

λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn

λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · ·
λ11

λ′11

such that λ = (λn1, . . . , λnn), the remaining entries are all non-positive integers and the

following inequalities hold

0 ≥ λ′k1 ≥ λk1 ≥ λ′k2 ≥ λk2 ≥ · · · ≥ λ′k,k−1 ≥ λk,k−1 ≥ λ′kk ≥ λkk (1.33)

for k = 1, . . . , n, and

0 ≥ λ′k1 ≥ λk−1,1 ≥ λ′k2 ≥ λk−1,2 ≥ · · · ≥ λ′k,k−1 ≥ λk−1,k−1 ≥ λ′kk (1.34)

for k = 2, . . . , n.

Theorem 1.1.7. The vectors

ξΛ =
→∏

k=1,...,n




k−1∏

i=1

z
λ′ki−λk−1,i

ki z
λ′ki−λki
i,−k ·

l′kk−1∏

j=lkk

Zk,−k(j)


 ξ (1.35)

parametrized by the patterns Λ form a basis of the representation V (λ).
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D type case. The multiplicity c(µ) equals the number of (n − 1)-tuples (ν1, . . . , νn−1)

satisfying the inequalities

−|λ1| ≥ ν1 ≥ λ2 ≥ ν2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ νn−1 ≥ λn,

−|µ1| ≥ ν1 ≥ µ2 ≥ ν2 ≥ µ3 ≥ · · · ≥ µn−1 ≥ νn−1

(1.36)

with all the νi being simultaneously integers or half-integers together with the λi. Set

ν0 = max{λ1, µ1}.

Lemma 1.1.8. The vectors

ξν =
n−1∏

i=1

z
νi−1−µi

ni z
νi−1−λi

i,−n ·
γn−1−2∏

k=ln

Zn,−n(k) ξ (1.37)

form a basis of the space V (λ)+µ .

Define the D type pattern Λ associated with λ as an array of the form

λn1 λn2 · · · λnn

λ′n−1,1 · · · λ′n−1,n−1

λn−1,1 · · · λn−1,n−1

· · · · · ·
λ21 λ22

λ′11

λ11

such that λ = (λn1, . . . , λnn), the remaining entries are all non-positive integers or non-

positive half-integers together with the λi, and the following inequalities hold

−|λk1| ≥ λ′k−1,1 ≥ λk2 ≥ λ′k−1,2 ≥ · · · ≥ λk,k−1 ≥ λ′k−1,k−1 ≥ λkk, (1.38)

−|λk−1,1| ≥ λ′k−1,1 ≥ λk−1,2 ≥ λ′k−1,2 ≥ · · · ≥ λk−1,k−1 ≥ λ′k−1,k−1 (1.39)

for k = 2, . . . , n. Set λ′k−1,0 = max{λk1, λk−1,1}.

Theorem 1.1.9. The vectors

ξΛ =
→∏

k=2,...,n




k−1∏

i=1

z
λ′k−1,i−1−λk−1,i

ki z
λ′k−1,i−1−λki

i,−k ·
l′k−1,k−1−2∏

j=lkk

Zk,−k(j)


 ξ (1.40)

parametrized by the patterns Λ form a basis of the representation V (λ).
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1.2 Coupling and recoupling for the SO(3) group

1.2.1 Clebsch-Gordan coefficients

Clebsch-Gordan coefficients (CGCs) usually refer to the group SO(3) and are used

in physics to integrate products of three spherical harmonics. They arise in applications

involving the addition of angular momentum in quantum mechanics [58]. The CGCs are var-

iously written as Cj
m1m2 , Cj1j2j

m1m2m, (j1, j2;m1,m2|j1, j2; j, m), or 〈j1, j2; m1,m2|j1, j2; j, m〉.
Equivalently, they are used in the representation theory of SU(2) and SO(3) groups

to perform the explicit direct sum decomposition of the tensor product of two irreducible

representations into irreducible representations, in cases where the numbers and types of

irreducible components are already known. The name derives from the German mathe-

maticians Alfred Clebsch (1833-1872) and Paul Gordan (1837-1912), who encountered an

equivalent problem in invariant theory.

From the previous subsection, we know that the irreducible representations for the

A1 algebra (the Lie algebra associated to the grop SU(2)) are labelled by a nonnegative

half-integer number (associated with the Gelfand-Tzetlin pattern) that we may denote by

j and their dimension is given by 2j + 1. Because SU(2) is the covering group of SO(3),

j labels an irreducible representation (irrep) of SO(3) if j is an integer (so-called tensorial

irreps) and a projective one if j is not an integer (so-called spinor irreps).

Given the tensor product representation j1 ⊗ j2 for SU(2), it is an outstanding

question which irreps are contained in its decomposition in direct sum of invariant irre-

ducible spaces. In fact, such a decomposition has the important physical meaning of the

sum of two angular momenta j1 and j2 respectively. By definition, CGCs are the entries of

the orthogonal base changing matrix which reduces j1⊗j2 in a block diagonal form. Because

such a decomposition is multiplicity-free, denoted by |j, m〉 (m ∈ {−j,−j + 1, . . . , j − 1, j})
a generic Gelfand-Tzetlin base vector for j and by |j1,m1〉 and |j2,m2〉 for j1 and j2 respec-

tively, we have

|j1, j2; j, m〉 =
j1∑

m1=−j1

j2∑

m2=−j2

|j1, j2; m1, m2〉〈j1, j2; m1,m2|j1, j2; j, m〉 (1.41)

where 〈j1, j2; m1, m2|j1, j2; j,m〉 are the CGCs. By using the fact that such coefficients are
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orthonormalized and defining the suitable raising and lowering operetors as described in the

previous section, we obtain the following relation for the CGCs:

√
(j ∓m + 1)(j ±m) 〈j1, j2; m1,m2|j1, j2; j, m〉 =

√
(j1 ∓m1 + 1)(j1 ±m1) 〈j1, j2; m1 ∓ 1,m2|j1, j2; j, m∓ 1〉 +

√
(j2 ∓m2 + 1)(j2 ±m2) 〈j1, j2; m1,m2 ∓ 1|j1, j2; j, m∓ 1〉 (1.42)

which is often useful for finding the last CGCs, when the other one or two coefficients in the

formula are known. Note that there are sometimes only two coefficients in that equation,

the third being both invalid (j < |m|) and multiplied by 0. Furthermore (1.42) provides a

recursion relation that can be useful for finding the explicit expression of the coefficients.

In figure 1.1 a well-known table with the values of CGCs for several coupling irreps is given.

CGCs are sometimes associated to the so-called 3j-symbols (or Wigner coeffi-

cients), denoted by 
 j1 j2 J

m1 m2 M




where, as usual, the entries of the symbol j1, j2, J , m1, m2 and M are either integer or

half-integer [59]. 3j − symbols satisfy the following selection rules:

1. m1 ∈ {−|j1|, ..., |j1|}, m2 ∈ {−|j2|, ..., |j2|}, and M ∈ {−|J |, ..., |J |}.

2. m1 + m2 = M .

3. Triangular inequalities: |j1 − j2| ≤ J ≤ j1 + j2.

4. Integer perimeter rule: j1 + j2 + J is an integer.

Note that not all these rules are independent, since rule (4) is implied by the other three.

If these conditions are not satisfied the 3j-symbol vanishes.
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Figure 1.1: Clebsch-Gordan coefficients for several coupling (tensorial and projective) ir-

reps of SO(3). The sign convention is that of Wigner [60], also used by Con-

don and Shortley [61], Rose [62], and Cohen [63]. The coefficients here have

been calculated using computer programs written independently by Cohen et

al. at LBNL.
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Furthermore, the Wigner 3j-symbols have the symmetries:

 j1 j2 J

m1 m2 M


 =


 j2 J j1

m2 M m1


 (1.43)

=


 J j1 j2

M m1 m2


 (1.44)

= (−1)j1+j2+J


 j2 j1 J

m2 m1 M


 (1.45)

= (−1)j1+j2+J


 j1 J j2

m1 M m2


 (1.46)

= (−1)j1+j2+J


 J j2 j1

M m2 m1


 (1.47)

= (−1)j1+j2+J


 j1 j2 J

−m1 −m2 −M


 (1.48)

and they obey the orthogonality relations

∑

j,m

(2j + 1)


 j1 j2 J

m1 m2 M





 j1 j2 J

m′
1 m′

2 M


 = δm1,m′

1
δm2,m′

2
(1.49)

∑
m1,m2

(2j + 1)


 j1 j2 J

m1 m2 M





 j1 j2 J ′

m′
1 m′

2 M ′


 = δJ,J ′δM,M ′ . (1.50)

The connection between 3j-symbols and Clebsch-Gordan coeficients is given by the relation:

〈j1j2;m1m2|j1j2; jm〉 = (−1)m+j1−j2
√

2j + 1


 j1 j2 j

m1 m2 −m


 . (1.51)

1.2.2 Racah coefficients and general recoupling symbols

Racah coefficients U(j1j2jj3; j12j23) (sometimes called U coefficients) represent

the elements of a unitary matrix between bases with two different coupling orders of three

irreps j1, j2 an j3:

|(j1j2)j12, j3; jj′〉 =
∑

j23

U(j1j2jj3; j12j23)|j1(j2j3)j23, j3; jj′〉. (1.52)
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The U coefficients satisfy the following unitay conditions

∑

j23

U(j1j2jj3; j12j23) U(j1j2jj3; j̄12j23) = δj12j̄12 (1.53)

∑

j12

U(j1j2jj3; j12j23) U(j1j2jj3; j12j̄23) = δj23j̄23 (1.54)

deriving from the fact that we deal with orthonormalized bases.

Sometimes one needs to use 6j−symbols which is defined in terms of U coefficients

by [64] 



j1 j2 j12

j3 j j23



 =

1√
(2j12 + 1)(2j23 + 1)

U(j1j2jj3; j12j23) (1.55)

Thus, the 6j-symbols are defined for integers and half-integers j1, j2, j12, j3, j, j23 whose

triads (j1, j2, j12), (j1, j, j23), (j3, j2, j23), and (j3, j, j12) satisfy the following conditions

1. Each triad satisfies the triangular inequalities.

2. The sum of the elements of each triad is an integer. Therefore, the members of each

triad are either all integers or contain two half-integers and one integer.

If these conditions are not satisfied, the 6j-symbol vanishes.

Suppose we have a tetrahedron, labelled so that the three labels around each face

satisfy the conditions given above, thus we have a so-called an admissible labelling. This

tetrahedral picture is traditionally used to simply express the symmetry of the 6j-symbol,

which is naturally invariant under the full tetrahedral group S4. In particular, they are

invariant [65] under permutation of their columns, e.g.,




j1 j2 j12

j3 j j23



 =





j2 j1 j12

j j3 j23



 (1.56)

and under exchange of two corresponding elements between rows, e.g.




j1 j2 j12

j3 j j23



 =





j3 j j12

j1 j2 j23



 . (1.57)
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The following Racah-Elliot and orthogonality relations are often useful for com-

puting numerical values or exact expressions:

∑

j12

(−1)2j12(2j12 + 1)





j1 j2 j12

j1 j2 j23



 = 1 (1.58)

∑

j12

(−1)j1+j2+j12 (2j12 + 1)





j1 j2 j12

j2 j1 j23



 = δj1j23

√
(2ji + 1)(2j2 + 1) (1.59)

∑

j12

(2j12 + 1)





j1 j2 j12

j3 j j23









j3 j j12

j1 j2 j̄23



 =

1
2j23 + 1

δj23j̄23 (1.60)

∑

j12

(−1)j12+j23+j̄23 (2j12 + 1)





j1 j2 j12

j3 j j23









j3 j j12

j2 j1 j̄23



 =





j1 j j23

j2 j3 j̄23





(1.61)

∑

j12

(−1)j1+j2+j3+j+j̄3+j̄+j23+j̄23+j12+j̃23 (2j12 + 1)·




j1 j2 j12

j3 j j23









j3 j j12

j̄3 j̄ j̄23









j̄3 j̄ j12

j2 j1 j̃23



 =





j̃23 j̄23 j̃23

j̄3 j1 j









j23 j̄23 j̃23

j̄ j2 j3



 (1.62)

CGCs and 6j-symbols are related by the following equation





j1 j2 j12

j3 j j23



 =

(−1)j1+j2+j3+j

√
(2j12 + 1)(2j23 + 1)

·

∑
m1,m2

〈j1, j2; m1, m2|j1, j2; j12,m1 + m2〉 〈j12, j3; m1 + m2, m−m1 −m2|j12, j3; j, m〉·

〈j2, j3; m2,m−m1 −m2|j2j3; j23,m−m1〉 〈j1, j23; m1,m−m1|j1j23; j, m〉. (1.63)

Thus, by using (1.63) and orthonormality relations, we can also evaluate CGCs once we

know 6j-symbols.
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9j-symbols are defined by the coupling of four irreps of SU(2) and they are denoted

by 



j1 j2 j12

j3 j4 j34

j13 j34 j





.

They can be written in terms of 3j-symbols:


 j13 j24 j

m13 m24 m








j1 j2 j12

j3 j4 j34

j13 j24 j





=
∑

m1,m2,m3,m4,m12,m34


 j1 j2 j12

m1 m2 m12


 ·


 j3 j4 j34

m3 m4 m34





 j1 j3 j13

m1 m3 m13





 j2 j4 j24

m2 m4 m24





 j12 j34 j

m12 m34 m


 (1.64)

and in terms of 6j-symbols





j1 j2 j12

j3 j4 j34

j13 j24 j





=

∑
g

(−1)2g(2g + 1)





j1 j2 j12

j3 j j23









j1 j2 j12

j3 j j23









j1 j2 j12

j3 j j23



 . (1.65)

A 9j-symbol is invariant under reflection through one of the diagonals, and becomes mul-

tiplied by (−1)R upon the exchange of two rows or columns, where R is the sum of all the

entries of the symbol. It also satisfies the orthogonality relationship

∑

j13,j24

(2j13 + 1)(2j24 + 1)





j1 j2 j12

j3 j4 j34

j13 j24 j









j1 j2 j̄12

j3 j4 j̄34

j13 j24 j





=

1
(2j12 + 1)(2j34 + 1)

δj12,j̄12δj34,j̄34 . (1.66)

So, we can see that 6j-symbols play a leading role between the 3nj-symbols because

from those we can derive all the other ones.
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1.3 Racah-Wigner calculus for general Lie groups

One can extend the definitions of CGCs, 3j, 6j, 9j-symbols given in the previous

section to a generic Lie group. Here, we consider the Racah coefficients and 6j-symbols

which are particularly significant in Racah-Wigner calculus, as observed in the previous

section.

Given three tensorial or projective (i.e. tensorial irreps for the universal covering

group) irreps [λ1], [λ2] and [λ3] of a (classical) Lie group G, we define the Racah coeffi-

cients as the elements of a unitary matrix between bases with two different coupling orders

of [λ1], [λ2] and [λ3]. A new major difficulty becomes now the crucial point of the ques-

tion: the mutiplicity. In fact, the generic decomposition of tensor product of irreducible

representations it is not multiplicity-free and we need additional labels to spot such coef-

ficients in the multiplicity space. Thus, denoted by {λ1λ2λ12}, {λ2λ3λ23}, {λ1λ23λ} and

{λ1λ23λ} the multiplicities of [λ12] in [λ1]⊗ [λ2], [λ23] in [λ2]⊗ [λ3], [λ] in [λ12]⊗ [λ3] and

[λ] in [λ1]⊗ [λ23] respectively, and by |(λ1λ2)λ12, λ3; λλ′〉t12t, |λ1(λ2λ3)λ23; λλ′〉t23t′ the base

vectors corresponding to the different orders of coupling, we have

|(λ1λ2)λ12, λ3; λλ′〉t12t =
∑

λ23,t23,t′
U(λ1λ2λλ3;λ12λ23)t12t

t23t′ |λ1(λ2λ3)λ23;λλ′〉t23t′ (1.67)

where t12 = 1, 2, . . . , {λ1λ2λ12}, t23 = 1, 2, . . . , {λ2λ3λ23}, t = 1, 2, . . . , {λ12λ3λ} and t′ =

1, 2, . . . , {λ1λ23λ} are four multiplicity labels. The Racah coefficients satisfy the following

unitary conditions:

∑

λ23,t23,t′
U(λ1λ2λλ3; λ12λ23)t12t

t23t′ U(λ1λ2λλ3; λ̄12λ23)s12s
t23t′ = δt12s12 δts δλ12λ̄12

(1.68)

∑

λ23,t12,t

U(λ1λ2λλ3; λ12λ23)t12t
t23t′ U(λ1λ2λλ3; λ̄12λ23)t12t

s23s′ = δt23s23 δt′s′ δλ23λ̄23
. (1.69)

General 6j-symbols are defined in analogy to the cases SU(2) and SO(3) in terms

of general U coefficients, given in (1.67), by




λ1 λ2 λ12

λ3 λ λ23





t12t

t23t′

=
1√

Dλ12Dλ23

U(λ1λ2λλ3; λ12λ23)t12t
t23t′ (1.70)
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where Dλ represents the dimension of the (tensor or projective) irrep [λ] of the Lie group

G.

A generalized 6j-tetrahedron may also be defined, with the edges labelled by com-

binatorial patterns describing the involved irreps. The definition of a suitable ordering

relation between such patterns allows us to establish the selection rules, i.e. when Racah

coefficients vanish, and give the 6j-symbol symmetry properties.

Usually Racah coefficients can be obtained by using a knowledge of a few sim-

ple case to get through the extension of the Biedenharn-Elliot sum rule. This bootstrap

method was developed by Bickesrstaff and Wybourne [66], Searle and Butler [67]. There

are also many other methods. For example, generating functions can be used in some

special cases [68], isoscalar factors can be constractively used in some cases [69], and in

other situations we need to use the mathematical structure inherent the particular physical

problem [11, 70, 71].

Here, we would like to emphasize the works of Kramer [15] and Chen et al [72].

They used the Schur-Weyl duality relation between Sf and the unitary group U(n), which

enable them to derive U(n) Racah coefficients from subduction coefficients of Sf . We

develop such ideas in the next chapter with particular regard to Brauer centralizer algebras

which allow us an unified approach to Racah-Wigner calculus for classical Lie groups.



Chapter 2

Schur-Weyl Duality

An overview of Schur-Weyl duality for classical Lie groups is presented. In section

1, we describe the centralizer algebras for unitary, orthogonal and symplectic groups an

their quantum deformations. In section 2, we focus on Brauer algebras and their duality

with orthogonal and symplectic groups. In section 3, we highlight the equivalence between

the coupling issue for Lie groups and the subduction problem for centralizer algebras, via

results of the invariant theory.

2.1 Classical Schur-Weyl duality

2.1.1 Schur’s double-centralizer result

Consider the vector space V = Cn. The simmetric group Sr acts naturally on

its r-fold tensor power V ⊗r, by permuting the tensor positions. This action obviously

commutes with the natural action of GLn = GLn(C), acting by matrix multiplication in

each tensor position. So we have a CGLn − CSn bimodule structure on V ⊗r (here CG as

usual denotes the group algebra of a group G). In 1927, Schur [13] proved that the image of

each group algebra under its representation equals the full centralizer algebra for the other

action. More precisely, if we name the representations as follows

CGLn
π−→ End(V ⊗r) ω←− CSr (2.1)

27
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then we have equalities

π(CGLn) = EndSr(V
⊗r) = {T ∈ End(V ⊗r) | Tgv = gTv, ∀g ∈ Sr, ∀v ∈ V ⊗r} (2.2)

ω(CSr) = EndGLn(V ⊗r) = {T ∈ End(V ⊗r) | Tgv = gTv, ∀g ∈ GLn, ∀v ∈ V ⊗r}. (2.3)

(Here, for a given set S operating on a vector space T through linear endomorphisms,

EndS(T ) denotes the set of linear endomorphisms of T commuting with each endomorphism

coming from S.)

Results of Carter-Lusztig [73] and J. A. Green [74] et al. show that all the above

statements remain true if one replaces C by arbitrary infinite field K.

2.1.2 Schur algebras

The finite-dimensional algebra in (2.2) is known as Schur algebra, and often de-

noted by SC(n, r) or simply S(n, r). The Schur algebra “sees” the part of the rational

representation theory of the algebric group GLn(C) occurring (in some appropriate sense)

in V ⊗r. More precisely, there is an equivalence between r-homogeneous polynomial repre-

sentations of GLn(C) and SC(n, r)-invariant irreducible spaces. Those representations (as

r varies) determine all finite-dimensional rational representations.

The representation ω in (2.1) is faithful if n ≥ r, so ω induces an isomorphism

CSr ' EndGLn(V ⊗r) = EndSC(n,r)(V
⊗r) (n ≥ r). (2.4)

This leads to intimate connections between polynomial representations of GLn(C) and rep-

resentations of CSr, a theme that has been exploited by many authors in recent years. Such

connections become particularly interesting if the characteristic of the field is different from

zero [75, 76]. Perhaps the most dramatic example of this is the result of Erdmann [77] (build-

ing on the previous work of Donkin and Ringel) which shows that knowing decomposition

numbers for all symmetric groups in positive characteristic will determine the decomposi-

tion numbers for general linear groups in the same characteristic. Conversely, James [78]

had already shown that the decomposition matrix for a symmetric group is a sub matrix of

the decomposition matrix for an appropriate Schur algebra. Thus the (still open) general
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problem of determining the modular characters of symmmetric groups is equivalent to the

similar problem for general linear groups (over infinite fields).

2.1.3 The enveloping algebra approach

Return to the basic setup, over C. One may differentiate the action of the Lie

group GLn(C) to obtain an action of its Lie algebra gln. Replacing the representation π

in (2.1) by its derivative representation dπ : U(gln) → End(V ⊗r) leads to the following

alternative statements of Schur’s result:

dπ(U(gln)) = EndSr(V
⊗r) (2.5)

ω(CSr) = Endgln(V ⊗r). (2.6)

In particular, the Schur algebra (over C) is a homomorphic image of U(gln). All of this works

over an arbitrary integral domain K if we replace U(gln) by its “hyperalgebra” UK = K⊗ZUZ
obtained by change of ring from a suitable Z-form of U(gln) [79]. (One can adapt the

Konstant Z-form, originally defined for the enveloping algebra of a semisimple Lie algebra,

to the reductive gln.)

2.1.4 The quantum case

Jimbo [80] extended the results of the previous subsection to the quantum case

(where the quantum parameter is not a root of unity). One needs to replace Sr by

the Iwahory-Hecke algebra H(Sr) and replace U(gln) by the quantized enveloping alge-

bra U(gln). The analogue of the Schur algebra in this context is known as the q-Schur

algebra, often denoted by S(n, r) or Sq(n, r). Dipper and James [81] have shown that

q-Schur algebras are fundamental for the modular representation theory of finite general

linear groups.

As many authors have observed, the picture in subsection 2.1.1 can also be quan-

tized. For that one needs a suitable quantization of the coordinate algebra of the algebraic

group GLn.

There is a completely different (geometric) construction of q-Schur algebras given

in [82].
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Figure 2.1: Example of a graph with Vf as set of vertices and f = 6.

2.2 Bf(εn) - O(n) and Sp2n duality

2.2.1 Brauer centralizer algebras

Let f ∈ N+ be fixed. Denote by Vf the datum of 2f spots in a plane, arranged

in two rows, one upon the other, each one of f aligned spots. Then consider the graphs

with Vf as set of vertices and f edges, such that each vertex belongs to exactly one edge.

Figure 2.1 shows an example of such a graph for f = 6. Such graphs are named f -diagrams,

denoting by ∆f the set of all of them. In general, we shall denote them by bold roman

letters. These set of the f -diagrams has the same cardinality of the set of the pairings of

2f elements, hence
∣∣∆f

∣∣ = (2f − 1)!! = (2f − 1) · (2f − 3) · · · 5 · 3 · 1.

We shall label the vertices in Vf in two ways: either we label the spots in the upper

row with the numbers 1+, 2+, . . . , f+, in their natural order from left to right, and the

spots in the lower row with the numbers 1−, 2−, . . . , f−, again from left to right, or we label

them by setting i for i+ and f + j for j− (for all i, j ∈ {1, 2, . . . , f}). Thus an f -diagram

can also be described by specifying its set of edges: for instance, the 6-diagram in figure 2.1

is given by
{{1+, 4+}, {3−, 5+}, {2+, 4−}, {5−, 6+}, {2−, 6−}, {3+, 1−}}. In general, given

f -tuples i = (i1, i2, . . . , if ) and j = (j1, j2, . . . , jf ) such that {i1, . . . , if}∪{j1, . . . , jf} = Vf ,

we call di, j the f -diagram obtained by joining ik to jk, for each k = 1, 2, . . . , f . So, the

above diagram is di,j for i = {1+, 2+, 3+, 5+, 6+, 2−}, j = {4+, 4−, 1−, 3−, 5−, 6−}.
When looking at the edges of an f -diagram, we shall distinguish between those

which link two vertices in the same row (upper or lower), which are named horizontal edges
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or simply bars, and those which link two vertices in different rows, to be called vertical

edges. Clearly, any f -diagram d has the same number of bars in the upper row and in the

lower row: if this number is k, we shall say that d is a k-bar (f -)diagram. Then, letting

∆f,k =
{
d ∈ ∆f | d is a k-bar diagram

}
we have ∆f =

⋃[f/2]
k=1 ∆f,k.

Let d be an f -diagram. With “bar structure of the upper row” (respectively

“lower row”) of d we shall mean the datum of the bars in the upper (respectively lower)

row of d, in their mutual positions. To put it in a nutshell, we shall use such terminology as

“upper bar structure”, (respectively “lower bar structure”) of d - to be denoted with ubs(d)

(respectively lbs(d) - and “bar structure of d” - to be denoted with bs(d) - to mean the

datum of both upper and lower bar structures of d, that is bs(d) =
(
ubs(d), lbs(d)

)
. Note

that any upper or lower bar structure may be described by a one-row graph of vertices,

arranged on a horizontal line, and some edges (the bars) joining them pairwise, so that each

vertex belongs to at most one edge. Following Kerov [83], such a graph will be called a

k-bar f-junction, or (f, k)-junction, where f is its number of vertices and k its number of

edges. We denote the set of (f, k)-junctions by Jf,k. Then clearly
∣∣Jf,k

∣∣ =
(

2f

k

)
(2k − 1)!!.

Any d ∈ ∆f,k has exactly f − 2k vertices in its upper row, and f − 2k vertices

in its lower row which are pairwise joined by its f − 2k vertical edges. Let us label with

1, 2, . . . , f − 2k from left to right the vertices in the upper row, and do the same in the

lower row. Then there exists a unique permutation σ = σ(d) ∈ Sf−2k - to be called the

“permutation structure”, or “symmetric (group) part”, of d - such that σ(i) is the label of

the lower row vertex of the vertical edge whose upper row vertex is labelled with i.

The outcome is that the mapping d 7→ (
σ(d), bs(d)

)
sets a bijection

∆f,k −→ Sf−2k ×
(
Jf,k × Jf,k

)
(2.7)

and patching together these maps for all k gives a bijection ∆f −→
⋃[f/2]

k=1 Sf−2k×
(
Jf,k

×2
)
.

Let Bf (x) be the C-vector space with basis ∆f ; one can introduce a product in

Bf (x) by defining the product of f -diagrams and extending by linearity. So for all a,b ∈ ∆f

define the product a · b = ab as follows. First, draw b below a; second, connect the ith

lower vertex of a with the ith upper vertex of b; third, let C(a,b) be the number of cycles

in the new graph obtained in the second step and let a ∗ b be this graph, pruning out the
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Figure 2.2: Example of product of two 5-diagrams.

cycles; then a ∗ b is a new f -diagram, and we set ab = xC(a,b)a ∗ b. In figure 2.2 we show

an example of product 5-diagrams following the definition previously given.

It is well-known that such a definition endows Bf (x) with a structure of unital as-

sociative C-algebra: this is the Brauer algebra, in its “abstract” form (see for instance [84]).

The centralizer algebra originally considered by Brauer in the framework of invariant theory

is related to this one.

Note that for a,b ∈ ∆f , the upper (respectively lower) bar structure of a ∗ b

“contains” that of a (respectively b ). In particular, if a ∈ ∆f,a and b ∈ ∆f,b this gives

a ∗ b ∈ ∆f,max(a,b).

2.2.2 Brauer algebras generators and relations

Besides the construction above, we can give the Brauer algebra a presentation

by generators and relations. From the previous subsection we know that Bf (x) contains

a copy of the symmetric group on f elements. Moreover, for any pair of distinct indices

i, j ∈ {1, 2, . . . , f} we define ei,j to be the f -diagram with a bar joining i+ with j+, a bar

joining i− with j−, and one vertical edge joining k+ with k− for all k{1, 2, . . . , f}\{i, j}. By

definition, ei,j ∈ ∆f,1. For instance, e3,6 ∈ ∆7,1 is represented in figure 2.3. The following

theorem provides a presentation of Brauer algebras by generators and relations.
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Figure 2.3: Graphical representation for e3,6 ∈ D7,1.

Theorem 2.2.1. Bf (x) is the associative C-algebra with generators dσ, which are in bijec-

tion with the elements of Sf , and elements ei,j, for all i, j = 1, 2, . . . , f and i 6= j, satisfying

the relations

ei,j = ej,i

dσei,jdσ−1 = eσ(i),σ(j)

ei,jeh,k = eh,kei,j

ei,jej,k = ei,jd(i k)

e2
i,j = x ei,j

ei,j = ei,jd(i,j)

dσ dτ = dστ

(2.8)

for all i, j, h, k ∈ {1, 2, . . . , f} such that
∣∣{i, j, h, k}∣∣ = 4 and for all σ, τ ∈ Sf .

Similar presentations are also available, which use a proper subset of the generators

involved in the previously theorem [85].

Thus the theorem just given above means that Bf (x) is generated by ∆f,0 and

∆f,1; even more, since ∆f,1 is a single ∆f,0-orbit (i.e. Sf -orbit), it is enough to take only

one 1-bar f -diagram, so Bf (x) is generated, for instance, by ∆f,0
⋃ {e1,2}.

In particular, for any d ∈ ∆f,k there exist unique dσ,dρ ∈ ∆f,0 such that d =

dσ e1,2 · · · e2k−1,2k dρ; moreover, we can choose such σ and ρ so that they do not invert any

of the pairs (1, 2), (3, 4), . . . , (2k − 1, 2k). Then given such a factorization of d we may

define the sign of d to be ε(d) = sgn(σ) · (−1)k · sgn(ρ).
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2.2.3 Schur-Weyl duality

Brauer [14] introduced the algebra Bf (x) in 1936 to describe the invariants of

orthogonal and symplectic groups acting on V ⊗r. (Brauer’s convenctions were slightly

different; we are here following the approach of Hanlon and Wales [86], who pointed out

that Bf (−n) is isomorphic with the algebra defined by Brauer to deal with the symplectic

case.)

Let G be O(n) or Sp(n), when n is even number. By restricting the action ρ

considered in (2.1) we have an action of G on V ⊗r. One can extend the action of Sr to an

action of Bf (εn) (over C) on V ⊗r, where ε = 1 if G = O(n) and ε = −1 if G = Sp(n). To

do this, it is enough to specify the action of the diagram ei,j . This acts on V ⊗r as one of

Weyl’s contraction maps contracting in tensor positions i and j. So we have (commuting)

representations

CG
π−→ End(V ⊗r) ω←− Br(εn) (2.9)

which sotisfy Schur-Weyl duality; i.e., the image of each representation equals the full

centralizer algebra of the other action

π(CG) = EndBr(εn)(V
⊗r) (2.10)

ω(Br(εn)) = EndG(V ⊗r). (2.11)

The algebras in equation (2.10) are the orthogonal and the symplectic Schur algebras [87,

88, 89].

If n ≥ r − 1 the rapresentation π in (2.9) is faithful [90]; thus it induces an

isomorphism Br(εn) ' EndG(V ⊗r).

2.2.4 Schur-Weyl duality in type D

In type Dn/2 (n even) the orthonormal group O(n) is not connected, and contains

the connected semisimple group SO(n) (special orthogonal group) as subgroup of index 2.

In order to handle this situation Brauer [91] defined a larger algebra Dr(n) spanned by the

usual r-diagrams previously defined, together with certain partial r-diagrams on 2r vertices

and r − n edges, in which n vertices in each of the top and bottom rows are not incident
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to any edge, and showed that te action of Br(n) can be extended to an action of the larger

algebra Dr(n) on V ⊗r. Thus we have rapresentations

CSO(n) π−→ End(V ⊗r) ω←− Dr(εn). (2.12)

Brauer showed that the actions of SO(n) and Dr(n) on V ⊗r satisfy Schur-Weyl duality:

π(CSO(n)) = EndDr(εn)(V
⊗r) (2.13)

ω(Dr(εn)) = EndSO(n)(V
⊗r). (2.14)

The algebra (2.13) is a second Schur algebra in type D, a proper subalgebra of the algebra

EndBr(n)(V ⊗r) apparing in (2.10) above.

2.2.5 The quantum case

There is a q-version of the Schur-Weyl duality considered in this section, although

not as developed as in type A. One needs to replace the Brauer algebra by its q-analogue,

the Birman-Murakami-Wenzl (BMW) algebra [92, 93], and replace the enveloping algebra

by a suitable quantized enveloping algebra. One can think of the BMW algebra in terms of

Kauffman’s tangle monoid [94, 95]. (Roughly speaking, tangles are replacements for Brauer

diagrams, in which one keeps track of under and over crossing, subject to certain natural

relations.)

This leads to a q-analogue of the symplectic Schur algebras, in particular, which

have been studied by Oehms [96]. A q-analogue of the larger algebra Dr(n) (n even)

considered in the previous subsection remains to be formulated.

2.3 The subduction problem and Racah coefficients

2.3.1 Reduction coefficients

Let A be an algebra and H ⊂ A a subalgebra. Given an irreducible representation

ρ of A, we have that it is, in general, a reducible representation for H. Finding which
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irreducible representations of H are contained in ρ is an outstanding issue in Representation

Theory. It is frequently named reduction problem and denoted by

ρ ↓ H =
⊕

ν

{ρ; ν} ν =
⊕

ν

ρ ↓ ν, (2.15)

where ν is an irreducible representation of H and {ρ; ν} (sometimes called Clebsch-Gordan

series for the reduction) counts the number of times that ν appears in ρ (i.e. the multiplicity

for ρ ↓ ν).

Fixed a standard base for ρ, i.e. {|ρ; r〉} (where r is a suitable labelling scheme

for the base vectors), normally associated to a Gelfand-Tzetlin chain of G, the base which

reduces ρ in a block diagonal form is called non-standard base and denoted by {|ν;n〉}. The

matrix transforming between non-standard and standard basis defined by

|ν; n〉η =
∑

r

〈ρ; r|ν; n〉η |ρ; r〉, (2.16)

where η is a multiplicity label, is called reduction metrix and 〈ρ; r|ν;n〉η are the reduction

coefficients.

Obviously, the previous definitions can also be given for groups and subgroups.

2.3.2 Subduction coefficients

Subduction coefficients are reduction coefficients for certain algebras and subalge-

bras or groups and subgroups. In particular,

• reduction coefficients for the symmetric group algebras CSn and the group subalge-

bras C(Sn1 ×Sn2), with n1 + n2 = n, are called subduction coefficients of symmetric

groups;

• reduction coefficients for the Brauer algebras Bf (x) and the subalgebras given by

Bf1(x)×Bf2(x), with f1+f2 = f , are called subduction coefficients of Brauer algebras;

• reduction coefficients for the quantum deformation algebras of CSn, H(Sn), and

the quantum subalgebras given by H(Sn1) ×H(Sn2), with n1 + n2 = n, are called

subduction coefficients of type A Iwahori-Hecke algebras;
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• reduction coefficients for the quantum deformation algebras of Bf (x), BW(Bf (x)),

and the quantum subalgebras given by BW(Bf1(x))×BW(Bf2(x)), with f1+f2 = f ,

are called subduction coefficients of Birman-Wenzl algebras.

2.3.3 Racah coefficients

Schur-Weyl duality provides a link between the Racah coefficients of a classical Lie

group G and the subduction coefficients for the centralizer algebra of G [16]. For example,

if G is the orthogonal group O(n) or the symplectic group Sp(2m), the corresponding

centralizer algebras are quotients of Brauer’s Bf (n) or Bf (−2m), respectively. A special

class of Young diagrams (usually introduced to describe the corresponding Gelfand-Tzetlin

patterns) is necessary, as defined in [97]. Denoted by Pµ(n) the dimension of the irreducible

representation µ of O(n), a Young diagram λ is said to be n-pemissible if Pµ(n) 6= 0 for

all subdiagrams µ ⊆ λ, where the subdiagrams µ can be obtained from λ by taking away

appropriate boxes. If n is an integer, λ is n-permissible if and only if:

1. its first two columns contain at most n boxes, for n positive;

2. it contains at most m columns, for n = −2m a negative even integer;

3. its first two rows contain at most 2− n, for n odd and negative.

If these conditions are satisfied, Bf (n) is isomorphic to the centralizer algebra of O(n) for n

positive, to the centralizer algebras of O(2−n) for n negative and odd, and to the centralizer

algebras of Sp(2m) for n = −2m < 0. In the following, we always assume that all irreps are

n-permissible with n ≤ f − 1 for n > 0 or −n ≤ f − 1 for negative n. The latter condition

implies that Bf (n) is to be considered semisimple [98].

Hence, an irrep of the centralizer algebra of O(n) or Sp(2m) is the same irrep

of O(n) or Sp(2m). But the labelling schemes of the centralizer algebras of G and G are

different. The former is labelled by its Brauer algebra indices, while the latter is labelled

by its tensor components.
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The invariants for the centralizer algebras of G defined by

U(λ1λ2λλ3;λ12λ23)t12t
t23t′ =

∑
r12r23r

〈λ; r|λ12, λ3; r12, r3〉t 〈λ12; r12|λ1, λ2; r1, r2〉t12

· 〈λ; r|λ1, λ23; r1, r23〉t′ 〈λ23; r23|λ2, λ3; r2, r3〉t23 , (2.17)

where 〈λ; r|λ1, λ2; r1, r2〉η is the subduction coefficient of the Brauer algebras given by the

irreps [λ] of Bf (x) and [λ1]⊗ [λ2] of Bf1(x)×Bf2(x) (r, r1, and r2 being suitable labelling

schemes and η the multiplicity label), only depend on the irreps [λ1], [λ2], [λ3], [λ], [λ12],

[λ23] and does not depend on the other indices. So, the summation in (2.17) can be carried

out under fixed r1, r2, and r3. According to the Schur-Weyl duality relation, (2.17) are also

the U coefficients of the group G satisfying the unitary conditions given in the previous

chapter. One can thus use (2.17) to caluculate Racah coefficients of O(n) and Sp(2m) from

subduction coefficents of Brauer algebras Bf (n).

We remark that, because O(n) ⊂ U(n), the centralizer algebras Bf (n) include

the group algebras CSn. Therefore, the subduction coefficients of Brauer algebras are the

same as those of symmetric groups when there are no trace contractions in the irreps.

This implies that the Racah coefficients for U(n) groups are also Racah coefficients for the

corresponding irreps of O(n) groups. On the other hand, by solving the general problem

of finding subduction coefficients of Brauer algebras, we also solve the problem of finding

Racah coefficients for all classical Lie groups.



Chapter 3

A systematic approach to the

subduction problem in Sf groups

In this chapter, we develop a combinatoric approach to the subduction problem

in symmetric groups and we analyze in detail the linear equation method. In section 1 we

provide some background on the subduction problem for symmetric groups and in section

2 we describe the linear equation method, giving the general structure of the resulting

equation system (subduction matrix). In section 3 we introduce the subduction graph and in

section 4 we relate it to the subduction matrix. The graph provides a graphic description

of a minimal set of equations which are sufficient to obtain the trasformation coefficients.

We find the solution space as an intersection of suitable linear subspaces of Rfλ ⊗Rfλ1fλ2 ,

where fλ, fλ1 and fλ2 are the dimensions of the irreducible representations involved in the

subduction [λ] ↓ [λ1]⊗ [λ2]. Finally, in section 5, we give the general orthonormalized form

for the coefficients and we discuss the choice of phases and free factors governing multiplicity

separations.

3.1 The subduction problem in symmetric groups

The irreducible representations (irreps) of the symmetric group Sn may be labelled

by partitions [λ] of n, i.e. sequences [λ1, λ2, . . . , λh] of positive integers such that
∑h

i=1 λi =

39
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n and the λi are weakly decreasing. A partition [λ] is usually represented by a Ferrers

diagram (or Young diagram) obtained from a left-justified array with λj boxes on the jth

row and with the kth row below the (k−1)th row. Standard Young tableaux are generated

by filling the Ferrers diagram with the numbers 1, . . . , n in such a way that each number

appears exactly once and the numbers are strictly increasing along the rows and down the

columns. An orthonormal basis vector of an irrep associated to the partition [λ] may be

labelled by a standard Young tableau. Such a basis corresponds to the Gelfand-Tzetlin

chain S1 ⊂ S2 ⊂ . . . ⊂ Sn and is usually called the standard basis of [λ]. We denote this

basis by Sn-basis [21].

An alternative orthonormal basis for [λ] is the split basis, denoted by Sn−Sn1,n2-

basis [21], with n1 + n2 = n. By definition, such a basis breaks [λ] (which is, in general,

a reducible representation of the direct product subgroup Sn1 ×Sn2) in a block-diagonal

form:

[λ] =
⊕

λ1,λ2

{λ;λ1, λ2} [λ1]⊗ [λ2], (3.1)

where [λ1] and [λ2] are irreps of Sn1 and Sn2 respectively, and {λ; λ1, λ2}, the Clebsch-

Gordan series, counts the number of times (multiplicity) that the irrep [λ1]⊗[λ2] of Sn1×Sn2

appears in the decomposition of [λ].

The irreps of the subgroup Sn1 ×Sn2 may be labelled by pairs (α, β) of Ferrers

diagrams, with α corresponding to an irrep of Sn1 and β to an irrep of Sn2 . In the same

way, each element of the basis is labelled by pairs of standard Young tableaux.

Because the symmetric group Sn of n elements is generated by the n− 1 transpo-

sitions gi each one interchanges the elements i and i+1, it is useful the following definition.

Given a standard Young tableau m, we define the action gi(m) in the following way: if the

tableau obtained from m interchanging the box with i and the box with i + 1 (keeping the

other elements fixed) is another standard Young tableau m(i), we set gi(m) = m(i); else

gi(m) = m.

The gi acts on the standard basis vectors |λ; m〉 of the irrep [λ] as follows [18]:

gi|λ; m〉 =





1
di(m) |λ; m〉+

√
1− 1

di(m)2
|λ; gi(m)〉 if gi(m) 6= m

|λ; m〉 if gi(m) = m
, (3.2)
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where di(m) is the usual axial distance from i to i+1 in the standard Young tableau m [101].

The explicit action of the generators gi (i 6= n1 because gn1 is not a generator of

Sn1 ×Sn2) on the elements of the Sn−Sn1,n2-basis directly follows from (3.2). In fact we

have

gi|λ1, λ2; m1,m2〉 =





(gi|λ1; m1〉)⊗ |λ2; m2〉 if 1 ≤ i ≤ n1 − 1

|λ1; m1〉 ⊗ (gi|λ2; m2〉) if n1 + 1 ≤ i ≤ n− 1
. (3.3)

Then, from (3.2) applied to the standard basis vectors of [λ1] and [λ2] respectively, we have

the action of the generators of Sn1 ×Sn2 on the basis vectors |λ1; m1〉 ⊗ |λ2;m2〉.
The subduction coefficients (SDCs) are the entries of the matrix transforming

between split and standard basis. Let [λ1] ⊗ [λ2] be a fixed irrep of Sn1 × Sn2 in [λ] ↓
Sn1 × Sn2 and |λ1, λ2; m1,m2〉η a generic vector of the split basis (where m1 and m2

are standard Young tableaux with Ferrers diagram λ1 and λ2 respectively, and η is the

multiplicity label). We may expand such vectors in terms of the standard basis vectors

|λ; m〉 of [λ]:

|λ1, λ2; m1, m2〉η =
∑
m

|λ; m〉〈λ;m|λ1, λ2; m1,m2〉η. (3.4)

Thus 〈λ;m|λ1, λ2; m1, m2〉η are the SDCs of [λ] ↓ [λ1]⊗ [λ2] with given multiplicity label η.

Because the standard and the split basis vectors are orthogonal, the SDCs satisfy

the following unitary conditions

∑
m

〈λ;m|λ1, λ2; m1,m2〉η 〈λ; m|λ1, λ
′
2;m1,m

′
2〉η′ = δλ2λ′2δm2m′

2
δηη′ (3.5)

∑

λ2m2η

〈λ; m|λ1, λ2; m1,m2〉η 〈λ; m′|λ1, λ2; m1,m2〉η = δmm′ . (3.6)

Notice that in (3.5) we impose orthonormality between two different copies of multiplicity.

It is not necessary, but it is the most natural choice. On the other hand, it imposes a precise

and explicit form for the SDCs (see section 3.5).
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3.2 The linear equation method

3.2.1 Subduction matrix and subduction space

Using the linear equation method proposed by Chen and Pan [18] for Hecke alge-

bras we may construct a matrix in such a way that the SDCs are the components of the

kernel basis vectors.

From (3.3), for l ∈ {1, 2, . . . , n1 − 1}, we get

〈λ;m|gl|λ1, λ2; m1,m2〉 = 〈λ;m|(gl|λ1; m1〉)⊗ |λ2; m2〉 (3.7)

and, writing |λ1, λ2; m1,m2〉η and gl|λ1; m1〉 in the Sn-basis and Sn1-basis respectively,

(3.7) becomes

∑
p

〈λ; m|gl|λ; p〉〈λ; p|λ1, λ2; m1,m2〉 =
∑

q

〈λ1; q|gl|λ1;m1〉〈λ; m|λ1, λ2; q, m2〉. (3.8)

In an analogous way, for l ∈ {n1 + 1, n1 + 2, . . . , n− 1}, we get

∑
p

〈λ; m|gl|λ; p〉〈λ; p|λ1, λ2; m1,m2〉 =
∑

q

〈λ2; q|gl|λ2;m2〉〈λ; m|λ1, λ2; m1, q〉. (3.9)

Then, once we know the explicit action of the generators of Sn1 × Sn2 on the

standard basis, (3.8) and (3.9) (written for l ∈ {1, . . . , n1 − 1, n1 + 1, . . . , n − 1} and all

standard Young tableaux m, m1, m2 with Ferrers diagrams λ, λ1 and λ2 respectively)

define a linear equation system of the form:

Ω(λ; λ1, λ2) χ = 0 (3.10)

where Ω(λ; λ1, λ2) is the subduction matrix and χ is a vector with components given by the

SDCs of [λ] ↓ [λ1]⊗ [λ2]. We call the space of the solutions of (3.10), i.e. ker Ω(λ; λ1, λ2),

subduction space.

3.2.2 Explicit form for the subduction matrix

Denoting by fλ, fλ1 and fλ2 the dimensions of the irreps [λ], [λ1] and [λ2] re-

spectively, (3.10) is a linear equation system with fλfλ1fλ2 unknowns (the SDCs) and



Chapter 3: A systematic approach to the subduction problem in Sf groups 43

(n− 2)fλfλ1fλ2 equations. Thus Ω(λ; λ1, λ2) is a rectangular (n− 2)fλfλ1fλ2 × fλfλ1fλ2

matrix with real entries. Using the explicit action of gi given by (3.2), we see that all

equations of (3.10) have the form

α(i)
m,m12

〈λ;m|λ1, λ2; m1, m2〉 − β(i)
m 〈λ; gi(m)|λ1, λ2; m1,m2〉+

+β(i)
m12
〈λ; m|λ1, λ2; gi(m1),m2〉 = 0 if i ∈ {1, . . . , n1 − 1} , (3.11)

α(i)
m,m12

〈λ;m|λ1, λ2; m1, m2〉 − β(i)
m 〈λ; gi(m)|λ1, λ2; m1,m2〉+

+β(i)
m12
〈λ;m|λ1, λ2; m1, gi(m2)〉 = 0 if i ∈ {n1 + 1, . . . , n− 1} (3.12)

where

α(i)
m,m12

=
1

di(m12)
− 1

di(m)
(3.13)

β(i)
m =

√
1− 1

d2
i (m)

(3.14)

β(i)
m12

=

√
1− 1

d2
i (m12)

(3.15)

Notice that, by definition,

di(m12) =





di(m1) if i < n1

di(m2) if i > n1

. (3.16)

3.3 Subduction graph

Given two standard Young tableaux m1 and m2 with the same Ferrers diagram,

we say that they are i-coupled if m1 = m2 or if m1 = gi(m2).

If m12 = (m1,m2) is a pair of standard Young tableaux with k1 and k2 boxes

respectively, where m1 is filled by integers from 1 to k1 and m2 from k1 + 1 to k1 + k2, we

define

gi(m12) =





(gi(m1),m2) if i < k1

(m1, gi(m2)) if i > k1

(3.17)

(note that the action is not defined for i = k1 because gk1 is not a generator of Sk1 ×Sk2).

Thus, denoting as m34 another pair (m3,m4), we say that m12 and m34 are i-coupled if

m12 = m34 or if gi(m12) = m34.
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1 •
(4)

IIIIIIIIIIII •

uuuuuuuuuuuu •
(4)

2 • • •

3 • (4) • •

4 • (4) • •

(1, 1) (1, 2) (1, 3)

Figure 3.1: 4-layer relative to the partitions ([4, 1]; [1], [3, 1]). Nodes have coordinates

given by the lexicografic ordering for Young tableaux with Ferrer diagram

[4, 1] and for pairs of Young tableaux with Ferrer diagram ([1], [3, 1]). Two

distinct 4-coupled nodes are joined by an edge.

Let us now consider the three partitions (λ; λ1, λ2) of k, k1 and k2 respectively,

with k1 + k2 = k. We call node each ordered sequence of three standard Young tableaux

(m;m1,m2) with Ferrers diagrams λ, λ1 and λ2 respectively and filled as described in the

previous section. We denote it as 〈m;m12〉.
The set of all nodes of (λ; λ1, λ2) is called subduction grid (or simply grid). In

analogy with the case of standard Young tableaux, we may define the action of gi on a node

n = 〈m; m12〉 as

gi(n) = 〈gi(m); gi(m12)〉. (3.18)

Then we say that two nodes n1 and n2 are i-coupled if n1 = n2 or if n1 = gi(n2). Once i is

fixed, it is easy to see that the i-coupling is an equivalence relation on the grid. Furthermore

there are only four possible coupling configurations between nodes:

1. one node n = 〈m; m12〉 is called singlet if m = gi(m) and if m12 = gi(m12);

2. two distinct i-coupled nodes n = 〈m;m12〉 and n′ = 〈m′;m′
12〉 are called vertical bridge

if m12 = m′
12;
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1 •
(4)

IIIIIIIIIIII •

uuuuuuuuuuuu
(3) •

(4)

2 •
(3)

•
(3)

IIIIIIIIIIII •

uuuuuuuuuuuu

3 • (4)

(2)

•
(2)

•
(2)

4 • (4) • (3) •

(1, 1) (1, 2) (1, 3)

Figure 3.2: Subduction graph relative to ([4, 1]; [1], [3, 1]). It is obtained by the overlap

of the 2-layer, 3-layer and 4-layer. Each i-layer can be distinguished by the

label (i) on the edges.

3. two distinct i-coupled nodes n = 〈m;m12〉 and n′ = 〈m′; m′
12〉 are called horizontal

bridge if m = m′;

4. four distinct nodes n = 〈m; m12〉, n′ = 〈m′; m′
12〉, n′′ = 〈m′′; m′′

12〉 and n′′′ = 〈m′′′; m′′′
12〉

such that n = gi(n′) and n′′ = gi(n′′′) are called crossing if m 6= m′, m12 6= m′
12,

m′′ 6= m′′ and m′′
12 6= m′′′

12.

The partition of the grid related to the i-coupling relation is called i-layer. For

each configuration it can be convenient to choose a representative node which we call pole.

Given a pole p we denote by Γ(i)(p) the set of all nodes in its coupling configuration. For

example, in figure 3.1 we show a graphic representation of the 4-layer for ([4, 1]; [1], [3, 1]).

The nodes form a grid and their coordinates are obtained by the ordering number of the

relative standard Young tableau (for example the lexicographic ordering [99]). Because each

equivalence class is composed at most by two distinct nodes, we represent them as joined

by an edge with a label for i. By convention, we choose the node on the top and left of

the configuration as pole. We can see that {〈1; 1, 1〉, 〈2; 1, 2〉, 〈1; 1, 2〉, 〈2; 1, 1〉} is a crossing,

{〈1; 1, 3〉, 〈2; 1, 3〉} is a vertical bridge, {〈3; 1, 1〉, 〈3; 1, 2〉} is an example of horizontal bridge

and {〈2; 1, 3〉} a singlet one.
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We call subduction graph relative to (λ; λ1, λ2) the overlap of all i-slides (by overlap

between two graphs we mean the graph obtained by identification of the corresponding

nodes). More simply, two distinct nodes n and n′ of the grid are connected by an edge of

the subduction graph if n = gi(n′) for some i (notice that if n and n′ are i-coupled and

j-coupled, then i = j). In figure 3.2 the subduction graph for ([4, 1]; [1], [3, 1]) obtained

from the overlap of the 2-layer, the 3-layer and the 4-layer is shown.

3.4 Configurations and solutions

The solution of (3.10) can be seen as an intersection of the n − 2 subspaces of

Rfλfλ1fλ2 described by

Ω(i)(λ; λ1, λ2)χ = 0, (3.19)

with i ∈ {1, . . . , n1 − 1, n1 + 1, . . . , n− 1}. We now construct an explicit solution of (3.19),

for a fixed i, by using the concept of i-layer.

It is clear that we can associate each SDC of [λ] ↓ [λ1]⊗ [λ2] to a node of (λ; λ1, λ2)

in a one-to-one correspondence. Supposed p = 〈m; m12〉 as a fixed pole of a crossing

configuration and Γ(i)(p) the set of all nodes of such a configuration, the solutions of the

equations (3.19), written for each n ∈ Γ(i)(p), are the kernel vectors of the matrix

Ω(i)
m;m12

=




α
(i)
m,m12 −β

(i)
m β

(i)
m12 0

−β
(i)
gi(m) α

(i)
gi(m),m12

0 β
(i)
m12

β
(i)
gi(m12)

0 α
(i)
m,gi(m12)

−β
(i)
m

0 β
(i)
gi(m12)

−β
(i)
gi(m) α

(i)
gi(m),gi(m12)




, (3.20)

where the following relations hold:

α
(i)
m,m12 = −α

(i)
gi(m),gi(m12)

, α
(i)
gi(m),m12

= −α
(i)
m,gi(m12)

,

β
(i)
m = β

(i)
gi(m), β

(i)
m12 = β

(i)
gi(m12)

(3.21)

(they directly discend from di(m) = −di(gi(m)) and di(m12) = −di(gi(m12))). If we put

ρ(i)
m =


 cos θ

(i)
m sin θ

(i)
m

sin θ
(i)
m − cos θ

(i)
m


 , cos θ(i)

m =
1

di(m)
, sin θ(i)

m = β(i)
m , (3.22)
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ρ(i)
m12

=


 cos θ

(i)
m12 sin θ

(i)
m12

sin θ
(i)
m12 − cos θ

(i)
m12


 , cos θ(i)

m12
=

1
di(m12)

, sin θ(i)
m12

= β(i)
m12

, (3.23)

and we remember (3.21), then (3.20) can be written as

Ω(i)
m,m12

= I ⊗ ρ(i)
m12
− ρ(i)

m ⊗ I, (3.24)

where I denotes the 2× 2 identity matrix. It is straightforward that the kernel of Ω(i)
m,m12 is

generated by the vectors e
(i)
m ⊗ e

(i)
m12 and ē

(i)
m ⊗ ē

(i)
m12 ; here e

(i)
m and e

(i)
m12 are the eigenvectors

of ρ
(i)
m and ρ

(i)
m12 respectively with eigenvalue 1, while ē

(i)
m and ē

(i)
m12 are the corresponding

ones with eigenvalue −1; from (3.22) and (3.23) we get

e(i)
m =


 cos θ

(i)
m
2

sin θ
(i)
m
2


 , e(i)

m12
=


 cos θ

(i)
m12
2

sin θ
(i)
m12
2


 , (3.25)

and

ē(i)
m =


 − sin θ

(i)
m
2

cos θ
(i)
m
2


 , ē(i)

m12
=


 − sin θ

(i)
m12
2

cos θ
(i)
m12
2


 (3.26)

In the case of vertical bridge configuration, we have β
(i)
m12 = 0 in (3.20). Therefore

we can write

Ω(i)
m,m12

= (di(m12)I − ρ(i)
m )⊕ (di(m12)I − ρ(i)

m ). (3.27)

From m12 = gi(m12) it follows that we may only consider one of the two identical copies,

thus

Ω(i)
m,m12

= di(m12)I − ρ(i)
m . (3.28)

So, kerΩ(i)
m,m12 is generated by the eigenvector e

(i)
m if di(m12) = 1, by the eigenvector ē

(i)
m if

di(m12) = −1.

In an analogous way for a horizontal bridge we have β
(i)
m = 0 in (3.20). By the

change of basis 


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




(3.29)
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and using m = gi(m), we get

Ω(i)
m,m12

= ρ(i)
m12
− di(m)I. (3.30)

Here kerΩ(i)
m,m12 is generated by the eigenvector e

(i)
m12 if di(m) = 1, by ē

(i)
m12 if di(m) = −1.

Finally, the case of singlet configuration is trivial because Ω(i)
m,m12 is in diagonal

form (both β
(i)
m and β

(i)
m12 are 0). We can have two possibilities:

Ω(i)
m,m12

= (0) (3.31)

or

Ω(i)
m,m12

= (±2). (3.32)

The kernel is the one-dimensional space generated by the vector {1} or it is the trivial space.

All these results are summarized in table 3.1, where with we deal with the various

configurations, the coefficients of the linear subduction equations, their Ω matrices and the

solution for the kernel vectors. Note that, for the crossing configuration we distinguish the

case αm;m12 6= 0 from the case αm;m12 = 0. In the latter case we draw one of the edges with

a dashed line. Furthermore, in the singlet configuration, we mark the trivial kernel solution

by a label 0 near the node.

3.4.1 Poles and their equivalence

We will now prove that Ω(i)
n , with n ∈ Γ(i)(p), are equivalent up to change of basis

that exchanges the nodes of the configuration. In this way, only the equations relative to

one node of the configuration (the pole) are needed in the subduction system.

Let us consider the crossing configuration. We first notice that

ρ
(i)
gi(m) = ερ

(i)
m ε, ρ

(i)
gi(m12)

= ερ
(i)
m12ε, (3.33)

where ε =


 0 1

1 0


. Then, observing that ε2 = I, for the other three choices of pole we

have
Ω(i)

gi(m),gi(m12) = I ⊗ ρ
(i)
gi(m12)

− ρ
(i)
gi(m) ⊗ I =

= I ⊗ ερ
(i)
m12ε− ερ

(i)
m ε⊗ I = (ε⊗ ε)(I ⊗ ρ

(i)
m12 − ρ

(i)
m ⊗ I)(ε⊗ ε) =

= (ε⊗ ε)Ω(i)
m,m12(ε⊗ ε);

(3.34)
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Config. αm;m12 βm βm12 Ωm;m12 Basis

Crossing

•
@@

@@
@@

@ •

~~
~~

~~
~

• •

6= 0 6= 0 6= 0
I ⊗ ρm12 +
− ρm ⊗ I

em ⊗ em12

ēm ⊗ ēm12

•
@

@
@

@ •

~~
~~

~~
~

• •

0 β 6= 0 β 6= 0
I ⊗ ρ +
− ρ⊗ I

e⊗ e
ē⊗ ē

V. Bridge

•

•

6= 0 6= 0 0
I − ρm

−I − ρm

em

ēm

H. Bridge

• • 6= 0 0 6= 0
ρm12 − I
ρm12 + I

em12

ēm12

Singlet
• 0 0 0 (0) 1
•0 ±2 0 0 (±2) -

Table 3.1: Fundamental i-coupling configurations, Ω matrices and solution space bases.
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Ω(i)
m,gi(m12) = I ⊗ ρ

(i)
gi(m12)

− ρ
(i)
m ⊗ I =

= I ⊗ ερ
(i)
m12ε− ρ

(i)
m ⊗ I = (I ⊗ ε)(I ⊗ ρ

(i)
m12 − ρ

(i)
m ⊗ I)(I ⊗ ε) =

= (I ⊗ ε)Ω(i)
m,m12(I ⊗ ε);

(3.35)

Ω(i)
gi(m),m12

= I ⊗ ρ
(i)
m12 − ρ

(i)
gi(m) ⊗ I =

= I ⊗ ρ
(i)
m12 − ερ

(i)
m ε⊗ I = (ε⊗ I)(I ⊗ ρ

(i)
m12 − ρ

(i)
m ⊗ I)(ε⊗ I) =

= (ε⊗ I)Ω(i)
m,m12(ε⊗ I).

(3.36)

In any case we are able to find the suitable change of basis.

Of course, for the bridge configurations the change of pole is equivalent to a change

of basis by ε. The singlet configuration is a trivial case.

3.4.2 Structure of the subduction space

We can now write the explicit solution space χ(i) for (3.19) as a suitable subspace

of Rfλ ⊗ Rfλ1fλ2 . If we define the vectors (in components)

(λ(i)
m )k =





0 if k is not i-coupled with m

(e(i)
m )k if k is i-coupled with m

(3.37)

(λ̄(i)
m )k =





0 if k is not i-coupled with m

(ē(i)
m )k if k is i-coupled with m

(3.38)

(δm)k =





0 if k 6= m

1 if k = m
(3.39)

and the spaces

χ(i)
m;m12

=





〈α(i)
m;m12δm ⊗ δm12〉 if di(m) = ±1 and di(m12) = ±1

〈λ(i)
m ⊗ δm12〉 if di(m) 6= ±1 and di(m12) = 1

〈λ̄(i)
m ⊗ δm12〉 if di(m) 6= ±1 and di(m12) = −1

〈δm ⊗ λ
(i)
m12〉 if di(m) = 1 and di(m12) 6= ±1

〈δm ⊗ λ̄
(i)
m12〉 if di(m) = −1 and di(m12) 6= ±1

〈λ(i)
m ⊗ λ

(i)
m12 , λ̄

(i)
m ⊗ λ̄

(i)
m12〉 if di(m) 6= ±1 and di(m12) 6= ±1

, (3.40)
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denoted by P (i) the set of the poles for the i-layer and observing that the set of the config-

urations for the i-layer is a partition of the grid, we have

χ(i) =
⊕

〈m;m12〉∈P (i)

χ(i)
m;m12

. (3.41)

So the general solution of (3.10) is the intersection of n− 2 subspaces, i.e.

χ =
⋂

i∈K

χ(i), (3.42)

with K = {1, . . . , n1 − 1, n1 + 1, . . . , n− 1}.
Now we can outline an algorithm (in pseudo-code) to determine the SDCs for

[λ] ↓ [λ1]⊗ [λ2]:

1. for i ∈ K :

(a) construct the i-layer;

(b) choose poles;

(c) for each pole (configuration):

construct the space χ
(i)
p by (3.40);

(d) construct χ(i) by (3.41);

2. determine χ as intersection of all χ(i).

Step (ii) can be performed by using the subduction graph to obtain a minimal

number of equations. In fact, one may associate a suitable equation deriving from (3.42) to

each edge (two for the crossing) of the graph (nodes represents the unknown SDCs). Then,

starting from a suitable node in the graph, we can extract such equations by applying

a graph searching algorithm which is able to reach every edge [100]. In this regard it is

useful to notice that equations associated to closed loops of bridge configurations are always

linearly dependent.
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3.5 Orthonormalization and form

The subduction space given by (3.42) has dimension µ equal to the multiplicity

of [λ] ↓ [λ1] ⊗ [λ2]. Then SDCs are not univocally determined. A choice of orthonormal-

ity between the different copies of multiplicity imposes a precise form for the multiplicity

separations.

Let {χ1, . . . , χµ} be a basis in the subduction space. Orthonormality implies for

the scalar products:

(χη, χη′) = fλ1fλ2 δηη′ . (3.43)

If we denote by χ the matrix which has the basis vectors of the subduction space as columns,

we may orthonormalize it by a suitable µ× µ matrix σ, i.e.

χ̃ = χσ. (3.44)

In (3.44) χ̃ is the matrix which has the orthonormalized basis vectors of the subduction

space as columns. Now we can write (3.43) as

σt τ σ = I, (3.45)

where I is the µ×µ identity matrix and τ is the µ×µ positive defined quadratic form given

by

τ =
1

fλ1fλ2
χtχ. (3.46)

From (3.45) we can see σ as the Sylvester matrix of τ , i.e. the matrix for the change of

basis that reduces τ in the identity form. We can express σ in terms of the orthonormal

matrix Oτ that diagonalizes τ

σ = OτD
− 1

2
τ O, (3.47)

where D
− 1

2
τ is the diagonal matrix with eigenvalues given by the inverse square root of

the eigenvalues of τ and O a generic orthogonal matrix. Thus, the general form for the

orthonormalized χ is

χ̃ = χOτD
− 1

2
τ O. (3.48)

(3.48) suggests some considerations on the form of the SDCs. First we notice that

in case of multiplicity-free subduction, only one choice of global phase has to be made (for
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example Young-Yamanouchi phase convention [99]). It derives from the trivial form of the

orthogonal 1× 1 matrices O and Oτ .

In the general case of multiplicity µ > 1, 2µ−1 phases deriving from the Oτ matrix

and 1 phase from the matrix O have to be fixed. Therefore we have 2µ−1 + 1 phases to

choose. Furthermore we have other µ(µ−1)
2 degrees of freedom deriving from O. In sum

we have a total of (2µ−1 + 1) + µ(µ−1)
2 choices to make. We agree with [21] for the case

of multiplicity 2, in which we need three phases and one extra parameter to govern the

multiplicity separation.

Other aspects have to be considered if we want to find the simplest and most

natural form for these symmetric group transformation coefficients. In [21] the authors

expose the following suitable requirements:

1. the trasformation coefficients should be chosen to be real if possible;

2. phases and the multiplicity separation should be chosen to be indipendent from n;

3. the multiplicity separation is to be chosen so that a maximal number of zero coefficients

is obtained;

4. it is desirable to have the coefficients written as a single surd of the form a
√

b/c, with

a, b, c integers;

5. the prime numbers which occur in the surds should be as small as possible.

The first two statements are automatically verified if we assume (3.48). The last three

heavily depend on the form of τ . This can be an interesting mathematical point to study

(but it is not really relevant from a purely physical point of view). We think the form

of eigenvalues and eigenvectors of τ are the only important factors in this regard. Non-

normalized SDCs deriving from (3.42) seem always to be in a simple form.
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Chapter 4

A reduced Sf subduction graph

and an example of higher

multiplicity

In this chapter we first provide a selection rule and an identity rule for the sub-

duction coefficients in symmetric groups which allow to decrease the number of unknowns

and equations arising from the linear method by Pan and Chen. Thus, by using the reduced

subduction graph approach, we may look at higher multiplicity instances. As a significant

example, an orthonormalized solution for the first multiplicity-three case, which occurs in

the decomposition of the irreducible representation [4, 3, 2, 1] of S10 into [3, 2, 1] ⊗ [3, 1] of

S6×S4, is presented and discussed. The layout of the chapter is the following (we refer the

reader to chapter 3 for definitions, notations and details on the subduction graph method).

In section 1, we analyze the structure of the subduction space and we prove two theorems

which are useful to reduce the number of unknowns and, consequently, the number of equa-

tions for the subduction problem. That is fundamental for an optimazed approach to very

high dimension decompositions. According to McAven et al [21, pg 8372], we think that

“the next steps in a search for a combinatorial recipe for a multiplicity separation could be

to look at other multiplicity two cases and the first multiplicity three case”. Therefore, in

section 2, we present our determination for the significant first multiplicity-three examples

55
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in the reduction S10 ↓ S6 ×S4.

4.1 Selection and identity rules

4.1.1 Crossing and bridge pairs of standard Young tableaux

Let λ be a Young diagram relative to a partition of n and (m,m′) a pair of standard

Young tableaux with the same diagram λ. Furthermore, we denote by dk(m) the usual axial

distance between the numbers k and k + 1 in the tableau m.

If m 6= m′, we name cut the minimum i ∈ {1, . . . , n− 1} such that di(m) 6= di(m′). We give

the following useful definitions:

Definition 4.1.1. We say that (m,m′) is a crossing pair of standard Young tableaux if

there exists i ∈ {1, . . . , n− 1} such that one of the following cases is verified:

1. di(m) 6= di(m′), gi(m) 6= m and gi(m′) 6= m′;

2. di(m) 6= di(m′), gi(m) = m and gi(m′) = m′.

We call separation for (m,m′) the minimum i where one of the previous cases occurs.

Definition 4.1.2. We say that (m,m′) is a bridge pair of standard Young tableaux if it is

not a crossing pair, i.e. for all i ∈ {1, . . . , n− 1} one of the following cases is verified:

1. di(m) = di(m′);

2. gi(m) = m and gi(m′) 6= m′;

3. gi(m) 6= m and gi(m′) = m′.

Lemma 4.1.1. Let (m,m′) be a bridge pair with m 6= m′ and let ī be the relative cut. Let

us consider the application defined by

gī(m,m′) = (gī(m), gī(m
′)). (4.1)

Then, by iteratively applying (4.1), we always obtain a crossing pair.
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Proof. We first observe that, after one application of gī on (m, m′), we have the following

situation




dj(gī(m)) = dj(gī(m′)) if j /∈ {̄i− 1, ī, ī + 1}
dj(gī(m)) = dj(gī(m′)) + dj+1(gī(m′)) if j = ī− 1

dj(gī(m)) = −dj(gī(m′)) if j = ī

dj(gī(m)) = dj−1(gī(m′)) + dj(gī(m′)) if j = ī + 1

(4.2)

thus gī(m,m′) has cut in ī− 1 because obviously dī(gī(m′)) 6= 0.

Then, at each step of the iteration of (4.1), two cases may occur:

1. gī(m,m′) is a crossing pair and we have the assertion.

2. gī(m,m′) is a bridge pair with cut in ī− 1.

If case (i) never occurs, after ī− 1 iterations we should reach a bridge pair (m̃, m̃′) with cut

i = 1. But (m̃, m̃′) always is a crossing pair because g1(m̃) = m̃ and g1(m̃′) = m̃′ for each

standard Young tableaux m̃ and m̃′.

4.1.2 Islands

Let m, m1 and m2 be three standard Young tableaux with n, n1 and n2 boxes

such that n1+n2 = n and shapes λ, λ1 and λ2, respectively. Denoted by m(n1) the standard

Young tableau obtained from m by removing the boxes with numbers n1 + 1, . . . , n, we say

that m and m1 are compatible if m1 = m(n1). The number of standard Young tableaux

which are compatible with m1 is equal to the number of standard skew-tableaux [101] of

shape λ/λ1 filled with the numbers n1 + 1, ..., n. We denote it by fλ/λ1 .

Denoted by G the grid relative to (λ;λ1, λ2), we give the following

Definition 4.1.3. Fixed the standard tableau σ with Young diagram λ1 and varying m and

m2, with fixed Young diagrams λ and λ2 respectively, the subset of G given by

Iσ(G) = {〈m; σ,m2〉 ∈ G | m is compatible with σ} (4.3)

is named σ-island of G.
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We refer to the σ-island simply saying island if it is not necessary to make an

explicit reference to σ. Of course, the number of islands of G is given by the number of

standard Young tableaux with diagram λ1, i.e. fλ1 .

Lemma 4.1.2. Let 〈m; m12〉 ∈ G be a node such that (m(n1),m1) is a crossing pair. Then

the corresponding SDC, 〈λ;m|λ1, λ2; m1,m2〉, vanishes.

Proof. Let i ∈ {1, . . . , n1 − 1} be the separation of (m(n1),m1). From definition 4.1.1, we

need to destinguish the following situations:

• gi(m) 6= m and gi(m1) 6= m1 (or, equivalently, di(m) 6= ±1 and di(m1) 6= ±1).

The action of the generator gi on the standard base vector |λ; m〉 is given by [18]

gi|λ;m〉 =
1

di(m)
|λ; m〉 + β(i)

m |λ; gi(m)〉 (4.4)

where

β(i)
m =

√
1− 1

d2
i (m)

. (4.5)

In an analogous way, the action on the split base vector |λ1, λ2;m1,m2〉 is

gi|λ1, λ2; m1, m2〉 =
1

di(m1)
|λ1, λ2;m1,m2〉 + β(i)

m1
|λ1, λ2; gi(m1),m2〉 (4.6)

From (4.4) and (4.6), using g2
i = 1 and gi = gi

†, we get
(

1− 1
di(m)di(m1)

)
〈λ; m|λ1, λ2; m1,m2〉 − β

(i)
m1

di(m)
〈λ;m|λ1, λ2; gi(m1),m2〉 +

− β
(i)
m

di(m1)
〈λ; gi(m)|λ1, λ2;m1,m2〉 − β(i)

m β(i)
m1
〈λ; gi(m)|λ1, λ2; gi(m1),m2〉 = 0. (4.7)

Writing (4.7) also for the SCDs 〈λ; m|λ1, λ2; gi(m1),m2〉, 〈λ; gi(m)|λ1, λ2; m1, m2〉 and

〈λ; gi(m)|λ1, λ2; gi(m1),m2〉, and by using the fact that di(gi(m)) = −di(m) and

di(gi(m12)) = −di(m12), we obtain the homogeneous linear system described by the

matrix


1− 1
di(m)di(m1) − β

(i)
m1

di(m) − β
(i)
m

di(m1) −β
(i)
m β

(i)
m1

− β
(i)
m1

di(m) 1 + 1
di(m)di(m1) −β

(i)
m β

(i)
m1

β
(i)
m

di(m1)

− β
(i)
m

di(m1) −β
(i)
m β

(i)
m1 1 + 1

di(m)di(m1)

β
(i)
m1

di(m)

−β
(i)
m β

(i)
m1

β
(i)
m

di(m1)

β
(i)
m1

di(m) 1− 1
di(m)di(m1)




. (4.8)
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Thereby 〈λ; m|λ1, λ2; m1,m2〉, 〈λ; m|λ1, λ2; gi(m1),m2〉, 〈λ; gi(m)|λ1, λ2; m1,m2〉 and

〈λ; gi(m)|λ1, λ2; gi(m1),m2〉 are the coordinates of a kernel vector for the matrix (4.8).

It is easy to see that (4.8) has rank 3.

1. If di(m) 6= −di(m1);

the kernel space for (4.8) is generated by the vector



1
di(m)di(m1)(β

(i)
m +β

(i)
m1

)

di(m)+di(m1)

di(m)di(m1)(β
(i)
m +β

(i)
m1

)

di(m)+di(m1)

−1




, (4.9)

which implies

〈λ; m|λ1, λ2; m1,m2〉 = −〈λ; gi(m)|λ1, λ2; gi(m1),m2〉 (4.10)

and

〈λ; gi(m)|λ1, λ2;m1,m2〉 = 〈λ; m|λ1, λ2; gi(m1),m2〉. (4.11)

Because di(gi(m)) = −di(m), di(m) 6= −di(m1) ⇒ di(gi(m)) 6= di(m1) and

di(m) 6= di(m1) ⇒ di(gi(m)) 6= −di(m1). Therefore relation (4.11), written for

〈λ; gi(m)|λ1, λ2; m1,m2〉, yelds (remember that g2
i = 1)

〈λ;m|λ1, λ2; m1, m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉. (4.12)

From (4.10) and (4.12), we get

〈λ; m|λ1, λ2;m1,m2〉 = 0. (4.13)

2. If di(m) = −di(m1);

the kernel space for (4.8) is generated by the vector



0

1

1

0




(4.14)
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which directly implies

〈λ; gi(m)|λ1, λ2; m1, m2〉 = 〈λ; m|λ1, λ2; gi(m1),m2〉 (4.15)

and

〈λ; m|λ1, λ2; m1,m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉 = 0. (4.16)

• gi(m) = m and gi(m1) = m1 (or, equivalently, |di(m)| = 1 and |di(m1)| = 1).

The action of the generator gi on the standard base vector |λ; m〉 is given by

gi|λ; m〉 = ±|λ;m〉 (4.17)

and the action on the split base vector |λ1, λ2;m1,m2〉 is

gi|λ1, λ2; m1,m2〉 = ∓|λ1, λ2; m1,m2〉. (4.18)

Thus (because g2
i = 1 and gi = gi

†)

〈λ;m|λ1, λ2; m1,m2〉 = −〈λ; m|λ1, λ2; m1,m2〉 (4.19)

from which

〈λ;m|λ1, λ2; m1, m2〉 = 0. (4.20)

Lemma 4.1.3. Let 〈m; m12〉 ∈ G be a node such that (m(n1),m1) is a bridge pair and

m(n1) 6= m1. Then the corresponding SDC, 〈λ; m|λ1, λ2; m1,m2〉, vanishes.

Proof. Let i ∈ {1, . . . , n1 − 1} be the cut of (m(n1),m1). For semplicity, let us suppose

gi(m) = m and gi(m1) 6= m1.

The action of the generator gi on the standard base vector |λ; m〉 is given by

gi|λ;m〉 = ±|λ; m〉 (4.21)

and the action on the split base vector |λ1, λ2; m1, m2〉 is

gi|λ1, λ2; m1,m2〉 =
1

di(m1)
|λ1, λ2;m1,m2〉 + β(i)

m1
|λ1, λ2; gi(m1),m2〉 (4.22)
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Because di(m1) 6= ±1, (4.21) and (4.22) imply

〈λ;m|λ1, λ2; m1,m2〉 = b′i,m1
〈λ;m|λ1, λ2; gi(m1),m2〉 (4.23)

with b′i,m1
a suitable numerical factor.

In an analogous way, the case gi(m) 6= m and gi(m1) = m1 provides

〈λ; m|λ1, λ2;m1,m2〉 = b′′i,m〈λ; gi(m)|λ1, λ2; m1,m2〉 (4.24)

with b′′i,m another suitable numerical factor.

From lemma 4.1.1, by iterating the previous derivation, we may write

〈λ;m|λ1, λ2; m1,m2〉 = b 〈λ; m̄|λ1, λ2; m̄1,m2〉 (4.25)

with (m̄, m̄1) a crossing pair and b a total numerical factor . But, from lemma 4.1.2,

〈λ; m̄|λ1, λ2; m̄1,m2〉 = 0, (4.26)

thus

〈λ; m|λ1, λ2; m1,m2〉 = 0. (4.27)

It is now possible to give the following theorems:

Theorem 4.1.1 (Selection Rule). Let 〈m; m12〉 be a node of G which does not belong to

any island of G. Then 〈λ; m|λ1, λ2; m1,m2〉 vanishes.

Proof. Because 〈m; m12〉 does not belong to any island, we have m(n1) 6= m1. If (m(ni),m1)

is a crossing pair, we have the assertion by lemma 4.1.2. If (m(ni),m1) is not a crossing pair

(i.e. it is a bridge pair), we use lemma 4.1.3 and we have the proof.

The previous theorem allows us to say that only fλ1fλ2fλ/λ1 SDCs may not van-

ishes. It provides a selection rule for the subduction coefficients which is based on the

Littlewood-Richardson rule. Furthermore, we observe that, in our graph approach, it is

analogous to the block-selective rule given in [102] and [103]. Therefore we may somehow

associate our definition of island to the concept of “block” given by McAven and Butler.
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Theorem 4.1.2 (Identity Rule). All islands of G have the same corresponding SDCs,

i.e.

〈λ; m|λ1, λ2;m1,m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉

for all i ∈ {1, . . . , n1 − 1}.

Proof. Suppose 〈m; m12〉 belongs to the m1-island. Thus m is compatible with m1 and we

have di(m) = di(m1) = di for all i ∈ {1, . . . , n1 − 1}. We again distinguish two cases:

• di 6= ±1.

It is straightforward that (4.8) is a rank 2 matrix and the kernel space is generated

by the vectors 


1

0

0

1




,




2√
d2

i−1

1

1

0




(4.28)

therefore we have

〈λ; gi(m)|λ1, λ2; m1,m2〉 = 〈λ;m|λ1, λ2; gi(m1),m2〉 (4.29)

and

〈λ; m|λ1, λ2;m1,m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉+

+
2√

d2
i − 1

〈λ; gi(m)|λ1, λ2; m1,m2〉. (4.30)

Because di(gi(m)) = −di(m) = −di(m1), (4.16) becomes

〈λ; gi(m)|λ1, λ2;m1,m2〉 = 0 (4.31)

and, from (4.30),

〈λ; m|λ1, λ2; m1,m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉. (4.32)

Thus the m1-island and the gi(m1)-island have the same corresponding SDCs.
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• di = ±1.

In this case gi(m) = m and gi(m12) = m12, thus both 〈m; m12〉 and 〈gi(m); gi(m12)〉
trivially belong to the same m1-island and, of course,

〈λ; m|λ1, λ2; m1,m2〉 = 〈λ; gi(m)|λ1, λ2; gi(m1),m2〉. (4.33)

So the proof directly follows from the fact that the m1-island can be transformed in to

another m′
1-island by a suitable composition of gi transformations (i ∈ {1, . . . , n1− 1}), the

same one which transforms the standard Young tableau m1 to m′
1.

4.1.3 Reduced subduction graph

From the previous theorems, the only SDCs we need to evaluate are the fλ2fλ/λ1

ones relative to a single island. We have a reduced linear system with (n2 − 1)fλ2fλ/λ1

equations and fλ2fλ/λ1 unknowns instead of the (n − 2)fλfλ1fλ2 and fλfλ1fλ2 primal

ones.

In fact, fixed an island, the relative reduced subduction graph is sufficient to provide

the required transformation coefficients. Such a graph is obtained by the action of the gi

trasformations, with i ∈ {n1 + 1, . . . , n − 1}, on the island nodes only, and thus it allows

further on reducing the number of dependent linear equations. On the other hand, the

gi transformations with i ∈ {1, . . . , n1 − 1} link the corresponding nodes of two different

islands and thus, by the identity rule, we do not need to consider them.

In table 4.1 we deal with some subduction cases, the relative multiplicity, the

number of unknowns involved in the primal linear equation system and the effective number

of needed SDCs, after the application of the selection and identity rules. It is evident the

drastic reduction of the number of unknowns for the subduction problem.

4.2 A higher dimension example: the first multiplicity-three

case

The first multiplicity-three case for the subduction problem in symmetric groups

accours in [4, 3, 2, 1] ↓ [3, 2, 1] ⊗ [3, 1] of S10 ↓ S6 × S4. From the hook rule [101], the



Chapter 4: A reduced Sf subduction graph and an example of higher multiplicity 64

[λ] ↓ [λ1]⊗ [λ2] {λ; λ1, λ2} fλfλ1fλ2 fλ/λ1fλ2

[4, 2] ↓ [2, 1]⊗ [2, 1] 1 36 6
[3, 2, 1] ↓ [2, 1]⊗ [2, 1] 2 64 12
[4, 2, 1] ↓ [3, 1]⊗ [2, 1] 2 210 12
[4, 3, 2] ↓ [3, 2]⊗ [3, 1] 2 2520 36

[4, 3, 2, 1] ↓ [3, 2, 1]⊗ [3, 1] 3 36864 72
[5, 4, 3, 2] ↓ [4, 3, 2]⊗ [3, 2] 3 40360320 300

[5, 4, 3, 2, 1] ↓ [4, 3, 2, 1]⊗ [4, 1] 4 899678208 480
[6, 5, 4, 3, 2, 1] ↓ [5, 4, 3, 2, 1]⊗ [5, 1] 5 1611839486033920 3600

Table 4.1: Some examples of subduction with the relative multiplicity, the primal number

of involved SDCs and the island dimension.

representation [4, 3, 2, 1] has dimension fλ = 768, [3, 2, 1] has dimension fλ1 = 16 and

[3, 1] dimension fλ2 = 3. Thus we have fλfλ1fλ2 = 36864 SDCs to evaluate. Many of

such coefficients are zero via the selection rule provided in the previous section. Now, the

number of islands is given by the dimension of [3, 2, 1], i.e. 16. But, from theorem 2, we

only need to determine the SDCs corresponding to one island. Because the number of

standard skew-tableaux of shape [4, 3, 2, 1]/[3, 2, 1] is fλ/λ1 = 24, the island is composed of

fλ/λ1fλ2 = 72 nodes which correspond to our unknowns.

We organize the nodes by the lexicographic ordering: first we order the tableaux

and then the triplet which forms each node. We choose the usual Yamanouchi conven-

tion [99] to fix the phase freedom: we impose the first non-zero SDC to be positive.

From subduction graph and by using a suitable Mathematica program [104], we

generate the homogeneous linear sistem required to obtain the SDCs. Then we find the

kernel of the subduction matrix which provides a non-orthonormalized form for the coeffi-

cients. The solution space has dimension 3 (multiplicity). We orthonormalize the SDCs in

such a way that the conditions (3.5) and (3.6) hold.

In table 4.2 we deal with the three copies for the SDCs (with multiplicity labels

1, 2 and 3, respectively). Such coefficients are listed in the lexicographic ordering (when

they are read from left to right and up to down) and they have a fixed m along the rows

and m2 down the coloumns. Multiplicity separation can be choosen in such a way that the
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1st multiplicity copy 2nd multiplicity copy 3rd multiplicity copy
√

14
64 −

√
7

16

√
21

32
5
√

2
64 − 5

64 −5
√

3
64

3
√

6
64

3
√

3
64

3
64

−5
√

42
192 −

√
21

48
3
√

7
32 −5

√
6

192
5
√

3
192 −15

64
5
√

2
64

13
64

3
√

3
64√

42
64

√
21

32 0 5
√

6
64 −5

√
3

64 −15
64

9
√

2
64

3
64

5
√

3
64√

70
64

√
35

32 0 −3
√

10
64

3
√

5
64 −5

√
15

64

√
30

192
11
√

15
192

5
√

5
64

−5
√

70
192

√
35

24

√
105
96 −5

√
10

192 −19
√

5
192 −7

√
15
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5
√

30
192

√
15

192
7
√

5
64√

210
64 0

√
35

32 −3
√
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64 −5

√
15

64 −7
√

5
64

√
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5
√

5
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7
√

15
64√
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√
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√
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√
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√
3
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9
√

2
64

9
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√
3
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√
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√
7
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√
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√
2
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5
√
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5
√

6
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√

3
64 − 3

64√
70
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√
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32

5
√
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3
√

5
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√
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3
√

30
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√
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3
√

5
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−
√

2
64

1
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√
3

32

√
14
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7
√

7
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√
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√
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3
√
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3
√

7
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√
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√
5
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√
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√
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√
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√
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√
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√
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3
√
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−
√
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√
3
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√
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√
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5
√

7
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√
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3
√
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5
√
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√
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3
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√

30
64

√
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√
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3
√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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6
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√
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√
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√
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√
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√
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√
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√
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Table 4.2: Island subduction coefficients of [4, 3, 2, 1] ↓ [3, 2, 1]⊗ [3, 1] for each multiplicity

copy. The coefficients are listed in the lexicographic ordering (when they are

read from left to right and top to bottom) and they have the same m along

the rows and m2 down the coloumns.
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coefficients are expressed as a single surd of the form a
√

b/c, with a, b and c integers.

By conjugation of [4, 3, 2, 1] ↓ [3, 2, 1]⊗ [3, 1], i.e. [4, 3, 2, 1] ↓ [3, 2, 1]⊗ [2, 1, 1], we

have another multiplicity three case for the subduction problem. The new SDCs are related

to the previous ones. Denoted by m̃ the skew-tableau conjugate to m and by m̃1 and m̃2

the tableaux conjugate to m1 and m2 respectively, we have, for the m1-island, the following

symmetry conditions

〈λ̃; m̃|λ̃1, λ̃1; m̃1, m̃2〉1 = Λ[4,3,2,1]/[3,2,1]
m/m1

Λ[3,1]
m2
〈λ;m|λ1, λ2; m1,m2〉3 (4.34)

〈λ̃; m̃|λ̃1, λ̃2; m̃1, m̃2〉2 = Λ[4,3,2,1]/[3,2,1]
m/m1

Λ[3,1]
m2
〈λ;m|λ1, λ2; m1,m2〉2 (4.35)

〈λ̃; m̃|λ̃1, λ̃2; m̃1, m̃2〉3 = Λ[4,3,2,1]/[3,2,1]
m/m1

〈λ;m|λ1, λ2; m1,m2〉1, (4.36)

where Λλ
m are the phase factors of the Yamanouchi basis [105] for the irrep [λ] and

Λλ/λ1

m/m1
= Λλ

mΛλ1
m1

m compatible with m1

(observe that, if m and m1 are compatible, m/m1 represents the skew-tableau of shape

λ/λ1 obtained by removing the first n1 boxes from m). Denoted by m′ and m′
2 the or-

dering number (by lexicografic ordering) for m/m1 and m2 respectively, our Mathematica

computation provides

Λ[4,3,2,1]/[3,2,1]
m′ = −(−1)

m′(m′−1)
2 with m′ ∈ {1, 2, 3, . . . , 24}

Λ[3,1]
m′

2
= −(−1)m′

2 with m′
2 ∈ {1, 2, 3}.

(4.37)



Chapter 5

The subduction problem for

Brauer algebras

In this chapter, we follow the structure of the chapter 3 to get a suitable com-

binatorial and algebraic description of the linear equation method for Brauer algebras. In

section 1, we give the irreducible representation of Brauer algebras and, by introducing the

concept of generalized permutation lattice, we present the explicit action of the generators

on the irreducible representations. In section 2, we provide the explicit form for the sub-

duction equations and, in section 3, we link such equations to the concept of a generalized

subduction graph. By using the subduction graph approach, in section 4 we are able to

describe the structure of the solution space for the subduction problem. We recognize that

the subduction space can be built on four tipical configurations in the i-layer: the crossing,

the horizontal and vertical bridges and the singlet. Finally, in section 5, as in the case of

the subduction problem in symmetric groups, we discuss the general orthonormalized form

for the subduction coefficients in Brauer algebras and we define a suitable ordering relation

on permutation lattices and on the grid (and thus on the set of the subduction coefficients)

which is necessary to fix the choice of phases (i.e. the Young-Yamanouchi phase convention)

and free factors governing the multiplicity separations.

67
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5.1 Irreducible representations of Brauer algebras

In chapter 2, we have introduced the abstract Brauer algebras by the definition

of f-diagram and the relative composition operation. Theorem 2.2.1 provides a construc-

tion of the Brauer algebra Bf (x) by the contraction operators ei,j operators and the el-

ements of the symmetric group Sf . A minimal set of generators of Bf (x) is given by

{g1, g2, . . . , gf−2, gf−1, e1, e2 . . . , ef−2, ef−1}, where gi represents the elementary trans-

position of the symmetric group which interchanges the elements i and i+1 and ei = ei,i+1.

It is clear that {g1, g2, . . . , gf−2, gf−1} generates Sf ⊂ Bf (x).

As we have pointed out in chapter 2, it is known that Bf (x) is semisimple, i.e.

it is a direct sum of full matrix algebras over C, when x is not an integer or is an in-

teger with x ≥ f − 1, otherwise Bf (x) is not semisimple. Whenever B(x) is semisim-

ple, its irreducible representation can be labelled by a Young diagram with f , f − 2,

f − 4, . . . , 1or 0 boxes. It can be seen that by removing the generators ef−1 and gf−1,

{g1, g2, . . . , gf−2, e1, e2 . . . , ef−2} generate Bf−1(x). By doing so repeatedly, one can es-

tablish the standard Gelfand-Tzetlin chain Bf (x) ⊂ Bf−1(x) ⊂ . . . ⊂ B2(x). It defines

the standard basis of Bf (x). Let Υf be the set of all Young diagrams with k ≤ f boxes

such that k ≥ 0 and f − k is even. If Bf (x) is semisimple, it decomposes into a direct

sum of full matrix algebras Bf,λ(x), where λ ∈ Υf . If [f, λ] is a simple Bf,λ(x) irreducible

representation, it decomposes as a Bf−1,λ(x) in to a direct sum

[f, λ] =
⊕

µ↔λ

[f − 1, µ] (5.1)

where [f − 1, µ] is a Bf−1,µ(x) irrep and µ runs through all diagrams obtained by removing

or (if λ contains less than f boses) adding a box to λ.

In what follows, we always assume that Bf (x) is semisimple.

5.1.1 Generalized tableaux

The branching rule given in (5.1) allow us to label the elements of the standard

basis for an irrep [f, λ] of the Brauer algebra Bf (x) by defining a generalized Young tableau

which is associated to the concept of Bratteli diagram [19].
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Figure 5.1: First five levels of the Bratteli diagram describing the branching rule of CSf

centralizer algebras. Ǎk is the set of the partitions of k. So, the shapes are

Young diagrams and λ ∈ Ǎk is connected to µ ∈ Ǎk+1 by an edge if µ can be

obtained from λ by adding one box.

A Bratteli diagram A is a graph with vertices from a collection of sets Ǎk, k ≥ 0,

and edges that connect vertices in Ǎk to vertices in Ǎk+1. One assumes that the set Ǎ0

contains a unique vertex denoted by ∅. It is possible that there are multiple edges connecting

any two vertices. We shall call the vertices shapes. The set Ǎk is the set of shapes on level k.

If λ ∈ Ǎk is connected by an edge to a shape µ ∈ Ǎk+1 we usually write λ ≤ µ.

A multiplicity free Bratteli diagram is a Bratteli diagram such that there is at

most one edge connecting any two vertices. Here, we assume that all Bratteli diagrams

are multiplicity free. In fact, the Bratteli diagrams, which are more interesting for our

purposes, are multiplicity free and arise naturally in the representation theory of centralizer

algebras. In figure 5.1 we show the Bratteli diagram describing the branching rule for the

Gelfand-Tzetlin chain of CSf centralizer algebras.

Let A be a multiplicity free Bratteli diagram and let λ ∈ Ǎk and µ ∈ Ǎl where

k < l. A path from λ to µ is e sequence of shapes λ(i), k ≤ i ≤ l, P = (λ(k), λ(k+1), . . . , λ(l))

such that λ = λ(k) ≤ λ(k+1), . . . , λ(l) = µ and λ(i) ∈ Ǎi.
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Figure 5.2: First four levels of the Bratteli diagram describing the branching rule of Bf (x)

centralizer algebras. Here, the shapes are Young diagrams such that λ ∈ Ǎk

is connected to µ ∈ Ǎk+1 by an edge if µ can be obtained from λ by adding

or deleting one box.

Definition 5.1.1. A generalized tableau τ of shape (diagram) λ is a path from ∅ to λ,

σ = (λ(0), λ(1), . . . , λ(k)), such that ∅ = λ(0) ≤ λ(1), . . . , λ(k−1) ≤ λ(k) = λ and λ(i) ∈ Ǎi for

each 1 ≤ i ≤ l.

The branching rule for Brauer algebras given in the previous subsection can also

be described by a suitable multiplicity free Bratteli diagram, as shown in figure 5.2.

5.1.2 Permutation lattices

Let W be the set of all finite words composed of elements of Z \ {0}. We define a

counting function on W as follows:

#̂w(k) = #w(k)−#w(−k), (5.2)

where #w(k) represents the number of times that k ∈ Z \ {0} appears in the word w.

Observe that, if w is the empty word ∅, #w(k) vanishes by definition for all k ∈
Z \ {0}. Denoting by w(i) the word obtained from w only considering the first i elements

and neglecting the other ones, we give the following definition:
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Definition 5.1.2. A permutation lattice of order f is a word w composed of f elements

such that

#̂w(i)(1) ≥ #̂w(i)(2) ≥ #̂w(i)(3) ≥ . . . ≥ 0 (5.3)

for all 1 ≤ i ≤ f (note that w(f) = w). The tuple λ = [#̂w(1), #̂w(2), #̂w(3), . . . , #̂w(l)],

where #̂w(l) is the last element different from zero in the sequence (5.3), is called shape or

diagram of w.

For istance, the word w = (1, 1, 2,−1, 1,−2, 2) is a permutation lattice of or-

der 7 with diagram [2, 1], but v = (1, 2, 1,−1, 2, 1, 3) is not a permutation lattice because

#̂v(5)(1) � #̂v(5)(2).

We observe that if w has only positive elements, the previous definition of permu-

tation lattice becomes the usual one given, for example, in [101].

5.1.3 Labelling for the Gelfand-Tzetlin base

For each tableau τ = (λ(0), λ(1), λ(2), . . . , λ(f−1), λ(f)), where λ(0) = ∅ and λ(f) = λ

being the shape, we can associate the f -tuple (or word) w(τ) = (w1, w2, . . . , wf ) as follows:

wk =





h if the Young diagram λ(k+1) is obtained from the Young diagram λ(k)

by adding one box to the hth row (from the top of the diagram);

−h if the Young diagram λ(k+1) is obtained from the Young diagram λ(k)

by deleting one box from the hth row (from the top of the diagarm).
(5.4)

For istance, the word w(τ) associated to the tableau τ = (∅, [1], [2], [2, 1], [1, 1], [1, 1, 1], [1, 1]),

with shape (diagram) [1, 1], is w(τ) = (1, 1, 2,−1, 3,−3).

Building on the previous definitions, the following proposition is straightforward:

Proposition 5.1.1. τ is a tableau of the Bratteli diagram for the Brauer algebra Bf (x) (see

figure 5.2) if and only if w(τ) is a permuation lattice of order f . Furthemore, the diagram

of τ coincides with the diagram of w(τ).

Therefore, permutation lattices provide a labelling scheme for the irreducible rep-

resentations of Brauer algebras. In fact, given the irrep [f, λ] of Bf (x), the relative Gelfand-
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Tzetlin base vectors can be labelled by all permutation lattices of order f and diagram λ

(denoted by λf if we need to specify the level f in the Bratteli diagram).

The dimensions of irreps of Bf (x), [f, λ], can be computed by using Bratteli

diagrams inductively. One can prove that the dimension formula can be espressed [106]

as

dim(Bf (x); [f, λ]) =
f !

(f − 2k)!(2k)!!
dim(Sf−2k; [λ]) (5.5)

where f − 2k is the number of boxes which compose the diagram λ and dim(Sf−2k; [λ]) is

the dimension for the irrep [λ] of Sf−2k which can be further be espressed, for example, by

Littlewood-Robinson formula for irreps of symmetric groups.

It should be noted that (5.5) provides the number of permutation lattices of order

f and diagram λ once we know the number of Standard Young tableaux with diagram λ.

Furthermore, the labelling scheme and the decomposition for Bf (x) are the same as those

for Birman-Wenzl algebras if the quantum deformation parameters q and r are not roots

of unity. Thus (5.5) also applies to Birman-Wenzl algebras when q and r are not roots of

unity.

5.1.4 Transpose permutation lattice

It is easily seen that the following proposition holds for any permutation lattice

w = (w1, w2, . . . , wf ) of order f .

Proposition 5.1.2. The word w̄ = (w̄1, w̄2, . . . , w̄f ) defined by

w̄i = #̂w(i−1)(wi) + θ(wi), (5.6)

where

θ(wi) =





1 if wi > 0

0 if wi < 0
(5.7)

is a permutation lattice of order f (note that w(0) is the empty word ∅ and #̂w(0)(wi) = 0

for all 0 ≤ i ≤ f).
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We call w̄ the transpose permutation lattice of w and denote it by wt. One may

show the following desired involution property

(wt)t = w. (5.8)

Relation (5.8) generalizes the corresponding one for a standard Young tableau written as

permutation lattice.

5.1.5 Some combinatoric functions for permutation lattices

Following [19] and rewriting in our permutation lattice language, we define

5i(w) = (wt
i − wi − x) + xθ(wi) (5.9)

where w = (w1, w2, . . . , wf ) is, as usual, a permutation lattice of order f and 1 ≤ i ≤ f .

Here x ∈ C is a parameter (the same defining Bf (x)).

Given two permutation lattices of order f , u and v, with the same diagram λ, we

can construct the “diamond” function as follows:

♦i(u, v) = 5i+1(u)−5i(v). (5.10)

We note that, if uh = vh for all h 6= i and h 6= i + 1, the following simmetry property holds:

♦i(u, v) = ♦i(v, u). (5.11)

Further, the diamond function is related to the usual axial distance for standard Young

tableaux. Precisely, given a tableau σ and the associated permutation lattice w, we have

that

di(w) = ♦i(w,w), (5.12)

where di(w) denotes the axial distance between the boxes i and i+1 in the Young diagram

of σ. So, the diamond function provides a way to extend the definition of axial distance to

permutation lattices. In fact, the axial distance between i and j in the permutation lattice

w can be defined by

dij(w) =





∑j−1
h=i ♦i(w, w) if i < j

0 if i = j

−∑i−1
h=j ♦i(w, w) if i > j

(5.13)
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Finally, following [107], for each Young diagram λ, one can define the polinomials

Pλ(x) =
∏

(i,j)∈λ

x− 1 + d(i, j)
h(i, j)

, (5.14)

where h(i, j) is the the “hook” function evaluated for the box in the ith row and jth column

of λ:

h(i, j) = λi + λ′j − i− j + 1 (5.15)

and d(i, j) is given by

d(i, j) =





λi + λj − i− j + 1 if i ≤ j

−λ′i − λ′j + i + j − 1 if i > j
(5.16)

with λi denoting the length of the ith row and λ′j the length of the jth column in λ.

We remark that the polinomial function (5.14) has the property that Pλ(2n + 1)

is the dimension of each irreducible representation V λ of the orthogonal group SO(2n + 1).

5.1.6 Explicit actions

Now we can give the explicit action [19] for the generators of Brauer algebras

Bf (x) on the Gelfand-Tzetlin basis parameterized by permutation, but first we need the

following definitions:

Definition 5.1.3. Let u = (u1, u2, . . . , uf ) and v = (v1, v2, . . . , vf ) be two permutation

lattices of order f which have the same diagram λ. We say that u is i-coupled to v (or that

u and v are i-coupled) if

uh = vh (5.17)

for all h ∈ {1, . . . , i− 1, i + 2, . . . , f} and we denote such a relation by u
i↔ v.

Definition 5.1.4. Let u = (u1, u2, . . . , uf ) and v = (v1, v2, . . . , vf ) be two i-coupled permu-

tation lattices. We say that u is ī-coupled to v (or that u and v are ī-coupled) if

ui = −ui+1, vi = −vi+1 (5.18)

and we denote such a relation by u
ī↔ v.
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Finally, it will be useful to introduce the (i \ ī)-coupling as follow: given two

pemutation lattices u and v, we say that u is (i \ ī)-coupled to v (or that u and w are

(i \ ī)-coupled) if it results u
i↔ v but not u

ī↔ v. We denote such a relation by u
i\̄i↔ v.

Of course the previous definitions can also be given for tableaux. We simply say

that two tableau σ and τ are i-coupled or ī-coupled if the corresponding permutation lattices

w(σ) and w(τ) are i-coupled or ī-coupled, respectively. Note that the i-coupling relation

just given coincides with the classical i-coupling relation given in chapter three if σ and τ

are standard Young tableaux.

Let [f, λ] be an irrep for the Brauer algebras Bf (x). The standard Gelfand-Tzetlin

base for such an irrep can be parameterized by all permutation lattices w of order f and

diagram λ: {|f ; λ; w〉}. The explicit action of the Bf (x) generators gi and ei on such vectors

is described by the following theorem:

Theorem 5.1.1. Let u and v two permutation lattices of order f and diagram λ and

|f ; λ; u〉, |f ;λ; v〉 two standard base vectors for the irrep [f, λ] of Bf (x).

• If u and v are not i-coupled, then

〈f ; λ; u|gi|f ;λ; v〉 = 〈f ; λ;u|ei|f ; λ; v〉 = 0. (5.19)

• If u and v are i-coupled but not ī-coupled, then

〈f ; λ;u|gi|f ; λ; v〉 =





1
di(u) if u = v√

1− 1
d2

i (u)
if u 6= v

(5.20)

and

〈f ;λ; u|ei|f ;λ; v〉 = 0, (5.21)

where di(u) = ♦i(u, u) (as in (5.12)).

• If u and v are ī-coupled, then

〈f ; λ; u|gi|f ; λ; v〉 =





1
♦i(u,u)(1−

P
Y (u(i))

(x)

P
Y (u(i−1))

(x)) if u = v

− 1
♦i(u,v)

q
P

Y (u(i))
(x)P

Y (v(i))
(x)

P
Y (u(i−1))

(x) if u 6= v

(5.22)
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and

〈f ;λ; u|ei|f ;λ; v〉 =

√
PY (u(i))(x)PY (v(i))(x)

PY (u(i−1))(x)
, (5.23)

where Y (w) denotes the diagram of the permutation lattice w.

We observe that the previous theorem provides the same action for gi given in

chapter three if u and v are not ī-coupled (as the case of standard Young tableaux). Fur-

thermore, we can easily verify that both gi and ei are hermitian operator on the invariant

irreducible spaces of Brauer algebras.

5.2 The subduction problem

Subdction coefficients for the reduction [f, λ] ↓ Bf1(x) × Bf2(x) (f1 + f2 = f)

define the base changing matrix which makes explicit the decomposition in block-diagonal

form:

[f, λ] =
⊕

λ1,λ2

{f1, f2;λ; λ1, λ2} [f1, λ1]⊗ [f2, λ2]. (5.24)

Therefore, each non-standard base vector for [f, λ] is given by the tensor product of two stan-

dard base vectors for the irreps [f1, λ1] and [f2, λ2]. {f1, f2;λ;λ1, λ2} denotes the Clebsch-

Gordan series which provide the multiplicity of [f1, λ1]⊗ [f2, λ2] in [f, λ].

The irreps of Bf1(x) ×Bf2(x) may be labelled by (f1, f2;λ1, λ2) with λ1 and λ2

suitable partitions (shapes). In the same way, each element of the basis is labelled by pairs

of permutation lattices.

As in the case of subduction problem for Sf (described in chapter three), we

write the non-standard base vectors |f1, f2; λ1, λ2; w1, w2〉 of [f1, λ1] ⊗ [f2, λ2] in terms of

the standard base vectors |f ;λ; w〉 of [f, λ] (f1 + f2 = f):

|f1, f2; λ1, λ2; w1, w2〉η =
∑

w∈Ξλ
f

|f ;λ; w〉〈f ; λ;w|f1, f2; λ1, λ2; w1, w2〉η (5.25)

where Ξλ
f represents the set of all permutation lattices of order f and diagram λ. Thus

〈f ; λ; w|f1, f2; λ1, λ2; w1, w2〉η are the SDCs (subduction coefficients) of [f, λ] ↓ [f1, λ1] ⊗
[f2, λ2] with given multiplicity label η.
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Again, the SDCs satisfy the following unitary conditions:

∑
w

〈f ; λ; w|f1, f2;λ1, λ2;w1, w2〉η 〈f ; λ; w|f1, f2;λ1, λ
′
2;w1, w

′
2〉η′ = δλ2λ′2δw2w′2δηη′ (5.26)

∑

λ2w2η

〈f ; λ; w|f1, f2;λ1, λ2;w1, w2〉η 〈f ; λ; w′|f1, f2; λ1, λ2; w1, w2〉η = δww′ . (5.27)

5.2.1 Subduction system

Following the guidelines given for the subduction problem in symmetric groups,

we now construct a matrix in such a way that the SDCs are the components of the kernel

basis vectors. The dimension of such a kernel space is equal to the multiplicity for the

subduction issue we are considering.

The action of gi and ei on the non-standard base vectors is given by

gi|f1, f2; λ1, λ2; w1, w2〉 =





(gi|f1;λ1;w1〉)⊗ |f2;λ2;w2〉 if 1 ≤ i ≤ f1 − 1

|f1; λ1; w1〉 ⊗ (gi|f2; λ2; m2〉) if f1 + 1 ≤ i ≤ f − 1
(5.28)

and

ei|f1, f2;λ1, λ2;w1, w2〉 =





(ei|f1; λ1; w1〉)⊗ |f2;λ2;w2〉 if 1 ≤ i ≤ f1 − 1

|f1;λ1;w1〉 ⊗ (ei|f2; λ2; m2〉) if f1 + 1 ≤ i ≤ f − 1
. (5.29)

From (5.28) and (5.29), for 1 ≤ l ≤ f1 − 1, we get

〈f ;λ;w|gl|f1, f2; λ1, λ2; w1, w2〉 = 〈f ; λ; w|(gl|f1; λ1; w1〉)⊗ |f2; λ2; w2〉 (5.30)

and

〈f ;λ;w|el|f1, f2; λ1, λ2; w1, w2〉 = 〈f ;λ;w|(el|f1; λ1; w1〉)⊗ |f2; λ2; w2〉. (5.31)

Writing |f1, f2; λ1, λ2; w1, w2〉 and gl|f1; λ1; w1〉 in the standard basis of [f, λ] and [f1, λ1]

respectively, (5.30) and (5.31) become

∑

u∈Θi(w)

〈f ; λ; w|gl|f ; λ; u〉〈f ; λ; u|f1, f2;λ1, λ2;w1, w2〉 =

∑

v∈Θi(w1)

〈f1;λ1; v|gl|f1; λ1; w1〉〈f ; λ; w|f1, f2;λ1, λ2; v, w2〉 (5.32)
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∑

u∈Θ̄i(w)

〈f ; λ; w|el|f ; λ; u〉〈f ;λ; u|f1, f2; λ1, λ2; w1, w2〉 =

∑

v∈Θ̄i(w1)

〈f1; λ1; v|el|f1; λ1; w1〉〈f ; λ; w|f1, f2;λ1, λ2; v, w2〉 (5.33)

where Θi(w) and Θ̄i(w) denote the sets of all permutation lattices which are i-coupled and

ī-coupled with w respectively.

In an analogous way, for f1 + 1 ≤ l ≤ f − 1, we get

∑

u∈Θi(w)

〈f ; λ; w|gl|f ; λ; u〉〈f ; λ; u|f1, f2;λ1, λ2;w1, w2〉 =

∑

v∈Θi(w2)

〈f2;λ2; v|gl|f2; λ2; w2〉〈f ; λ; w|f1, f2;λ1, λ2;w1, v〉 (5.34)

∑

u∈Θ̄i(w)

〈f ; λ; w|el|f ; λ; u〉〈f ;λ; u|f1, f2; λ1, λ2; w1, w2〉 =

∑

v∈Θ̄i(w2)

〈f2; λ2; v|el|f2; λ2; w2〉〈f1, f2; λ; w|f1;λ1, λ2;w1, v〉. (5.35)

Then, once we know the explicit action of the generators of Bf1(x)×Bf2(x) on the standard

basis, (5.32), (5.33), (5.34) and (5.35) (written for all l ∈ {1, . . . , f1 − 1, f1 + 1, . . . , f − 1}
and all permutation lattices w, w1, w2 of order f and diagrams λ, λ1 and λ2 respectively)

define a linear equation system of the form:

Ω(λ; f1, f2; λ1, λ2) χ = 0 (5.36)

where Ω(λ; f1, f2; λ1, λ2) is the subduction matrix and χ is a vector with components

given by the SDCs of [f, λ] ↓ [f1, λ1] ⊗ [f2, λ2]. (5.36) is a linear equation system with

dim(Bf (x); [f, λ]) · dim(Bf1(x); [f1, λ1]) · dim(Bf2(x); [f2, λ2]) unknowns (the SDCs) and

2(f − 2) · dim(Bf (x); [f, λ]) · dim(Bf1(x); [f1, λ1]) · dim(Bf2(x); [f2, λ2]) equations.

5.2.2 Explicit form of the subduction system

It will be useful to give the following definitions of i-coupling and ī-coupling on

pairs of permutation lattices:
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Definition 5.2.1. Given two pairs w12 = (w1, w2) and w′12 = (w′1, w
′
2), each one composed

of two permutation lattices of order f1 and f2 respectively, we say that w12 is i-coupled to

w′12 (or that w12 and w′12 are i-coupled) when




w1
i↔ w′1

w2 = w′2
if 1 ≤ i ≤ f1 − 1

w1 = w′1
w2

i−f1↔ w′2
if f1 + 1 ≤ i ≤ f1 + f2 − 1

and we denote such a relation by w12
i↔ w′12.

Definition 5.2.2. Given two pairs w12 = (w1, w2) and w′12 = (w′1, w
′
2), each one composed

of two permutation lattices of order f1 and f2 respectively, we say that w12 is ī-coupled to

w′12 (or that w12 and w′12 are ī-coupled) when




w1
ī↔ w′1

w2 = w′2
if 1 ≤ i ≤ f1 − 1

w1 = w′1

w2
i−f1↔ w′2

if f1 + 1 ≤ i ≤ f1 + f2 − 1

and we denote such a relation by w12
ī↔ w′12.

Of course, the (i \ ī)-coupling relation on pairs of permutation lattices is defined

by

w12
i\̄i↔ w′12 ⇐⇒





w1
i\̄i↔ w′1

w2 = w′2
if 1 ≤ i ≤ f1 − 1

w1 = w′1

w2
i\i−f1←→ w′2

if f1 + 1 ≤ i ≤ f1 + f2 − 1

Denoted by Θi(w12) the set of all pairs of permutation lattices which are i-coupled

to the pair w12 = (w1, w2) and by Θ̄i(w12) the set of all pairs of permutation lattices which
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are ī-coupled to the pair w12 = (w1, w2), equations (5.32), (5.33), (5.34) and (5.35) can be

written as

(〈f1, f2; λ1, λ2; w1, w2|gi|f1, f2; λ1, λ2; w1, w2〉 − 〈f ; λ; w|gi|f ; λ; w〉) −
∑

u∈Θ′i(w)

〈f ; λ; w|gi|f ; λ; u〉〈f ;λ;u|f1, f2; λ1, λ2; w1, w2〉 +

∑

(u1,u2)∈Θ′i(w12)

〈f1, f2;λ1, λ2;w1, w2|gi|f1, f2; λ1, λ2; u1, u2〉〈f ;λ;w|f1, f2; λ1, λ2; u1, u2〉 = 0

(5.37)

and

(〈f1, f2; λ1, λ2; w1, w2|ei|f1, f2;λ1, λ2;w1, w2〉 − 〈f ;λ; w|ei|f ; λ; w〉) −
∑

u∈Θ̄′i(w)

〈f ; λ; w|ei|f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2; w1, w2〉 +

∑

(u1,u2)∈Θ̄′i(w12)

〈f1, f2; λ1, λ2; w1, w2|ei|f1, f2; λ1, λ2; u1, u2〉〈f ;λ;w|f1, f2; λ1, λ2; u1, u2〉 = 0,

(5.38)

where Θ′
i(w) and Θ′̄

i
(w) represent the sets Θi(w) \ {w} and Θī(w) \ {w}, respectively (and

analogously for Θ′
i(w12) and Θ′̄

i
(w12)).

By remembering the statement of theorem 5.1.1, we can distinguish four possible

cases for the structure of the equations (5.37) and (5.38).

1. Crossing : w
i\̄i↔ w and w12

i\̄i↔ w12.

The subduction equations become of the form given in (3.12):

α(i\̄i)
w,w12

〈f ; λ; w|f1, f2;λ1, λ2;w1, w2〉 − β(i\̄i)
w 〈f ;λ; gi(w)|f1, f2;λ1, λ2;w1, w2〉+

+β(i\̄i)
w12
〈f ; λ; w|f1, f2; λ1, λ2; gi(w1), w2〉 = 0 if i ∈ {1, . . . , n1 − 1} , (5.39)

α(i\̄i)
w,w12

〈f ; λ; w|f1, f2;λ1, λ2;w1, w2〉 − β(i\̄i)
w 〈f ;λ; gi(w)|f1, f2;λ1, λ2;w1, w2〉+

+β(i\̄i)
w12
〈f ;λ;w|f1, f2; λ1, λ2; w1, gi(w2)〉 = 0 if i ∈ {n1 + 1, . . . , n− 1} (5.40)

where

α(i\̄i)
w,w12

=
1

di(w12)
− 1

di(w)
(5.41)
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β(i\̄i)
w =

√
1− 1

d2
i (w)

(5.42)

β(i\̄i)
w12

=

√
1− 1

d2
i (w12)

. (5.43)

Notice that, by definition,

di(w12) =





di(w1) if 1 ≤ i ≤ f1 − 1

di−f1(w2) if f1 + 1 ≤ i ≤ f − 1
, (5.44)

where the axial distance di is the same of (5.12) and, given a permutation lattice

w = (w1, . . . , wi, wi+1, . . . , wf ), the gi action is naturally defined in the following

way: consider the word w̃ = (w1, . . . , wi−1,wi+1,wi, wi+2, . . . , wf ) obtained by w inter-

changing the elements wi and wi+1. If w̃ is another permutation lattice then we put

gi(w) = w̃, otherwise we set gi(w) = w. In an analogous way, it is defined a gi action

on pairs of permutation lattices of order f1 and f2, respectively:

gi(w1, w2) =





(gi(w1), w2) if 1 ≤ i ≤ f1 − 1

(w1, gi(w2)) if f1 + 1 ≤ i ≤ f1 + f2 − 1
. (5.45)

2. Horizontal bridge: w
ī↔ w and w12

i\̄i↔ w12.

In this case, we get the equations:

α(i\̄i)
w,w12

〈f ; λ; w|f1, f2;λ1, λ2;w12〉+ β(i\̄i)
w12
〈λ;w|f1, f2; λ1, λ2; gi(w12)〉 =

−

√
PY (w(i))(x)

PY (w(i−1))(x)

∑

u∈Θ̄i(w)

√
PY (u(i))(x)

♦i(w, u)
〈f ; λ; u|f1, f2; λ1, λ2; w12〉 (5.46)

and
∑

u∈Θ̄i(w)

√
PY (u(i))(x)〈f ;λ;u|f1, f2; λ1, λ2; w12〉 = 0, (5.47)

where we have used the usual notation w12 = (w1, w2) in the mathematical symbol of

SDC.
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3. Vertical bridge: w
i\̄i↔ w and w12

ī↔ w12.

In an analogous way as the previous case, we have:

α(i\̄i)
w,w12

〈f ; λ; w|f1, f2;λ1, λ2;w12〉 − β(i\̄i)
w 〈λ; gi(w)|f1, f2;λ1, λ2;w12〉 =

√
P

Y (w
(i)
12 )

(x)

P
Y (w

(i−1)
12 )

(x)

∑

u12∈Θ̄i(w12)

√
P

Y (u
(i)
12 )

(x)

♦i(w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉 (5.48)

and
∑

u12∈Θ̄i(w12)

√
P

Y (u
(i)
12 )

(x)〈f ; λ; u|f1, f2;λ1, λ2;w12〉 = 0. (5.49)

Here, as in the definition of axial distance for pairs of permutation lattices, we have

set:

♦i(w12, u12) =





♦i(w1, u1) if 1 ≤ i ≤ f1 − 1

♦i−f1(w2, u2) if f1 + 1 ≤ i ≤ f − 1
(5.50)

and

w
(i)
12 =





w
(i)
1 if 1 ≤ i ≤ f1 − 1

w
(i−f1)
2 if f1 + 1 ≤ i ≤ f − 1

. (5.51)

4. Singlet : w
ī↔ w and w12

ī↔ w12.

In this last case, the subduction equations take the form of:

α(i\̄i)
w,w12

〈f ; λ; w|f1, f2;λ1, λ2;w12〉 =

−

√
PY (w(i))(x)

PY (w(i−1))(x)

∑

u∈Θ̄i(w)

√
PY (u(i))(x)

♦i(w, u)
〈f ; λ;u|f1, f2;λ1, λ2;w12〉+

√
P

Y (w
(i)
12 )

(x)

P
Y (w

(i−1)
12 )

(x)

∑

u12∈Θ̄i(w12)

√
P

Y (u
(i)
12 )

(x)

♦i(w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉 (5.52)

and
√

PY (w(i))(x)

PY (w(i−1))(x)

∑

u∈Θ̄i(w)

√
PY (u(i))(x)〈f ;λ;u|f1, f2; λ1, λ2; w12〉 =

√
P

Y (w
(i)
12 )

(x)

P
Y (w

(i−1)
12 )

(x)

∑

u12∈Θ̄i(w12)

√
P

Y (u
(i)
12 )

(x)〈f ; λ; w|f1, f2; λ1, λ2; u12〉. (5.53)
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5.3 Subduction graph

Let us now consider the three shapes (f ; λ; f1, f2; λ1, λ2) with f1 + f2 = f . We

call node each ordered sequence of three permutation lattices (w; w1, w2) such as w ∈ Ξλ
f ,

w ∈ Ξλ1
f1

and w ∈ Ξλ2
f2

. We denote it by 〈w; w1, w2〉 or 〈w;w12〉. The set of all nodes of

(f ; λ; f1, f2; λ1, λ2) is called subduction grid (or simply grid) and it is as usual denoted by G.

Building on the case of permutation lattices, the following definition extends the i-coupling

relation to the nodes of the grid.

Definition 5.3.1. Fixed the grid (f ;λ; f1, f2; λ1, λ2), and given two nodes n = (w; w12) and

n′ = (w′; w′12), we say that n is i-coupled to n′ (or that n and n′ are i-coupled) if w
i↔ w′

and w12
i↔ w′12. Then we write n

i↔ n′.

Once i is fixed, it easy to see that the i-coupling is an equivalence relation on the

grid. We name i-layer the partition of G which is associated to such a relation and we

denote it by G(i). If n and n′ are two distinct nodes of the grid such that n
i↔ n′, then they

are connected by an edge with a label for i.

Following the structure of explicit form for the subduction equations given in the

previous section, we note that there are only four possible kinds of i-layer configurations

beetween nodes in G:

1. crossing i-layer: G(i\̄i) = {〈w; w12〉 ∈ G | w i\̄i↔ w and w12
i\̄i↔ w12};

2. horizontal bridge i-layer: G(i−ī) = {〈w;w12〉 ∈ G | w ī↔ w and w12
i\̄i↔ w12};

3. vertical bridge i-layer: G(̄i−i) = {〈w; w12〉 ∈ G | w i\̄i↔ w and w12
ī↔ w12};

4. singlet i-layer: G(̄i) = {〈w; w12〉 ∈ G | w ī↔ w and w12
ī↔ w12};

Clearly, G(i\̄i), G(i−ī), G(̄i−i) and G(̄i) are disjoint sets and we have G(i) = G(i\̄i) ∪G(i−ī) ∪
G(̄i−i)∪G(̄i). The crossing i-layer corresponds to the i-layer defined in chapter three for the

subduction problem in symmetric groups. So, crossing, bridge and singlet configurations

for the i-coupling relation are also defined in an analogous way for such a set.

Definition 5.3.2. We call subduction graph the overlap of all i-layers obtained by identi-

fication of the corresponding nodes.
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The definition just given is a good definition of subduction graph, because there

is at most one edge connecting two distinct nodes. This is ensured by the osservation that

if n and n′ are two distinct nodes which are i-coupled and j-coupled then we necessarily

have i = j.

We remark that if the grid defined by (f ; λ; f1, f2;λ1, λ2) is such that f is equal to

the number of boxes of λ, f1 is equal to the number of boxes of λ1 and f3 to the number

of boxes λ3, then the definition of subduction graph just given becomes that one given for

the subduction problem in symmetric groups (chapter three).

5.4 Structure of the subduction space

The solution of (5.36) can be seen as an intersection of f − 2 subspaces χ(i) such

that each one satisfies

Ω(i)(f1, f2;λ;λ1, λ2) χ(i) = 0. (5.54)

Here, Ω(i)(f1, f2; λ;λ1, λ2) is defined by the equations (5.32), (5.33), (5.34) and (5.35) writ-

ten for a fixed i ∈ {1, . . . , f1 − 1, f1 + 1, . . . f − 1}. The definitions of grid, i-layer and the

explicit form for the subduction equations, given in the previous sections, provide a suitable

way to describe the solution space of (5.54) by the one-to-one corrispondence between the

nodes of (f1, f2; λ; λ1, λ2) and the SDCs for the subduction [f1 + f2, λ] ↓ [f1, λ1] ⊗ [f2, λ2].

To find the structure of the subduction space χ(i) which is associated to the i-layer we only

need to describe the structure of the spaces which are associated to G(i\̄i), G(i−ī), G(̄i−i) and

G(̄i) that we call crossing space, horizontal bridge space, vertical bridge space and singlet

space, respectively.

5.4.1 Crossing space

The solution for the crossing equations was already described in chapters three

and four by the subduction graph method. In fact, we observe that the structure of the

two subduction systems are quite similar. For the Brauer algebras case, we only need

to pay attention to use the new definition of axial distance given in (5.12) because such a

definition leads to expressions for the coefficients α
(i\̄i)
w;w12 , β

(i\̄i)
w and β

(i\̄i)
w12 which are algebraic
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functions of C(x) instead of simple real numbers (see theorem 5.1.1). However, relations

and conditions of the subduction graph method for symmetric groups still remain valid for

Brauer algebras subduction issue.

5.4.2 Bridge spaces

Let us now consider the case of the horizontal bridge space. From equation (5.47),

for each node 〈w;w12〉 ∈ G(i−ī), we find that subduction coefficients of the horizontal bridge

type, 〈f ; λ;u|f1, f2;λ1, λ2;w12〉, are the components of vectors of a vectorial space that is

the kernel of the operator ei acting on the invariant irreducible subspace defined by all the

permutation lattices u which are ī-coupled to w. From the relation e2
i = xei, we note that

the eigenvalues of ei are 0 and x. Therefore χ(i−ī) in general is not the trivial space. So,

finding such SDCs is equivalent to determind the kernel space of ei in the explicit form

given in theorem 5.1.1.

Once we now the SDCs of the form 〈f ;λ;u|f1, f2; λ1, λ2; w12〉, we can determine

the coefficients 〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 by using (5.46):

〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 = −α
(i\̄i)
w,w12

β
(i\̄i)
w12

〈f ; λ;w|f1, f2; λ1, λ2; w12〉−

1

β
(i\̄i)
w

√
PY (w(i))(x)

PY (w(i−1))(x)

∑

u∈Θ̄i(w)

√
PY (u(i))(x)

♦i(w, u)
〈f ; λ; u|f1, f2; λ1, λ2; w12〉 (5.55)

(note that if gi(w12) 6= w12 then β
(i\̄i)
w12 6= 0).

In an analogous way for the vertical bridge space, from equation (5.49) we find

that subduction coefficients 〈f ;λ;w|f1, f2; λ1, λ2; u12〉, are the components of vectors of a

vectorial space that is the kernel of the operator ei acting on the invariant irreducible

subspace defined by all pairs of the permutation lattices u12 which are ī-coupled to w12.

Again, once we now the SDCs of the form 〈f ; λ; w|f1, f2;λ1, λ2;u12〉, we can de-



Chapter 5: The subduction problem for Brauer algebras 86

termine the coefficients 〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 by using (5.48):

〈f ; λ; w|f1, f2; λ1, λ2; gi(u12)〉 =
α

(i\̄i)
w,w12

β
(i\̄i)
w

〈f ; λ; w|f1, f2; λ1, λ2; w12〉−

1

β
(i\̄i)
w

√
P

Y (w
(i)
12 )

(x)

P
Y (w

(i−1)
12 )

(x)

∑

u12∈Θ̄i(w12)

√
P

Y (u
(i)
12 )

(x)

♦i(w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉 (5.56)

(if gi(w) 6= w then β
(i\̄i)
w 6= 0)

5.4.3 Singlet space

To understand the structure of the solution for singlet equations, it is useful to

introduce the intertwining operators:

Ω(i)
w,w12

= Iw ⊗ ρ(i)
w12
− ρ(i)

w ⊗ Iw12 . (5.57)

and

Ω̄(i)
w,w12

= Iw ⊗ ρ̄(i)
w12
− ρ̄(i)

w ⊗ Iw12 (5.58)

Here, ρ
(i)
w (resp. ρ

(i)
w12) represents the action of the generators gi on the invariant irreducible

space defined by all permutation lattices (resp. pairs of permutation lattices) which are ī-

coupled to w (risp. w12). In an analogous way, ρ̄
(i)
w (resp. ρ̄

(i)
w12) represents the action of the

generators ei on the invariant irreducible spaces defined by all permutation lattices (resp.

pairs of permutation lattices) which are ī-coupled to w (resp. w12). Further, Iw and Iw12

represent the identity operators on the previous invariant irreducible spaces, respectively.

Solving the singlet equations is equivalent to find the kernel space of Ω(i)
w,w12 and the kernel

space of Ω̄(i)
w,w12 .

The operator ρ
(i)
w (resp. ρ

(i)
w12) has eigenvalues 1 and −1, as we can see by the

relation g2
i = 1. Denoted by g

(i)
w,1 (resp. g

(i)
w12,1) the eigenvector relative to the eigenvalue 1

and by g
(i)
w,−1 (resp. g

(i)
w12,−1 ) that one relative to the eigenvalue −1, the eigenvectors of the

intertwining operator Ω(i)
w,w12 are:

1. g
(i)
w,1 ⊗ g

(i)
w12,1 with eigenvalue 0;

2. g
(i)
w,−1 ⊗ g

(i)
w12,1 with eigenvalue 2;
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3. g
(i)
w,1 ⊗ g

(i)
w12,−1 with eigenvalue −2;

4. g
(i)
w,−1 ⊗ g

(i)
w12,−1 with eigenvalue 0.

Therefore, the kernel space is given by span(g(i)
w,1 ⊗ g

(i)
w12,1, g

(i)
w,−1 ⊗ g

(i)
w12,−1).

The operator ρ̄
(i)
w (resp. ρ̄

(i)
w12) has eigenvalues x and 0 (remember that ei

2 = xei).

Denoted by e
(i)
w,x (resp. e

(i)
w12,x) an eigenvector relative to the eigenvalue x and by e

(i)
w,0 (resp.

e
(i)
w12,0) one relative to the eigenvalue −1, the eigenvectors of the intertwining operator Ω(i)

w,w12

have the form:

1. e
(i)
w,x ⊗ e

(i)
w12,x with eigenvalue 0;

2. e
(i)
w,0 ⊗ e

(i)
w12,x with eigenvalue x;

3. e
(i)
w,x ⊗ e

(i)
w12,0 with eigenvalue −x;

4. e
(i)
w,0 ⊗ e

(i)
w12,0 with eigenvalue 0.

from which we can construct the kernel space for Ω̄(i)
w,w12 .

The singlet space is the intersaction of the two kernel spaces just given.

5.5 Orthonormalization and phase conventions

The subduction space given by (5.36) has dimension µ equal to the multiplicity of

[f, λ] ↓ [f1, λ1]⊗ [f2, λ2]. Then SDCs are not univocally determined. A choice of orthonor-

mality between the different copies of multiplicity imposes a precise form for the multiplicity

separations.

Following the notation given in chapter three, let {χ1, . . . , χµ} be a basis in the

subduction space. Orthonormality implies for the scalar products:

(χη, χη′) = dim(Bf1(x), [f1, λ1]) dim(Bf2(x), [f2, λ2]) δηη′ . (5.59)

If we denote by χ the matrix which has the basis vectors of the subduction space as columns,

we may orthonormalize it by a suitable µ× µ matrix σ, i.e.

χ̃ = χσ. (5.60)
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In (5.60) χ̃ is the matrix which has the orthonormalized basis vectors of the subduction

space as columns. Now we can write (5.59) as

σt τ σ = I, (5.61)

where I is the µ×µ identity matrix and τ is the µ×µ positive defined quadratic form given

by

τ =
1

dim(Bf1(x), [f1, λ1]) dim(Bf2(x), [f2, λ2])
χtχ. (5.62)

From (5.61) we can see σ as the Sylvester matrix of τ , i.e. the matrix for the change of

basis that reduces τ in the identity form. We can express σ in terms of the orthonormal

matrix Oτ that diagonalizes τ

σ = OτD
− 1

2
τ O, (5.63)

where D
− 1

2
τ is the diagonal matrix with eigenvalues given by the inverse square root of

the eigenvalues of τ and O a generic orthogonal matrix. Thus, the general form for the

orthonormalized χ is

χ̃ = χOτD
− 1

2
τ O. (5.64)

We notice that in case of multiplicity-free subduction, only one choice of global phase has

to be made (for example Young-Yamanouchi phase convention [99]). It derives from the

trivial form of the orthogonal 1× 1 matrices O and Oτ .

To fix the Young-Yamanouchi phase convention we need an ordering relation on

permutation lattices (or pair of permutation lattices) and on nodes of the subduction graph.

A possible natural choice is the following: given two distinct permutation lattices of order f

and diagram λ, w = (w1, w2, . . . , wf ) and w′ = (w′1, w
′
2, . . . , w

′
f ), we say that w < w′ if the

first non-zero element of the word w − w′ = (w1 − w′1, w2 − w′2, . . . , wf − w′f ) is a negative

number. Such a relation can be extended to pairs of permutation lattices alphabetically:

given two distinct pairs of permutation lattices w12 = (w1, w2) and w′12 = (w′1, w
′
2), we say

that w12 < w′12 if w1 < w′1 or w1 = w′1 and w2 < w′2. Resulting from the previous ordering

relations, we can provide the ordering relation for nodes of the grid G = (f ;λ; f1, f2; λ1, λ2).

For two distinct nodes n = 〈w;w12〉 ∈ G, n′ = 〈w′; w′12〉 ∈ G we say n < n′ if w < w′ or

w = w′ and w12 < w′12.
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Thus, the Young-Yamanouchi phase convention can be stated as follows: we fix

to be positive the first non-zero SDC with respect to the ordering relation defined on the

corresponding nodes.

We conclude by observing that, in the general case of multiplicity µ > 1, 2µ−1

phases deriving from the Oτ matrix and 1 phase from the matrix O have to be fixed.

Therefore we have 2µ−1 + 1 phases to choose. Furthermore we have other µ(µ−1)
2 degrees of

freedom deriving from O. In sum we have a total of (2µ−1 + 1) + µ(µ−1)
2 choices to make.
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