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Abstract

The force of infection is a fundamental epidemiological parameter of infectious diseases.
For many infectious diseases it is assumed that the force of infection is age-dependant.
Although the force of infection can be estimated directly from a follow up study, it is much
more common to have cross-sectional seroprevalence data from which the seroprevalence
and the force of infection can be estimated. Here we propose to model the seropreval-
ence with four different parametric models: a nonlinear least squares model proposed
by Farrington (1990); a logistic model, estimated using the generalized linear models;
two fractional polynomial models of different order. We illustrate the methods using three
seroprevalence samples, taken by the literature, regarding the following infectious diseases:
mumps, rubella and parvovirus.

Besides, in order to determine the optimal sample size for a serological survey, we
show the serious problems of the standard confidence interval for a binomial proportion
and we introduce some alternative confidence intervals proposed by the literature.
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Chapter 1

Serological surveys

1.1 What is a serological survey?

The aim of a serological survey is to find out the presence of antibodies, produced by
the organism in response to a specific antigen, responsible for the disease the researcher
is studying. The organism can produce two kinds of antibodies:

1. IgM : these antibodies are produced at the very beginning of the infection, but they
are present in the blood serum for a very short time;

2. IgG : these antibodies are produced later than IgM, but they remain in the organism
for a very long period, even after the disease is disappeared.

So, if a person presents in its own blood some antibodies against a specific infection,
it means that:

• the person has experimented the infection before or during the survey;

• otherwise, the person is vaccinated against the infection.

With a serological survey, the researcher wants to know the percentage of people,
belonging to a certain cohort, who present antibodies against a specific disease. Together
with this percentage, it is interesting to know some characteristics of the people object
of the survey, in order to study the relationship between the presence of antibodies and
these characteristics, called variables. Usually, the cohort is based on the age of people
and the variables of interest vary from study to study, depending on the aim of the
research.
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1.2 Follow up and cross-section studies

There are two types of serological surveys.

1.2.1 Follow up study

In this study, the researcher takes a sample of seronegative people (people who do
not present any antibodies against the infection) belonging to the same age-cohort and
then he follows this cohort for a certain period. During this period, he notices if a person
gets the infection (and so its organism begins to produce antibodies) or not: this is the
”period at risk ”, because during this time the subject risks to acquire the infection.

At the end of the survey the researcher knows which people in the sample are seropos-
itive (people with antibodies against the infection) or not, and the age at the infection for
seropositive people. In this way, he can evaluate the percentage of people with antibodies
at every age.

With a follow up study, it is possible to estimate two important parameters of great
interest for the epidemiologist:

• the prevalence, which is a frequence and measures the percentage of people with
antibodies at a specific moment in a population;

• the force of infection, which is a risk rate (or incidence rate) and measures the
number of new infections during a certain period in the population.

The follow up study has the advantage of reducing ”systematic errors”, because the
researcher can control personally the quality of data during the survey; however, the
great disadvatage of this study is that we need a lot amount of time to complete the
survey, even the entire life of people, because we have to follow the appearance of the
events.

1.2.2 Cross-section study

In this study, the researcher takes a sample of people, stratified for the age of subjects,
and notices how these individuals are distributed at a specific moment (the time of
survey), at every age, between seropositive and seronegative.

The cross-section study has the advantage of requiring much less time than a follow up
study, because at the beginning of the study the events of interest have already happened
and so the researcher has only to record these events. Besides, from these studies it is



possible to estimate directly the seroprevalence, but not the force of infection.

Of course, cross-section studies are much more common than follow up studies and so,
although the force of infection and the prevalence can be estimated directly from a follow
up study, it is normal to estimate these parameters from cross-sectional seroprevalence
data (data about the prevalence of antibodies in the blood serum of the individual).

If our data are obtained from a cross-section study and we want to estimate the force
of infection, we have to assume that our data are representative of longitudinal changes
in seroprevalence with age.

1.3 The catalytic model

The key quantity governing the trasmission of infection within a given population is
the force of infection. This is defined as the instantaneous per capita rate at which sus-
ceptibles (people that have not contracted the infection yet) acquire infection. It reflects
the degree of contact with potential for transmission of infection between susceptibles in
the population. Since contact is age dependent, typically higher in children than infants
or adults, the force of infection is itself a function of age. Besides, the force of infection,
which is an incidence rate as mortality, also depends on calendar time and so the acquis-
ition of an infection could be represented on a Lexis diagram with calendar time on the
horizontal axis and age on the vertical axis [4].

These notions may be formalized using a set of differential equations, which aim is to
describe the flow of individuals from the healthy stage to a disease stage. Letting P (a, t)
denote the probability that an individual, susceptible at birth, remains susceptible at age
a and calendar time t and denoting the force of infection by `(a, t) and the age-specific
death rate by m(a, t), we have:

`(a, t) + m(a, t) = − 1
P (a, t)

[
∂

∂a
P (a, t) +

∂

∂t
P (a, t)

]
. (1.1)

We now have to make some assumptions:

• we assume time homogeneity, so the force of infection and the fraction of suscept-
ible individuals only depend on age and not on calendar time, ∂

∂tP (a, t) = 0 and
∂
∂t`(a, t) = 0 (although this assumption seems very crude in most practical situ-
ations, it provides a convenient starting point for an exposition of statistical theory
and it is reasonable if the disease is in a stedy state);



• the disease is irreversible, meaning that the immunity is assumed to be lifelong;

• the mortality caused by the infection is negligible and can be ignored;

• the natural death rate is zero up to the life expectancy and thereafter infinity;

• the population considered is in dynamic equilibrium;

• the disease is in a steady state.

So, Eq. 1.1 can be rewritten in the following form:

`(a) = − 1
P (a)

∂P (a)
∂a

. (1.2)

If F (a) denotes the cumulative distribution function of age at infection, we have:

`(a) =
1

1− F (a)
∂F (a)

∂a
(1.3)

and the general solution of this differential equation is the following:

F (a) = 1− exp
{
−
∫ a

0
`(s)ds

}
. (1.4)

The seroprevalence, or simply ”prevalence”, is given by 1 − P (a), but from Eq. 1.2
and Eq. 1.3, we have that F (a) = 1−P (a), so F (a) is also the prevalence, that is to say
the probability that an individual at age a has already been infected.

1.3.1 The catalytic model as a risk model

Eq. 1.2 and Eq. 1.3 specify a so-called catalytic model, first defined by Muench [5].
The catalytic model is fundamentally a risk model and so it can be modelled by the
typical functions of a risk model. For an introduction to risk models, see Yamaguchi [6].

The Probability Density Function

Given that T represents the timing of occurence of the event ”infection”, that is
to say the age at infection, the probability density function (pdf) f(a) expresses the
unconditional instantaneous probability of having the event:

f(a) = lim
a→0

Pr(a < T ≤ a + ∆a)
∆a

. (1.5)



The Survivor Function

The survivor function P (a) expresses the probability of not having the event prior to
age a:

P (a) = Pr(T ≥ a); (1.6)

besides, the survivor function is the cumulative distribution function of the pdf f(a):

P (a) =
∫ ∞

a
f(s)ds, (1.7)

and so, inverting Eq. 1.7, we have the following equation for the pdf f(a):

f(a) = −∂P (a)
∂a

. (1.8)

The Hazard Function

The hazard function `(a) describes the istantaneous risk of having the infection at
age a, given that the infection did not occur before age a:

`(a) = lim
a→0

Pr(a < T ≤ a + ∆a|T ≥ a)
∆a

; (1.9)

if we consider Eq. 1.5 and Eq. 1.6, we can see that the hazard function is given by
the ratio between the pdf and the survivor function:

`(a) =
f(a)
P (a)

; (1.10)

then, if we consider Eq. 1.8 and rewrite the hazard function, we obtain Eq. 1.2:

`(a) = −∂P (a)
∂a

1
P (a)

. (1.11)

In addition, the hazard function has also the following form:

`(a) = −∂ log P (a)
∂a

, (1.12)

by the definition of the first derivative of a logarithmic function.

The Cumulative Hazard Function

This is the cumulative hazard function:



G(a) =
∫ a

0
`(s)ds. (1.13)

Finally, we have a direct relationship between P (a) and G(a). In effect, if we invert
Eq. 1.12, after some passages we have that:

P (a) = exp(−G(a)) = exp
{
−
∫ a

0
`(s)ds

}
. (1.14)

From Eq. 1.14 and knowing that F (a) = 1− P (a), we retrieve Eq. 3.12:

F (a) = 1− P (a) = 1− exp
{
−
∫ a

0
`(s)ds

}
. (1.15)



Chapter 2

Basic principles of the sampling for
serological surveys

We have previously seen that cross-section studies require less time than follow up
ones, because at the time of the survey the events (the acquisition of the disease) are
already occured.

2.1 Current Status Data

Data from a cross-section study are often called current status data. We have current
status data when we want to measure the time of occurence of some event (here, an infec-
tion) for a sample of individuals, but all we can obtain is limited to a single observation
of whether or not the event has occured for each subject at the time of the survey. The
resulting observations are censored with respect to time of event occurence:

1. left censored, if the event has occured, but we do not know when;

2. right censored, if the event has not occured at the time of the survey yet.

For the ith individual from a sample of size n, the goal of the researcher is to observe
the random variables Vi and Zi, where Vi is the time of event occurence and Zi is a (1
x p) vector of covariates. The data actually collected consist of observations (yi, ti, zi)
of the random variables (Yi, Ti, Zi), where Ti is the time that the individual is observed
(the time of the survey) and

Yi =

{
1 if Vi ≤ Ti

0 if Vi > Ti.
(2.1)

7



The information about Vi is limited to the binary indicator Yi observed at Ti. In
terminology of survival analysis, all observations of Vi are either left censored (Yi = 1)
or right censored (Yi = 0) at Ti.

In the case of a serological survey, if we assumed the time homogeneity, the only
covariate of interest Zi is the age of the subject: in this case, the researcher do not know
when occured the infection for the ith individual; he only knows if at time Ti the subject
is seropositive (Yi = 1) or seronegative (Yi = 0) and what is the age of the subject at
this time.

The distribution function of the random variable Vi is denoted by F (zi). Then the
conditional probabilities associated with the random ”response” indicator Yi can be writ-
ten:

Pr(Yi = 1|Ti = ti, Zi = zi) = F (ti|zi) (2.2)

and

Pr(Yi = 0|Ti = ti, Zi = zi) = 1− F (ti|zi). (2.3)

If we consider the notation introduced in Section 1.3, we can write:

F (ti|zi) = F (a) (2.4)

and

1− F (ti|zi) = 1− F (a) = P (a). (2.5)

2.2 Dependance of seropositive proportion on age

Until now, we have always taken into account the dependence of the seropositive
proportion on the age of the individual, without giving an explanation of this fact.

The knowledge of this dependance is the result of several studies, conducted in many
developed western countries, on the seroepidemiology of some typical childhood infectious
diseases (but which can cause serious problem in adulthood) as measles, mumps, rubella
and other diseases caused by VZV (varicella-zoster virus). Some of these studies are
Farrington [1] on data from UK, Thiry et al. [2] on data from Flanders (Belgium),
Mossong et al. [7] on data from Luxembourg, Cohen et al. [8] on data from Israel. All
these studies arrive to conclusions which are similar between them:
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Figure 2.1: Elaboration from data by Farrington [1]

• seroprevalence estimates are significantly associated with age;

• age-specific seroprevalence rises rapidly in the first age classes and then becomes
stable in the adolescence;

• the force of infection reaches its maximum in pre-school children and then decreases
with age.

For example, we report two graphs, the first one, Fig. 2.1, representing the age-
specific seroprevalence of mumps in UK and the second one, Fig. 2.2, representing the
age-specific seroprevalence of VZV in Belgium. Although these two sets of data refer
to different infections (i.e. mumps and VZV), to two different countries (i.e. United
Kingdom and Belgium) and to two different periods (1988 for UK and 2000 for Belgiumd),
graphs are very similar to each other.

Then the likeness between these results allows the researchers to consider them as
a starting point for similar studies conducted in other countries with the same socio-
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Figure 2.2: Elaboration from data by Thiry et al. [2]

economic conditions (and probably the same hygienic-sanitary conditions).

2.3 Sampling method for serological surveys

In a serological survey, as for every other survey, a fundamental step is the sampling
phase. The construction of the sample is a critical moment. A good sample must be
composed in accordance with the following principles:

• the elements of the sample are selected randomly, that is to say the probability of
every population unit to be included in the sample is known, is different from zero
and is positive, although this probability can vary from unit to unit;

• the sample must be representative of the population, that is to say it has to be
composed in accordance with the variability of the parameter of interest in the
population.



If the sample is in accordance with these principles, then it is possible to make infer-
ence correctly, applying the new information from the sample to population. Otherwise,
it is not correct to make inference and the new information is valid only for the specific
sample.

In the case of a serological survey, we have some information, derived from previous
studies (Section 2.2), which can be used in the construction of the sample.

Because of seroprevalence is significantly associated with age, that is to say seropos-
itive proportion varies between age classes, as we can see from Fig. 2.1 and Fig. 2.2, we
are interested in the estimation of these proportions. We expect that the true value of
the parameter, F (a), is different for every class: it can vary from very low values, near 0,
in the first years of life, arriving to very high values, near 1, when the individual enters
in adulthood.

2.3.1 Simple Random Sampling

Considering an age-stratified population, for every age class h = 1, 2, . . . ,H, it is
possible to extract a simple random sample (SRS) and from this sample estimate the
proportion p̂h = F (a) of seropositive individuals. Our dataset is composed by status
current data, with the following response variable Yih:

Yih =

{
0 if the infection for the ith subject of age h did not occur
1 if the infection for ith subject of age h occured

(2.6)

and the explanatory variable Zi, which is the age of the individual.

For every age class h, the Yih variable is extracted from a Bernoulli distributed pop-
ulation, whose structure is represented in Tab. 2.1:

The sample extracted from this population has a similar structure, represented in
Tab. 2.2:

We are interested in the estimation of proportions πh (h = 1, 2, . . . ,H) of seropositive
individuals in the population:

πh =
1

Nh

Nh∑
i=1

Yhi; (2.7)



Age class Elements Size Mean Variance
1 Y11 · · · Y1i · · · Y1N1 N1 π1 π1(1− π1)
2 Y21 · · · Y2i · · · Y2N2 N2 π2 π2(1− π2)
...

... · · ·
... · · ·

...
...

...
...

h Yh1 · · · Yhi · · · YhNh
Nh πh πh(1− πh)

...
... · · ·

... · · ·
...

...
...

...
H YH1 · · · YHi · · · YHNH

NH πH πH(1− πH)

Table 2.1: Description of an age-stratified population

Age class Elements Size Mean Variance
1 y11 · · · y1i · · · y1n1 n1 π̂1 π̂1(1− π̂1)
2 y21 · · · y2i · · · y2n2 n2 π̂2 π̂2(1− π̂2)
...

... · · ·
... · · ·

...
...

...
...

h yh1 · · · yhi · · · yhnh
nh π̂h π̂h(1− π̂h)

...
... · · ·

... · · ·
...

...
...

...
H yH1 · · · yHi · · · yHnH

nH π̂H π̂H(1− π̂H)

Table 2.2: Description of an age-stratified sample

The maximum likelihood estimator

To get an estimate of πh, we need an estimator. An estimator of the parameter πh is
a statistic, i.e. a known function of observable random variables, whose values are used
to estimate the parameter πh and which is a function and a random variable at the same
time.

In the event of a binary random variable, the method to estimate the parameter
πh is the maximum likelihood method. The statistic defined with this method is called
maximum likelihood (ML) estimator. Firstly, let us define a likelihood function, that is
the joint probability density function of the n random variables from the sample and is
a function of the parameter πh:

`h(πh; y1h, . . . , ynh) = fy1h,...,ynh
(y1h, . . . , ynh;πh). (2.8)

The maximum likelihood estimate (MLE) of the unknown parameter of the popula-
tion, p̂h, is the value of πh corresponding to the maximum of `h(πh; yih, . . . , yin), i.e. the
MLE is the value of πh that is ”most likely” to have produced the data {yih}. In case of
a serological survey, for the hth age class, we have a random sample of size nh extracted
from a Bernoulli distribution:



fh(yh;πh) = πyh
h (1− πh)1−yh . (2.9)

The likelihood function is:

`h(πh; y1h, . . . , ynh) =
nh∏
i=1

πyih
h (1− πh)1−yih (2.10)

= π
P

i yih

h (1− πh)nh−
P

i yih . (2.11)

To maximize `h(πh), we evaluate its first derivative with respect to the parameter πh

and set it to 0:

∂`h(πh)
∂πh

= 0, (2.12)

or, which is the same, we maximize the natural logarithm of the likelihood function:

∂ ln `h(πh)
∂πh

=
∂Lh(πh)

∂πh
= 0. (2.13)

The logarithm is a monotone increasing function, so that `(θ) and L(θ) have their
maxima for the same value of θ. This transformation is sometimes necessary, because it
makes the evaluation easier. So, Lh(πh) is:

Lh(πh) =
∑

i

yih lnπh + (nh −
∑

i

yih) ln(1− πh). (2.14)

Now, let us maximize the log-likelihood function setting to 0 the score function that
we have obtained:

∂Lh(πh)
∂πh

=
∑

i

yih
1
πh

− (nh −
∑

i

yih)
1

1− πh
= 0. (2.15)

Thus the likelihood equation is:∑
i yih

πh
=

nh −
∑

i yih

1− πh
; (2.16)

after some simple calculations, we obtained the ML estimator:

ph =
∑

i yih

nh
. (2.17)

Now let us see which are, generally, the large-sample properties of ML estimators,



that is to say some properties defined for a sample size tending to infinity.

1. Consistency: as the sample size increases, the ML estimate converges to the true
parameter value, that is

lim
n→∞

Pr{|π̂h − πh| < ε} = 1, (2.18)

where ε is a sufficiently small positive value.

2. Invariance: if f(πh) is an invertible function of the unknown parameter of the
distribution, then the MLE of f(πh) is f(π̂h), i.e. the MLE of a function of the
parameters is simply that function evaluated at the MLE. For example, the MLE
of
√

π = (π̂)1/2.

3. Asymptotic normality and efficiency: as the sample size increases, the sampling
distribution of the MLE converges to a normal and (generally) no other estima-
tion procedure has a smaller variance. Hence, for sufficiently large sample sizes,
estimates obtained via maximum likelihood typically have the smallest confidence
intervals.

4. Variance: for large sample sizes, the variance of an ML estimator is approximately
the negative of the reciprocal of the second derivative of the log-likelihood function,

V ar(p) ≈ −
[
Eπh

[
∂2

∂π2
L(π;y)

]]−1

. (2.19)

This is just the reciprocal of the curvature of the log-likelihood surface at the MLE.
The flatter the likelihood surface around its maximum value (the MLE), the larger
the variance; the steeper the surface, the smaller the variance. The minus sign
appears because the second derivative is negative (downward curvature) at the
maximum of the likelihood function.

Now let us see which is the asymptotical variance of the estimator ph, in accordance
with the fourth property of MLEs. Firstly, let us take the second derivative of the
log-likelihood:



∂2

∂π2
h

Lh(πh;y)2 = −
∑

i

yih
1
π2

h

− (n−
∑

i

yih)
1

(1− πh)2

=
−
∑

i yih + 2πh
∑

i yih − nhπ2
h

π2
h(1− π2

h)
. (2.20)

Then, let us evaluate the expected value of Eq. 2.20:

E

[
−
∑

i yih + 2πh
∑

i yih − nhπ2
h

π2
h(1− π2

h)

]
=
−
∑

i E[yih] + 2πh
∑

i E[yih]− nhπ2
h

π2
h(1− π2

h)

=
−nhπh + 2nhπ2

h − nhπ2
h

π2
h(1− π2

h)

=
−nhπh + nhπ2

h

π2
h(1− π2

h)

=
−nhπh(1− πh)

π2
h(1− π2

h)

=
−nh

πh(1− πh)
. (2.21)

Eventually, let us take the negative of the reciprocal of Eq. 2.21:

V ar(ph) ≈ πh(1− πh)
nh

(2.22)

and so we have found the asymptotic variance of the estimator ph of the parameter πh.

Besides, it is possible to demonstrate that the estimator ph is the correct estimator
of Horvitz and Thompson:



pHT,h =
1

Nh

nh∑
i=1

yhi

Phi

=
1

Nh

Nh

nh

nh∑
i=1

yhi

=
1
nh

nh∑
i=1

yhi

= ph (2.23)

where every sampling unit yhi is weighted for the reciprocal of the probability of
inclusion of first order Phi = nh/Nh: for every population unit, its probability to be
included in the sample is equal to the sampling fraction of the age class it belongs to.

2.3.2 Sampling distribution of the estimator p

In case of proportions, there are two important problems we have to deal with:

1. what is the optimal sample size?

2. which is the best confidence interval for a proportion?

To solve these problems, before we have to better understand the features of the
sampling distribution of the estimator p.

Given the following sampling realization {y1, y2, . . . , yn} of the random variable Yi

Bernoulli distributed

Yi ∼ Ber(π, π(1− π)), (2.24)

we have that the estimator p =
∑

i yi/n of the parameter π is Bernoulli distributed
too:

p ∼ Ber
(

π,
π(1− π)

n

)
. (2.25)

Being p a ML estimator, for its large-sample properties we have that the distribution
of p tends asymptotically to the normal distribution. This happens because of the Central
Limit Theorem:

Theorem 1 (Central Limit Theorem) Let f(·) be a probability density function with
mean µ and finite variance σ2. Let Xn be the sampling mean of a random sample of size
n extracted by f(·). Let the random variable Zn defined by



Zn =
Xn − E[Xn]√

Var[X̄n]
=

Xn − µ

σ/n
. (2.26)

Then the probability density function of Zn tends in distribution to the standard nor-
mal distribution N(0, 1):

Xn − µ

σ/n

d−→ N(0, 1). (2.27)

This theorem tells us that the limit distribution of Zn is a standard normal distribu-
tion or, that is the same, Xn is asymptotically distributed as a normal random variable
with mean µ and variance σ2/n. It is interesting to notice that the theorem nothing says
about the form of the original probability density function f(·).

In our case, we have that

Zn =
p− π√

π(1− π)/n

d−→ N(0, 1), (2.28)

or, that is the same,

p
d−→ N

(
π,

π(1− π)
n

)
. (2.29)

However, differently from a sampling mean from a continuous variable, in case of a
sampling mean from a discrete variable (which is the case of a proportion), the approx-
imation to the normal distribution is more problematic. The plain difference between the
sampling distribution of the estimator p and the sampling distribution of the estimator
ȳ = (

∑
i yi)/n, with Yi which is a continuous variable, is in their variance.

In effect, the variance of ȳ depends on the value of the population variance, whatever
is its expected value µ:

V ar(ȳ) =
σ2

n
. (2.30)

On the contrary, the variance of p depends on the true value of the parameter π in
the population:

V ar(p) =
π(1− π)

n
. (2.31)

This fact has an important consequence. From the one hand, when we estimate
the parameter µ from the realization of a quantitative variable, the dispersion of the
estimator ȳ do not depend on the value assumed by µ.



From the other hand, when we estimate the parameter π from the realization of a
qualitative variable, the dispersion of the estimator p depends on the value of π. When
the unknown parameter π gets closer 0 or 1, the variance π(1−π) of Xi becomes smaller:
because of this fact, the precision of the estimator p increases and so it should be sufficient
a moderate sample size n to estimate π. When π is near 1/2 instead, the variance
π(1− π) becomes larger and so the precision of the estimator decreases: now, it should
be necessary gather a larger sample.

However, since this is the case of a Bernoulli distributed variable and Bernoulli is
a discrete distribution, there is something other which is important to notice. When
π is near 1/2, the sampling distribution of p approximates more quickly the Normal,
because of the symmetrical distribution: from this point of view, it should be sufficient
a moderate sample size. When π gets closer 0 or 1 instead, the sampling distribution of
p becomes skewer and so it reaches slowlier the approximation with the Normal.

Obviously, the two preceding facts go in opposite directions. Let us make two ex-
amples.

• If π = 0.5, then the variance of p is π(1 − π)/n = 0.25/n. This is the case of
maximum variance and so the estimator is less accurate; however the sampling
distribution of p approximates more quickly the Normal.

• If π = 0.2, then the variance of p is π(1−π)/n = 0.16/n. In this case, the variance
is smaller and so the estimator is more accurate; however, the sampling distribution
of p reaches the Normal slowlier.

The resolution of this question is fundamental to determine the optimal sample size.
To make this, we have to see for which values of n the distance between the binomial
distribution and the Normal distribution becomes very small.

The Cramer-Von Mises criterion

To evaluate the distance between two different distribution, we can use the Cramer-
Von Mises criterion. This test is used to judge the goodness of fit of a probability
distribution f ∗ (x) compared to a given distribution f(x) and is given by

W 2 =
∫ ∞

−∞
[F ∗ (x)− F (x)]dF (x), (2.32)

where F ∗ (x) is the cumulative distribution function of the pdf whose adequacy we
want to test and F (x) is the cumulative distribution function of the theoretical pdf. In



practice, this criterion is given by a sort of euclidean distance between the two distribu-
tions.

In our case, we want to test if the binomial distribution, i.e. F ∗ (x), fits well the
Normal distribution, i.e. F (x), and for which values of the sample size n this happens.
Of course, the Normal must have the same mean and variance of the binomial. So, if the
binomial is distributed as Bin(π, n), then the Normal will be distributed as N(nπ, nπ(1−
π)).

We have used this test for three different values of the probability of success π of the
binomial distribution: 0.01, 0.5 and 0.95. For every case we have plot the value W 2 of
test against the sample size n.

The first graph in Tab. 2.3 shows what happens to the euclidean distance W 2 when
π = 0.01, that is the event is very rare. We have that the distance reaches quickly a peak
at n = 20 (W 2 = 0.0673) and then decreases slightly until 0.0221 at n = 200. Thus,
when the event is very rare the binomial distribution fits badly approximates the Normal
distribution.

The second graph in Tab. 2.3 shows what happens to the distance W 2 when π = 0.5:
now the binomial distribution is perfectly symmetrical and so we expect that it will reach
quickly the approximation with the Normal. In effect, we have that W 2 decreases until
very low values, of order 10−7 - 10−11. However, this decrease shows some jumps towards
very low values: the first jump happens in the range 33 ≤ n ≤ 44, the second in the
range 75 ≤ n ≤ 132 and the third begins with n = 145.

Eventually, the third graph shows what happens to W 2 when π = 0.95, that is the
event is very frequent. In this case we have that the convergence of the binomial to the
Normal happens at low values of n: when n = 20, we have already that the distance W 2

is of order 10−5.

Therefore, we have seen that when the event is not very frequent (π < 0.5) the
binomial badly converges to the Normal, so we need too high values of the sample size
n to obtain correct estimates of the prevalence. On the contrary, when the event is
frequent (π ≥ 0.5), the binomial quickly converges to the Normal distribution for values
of n greater than 80.

2.3.3 The optimal sample size

We have previously seen that the choice of the optimal sample size is a critical moment
in the organization of a survey, because there are both statistical and economic constraints
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that have to be respected.
From the one hand, the smaller the size is, the lower the efficiency of the estimate is,

that is the variance of the estimator ph increases at the reduction of the sample size n

and so it becomes more difficult to make inference correctly.
From the other hand, however, we need to consider the high costs of a serological

survey, i.e. the costs for the collection of specimen sera and the analysis of these with
very expensive machines, so the major the size is, the major the costs of the survey are.

In the previous subsection we have seen that, if the probability of success is below
0.5, we can need a very large sample size; if the probability is higher than 0.5, then we
can obtain good estimates with values of n greater than 80. Therefore, in general, the
question is: what is the minimum sample size, for every age class, to estimate correctly
the proportion ph?

A classical formula to determine the optimal sample size derives from the inversion
of the standard interval for a binomial proportion, also known as the Wald interval since
it comes from the Wald large sample test for the binomial case:

π̂ ± zα/2

√
π̂(1− π̂)

n
, (2.33)

if the population is virtually infinite (sampling with replacement). The formula for
the calculation of the optimal sample size is:

n =
4κ2π̂(1− π̂)

A2
, (2.34)

where κ = zα/2 and A is the size of the standard interval confidence (the difference
between the upper bound and the lower bound). For the value of the estimate π̂, there
are two possibilities:

• if there are some information about the true value of the parameter π in the pop-
ulation, i.e. from previous similar studies, then it is possible to use this value for
the formula;

• if there are not any information about the true value of the parameter π in the
population, then it is possible to use π̂ = 0.5, which corresponds to maximum
variance (and so to maximum size).

However, there are some problems related to this formula, because of the Wald test
from which it derives. A caveat for Eq. 2.34 is that the phenomenon under study is not
rare, i.e. π ≈ 0.5, so it is not correct to use the formula when π is near 0 or 1. This



advice reflects the concern that the actual coverage probability of the Wald interval is
poor for π near the extremes of the interval [0,1].

Therefore, to know which is the optimal sample size, we have to understand before
why the standard interval is not a good confidence interval and which other intervals are
better to use.

2.4 Interval Estimation for a binomial proportion

Generally, when constructing a confidence interval, we wish the actual coverage prob-
ability to be close to the nominal confidence level. Because of the discrete nature of the
binomial distribution, we cannot always achieve the exact nominal confidence level 1−α

if a randomized procedure is not used. Thus our objective is to construct nonrandomized
confidence intervals (CI) for π such that the coverage probability C(π, n) is:

C(π, n) = Pr(π ∈ CI) ≈ 1− α, (2.35)

where α is the prespecified significance level.

2.4.1 The Wald interval

The Wald interval for the estimate π̂ is based on a normal approximation and is
obtained by inverting the acceptance region of the Wald large-sample normal test for a
general problem: ∣∣∣∣∣ θ̂ − θ

ŝe(θ̂)

∣∣∣∣∣ ≤ zα/2, (2.36)

where θ is a generic parameter, θ̂ is the estimate of θ and ŝe(θ̂) is the estimated
standard error of θ̂. In the binomial case, if we want to test whether the estimate
π̂ = X/n is significantly equal to π, we have:∣∣∣∣∣∣

X
n − π√
π̂(1−π̂)

n

∣∣∣∣∣∣ ≤ zα/2; (2.37)

so, the standard CI is

CIS = π̂ ± zα/2

√
π̂(1− π̂)

n
. (2.38)



This CI is usually presented along with some justification based on the Central Limit
Theorem.

However this CI has some serious problems: its actual coverage probability C(π, n)
is often far from the nominal coverage probability level 1− α, even when n is large or π

is far from 0 or 1.
In effect, we have that the actual coverage probability of the Wald CI contains non-

negligible oscillation as both π and n vary. As shown in Brown et al. [9], from the one
hand, there exist some ”lucky” pairs (π, n) such that C(π, n) is very close to or larger
than the nominal level 1− α. On the other hand, there exist ”unlucky” pairs (π, n) such
that C(π, n) is much smaller than the nominal level.

In the following subsections, we report some examples of the inadequacy of the stand-
ard interval.

Example 1

Fig. 2.4 plots the coverage probability of the nominal 95% standard interval for
π = 0.2. The number of trials n varies from 25 to 100. It is clear from the plot that
the oscillation is significant and the coverage probability does not steadily get closer
to the nominal confidence level as n increases. For instance, C(0.2, 31) = 0.948 and
C(0.2, 98) = 0.923. So the coverage probability is significantly closer to 0.95 when n = 31
then when n = 98.

Example 2

Lucky n 16 22 25 30 35 42 49
C(0.5, n) 0.952 0.956 0.957 0.967 0.954 0.956 0.961

Unlucky n 10 12 15 18 23 33 40
C(0.5, n) 0.876 0.849 0.886 0.902 0.905 0.897 0.897

Table 2.3: Standard interval; lucky n and unlucky n for 10 ≤ n ≤ 50 and π = 0.5

Now consider the case of π = 0.5. Since π = 0.5, we may think that, for n > 20, all is
well, because the binomial distribution approximates the normal one more rapidly. We
evaluate the exact coverage probability of the 95% standard interval for 10 ≤ n ≤ 50.
In Tab. 2.3 we list the values of ”lucky” n, defined as C(π, n) ≥ 0.95, and the values of
”unlucky” n, defined as C(π, n) ≤ 0.91. The conclusions do not respect the legitimate
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Figure 2.4: Standard interval: oscillation phenomenon for fixed π = 0.2, variable n=25
to 100 and nominal coverage probability at 95% (dashed line).

expectations that an unsuspecting user could have. For example, for n = 22 we have
C(0.5, 22) = 0.956, while for n = 23 we have that C(0.5, 23) = 0.905. Indeed, the unlucky
values of n arise suddenly: although π = 0.5, the coverage is still 0.897 at n = 40. This
illustrates the inconsistency, unpredictability and poor performance of the Wald interval.

Example 3

Unlucky n 592 954 1279 1583 1877
C(0.005, n) 0.788 0.855 0.879 0.897 0.891

Table 2.4: Standard interval; late arrival of unlucky n for small π

Let us move π really close to the boundary, say π = 0.005. Such π are relevant in
certain practical applications, as in the case of a serological survey, where the seropositive
proportion at the very early age can be very close to 0. Since π is so small, now one may
fully expect that the coverage probability of the Wald interval is very poor. Fig. 2.5 and
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Figure 2.5: Standard interval: oscillation in coverage for small π: π = 0.005, variable
n=1 to 2000 and nominal coverage probability at 95% (dashed line).

Tab. 2.4 show that there are still surprises and indeed we now begin to see a new kind of
erratic behaviour. The oscillation of the coverage probability does not show until rather
large n. In effect, the coverage probability makes a slow ascent all the way until n = 591
(C(0.005, 591) = 0.944) and then dramatically drops to 0.793 when n = 592. Fig. 2.5
shows that thereafter the oscillations manifest in full force, in contrast with Example
1 and Example 2, where the oscillations started early on. In Tab. 2.4 we report the
”unlucky” values of n after the sudden and deep drops of the coverage probability.

Example 4

Fig. 2.6 shows the coverage probability of the nominal 95% standard interval with
fixed n = 100 and variable π from 0 to 1, with step 0.005. It can be seen from Fig. 2.6
that, in spite of the ”large” sample size, significant change in coverage probability occurs
at the varying of π. The magnitude of the oscillation increases significantly as π moves
toward 0 or 1. Except for values of π quite near π = 0.5, the general trend of this plot
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Figure 2.6: Standard interval: oscillation phenomenon for fixed n = 100, variable π and
nominal coverage probability at 95% (dashed line).

is strikingly below the nominal coverage value of 0.95.

Example 5

Fig. 2.7 shows the coverage probability of the nominal 99% standard interval with
n = 30 and variable π from 0 to 1, with step 0.005. In addition to the oscillation phe-
nomenon similar to Fig. 2.6, a noticeable fact in this case is that the actual coverage
probability never reaches the nominal level: it is always smaller than 0.99 and its average
value is only 0.908.

It is evident from the previous examples that the actual coverage probability of the
Wald interval can differ significantly from the nominal confidence level for moderate and
even large sample sizes and not only when π is near 0 or 1. Fundamentally, there are
two kinds of problems in the coverage probability of the standard interval:
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Figure 2.7: Standard interval: coverage of the nominal 99% standard interval for fixed
n = 30 and variable π

• a systematic negative bias, whatever is the value of π for fixed n;

• an oscillatory behaviour at the varying of n for fixed π.

The reason for the bias

Examples 4 and 5 indicate that there is a systematic negative bias in the coverage
probability of the standard interval. The bias is due mainly to the fact that the standard
interval has the ”wrong” center. The Wald interval is centered at π̂ = X/n. Although
π̂ is the maximum-likelihood estimate (MLE) and an unbiased estimate of π, the choice
of using it as the center of a confidence interval causes a systematic negative bias in the
coverage. As we can see with the alternative confidence intervals, by simply recentering
the interval at π̃ = (X + κ2/2)/(n + κ2), where κ = zα/2, one can increase the coverage
probability significantly for π away from 0 or 1 and eliminate the systematic bias.



We know, from the application of the Central Limit Theorem, that

Zn =
n1/2(π̂ − π)√

π(1− π)
∼ N(0, 1). (2.39)

The standard interval is based on the hypothesis that the Wald test Wn is asymptot-
ically standard normally distributed:

Wn =
n1/2(π̂ − π)√

π̂(1− π̂)
∼ N(0, 1). (2.40)

The problem is all in the difference between Zn and Wn: we assume that using π̂

rather than π, the distribution of Wn is the same of Zn. But we do not know nothing
about the distribution of π̂(1− π̂).

Let us take the case of the Wald test applied to the sampling mean x̄. The variable
Zn is

Zn =
n1/2(x̄− µ)

σ
∼ N(0, 1); (2.41)

the respective Wald test Wn is:

Wn =
n1/2(x̄− µ)√

s2
, (2.42)

where s2 =
∑

i(xi − x̄)2/n− 1 is the correct sampling variance. In this case, we can
say something about the distribution of Wn. We know that (x̄−µ) is standard normally
distributed and s2 has a χ2 distribution with k degrees of freedom. So, from their ratio
we have a t-distributed Wn, which approximates the Normal for n > 20.

By this comparison we can see that, what happens for the variance s, whose distri-
bution is known, does not occur for π̂(1− π̂), whose distribution is unknown.

In practice, even for quite large values of n, the actual distribution of Wn is sig-
nificantly nonnormal. Thus, the very premise on which the standard interval is based
is seriously compromised for moderate and even quite large values of n. For instance,
asymptotically, Wn has bias 0, variance 1, skewness 0 and kurtosis 3. For moderate n,
however, the deviations of the bias, variance, skewness and kurtosis of Wn from their re-
spective asymptotic values are often significant and cause a nonnegligible negative bias in
the coverage probability of the standard confidence interval, so that the actual coverage
C(p, n) rarely reaches the nominal coverage 1− α.

We can analytically demonstrate the bias in the distribution of Wn by standard
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expansions. Let us write Wn in function of Zn. After some algebraic passages, we have:

Wn(Zn) =
Zn√

1 + (1− 2π)Zn/
√

nπ(1− π)− Z2
n/n

. (2.43)

A standard Taylor expansion and formulas for central moments of the binomial dis-
tribution then yield an approximation to the bias:

E[Wn(Zn)] ≈ π − 1/2√
nπ(1− π)

(
1 +

7
2n

+
9(π − 1/2)2

2nπ(1− π)

)
. (2.44)

It can be seen from Eq. 2.44 and from Fig. 2.8 that Wn has negative bias for π < 0.5,
positive bias for π > 0.5 and no bias for π = 0.5. Also from the observation of the plots



of the first derivatives of E[Wn] with respect to p and n, it is possible understand its
behaviour.

From Fig. 2.9, we can see that the first derivative of E[Wn] gets closer to 0 (without
never reaching it) when p is near 1/2. From Fig. 2.10, we can see that the first derivative
of E[Wn] tends asymptotically to 0 when n increases.

Therefore, ignoring the oscillation effect, one can expect to increase the coverage
probability by shifting the center of the standard interval towards 1/2, for which E[Wn] =
0.

The reason for the oscillation

It is evident from Examples 1, 2 and 3 that the actual coverage probability of the
Wald interval can differ significantly from the nominal confidence level at realistic and
even larger than realistic sample sizes: indeed, the actual coverage probability oscillates
in a significant way near the nominal coverage. The error comes from two sources: dis-
creteness and skewness in the underlying distribution, that is the binomial distribution.
For a two-sided interval, the rounding error due to discreteness is asymptotically dom-
inant: it is of the order 1/

√
n and decreases when n increases. On the contrary, the

error due to skewness is secondary and is of the order 1/n (minor than 1/
√

n), but still
important fo even moderately large n.

The oscillation in the coverage probability is caused by the discreteness of the binomial
distribution, more precisely the interlaced structure of the binomial distribution. The
cumulative distribution function contains jumps at integer points...

Let us try to understand at a more intuitive level why the coverage probability oscil-
lates so significantly. By an easy calculation, one can show that the coverage probability
C(π, n) = Pr(π ∈ CIs) equals Pr(Lπ,n ≤ X ≤ Uπ,n), where Lπ,n is the smallest integer
larger than or equal to

n(κ2 + 2nπ)− κn
√

κ2 + 4nπ(1− π)
2(κ2 + n)

, (2.45)

and Uπ,n is the largest integer smaller than or equal to

n(κ2 + 2nπ) + κn
√

κ2 + 4nπ(1− π)
2(κ2 + n)

. (2.46)

What happens is that a small change in n or π can cause Lπ,n and/or Uπ,n to leap
to the next integer value. For example, take the case π = 0.5 and α = 0.05. When
n = 39, we have L0.5,39 = 14 and U0.5,39 = 25; but when n = 40, L0.5,40 leaps to 15,
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while U0.5,39 remains 25. Thus the set of favorable values of X loses the point X = 14
even though n has increased from 39 to 40. This causes n = 40 to be an unlucky choice
of n: in effect, from data for Example 2, C(0.5, 39) = 0.935, while C(0.5, 40) = 0.897.
This also happens when n is kept fixed and π changes slightly and so we begin to see
unlucky values of π.

2.4.2 Recommended alternative intervals

From the evidence of the preceding examples, it seems clear that the standard interval
is just too risky. This brings us to the consideration of alternative intervals. We now
analyze several such alternatives, each with its motivation.

The Wilson interval

An alternative to the standard interval is the confidence interval based on inverting
the Rao’s tailed score test of H0 : µ = µ0. Here, one accepts H0 based on Rao’s score
test if and only if µ0 is in this interval. The test is

Zn =

∣∣∣∣∣
√

n(π̂ − π)√
π(1− π)

∣∣∣∣∣ ≤ κ, (2.47)

and differs from Wald test because it uses the null standard error (π(1 − π)/n)1/2

instead of the estimate standard error (π̂(1 − π̂)/n)1/2: indeed, score tests, and in par-
ticular their standard errors, are based on the log likelihood at the null hypothesis value
of the parameter π, whereas Wald tests are based on the log likelihood at the maximum
likelihood estimate (MLE) π̂. If we solve the quadratic equation (π̂− π)2 = κπ(1− π)/n

to find π, we have the confidence interval:

CIW =
X + κ2/2
n + κ2

± κ
√

n

n + κ2

√
π̂(1− π̂) + κ2/4n. (2.48)

This interval was apparently introduced by Wilson [10] and so it is called the Wilson
interval (or score interval, because it comes from the inversion of the score test).

As we told talking about the reason for the bias of the Wald interval, the Wilson
interval is one of the alternatives which recenters the interval at π̃ = (X +κ2/2)/(n+κ2).
This point π̃ is simply the weighted average of π̂ and 1/2, where n and κ2 are the
respective weights:

π̃ =
X + κ2/2
n + κ2

=
nπ̂ + κ2 1

2

n + κ2
. (2.49)



It falls between π̂ and 1/2, with the weight given to π̂ approaching 1 aymptotically.
This midpoint shrinks the sample proportion towards 0.5, the shrinking being less sever
as n increases.

The coefficient of κ in the term that is added to and subtracted from the midpoint
to form the score confidence interval can be rewritten in the following way:√√√√ 1

n + κ2

[
nπ̂(1− π̂) + κ2 1

2
1
2

n + κ2

]
. (2.50)

We can see that this has the form of a weighted average of the variance of a sample
proportion when π = π̂ and the variance of a sample proportion when π = 1/2, using
n + κ2 in place of the usual sample size n.

The Wilson interval can be reccomended for use with nearly all sample sizes and para-
meter values. Coverage of this interval fluctuates acceptably near the nominal coverage
1− α, except for π very near 0 or 1. See Fig. 2.11 and Fig. 2.12.

The Agresti-Coull interval

The standard interval CIs is simple and easy to remember. For the purpose of
classroom presentation and use in texts, it may be nice to have an alternative that has
the familiar form π̂ ± z

√
π̂(1− π̂)/n, with a better and new choice of π̂ rather than

π̂ = X/n. Brown et al. [9] suggests that this can be accomplished by using the center of
the Wilson region in place of π̂. Given the following notation,

• X̃ = X + κ2/2;

• ñ = n + κ2;

• π̃ = X̃/ñ;

• q̃ = 1− π̃;

we define the Agresti-Coull interval for π by

CIAC = π̃ ± κ
√

π̃q̃/ñ. (2.51)

Both the Agresti-Coull and the Wilson interval are centered on the same value, π̃.
It is easy to check that the Agresti-Coull interval is never shorter than the Wilson one.
For the case when α = 0.05, if we use the value 2 instead of 1.96 for κ, this interval is
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Figure 2.11: Wilson interval: coverage of the nominal 95% standard interval for fixed
n = 50 and variable π
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Figure 2.12: Wilson interval: coverage of the nominal 95% standard interval for fixed
π = 0.5 and variable n = 25 to 100



the ”add 2 successes and 2 failures” interval in Agresti and Coull [11]. For this reason,
we call it the Agresti-Coull interval.

The Agresti-Coull interval has good minimum coverage probability. The coverage
probability of the interval is quite conservative for π very close to 0 or 1. In comparison
to the Wilson interval it is more conservative, especially for small n. See Fig. 2.13 and
Fig. 2.14.

The Jeffreys prior interval

Beta distributions are the standard conjugate priors for binomial distributions and it
is quite common to use beta priors for inference on π. Before going on, let us see what
we intend for conjugate prior distribution.

In Bayesian probability theory, a class of prior probability distributions f(θ) is said to
be conjugate to a class of likelihood functions f(x|θ) if the resulting posterior distributions
f(θ|x) are in the same family as f(θ). For example, the Gaussian family is conjugate to
itself (or self-conjugate): if the likelihood function is Gaussian, choosing a Gaussian prior
will ensure that the posterior distribution is also Gaussian. Consider the general problem
of inferring a distribution for a parameter θ given some datum or data X. From Bayes’
theorem, the posterior distribution is calculated from the prior f(θ) and the likelihood
function θ 7→ f(x | θ) as

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

. (2.52)

Let the likelihood function be considered fixed; the likelihood function is usually well-
determined from a statement of the data-generating process. It is clear that different
choices of the prior distribution f(θ) may make the integral more or less difficult to
calculate, and the product f(x|θ)f(θ) may take one algebraic form or another. For certain
choices of the prior, the posterior has the same algebraic form as the prior (generally
with different parameters): such a choice is a conjugate prior. A conjugate prior is an
algebraic convenience: otherwise a difficult numerical integration may be necessary. All
members of the exponential family have conjugate priors: for a random variable which
is a Bernoulli trial with unknown probability of success p in [0,1], the usual conjugate
prior is the beta distribution with
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Figure 2.13: Agresti-Coull interval: coverage of the nominal 95% standard interval for
fixed n = 50 and variable π
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Figure 2.14: Agresti-Coull interval: coverage of the nominal 95% standard interval for
fixed π = 0.5 and variable n = 25 to 100



f(p = x) =
xα−1(1− x)β−1

B(α, β)
, (2.53)

where α and β are chosen to reflect any existing belief or information (e.g. α = 1
and β = 1 would give a uniform distribution) and B(α, β) =

∫ 1
0 xα−1(1− x)β−1dx is the

Beta function acting as a normalising constant.

If we then sample this random variable and get s successes and t failures, we have
the following likelihood function:

f(π = x|s, t) =

(
s + t

s

)
xs(1− x)t; (2.54)

using beta distributions as the standard conjugate prior for binomial distributions,
we have the following posterior distribution:

f(s, t|π = x) =

(
s + t

s

)
xs+α−1(1− x)t+β−1/B(α, β)

∫ 1

y=0

((
s + t

s

)
ys+α−1(1− y)t+β−1/B(α, β)

)
dy

=
xs+α−1(1− x)t+β−1

B(s + α, t + β)
, (2.55)

which is another Beta distribution with a simple change to the parameters.

Now, we can better understand the construction of the Jeffreys prior interval. Suppose
X ∼ Bin(n, π) and suppose π has a prior distribution Beta(a1, a2); then the posterior
distribution of π is Beta(X +a1, n−X +a2). Thus a 100(1−α)% equal-tailed Bayesian
interval is given by

L =
[
B
(α

2
;X + a1, n−X + a2

)]
(2.56)

and

U =
[
B
(
1− α

2
;X + a1, n−X + a2

)]
, (2.57)

where B(α;m1,m2) denotes the α quantile of a Beta(m1,m2) distribution.

The Jeffreys prior interval is a special case of a Bayesian interval. The Jeffreys prior



distribution is Beta(1/2, 1/2). The 100(1 − α)% equal-tailed Jeffreys prior interval is
defined as

CIJ = [Lj(x), Uj(x)], (2.58)

where Lj(0) = 0 and UJ(n) = 1 and otherwise

LJ(x) =
[
Bα/2

(
X +

1
2
, n−X +

1
2

)]
, (2.59)

UJ(x) =
[
B1−α/2

(
X +

1
2
, n−X +

1
2

)]
. (2.60)

The endpoints of the Jeffreys prior interval are the α/2 and 1− α/2 quintiles of the
Beta(x + 1/2, n− x + 1/2) distribution.

The quality of the Jeffreys prior interval is qualitatively similar to that of CIW over
most of the parameter space [0,1]. The coverage has an unfortunate fairly deep spike
near π = 0 and, simmetrically, another near π = 1. See Fig. 2.15 and Fig. 2.16.

There is also a modified version of the Jeffreys prior interval, which solves some prob-
lems of the interval. We have seen previously that the Jeffreys prior interval shows two
downward spikes in the coverage function because UJ(0) is too small and simmetrically
LJ(n) is too large. To remedy this, one may revise these two specific limits as

UM−J(0) = πl and LM−J(n) = 1− πl, (2.61)

where πl satisfies (1 − πl)n = α/2 or equivalently πl = 1 − (α/2)1/n. Besides, it can
be made an other ad hoc alteration:

LM−J(1) = 0 and UM−J(n− 1) = 1. (2.62)

The Clopper-Pearson interval

The Clopper-Pearson ”exact” confidence interval, proposed by Clopper and Pearson
[12], is based on the inversion of the equal-tailed binomial test of H0 : π = π0, rather than
its normal approximation. It has endpoints that are the solutions in p0 to the equations

n∑
k=x

(
n

k

)
πk

0 (1− π0)n−k =
α

2
(2.63)
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Figure 2.15: Jeffreys prior interval: coverage of the nominal 95% standard interval for
fixed n = 50 and variable π
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Figure 2.16: Jeffreys prior interval: coverage of the nominal 95% standard interval for
fixed π = 0.5 and variable n = 25 to 100



and

x∑
k=0

(
n

k

)
πk

0 (1− π0)n−k =
α

2
, (2.64)

except that the lower bound is 0 when x = 0 and the upper bound is 1 when x = n.
This interval estimator is guaranteed to have coverage probability of at least 1 − α for
every possible value of π. When x = 1, 2, . . . , n− 1, the confidence interval equals

[
1 +

n− x + 1
xF2x,2(n−x+1),1−α/2

]−1

< π <

[
1 +

n− x

(x + 1)F2(x+1),2(n−x),α/2

]−1

(2.65)

and Fa,b,c denotes the 1− c quantile from the F distribution with degrees of freedom
a and b. Equivalently, the lower endpoint is the α/2 quantile of a beta distribution
Beta(x, n − x + 1) and the upper bound is the 1 − α/2 quantile of a beta distribution
Beta(x + 1, n− x).

The Clopper-Pearson exact interval is typically treated as the ”gold standard”, al-
though this procedure is necessarily very conservative, because of the discreteness of the
binomial distribution. For any fixed parameter value, the actual coverage probability can
be much larger than the nominal confidence level unless n is quite large. See Fig. 2.17
and Fig. 2.18.

Coverage probability

Let us also evaluate the intervals in terms of their average coverage probability, the
average being over π. Fig. 2.19 demonstrates the striking difference in the average cov-
erage probability among the five intervals previously introduced. The standard interval
performs poorly. The Clopper-Pearson ”exact” interval is the more conservative in terms
of average coverage probability, overall with the smaller values of n. The interval CIAC

is slightly conservative, but less than the Clopper-Pearson. Both the Wilson interval and
the Jeffreys prior interval have excellent performances in terms of the average coverage
probability; that of the Jeffreys prior interval is, if anything, slightly superior. The aver-
age coverage probability of the Jeffreys interval is really very close to the nominal level
even for quite small n.
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Figure 2.17: Clopper-Pearson ”exact” interval: coverage of the nominal 95% standard
interval for fixed n = 50 and variable π
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Figure 2.18: Clopper-Pearson ”exact” interval: coverage of the nominal 95% standard
interval for fixed π = 0.5 and variable n = 25 to 100
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2.5 Deriving the optimal sample size from the confidence
intervals

In subsection 2.3.3 we had remained that we would studied the problem of the poor
coverage of the standard interval and some alternative confidence interval for the propor-
tion π. In section 2.4, we have seen how the problems of the standard interval are and
the following alternatives: the Wilson interval, the Agresti-Coull interval, the Jeffreys
prior interval and the Clopper-Pearson interval.

We have seen previously that the optimal sample size is calculated by the inversion of
a confidence interval, looking for that value of n which allows a certain value of the total
size of error, chosen a priori by the researcher. This total size of error, A(n, π) is given
by the difference between the upper bound U and the lower bound L of the interval and
it is a function of the sample size n and of the probability of success π. Also the value
of π is chosen by the researcher:

• if we have some information about the true value of the proportion in the population
we are studying, e.g. from previous studies, then we can use that value in order to
calculate the optimal sample size;

• if we have not any information about the true value of the proportion in the pop-
ulation we are studying, then we can use the value which maximizes the variance
and so maximizes the sample size. Being the proportion π binomial distributed

X

n
∼ Bin

(
π,

π(1− π)
n

)
, (2.66)

the variance of X/n is maximized when π = 0.5.

A method to evaluate the function A(n, π) can be the construction of its curves. For
example, if we consider the Wilson interval, we have the curves presented in Fig. 2.20.
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Chapter 3

Statistical estimation of serological
curves

3.1 Modeling the force of infection and the prevalence

As we have seen in the first chapter, the force of infection cannot be estimated directly
from cross-sectional data; however, we can obtain it indirectly in accord with the catalytic
model, previously introduced.

From 1959, lots of authors have studied the problem of the estimation of the force of
infection from cross-sectional seroprevalence data.

Muench [5] suggested to model the infection process with a catalytic model, in which
the distribution of the time spent in the susceptible class is exponential with rate β. The
force of infection, in this case β, is age independent. Under the catalytic model, we have
that:

P (a) = exp
{
−
∫ a

0
βds

}
= e−βa (3.1)

and

f(a) = −∂P (a)
∂a

= βe−βa. (3.2)

Thus `(a) = f(a)
P (a) , we finally have that:

`(a) =
βe−βa

e−βa
= β. (3.3)

45



The prevalence F (a) = 1− P (a) is:

F (a) = 1− e−βa. (3.4)

Griffiths [13] proposed a model for Measles in which the force of infection increases
linearly in the age range 0 − 10 (for the author this range includes over 95 per cent of
cases). He developed a maximum likelihood method for estimating the parameters of a
model in which `(a) is assumed to be a linear function of age. The force of infection is:

`(a) = β0(t + β1), t > τ, (3.5)

where β0, β1 and τ are the parameters of the model. The prevalence is:

F (a) = 1− exp
{

1
2
β0{(τ + β1)2 − (t + β1)2}

}
, t > τ. (3.6)

The author shares the subjects in k age classes and then maximizes the following
likelihood function (Nj is the number of cases in the jth age class):

L =
k∏

j=1

[
F (aj)− F (aj−1)

F (tk)

]Nj

. (3.7)

The maximum-likelihood estimates β̂0, β̂1 and τ̂ are found by Newton-Raphson iter-
ations.

Grenfell and Anderson [14] extended the model further and used conventional poly-
nomial functions to model the force of infection. Their model assumes that:

P (a) = exp

{∑
i

βia
i

}
, (3.8)

which implies that the force of infection is:

`(a) =
∑

i

βiia
i−1. (3.9)

Other authors, as Farrington [1], Farrington et al. [3] and Edmunds et al. [15], use



a non-linear model for the prevalence F (a). The problem they want to solve is that the
force of infection estimate turns negative if F (a) is a non-monotone function. So, they
define a non-negative force of infection, `(a, β) ≥ 0 for all a, and estimate F (a) under
these constraints using a non-linear model.

Other parametric models, fitted within the framework of generalized linear models
(GLM) with binomial error, were discussed by Becker [16], Diamond and McDonald [17]
and Keiding at al. [18] who used models with complementary log - log link function in
order to parameterize the prevalence and the force of infection as a Weibull. Becker [16]
suggested to model a piecewise constant force of infection by fitting a model with log
link function.

Considering the case where other covariates, in addition to age, are included in the
model, Jewell and Van Der Laan [19] proposed, in the context of current status data, a
proportional hazard model with constant force of infection which can be fitted as a GLM
with complementary log - log link.

Grummer-Strawn [20] discussed two parametric models, the first being a Weibull pro-
portional hazard model with complementary log - log link and the second being a log -
logistic model with logit link function. For the latter, the proportionality in the model
is interpreted as proportional odds.

A non-parametric method was discussed by Keiding [4] who used isotonic regression
to estimate the prevalence and applied kernel smoothers to estimate the force of infection.
Keiding et al. [18] proposed to model the force of infection using natural cubic splines.
Shkedy et al. [21] proposed to use local polynomials to estimate both the prevalence and
the force of infection.

Shiboski [22] proposed a semiparametric model, based on generalized additive models
(GAM) [23], in which the dependency of the force of infection on the age is modelled
non-parametrically and the covariate effect is the parametric component of the model.
Depending on the link function, the model proposed by Shiboski assumes proportionality:
proportional hazard, using the complementary log - log link; proportional odds, using
logit and probit links. Other semiparametric models were proposed by Rossini and Tsiatis
[24], Martinussen and Scheike [25] and Lin et al. [26].



3.2 A parametric model for the force of infection

One of the fundamental studies on the force of infection is Farrington [1]. In his
article, Farrington develops a parsimonious parametric model for the seroprevalence and
the force of infection for three diseases: measles, mumps and rubella. The hypothesis
at the basis of the model are that already introduced in Section 1.3, talking about the
catalytic model.

The main purpose in modelling the prevalence F (a) using an underlying ”catalytic”
model of the force of infection is to study the age dependence of the force of infection.
Polynomial models successfully capture the essential features of this age dependence, but
are not always consistent with the properties of forces of infection. The only requirement
of a consistent model is that the force of infection must be non-negative and must be low
(or zero) at birth as a result of persisting maternal antibody.

3.2.1 Farrington’s parametric model

Farrington, following preceding studies, notices that serological data for measles,
mumps and rubella fit the pattern of an initial near-linear rise in the force of infection
(see Griffiths [13]), followed by steady decline. The decline is well fitted by an exponential.
This suggests a family of models based on the following exponentially restrained linear
model:

`(a) = (b1a− b3)e−b2a + b4. (3.10)

We shall assume furthermore that `(0) = 0, to account for the protective effect of
maternal antibodies at birth, and that `(a) eventually decreases with age. It thus follows
that b4 = b3 and b2 ≥ 0. Since `(a) is always positive, we also have b1, b3 ≥ 0. Farrington’s
basic model is thus:

`(a) = (b1a− b3)e−b2a + b3 b1, b2, b3 ≥ 0. (3.11)

Combining Eq. 3.11 and the general solution for F (a)

F (a) = 1− exp
{
−
∫ t

0
`(s)ds

}
, (3.12)

we obtain the following expression for the cumulative distribution of the age at in-
fection:



F (a) = 1− exp
{

b1

b2
ae−b2a +

1
b2

(
b1

b2
− b3

)
(e−b2a − 1)− b3a

}
. (3.13)

Note that b3 is the long term residual value of the force of infection. If b3 is 0, then
the force of infection declines asymptotically to 0.

3.2.2 Application of the model to measles, mumps and rubella

Following Griffiths [13] and Farrington, we now seek to validate the use of the catalytic
model and thus of Model. 3.11 by graphical methods.

The data come from Farrington et al. [3]: in this paper, there is a table with the
numbers seropositive and seronegative for mumps and rubella by completed year of age,
from 1 to 44. Besides, this table contains age-stratified seroprevalence data for parvovirus
(1991). Differently from Farrington [1], we do not present the analysis for measles, but for
parvovirus. The data have been aggregated into 26 age groups, so as to obtain roughly
equal numbers in each.

Observed proportions seropositive

Firstly, we report scatterplots of the observed proportions seropositive for mumps,
rubella and parvovirus. We can observe two different patterns.

Mumps and rubella in Fig. 3.1 have a similar pattern with the prevalence that in-
creases until 10-12 years old and then becomes steady, with proportions seropositive near
1. Parvovirus shows a different pattern, with the prevalence that increases until 14 years
old, then slightly decreases and eventually increases without reaching a steady situation
at 44 years old. Besides, here the proportions seropositive are lower than the case of
mumps and rubella: the maximum prevalence is 0.82 at 43 years old.

Cumulative hazard function

Then, from Eq. 3.12, we have that the integral of `(a), which is the cumulative hazard
function, is given by the function:

G(a) =
∫ t

0
`(s) ds = − ln[1− F (a)]. (3.14)

In this case also, we have two different patterns.
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Figure 3.1: Observed proportions seropositive for mumps, rubella and parvovirus; elab-
oration from Farrington et al. [3]
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Figure 3.2: Cumulative hazard function for mumps, rubella and parvovirus; elaboration
from Farrington et al. [3]



Mumps and rubella in Fig. 3.2 have a similar pattern with an initial steepening
(consistent with a quadratic for lower values of a and hence linear `(a)) followed by a
flattening out. These two plots suggest that the function G(a) has a single point of
inflexion, corresponding to a single maximum for `(a); there is too much scatter in the
data to allow the detection of any secondary peaks in the force of infection. For large
values of a, G(a) is approximately linear, with a shallow slope. If the Model 3.11 is
correct, then this asymptotic slope is equal to c. Parvovirus has a similar pattern for
lower values of a, while shows an increment in the last years. The graph suggests the
presence of two points of inflexion, corresponding the first to a local maximum and the
second to a local minimum.

In every case, the considerable scatter of the data, apparent in the saw-tooth appear-
ence of the plots of G(a), is inevitable in any study of age dependence based on current
status data from an horizontal survey.

Empirical hazard function

Now, let us plot another function, an approximation of the hazard function:

L(a) =
1

1− F (a)
∆F (a)

∆a
≈ 1

1− F (a)
∂F (a)

∂a
= `(a), (3.15)

considering an increment in a of ∆a = 1 (year). Smoothing the observed prevalence
data by means of a 3-point moving average, let us evaluate the empirical outlines of the
forces of infection.

The empirical hazard function for mumps and for rubella, Fig. 3.3, are all consistent
with a steep rise followed by a gradual decline. Differently, the empirical hazard function
for parvovirus shows a gradual rise in the first years, followed by a steep decline and by
an increment in the last years.

Linearization of the empirical hazard function

Eventually, let us introduce a linearization of the empirical hazard function:

R(a) = − ln
(
|L(a)|

a

)
. (3.16)

These points should approximately lie on a straight line if the model 3.11 is correct.
The absolute value in 3.16 is to deal with the few cases where L(a) in 3.15 is negative:
these negative values are due to residual scatter remaining after smoothing. To validate
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the assumption of an exponential decline in `(a), we shall temporarily assume for sim-
plicity that b3 = 0: this value of b3 can be taken as its initial guess in the model we are
going to estimate.

Mumps and rubella in Fig. 3.4 show a broadly linear relationships in spite of some
clear outliers and a degree of convexity for the mumps data. Instead, parvovirus shows
a more caotic pattern, however in this case also it is possible to find out a broadly linear
relationship.

If we regress these points on the age, we can estimate the starting values for para-
meters b1 and b2 in Eq. 4.88, taking in account the assumption b3 = 0:

R(a) = − ln
(
|L(a)|

a

)
' − ln

(
b1ae−b2a

a

)
' −[ln(b1a)− b2a− ln(a)]

' ln(a)− ln(b1a) + b2a

' ln
(

a

b1a

)
+ b2a

' − ln(b1) + b2a. (3.17)

As we have previously told, the function R(a) is linear in the variable ”age”. If we
denote with r1 and r2 the parameters of R(a), we have that:

1. r1 = − ln(b1) is the known term, from which the initial guess for b1 is e−r1 ;

2. r2 = b2 is the coefficient of regression of the age and is the initial guess for the
parameter b2.
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Figure 3.4: Linearization of the empirical hazard function for mumps, rubella and par-
vovirus; elaboration from Farrington et al. [3]





Chapter 4

Nonlinear Estimation Methods

4.1 Least-Squares Estimation

4.1.1 Nonlinear Least Squares

Suppose we have n observations (xi, yi) with i = 1, 2, . . . , n, from a fixed-regressor
nonlinear model with a known functional relationship f . Thus

yi = f(xi; θ∗) + εi (i = 1, 2, . . . , n), (4.1)

where E[εi] = 0, xi is a p x 1 vector (where p is the number of parameters θ) and the
true value θ∗ of θ, denoted by θ̂, minimizes the error sum of squares

S(θ) =
n∑

i=1

[yi − f(xi; θ)]2. (4.2)

It should be noted that, unlike the linear least-squares situation, S(θ) may have
several relative minima in addition to the absolute minimum θ̂.

Assuming that εi ∼ IID(0, σ2), it has been shown that, under certain regularity
assumptions, θ̂ and s2 = S(θ̂)/(n− p) are consistent estimates of θ∗ and σ2 respectively.

With further regularity conditions, θ̂ is also asymptotically normally distributed as
n →∞.

If, in addition, we assume that εi ∼ N(0, σ2), then θ̂ is also the maximum-likelihood
estimator.

When each f(xi; θ) is differentiable with respect to θ, θ̂ will satisfy the following
condition:
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∂S(θ)
∂θr

∣∣∣∣
θ̂

= 0 (r = 1, 2, . . . , p). (4.3)

We shall use the notation fi(θ) = f(xi; θ). So the n x 1 vector of the covariates is

f(θ) = [f1(θ), f2(θ), . . . , fn(θ)]′ , (4.4)

the gradient vector of f(θ) is

q(θ) =
∂f(θ)
∂θ′

=
[(

∂fi(θ)
∂θj

)]
(4.5)

and the Hessian matrix of f(θ) is

H(θ) =


∂2f1(θ)

∂2θ1

∂2f1(θ)
∂θ1∂θ2

· · · ∂2f1(θ)
∂θ1∂θn

∂2f2(θ)
∂θ2∂θ1

∂2f2(θ)
∂2θ2

· · · ∂2f2(θ)
∂θp∂θn

...
...

. . .
...

∂2fp(θ)
∂θp∂θ1

∂2fp(θ)
∂θp∂θ2

· · · ∂2fp(θ)
∂θ2∂θn

 . (4.6)

Also, for brevity, let q = q(θ) and q̂ = q̂(θ), H = H(θ) and Ĥ = Ĥ(θ).

Eq. 4.3 leads to

∑
i

{yi − fi(θ)}
∂fi(θ)
∂θr

∣∣∣∣
θ=θ̂

= 0 (r = 1, 2, . . . , p), (4.7)

or, using matrices,

0 = q̂′{y − f̂}

= q̂′ε̂, (4.8)

The equations 4.8 are called the normal equations for the nonlinear model. For most
nonlinear models, these equations cannot be solved analytically, so that iterative methods
are necessary.

We now have the following theorem:

Theorem 2 Given ε ∼ N(0, σ2In) and appropriate regularity conditions, then, for large
n, we have approximately:

1. (θ̂ − θ∗) ∼ Np(0, C−1), where C = q′q;



2. (n− p)s2/σ2 ≈ ε′(In − PF )ε/σ2 ∼ χ2
n−p, where ε = y − q(θ) and PF = q(q′q)−1q′;

3. θ̂ is statistically independent of s2;

4.
[S(θ∗)− S(θ̂)]/p

S(θ̂)/(n− p)
≈ ε′PF ε

ε′(In − PF )ε
· n− p

p
∼ Fp,n−p. (4.9)

As we can see, the gradient vector q plays, in nonlinear regression, the same role
as the X-matrix in linear regression. This idea is taken further when we shall develop
approximate confidence intervals for θ∗.

4.1.2 Generalized Least Squares

We mention now a generalization of the least-squares procedure called weighted or
generalized least squares (GLS). The function to be minimized is

S(θ) = [y − f(θ)]′W−1[y − f(θ)], (4.10)

where W is a known positive definite matrix (and in many applications a diagonal
matrix). This minimization criterion usually arises from the generalized least-squares
model y = f(θ) + ε, where E[ε] = 0 and V [ε] = σ2W .

Thus the ordinary least squares (OLS) procedure is a special case in which W = In.
Denote by θ̂G the generalized least-squares estimate which minimizes S(θ) above.

Cholesky decomposition

Now, we have to introduce the Cholesky Decomposition of the matrix W to transform
our GLS model in a OLS model.

Theorem 3 (Cholesky decomposition) If A is an n x n positive definite matrix, then
there exists an n x n upper triangular matrix U = [(uij)] such that

A = U ′U. (4.11)

The matrix U is unique if its diagonal elements are all positive or all negative. Let
D1 = diag(u11, u22, . . . , unn), and let



U1 = D−1
1 U =


1 ũ12 ũ13 . . . ũ1

0 1 ũ23 . . . ˜u2n

...
...

...
. . .

...
0 0 . . . . . . 1

 . (4.12)

Then

A = U ′
1D

2
1U1 = U ′

1DU1, (4.13)

where D is a diagonal matrix with positive elements (and so D is a positive definite
matrix similar to A).

Logically, U ′AU = In.

Let W = U ′U be the Cholesky decomposition of W , where U is an upper triangular
matrix. Multiplying the nonlinear model through by R = (U ′)−1, we obtain

z = k(θ) + η, (4.14)

where z = Ry, k(θ) = Rf(θ) and η = Rε.

Then E[η] = 0 and V [η] = σ2RWR′ = σ2In. Thus our original GLS model has now
been transformed to an OLS model.

Furthermore,

S(θ) = [y − f(θ)]′W−1[y − f(θ)]

= [y − f(θ)]′R′R[y − f(θ)]

= [z− k(θ)]′[z− k(θ)]. (4.15)

Hence the GLS sum of squares is the same as the OLS sum of squares for the trans-
formed model and θ̂G is the OLS estimate from the transformed model.

Besides, if θ̂G is the OLS estimate from the transformed model, it has for large n a
variance-covariance matrice, whose estimate is given by

V̂ [θ̂G] = σ̂2[(K̂.(θ∗))′(K̂.(θ∗))]−1 = σ̂2[q(θ∗)′W−1q(θ∗)]−1, (4.16)

where



σ̂2 =
1

n− p
[z− k(θ̂G)]′[z− k(θ̂G)]

=
1

n− p
[y − f(θ̂G)]′W−1[y − f(θ̂G)]. (4.17)

However, in practice we would not compute R = (U ′)−1 and multiply out Ry. Instead
it is better to solve the lower triangular system U ′z = y for z directly by forward
substitution.

4.2 Maximum-Likelihood Estimation

If the joint distribution of the εi in the model 4.20 is assumed known, then the
maximum-likelihood estimate of θ is obtained by maximizing the likelihood function. We
shall discuss normally distributed errors below. In this case we find that the maximum-
likelihood estimator of θ can be found using least-squares methods.

4.2.1 Normal Errors

If εi ∼ N(0, σ2), then the joint distribution of εi is

p(y|θ, σ2) = (2πσ2)−n/2 exp

(
−1

2

n∑
i=1

[yi − f(xi; θ)]2

σ2

)
. (4.18)

Ignoring constants, we denote the logarithm of the above likelihood by L(θ, σ2) and
obtain

L(θ, σ2) = −n

2
log σ2 − 1

2σ2

n∑
i=1

[yi − f(xi; θ)]2

= −n

2
log σ2 − 1

2σ2
S(θ). (4.19)

This trasformation of p(y|θ, σ2), taking its logarithm, is possible because the logar-
ithm is a monotonic increasing function and so the maximum of log f(·) is the same of
f(·). The aim of this transformation is to linearize the function p(y|θ, σ2), to obtain a
function which is easier to manage.



Given σ2, Eq. 4.19 is maximized with respect to θ when S(θ) is minimized, that is,
when θ = θ̂ (the least-squares estimate).

Furthermore, the first derivative of L(θ, σ2) with respect to σ2, that is ∂L(θ, σ2)/∂σ2 =
0 has solution σ2 = S(θ)/n, which gives a maximum (for given θ) as the second deriv-
ative is negative. This suggests that θ̂ and σ2 = S(θ)/n are the maximum-likelihood
estimates.

4.3 Asymptotic Confidence Intervals

Let

yi = f(xi; θ∗) + εi (i = 1, 2, . . . , n), (4.20)

where εi ∼ N(0, σ2). For notational convenenience we now omit the star from θ∗ and
denote the true value of this parameter vector by θ.

Confidence interval for a linear combination

If we are interested in constructing a confidence interval for a given linear combination
of parameters a′θ, then we can apply Theorem 2 in Section 4.1.1. In particular we have
the asymptotic (linearization) result

θ̂ ∼ Np(θ, C−1) C = q′q, (4.21)

which holds under appropriate regularity conditions.

From Eq. 4.21 we have, asymptotically, a′θ̂ ∼ N(a′θ,a′C−1a) independently of
s2 = ‖y − f(θ̂)‖2/(n − p), the latter being an unbiased estimate of σ2 to order n−1.
Hence, for large n we have, approximately,

T =
a′θ̂ − a′θ

s(a′C−1a)1/2
∼ tn−p, (4.22)

where tn−p is the t-distribution with n − p degrees of freedom. So, an approximate
100(1− α)% confidence interval for a′θ is then

a′θ̂ ± t
α/2
n−ps(a

′C−1a)1/2, (4.23)

where C can be estimated by Ĉ = q̂′q̂.



Confidence interval for a single parameter

Setting a′ = (0, 0, . . . , 1, 0, . . . , 0), where the rth element of a is one and the remaining
elements are zero, and defining [ĉrs] = Ĉ−1, a confidence interval for the rth elements of
θ, that is θr is

θr ± t
α/2
n−ps

√
ĉrr. (4.24)

4.4 Computation of the Estimates

In this section, we introduce the problem of unconstrained optimization, where the
unknown parameters are free to assume any values at all. In other cases, only values
satisfying certain inequalities and/or equations are admissible. The problem is to find θ

such that Φ(θ) is maximum (or minimum) subject to:{
h(θ) ≥ 0
g(θ) = 0

where h and g are vectors of given functions.
Typical functions to be minimized are the sum of squares and the weighted sum

of squares; a function to be maximized is the likelihood. We restrict our attention to
minimization, for maximizing a function can be accomplished by minimizing its negative.

So, if our aim is to maximize the log likelihood, we reach the same result minimizing
the negative of log likelihood.

4.4.1 Iterative Scheme

The methods we shall discuss are iterative in nature. We start with a given point
θ0, known as the starting value, and proceed to generate a sequence of points θ1, θ2, . . .

which we hope converges to the point θ∗ at which the function Φ(θ) is minimum. The
computation of θi+1 is called the ith iteration and the point θi the ith iterate. In practice,
one terminates the sequence after a finite number N of iterations and one accepts θN as
an approximation to θ∗. The vector

σi ≡ θi+1 − θi (4.25)

is called the ith step. We wish each step to bring us closer to minimum. Since we do
not know where the minimum is, we cannot test for this condition directly. However we



may consider the ith step to have ”improved” out situation if

Φ(θi−1) < Φ(θi). (4.26)

If the previous condition is verified, the ith step is acceptable. An iterative method is
acceptable if all the steps are acceptable. All the methods we shall discuss represent in
detail the following scheme:

1. Set i = 0. A starting value θ0 must be provided externally.

2. Determine a vector di in the direction of the proposed ith step.

3. Determine a scalar ti such that the step

σi = tidi (4.27)

is acceptable. That is, we take

θi+1 = θi + σi = θi + tidi (4.28)

and require that ti be chosen so that Eq. 4.26 holds.

4. Test whether the termination criterion is met. If not, increase i by one and return
to step 2. If yes, accept θi+1 as the value of θ∗.

The various methods to be described below differ only in the manner of choosing di and
ti. We refer to these quantities as step direction and step size respectively. Since di is
not required to be a unit vector, ti is only proportional, but not necessarily equal, to the
step length in the usual sense.

4.4.2 Acceptability

Consider the ith iteration of a minimization procedure. Suppose we move from θi

along some direction d, generating the ray

θ(t) ≡ θi + td (t ≥ 0). (4.29)

Along this ray, the objective function to be minimized varies as t is changed, thus
becoming a function of t alone. We designate this function



Ψid(t) ≡ Φ(θ(t)) = Φ(θi + td), (4.30)

where Ψid(t) indicates that the function Φ(θ) to be minimized is dependent on the
step size t. The derivative of Ψid(t) is given by

dΨid

dt
=
(

∂Φ
∂θ

)T (∂θ

∂t

)
=
(

∂Φ
∂θ

)T

d, (4.31)

that is to say the vector (∂θ/∂t) is the step direction d.
The gradient vector of Φ(θ) is (∂Φ/∂θ), which we designate as q(θ). Denoting by qi the
gradient vector evaluated at θ = θi, we have

Ψ′
id ≡

dΨid

dt

∣∣∣∣
t→0

= qT
i d. (4.32)

In the sequel we assume qi 6= 0. The quantity Ψ′
id is called the directional derivative of

Φ relative to d at θi.
Let us see the sign of Ψ′

id. On the one hand, if Ψ′
id < 0, then Φ(θ) decreases in value

when one starts moving away from θi in the direction of d. Therefore, if t is a sufficiently
small positive number, the step td is acceptable.

On the other hand, if Ψ′
id ≥ 0, there may not exist any positive value of t for which

td is an acceptable step.
Thus, we call d an acceptable direction if Ψ′

id < 0.

Let us see now the following theorem:

Theorem 4 A direction d is acceptable if and only if there exist a positive definite matrix
R such that

d = −Rqi. (4.33)

Proof
Let R be a positive definite matrix and let d be given by Eq. 4.33. Then, from Eq.

4.32 and the definition of a positive definiteness

Ψ′
id = qT

i d = −qT
i Rqi < 0, (4.34)

as a result of qT
i Rqi > 0.



The requirement Ψ′
id = qT

i d < 0 says that the direction d leads downhill if it forms a
greater than 90◦ angle with the gradient qi. The theorem states that this condition can
be insured if the direction is determined by operating on the negative gradient qi with a
positive definite matrix according to the condition d = −Rqi. A minimization method in
which the directions are obteined in this manner is called an acceptable gradient method.

The basic equation of the ith iteration in any gradient method is

θi+1 = θi − tiRiqi. (4.35)

Various gradient methods differ in the manner of choosing the Ri and ti.
In planning or choosing an optimization method, one attempts to minimize the total

computation time required for convergence to the minimum. This time is composed
primarily of the following two factors:

• function and derivative evaluations;

• algebraic manipulations such as matrix inversions or eigenvalue determinations.

4.4.3 Steepest Descent

The simplest gradient method employs the following conditions:

• Ri = I, where I is the identity matrix;

• di = −qi in all iterations;

• ti is the solution of the problem of minimization

min
t

(Ψid) = Φ(θi + tdi). (4.36)

So, the equation of the ith iteration is

θi+1 = θi + tiqi. (4.37)

The direction −qi is the one in which the objective function decreases most rapidly,
at least initially. Hence this method is called steepest descent. Unfortunately this method
is often very inefficient, requiring a large number of steps which tend to zigzag.

This method is not recommended for practical applications, but it is important be-
cause a lot of algorithms used in practice have this method as the theoretical starting
point.



4.4.4 The Newton-Raphson method

Suppose the function Φ(θ) we want to minimize is the negative of the log-likelihood
of a sample. The Newton-Raphson method employs the following conditions:

• Ri = H−1
i , where Hi is the Hessian matrix of the function Φ(θ);

• ti = 1.

So, the equation of the ith step is

θi+1 = θi −H−1
i qi. (4.38)

Let us see why we apply these conditions. The Hessian matrix of the function Φ(θ) is
the matrix of second partial derivatives. For example, if the parameters to be estimated
are only two, the Hessian matrix will be:

H(θ) =

(
∂2Φ
∂2θ1

∂2Φ
∂θ1∂θ2

∂2Φ
∂θ2∂θ1

∂2Φ
∂2θ2

)
Let Hi be the Hessian matrix of Φ evaluated at θ = θi. We define the function

Qi(θ) = Φi + qT
i (θ − θi) +

1
2
(θ − θi)T Hi(θ − θi). (4.39)

If Φ(θ) = −L(θ), that is the negative of the log likelihood, the function Qi(θ) will be:

Qi(θ) = −L(θi) + L′(θi)T (θ − θi) +
1
2
(θ − θi)T L′′(θi)(θ − θi). (4.40)

This function consists of the terms up to second order in the Taylor expansion of Φ
around the point θi. In a sense, Qi(θ) shows the behaviour of Φ(θ) at θ = θi more closely
than does any other second order surface.

Suppose we wish to find the point at which Qi(θ) is stationary. We set to 0 the
gradient of Qi:

∂Qi

∂θ
= qi + Hi(θ − θi) = 0; (4.41)

if Hi is nonsingular, we have the following solution:

θi+1 = θi −H−1
i qi (4.42)

And so, we have verified the conditions we have introduced at the beginning of this
section.



Φ(θ) as a quadratic function

If Φ(θ) is a quadratic function, then θi+1 is a stationary point of Φ. This point
is a minimum if Hi is positive definite, for the second order sufficient condition: in
this case Ri = H−1

i is positive definite, the method is acceptable and it converges in a
single iteration. In this case the Newton step −H−1q is the only one that take us to
the minimum in a single iteration. Any other step −Rq with R 6= H−1 will miss the
minimum. If Hi is negative definite, θi+1 is a maximum, and if Hi is indefinite, θi+1 is a
saddle point: in both cases, the method is not acceptable.

Φ(θ) as a non quadratic function

When Φ(θ) is not quadratic, θi+1 does not generally coincide with the stationary
point and the method does not converge in a single iteration. However the method is
acceptable as long as Hi is positive definite, as it should be at least in some neighborhood
of the minimum. In this neighborhood, convergence is quadratic. This means that the
number of correct digits in θ is approximately doubled by each iteration, until further
improvement is barred by the rounding errors in the calculation.

Outside the neighborhood, the convergence cannot be guaranteed.

In spite of its very good performance in those cases where it works, the Newton-
Raphson method is not a practical one, for the following reasons:

1. It does not converge in many cases, because H(θ) is not necessarily positive definite,
except near the minimum.

2. It requires the evaluation of second derivatives. This places a heavy burden on the
user, particularly where the objective functions are as complicated as those to be
found in parameter estimation problems.

Various modifications have been proposed for overcoming these difficulties, while
retaining the advantage of the method:

1. To overcome the problem of indefiniteness, it has been designed the Levenberg-
Marquardt method;

2. To overcome the difficulties derived from the evaluation of second derivatives, the
proposed method is the Gauss-Newton’s.



We note that of the two deficiencies, the first one (nonconvergence) must be overcome
if the method is to be useful. The second difficulty (second derivatives required) is merely
a matter of convenience.
One may raise the question of whether the Newton-Raphson method is not so much more
efficient than methods that do not require second derivatives, as to make the evaluation
of these derivatives worthwhile. Authors have no definitive answers to this question, but
a limited amount of experience has led to the following tentative conclusions:

1. If the model fits the data well, the Gauss-Newton method often requires no more
iterations than the Newton-Raphson one [27].

2. If the model does not fit well, the Newton-Raphson method may require fewer
iterations than the Gauss-Newton method, but the computing times for the two
methods are roughly the same.

4.4.5 The Levenberg-Marquardt Method

In the Newton-Raphson method we have a problem if the Hessian matrix Hi is not
positive definite. The Levenberg-Marquardt method allows to convert an arbitrary mat-
rix into a positive definite one.
The method is based on the observation that if P is any positive definite matrix, then
Hi + κP is positive definite for sufficiently large κ, no matter what Hi. The authors
suggest the following choice:

Pi ≡

{
|Hii| (Hii 6= 0)

1 (Hii = 0)

That is, P is a sort of diagonal matrix whose elements coincide with the absolute
values of the diagonal elements of Hi (with say zero elements replaces by ones).

The Levenberg-Marquardt method employs the following conditions:

• Ri = (Hi + κiPi)−1, where Hi is the Hessian matrix of the function Φ(θ);

• ti = 1.

So, the equation of the ith step is

θi+1 = θi − (Hi + κiPi)−1qi. (4.43)



Observe that as κi → ∞, the term κiPi dominates Hi. In this case the step σi

becomes
σi → −κ−1

i P−1
i qi. (4.44)

This is an extremely short step in a downhill direction, Pi being positive definite. A
sufficiently large κi always produces an acceptable step. On the other hand, when κi is
very small, σi approaches the Newton-Raphson direction −H−1

i qi. Marquardt suggests
the following algorithm for the selection of κi:

1. When i = 0, start with κ0 = 0.01.

2. At the start of the ith iteration, compute

• di = −(Hi + κiPi)−1qi,

• θ(1) = θi + di,

• Φ(1) ≡ Φ(θ(1)).

3. If Φ(1) < Φi, accept θi+1 = θ(1), and replace κi+1 with max(0.1κ, ε) where ε is a
small positive number, say 10−7.

4. Otherwise, if Φ(1) ≥ Φi, find a value ti sufficiently small so that

Φ(θi + tidi) < Φ(θi)

Accept θi+1 = θi + tidi. Replace κi+1 with 10κi.

It is worth remarking that Marquardt’s method finds the step d which minimizes the
quadratic approximation to Φ given by

Qi(d) ≡ Φi + dT qi +
1
2
dT Hid (4.45)

subject to the restriction that
dT Pid = c (4.46)

That is, the step d takes us to the point on the ellipsoid defined by Eq. 4.46 at which
the function Q(d) reach its minimum. To prove this, by the Lagrangian multipliers we
get:

Λ(d) = Φi + dT qi +
1
2
dT Hid +

1
2
λi(dT Pid− c) (4.47)



Differentiating with respect to d and equating to zero we have

qi + Hid + λiPid = 0 (4.48)

Then solving for d we obtain

d = −(Hi + λiPi)−1qi (4.49)

in agreement with Ri = (Hi + κiPi)−1.

The particular ellipsoid chosen depends on λi, since by substituting Eq. 4.49 into Eq.
4.46 we find

c = qT
i (Hi + λiPi)−1Pi(Hi + λiPi)−1qi (4.50)

The larger λi is, the smaller is c, and the smaller is the ellipsoid of a certain size,
determined through Eq. 4.50 by the initial choice of λi. If the corresponding step d

fails to decrease the objective function, this is an indication that the chosen ellipsoid is
larger than the region within which the quadratic approximation (Eq. 4.45) holds. By
increasing λ, we shrink the ellipsoid and we go on.

4.4.6 The Gauss-Newton Method

In most parameter estimation problems, the unknown parameters appear only indir-
ectly in the objective function. This depends explicitly on the model equations, which
in turn depend on the parameters. To compute derivatives of the object function, we
first differentiate it with respect to the model equation, and then differentiate those with
respect to the parameters. The Gauss Method consists of simply omitting the second
derivatives of the model equation when the Hessian is been computed. We illustrate it
better with a practical example. We want to minimize:

Φ(θ) =
n∑

µ=1

[yµ − f(xµ, θ)]2

=
n∑

µ=1

(yµ − fµ)2

=
n∑

µ=1

e2
µ. (4.51)



We now compute qα and Hα,β simply differentiating:

qα = ∂Φ/∂θα = 2
n∑

µ=1

eµ∂eµ/∂θα (4.52)

= −2
n∑

µ=1

eµ∂fµ/∂θα. (4.53)

and

Hα,β = ∂2Φ/∂θα∂θβ = −2
n∑

µ=1

eµ(∂2fµ/∂θα∂θβ) + 2
n∑

µ=1

(∂fµ/∂θα)(∂fµ/∂θβ) (4.54)

In the Gauss method, we neglect the first term, and use N in place of H, where N is
defined by

Nα,β = 2
n∑

µ=1

(∂fµ/∂θα)(∂fµ/∂θβ) (4.55)

So we derive the matrix N as an approximation to H and the Gauss method as an
approximation to the Newton method.

But there is an alternative interpretation: suppose to replace the model equation
with their tangents, that is the nonlinear model (in θ) is approximated by one that is
linear. If we solve the corresponding linear least squares problem we find the solution to
be

θ̃ = θi −N−1q

It is worth remarking that θ̃ is not the correct solution to the non-linear problem.

The term neglected in Eq. 4.54 contained the residual eµ as a factor. Since the
residual are, hopefully, small, this provides some justification to consider N as a good
approximation to H, particularly near the minimum. The same justification applies to
all of the more general cases in which the objective function depends on the parameter
only through the elements of the matrix of the residuals

M(θ) =
∑

µ

eµ(θ)eT
µ (θ) (4.56)

In this case we have
Φ(θ) = Ψ(M(θ)) (4.57)



where Ψ is a suitable function. Differentiating Eq. 4.57 we obtain:

∂M/∂θα =
∑

µ

(eα∂eβ/∂θα + eβ∂eα/∂θα) (4.58)

where the subscript µ has been dropped for convenience. Therefore from Eq. 4.54 and
because of the symmetry of M we obtain the expression for the gradient:

qα = ∂Φ/∂θα =
∑

(∂Ψ/∂M)(∂M/∂θα) (4.59)

=
∑

(∂Ψ/∂M)(eα∂eβ/∂θα + eβ∂eα/∂θα) (4.60)

= 2
∑

(∂Ψ/∂M)eα(∂eβ∂θα) (4.61)

and the Hessian:

Hα,β = ∂2Φ/∂θα∂θβ = 2
∑

(∂Ψ/∂M)(∂eα/∂θα)(∂eβ/∂θβ) + ξ (4.62)

where ξ contains second derivatives terms of the model equation and terms involving
residual as factors. As we noted earlier, these terms are dropped in the Gauss method.
This leaves us with the approximate Hessian:

Nα,β ≡ ∂2Φ/∂θα∂θβ = 2
∑

(∂Ψ/∂M)(∂eα/∂θα)(∂eβ/∂θβ) (4.63)

or, in matrix notation
N ≡ 2

∑
µ

BT ΓB (4.64)

where B and Γ are defined as B ≡ −∂e/∂θ = ∂f/∂θ and Γ ≡ ∂Ψ/∂M .

Using the same notation the gradient in Eq. 4.59 come out:

q = −2
∑

µ

BT Γe (4.65)

It is significant that in all these cases Γ turns out to be positive definite (or at least
semidefinite).

Resuming, the Gauss-Newton method employs the following conditions:

• Ri = N−1, where Ni is the approximation to the Hessian matrix of the function
Φ(θ);



• ti = 1.

So, the equation of the ith step is

θi+1 = θi − di = θi −N−1qi, (4.66)

with di is the solution of the following linear system:

Nidi = −qi. (4.67)

From Eq. 4.65 and Eq 4.64 it can be written as∑
µ

BT ΓBd =
∑

µ

BT Γe (4.68)

Pre-multiplying for (BT Γ)−1 we obtain

Bd = e

so we can easily solve for d and determine the step direction.

Gauss Method Implementation

There are several ways in which the direction di given by di = −N−1
i qi may be

computed. Any method suitable for the solution of multiple linear regression can be
used. For linear problems we expect to obtain the correct answer in a single step and to
compute N−1 very precisely. A non linear problem, on the other hand, requires several
iterations; slight errors in each iteration can be tolerated, as long as the chosen directions
are acceptable.

In other words, N−1
i need in principle to be positive definite only for nonlinear prob-

lems. However, substantial errors in the computation of N−1
i may greatly increase the

number of iterations required.

Numerical techniques for computing the direction di fall into two classes:

1. Methods for solving the normal equations, without taking account of their particu-
lar structure. These methods are obviously applicable whether or not the equations
have a linear regression structure. The simplest method solve Ndi = −qi for di

using simultaneous equations techniques. The fastest method is the Cholesky de-



composition, but is not recommended unless Ni is known to be positive definite1.
In general the Levenberg-Marquardt method is recommended.

2. Methods that rely on the linear regression structure. For example Jennrich and
Sampson proposed a stepwise regression technique: once the normal equation were
formed, all the di components which cannot significantly reduce the value of the
objective function are set to zero. This is a Directional Discrimination Method

Methods which do not require formation of the normal equations show greater numer-
ical accuracy and are particularly suitable when precise solutions are required. We just
mention as a detailed description is beyond our aims: in particular the Golub method
and the Longley one are found to be considerably more accurate than solution of normal
equation.

4.4.7 The Variable Metric Method

The Gauss method is the best available for the solutions of those problems to which
it applies. The bug is that it can’t be applied to any objective function. For those cases
in which Gauss method doesn’t work, a variable metric method is recommended.

The variable metric term was coined by Davidon to designate schemes in which
the matrix R is systematically adjusted from iteration to iteration to make it behave
like H−1. These methods may be viewed as sophisticated finite difference schemes for
computing the second derivatives of Φ. The Davidon scheme, slightly modified, has been
widely used, gaining a reputation of being one of the most efficient general unconstrained
optimization method available. Starting from this implementation, an effort to improve
the outcomes is represented by ROC method (see below).

The main idea behind the variable metric method is the following: from the definition
of gradient q and the Hessian H we have

Hi =
∂q

∂θ
|θ=θi

≈ qi+1 − qi

θi+1 − θi

If σi = θi+1 − θi and η = qi+1 − qi we can write

Hiσi = ηi

1This method can be adapted to the singular or near-singular case, but this adaptation has performed
poorly. In fact, although the Cholesky method gives a precise solution to the normal equation even when
they are nearly singular, the step direction thus generated is so far from the negative gradient to be almost
unacceptable.



or alternatively
σi = H−1

i ηi

Suppose that before the ith iteration we have a matrix A which is an approximation to
H−1. We wish to add to it a correction ∆Ai such that the resulting matrix Ai+1 satisfies
σi = H−1

i ηi when replacing H−1. In this way,

Ai+1 ≡ Ai + ∆Ai (4.69)

We require that
σi = Ai+1 ηi = Aiηi + ∆Aiηi (4.70)

Hence
∆Aiηi = pi (4.71)

where pi = σi − Aiηi. Eq. 4.71 does not determine ∆Ai uniquely, since it contains only
l conditions for the l(l+1)/2 independent elements of the symmetric matrix ∆Ai. The
simplest possible matrix ∆Ai is of rank one and it has the form

∆Ai = rir
T
i (4.72)

where ri is a suitable vector. Substituting in ∆Aiηi = pi we obtain

rir
T
i ηi = pi (4.73)

that is ri = (1/rT
i ηi)pi = αpi where α ≡ (rT

i ηi)−1 is an unknown constant. Substituting
in Eq. 4.73 and rearranging we find out

α2 = 1/pT
i ηi (4.74)

Finally
∆Ai = rir

T
i = α2pip

T
i = (1/pT

i ηi)pip
T (4.75)

Eq. 4.75 define the Rank One Correction Method (ROC). Broyden, Davidon, Fiacco and
McCormick have proved the following theorem:

Theorem 5 Suppose Φ(θ) is a quadratic function with a constant nonsingular Hessian
matrix H. Let θ1, θ2, . . . , θl+1 be a set of points such that the vectors σi ≡ θi+1 − θi(i =
1, 2, . . . , l) are linearly independent. Let A1 be an arbitrary symmetric matrix, and let
Ai(i = 2, 3, . . . , l + 1) be defined recursively by Ai+1 ≡ Ai + ∆Ai and Eq 4.75. Then,



provided pT
i ηi 6= 0 for i = 1, 2, . . . , l, we have

Al+1 = H−1 (4.76)

The theorem says that if Φ is quadratic, the ROC method produces the exact inverse
Hessian in l steps. Once the inverse Hessian is known, a single Newton step converges to
the minimum.

When Φ is not quadratic, one expects Ai(i > 1) to represent an approximation to
H−1 evaluated somewhere in the region of the last l iterates. This is particularly true
near the minimum. We expect the matrices Ai to converge to the value of H−1 at the
minimum.

Although the theorem in principle holds for arbitrary A1, Bard suggests to chose a
diagonal matrix with

A1αα = −θ1α/q1α. (4.77)

Since Ai is an approximation to H−1, we would like to take Ai for Ri. There is
no guarantee, however, that Ai is positive definite. One could apply some correction
method (as Greenstadt method or Farris-Law one) to render Ai positive definite. But
these types of correction do not appear to work very well when applied to a matrix that
is an approximation to the inverse, rather than to the Hessian itself. In this case we can
use a procedure, entirely analogous to the ROC method, to construct an approximation
to the Hessian directly. We call this method Inverse Rank One Correction, IROC (Bard,
1970). Instead of Hiσi = ηi, first-order approximation of the ROC method, here we wish
to satisfy the condition

(Ai + ∆Ai)σi = ηi (4.78)

Rearranging,
Ai = (1/sT

i di)sis
T
i (4.79)

where si ≡ ηi − Aiσi. We initialize Ai as the inverse of the matrix defined by Eq. 4.77.
The matrices Ai converge to H in the quadratic case. Since Ai is an approximation to
H, we can use the Levenberg-Marquardt method to compute di efficiently.

In the Davidon-Fletcher-Powell (DPF) method, the matrix ∆Ai is of rank two instead
of rank one. The simplest choice to satisfy ∆Aiηi = pi (Eq 4.71) is

∆Ai = (1/σT
i ηi)σiσ

T
i − (1/ηT

i Aiηi)Aiηiη
T
i Ai (4.80)



We choose σi = −µiAiqi where µi is a positive value of t at which Φ(θi − tAiqi) reaches
a minimum. DPF have shown that under these conditions Ai+1 = Ai + ∆Ai is positive
definite, provided Ai was so. Therefore using Ri = Ai always produces an acceptable
step.

4.4.8 The Initial Guess

All the optimization method that we have described require that one supply an initial
guess (or starting value) θ0 for the values of the parameters. The choice of a good initial
guess can spell the difference between success and failure in locating the optimum, or
between rapid and slow convergence to the solution. Unfortunately while we can pre-
scribe algorithms for proceeding from the initial guess, we must rely heavily on intuition
and prior knowledge in selecting the initial guess. Nevertheless, we can provide some
suggestions which may be helpful in many cases.

The most obvious method for making the initial guesses is by the use of prior informa-
tion. Estimates calculate from previous experiments, known values from similar systems,
values computed from theoretical considerations: all these form ideal initial guesses.

On the opposite end of the spectrum stand problems in which our only information
concerning the parameter values is given in the form of upper and lower bounds of their
values. If we do not have bounds, we can transform our variables into bounded ones; e.g.
a positive variable θ can be replaced by the bounded variable φ = 1/(1 + θ).

Once we have all our parameters confined to a rectangular region in θ space, we can
conduct a grid search: compute the value of the objective function at every point on a
regular rectangular grid, and choose with the best value as the initial guess.

An alternative to the grid search is random search. Here a number of points within the
feasible region are chosen at random, and the one giving the best value of the objective
function is used as the initial guess. Random search permits the use of termination
criterion: one can stop sampling as soon as a function value is significantly better than
the average that has been found.

It is not always necessary to provide initial guesses for all the parameters in a model.
If some of the parameters enter the model equations linearly, and an initial guess is
provided for the other parameters, then the linear parameters can be estimated by linear
multiple regression.
Suppose, for instance, that the model has the form:

ŷµ = θαe−θβx



If we have the initial guess θβ = 6, and let zµ = e−6x, then the initial guess for θα can
be found by solving the linear least squares problem:

min
∑

µ

(yµ − θ1zµ)2

The most useful approach to find an initial guess is to substitute a simpler problem for
the original estimation problem. The answer to the simpler problem can be used as initial
guesses for the original problem.

There is no systematic way of applying this idea to all problems, but the following is
a partial list of what may be attemped.

• Linearization. We try, by means of trasformation of variable, to change the model
equations, into ones that are linear in the parameters. The linear problem can be
solved by multiple linear regression with no need for an initial guess.

• Multi-stage Estimation. By breaking up data into groups, we may estimate cer-
tain auxiliary parameters for each groups; then we estimate the original parameters
as function of the auxiliary parameters.
For instance, if the model has the form:

y = kxe−
E
T

where y is the response variable, x the explication variable, T a controlled parameter
and k, E the parameter to be estimated. So y is measured as a function of x at
several values of T . We use the data taken at Ti to estimate the coefficient ξi in
the equation

y = ξix

The estimated ξi can then be used as data for estimating log k and E in the lin-
earized model:

log ξi = log k − E/Ti

• Model Simplification. Sometimes is possible to approach the final model through
a sequence of simpler ones, in which various effects are neglected and the corres-
ponding parameters suppressed. After the parameters have been estimated for the
simpler model, analysis of the residuals can provide an indication to what terms
should be added to the next model of the sequence.



4.4.9 Step Size

So far we have concerned primarily with choosing the direction of the step taken in
the ith iteration, that is, in the choice of R. We now shall see how to determine the step
size ti. The methods proposed should be divided into three categories:

1. ti = 1. Required by Newton method, to guarantee quadratic convergence to the
minimum, and by Marquardt method. In the latter case the step size is determined
indirectly through the choice of κi.

2. ti = µi. We proceed along the chosen direction to the point at which Φ stops to
decrease, as required by DFP method.

3. Interpolation-Extrapolation, employed in conjunction with the Gauss and ROC
methods. Here the effort is spent to find a good, acceptable value of ti, without
bothering to locate µi precisely.

In general, the closer ti is to µi, the smaller is the total number of required iterations. On
the other hand, the more precisely µi is determined, the larger is the number of times that
we must evaluate the objective function at each iteration. The difference between point
2 and point 3 is that in the former the best outcome is achieved when µi is determined
with much greater precision than is required in the latter.
In the succeeding section we report an algorithm to compute ti in case number 3.

An Algorithm for the "Interpolation-Extrapolation" Case

Although the following algorithm has worked with a reasonable degree of success,
there is no evidence that it is the most efficient possible.

The search for ti proceeds without computation of derivatives, because it would be
wasteful to compute at each point l+1 functions (Φ and l components of its gradient). In
this algorithm it is assumed that at each iteration we are given an upper bound, ti,max,
on the feasible values of ti, which can be chosen as an arbitrarily large number. We are
also given a lover bound, ti,min. If no acceptable t > ti,min can be found, the search
stops.

basic idea: Assuming that we have chosen an acceptable direction, there always
exists a number λi such that if 0 < t < λi, then Ψi(t) ≡ Φ(θi − tRiqi) < Φi.
The basic idea of the

• Interpolation Method is that if we have initially picked a value t = t0 such that
Ψi(t0) > Φi, we next try a smaller value of t and repeating the process until an



acceptable value is found.

• Extrapolation Method is that if our initial choice t = t0 is acceptable, it pays to try
at least one other value of t to see whether we can do better.

In both cases, the new trial value of t is chosen to minimize a quadratic approximation to
Ψi(t). We know that Ψi(0) = Φi and dΨi/dt|t=0 = −qT

i Riqi. Suppose we have computed
Ψi(t0). Defining α ≡ Φi, β ≡ Ψi(t0), γ ≡ −qT

i Riqi, we try to find a quadratic function
a + bt + ct2 whose values match those of Ψi(t) at t = 0 and t = t0 and whose slope
matches that of Ψi(t) at t = 0. So we have:

a = α ≡ Ψi (4.81)

b = γ ≡ −qT
i Riqi (4.82)

a + bt(0) + ct(0)
2

= β ≡ Ψi(t0) (4.83)

Rearranging we find:
c = (β − α− γt(0))/t(0)

2

The quadratic a + bt + ct2 has a stationary point at

t∗ = −b/2c = γt(0)2/2(γt(0) + α− β)

A detailed implementation of this idea is given in the Fig. 4.1 and 4.2.

4.4.10 Termination Rules

It is necessary to devise a criterion to stop the iterative search for the minimum Φ(θ).
The best situation that should occur is convergence to a stationary point of Φ. It may
seem natural therefore to adopt the vanishing of the gradient as the termination criterion.
Unfortunately, rounding errors often make the goal of a vanishing gradient unattainable,
even approximately.

In many cases the computer comes up with parameter values very close to the min-
imum, yet the gradient is still sizable. In addition, if the algorithm fails to converge
at all, a termination rule based entirely on the gradient leaves the program to iterate
endlessly.

A more practical criterion dictates to stop as soon as further iterations fail to match
the parameter values significantly. That is, given a set of small numbers εα(α = 1, 2, . . . , l),
we accept θi+1 as the solution θ∗ provided



Figure 4.1: Interpolation method



Figure 4.2: Extrapolation method



|θi+1,α − θi,α| 6 εα (α = 1, 2, . . . , l) (4.84)

where θi,α is the αth component of θi. The numbers εα may either be prescribed
in advance, or they may be computed by the program. In the latter case, following
Marquardt, we raccomended

εα = 10−4(θi,α + 10−3) (4.85)

The additive term 10−3 is designed to avoid the situation where θα equate to zero.
This criterion has worked very well in practice, also if sometimes it allows a few more
iterations than are strictly necessary. Suppose in the ith iteration a step direction di

has been determined. Then Eq. 4.84 is satisfied if for each α, t|di,α| 6 εα. Hence the
minimum admissible t for the ith iteration is ti,min = minα[εα/|di,α|].

Termination occurs if the algorithm is forced to choose ti 6 ti,min. The above criterion
does not offer a strong guarantee that the process will terminate in a finite number of
steps. If the objective function is known to have a finite minimum, then the termination
can be guaranteed if we stop whenever Φi−1 − Φi < ε for some small specified positive
number ε. That is, we stop as soon as no significant progress is made in reducing the
value of the objective function. Finally an upper bound may be placed on the number
of iterations allowed.

Once the iterative process is terminated at θ = θ∗, one would like to know whether
or not one has arrived at a minimum. We assume that we know the gradient q∗ = q(θ∗)
and at least some approximation H∗ to the Hessian H(θ∗). If we cut a cross section of
the Φ surface along the θα axis, we have a curve whose approximate equation near θ∗ is
given by

Ψ(θα) = Φ∗ + q∗α(θα − θ∗α) +
1
2
H∗

αα(θα − θ∗α)2 (4.86)

which has a stationary point at

θα = θ∗α − q∗α/H∗
αα (4.87)

The quantity δα = |q∗α/H∗
αα| is therefore a measure of the error in the determination

of θ∗. If each δα is small on the scale by which θα is measured, then it is likely that θ∗

is very close to a stationary point of Φ.
If H∗ is indeed the Hessian of Φ at θ∗, then we may easily determine whether θ∗

(already known to be a stationary point) is really a minimum. All that is required is



that H∗ be positive definite, that is all its eigenvalues be positive.

• When using the Gauss method, our approximation N∗ is constructed to be auto-
matically positive definite, regardless of whether H∗ is positive or not. In these
case N∗ does not contain any information on the nature of the point θ∗. So we
have to explore directly the behavior of Φ around θ∗.

• On the other hand, in the ROC method, the matrix Ri from the last iteration may
be a true approximation to [H(θ∗)]−1. We cannot prove that Ri is or not positive
definite when θ∗ is or not a minimum; however if Ri is not positive definite we
suspect that θ∗ is not a minimum and vice versa.

So, if one doubts that θ∗ is a minimum, one should restart the iterative procedure from
a point close but not identical to θ∗. If it converges to the same θ∗, this is likely to be at
least a local minimum.

4.5 Estimation of the Farrington’s seroprevalence model

In Chapter 3 we have seen Farrington’s model for seroprevalence:

F (a) = 1− exp
{

b1

b2
ae−b2a +

1
b2

(
b1

b2
− b3

)
(e−b2a − 1)− b3a

}
. (4.88)

This model comes from an hypothesis of exponentially damped linear model for the
force of infection of measles, mumps and rubella:

`(a) = (b1a− b3)e−b2a + b3 b1, b2, b3 ≥ 0. (4.89)

In that chapter we have also seen by graphical representations that this model ap-
pears broadly consistent with the observations.

In this chapter we fit model 4.88 by nonlinear least squares (NLS) methods (see
Section 4.1.1). The function we want to minimize is:

S(a; b1, b2, b3) =
k∑

i=1

[F (a)− F (a; b1, b2, b3)]2, (4.90)

where k are the number of age groups, F (a) are the observed seropositive proportions
and F (a; b1, b2, b3) are the estimated ones. For example, in Fig. 4.3 we show the surface



b1
b2

S(b1,b2)

Figure 4.3: Mumps: surface of the sum of squares S(b1, b2, b3) with b3 constrained to 0



of S(a; b1, b2, b3) for mumps, with b3 constrained to 0 (as we see from the estimation of
the models, the parameter b3 will never be significantly diffent from 0).

The gradient vector, that is the 3x1 vector of the first derivatives of S(a; b1, b2, b3)
with respect to the parameters, is:

q(a; b1, b2, b3) =
k∑

i=1

[F (a)− F (a; b1, b2, b3)]
[
∂F (a; bi)

∂bi

]
. (4.91)

To minimize S(a; b1, b2, b3), we use four different iterative algorithms:

1. the Newton-Raphson algorithm;

2. the Levenberg-Marquardt algorithm;

3. the Gauss-Newton algorithm;

4. the Variable Metric algorithm.

All these algorithms are implemented with the statistical software R 2.4.1 [28]. Now
we present the results for the three datasets previously introduced in a series of compar-
ative tables. These tables show the following values:

1. The starting values for the algorithm, derived from the linearization of the empirical
hazard function (see Section 3.2.2).

2. The parameter estimates bi (the values with the asterisk are the significative para-
meters).

3. The standard errors for parameter estimates se(bi), necessary to test the signific-
ance of the parameters by the ratio bi/se(bi).

4. The estimated minimum of the function S(a; b1, b2, b3) to be minimized. Being this
function the sum of squared difference between the observed proportions and the
estimated proportions, the minimum represents the residual sum of squares (RSS)
of the model.

5. The number of iterations required by the algorithm to converge to the minimum
of the function S(a; b1, b2, b3).



MUMPS
Newton-Raphson Levenberg-Marquardt

Starting Values
b1 0.054105 0.054105
b2 0.076544 0.076544
b3 0.000000 0.000000

Parameter Estimates
b1 0.132012* 0.132012*
b2 0.163132* 0.163135*
b3 −0.041836 −0.41831

Parameter Standard Errors
b1 0.006680 0.006774
b2 0.019004 0.020145
b3 0.039834 0.043966

Minimum of S(b1, b2, b3) 0.016060 0.016060
Iterations 29 12

Table 4.1: Comparative table between Newton-Raphson and Levenberg-Marquardt al-
gorithms for mumps data

MUMPS
Gauss-Newton Variable Metric

Starting Values
b1 0.054105 0.054105
b2 0.114098 0.076544
b3 0.000000 0.000000

Parameter Estimates
b1 0.132012* 0.132008*
b2 0.163134* 0.163007*
b3 −0.041833 −0.042118

Parameter Standard Errors
b1 0.006774 0.006676
b2 0.020146 0.018770
b3 0.043966 0.038985

Minimum of S(b1, b2, b3) 0.016060 0.016060
Iterations 15 20

Table 4.2: Comparative table between Gauss-Newton and Variable Metric algorithms for
mumps data



4.5.1 Mumps: estimation of the seroprevalence

In Tab. 4.1 and Tab. 4.2 we present the comparated results for mumps.
From the two tables, it emerges that the more efficient algorithms, that is the al-

gorithms which converge at the solution with the minor number of iterations, are the
Levenberg-Marquardt (12 iterations) and the Gauss-Newton (15 iterations).

All the algorithms, except the Gauss-Newton, converge to the minimum of S(a; b1, b2, b3)
starting from the initial guesses furnished by the linear fitting of the R(a) function
(0.054105 and 0.076544 respectively for b1 and b2), even though the initial guesses are
significatively far from the parameter estimates. Instead, in this case the Gauss-Newton
algorithm is not able to converge to the minimum using these starting values: in par-
ticular, the initial guess for the parameter b2 is too far from the estimate and this fact
causes an error (”singular gradient”) in the procedure. So, trying different values, every
time closer to the estimate, we have found the minimum initial guess (0.114098) required
from the algorith to converge.

Besides, whatever algorithm we use, we found that the parameter b3 is not signific-
antly different from 0.

Fig. 4.4 shows the observed seropositive proportions and the estimated curve determ-
ined with the Gauss-Newton algorithm.

Now we report some measures of goodness of fit, whose meaning will be fully explic-
ated in Chapter 5. These measures are:

1. Degrees of freedom (d.f.): the residual degrees of freedom of the model, which
are N − k, where N is the number of covariate patterns and k is the number of
parameters in the model.

2. Deviance (D): see Section 5.4.1. When comparing fitted models, the smaller the
deviance, the better the fit.

3. Pearson’s chi-squared statistic (X2): see Section 5.4.2. When comparing fitted
models, the smaller X2, the better the fit.

4. Likelihood ratio chi-squared statistic (C): see Section 5.4.3. When comparing fitted
models, the higher C, the better the fit.

5. Pseudo R2: see Section 5.4.4. When comparing fitted models, the higher the pseudo
R2, the better the fit.
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Figure 4.4: Mumps: observed and estimated prevalence by Gauss-Newton algorithm



6. R2 based on the Kullback - Leibler divergence (R2
KL): see Section 5.4.5. When

comparing fitted models, the higher this statistic, the better the fit.

d.f. D X2 C Pseudo R2 R2
KL

23.00 46.48 49.89 2877.06 0.3637 0.9841

Table 4.3: Mumps: measures of goodness of fit for the estimated non-linear least squares
model for prevalence

The measures presented in Tab. 4.3 tell us that Farrington’s model is a good model:
for this fitted model the deviance is 46.48 on 23 degrees of freedom and the chi-squared
goodness of fit statistics is about 50 (23 d.f.). The R2 constructed from the Kullback-
Leibler divergence is 0.98, that is about 98% of the information provided by the full
model with respect to the null model is explicated by the fitted model. The pseudo R2

is 0.3637, while the maximum achievable is 0.3696.

4.5.2 Rubella: estimation of the seroprevalence

In Tab. 4.4 and Tab. 4.5 we present the comparated results for rubella.
In this case also the more efficient algorithms are the Levenberg-Marquardt (9 itera-

tions) and the Gauss-Newton (14 iterations).
Differently from mumps data, for rubella all the algorithms achieve the convergence

starting from the initial guesses provided by the linear plot of R(a), that is 0.026984 for
b1 and 0.057823 for b2.

Even for rubella, the parameter b3 is never significant.

Fig. 4.5 shows the observed seropositive proportions and the estimated curve determ-
ined with the Gauss-Newton algorithm.

As we have done with mumps, now we report some measures of goodness of fit in
Tab. 4.6.

The measures presented in Tab. 4.6 tell us that Farrington’s model for rubella is also
a good model: for this fitted model the deviance is 47.40 on 23 degrees of freedom and
the chi-squared goodness of fit statistics is about 54 (23 d.f.). The R2 constructed from
the Kullback-Leibler divergence is 0.97, that is about 97% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.2516, while the maximum achievable is 0.2607.



RUBELLA
Newton-Raphson Levenberg-Marquardt

Starting Values
b1 0.026984 0.026984
b2 0.057823 0.057823
b3 0.000000 0.000000

Parameter Estimates
b1 0.064746* 0.064746*
b2 0.175518* 0.175515*
b3 0.023834 0.023832

Parameter Standard Errors
b1 0.005328 0.005258
b2 0.030396 0.030205
b3 0.026386 0.026697

Minimum of S(b1, b2, b3) 0.031598 0.031598
Iterations 28 9

Table 4.4: Comparative table between Newton-Raphson and Levenberg-Marquardt al-
gorithms for rubella data

RUBELLA
Gauss-Newton Variable Metric

Starting Values
b1 0.026984 0.026984
b2 0.057823 0.057823
b3 0.000000 0.000000

Parameter Estimates
b1 0.064746* 0.064805*
b2 0.175515* 0.175863*
b3 0.023832 0.024034

Parameter Standard Errors
b1 0.005258 0.005269
b2 0.030204 0.029218
b3 0.026697 0.025370

Minimum of S(b1, b2, b3) 0.031598 0.031599
Iterations 14 23

Table 4.5: Comparative table between Gauss-Newton and Variable Metric algorithms for
rubella data
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Figure 4.5: Rubella: observed and estimated prevalence by Gauss-Newton algorithm



d.f. D X2 C Pseudo R2 R2
KL

23.00 47.40 54.18 1309.49 0.2516 0.9651

Table 4.6: Rubella: measures of goodness of fit for the estimated non-linear least squares
model for prevalence

PARVOVIRUS
Newton-Raphson Levenberg-Marquardt

Starting Values
b1 0.009861 0.009861
b2 0.072097 0.072097
b3 0.000000 0.000000

Parameter Estimates
b1 0.045824* 0.045821*
b2 0.252131* 0.252111*
b3 0.006502 0.006500

Parameter Standard Errors
b1 0.010373 0.010381
b2 0.051183 0.052943
b3 0.006052 0.006431

Minimum of S(b1, b2, b3) 0.088321 0.088321
Iterations 27 13

Table 4.7: Comparative table between Newton-Raphson and Levenberg-Marquardt al-
gorithms for parvovirus data

4.5.3 Parvovirus: estimation of the seroprevalence

In Tab. 4.7 and Tab. 4.8 we present the comparated results for parvovirus.

The algorithms applied to parvovirus data confirm that the best ones are the Levenberg-
Marquardt (13 iterations) and the Gauss-Newton (13 iterations). All the algorithms are
able to converge starting from the initial guesses (0.009861 for b1 and 0.072097 for b2)
provided by the linear plot of R(a).

These data also confirm that the parameter b3 is not significantly different from 0.

Fig. 4.6 shows the observed seropositive proportions and the estimated curve de-
termined with the Gauss-Newton algorithm. As we can see, the model is not able to fit
well the behaviour of data after 20 years old, when the observed seropositive proportions



PARVOVIRUS
Gauss-Newton Variable Metric

Starting Values
b1 0.009861 0.009861
b2 0.072097 0.072097
b3 0.000000 0.000000

Parameter Estimates
b1 0.045821* 0.046102*
b2 0.252113* 0.253827*
b3 0.006500 0.006700

Parameter Standard Errors
b1 0.010380 0.009538
b2 0.052941 0.046587
b3 0.006432 0.005655

Minimum of S(b1, b2, b3) 0.088321 0.088326
Iterations 13 34

Table 4.8: Comparative table between Gauss-Newton and Variable Metric algorithms for
parvovirus data

before decrease and then increase again.

As we have done with mumps and rubella, now we report some measures of goodness
of fit in Tab. 4.9.

d.f. D X2 C Pseudo R2 R2
KL

23.00 49.34 54.27 256.75 0.0576 0.8388

Table 4.9: Parvovirus: measures of goodness of fit for the estimated non-linear least
squares model for prevalence

The measures presented in Tab. 4.6 tell us that Farrington’s model for parvovirus
is not a bad model, but neither a very good one: for this fitted model the deviance is
49.34 on 23 degrees of freedom and the chi-squared goodness of fit statistics is about 54
(23 d.f.). However, it may be that these small values of D and X2 are due more to the
small values of the fitted probabilities π̂ rather than to the adequacy of the model. The
R2 constructed from the Kullback-Leibler divergence is 0.84, that is about 84% of the
information provided by the full model with respect to the null model is explicated by
the fitted model. The pseudo R2 is 0.0576, while the maximum achievable is 0.0687.
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Figure 4.6: Parvovirus: observed and estimated prevalence by Gauss-Newton algorithm



4.6 Estimation of the Farrington’s force of infection model

At this point, after the estimation of the parameters of seroprevalence function 4.88,
we can finally estimate the force of infection, in accordance with the following function,
proposed by Farrington [1]:

`(a) = (b1a− b3)e−b2a + b3. (4.92)

However, it is important to remember that in all the dataset presented, the parameter
b3 is resulted not significant.

Besides, for every dataset, we have also determined the average age at infection A,
proposed by Griffiths [13], which is the expected value of the age at infection in the
population:

A =
∫ L

0
af(a)da =

∫ L

0
P (a)da, (4.93)

where L is the average life expectancy (taken to be 75 years).
Since F (L) < 1, there is a finite atom of probability that an individual will remain

uninfected throughout his or her lifetime. Let f denote this atom:

f = 1− F (L). (4.94)

But, in general, if we have data available to some upper age limit U < L (e.g. in our
case U = 44), then

f = 1− F (U). (4.95)

In this way, if we want to determine the average age at infection, we have to add to
the formula proposed by Griffiths [13] a correction factor:

A =
∫ U

0
P (a)da + f(L− U). (4.96)

4.6.1 Mumps: estimation of the force of infection

In Fig. 4.7 we present the graph of the estimated force of infection for mumps data.
The force of infection for mumps presents a steep rise until 6.5 years old, which is the

modal age at infection, that is the age at which the number of new cases is maximum:
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Figure 4.7: Mumps: estimated force of infection in accordance with Farringtons’s model

here the force of infection is `(6.5) = 0.2972, that is to say people aged 6.5 years old have
a risk of 29.72% to acquire the infection.

Afterwards, the force of infection declines in a less rapid way.

The average age at infection A for mumps, evaluated using Eq. 4.96, is 5.2 years old.
This means that mumps is a typical disease of preschool children and young schoolchil-
dren.

4.6.2 Rubella: estimation of the force of infection

In Fig. 4.8 we present the graph of the estimated force of infection for rubella data.

The force of infection for rubella has a similar pattern to mumps, but less steep. It
presents a rise until 5.5 years old: here the force of infection is 0.1356, that is to say
people aged 5.5 years old have a risk of 13.56% to acquire the infection. As we can see,
the force of infection for rubella is weaker than that for mumps: a low peak is followed
by a much slower decline in the force of infection with age.

The average age at infection A for rubella, evaluated using Eq. 4.96, is 12.1 years
old. This means that rubella is typical of older schoolchildren.
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Figure 4.8: Rubella: estimated force of infection in accordance with Farringtons’s model

4.6.3 Parvovirus: estimation of the force of infection

In Fig. 4.9 we present the graph of the estimated force of infection for parvovirus
data.

The force of infection for parvovirus has a similar pattern to mumps and rubella, but
less steep than rubella. It presents a rise until 3.5 years old: here the force of infection
is 0.0664, that is to say people aged 3.5 years old have a risk of 6.64% to acquire the
infection. As we can see, the force of infection for parvovirus is weaker than that for
rubella and much lower than that for mumps: a very low peak is followed by a much
slower decline in the force of infection with age.

The weaker the force of infection, the higher the average age at infection. So, in
parvovirus case the average age at infection A, evaluated using Eq. 4.96, is 25.4 years
old. This means that parvovirus infections are typical of young men and young women.
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Figure 4.9: Parvovirus: estimated force of infection in accordance with Farringtons’s
model



Chapter 5

Generalized linear models

5.1 Generalized linear models

A generalized linear model (GLM) is composed by three components:

1. The random component Y , which is identically and independently distributed with
constant variance and E[Y ] = µ.

2. The systematic component η, which is the following linear predictor:

η =
∑

i

βixi. (5.1)

3. The link between the random and the systematic components. This link is a
function, g(·), that puts together the two previous components:

g(E[Y ]) = η, (5.2)

or, that is the same,

E[Y ] = g−1(η). (5.3)

Generalized linear models allow two extensions:

1. The distribution of Y may come from an exponential family

2. The link function g(·) may become any monotonic differentiable function.
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The subject of generalized linear models was formulated by Nelder and Wedderburn
[29] as a way of putting under one framework various previous models, and finding their
commonalities. See also McCullagh and Nelder [30] and Dobson [31].

5.2 Exponential familiy of distributions

Consider a single random variable Y whose probability distribution depends on a
single parameter θ. The distribution belongs to the exponential family if it can be
written in the form

fY (y; θ, φ) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)
}

. (5.4)

The functions a(·), b(·) and c(·) define the distribution.
The parameter φ is called dispersion parameter. If it is known, then the distribution

of Y belongs to the exponential family; otherwise, we cannot state that the distribution
belongs to the exponential family.

The parameter θ is called canonical or natural parameter of the exponential family.
Many well-known distributions belong to the exponential family. For example, the

Poisson, Normal, binomial and gamma distributions can all be written in the canonical
form. Thus for the binomial distribution

fY (y; θ, φ) =

(
n

y

)
πy(1− π)n−y

(5.5)

We write L(θ, φ; y) = lnfY (y; θ, φ) for the log-likelihood function considered as a
function of θ and φ, y being given. The mean and the variance of Y can be derived from
the relations

E

(
∂L

∂θ

)
= 0 (5.6)

and

E

(
∂2L

∂θ2

)
+ E

(
∂L

∂θ

)2

= 0. (5.7)

The log-likelihood of fY (y; θ) is



L(θ, φ; y) =
yθ − b(θ)

a(φ)
+ c(y, φ), (5.8)

from what

E

(
∂L

∂θ

)
=

y − b′(θ)
a(φ)

, (5.9)

and

E

(
∂2L

∂θ2

)
= −b′′(θ)

a(φ)
, (5.10)

where primes denote differentiation with respect to θ.
Setting Eq. 5.9 to 0, we have

0 = E

(
∂L

∂θ

)
=

µ− b′(θ)
a(φ)

, (5.11)

so that

E(Y ) = µ = b′(θ). (5.12)

Similarly from Eq. 5.7, Eq. 5.9 and Eq. 5.10 we have

0 = −b′′(θ)
a(φ)

+
[µ− b′(θ)]2

a2(φ)
= −b′′(θ)

a(φ)
+

V ar(Y )
a2(φ)

, (5.13)

so that

V ar(Y ) = b′′(θ)a(φ). (5.14)

Thus the variance of Y is the product of two functions:

1. b′′(θ), which only depends on the canonical parameter θ (and hence on the mean
µ) and is the so-called variance function.

2. a(φ) is independent of θ and depends only on φ. This function is commonly of the
form

a(φ) =
φ

w
, (5.15)

where the dispersion parameter φ is constant over observations and w is a known
prior weight that varies from observation to observation.



Normal Poisson Binomial

Notation N(µ, σ2) P (µ) Bin(n, π)/n

Range of y (−∞,∞) 0(1)∞ 0(1)n
n

Dispersion parameter: φ σ2 1 1/n

Cumulant function: b(θ) θ2/2 eθ ln(1 + eθ)

c(y;φ) −1
2

(
y2

φ + ln(2πφ)
)

− ln y! ln
(

n
ny

)
µ(θ) = E(Y ; θ) θ eθ eθ/(1 + eθ)

Canonical link: θ(µ) identity log logit

Variance function 1 µ π(1− π)

Table 5.1: Characteristics of some common univariate distributions in the exponential
family

The most important distributions of the form 5.4 are summarized in Tab. 5.1.

5.3 The link function

The link function relates the linear predictor η to the expected value µ of a datum y.
For the binomial distribution we have o < π < 1 and a link should satisfy the

condition that it maps the interval (0,1) onto the whole real line. We consider three
possible functions:

1. Logit:

ln
(

π

1− π

)
= η; (5.16)

2. Probit:
Φ−1(π) = η, (5.17)

where Φ−1 is the Normal cumulative distribution function;



3. Complementary log-log:
ln[− ln(1− π)] = η. (5.18)

5.3.1 Sufficient statistics and canonical links

Each of the distributions in Tab 5.1 has a special link function for which there exists
a sufficient statistic equal in dimension to β in the linear predictor η =

∑
xjβj . These

canonical links, as they are called, occur when

θ = η, (5.19)

where θ is the canonical parameter.
The canonical link are reported in Tab. 5.1; for the binomial distribution, the canon-

ical link is the logit link:

ln
(

π

1− π

)
= η. (5.20)

For the canonical links, the sufficient statistic is X ′Y in matrix notation, with com-
ponents

∑
i

xijYi j = 1, . . . , N, (5.21)

summation being over the units.
Although canonical links lead to desirable statistical properties of the model, partic-

ularly in small samples, there is in general no a priori reason why the systematic effects
in a model should be additive on the scale given by that link. It is convenient if they
are, but convenience alone must no replace quality of fit as a model selection criterion.

5.4 Measuring the goodness of fit

Fitting a model to data may be regarded as a way of replacing a set of data values y by
a set of fitted values µ̂ derived from a model involving (usually) a relatively small number
of parameters. In general the µs will not equal the ys exactly, and the question then arises
of how discrepant they are, because while a small discrepancy may be tolerable, a large
discrepancy is not. Measures of discrepancy (or goodness of fit) may be formed in various
ways, but we shall be primarily concerned with that formed from the logarithm of a ratio
of likelihoods, to be called the deviance.



Given N observations we can fit models to them containing up to N parameters. The
two extreme models are the null model and the full model :

• The null model fnull is one in which only one parameter µ is used so that η(E[Yi]) =
µ, that is all responses have the same predicted outcome. This model consigns all
the variation between the ys to the random component.

• The full model fmax is the other extreme where the maximum number of parameters
are used in the model so that the observed response values equal to the predicted
response values exactly, η(E[Yi]) = yi. With this model we have a perfect fitting to
observed data: it consigns all the variation in the ys to the systematic component
leaving none for the random component.

In practice the null model is usually too simple and the full model is uninformative
because it does not summarize the data but merely repeats them in full. However, the
full model gives us a baseline for measuring the discrepancy for an internediate model
with k parameters.

5.4.1 The deviance

It is convenient to express the log-likelihood in terms of the mean-value parameter µ

rather than the canonical parameter θ. Let L(µ̂, φ; y) be the log likelihood maximized over
β for a fixed value of the dispersion parameter φ. The maximum likelihood achievable in a
full model with N parameters is L(y, φ; y), which is ordinarily finite. The discrepancy of a
fit is proportional to twice the difference between the maximum log-likelihood achievable
and that achieved by the model under investigation. If we denote by θ̂ = θ(µ̂) and
θ̃ = θ(y) the estimates of the canonical parameters under the two models, the discrepancy,
assuming ai(φ) = φ/wi, can be written

D(y; µ̂)
φ

=

∑
i 2wi

{
yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

}
φ

, (5.22)

where D(y; µ̂) is known as the deviance (or the log-likelihood ratio statistic) for the
current model and is a function of the data only. Note that

D∗(y; µ̂) =
D(y; µ̂)

φ
, (5.23)

so that the scaled deviance D∗(y; µ̂) is the deviance expressed as a multiple of the
dispersion parameter.



Let us see now the deviance for binomial data. The log-likelihood is

L(π̂; y) =
∑

i

{yi ln π̂i + (ni − yi) ln(1− π̂i)} . (5.24)

The maximum achievable log-likelihood is attained at the point

π̃i =
yi

ni
. (5.25)

The deviance function is therefore

D(y; π̂) = 2[Lmax − L]

= 2[L(π̃; y)− L(π̂; y)]

= 2
∑

i

{
yi ln

(
yi

µ̂i

)
+ (ni − yi) ln

[
ni − yi

ni − µ̂i

]}
. (5.26)

This function behaves in much the same way as the residual sum of squares or
weighted residual sum of squares in ordinary linear models. The addition of further
covariates has the effect of reducing D.

It is often claimed that the random variable D(Y ; π̂) is asymptotically or approxim-
ately distributed as χ2

N−k, where k is the number of fitted parameters. This claim is
then used to justify the use of D as a goodness of fit statistic for testing the adequacy
of the fitted model. Proofs of the limiting χ2

N−k distribution are based on the following
assumptions:

1. The observations are distributed independently according to the binomial distribu-
tion. In other words, the possibility of over-dispersion is not considered.

2. The approximation is based on a limiting operation in which N is fixed, ni → ∞
for each i, and in fact niπi(1− πi) →∞.

In the limit given by the assumption 2, D is approximately independent of the es-
timated parameters β̂ and hence approximately independent of the fitted probabilities
π̂. Approximate independence is essential for D to be considered as a goodness of fit
statistic, but this property alone does not guarantee good power.



If N is large and niπi(1−πi) remains bounded, the whole theory breaks down in two
ways. First, the limiting χ2 approximation no longer holds. Second, and more import-
antly, D is not independent of π̂ even approximately. As a consequence, a large value
of D could be obtained with high probability by judicious choice of β and π. In other
words, a large value of D cannot necessarily be considered to be evidence of a poor fit.

The deviance function is most directly useful not as an absolute measure of goodness
of fit but for comparing two nested models. For istance, we may wish to test wheter
the addition of a further covariate significantly improves the fit. Let f0 denote the
model under test and f1 the extended model containing an additional covariate. The
corresponding fitted values are denoted by µ̂0 and µ̂1 respectively. The reduction in
deviance

D(y; µ̂0)−D(y; µ̂1) = 2L(µ̂1; y)− 2L(µ̂0; y) (5.27)

is identical to the likelihood-ratio statistic for testing f0 against f1. This statistic is
distributed approximately like χ2

1 independently of µ̂ under assumption 1 above provided
that either N is large or that assumption 2 is satisfied. In particular, D(Y ; µ̂0) need not
have an approximate χ2 distribution nor need it be distributed independently of µ̂0. The
χ2 approximation is usually quite accurate for differences of deviances even though it is
inaccurate for the deviances themselves.

5.4.2 The Pearson’s chi-squared statistic

Consider the Pearson residual, defined by

X =
y − µ√
V (µ)

. (5.28)

It is just the raw residual scaled by the estimated standard deviation of Y .

The Pearson’s chi-squared statistic is

X2 =
∑

X2 =
N∑

i=1

(yi − µi)2

V (µi)
. (5.29)

For binomial case, the Pearson residual is

X =
y − niπi√
niπi(1− πi)

, (5.30)



so the X2 statistic is

X2 =
∑

X2 =
N∑

i=1

(yi − niπi)2

niπi(1− πi)
. (5.31)

This statistic is equivalent to the weighted residual sum of squares.

When X2 is evaluated at the estimated expected frequencies, the statistic is

X2 =
N∑

i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
. (5.32)

which is asymptotically equivalent to the deviance

D = 2
N∑

i=1

{
yi ln

(
yi

niπ̂i

)
+ (ni − yi) ln

[
ni − yi

ni − niπ̂i

]}
. (5.33)

The proof of the relatioship between X2 and D uses the Taylor series expansion of
s ln(s/t) about s = t. The asymptotic distribution of D, under the hypothesis that the
model is correct, is D ∼ χ2

N−k, therefore approximately X2 ∼ χ2
N−k. The choice between

D and X2 depends on the adequacy of the approximation to the χ2
N−k. There is some

evidence to suggest that X2 is often better than D because D is excessively influenced
by very small frequencies. Both the approximations are likely to be poor, however, if the
expected frequencies are too small (e.g. less than 1).

5.4.3 The likelihood ratio chi-squared statistic

Sometimes the log-likelihood function for the fitted model is compared with the log-
likelihood function for the null model, in which the values πi are all equal (in contrast to
the full model which is used to define the deviance). Under the null model

π̃ =
∑

yi∑
ni

, (5.34)

so the log-likelihood for this model is

L(π̃; y) =
∑

i

{
yi ln

∑
yi∑
ni

+ (ni − yi) ln
(

1−
∑

yi∑
ni

)}
. (5.35)

Let π̂i denote the estimated probability for Yi under the model of interest (so the
fitted value is ŷi = niπ̂i). The statistic is defined by



C = 2[L− Lmin] = 2[L(π̂; y)− L(π̃; y)], (5.36)

where L(π̃; y) denotes the maximum value of the log-likelihood function for the null
model with linear predictor η = β0 and L(π̂; y) is the corresponding value for a more
general model η = β0 + β1x1 + . . . + βkxk. Thus

C = 2
N∑

i=1

{
yi ln

(
ŷi

niπ̃i

)
+ (ni − yi) ln

[
ni − ŷi

ni − niπ̃i

]}
. (5.37)

The approximate sampling distribution for C is χ2
k−1 if all the k parameters except

the intercept term β0 are zero. Otherwise C will have a non-central distribution. Thus
C is a test statistic for the hyppthesis that none of the explanatory variables is needed
for a parsimonious model.

5.4.4 The pseudo R2

By analogy with the index of determination R2 for multiple linear regression another
statistic sometimes used is

pseudo R2 = 1− L(π̂; y)
L(π̃; y)

= 1− L

Lmin
, (5.38)

which represents the proportional improvement in the log-likelihood function due to
the terms in the model of interest, compared to the minimal model.

The maximum value achievable from the pseudo R2 is given by 1 minus the ration
between the log-likelihood of the full model and the log-likelihood of the null model: this
value represents the proportional improvement in the log-likelihood function from the
model without covariates and the model with the maximum number of covariates.

pseudo R2 = 1− L(y; y)
L(π̃; y)

= 1− Lmax

Lmin
. (5.39)

5.4.5 R2 based on the Kullback - Leibler divergence

A standard measure of the information content from observations in a density f(y)
is the expected information, or Shannon’s entropy, E[ln f(y)].

This is the basis for the standard measure of discrepancy between two densities, the
Kullback - Leibler divergence (or information divergence, or information gain, or relative
entropy) (see Kullback [32]). The KL divergence is a natural distance measure from a



”true” probability distribution P to an arbitrary probability distribution Q. Typically
P represents data, observations, or a precise calculated probability distribution. The
measure Q typically represents a theory, a model, a description or an approximation of
P .

For probability distributions P and Q of a discrete variable the KL divergence of Q

from P is defined to be

K(P ||Q) = 2EP ln
P (i)
Q(i)

=
∑

i

P (i) ln
P (i)
Q(i)

. (5.40)

For distributions P and Q of a continuous random variable the summations give way
to integrals, so that

K(P ||Q) = 2EP ln
P (i)
Q(i)

=
∫ ∞

−∞
p(y) ln

p(y)
q(y)

dy, (5.41)

where p(y) and q(y) denote the densities of P and Q and EP denotes expectation
with respect to the true density P . The term ”divergence” rather than ”distance” is used
because it does not in general satisfy the simmetry and triangular properties of a distance
measure. However, K(P ||Q) ≥ 0 with equality if P ≡ Q.

We consider now the density f(y; y), for which the mean is set equal to the realized
y. Then the KL divergence K(y||µ) can be defined as

K(y||µ) = 2Ey ln
[

f(y; y)
f(y;µ)

]
=
∫

f(y; y) ln
[

f(y; y)
f(y;µ)

]
dy. (5.42)

The random variable K(y||µ) is a measure of the deviation of y from the mean µ. For
the exponential family, Hastie [33] shows that the expectation in (5.44) drops out and so

K(y||µ) = 2 ln
[

f(y; y)
f(y;µ)

]
. (5.43)

In the estimated model, with N estimated means µi = x′iβ̂, the estimated KL di-
vergence between the N -vectors y and µ is equal to twice the difference between the
maximum log-likelihood achievable, i.e. the log-likelihood in a full model with as many
parameters as observations, L(y; y), and the log-likelihood achieved by the model under
investigation, L(µ; y):

K(y||µ) = 2[L(y; y)− L(µ; y)]. (5.44)

Let µ0 denote the N -vector with entries µ0, the fitted mean from ML estimation of the



null model. We interpret K(y||µ0) as the estimate of the information in the sample data
on y potentially recoverable by inclusion by inclusion of regressors. It is the difference
between the information in the sample data on y and the estimated information using
µ0, the best point estimate when data on regressors are not utilized, where information
is measured by takinng expectation with respect to the observed value y. By choosing
µ0 to be the ML estimate, K(y||µ0) is maximized. The proposed R2 is the proportionate
reduction in this potentially recoverable information achieved by the fitted GLM:

R2
KL = 1− K(y||µ̂)

K(y||µ̂0)
= 1− 2[Lmax − L]

2[Lmax − Lmin]
= 1− D

Dmin
. (5.45)

This measure can be used for fitted means obtained by any estimation method. For
maximum-likelihood estimates of generalized linear models, based on the exponential
density function (5.4), R2

KL has the following properties:

1. R2
KL is nondecreasing as regressors are added;

2. 0 ≤ R2
KL ≤ 1;

3. R2
KL is a scalar multiple of the likelihood ratio test (deviance) for the joint signi-

ficance of the explanatory variables;

4. R2
KL equals the likelihood ratio index 1−L(µ̂; y)/L(µ̂0; y) if and only if L(y; y) = 0;

5. R2
KL measures the proportionate reduction in recoverable information due to the

inclusion of regressors, where information is measured by the Kullback-Leibler di-
vergence.

Property 4 is of interest as the likelihood ratio index, which measures the proportion-
ate reduction in the log-likelihood due to inclusion of regressors, is sometimes proposed as
a general pseudo R2 measure. Equality occurs for the Bernoulli model, but in general the
likelihood ratio index differs and, for other discrete dependent variable models, is more
pessimistic regarding the contribution of regressors, as L(y; y) ≤ 0. In the continuous
case, large values (positive or negative) of the likelihood ratio index can arise if L(µ̂0; y)
is close to zero (positive or negative). By contrast, R2

KL will always be bounded by zero
and one.

5.4.6 Residuals

For generalized linear models applied to binomial data, there are two main forms
of residuals corresponding to the goodness of fit measures D and X2. If there are N



different covariate patterns (i.e. observations with the same values of all the explanatory
variables), then N residuals can be calculated. Let yi denote the number of successes,
ni the number of trials and π̂i the estimated probability of success for the ith covariate
pattern.

The Pearson residuals

These residuals, already presented in Section 5.4.2, are

Xi =
yi − niπ̂i√
niπ̂i(1− π̂i)

, i = 1, . . . , N. (5.46)

From Eq. 5.32,
∑N

i X2
i = X2, the Pearson’s chi-squared goodness of fit statistic.

The deviance residuals

These residuals are

di = sign(yi − niπ̂i)

√{
2
[
yi ln

(
yi

µ̂i

)
+ (ni − yi) ln

(
ni − yi

ni − µ̂i

)]}
, (5.47)

where the term sign(yi − niπ̂i) 1 ensures that di has the same sign as Xi.
From Eq. 5.26,

∑N
i d2

i = D, the deviance.

These two kinds of residuals can be used for checking the adequacy of a model.
For example, they should be plotted against each continuous explanatory variable in
the model to check if the assumption of linearity is appropriate. Normal probability
plots can also be used because the standardized residuals should have, approximately,
the standard Normal distribution N(0,1), provided the numbers of observations for each
covariate pattern are not too small.

5.5 An algorithm for fitting GLM

The maximum-likelihood estimates of the parameters β in the linear predictor η can
be obtained by iterative weighted least squares (IWLS). In this regression the dependent

1The function sign takes a vector as argument and returns a vector with the signs of the corresponding
elements of its argument (the sign of a real number is 1, 0, or -1 if the number is positive, zero, or negative,
respectively).



variable is not y but z, a linearized form of the link function applied to y, and the weights
are functions of the fitted values µ̂. The process is iterative because both the adjusted
dependent variable z and the weight W depend on the fitted values, for which only
current estimates are available. The procedure underlying the iteration is as follows.

Let η̂0 be the current estimate of the linear predictor, with corresponding fitted value
µ̂0 derived from the link function η = g(µ). Form the adjusted dependent variate with
typical value

z0 = η̂0 + (y − µ̂0)
(

∂η

∂µ

)
0

, (5.48)

where the derivative of the link is evaluated at η0 and the quadratic weight defined
by

W−1
0 =

(
∂η

∂µ

)2

0

V0, (5.49)

where V is the variance function of y.

Now regress z0 on the covariate matrix X with weight W0 to give new estimates b1

of the parameters; from these form a new estimate η̂1 of the linear predictor. Repeat
until changes are sufficiently small.

Note that z is just a linearized form of the link function applied to the data, for to
the first order

g(y) ' g(µ) + (y − µ)g′(µ) (5.50)

and the right-hand side is

η + (y − µ)
∂η

∂µ
. (5.51)

The variance of Z is just W−1 (ignoring the dispersion parameter), assuming that η

and µ are fixed and known.

A convenient feature of generalized linear models is that they have a simple starting
procedure necessary to allow the iteration to get under way. This consists of using the
data themselves as the first estimate of µ̂0 and from this deriving η̂0, (∂η/∂µ)0 and V0.

5.5.1 Justification of the fitting procedure

From the log-likelihood L, written in canonical form



L(θ, φ; y) =
yθ − b(θ)

a(φ)
+ c(y, φ), (5.52)

we have

∂L

∂θ
=

[y − b′(θ)]
a(φ)

=
(y − µ)
a(φ)

. (5.53)

Hence

∂L

∂µ
=

∂L

∂θ

/
∂µ

∂θ
=

(y − µ)
V

, (5.54)

since

∂µ

∂θ
= b′′(θ) =

V

a(φ)
. (5.55)

Now

∂L

∂η
=

∂L

∂µ

∂µ

∂η
, (5.56)

and finally

∂L

∂βi
=

∂L

∂η

∂η

∂βi
=

∂L

∂µ

∂µ

∂η
xi =

(y − µ)
V

∂µ

∂η
xi. (5.57)

The maximum-likelihood equations for βi are therefore given by

∑(
y − µ

V

)
∂µ

∂η
xi =

∑
W (y − µ)

∂η

∂µ
xi = 0 (5.58)

for each variate xi, with summation over the units.
Fisher’s scoring method uses the expected value of the Hessian matrix, i.e.

E

(
∂2L

∂βi∂βj

)
= E

(
∂

∂βj

[∑
(Y − µ)V −1 ∂µ

∂η
xi

])
(5.59)

which is equal to

E

(∑
(Y − µ)

∂

∂βj

[
V −1 ∂µ

∂η
xi

]
+
∑ ∂

∂βj

∑
(Y − µ)V −1 ∂µ

∂η
xi

)
. (5.60)

Eq. 5.60 is the equal to



−
∑

V −1

(
∂µ

∂η

)2

xixj = −
∑

Wxixj . (5.61)

Thus given current estimates b of β, the method gives adjustements δb defined by

Aδb = c, (5.62)

where A is a kxk matrix given by

Aij =
∑

t

Wtxitxjt (5.63)

and c is a kx1 vector given by

ci =
∑

t

Wtxit(yt − µt)
∂ηt

∂µt
. (5.64)

Now

(Ab)i =
∑

j

Aijbj =
∑

t

Wtxitηt, (5.65)

and therefore new estimates b∗ = b + δb satisfy the equations

(Ab∗)i = [A(b + δb)]i =
∑

Wtxit

[
ηt + (yt − µt)

∂ηt

∂µt

]
, (5.66)

and these have the form of linear weighted least-squares equations with weight

W = V −1

(
∂µ

∂η

)2

(5.67)

and dependent variate

z = η + (y − µ)
∂η

∂µ
. (5.68)

Note that simplification occurs for the canonical links: for these the expected value
and the actual value of the Hessian matrix coincide, so that the Fisher’s scoring method
and the Newton-Raphson method reduce to the same algorithm. This comes about
because the linear weight function V −1∂µ/∂η in the maximum-likelihood equations is a
constant and the first term in the expansion of the Hessian (5.60) is identically 0. Note
also that W = V for this case.

Finally, if the model is linear on the scale on which Fisher’s information is constant,



i.e. g′(µ) = 1/
√

V (µ), the vector of weights is constant and need not to be recomputed
at each iteration.

5.6 Log-likelihood for binomial data

Let the responses y1, . . . , yN correspond to independent random variables Y1, . . . , YN

where Yi is assumed to be binomially distributed with index ni and parameter πi. The
log-likelihood considered as a function of the vector π = (π1, . . . , πN ) is

L(pi; y) =
N∑

i=1

[
yi ln

(
πi

1− πi

)
+ ni ln(1− πi)

]
. (5.69)

The systematic part of the model specifies the relation between π and the experi-
mental or observational conditions as summarized by the model matrix X of order Nxk.
For generalized linear models this relationship takes the form

g(πi) = ηi =
∑

j

xijβj ; i = 1, . . . , N, (5.70)

so that Eq. 5.69 can be expressed as a function of the unknown parameters β1, . . . , βk.
In particular, if g(π) is the logit function

g(π) = ln
(

π

1− π

)
, (5.71)

Eq. 5.69 becomes

L(β; y) =
∑

i

∑
j

yixijβj − [
∑

i

ni ln(1 + exp
∑

j

xijβj)], (5.72)

where we have written L(β; y) instead of L(π(β); y).

The usual asymptotic results associated with statistics derived from Eq. 5.69 or Eq.
5.72 depend only on second-moment assumptions. Thus it is not essential to assume
binomial variation and independence. It is sufficient to assume simply that

E(Yi) = niπi; i = 1, . . . , N, (5.73)

and that

Cov(Yi, . . . , Yk) = diag[niπi(1− πi)]. (5.74)



In particular, the observations need not to be integer-valued but we must have 0 ≤
Yi ≤ ni.

The method of maximizing L(β; y) is applicable with adjusted dependent variable

z = η +
(y

n
− π

) ∂η

∂π
, (5.75)

and quadratic weight function

W =
n

π(1− π)

(
∂η

∂π

)2

. (5.76)

For the logit function, which is the canonical link, these simplify to

z = η +
y − nπ

nπ(1− π)
, (5.77)

and

W = nπ(1− π). (5.78)

The approximate covariance matrix of β̂ is (X ′WX)−1.

5.6.1 Parameter estimation

Parameter estimates denoted by β̂ are obtained by maximizing the log-likelihood over
the space specified by the systematic part of the GLM.

A simple method of wider applicability is to use the Newton-Raphson method with
the second-derivative matrix replaced by its expected value. The diagonal matrix of
weights for the linear logistic model is given by

W−1 = diag
[
π̂i(1− π̂i)

ni

]
, (5.79)

and the vector of adjusted dependent variates has elements

zi = η̂i +
yi − niπ̂i

niπ̂i(1− π̂i)
, (5.80)

where ηi = ln[πi/(1− πi)]. The iterative process can therefore be written in terms of
the model matrix X as

X ′WXβ̂ = X ′WZ (5.81)



where W and Z are computed as functions of the current estimate of β.
If the systematic part of the model is linear on the probit or other scale, the weighting

matrix W and adjusted dependent variate z must be changed accordingly, while the form
of the iterative equations (5.81) remains unaltered.

Convergence of the iterative process

The convergence of process (5.81) is rarely a problem unless one or more elements
of β̂ are infinite. This can occur, for example, when the data are sparse and, for some
observations, yi = 0 or yi = ni. Although the iterative process will not converge under
these circumstances, nevertheless generally the jth iterate π̂(j) tends quite rapdily to-
wards π̂ and the deviance tends towards its limiting value. Thus the fitted values niπ̂ will
be accurate bu the parameter estimates β̂ may not be. The criterion used for deciding
wheter the process has converged should be based on π̂(j+1) − π̂(j) (e.g. by using the
deviance) rather than on β̂(j+1) − β̂(j).

Some results concerning the existence and uniqueness of the parameter estimates β̂

have been given by Wedderburn [34]. These results show that if the link function g(π) is
log concave, as it is for the three functions logit, probit and complementary log-log, and
if 0 < yi < ni for each i, then β̂ is finite and L(π; y) has a unique maximum at β̂.

Starting values β̂0 can be obtained beginning with fitted values defined by µ̂ = (y +
0.5)/(n + 1). A good choice of starting value usually reduces the number of cycles in
(5.81) by about one or perhaps two. Consequently, the choice of initial estimate is usually
not critical.

5.6.2 Asymptotic theory for grouped data

We are concerned here with the asymptotic distribution of the parameter estimates
and likelihood-ratio statistics. A very careful analysis would require the consideration
of a hypothetical sequence of problems as the elements of the binomial index vector n

tend to infinity. However, we take the scalar n to represent a typical binomial index, say
n = min(n1, . . . , nN ) such that as n →∞ each element ni →∞ in constant proportion.
The number of distinct binomial observations, N , is considered fixed.

The principal results given below refer to generalized linear models where X, of order
Nxk, is the model matrix and the weighting matrix W is diagonal with elements

W = diag

[
1

nπ(1− π)

(
∂π

∂η

)2
]

. (5.82)



The dispersion parameter φ = σ2, included for generality, should be equal to 1 for
binomial data. The asymptotic distribution of β̂ is given by

√
n(β̂ − β) ∼ N [0, nσ2(X ′WX)−1] + Ok(1/

√
n), (5.83)

assuming, as usual, the adequacy of the model. The error term in (5.83) means that
the cumulative distribution of

√
n(β̂−β) differs from the cumulative normal distribution

by a term of order 1/
√

n. In other words probability calculations based on the Normal
approximation 5.83 have an error of order 1/

√
n. It is also possible to show that the bias

in β̂ is O(1/n).
An important requirement in (5.83) is that k, the number of parameters, should re-

main fixed as n →∞. In practice this means that k should not be a large fraction of N ,
particularly if some of the binomial denominators are small.

The second major asymptotic result concerns the distribution of the deviance, D(Y ; π̂).
The null distribution is given by

D(Y ; π̂) ∼ σ2χ2
N−k + Ok(1/

√
n), (5.84)

where as before σ2 = 1 for binomial data.
For over-dispersed data is necessary to find an estimate of σ2 in order to use (5.83)

For this, there are several possibilities, including the estimator D(Y ; π̂)/(N − k) based
on the deviance; consistency as n →∞ follows from (5.84). However, it is preferable the
estimator

σ̃2 =
1

N − k

N∑
i=1

(yi − niπ̂i)2

[niπ̂i(1− π̂i)]

=
X2

N − k
, (5.85)

where X2 is Pearson’s chi-squared statistic. The main reason for preferring σ̃2 is that
it is consistent in the limit as N → ∞ with n fixed and its aymptotic distribution is
known to be

σ2χ2
N−k

N − k
+ Ok(1/

√
n). (5.86)

Thus σ̃2 is a satisfactory estimator in either limit. Furthermore it can be shown that



as n →∞, β̂ and σ̃2 are asymptotically independent.

Approximate confidence intervals for an element, β1 say, of β are formed in the usual
way, namely

β̂1 ± zα/2

√
i(11) (5.87)

if σ2 = 1 is known and

β̂1 ± σ̃tα/2,N−k

√
i(11) (5.88)

if σ2 is unknown. Here i(11) is the [1,1] element of (X ′WX)−1, Φ(zα) = 1 − α and
tα/2,N−k is the 100(1−α/2)% quantile of the t-distribution with N−k degrees of freedom.
The intervals given above have coverage probability 1−α + O(1/

√
n), the probability in

each tail being α/2 + O(1/
√

n).

5.7 Age-dependent prevalence and force of infection

As we have already seen previously, in a serological survey we consider an age-specific
cross-sectional prevalence sample of size N (the covariate patterns) and let ai be the age
of the ith subject. Instead of observing the age at infection, we compose a set of current
status data by observing binary variables Yi such that

Yi =

{
0 if subject i had experienced infection before age ai

1 otherwise.
(5.89)

With F (ai) be the probability to be infected before age ai, F (ai) = 1 − P (ai), the
log-likelihood is given by

L(β;Y ) =
N∑

i=1

Yi ln[F (ai)] + (1− Yi) ln[1− F (ai)]. (5.90)

Here, F (a) = g−1(η(a)), where g is the link function and η(a) is the linear predictor.
To estimate the force of infection `(a), we use the definition for the hazard rate (see

Section 1.3.1):

`(a) = −∂P (a)
∂a

1
P (a)

=
∂F (a)

∂a

1
1− F (a)

. (5.91)



The logit link

If we use the logit link, we have the catalytic model

F (a) =
eη(a)

1 + eη(a)
. (5.92)

The force of infection will be determined in the following way:

`(a) =
F ′(a)

1− F (a)

=
η′(a)eη(a)(1 + eη(a))− eη(a)(η′(a)eη(a))

(1 + eη(a))2
(1 + eη(a))

=
η′(a)eη(a)(1 + eη(a) − eη(a))

1 + eη(a)

= η′(a)
eη(a)

1 + eη(a)
. (5.93)

The complementary log log link

Using the complementary log log link instead, the catalytic model of the prevalence
is

F (a) = 1− e−eη(a)
. (5.94)

Now, the force of infection will be

`(a) =
F ′(a)

1− F (a)

=
−e−eη(a)

(−eη(a))(η′(a))
e−eη(a)

= η′(a)eη(a). (5.95)

The probit link

Finally, using the probit link, the catalytic model of the prevalence is

F (a) = Φ[η(a)] =
∫ η(a)

−∞

1√
2π

exp
{
−z2

2

}
dz (5.96)

and the force of infection is



`(a) =
∂Φ[η(a)]

∂ai

1
1− Φ[η(a)]

= η′(a)
φ[η(a)]

1− Φ[η(a)]
, (5.97)

where φ(·) is the normal probability density function.
It is easy to see that for the binomial distribution, the force of infection can be

expressed as a product of two functions:

`(a) = η′(a)δ(η(a)), (5.98)

where the form of δ(·) is determined by the link function. Tab. 5.2 summaries the
three link functions presented above with their corresponding structure for the force of
infection.

Link function F (a) `(a) δ(η(a))

Logit eη(a)

1+eη(a) η′(a) eη(a)

1+eη(a)
eη(a)

1+eη(a)

Complementary log log 1− e−eη(a)
η′(a)eη(a) eη(a)

Probit Φ[η(a)] η′(a) φ[η(a)]
1−Φ[η(a)]

φ[η(a)]
1−Φ[η(a)]

Table 5.2: General forms for the force of infection

For every dataset (mumps, rubella and parvovirus), we will show now the results of
the fitting of a generalized linear model for prevalence. For every dataset we have fitted
three models in accordance to a different link function g(·): the logit, the probit and the
complementary log log link.

In the following subsections there are the results for the best model: for every dataset,
the first table reports the estimated parameters and their significance test; the second
one shows some measures of goodness of fit. These measures are listed below:

1. Degrees of freedom (d.f.): the first column of these tables reports the residual
degrees of freedom of the model, which are N − k, where N is the number of
covariate patterns and k is the number of parameters in the model.



2. Deviance (D): see Section 5.4.1. When comparing fitted models, the smaller the
deviance, the better the fit.

3. Pearson’s chi-squared statistic (X2): see Section 5.4.2. When comparing fitted
models, the smaller X2, the better the fit.

4. Likelihood ratio chi-squared statistic (C): see Section 5.4.3. When comparing fitted
models, the higher C, the better the fit.

5. Pseudo R2: see Section 5.4.4. When comparing fitted models, the higher the pseudo
R2, the better the fit.

6. R2 based on the Kullback - Leibler divergence (R2
KL): see Section 5.4.5. When

comparing fitted models, the higher this statistic, the better the fit.

Afterwards, we will plot the estimated force of infection for every dataset in accord-
ance with the function determined at the beginning of this section.

5.7.1 Mumps: seroprevalence and force of infection

The seroprevalence estimated function

The best GLM for mumps has a logit link function:

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1ai, (5.99)

where ai is the age of the ith subject.
The prevalence F (a) is given by

F (ai) =
exp(β̂0 + β̂1ai)

1 + exp(β̂0 + β̂1ai)
. (5.100)

Estimate Std. Error z value Pr(>|z|)
β̂0 −0.8684 0.0603 −14.39 0.0000
β̂1 0.2247 0.0069 32.49 0.0000

Table 5.3: Mumps: summary of the estimated GLM-logit for prevalence

Fig. 5.1 shows the observed seropositive proportions and the plot of the estimated
prevalence function.
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Figure 5.1: Mumps: observed and estimated prevalence with GLM-logit



d.f. D X2 C Pseudo R2 R2
KL

24.00 581.37 1755.63 2342.17 0.2961 0.8011

Table 5.4: Mumps: measures of goodness of fit for the estimated GLM-logit for prevalence

As we can see from the measures of goodness of fit, but also from the graph, this
logit model does not fit very well the observed seropositive proportion, above all in the
first years of life until 15 years old: for example, the observed proportion in the first
age class [0,1] is 0.14, while the respective estimated proportion is 0.37! For this fitted
model the deviance is very high, i.e. about 581 on 24 degrees of freedom and the chi-
squared goodness of fit statistics is about 1756 (24 d.f.). The R2 constructed from the
Kullback-Leibler divergence is 0.80, that is about 80% of the information provided by the
full model with respect to the null model is explicated by the fitted model. The pseudo
R2 is 0.2961, while the maximum achievable is 0.3696.

The force of infection estimated function

Now we plot the estimated force of infection, whose function under a logit link model
is

`(ai) = η′(ai)
eη(ai)

1 + eη(ai)
= β̂1

exp(β̂0 + β̂1ai)

1 + exp(β̂0 + β̂1ai)
= β̂1F (ai). (5.101)

We assume that `(0) = 0, in accordance to the protection of maternal antibodies for
the first year of life.

As we can see from Eq. 5.101, the force of infection for a linear logistic model is simply
a multiple of the seroprevalence, so the model `(ai) = β̂1F (ai) predicts an upward trend
for the force of infection.

5.7.2 Rubella: seroprevalence and force of infection

The seroprevalence estimated function

The best generalized linear model for rubella is under a logit link function, as it
happens for mumps. That is the model function:

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1ai, (5.102)

where ai is the age of the ith subject, while the prevalence F (a) is given by
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Figure 5.2: Mumps: estimated force of infection under a GLM-logit model



F (ai) =
exp(β̂0 + β̂1ai)

1 + exp(β̂0 + β̂1ai)
. (5.103)

Estimate Std. Error z value Pr(>|z|)
β̂0 −1.0311 0.0692 −14.90 0.0000
β̂1 0.1468 0.0057 25.97 0.0000

Table 5.5: Rubella: summary of the estimated GLM-logit for prevalence

d.f. D X2 C Pseudo R2 R2
KL

24.00 208.84 249.59 1148.05 0.2206 0.8461

Table 5.6: Rubella: measures of goodness of fit for the estimated GLM-logit for prevalence

Fig. 5.3 shows the observed seropositive proportions and the plot of the estimated
prevalence function.

As we can see from the measures of goodness of fit, but also from the graph, this
logistic model does not fit very well the observed seropositive proportion, above all in
the first years of life until 20 years old: for example, the observed proportion in the first
age class [0,1] is 0.14, while the respective estimated proportion is 0.31! For this fitted
model the deviance is about 209 on 24 degrees of freedom and the chi-squared goodness
of fit statistics is about 250 (24 d.f.). The R2 constructed from the Kullback-Leibler
divergence is 0.85, that is about 85% of the information provided by the full model with
respect to the null model is explicated by the fitted model. The pseudo R2 is 0.2206,
while the maximum achievable is 0.2607.

The force of infection estimate function

Now we plot the estimated force of infection in Fig. 5.4, whose function under a logit
link model is the same for mumps (see Eq. 5.101). We assume again that `(0) = 0, in
accordance to the protection of maternal antibodies for the first year of life.

The force of infection is that of a linear logistic model again, so the model `(ai) =
β̂1F (ai) predicts an upward trend for the force of infection for rubella too: indeed it
reaches a peak at age 42.5 (`(42.5) = 0.1460).



●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

● ●

●
●

●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Rubella: observed and estimated prevalence

age

se
ro

pr
ev

al
en

ce

Figure 5.3: Rubella: observed and estimated prevalence with GLM-logit



0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Rubella: estimated force of infection under a GLM−logit model

age

fo
rc

e 
of

 in
fe

ct
io

n

Figure 5.4: Rubella: estimated force of infection under a GLM-logit model



5.7.3 Parvovirus: seroprevalence and force of infection

The seroprevalence estimated function

The best GLM for parvovirus has a probit link function, differently from what happens
for mumps and rubella:

Φ−1[F (ai)] = β̂0 + β̂1ai, (5.104)

where ai is the age of the ith subject.
The prevalence F (a) is given by

F (ai) = Φ(β̂0 + β̂1ai) =
∫ β̂0+β̂1ai

−∞

1√
2π

exp
{
−z2

2

}
dz. (5.105)

Estimate Std. Error z value Pr(>|z|)
β̂0 −0.6175 0.0471 −13.11 0.0000
β̂1 0.0284 0.0021 13.53 0.0000

Table 5.7: Parvovirus: summary of the estimated GLM-probit for prevalence

d.f. D X2 C Pseudo R2 R2
KL

24.00 118.97 115.17 187.12 0.0420 0.6113

Table 5.8: Parvovirus: measures of goodness of fit for the estimated GLM-probit for
prevalence

Fig. 5.5 shows the observed seropositive proportions and the plot of the estimated
prevalence function.

As we can see from the measures of goodness of fit, but most of all from the graph,
this probit model fit very badly the observed seropositive proportion: the probit link
function gives us a series of estimated proportions which lie all on a straight line and so
the model is not able to explicate the non-linearity of the data. For this fitted model
the deviance is about 119 on 24 degrees of freedom and the chi-squared goodness of fit
statistics is about 115 (24 d.f.). As we have already told speaking about Farrington’s
prevalence fitted model, the measures D and X2 are small because of the low values
of the fitted probabilities. The R2 constructed from the Kullback-Leibler divergence is
0.61, that is only about 61% of the information provided by the full model with respect



0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Parvovirus: observed and estimated prevalence

age

se
ro

pr
ev

al
en

ce

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Figure 5.5: Parvovirus: observed and estimated prevalence with GLM-probit



to the null model is explicated by the fitted model. The pseudo R2 is 0.0420, while the
maximum achievable is 0.0687.

The force of infection estimated function

Now we plot the estimated force of infection, whose function under a probit link
model is

`(ai) = β̂1
φ(β̂0 + β̂1ai)

1− Φ(β̂0 + β̂1ai)
. (5.106)

We assume again that `(0) = 0, in accordance to the protection of maternal antibodies
for the first year of life.
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Figure 5.6: Parvovirus: estimated force of infection under a GLM-probit model

Fig. 5.6 show the plot of the estimated force of infection for parvovirus. It lies
on a straight line, predicting an upward trend for it: the peak is reached at age 42.5
(`(42.5) = 0.0342).



5.8 Conclusions

The generalized linear models have been introduced in our analysis primarily because
they furnish the theoretical basis for more complex models, as the fractional polynomials,
which will be presented in the next chapter. Indeed the measures of the goodness of fit
introduced in this chapter can be utilized for classes of models other than GLM: in
this work, for example, they have been used for non-linear least squares models and
for fractional polynomials too. This happens because these measures of discrepancy are
based on the log-likelihood function. Given the responses y1, . . . , yN from a sample,
corresponding to independent random variable Y1, . . . , YN , where Yi is assumed to be
distributed in accordance to a known density function belonging to the exponential family,
it is always possible to construct the log-likelihood function. So in all these cases it is
always possible to construct the goodness-of-fit measures presented in this chapter.

Tab. 5.9 compares all the measures of discrepancy for the three preceding prevalence
models.

GLM Model d.f. D X2 C Pseudo R2 R2
KL

Mumps 24.00 581.37 1755.63 2342.17 0.2961 0.8011
Rubella 24.00 208.84 249.59 1148.05 0.2206 0.8461

Parvovirus 24.00 118.97 115.17 187.12 0.0420 0.6113

Table 5.9: Comparing the measures of goodness of fit for mumps, rubella and parvovirus
GLM models for prevalence

These measures seem to behave in an ambiguous way. For example, keeping fixed the
degrees of freedom of the models, the deviance and the Pearson’s chi-squared statistic
for the parvovirus model are the lowest and this would mean that the model is a good
one; however, the C statistic, the pseudo R2 and R2

KL give us the opposite message,
because C says that the estimated log-likelihood is not so far from the log-likelihood
of the null model, the pseudo R2 tells us that the covariate ”age” does not improve a
lot the log-likelihood function compared to the null model and then R2

KL says that the
model explicates only 61% of the total information, measured by the Kullback-Leibler
divergence.

The problem is that the deviance and the X2 statistic are not independent of the
fitted probabilities π̂: in effect, the fitted seropositive proportions for parvovirus are not
very high (the maximum is 0.72, while the maximum for mumps and rubella is very next
to 1) and thus the deviance and the Pearson statistic have low values, but this does not
necessarily mean that the model is better than the one for mumps or rubella.



Therefore, other measures as the pseudo R2 and the R2 derived from the Kullback-
Leibler divergence seem to test better the adequacy of a fitted model.





Chapter 6

Fractional Polynomials

The relationship between a response variable and one or more covariates is often non-
linear. Attempts to represent curvature with regression models are usually made using
polynomials of the covariates, typically quadratics. However low order polynomials offer a
limited family of shapes, and high order polynomials may fit poorly at the extreme values
of the covariates. A further disadvantage is that polynomials don’t have asymptotes and
cannot fit data where limiting behavior is expected. Royston and Altman [35] proposed a
family of curves, called Fractional Polynomials (FP) whose power terms are restricted to a
small predefined set of number. The powers are selected so that conventional polynomials
are a subset of the family. A great advantage of FP is that they are shown to have
flexibility and are straightforward to fit using standard method.

The link between conventional polynomials and the modern methods of nonparamet-
ric smoothing is represented by cubic spline. Splines were originally developed in the
1920s. It was largely used as a method for fitting curves to data. The basic idea is that
a knot is placed at each data point and a parameter is used to control the degree of of
smoothing. Nonparametric scatterplot smoothers are an attempt to "let the data show
us the appropriate function form" rather than imposing a limited range of forms on the
data. Typically the smoothers are constructed at each data point by weighted regression
within a neighbourhood of the corresponding covariate value. The best known smoothers
is Cleveland’s lowess (locally weighted scatterplot smoother).

Nonparametric and spline smoothers are powerful and flexible tools which impose few
limitations on the functional form.

137



6.1 The Model

6.1.1 Fractional Polynomials

We aim to model a trend in a response variable Y in terms of covariate(s) X =
(X1, X2, . . . , Xk); we restrict our analysis to Generalized Linear Models (GLM), which
include a random variable Y with mean µ, a model function η = η(X, β) and a link
function g such that g(µ) = η.

A flexible model function is the additive predictor η = f0 +
∑

fj(Xj) where f0 is a
constant and fj (j > 0) is a function of Xj and a set of parameters. The linear predictor
in a GLM is an additive predictor with fj(Xj) = βjXj ∀j.

For example, a model incorporating a quadratic polynomial in Xj has the following
form:

fj(Xj) = βj1Xj + βj2X
2
j .

If each of the components fj(Xj) can be written in the form
∑

i βijhi(Xj), the model
function η is then a linear predictor over the set of covariates hi(Xj).

We now describe a family of model functions of a single covariate X, subject to the
restriction X > 0:

Definition 1 A Fractional Polynomial of degree m is the function

φm(X; ξ,p) = ξ0 +
m∑

j=1

ξjX
(pj) (6.1)

where m is a positive integer, p = (p1, . . . , pm) is a real vector of powers with p1 <

· · · < pm, ξ = (ξ0, ξ1, . . . , ξm) are real coefficients and X(pj) is defined as the Box-Tidwell
trasformation:

X(pj) =

{
Xpj pj 6= 0
lnX pj = 0

A conventional polynomial of degree m has pj = j for j = 1, . . . ,m and ξm 6= 0.
Definition 1 can be extended to the cases of equal power, i.e. m > 1 and p = (pi, pj).
For m = 2 and p = (p1, p1), we have

φm(X; ξ,p) = ξ0 + (ξ1 + ξ2)X(p1) (6.2)



a fractional polynomial of degree 1, not 2. Now, let consider the standard equation

φm(X; ξ∗,p) = ξ∗0 + ξ∗1X
(p1) + ξ∗2X

(p2). (6.3)

Writing ξ0 = ξ∗0 , ξ1 = ξ∗1 + ξ∗2 , ξ2 = (p2 − p1)ξ∗2 and rearranging, we obtain ξ∗1 =
ξ1 − ξ2/(p2 − p1).

Substituting in Eq 6.3 we find

ξ0 + ξ1X
(p1) + ξ2X

(p1)(X(p2−p1) − 1)/(p2 − p1) (6.4)

When p2 tends to p1, the limit of Eq 6.4 is

ξ0 + ξ1X
(p1) + ξ2X

(p1) log X (6.5)

For m > 2 and p1 = · · · = pm expression 6.5 may be generalized in

ξ0 + ξ1X
(p1) +

m∑
j=2

ξjX
(p1)(lnX)j−1 (6.6)

For arbitrary powers p1 ≤ . . . ≤ pm, we set H0(X) = 1, p = 0 and combine definition
6.1 and Eq. 6.6 to obtain an extended definition

φm(X; ξ,p) =
m∑

j=0

ξjHj(X), (6.7)

where for j = 1, . . . ,m

Hj(X) =

{
X(pj) pj 6= pj−1

Hj−1(X) ln X pj = pj−1.
(6.8)

As an example of Eq. 6.7, φ5(X; 0, 1, 2, 2, 2) has component functions H0 = 1, H1 =
lnX, H2 = X, H3 = X2, H4 = X2 lnX and H5 = X2(lnX)2; so, φ5 has the following
form:

φ5(X; 0, 1, 2, 2, 2) = ξ0 + ξ1 lnX + ξ2X + ξ3X
2 + ξ4X

2 lnX + ξ5X
2(lnX)2. (6.9)

If non-positive values of X can occur, a preliminary transformation of X to ensure
positivity is needed. Onw solution is to choose a non-zero origin ζ < X and to rewrite
Eq. 6.7 as



φm(X; ξ,p) =
m∑

j=0

ξjHj(X − ζ). (6.10)

6.1.2 Fractional Polynomials of Degree 1 and Degree 2

It is worth considering the families φ1(X;p) and φ2(X;p), for we have so far found
that models with degree higher than 2 are rarely required in practice. Fractional polyno-
mials with m ≥ 2 offer many potential improvements in fit compared with conventional
polynomials (see Fig. 6.1)

6.2 Termination Rules

6.2.1 Fractional Polynomials as Model Functions

Conditional on given values of m and p, φm(X;p) in Eq. 6.7 has the form of a linear
predictor in terms of the covariate vector H(X) and the parameter vector ξ.

For modelling a data set of size n using fractional polynomials, the Authors propose
to determine the ”best” value of m and of the power vector p by criteria to be discussed
in the following section.

Candidate values of p are all possible m-tuples selected with replacement from a fixed
set P.

Experience so far suggests that P = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, which includes all
conventional polynomials of degree less than or equal to m, is sufficiently rich to cover
many practical cases adequately.

As with conventional polynomials, the degree m is selected either informally on a
priori grounds or by increasing m until no worthwhile improvement in the fit of the best
fitting fractional polynomial is judged to have occured.

6.2.2 Deviance and Model Choice

We assume that all models are to be fitted by maximum likelihood. For given m, the
best power vector p̃ = {p̃1, . . . , p̃m} is that associated with the model with the highest
likelihood or, equivalently, with the lowest deviance D. Thus p̃ may be regarded as the
maximum likelihood estimate (MLE) of p over the restricted parameter space based on P.
We use the deviance, as defined in Eq. 5.26, that is to say twice the difference between
the log-likelihood of the full model and that of the model under investigation.
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Figure 6.1: Examples of φ2(X; p), for p = (−2, 1), (−2, 2), (−2,−2) and (−2,−1)



Suppose that the elements of p are allowed to vary continuously, rather than being
restricted to P. Then φm(X;p) is a nonlinear model with parameters p and ξ. Let
p̂ be the full MLE of p. So, the quantity D(m,p) − D(m, p̂) asymptotically has a χ2

distribution on m degrees of freedom (DF).

Model Choice: the best power vector p

The statistic D(m,p) − D(m, p̃), where p̃ is the best power vector, provides an
(aymptotically conservative) test of a given value of p and it may be used as a guide to
the adequacy of the conventional polynomial of degree m against fractional polynomial
alternatives of the same degree.

For example, if we want to investigate the nonlinearity of some observed data, the
Authors suggest to use the following criterion:

D(1, 1)−D(1, p̃) > χ2
1;0.90, (6.11)

where D(1, 1) is the deviance of a simple linear model, D(1, p̃) is the deviance of a
fractional polynomial alternative of degree 1 and χ2

1;0.90, whose value is 2.7055, is the 90th
percentile of χ2 with 1 DF. This criterion furnishes a test with a significance level α of
about 0.10 for p = 1 (linearity) against p 6= 1 (monotonic alternatives): if the criterion is
true, the model φ1(X; p̃) is better than the linear model and so we refuse the hypothesis
of linearity of the data; otherwise, the linear model φ1(X; 1) is the best choice.

If we have to choose between several fractional polynomial models with similar devi-
ances, the Authors suggest, as a working rule, to use the following criterion:

D(m,p)−D(m, p̃) < χ2
m;0.90, (6.12)

where D(m,p) is the deviance of the FP model we want to test and D(m, p̃) is the
best FP model. We choose the FP model which minimizes the criterion.

Model Choice: the best degree m of the model

When we have to decide whether models with degree m are adequate or whether
degree m + 1 is required, first of all we have to note that two extra parameters (a
power and a regression coefficient) are estimated when m is increased by 1. Therefore
D(m, p̂)−D(m + 1, p̂) is asymptotically distributed as χ2 on 2 DF when the degree m

is adequate. The Authors suggest the following criterion as a rule for preferring models
with degree m + 1 to those with degree m:



D(m, p̃)−D(m + 1, p̃) > χ2
2;0.90, (6.13)

where χ2
2;0.90 = 4.6052. We expect the probability of a type I error (the probability

of refusing the null hypothesis when it is true) associated with this rule to be near (but
not exactly) 10%.

In general terms, when working with fractional polynomial models, it is convenient to
use the deviance D(1, 1), associated with the simple linear model φ1(X; 1), as a baseline
for reporting the deviances of other models. Thus we define the gain G for a model on
a given data set as the deviance for φ1(X; 1) minus that for the model in question:

G = G(m,p) = D(1, 1)−D(m,p). (6.14)

Since G moves in the opposite direction to D, a larger gain indicates a better fit.

Once m and acceptable power vectors p have been selected as just described, the
final choice must depend mainly on the appearence of the curves in relation to the data,
especially at the extremes of X. Non-statistical considerations (mainly, the science of
the problem) may also need to be taken into account.

6.3 Age-dependent prevalence and force of infection

In the following section we will use fractional polynomial models to estimate the
prevalence data for mumps, rubella and parvovirus.

Although fractional polynomials provide a wide range of curve shapes, there is no
guarantee that the prevalence F (a) will be a monotone function of age and therefore
fractional polynomials can result in a negative estimate for the force of infection. It is
clear from Tab. 5.2 that the estimate for the force of infection is negative whenever
η′m(a, β̂, p) < 0 (since δ(ηm(a, β̂, p)) is strictly positive). Therefore, one should fit model
(6.7) subject to the constraints that η′m(a, β̂, p) ≥ 0, for all ages a in the predefined
range. In the framework of fractional polynomials this cannot be done analitically. But
in practice, one can fit a large number of fractional polynomials, over a grid of powers,
and check for each fitted model if η′m(a, β̂, p) ≥ 0, for all ages a. In case that a given
sequence of powers leads to a negative derivative of the linear predictor, the model is not
considered an appropriate model. This means that we choose the model with the best
goodness of fit among all fractional polynomials for which η′m(a, β̂, p) ≥ 0.



In the following sections, for each data set, first- and second-order fractional polyno-
mial models are fitted and the criterion proposed by Royston and Altman [35] is used to
decide whether the second-order model is needed or not.

6.4 Analysis for mumps data

In this section, we show the results of the application of fractional polynomials to
mumps data.

6.4.1 Fractional polynomial of degree 1 for mumps

We have started with a fractional polynomial of degree m = 1. Since the probability
density function of the response variable Y is the Binomial distribution, we have imple-
mented three models in accordance with three different link function: the logit link, the
probit link and the complementary log-log link. Of course, the only covariate is the age
of the individual, a. For every link function, the software R has determined the best
power vector, the one that minimizes the deviance of the model.

For mumps, the best fractional polynomial of degree 1 has the logit link as link
function and the best power for the covariate is p = −0.2. So the model φ1(a;−0.2) is

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

−0.2
i (6.15)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

−0.2
i )

1 + exp(β̂0 + β̂1a
−0.2
i )

. (6.16)

Tab. 6.1 reports the results of the parameter estimation performed by R [28], while
Tab. 6.2 reports some measures of goodness of fit. Tables about the goodness of fit of
the fitted models report the following measures:

1. Degrees of freedom (d.f.): these are the residual degrees of freedom of the model,
which are N −k, where N is the number of covariate patterns and k is the number
of parameters in the model.

2. Deviance (D): see Section 5.4.1. When comparing fitted models, the smaller the
deviance, the better the fit.



3. Pearson’s chi-squared statistic (X2): see Section 5.4.2. When comparing fitted
models, the smaller X2, the better the fit.

4. Likelihood ratio chi-squared statistic (C): see Section 5.4.3. When comparing fitted
models, the higher C, the better the fit.

5. Pseudo R2: see Section 5.4.4. When comparing fitted models, the higher the pseudo
R2, the better the fit.

6. R2 based on the Kullback - Leibler divergence (R2
KL): see Section 5.4.5. When

comparing fitted models, the higher this statistic, the better the fit.

Estimate Std. Error z value Pr(>|z|)
β̂0 11.4447 0.2569 44.55 0.0000
β̂1 −9.49 04 0.2336 −40.63 0.0000

Table 6.1: Mumps: summary of the estimated FP(m=1)-logit model for prevalence

d.f. D X2 C Pseudo R2 R2
KL

24.00 65.40 74.89 2858.14 0.3613 0.9776

Table 6.2: Mumps: measures of goodness of fit for the estimated FP(m=1)-logit model
for prevalence

Following the indications in Sec. 6.2.2, we evaluate the linear model φ1(a; 1), which
is necessary for the study of the goodness of fit:

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1ai, (6.17)

whose deviance D(1, 1) is 581.37.
The value of the gain G for the model φ1(a;−0.2) is

G = G(1;−0.2) = D(1; 1)−D(1;−0.2)

= 581.37− 65.40

= 515.97. (6.18)

For this fitted model the deviance is about 65 on 24 degrees of freedom and the chi-
squared goodness of fit statistics is about 75 (24 d.f.). G is 515.97, so the fitted model



is significantly different from the simple logistic model. The R2 constructed from the
Kullback-Leibler divergence is 0.98, that is about 98% of the information provided by
the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.3613, while the maximum achievable is 0.3696.

6.4.2 Fractional polynomial of degree 2 for mumps

Now, we will see a fractional polynomial of degree m = 2. The best fractional
polynomial of degree 2 has the logit link as link function and the best power vector for
the covariate a is [−2,−0.8]. So the model φ2(a;−2,−0.8) is

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

−2
i + β̂2a

−0.8
i (6.19)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

−2
i + β̂2a

−0.8
i )

1 + exp(β̂0 + β̂1a
−2
i + β̂2a

−0.8
i )

. (6.20)

Tab. 6.3 reports the results of the parameter estimation performed by R, while Tab.
6.4 reports some measures of goodness of fit.

Estimate Std. Error z value Pr(>|z|)
β̂0 4.7302 0.110931 42.64 0.0000
β̂0 0.1333 0.008971 14.86 0.0000
β̂0 −2.7421 0.094302 −29.08 0.0000

Table 6.3: Mumps: summary of the estimated FP(m=2)-logit model for prevalence

d.f. D X2 C Pseudo R2 R2
KL

23.00 27.90 31.11 2895.64 0.3661 0.9904

Table 6.4: Mumps: measures of goodness of fit for the estimated FP(m=2)-logit model
for prevalence

The value of the gain G for the model φ2(a;−2,−0.8) is



G = G(2;−2,−0.8) = D(1; 1)−D(2;−2,−0.8)

= 581.37− 27.90

= 553.47. (6.21)

For this fitted model the deviance is about 28 on 23 degrees of freedom and the chi-
squared goodness of fit statistics is about 31 (23 d.f.). G is 553.47, meaning that the
fitted model is significantly different from the logistic model. The R2 constructed from
the Kullback-Leibler divergence is 0.99, that is about 99% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.3661, while the maximum achievable is 0.3696.

In Fig. 6.2 there are the plots of the two fractional polynomial models.
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Figure 6.2: Mumps: observed and estimated prevalence with fractional polynomials of
degree m = 1 and m = 2

We use now the criterion suggested by Royston and Altman [35] to choose between



the model of first degree and the model of second degree:

D(1;−0.1)−D(2;−1.2,−0.9) = 65.40− 27.90

= 37.50 > 4.6052 = χ2
2,0.90. (6.22)

Given that D(1;−0.2)−D(2;−2,−0.8) > χ2
2,0.90 and given that the plot of FP(m=2)-

logit fits better observed data in the first age classes, we conclude that the best fractional
polynomial model for mumps is that of degree 2.

6.4.3 Estimation of the force of infection

Now we plot the estimated force of infection for the best fractional polynomial model
for prevalence, φ2(a;−2,−0.8).

From the catalytic model, the function of the force of infection for the second-degree
model is

`2(ai) = η′(ai)
eη(ai)

1 + eη(ai)

= −(2β̂1a
−3
i + 0.8β̂2a

−1.8
i )F (ai). (6.23)

We also assume that `2(0) = 0, accounting for the protective effect of maternal
antibodies in the first year of life.

Fig. 6.3 shows the plot of the estimated force of infection for mumps. It reaches a
peak at age 1.5 (`2(1.5) = 0.1325) and drops down thereafter until `2 = 0.0025 at age
42.5.

6.5 Analysis for rubella data

In this section, we show the results of the application of fractional polynomials to
rubella data.

6.5.1 Fractional polynomial of degree 1 for rubella

In this case also, we start with a fractional polynomial of degree m = 1 and we
implement three models for the preceding three link functions: logit, probit and comple-
mentary log-log.
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For rubella, the best fractional polynomial of degree 1 has the logit link as link
function and the best power for the covariate is p = 0.1. So the model φ1(a; 0.1) is

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

0.1
i (6.24)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

0.1
i )

1 + exp(β̂0 + β̂1a0.1
i )

(6.25)

Tab. 6.5 reports the results of the parameter estimation performed by R, while Tab.
6.6 reports some measures of goodness of fit.

The deviance D(1, 1) for rubella is 208.84. So, the value of the gain G for the model
φ1(a; 0.1) is

G = G(1; 0.1) = D(1; 1)−D(1; 0.1)

= 208.84− 44.22

= 164.62. (6.26)

For this fitted model the deviance is about 44 on 24 degrees of freedom and the chi-
squared goodness of fit statistics is about 45 (24 d.f.). G is 164.62, meaning that the
fitted model is significantly different from the logistic model. The R2 constructed from
the Kullback-Leibler divergence is 0.97, that is about 97% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.2522, while the maximum achievable is 0.2607.

Estimate Std. Error z value Pr(>|z|)
β̂0 −15.97 0.5616 −28.43 0.0000
β̂1 16.75 0.5647 29.66 0.0000

Table 6.5: Rubella: summary of the estimated FP(m=1)-logit model for prevalence

6.5.2 Fractional polynomial of degree 2 for rubella

Now, we see a fractional polynomial of degree m = 2. The best second-order fractional
polynomial, the one for which the first derivative of the linear predictor η′m(a, β̂, p) is



d.f. D X2 C Pseudo R2 R2
KL

24.00 44.22 44.93 1312.67 0.2522 0.9674

Table 6.6: Rubella: measures of goodness of fit for the estimated FP(m=1)-logit model
for prevalence

nonnegative, has the logit link as link function and the best power vector for the covariate
a is [−0.9,−0.9]. So the model φ2(a;−0.9,−0.9) is

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

−0.9
i + β̂2a

−0.9
i ln(ai) (6.27)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

−0.9
i + β̂2a

−0.9
i ln(ai))

1 + exp(β̂0 + β̂1a
−0.9
i + β̂2a

−0.9
i ln(ai))

(6.28)

Tab. 6.7 reports the results of the parameter estimation performed by R [28], while
Tab. 6.8 reports some measures of goodness of fit.

Estimate Std. Error t value Pr(>|t|)
β̂0 4.340 0.16462 26.3 0.0000
β̂1 −3.444 0.16502 −20.87 0.0000
β̂2 −1.239 0.08003 −15.48 0.0000

Table 6.7: Rubella: summary of the estimated FP(m=2)-logit model for prevalence

d.f. D X2 C Pseudo R2 R2
KL

23.00 25.15 25.13 1331.74 0.2559 0.9815

Table 6.8: Rubella: measures of goodness of fit for the estimated FP(m=2)-logit model
for prevalence

The deviance D(1, 1) of the simple logistic model for rubella is 208.84. Then, the
value of the gain G for the model φ2(a;−0.9,−0.9) is



G = G(2;−0.9,−0.9) = D(1; 1)−D(2;−0.9,−0.9)

= 208.84− 25.15

= 183.69. (6.29)

For this fitted model the deviance is about 25 on 23 degrees of freedom and the chi-
squared goodness of fit statistics is about 25 (23 d.f.). G is 183.69, meaning that the
fitted model is significantly different from the logistic model. The R2 constructed from
the Kullback-Leibler divergence is 0.98, that is about 98% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.2559, while the maximum achievable is 0.2607.

In Fig. 6.4 we have the plot of the two fractional polynomial models for rubella.
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Figure 6.4: Rubella: observed and estimated prevalence with fractional polynomials of
degree m = 1 and m = 2

Let us use now the criterion to choose between the model of first degree and the



model of second degree:

D(1; 0.1)−D(2;−0.9,−0.9) = 44.22− 25.15

= 19.07 > 4.6052 = χ2
2,0.90. (6.30)

Given that D(1; 0.1)−D(2;−0.9,−0.9) > χ2
2,0.90, we conclude that the best fractional

polynomial model for rubella is that of degree 2.

6.5.3 Estimation of the force of infection

Now we plot the estimated force of infection for the best fractional polynomial model
for prevalence, φ2(a;−0.9,−0.9).

From the catalytic model, the function of the force of infection for the second-degree
model is

`2(ai) = η′(ai)eη(ai)

= −a−1.9
i [0.9β̂1 + (1− 0.9 ln ai)β̂2]F (ai). (6.31)

We assume that `2(0) = 0, accounting for the protective effect of maternal antibodies
in the first year of life.

Fig. 6.5 shows the plot of the estimated force of infection. It reaches a peak at age
1.5 (`(1.5) = 0.1669) and drops down thereafter until ` = 0.00462 at age 42.5.

6.6 Analysis for parvovirus data

In this section, we show the results of the application of fractional polynomials to
parvovirus data.

6.6.1 Fractional polynomial of degree 1 for parvovirus

In this case also, we start with a fractional polynomial of degree m = 1 and we
implement three models in accordance to the three link functions: logit, probit and
complementary log-log.

For parvovirus, the best fractional polynomial of degree 1 has the logit link as link
function (differently from the GLM, where the best model is under the probit link) and
the best power for the covariate is p = −0.4. So the model φ1(a;−0.4) is
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Figure 6.5: Rubella: estimated force of infection under a FP(m = 2)-logit model for
prevalence



ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

−0.4
i (6.32)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

−0.4
i )

1 + exp(β̂0 + β̂1a
−0.4
i )

. (6.33)

Tab. 6.9 reports the results of the parameter estimation performed by R [28], while
Tab. 6.10 reports some measures of goodness of fit.

The deviance D(1, 1)for parvovirus under the logit link is 119.78. So, the value of the
gain G for the model φ1(a;−0.4) is

G = G(1;−0.4) = D(1; 1)−D(1;−0.4)

= 119.78− 50.91

= 68.87. (6.34)

For this fitted model the deviance is about 51 on 24 degrees of freedom and the
chi-squared goodness of fit statistics is about 51 (24 d.f.). G is 68.87, meaning that the
fitted model is significantly different from the logistic model. The R2 constructed from
the Kullback-Leibler divergence is 0.83, that is about 83% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.0572, while the maximum achievable is 0.0687.

Estimate Std. Error t value Pr(>|t|)
β̂0 1.629 0.1235 13.19 0.0000
β̂1 −1.991 0.1409 −14.13 0.0000

Table 6.9: Parvovirus: summary of the estimated FP(m=1)-logit model for prevalence

d.f. D X2 C Pseudo R2 R2
KL

24.00 50.91 50.99 255.18 0.0572 0.8337

Table 6.10: Parvovirus: measures of goodness of fit for the estimated FP(m=1)-logit
model for prevalence



6.6.2 Fractional polynomial of degree 2 for parvovirus

Now, we see a fractional polynomial of degree m = 2. The best fractional polynomial
of degree 2 has the logit link as link function and the best power vector for the covariate
a is p = [−1.5,−1.4]. So the model φ2(a;−1.5,−1.4) is

ln
(

F (ai)
1− F (ai)

)
= β̂0 + β̂1a

−1.5
i + β̂2a

−1.4
i (6.35)

and the seroprevalence function is

F (ai) =
exp(β̂0 + β̂1a

−1.5
i + β̂2a

−1.4
i )

1 + exp(β̂0 + β̂1a
−1.5
i + β̂2a

−1.4
i )

. (6.36)

Tab. 6.11 reports the results of the parameter estimation performed by R [28], while
Tab. 6.12 reports some measures of goodness of fit.

Estimate Std. Error t value Pr(>|t|)
β̂0 0.614 0.06423 9.560 0.0000
β̂1 3.666 0.41868 8.756 0.0000
β̂2 −4.605 0.49814 −9.244 0.0000

Table 6.11: Parvovirus: summary of the estimated FP(m=2)-logit model for prevalence

The deviance D(1, 1) for parvovirus is 119.78. So, the value of the gain G for the
model φ2(a;−1.5,−1.4) is

G = G(2;−1.5,−1.4) = D(1; 1)−D(2;−1.5,−1.4)

= 119.78− 40.97

= 78.81. (6.37)

For this fitted model the deviance is about 41 on 23 degrees of freedom and the
chi-squared goodness of fit statistics is about 41 (23 d.f.). G is 78.81, meaning that the
fitted model is significantly different from the logistic model. The R2 constructed from
the Kullback-Leibler divergence is 0.87, that is about 87% of the information provided
by the full model with respect to the null model is explicated by the fitted model. The
pseudo R2 is 0.0595, while the maximum achievable is 0.0687.

Let us observe now the plot of the two fractional polynomial models in Fig. 6.6.



d.f. D X2 C Pseudo R2 R2
KL

23.00 40.97 40.98 265.12 0.0595 0.8661

Table 6.12: Parvovirus: measures of goodness of fit for the estimated FP(m=2)-cloglog
model for prevalence

Let us use now the criterion to choose between the model of first degree and the
model of second degree:

D(1;−0.4)−D(2;−1.5,−1.4) = 50.91− 40.97

= 9.94 > 4.6052 = χ2
2,0.90. (6.38)

Given that D(1;−0.4) − D(2;−1.5,−1.4) > χ2
2,0.90, we conclude that the best frac-

tional polynomial model for parvovirus is that of degree 2.

6.6.3 Estimation of the force of infection

Now we plot the estimated force of infection for the best fractional polynomial model
for prevalence, φ2(a;−1.5,−1.4).

From the catalytic model, the function of the force of infection for the second-degree
model is

`2(ai) = η′(ai)
eη(ai)

1 + eη(ai)

= −(1.5β̂1a
−2.5
i + 1.4β̂2a

−2.4
i )F (ai). (6.39)

We assume that `2(0) = 0, accounting for the protective effect of maternal antibodies
in the first year of life.

Fig. 6.5 shows the plot of the estimated force of infection. It reaches a peak at age
1.5 (`(1.5) = 0.0598) and drops down thereafter until ` = 0.0002 at age 42.5.
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Figure 6.6: Parvovirus: observed and estimated prevalence with fractional polynomials
of degree m = 1 and m = 2
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Figure 6.7: Parvovirus: estimated force of infection under a FP(m = 2)-logit model for
prevalence





Chapter 7

Conclusions

7.1 Confidence intervals for the seropositive proportions

In Chapter 2 we have started with the problem of the determination of the optimal
sample size for a serological survey. Since in the serological surveys presented in literature
it has been shown that the seropositive proportions vary with the age of the subject, we
have posed the problem to determine the minimum sample size for every age class to
estimate correctly the seroprevalence. The question is important: given that surveying
units are specimens of human blood, it is not possible to gather a very large sample.

However, the classical formula to derive the sample size,

n =
4κ2π̂(1− π̂)

A2
, (7.1)

where κ = zα/2 and A is the size of the standard interval confidence, has some
problems:

1. the formula is valid if the event of interest is not rare, i.e. 0.1 ≤ π̂ ≤ 0.9;

2. the formula is based on the inversion of the standard (or Wald) confidence interval
(CI) for the binomial proportion, which, as we have shown, is not a good CI.

The relationship between these two questions is that the actual coverage probability
of the standard CI is poor when π̂ < 0.1 or π̂ > 0.9.

In consequence of that, we have followed two directions:

1. Since in many cases presented in literature the seropositive proportions are lower
than 0.1 or higher than 0.9, we have studied the problem of the convergence of the

161



binomial distribution to the Normal distribution in order to estimate correctly the
seropositive proportions, whatever their value is.

2. We have shown the problems of the standard CI and then we have introduced some
alternative CI presented in literature.

7.1.1 The convergence of the binomial distribution to the Normal

To study the convergence of the binomial distribution to the Normal distribution
we have used the Cramer - Von Mises criterion, which is simply the euclidean distance
between the cumulative distribution function of the binomial and the Normal cumulative
distribution function with the same mean and variance of the binomial.

We have observed that the convergence is quickly if π ≥ 0.5, otherwise it can be very
slow.

7.1.2 Problems of the standard CI

We have shown that the Wald CI

CIS = π̂ ± zα/2

√
π̂(1− π̂)

n
(7.2)

has a poor coverage probability (CP) either when π̂ is near 0.5 and so the event is not
rare, either when n is large: indeed, the actual CP tends to be lower than the nominal
CP and then it presents an oscillatory behaviour. Thus, the main problems of the Wald
CI are:

1. A systematic negative bias, whatever is the value of π̂ for fixed n, that is to say
the actual average coverage probability is lower than the nominal CP. This bias is
due to the fact the standard CI has the ”wrong” center.

2. An oscillatory behaviour of the actual CP when n varies and π̂ is fixed. This
behaviour is due to the discreteness and the skewness of the binomial distribution.

To solve these problems of the standard CI, literature presents several alternative
intervals: some are centered on a different point than that of the Wald CI; others are
based on continuous distribution, as the Beta or the F distribution.

The Wilson (or score) interval and the Agresti-Coull interval are centered on a differ-
ent point than the estimate X/n. This point is a weighted average between the estimate



X/n and 0.5: when n is not large, the center gets closer to 1/2; when n is larger, then the
center gets closer the estimte X/n. These intervals are given by the following formulae:

CIW =
X + κ2/2
n + κ2

± κ
√

n

n + κ2

√
π̂(1− π̂) +

κ2

4n
(7.3)

for the Wilson interval and

CIAC =
X + κ2/2
n + κ2

± κ√
n + κ2

√
X + κ2/2
n + κ2

(
1− X + κ2/2

n + κ2

)
(7.4)

for the Agresti-Coull interval, where κ = zα/2.

The Jeffreys prior interval is based on the continuous Beta distribution, since the
Beta is the standard conjugate prior distribution of the binomial: this means that, given
a likelihood function based on the binomial distribution, the prior distribution Beta is
conjugate to this likelihood function because the resulting posterior distribution is a Beta
too. The interval is given by

CIJ =
[
Bα/2

(
X +

1
2
, n−X +

1
2

)
, B1−α/2

(
X +

1
2
, n−X +

1
2

)]
. (7.5)

The Clopper-Pearson ”exact” interval is based on the binomial distribution, which is
discrete; however, its endpoints can be determined using the F distribution or the Beta
distribution.

Tables in Appendix A report two kinds of tables:

1. tables with the estimated seropositive proportions for the three datasets and their
confidence intervals in accordance to the five CI;

2. tables with the lengths of the five CI.

Tab. A.1 and Tab. A.2 report the confidence intervals for the estimated seropositive
proportions for mumps data set. Tab. A.3 and Tab. A.4 report the confidence intervals
for rubella data set. Tab. A.5 and Tab. A.6 report the confidence intervals for parvovirus
data set.

Tab. A.7 reports the length of the five CI for mumps prevalence, while Tab. A.8 re-
ports the length of the CI for parvovirus. We have chosen these two datasets because the
first is characterized from high values of the seropositive proportions (higher than 0.9),



while the second dataset presents lower proportion (the prevalence reaches its maximum
at 0.72).

In general we can observe that:

• The upper bound of the standard CI can be higher than 1, if the estimated pro-
portion is next to 1 (see Tab. A.1 and from Tab. A.3);

• The shortest CI is the Jeffreys prior interval when 0.12 < π̂ < 0.23 (see Tab. A.8)
and when 0.77 < π̂ < 0.99 (see Tab. A.7), that is when π̂ is near the boundaries
(but not when π̂ = 0 or 1). Instead, when 0.24 < π̂ < 0.76 the shortest CI are
the Wilson interval and the Agresti-Coull interval, although the Wilson interval is
sometimes more parsimonious than the Agresti-Coull.

• The longest CI is the Clopper-Pearson ”exact” interval, which is the more conser-
vative interval: in effect this CI is characterized by its length, larger than that of
the other interval, and by its actual coverage probability, which is very often over
the nominal CP.

7.1.3 The optimal sample size

Finally, in order to determine the optimal sample size, we have constructed the func-
tion A(n, π), which furnishes the value of the difference between the upper bound and
the lower bound of a CI, which is the length of the interval. After that the researcher has
chosen a priori a certain level of this total error A and the probability of success π, he
can use the plotted curves of the function A(n, π) to determine the optimal sample size
n. Of course these curves can be constructed for everyone of the alternative confidence
intervals introduced in Chapter 2.

In Fig. 7.1 we plot the function A(n, π) for the five CI, comparing what happens
when the probability of success is π = 0.1 or π = 0.9. In this case, we can see that the
total error size A is larger if we use the Clopper-Pearson interval, while A is smaller when
we use the Jeffreys prior interval or the standard interval.

In Fig. 7.2 we plot the function A(n, π) for the five CI, comparing what happens
when the probability of success is π = 0.2 or π = 0.8. In this case, the total error size A

is larger than the case π = 0.1 or π = 0.9. Now the larger values of A are furnished by
the Clopper-Pearson interval again, while the lowest values are furnished by the Wilson
interval and the Jeffreys prior interval.
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Figure 7.1: Comparison of the function A(n, π) between the five CI for π = 0.1 or π = 0.9
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Figure 7.2: Comparison of the function A(n, π) between the five CI for π = 0.2 or π = 0.8
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Figure 7.3: Comparison of the function A(n, π) between the five CI for π = 0.5

Eventually, Fig. 7.3 shows the plots of A(n, π) when π = 0.5. This is the case of
maximum variance. So, the values of A are generally higher than the previous cases. We
have the larger values of A for the Clopper-Pearson interval and the lowest values for the
Wilson interval and the Agresti-Coull interval.

In conclusion, what we can say about these five intervals is:

1. The standard interval has a very poor coverage probability, lower that the nominal
CP, either when n is large either when π ≈ 0.5.

2. The Wilson interval has an actual coverage probability (except when π = 0 or
π = 1) at the level of the nominal CP, even when n is not too large; its length is
the shortest when when 0.2 < π̂ < 0.8.

3. The Agresti-Coull interval is simple to comprehend and to evaluate, has a good
coverage probability, similar to that of the Wilson interval (except for π = 0 or
π = 1, when its CP is higher than the nominal CP) and its length is larger or equal
to that of the Wilson interval.



4. The Jeffreys prior interval has a good coverage probability, similar to that of the
Wilson interval (with the same problems at the extremes of the range of π); its
length is the shortest when π < 0.2 and π > 0.8.

5. The Clopper-Pearson interval is the more conservative interval, because its coverage
probability is always higher than the nominal CP, particularly when π is near the
extrems of its range; thus, its length is always the largest, whatever the probability
of success π is.

7.2 Comparison of the goodness-of-fit measures for the fit-
ted prevalence models

In the previous chpaters, we have tried to describe the behaviour of the seropositive
proportions for three infections (mumps, rubella and parvovirus) using some parametric
models: in Chapter 4 we have fitted the non-linear least squares model of Farrington [1],
in Chapter 5 we have used the generalized linear models and in Chapter 6 we have used
the fractional polynomial models.

In this chapter we will compare the four fitted models for every data set, that are
the Farrington’s nonlinear least squares model, the GLM model, the first-order FP and
the second-order FP models. Of course, the aim of this comparison is to see which is the
best parametric model in terms of adequacy to our data.

7.2.1 Mumps: Parametric models for prevalence

d.f. D X2 C Pseudo R2 R2
KL

FP(m=2)-logit 23 27.90 31.11 2895.64 0.3661 0.9904
Nonlinear L. S. 23 46.48 49.89 2877.06 0.3637 0.9841
FP(m=1)-logit 24 65.40 74.89 2858.14 0.3613 0.9776
GLM-logit 24 581.37 1755.63 2342.17 0.2961 0.8011

Table 7.1: Mumps: comparing goodness-of-fit measures for the fitted models

For mumps we have fitted the following models:

1. Farrington’s nonlinear least squares model;

2. a generalized linear model under the logit link;
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Figure 7.4: Comparison of the plots for the four fitted models for mumps prevalence



3. a first-order fractional polynomial model under the logit link;

4. a second-order fractional polynomial model under the logit link.

Tab. 7.1, reporting the goodness-of-fit measures for the fitted models, is sorted in
ascending order by the deviance D. We can observe that the best fitting model is the
second-order FP, whose deviance is 27.90 on 23 d.f. and whose R2 from the Kullback-
Leibler divergence is about 0.99. We remember that for mumps the maximum value of
the pseudo R2 is 0.3696.

After the fractional polynomial of degree 2, we have the nonlinear least squares model
proposed by Farrington, whose deviance is twice that of FP(m=2)-logit model. Then we
have the first-order FP and the GLM-logit model, whose deviance is 20 times larger than
the deviance of FP(m=2)-logit model. From Fig. 7.4 also we can see that the GLM fits
badly the seropositive proportions, particularly in age range [5.5,14.5], while the other
three models are very similar to each other.

7.2.2 Rubella: parametric models for prevalence

d.f. D X2 C Pseudo R2 R2
KL

FP(m=2)-logit 23 25.15 25.13 1331.74 0.2559 0.9815
FP(m=1)-logit 24 44.22 44.93 1312.67 0.2522 0.9674
Nonlinear L. S. 23 47.40 54.18 1309.49 0.2516 0.9651
GLM-logit 24 208.84 249.59 1148.05 0.2206 0.8461

Table 7.2: Rubella: comparing goodness-of-fit measures for the fitted models

For rubella we have fitted the following models:

1. Farrington’s nonlinear least squares model;

2. a generalized linear model under the logit link;

3. a first-order fractional polynomial model under the logit link;

4. a second-order fractional polynomial model under the logit link.

Tab. 7.2, reporting the goodness-of-fit measures for the fitted models, is sorted in
ascending order by the deviance D. We can observe that the best fitting model for rubella
is the second-order FP again, whose deviance is 25.15 on 23 d.f. and whose R2 from the
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Figure 7.5: Comparison of the plots for the four fitted models for rubella prevalence



Kullback-Leibler divergence is about 0.98. We remember that for rubella the maximum
value of the pseudo R2 is 0.2607.

After the fractional polynomial of degree 2, this time we have the fractional poly-
nomial of degree 1. It is followed by the nonlinear least squares model proposed by
Farrington, whose deviance is very next to that of the preceding model. The last model
is always the GLM-logit model, whose deviance is about 9 times larger than the deviance
of FP(m=2)-logit model. From Fig. 7.5 also we can see that the GLM fits badly the
seropositive proportions, particularly in age range [5.5,17], while the other three models
are very similar to each other.

7.2.3 Parvovirus: parametric models for prevalence

d.f. D X2 C Pseudo R2 R2
KL

FP(m=2)-logit 23 40.97 40.98 265.12 0.0595 0.8661
Nonlinear L. S. 23 49.34 54.27 256.75 0.0576 0.8388
FP(m=1)-logit 24 50.91 50.99 255.18 0.0572 0.8337
GLM-probit 24 118.97 115.17 187.12 0.0420 0.6113

Table 7.3: Parvovirus: comparing goodness-of-fit measures for the fitted models

For parvovirus we have fitted the following models:

1. Farrington’s nonlinear least squares model;

2. a generalized linear model under the probit link;

3. a first-order fractional polynomial model under the logit link;

4. a second-order fractional polynomial model under the logit link.

Tab. 7.3, reporting the goodness-of-fit measures for the fitted models, is sorted in
ascending order by the deviance D. We can observe that the best fitting model for
parvovirus is the second-order FP again, whose deviance is 40.97 on 23 d.f. and whose
R2 from the Kullback-Leibler divergence is about 0.87. We remember that for parvovirus
the maximum value of the pseudo R2 is 0.0687.

After the fractional polynomial of degree 2, we have Farrington’s model, as it happes
for mumps. The third model is the first-order FP, whose deviance is very next to that of
Farrington’s model. The last model is always the GLM model, but this time its deviance
is only about 3 times larger than the deviance of FP(m=2) model. From Fig. 7.6 we
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can see that these four models do not fit very well the observed seropositive proportions.
While the GLM-probit model reduces the plot to a straight line, the other three models,
although they are certainly nonlinear models, however they are not able to describe the
behaviour of data after a = 20, i.e. a slight decrease followed by a more noticeable
increase.





Appendix A

Age X n mean LS US LW UW LAC UAC

1.5 56 407 0.1376 0.1041 0.1711 0.1075 0.1745 0.1073 0.1746
2.5 48 292 0.1644 0.1219 0.2069 0.1263 0.2112 0.1261 0.2114
3.5 137 332 0.4127 0.3597 0.4656 0.361 0.4663 0.361 0.4663
4.5 195 368 0.5299 0.4789 0.5809 0.4789 0.5803 0.4789 0.5803
5.5 290 421 0.6888 0.6446 0.7331 0.6431 0.7312 0.643 0.7312
6.5 255 330 0.7727 0.7275 0.8179 0.7245 0.8147 0.7244 0.8148
7.5 236 294 0.8027 0.7572 0.8482 0.7535 0.8442 0.7533 0.8443
8.5 211 258 0.8178 0.7707 0.8649 0.7662 0.8602 0.766 0.8604
9.5 271 312 0.8686 0.8311 0.9061 0.8266 0.9016 0.8263 0.9019
10.5 276 304 0.9079 0.8754 0.9404 0.8701 0.9355 0.8697 0.9359
11.5 259 282 0.9184 0.8865 0.9504 0.8806 0.945 0.8801 0.9455
12.5 301 321 0.9377 0.9113 0.9641 0.9057 0.9593 0.9052 0.9598
13.5 296 313 0.9457 0.9206 0.9708 0.9148 0.9658 0.9142 0.9664
14.5 345 366 0.9426 0.9188 0.9664 0.9139 0.9622 0.9135 0.9626
16 224 237 0.9451 0.9162 0.9741 0.9084 0.9677 0.9076 0.9685
18 328 344 0.9535 0.9312 0.9757 0.9258 0.9712 0.9252 0.9717
20 358 370 0.9676 0.9495 0.9856 0.9442 0.9814 0.9436 0.982
22 355 364 0.9753 0.9593 0.9912 0.9537 0.9869 0.953 0.9877
24 331 340 0.9735 0.9565 0.9906 0.9505 0.986 0.9497 0.9868
26 350 358 0.9777 0.9623 0.993 0.9565 0.9886 0.9558 0.9894
28 322 329 0.9787 0.9631 0.9943 0.9567 0.9897 0.9558 0.9905
30 251 267 0.9401 0.9116 0.9685 0.9049 0.9628 0.9042 0.9634
32 216 226 0.9558 0.9289 0.9826 0.9205 0.9758 0.9195 0.9768
34 175 177 0.9887 0.9731 1.004 0.9597 0.9969 0.9571 0.9995

37.5 320 329 0.9726 0.955 0.9903 0.9488 0.9855 0.9481 0.9863
42.5 234 238 0.9832 0.9669 0.9995 0.9576 0.9934 0.956 0.995

Table A.1: Confidence intervals for the estimated seropositive proportions for mumps:
the standard interval, the Wilson interval and the Agresti-Coull interval
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Age X n mean LJ UJ LCP UCP

1.5 56 407 0.1385 0.1067 0.1736 0.1056 0.1749
2.5 48 292 0.1655 0.1253 0.2101 0.1238 0.212
3.5 137 332 0.4129 0.3606 0.4662 0.3592 0.4677
4.5 195 368 0.5298 0.4788 0.5805 0.4775 0.5818
5.5 290 421 0.6884 0.6434 0.7317 0.6422 0.7328
6.5 255 330 0.7719 0.7253 0.8154 0.7237 0.8168
7.5 236 294 0.8017 0.7544 0.8451 0.7526 0.8467
8.5 211 258 0.8166 0.7673 0.8612 0.7652 0.863
9.5 271 312 0.8674 0.8278 0.9026 0.826 0.904
10.5 276 304 0.9066 0.8715 0.9366 0.8696 0.9379
11.5 259 282 0.917 0.8822 0.9462 0.8801 0.9476
12.5 301 321 0.9363 0.9073 0.9603 0.9054 0.9615
13.5 296 313 0.9443 0.9164 0.9668 0.9145 0.968
14.5 345 366 0.9414 0.9152 0.963 0.9136 0.9641
16 224 237 0.9433 0.9106 0.9689 0.908 0.9705
18 328 344 0.9522 0.9273 0.9721 0.9256 0.9732
20 358 370 0.9663 0.9457 0.9822 0.944 0.9831
22 355 364 0.974 0.9554 0.9877 0.9536 0.9886
24 331 340 0.9721 0.9522 0.9868 0.9503 0.9878
26 350 358 0.9763 0.9583 0.9894 0.9564 0.9903
28 322 329 0.9773 0.9587 0.9904 0.9567 0.9914
30 251 267 0.9384 0.9068 0.9639 0.9045 0.9654
32 216 226 0.9537 0.9229 0.977 0.9201 0.9786
34 175 177 0.986 0.9642 0.9976 0.9598 0.9986

37.5 320 329 0.9712 0.9507 0.9864 0.9487 0.9874
42.5 234 238 0.9812 0.9605 0.9943 0.9575 0.9954

Table A.2: Confidence intervals for the estimated seropositive proportions for mumps:
the Jeffreys prior interval and the Clopper-Pearson ”exact” interval



Age X n mean LS US LW UW LAC UAC

1.5 31 206 0.1505 0.1017 0.1993 0.1081 0.2057 0.1077 0.2061
2.5 30 146 0.2055 0.1399 0.271 0.1479 0.2782 0.1475 0.2786
3.5 34 168 0.2024 0.1416 0.2631 0.1486 0.2695 0.1482 0.2698
4.5 57 189 0.3016 0.2362 0.367 0.2406 0.3704 0.2405 0.3706
5.5 95 219 0.4338 0.3682 0.4994 0.3699 0.5 0.3698 0.5
6.5 104 195 0.5333 0.4633 0.6034 0.4633 0.602 0.4633 0.602
7.5 90 164 0.5488 0.4726 0.6249 0.4724 0.623 0.4724 0.623
8.5 96 145 0.6621 0.5851 0.7391 0.5818 0.734 0.5817 0.7341
9.5 134 180 0.7444 0.6807 0.8082 0.6761 0.8026 0.6759 0.8028
10.5 110 160 0.6875 0.6157 0.7593 0.612 0.7542 0.6119 0.7543
11.5 111 148 0.75 0.6802 0.8198 0.6745 0.8128 0.6742 0.8131
12.5 147 178 0.8258 0.7701 0.8816 0.7634 0.8745 0.763 0.8749
13.5 138 177 0.7797 0.7186 0.8407 0.713 0.8344 0.7127 0.8347
14.5 141 165 0.8545 0.8008 0.9083 0.7927 0.9003 0.7921 0.9009
16 102 125 0.816 0.7481 0.8839 0.739 0.8741 0.7384 0.8748
18 142 160 0.8875 0.8385 0.9365 0.8292 0.9276 0.8284 0.9285
20 162 187 0.8663 0.8175 0.9151 0.8101 0.9078 0.8096 0.9083
22 158 183 0.8634 0.8136 0.9131 0.8061 0.9057 0.8056 0.9063
24 161 173 0.9306 0.8928 0.9685 0.8827 0.9599 0.8816 0.961
26 174 185 0.9405 0.9065 0.9746 0.8967 0.9665 0.8956 0.9676
28 153 165 0.9273 0.8876 0.9669 0.8772 0.9579 0.8761 0.959
30 122 135 0.9037 0.8539 0.9535 0.8422 0.9429 0.841 0.944
32 90 100 0.9 0.8412 0.9588 0.8256 0.9448 0.8239 0.9465
34 74 78 0.9487 0.8998 0.9977 0.8754 0.9799 0.8715 0.9838

37.5 175 188 0.9309 0.8946 0.9671 0.8853 0.9591 0.8843 0.9601
42.5 108 111 0.973 0.9428 1.003 0.9235 0.9908 0.9201 0.9942

Table A.3: Confidence intervals for the estimated seropositive proportions for rubella:
standard, Wilson and Agresti-Coull



Age X n mean LJ UJ LCP UCP

1.5 31 206 0.1522 0.1067 0.204 0.1046 0.2068
2.5 30 146 0.2075 0.1461 0.2764 0.1431 0.2802
3.5 34 168 0.2041 0.147 0.2679 0.1444 0.2712
4.5 57 189 0.3026 0.2395 0.3697 0.2371 0.3724
6.5 104 195 0.5332 0.4633 0.6024 0.4607 0.6049
7.5 90 164 0.5485 0.4723 0.6235 0.4693 0.6265
8.5 96 145 0.661 0.5825 0.7353 0.5789 0.7385
9.5 134 180 0.7431 0.6772 0.8039 0.6742 0.8064
10.5 110 160 0.6863 0.6128 0.7555 0.6096 0.7583
11.5 111 148 0.7483 0.6759 0.8145 0.6722 0.8175
12.5 147 178 0.824 0.7651 0.8761 0.762 0.8785
13.5 138 177 0.7781 0.7144 0.8359 0.7113 0.8384
14.5 141 165 0.8524 0.7948 0.902 0.7913 0.9045
16 102 125 0.8135 0.7413 0.8763 0.7368 0.8796
18 142 160 0.8851 0.8317 0.9295 0.828 0.9319
20 162 187 0.8644 0.812 0.9094 0.809 0.9116
22 158 183 0.8614 0.8081 0.9073 0.805 0.9096
24 161 173 0.9282 0.8855 0.9615 0.882 0.9636
26 174 185 0.9382 0.8995 0.968 0.8961 0.9699
28 153 165 0.9247 0.8801 0.9596 0.8764 0.9619
30 122 135 0.9007 0.8454 0.9449 0.841 0.9477
32 90 100 0.896 0.8299 0.9474 0.8238 0.951
34 74 78 0.943 0.8827 0.9824 0.8739 0.9859

37.5 175 188 0.9286 0.8879 0.9607 0.8847 0.9627
42.5 108 111 0.9688 0.9296 0.9923 0.923 0.9944

Table A.4: Confidence intervals for the estimated seropositive proportions for rubella:
the Jeffreys prior interval and the Clopper-Pearson ”exact” interval



Age X n mean LS US LW UW LAC UAC

1.5 9 72 0.125 0.04861 0.2014 0.06718 0.2208 0.06498 0.223
2.5 12 71 0.169 0.08184 0.2562 0.09941 0.2726 0.09785 0.2742
3.5 12 85 0.1412 0.06715 0.2152 0.08264 0.2307 0.0811 0.2323
4.5 18 104 0.1731 0.1004 0.2458 0.1124 0.2571 0.1115 0.258
5.5 23 102 0.2255 0.1444 0.3066 0.1552 0.3157 0.1546 0.3163
6.5 27 91 0.2967 0.2028 0.3906 0.2126 0.3972 0.2123 0.3976
7.5 28 87 0.3218 0.2237 0.42 0.233 0.4257 0.2327 0.426
8.5 27 79 0.3418 0.2372 0.4464 0.2467 0.4515 0.2465 0.4518
9.5 44 104 0.4231 0.3281 0.518 0.3325 0.5191 0.3325 0.5191
10.5 39 81 0.4815 0.3727 0.5903 0.376 0.5886 0.376 0.5886
11.5 34 81 0.4198 0.3123 0.5272 0.3183 0.5285 0.3182 0.5285
12.5 52 97 0.5361 0.4368 0.6353 0.4374 0.6321 0.4374 0.6321
13.5 32 69 0.4638 0.3461 0.5814 0.3511 0.5802 0.3511 0.5802
14.5 58 88 0.6591 0.5601 0.7581 0.5553 0.7496 0.555 0.7498
16 64 117 0.547 0.4568 0.6372 0.4567 0.6343 0.4567 0.6343
18 102 193 0.5285 0.4581 0.5989 0.4582 0.5977 0.4582 0.5977
20 112 191 0.5864 0.5165 0.6562 0.5155 0.6539 0.5155 0.6539
22 113 207 0.5459 0.4781 0.6137 0.4778 0.6123 0.4778 0.6123
24 131 255 0.5137 0.4524 0.5751 0.4526 0.5744 0.4526 0.5744
26 97 174 0.5575 0.4837 0.6313 0.4832 0.6292 0.4832 0.6292
28 84 175 0.48 0.406 0.554 0.4072 0.5537 0.4072 0.5537
30 101 169 0.5976 0.5237 0.6716 0.5223 0.6686 0.5223 0.6686
32 59 117 0.5043 0.4137 0.5949 0.415 0.5933 0.415 0.5933
34 71 109 0.6514 0.5619 0.7408 0.5581 0.7343 0.558 0.7344

37.5 116 201 0.5771 0.5088 0.6454 0.508 0.6433 0.508 0.6434
42.5 73 101 0.7228 0.6355 0.8101 0.6285 0.8007 0.6282 0.8011

Table A.5: Confidence intervals for the estimated seropositive proportions for parvovirus:
standard, Wilson and Agresti-Coull



Age X n mean LJ UJ LCP UCP

1.5 9 72 0.1301 0.06369 0.2157 0.05878 0.2241
2.5 12 71 0.1736 0.09585 0.2685 0.0905 0.2766
3.5 12 85 0.1453 0.07956 0.2267 0.07513 0.2336
4.5 18 104 0.1762 0.1098 0.2542 0.1059 0.2597
5.5 23 102 0.2282 0.1528 0.3135 0.1486 0.3189
6.5 27 91 0.2989 0.2103 0.3958 0.2055 0.4016
7.5 28 87 0.3239 0.2307 0.4246 0.2256 0.4306
8.5 27 79 0.3438 0.2443 0.4506 0.2387 0.4571
9.5 44 104 0.4238 0.3313 0.5191 0.3268 0.5239
10.5 39 81 0.4817 0.3749 0.5893 0.369 0.5953
11.5 34 81 0.4207 0.3166 0.5285 0.3109 0.5346
12.5 52 97 0.5357 0.437 0.633 0.4319 0.638
13.5 32 69 0.4643 0.3496 0.5809 0.3428 0.588
14.5 58 88 0.6573 0.5562 0.7517 0.5503 0.7568
16 64 117 0.5466 0.4566 0.6351 0.4523 0.6392
18 102 193 0.5284 0.4581 0.5981 0.4555 0.6006
20 112 191 0.5859 0.5157 0.6545 0.513 0.657
22 113 207 0.5457 0.4778 0.6127 0.4754 0.615
24 131 255 0.5137 0.4525 0.5746 0.4506 0.5766
26 97 174 0.5571 0.4832 0.6298 0.4804 0.6326
28 84 175 0.4801 0.4068 0.5538 0.404 0.5567
30 101 169 0.5971 0.5226 0.6694 0.5196 0.6722
32 59 117 0.5042 0.4145 0.5938 0.4103 0.598
34 71 109 0.65 0.5589 0.7359 0.5542 0.7401

37.5 116 201 0.5767 0.5081 0.6439 0.5056 0.6463
42.5 73 101 0.7206 0.6301 0.8029 0.6248 0.8072

Table A.6: Confidence intervals for the estimated seropositive proportions for parvovirus:
the Jeffreys prior interval and the Clopper-Pearson ”exact” interval



Age mean Standard Wilson Agresti-Coull Jeffreys Clopper-Pearson
1.5 0.1376 0.06693 0.06696 0.0673 0.06669* 0.06929**
2.5 0.1644 0.08502 0.08491 0.08535 0.08461* 0.08821**
3.5 0.4127 0.1059 0.1053* 0.1053* 0.1055 0.1085**
4.5 0.5299 0.102 0.1015* 0.1015* 0.1017 0.1043**
5.5 0.6888 0.08845 0.08811* 0.08818 0.08819 0.09058**
6.5 0.7727 0.09043 0.09013 0.09034 0.09007* 0.09318**
7.5 0.8027 0.09098 0.09072 0.09106 0.09056* 0.09409**
8.5 0.8178 0.0942 0.09397 0.09442 0.0937* 0.09775**
9.5 0.8686 0.07498 0.07506 0.07558 0.07462* 0.07805**
10.5 0.9079 0.06501 0.0654 0.06618 0.06466* 0.06829**
11.5 0.9184 0.06389 0.06445 0.06541 0.06349* 0.06746**
12.5 0.9377 0.05288 0.05358 0.05456 0.05256* 0.05612**
13.5 0.9457 0.05021 0.05107 0.05218 0.04988* 0.05358**
14.5 0.9426 0.04765 0.04829 0.04915 0.04739* 0.05051**
16 0.9451 0.05798 0.05924 0.06089 0.05747* 0.06245**
18 0.9535 0.04451 0.04538 0.04646 0.04421* 0.04762**
20 0.9676 0.0361 0.03718 0.03839 0.03583* 0.0391**
22 0.9753 0.03191 0.03325 0.03469 0.03162* 0.03505**
24 0.9735 0.03413 0.03555 0.03707 0.03381* 0.03748**
26 0.9777 0.03062 0.0321 0.03365 0.03032* 0.03386**
28 0.9787 0.03119 0.03292 0.0347 0.03085* 0.03475**
30 0.9401 0.05694 0.0579 0.05921 0.05651* 0.06086**
32 0.9558 0.05362 0.05531 0.05734 0.05308* 0.05845**
34 0.9887 0.03114 0.03715 0.04245** 0.03041* 0.03885

37.5 0.9726 0.03525 0.03671 0.03828 0.03492* 0.03871**
42.5 0.9832 0.03266 0.03585 0.03895** 0.03212* 0.03787

Table A.7: Length of the confidence intervals for mumps prevalence



Age mean Standard Wilson Agresti-Coull Jeffreys Clopper-Pearson
1.5 0.125 0.1528 0.1536 0.158 0.1497* 0.1653**
2.5 0.169 0.1743 0.1732 0.1763 0.171* 0.1861**
3.5 0.1412 0.148 0.1481 0.1512 0.1456* 0.1585**
4.5 0.1731 0.1454 0.1447 0.1465 0.1435* 0.1537**
5.5 0.2255 0.1622 0.1605 0.1617 0.1601* 0.1703**
6.5 0.2967 0.1877 0.1846* 0.1853 0.1852 0.1961**
7.5 0.3218 0.1963 0.1927* 0.1933 0.1936 0.205**
8.5 0.3418 0.2092 0.2048* 0.2053 0.206 0.2184**
9.5 0.4231 0.1899 0.1866* 0.1866* 0.1877 0.1971**
10.5 0.4815 0.2176 0.2126* 0.2127 0.2144 0.2263**
11.5 0.4198 0.215 0.2102* 0.2103 0.2118 0.2237**
12.5 0.5361 0.1985 0.1947* 0.1947* 0.196 0.206**
13.5 0.4638 0.2353 0.2291* 0.2291* 0.2313 0.2452**
14.5 0.6591 0.1981 0.1943* 0.1948 0.1953 0.2065**
16 0.547 0.1804 0.1775* 0.1776 0.1785 0.1869**
18 0.5285 0.1409 0.1395* 0.1395* 0.14 0.1451**
20 0.5864 0.1397 0.1383* 0.1384 0.1388 0.144**
22 0.5459 0.1357 0.1344* 0.1344* 0.1349 0.1396**
24 0.5137 0.1227 0.1218* 0.1218* 0.1221 0.126**
26 0.5575 0.1476 0.146* 0.146* 0.1466 0.1522**
28 0.48 0.148 0.1464* 0.1464* 0.147 0.1526*
30 0.5976 0.1479 0.1463* 0.1463* 0.1468 0.1526**
32 0.5043 0.1812 0.1783* 0.1783* 0.1793 0.1877**
34 0.6514 0.1789 0.1762* 0.1764 0.1769 0.186**

37.5 0.5771 0.1366 0.1353* 0.1354 0.1358 0.1407**
42.5 0.7228 0.1746 0.1721* 0.1729 0.1724 0.1824**

Table A.8: Length of the confidence intervals for parvovirus prevalence
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