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Abstract

The design and implementation of a functional language are presented, with par-

ticular emphasys on expressivity and performance; alternative designs and imple-

mentations of abstract machines for functional lanauges of differing complexity and

maturity are also shown, and comparisons are drawn accordingly.
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Chapter 1

Introduction

epsilon1 2 is a purely functional, statically typed, ω-order eager language. The

language design goals include expressivity, safety and minimality, while implemen-

tation efficiency and portability are primary concerns.

epsilon was initially conceived in late 2001 as an exercise in compiler imple-

mentation; both the language and the code have significatively matured since then

but the openness to experimentation is all but changed, and everything in the

implementation is to be considered “in flux”.

As epsilon is meant to be –and has already been– a language actually used

in production, its semantic simplicity is more a consequence than a cause of its

practical effectiveness.

The language can be considered a very minimal tool for expressing algorithms and

is suitable for formal reasoning, but the main concern has always been its practical

suitability for building real systems, with the aim of extending to tasks not yet

commonly associated with functional programming.

1In an effort to emphasize the language’s stated minimality, the convention of always writing

the name “epsilon” with a small “e” was adopted.
2 epsilon is free software, released under the GNU General Public License [FSF91], and an

official part of the GNU Project [Sta02]. See also [Sai07] and [FSF07] for more information and

access to source code.

1
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While the project matured and results were obtained epsilon grew more am-

bitious, and goals shifted somewhat. The current focus is on developing a set

of modular and reusable tools suitable for experimentation with language im-

plemantation (not limited to functional languages), without sacrificing execution

efficiency.

1.1 Functional programming

The functional paradigm is a programming style where computation is based on

side-effect free function evaluation.

In contrast with the more usual imperative paradigm based on state mutation, all

purely functional languages do not support any form of assignment or flow control.

The natural way of expressing repeated computation is by recursion, and indeed it

should be noted that in absence of state change and flow control the very idea of

iteration becomes ill-defined.

The semantic core of all functional languages lies in the λ-calculus developed in

the Thirties by Alonzo Church and Stephen Kleene ([Chu36], [Bar84]), which is

well-studied and mathematically clean; as a consequence of this many functional

programs tend to be smaller and easier to understand than their imperative

counterparts.

Purely functional programs also satisfy desirable mathematical properties such as

referential transparency making them particularly amenable to formal reasoning

and automatic analysis and transformation by meta-programming.

Some features, albeit not characterizing, are available in all existing practical

functional languages3 and have come to be associated to functional programming

in general: it is worth to mention at least first-class functions, higher-order, type

inference, algebraic data types and tuples.

Again, despite this not being a characterizing feature, most implementations are

interactive or at least include a Read-Eval-Print Loop.

3epsilon included.
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Functional langugages have several advantages over traditional ones: they

are especially well-suited to symbolic computation, which includes compilers and

interpreters: functional lanaguages make good metalanguages.

The interactive interface of most implementations allow users to experiment with

definitions and calls on the command line, thus shortening developement type and

making debugging easier.

On the other hand, functional languages are not trivial to implement efficiently and

pose some problems with the expression of I/O and stateful computations.

The most mature purely functional language is Haskell ([J+99]), especially

notable as a lazy language adopting monads ([Wad95]) for I/O and state.

The family of impure functional languages includes Lisp ([KCR98], [ANSIITIC96]),

the prototypical homoiconic dynamically-typed language originally developed

by John McCarthy ([McC60]), and ML ([Har86], [LDG+03]), with its efficient

implementations.

For an introduction to modern functional programming see, for example, [CM98]

or [FFFK01].

The rest of this work assumes some familiarity with the basic concepts of

functional programming.

1.1.1 Functional programming acceptance and significance

The functional paradigm is a radical departure from the conventional imperative

programming style. Despite its introduction dates back at least to the Seventies

([Bac78], [Mil78]) with its roots firmly planted in McCarthy’s work from the

Fifties and Sixties ([McC60]) and despite its merits, the acceptance of functional

programming is still hindered by the fear of shifting paradigms and by inefficient

implementations feeding the misperception of inherent inefficiencies due to the
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model itself.

One of the goals of this work is showing how a functional language can be

implemented in a relatively simple way retaining very good execution speed.

Functional languages are typically developed in academia, without many con-

nections with the industrial world4. A question naturally springs to mind: if the

“real world” has not embraced it, how is functional programming relevant today?

A possible answer may be found examining the most recently introduced general

purpose languages in common use. They are, in approximate chronologic order: Tcl

([Ous90]), Perl ([W+07]), Java ([GJSB07]), Python ([vR+96]), and C# ([HGW03]).

All of them adopt the traditional impertative or impure object-oriented paradigm.

No connection is immediately apparent between functional programming and the

above languages, until they are looked at more closely:

• All the above mentioned languages rely on a form of automatic memory man-

agement at runtime.

• The so-called “dynamic languages”5, i.e. Tcl, Perl and Python, are dynami-

cally typed.

• The “static” languages Java and C# support some form of parametric poly-

morphism.

• Tcl and Perl support higher-order procedures. Java can be extended with

libraries to also support them ([Bri07]), and C# delegates come close.

• All “dynamic” languages provide a form of eval. No “static” language does.

4But this trend may be slowly changing or at least there are exceptions: see for example

[AAA97].
5Although widely used, the term “dynamic language” appears to lack a single agreed upon

definition; for example compare [Wik] with [Asc04]. However there seems to be a general agreement

on the facts that a dynamic language must be dynamically typed, that Tcl, Perl and Python are

in fact dynamic, and that Java and C# are not. To avoid any ambiguity the term will be used

here in this strictly extensional acceptation, and static will be taken to mean “not dynamic”.
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• C# supports a limited form of type inference. Of course “dynamic” languages

do not need it.

Two interesting trends are visible here.

The first one was already observed by Paul Graham in [Gra02]. Paraphrasing:

“dynamic” mainstream languages are converging to Lisp.

Graham could not notice the second trend when he was writing back in 2002, but

it is very evident now: “static” mainstream languages are acquiring more

sophisticated type systems and higher order, converging to statically

typed (impurely) functional languages.

The “static” and “dynamic” approach are two different solutions, each with

its pros and cons6 but both are reasonable; the important fact to notice is that

mainstream languages are slowly evolving to overcome their lack of expressivity,

and they are heading for the direction of functional programming.

Even this reason alone would be enough to make functional programming “relevant”.

1.2 Contribution of this thesis

This work shows how a practically-usable functional language can be implemented

detailing the choices and trade-offs involved, and hints at its possible interesting

applications especially as a meta-language.

From another point of view, a programming language implementation where

efficiency is a real concern constitues an ideal example of programming in the

widest scope of different abstraction levels, from the highest (modules, higher-order

functions) to the lowest level (cache effects in garbage collectors: [B0̈0]).

The project is presented in its evolution across three particular snapshots of

widely differing maturity and complexity.

6Pun intended.
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The last snapshot in particular, although incomplete, hints at how one language

implementation, however ambitious by itself, can be expanded into a radically more

general system meant to serve as a group of components usable for languages –be

they functional or not– and in fact not even restricted to languages.

Finally, showing the evolution of a realistic-size project (about 60,000 lines)

and the decisions driving such evolution may be, in the author’s hope, instructive

for future endeavors by highlighting the choices which revealed themselves to be

correct, and preventing some wrong ones.

1.3 Plan of the work

The rest of this thesis is organized as follows.

Chapter 2 presents the first implementation of epsilon as it was initially conceived

for experimentation with functional languages and compilers, also showing the

language core features.

The current implementation of epsilon with its features and shortcomings is

discussed in some detail in Chapter 3, which also introduces some noteworthy tools

and applications implemented in epsilon.

Chapter 4.1 just sketches an approximation of what the third implementation of

the epsilon Abstract Machine may end up being, before hinting at some of the

possible directions which the project may take in the near or not so near future.

‘Tis pleasant, sure, to see one’s name in print;

A book’s a book, although there’s nothing in ’t.

— Lord Byron, English Bards and Scotch Reviewers (1809)



Chapter 2

The first implementation of

epsilon

2.1 History

Although epsilon has not been officially released as stable yet, three distinct phases

are already recognizable in its writing.

Of course there is a continuum in this process; in a couple of cases one part of an

implementation has been used as a starting point for its matching part in the next

implementation — but sharing of code between successive versions has always been

very limited.

The best criterion for drawing a line distinguishing an implementation from

the next one is based on shifting goals and raising ambitions. The decision to

build a more elaborate implementation has always been driven by a conscious

acknowledgement of the limits of one solution, and the will to overcome them by

starting from scratch in a clean way1.

The first implementation was started in late 2001 as an experiment with func-

tional languages and compilers in general.

1This amounts to an endorsement of The Right Thing as a philosophycal position: [Gab91],

[Bou92].

7
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2.2 Getting a snapshot

A snapshot of the first implementation can be retrieved from the CVS repository

with the command line:

cvs -z3 -d:pserver:anonymous@cvs.savannah.gnu.org:/sources/epsilon checkout -D 2002-03-01 epsilon

From now on any reference to a source file or directory in the first implementation

is implicitly intended as relative to the snapshot above.

2.3 Goals

The first implementation was not ambitious. The main idea was just building a

close-to-minimal functional language in a simple way but from scratch, using only C

([ANSI99]) with the scanner and parser generators flex and Bison ([Nic93], [FSF06]).

No particular attention was given to efficiency or even expressivity: early on it

was decided to leave out important features like type inference, concrete types and

separate compilation. Even tracing garbage collection was completely avoided, for

simplicity and for taking the opportunity of experimenting with a reference counter.

2.4 Language features

As all functional languages epsilon is expression-based and statically-scoped. For

simplicity the first implementation did away with global definitions, and only

allowed programs consisting of single, possibly large, expressions.

The language featured abstraction, application, an if. . . then. . . else condi-

tional and blocks. Functions were single-argument only, but currying easily allowed

for multi-argument functions and partial application.

The usual block constructs let and letrec enabled the user to write a set of

possibly nested definitions in a relatively comfortable way. letrec was one2 way to

2The other way was the rec operator, providing for “anonymous” recursive functions

such as “rec fact : integer -> integer . \ n : integer . if n = 0 then 1 else n
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express recursion.

Starting right from the first version imported into the CVS repository at

[FSF07] in early 2002, epsilon supported parametric polymorphism, first-class

functions, ω-order, lists, tuples and promises 3.

Ground types were integer4, (double-precision only) float5, boolean, character,

array and string. The essential primitive operations were provided: arithmetic

on integers and floats, boolean operators, basic string and array operations like

concatentation, cons (infix “::”), head and tail to work on lists, tuple selectors,

and little more.

I/O operations, only accessing the terminal, were expressed as side effects;

this made the language not purely functional in its first incarnation.

Concrete syntax was inspired by ML and Haskell.

* (fact (n - 1))”.

Note that the identifier bound to the function required a type declaration, as the first implementa-

tion compiler did type checking but not type inference. See also the use of letrec in the example

at section 2.5.
3Promises were inspired by Scheme and Common Lisp: a succint definition can be found in

[ANSIITIC96].
4Integers were implemented as C ints, i.e. “efficient” signed integers. The extremely lax

requirements in [ANSI99] (few restrictions on word size, no fixed binary representation, undefined

behavior on overflow) on this point allow very few guarantees in strictly portable code. In practice,

even if this is not mandated by the Standard, it is normally assumed that integers are at least 32 bit

wide on modern machines; not much more can be said, and behavior on overflow and underflow

remains undefined also in epsilon, which “inherits” this intentionally incomplete specification.
5Floats were implemented as C doubles, whose specification by the C Standard is intentionally

lax. See the footnote above.
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2.5 A sample program

The epsilon program which follows is written in the original syntax, and has been

tested with a CVS snapshot from 1st March 2002:

1 letrec interval-with-accumulator : integer -> integer -> (list of integer) -> list of integer be

2 \ x : integer . \ y : integer . \ acc : list of integer .

3 if x > y then

4 acc

5 else

6 interval-with-accumulator x (y - 1) (y :: acc)

7 in let interval be

8 \ x : integer . \ y : integer .

9 interval-with-accumulator x y [ ]

10 in letrec interval : integer -> integer -> list of integer be

11 \ x : integer . \ y : integer .

12 if x > y then

13 [ ]

14 else

15 x :: (interval (x + 1) y)

16 in letrec reverse-with-accumulator : list of a -> list of a -> list of a be

17 \ x : list of a . \ acc : list of a .

18 if empty x then

19 acc

20 else

21 reverse-with-accumulator (tail x) ((head x) :: acc)

22 in let reverse be

23 \ x : list of a . reverse-with-accumulator x [ ]

24 in

25 reverse (interval 1 (input_integer "Please write a number> "))

The program may be executed from the directory epsilon/ with the command

line:

epsilon/epsilon < SOURCEFILE > e.lvm && as/LVMas < e.lvm > x && lvm/lvm

As in Haskell, ‘\” stands for “λ”.

Note the type declarations after letrec bindings, and the nested blocks. The pro-

gram is a single large expression.
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2.6 Implementation features

The first implementation was based on two main components: a compiler trans-

lating the input program into a lower-level language, and a bytecode interpreter

(henceforth called abstract machine6) executing it.

The only other tool included was an assembler, a simple program with the only

purpose of turning the textual output of the compiler into a binary bytecode, more

compact and suitable for interpretation.

The implementation ran on GNU/Linux systems and was fairly portable7

and simple.

As a user interface was considered little more than a nuisance for such a small an

experiment, it was kept to a bare minimum.

The implementation totaled about 5,000 source lines. Source code quality

was quite good for an experiment.

2.6.1 Compiler

The compiler was written in a quite straighforward and conventional style for a

single-pass oblivious translator implemented in C with flex and Bison; the bulk of

the code resided in the actions ([ASU86]) from the parser attributed grammar.

Yacc-compatible parser generators like Bison somewhat encourage oblivious com-

pilers, implementing actions as blocks of C statements with side-effects ([FSF06]);

6This does not accurately reflects the terminology used at the time. Anyway, even if the first

implementation abstract machine was called a “virtual machine” in the original documentation,

the term “abstract machine” is always used in this work. First for consistency’s sake, then because

it does not risk to be unintentionally bound in the reader’s mind to totally unrelated ideas like

bytecode interpreatation, which nowadays are becoming increasingly associated to the term.
7The author normally develops on a PowerPC ([Mot97]) laptop, but epsilon has been routinely

tested on x86 ([Int95]) machines. The first implementation has never been tested on 64-bit plat-

forms due to lack of available machines, but the source were written with portability in mind and

would have been easy to port even to non-POSIX ([Wal95]) systems.
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this may be reasonable for small- to moderate-sized8 compilers like the first epsilon

compiler.

Bison actions included type-checking, with type information propagated via

attributes, other semantic checks and code generation proper.

All the uses9 of predefined operators were recognized at a lexical and syntactical

level as special cases, and code was accordingly generated.

At slightly more than 1,000 lines the parser source code (see epsilon/epsilon.y)

was quite large, but still manageable.

Other relevant modules in the compiler dealt with term structures and unification,

needed for type checking. See epsilon/term.[ch] and epsilon/types.[ch].

Local and non-local variable resolution is discussed below, as it involves the

environment representation at runtime.

2.6.2 Abstract machine

The original abstract machine was a quite straightforward and clean imperative

stack machine with explicit flow control, and no particular provisions for efficiency.

A reference-counted heap was employed to store all epsilon data including

closures and chained structures implementing environments via deep binding.

At the abstract machine level objects were limited to integer, floats, arrays (of

pointers to objects) and strings: single characters were implemented as integers,

while lists, closures and environments were represented by arrays.

Environments just held lists of arrays of values10: all identifiers were resolved at

compile time and their uses translated into instructions performing the appropriate

8However it’s worth highlighting once more the hardly-learned lesson that this solution does

not scale to more complex compilers. See section 2.9 and especially section 3.11.
9“Uses” means “calls” and only calls in this case. Section 2.9 explains why this is a problem.

10Such arrays had most often length 1, as functions were restricted to one argument. However

the let construct could bind more than one variable in the same local environment.
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number of steps through the static links and eventually looking up an element

(see epsilon/environment.[ch] for the implementation of this mechanism in the

compiler). No identifiers survived in compiled programs.

Closures were represented in memory as simple two-element arrays whose first

element was an instruction index, and the second and environment.

All objects were tagged with their (abstract machine-level) type and a reference

count, always kept up-to-date by abstract machine instructions. This was accom-

plished by implementing each object as a different C struct with the same two

initial fields1112, as this excerpt from lvm/lvm.c shows:

1 struct base_object{

2 int pins_number;

3 enum type_ID type;

4 };

5 struct integer_object{

6 int pins_number;

7 enum type_ID type;

8 int value;

9 };

10 struct float_object{

11 int pins_number;

12 enum type_ID type;

13 double value;

14 };

15 struct string_object{

16 int pins_number;

17 enum type_ID type;

18 char* value;

19 size_t size; /* this does not include the trailing ’\0’ */

20 };

21 struct array_object{

11Such a solution is not strictly portable according to [ANSI99] due to the theoretical possibility

of padding introduced by the C compiler. This was not a problem in practice, as the fields

were at the beginning of the structs and always in the same order. “Unsafe” casts to struct

base object* were also not a problem, and in fact cases like that are usual practice in C.
12This case is a clear instance of inheritance, and could have been readily implemented in C++.

However an object-oriented solution at this level was not considered appropriate as its first im-

plication would have been wasting another word per object. Also note that using structs within

other structs would not have solved the problem without sacrificing the very handy struct

base object.
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22 int pins_number;

23 enum type_ID type;

24 struct base_object* value;

25 size_t size;

26 };

Such a uniform representation allowed for a relatively simple management at

destruction time. This did not came without a cost, as it can be deduced by a look

at the code above.

Recursive functions were implemented as closures whose environment con-

tained a pointer to the closures themselves: the so-called circular closures created

several problems, as reference counters are not suitable to manage cyclic structures.

Some dirty workarounds were implemented to destroy them.

A program was a linear sequence of mostly very simple low-level stack in-

structions, with typically popped their parameters from the top elements of the

control stack and pushed a result back onto it. Other instructions performed con-

ditional or unconditional jumps, accessed the current environment, and performed

I/O.

Subprogram calling conventions were stack-based, and some instructions were

available to perform call and return.

Instructions were stored at runtime using a linear array of structs, each one

restricted to an opcode and a single13 integer argument, possibly an index relative

to a table of immediates.

Note in particular that instructions were not normal heap-allocated objects14.

13Not used for all opcodes.
14This choice, despite speeding up execution and simplifying the implementation, had the unfor-

tunate side effect of preventing the machine from running self-modifying code, the only program-

ming style actually more entertaining than the functional paradigm.
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The interpretation loop was implemented in C as a for loop whose body

consisted in single large switch discriminating on the current instruction opcode.

The interpretation loop alone took nearly half of the 2,300 lines of C code making

the abstract machine. See lvm/lvm.[ch].

2.7 A translation example

The epsilon program

(\ x : integer . x + 1) 2

is translated into the following bytecode, expressed here in the same textual notation

used in the compiler output:

1 main:

2 cls FUN_1: // make a closure with the label FUN_1 and the current environment

3 ldc 2 // push the constant 2

4 call 1 // apply the closure on the top

5 /* Output the result: */

6 outf // output a primitive object

7 /* Exit with success: */

8 ldc 0 // push the "success" exit code onto the stack

9 exit // exit, using the stack top as the exit code

10

11 /* Code for unnamed lambda-abstraction #1: */

12 FUN_1:

13 lcl 1 // access the first local named x

14 ldc 1 // push the constant 1

15 add // sum the two top elements

16 retv // return and push the value which is currently on top

2.8 Achievements

The experiment had some success.

epsilon has had some important features since its very beginning including paramet-

ric polymorphism, ω-order and first-class functions.

Lists were not implemented as algebraic objects in the first implementation, but

nonetheless they were available and usable.
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2.9 Limitations

This may be too much.

Despite the achievements, at the time of what could be called the end of

the first implementation, say Spring 2002, some shortcomings became more and

more evident.

First of all the oblivious style was beginning to prevent the compiler from

scaling up. Executing scanning, parsing, semantic checks and code generation in a

single pass prevented analyses and optimizations.

A similar problem in the compiler was due to the unification implementation

in C; manual memory management is too complex to be used for such a task.

Some long standing bugs, including a serious one breaking the support for nested

tuples, was extremely hard to fix due to the complex implementation of terms with

C pointers, malloc() and free().

Other minor problems remained in the compiler, for example the fact that

predefined operators like “head”, “+” and “::” were not implemented like ordinary

functions. This implied that they could not be passed as parameters, returned or

partially applied15. And of course each primitive operator contributed to clutter

the compiler source code.

It became clear that C had not been not the most appropriate choice as a

tool for writing compilers: a compiler is a complex program for symbolic manipu-

lation, and some higher-level language –such as a functional language, including a

more mature version of epsilon itself– could have been much more effective.

15However such limitations were easy to overcome in practice: even if the user could not pass

“+” as a parameter, for example, it was always possible to pass “λ x . λ y . x + y”. Nonetheless

primitive operators were not first-class objects in a strict sense.
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A full rewrite of the compiler was first considered around that time.

The lack of type inference was particularly annoying, as it forced the user to

write long type declarations which could be obtained automatically, and had the

additional effect of obscuring the code.

Concrete types were also essential for a truly usable language, and well as

modules, abstract types, and global environment.

The abstract machine had been a nice experiment, but something much more

efficent, and possibly extendable, could be built without a great effort.



Chapter 3

Current implementation

Around the Spring of 2002 the problems mentioned at section 2.9 became evident,

and in order to overcome them –and on the other hand because of raising ambitions–

a new implementation was undertaken with the intent of gradually replacing com-

ponents one by one.

The implementation described in this chapter is a nearly complete rewrite.

3.1 Getting a snapshot

An up-to-date snapshot of the second implementation can be retrieved from the

CVS repository with the command line:

cvs -z3 -d:pserver:anonymous@cvs.savannah.gnu.org:/sources/epsilon checkout epsilon

As in Chapter 2, references to individual files or directories are henceforth to be

intended as relative to the source code snapshot above.

3.2 History and goals

The primary goal of epsilon, beyond experimantation, is still the implementation of

a practically usable and simple functional language.

To be practically usable as a language epsilon still lacked some important features

like algebraic types, global environment and separate compilation.

The features above were deemed essential to continue, but in this phase it was

18
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decided to also expand the language in other directions, in part also for aesthetic

reasons: it was decided that the new implementation would be purely functional,

with monadic I/O.

A central idea was the development of a self-hosting compiler; but this re-

quired a mature implementation of epsilon for the bootstrap phase, which of course

was not available. However a subset of the language could do the job if expressive

enough, and a realistic path to that goal consisted in upgrading the current compiler

to the level required for writing a realistic compiler.

Hence the “old” compiler written in C was updated to support a larger and more

complex language, initially with the aim of eventually replacing it with a new

self-hosting implementation.

Goals have somewhat shifted in the meantime, and although epsilon has now

reached and surpassed the required level of maturity, its implementation is not yet

self-hosting.

In the last years the language has evolved and has been heavily used1 to

build some applications and more tools, including some quite elaborate ones.

New needs and goals emerged from this experience, and the ultimate form which

the project will take is still far from clear.

Meanwhile the abstract machines has grown more and more into a project

by itself, extending its potential scope also to non-functional languages. An ideal

abstract machine for epsilon should be a good basis for any kind of language

implementation, general, portable and efficient.

1By the author, of course — there can not be a real user base until the language somewhat

stabilizes. But some interested strangers leave an e-mail every now and then.
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3.3 Language improvements

Several major features were added to the language, the foremost of which include

global environment, type inference, algebraic types (called “concrete types” in

epsilon), abstract types, synonym types (simple abbreviations for possibly long type

names), separate compilation and exceptions. Side-effects I/O was replaced by a

monadic purely-functional I/O system.

The language concrete syntax was changed to a degree, and the possibility of

defining functions callable with infix and postfix syntax was provided.

Despite being much needed most changes were inspired by ML or Haskell,

and as such they are not particularly interesting or innovative.

3.3.1 State of the compiler

As the changes mentioned above were simply thought as temporary kludges

enabling to bootstrap a new compiler no particular care was taken in keeping

the code “beautiful”, and the compiler grew to its current 10,000 lines (see

compiler/epsilonparser.y).

Anyway, despite the complexity of the current implementation being well past the

limit reasonable for an oblivious translator, the compiler proved to be quite solid

and in fact is still being used — before an alternative is carefully designed and

implemented.

The main focus, instead, shifted to the abstract machine. The first imple-

mentation was self-contained and easy to replace altogether, requiring only minimal

changes in the compiler for retargeting.



3.3. Language improvements 21

3.3.2 Sample programs

What follows is the content of an interface file2:

1 // An exported type definition:

2 define concrete type expression =

3 Number of integer

4 | Variable of string

5 | Plus of (expression * expression)

6 | Minus of (expression * expression)

7 | Times of (expression * expression)

8 | Divided of (expression * expression)

9 | Sin of (expression)

10 | Cos of (expression);

And this is the matching implementation file:

1 // A function definition:

2 define derivative = fix \ derivative . \ e . \ x .

3 match e with

4 Number(n) -> Number(0)

5 | Variable(v) -> if x =s v then Number(1) else Number(0)

6 | Plus(e1_e2) -> Plus((derivative (e1_e2 ^ 1) x),

7 (derivative (e1_e2 ^ 2) x))

8 | Minus(e1_e2) -> Minus((derivative (e1_e2 ^ 1) x),

9 (derivative (e1_e2 ^ 2) x))

10 | Times(e1_e2) -> Plus(Times((derivative (e1_e2 ^ 1) x), (e1_e2 ^ 2)),

11 Times((derivative (e1_e2 ^ 2) x), (e1_e2 ^ 1)))

12 | Divided(e1_e2) -> Divided(Minus(Times((derivative (e1_e2 ^ 1) x), (e1_e2 ^ 2)),

13 Times((derivative (e1_e2 ^ 2) x), (e1_e2 ^ 1))),

14 Times(e1_e2 ^ 2, e1_e2 ^ 2))

15 | Sin(e1) -> Times(Cos(e1), (derivative e1 x))

16 | Cos(e1) -> Times(Number(-1), Times(Sin(e1), (derivative e1 x)));

17

18 // Another function definition:

19 define successor = \ x . x + 1;

20

21 // An object definition:

22 define n = successor 41;

A module is now a sequence of global definitions.

Note how the “match” at row 3 serves only to discriminate among constructors, and

2Interface files contain public declarations and are identified by the extension .epi. Definitions

are contained in implementation files, which by convention have extension .epb
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does not provide for full parttern matching. Also interesting are the occurrences of

the tuple selector operator “^”. The “fix \” at row 2 is just syntactic sugar for

“rec”.

No types are explicitly declared; it’s now the compiler to dump information about

the inferred types to the standard error, while translating:

1 derivative : (expression -> (string -> expression))

2 successor : (integer -> integer)

This exceprt from examples/mubasic/mubasic.epb makes a good example of I/O

code written in an “imperative” style:

1 define main = begin

2 assign args := get_command_line_arguments;

3 assign program_text := read_whole_file_as_8bit_string (head args);

4

5 try_io

6 eval (parse_mubasic program_text);

7 catch_io mubasic_parse_error into se -> begin

8 output_string "row ";

9 output_integer (se ^ 6); output_string ", column ";

10 output_integer (se ^ 5); output_string ": ";

11 output_string ("Parse error near ‘" @@s (se ^ 2) @@s "’\n");

12 throw_io mubasic_parse_error se; // rethrow

13 end

14 | scan_error_exception into se -> begin

15 output_string "row ";

16 output_integer (se ^ 4); output_string ", column ";

17 output_integer (se ^ 3); output_string ": ";

18 output_string ("Scan error near ‘" @@s

19 (program_text from (se ^ 1) to (se ^ 2)) @@s "’\n");

20 throw_io scan_error_exception se; // rethrow

21 end;

22 end;

Many other examples of various complexity and maturity can be found in the sub-

directory examples/.

3.4 The epsilon Abstract Machine

The epsilon Abstract Machine (eAM from now on) constitutes a particularly

interesting component of the second implementation.



3.4. The epsilon Abstract Machine 23

The eAM was designed with the goal of being a portable and efficient ab-

stract machine to execute functional and non-functional programs3.

The eAM operates at about the same abstraction level compared to the ab-

stract machine of the first implementation: the model is imperative, instructions

tend to be very simple, and as a rule they work on a stack. Flow control is explicit.

The language interpreted by the epsilon Abstract Machine Language is abbreviated

into eAML.

3.4.1 Compilation model

The eAM supports two distinct modes of operation:

Interpreter mode

In the first of its two modes of operation the eAM interprets programs in bytecode

form, just like the original abstract machine. However such programs can be more

easily manipulated via external tools such a linker allowing for separate compilation

at the eAML level and also supporting libraries of eAML code, and a peephole

3Several already implemented alternatives are readily available and they have been considered,

of course: popular abstract machines used as compiler targets include the JVM, the CLR, Parrot

and Neko.

The reason why they were not used, beyond the desire of maximizing the possibility of control and

the number of knobs to turn, includes disappointing performance results such as [SS02], [BSS04]

and [DHR01].

It is evident that any “high-level” machine hiding such details as calling conventions is necessarily

coupled to a programming style or idiom (typically object-oriented languages) and is not flexible

enough to support a very different language with adequate performance.

On the other hand JITs, however complex and difficult to exploit they can be, usually do provide

a performance advantage over simpler solution such the one described here; the current eAM

can not offer a good answer to JITs, but a different approach based on traditional ahead-of-time

compilation like the new eAM outlined in Chapter 4.1 might become, in the future, a convincing

alternative.
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optimizer.

The interpreter mode is the only practical way to use the eAM in most cases.

Compiler mode

In its second mode of operation the eAM translates an already li6nked eAML pro-

gram into a single C source file which, when compiled and linked to a runtime library,

can run with a substantial speedup (when appliable a speedup around 60% is fairly

consistent along different small programs).

The speedup is obtained by eliminating the virtual machine interpretation loop, to a

lesser degree with optimizations performed by the C compiler, and with an efficient

implementation of jumps as computed gotos (see below).

The obvious problems caused by the potentially large size of the generated source

code were initially understimated. Such an overlook revealed itself as particularly

serious, as the condition is further exacerbated by an implementation technique

consisting in using the same C source code for implementing the eAM in interpreter

mode4, and as target code emitted in compiler mode. Such a trick succeeds in avoid-

ing code duplication and gives good results when appliable, but it involves heavy

use of the C preprocessor, thus pushing memory requirements even higher.

The implementation of this essentially failed but interesting experiment can be found

in eam/ together with the needed shell scripts and an incomplete backend generating

Scheme code.

3.4.2 A notable implementation feature

When in compilation mode the eAM uses computed goto, a non standard GCC

extension ([S+03]) allowing C labels to be computed as results in an expression and

held in memory.

Note however that even a compouted goto is subject to the usual restrictions on

goto imposed by [ANSI99], which in particular forbids to jump out of the currently

4Some shell scripts are automatically called by make at build time to glue together the imple-

mentation of each instruction into the interpretation loop
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enclosing block. This is the reason why a single large block must be generated in

compiling mode — independently from the sort of goto which is employed.

3.4.3 Memory management and garbage collection

The eAM only works with word-sized or larger objects; this incurs practically no

overhead, and makes the implementation simpler and more portabile: conditional

compilation is employed at configuration time to discover the machine word size,

which is then used as the size of all atomic objects. It’s an advantage, for example,

to be able to always store either a pointer or an integer in an array slots, as they

are guaranteed to be of the same size.

The object types at the abstract machine level are exactly the same as in the first

implementation; but note that in this case no runtime tagging of objects is needed,

thanks to the garbage-collected heap.

The eAM employs a set of registers5, a control stack, an exceptions stack6, and a

garbage-collected heap.

3.4.4 Garbage collector

The heap is automatically managed by a quite efficient mark-and-sweep garbage

collector ([Wil94]) employing conservative pointer-finding, as it is needed in practice

for interfacing with C code ([BW88]).

As the roots are always in known memory locations (i.e. stack and registers7), no

non-portable code is needed to trace them.

The collector source code is in eam/gc/. It totals 2,000 lines.

3.4.5 Extendability

The eAM has some support for dynamically-linked binary code, using a wrapper of

the dlopen() family of functions. Dynamic libraries can be loaded at runtime from

5Not currently used by the instructions generated by the epsilon compiler.
6This allows for more efficient location of the topmost catch block on a try
7Abstract machine registers are implemented in the main memory of the physical machine.
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eAML and even epsilon has some rudimentary support for defining low-level inter-

faces to them89: for a simple example see this excerpt from library/floats.epb:

1 define pi = c_object "c_pi" from "float_math";

2 define e = c_object "c_e" from "float_math";

3 define sin = c_function "c_sin" from "float_math";

4 define cos = c_function "c_cos" from "float_math";

library/floats.epi specifies the signatures for all exported functions, so that

modules using them can only interact with the library in a type-safe way:

1 declare pi : float;

2 declare e : float;

3 declare sin : float -> float;

4 declare cos : float -> float;

The eAM can be extended with new instructions in an extremely simple way,

by adding its implementation in C as new file under the appropriate subdirectory10

within eam/c instructions/. Recompiling the eAM automatically regenerates the

interpretation loop for the interpreter mode and updates the code to emit in compiler

mode.

This sort of extension, however, requires recompilation of the eAM and of all the

code to interpret.

3.5 Library

The current implementation of epilon includes a small library, developed piece by

piece as the need arised for a particular application or experiment.

Other times some code was simply extracted from an epsilon application and

moved into the library. Higher-order and polymorphism appear to make code reuse

8Of course type inference can not be used in these cases. Types must be carefully declared, and

when they are wrongly specified programs react by crashing.
9Libraries are normally wrapped by other simple C libraries (float math in this example) with

word-sized parameters and results, for compatibility with the eAM mamory model.
10Instructions are classified according to the type and number of their parameters.
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particularly natural.

A brief description of the most important library modules is provided here

also because of the interesting role of several such modules as “case studies” about

the practical usability of a functional language.

The code can be found in the library/ subdirectory.

3.5.1 Associative data structures

Several associative containers are developed around a single polymorphic imple-

mentation of AVL trees ([AL62]). The implementation is very well tested as both

epsilonlex and epsilonyacc heavily rely on it, but usability suffers from the need

of explicitly supplying comparison functions at container creation time:

as the operations on AVL trees –and on binary search trees in general– depend on

the ordering of the elements, two comparison predicates “less” and “equal” of type

τ -> τ -> boolean are needed to be able to work on a tree of τ .

Using containers like these shows the practical need for some sort of sub-

type polymorphism in addition to parametric polymorphism, in a very compelling

way.

Included containers include set, multiset, associative array, and multimap.

3.5.2 Utility functions

A collection of the “usual” higher-order functions like compose and iterate is sup-

plied.

Another set of widely used functions have the purpose of easing the work with lists.

They include functions like length, map, append, fold left and fold right.

An implementation of the usual trigonometric and other transcendent functions on

floats is provided.
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3.5.3 S-expressions and terms

An implementation of S-expressions ([McC60]) including reader and printer was

obtained from µ-lisp (see section 3.9).

This module has revealed itself useful several times for experimenting with an

interpreter without a set-in-the-stone concrete or abstract syntax, and also as glue

for exchanging data with Lisp implementations11.

An implementation of terms with variables and unification derived from µ-

prolog is also provided. It is suitable for being used in type checkers but suffers

from the state problem discussed at subsection 3.11.

3.5.4 Channels

Channels are generic communication interfaces similar to Scheme ports ([KCR98]),

performing some communication with some external entity.

After being created with a primitive appropriate to the channel type, each channel

exposes the exact same interface.

The currently implemented channel types are files and terminal I/O. With the same

idea other interesting communication endpoints like network sockets could be im-

plemented.

3.5.5 Other interesting modules

Bignums built on the GMP library ([Gra04]) are provided, supporting basic arith-

metics, reading and printing.

A small module built on SDL ([SDL]) enables access to some simple graphic primi-

tives.

11S-expressions would also make a good data interchange format. This idea is far from new

([McC90]) but today violating the XML orthodoxy appears to be unthinkable.
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3.6 REPL

A quick-and-easy REPL implementation is provided. The REPL works by trans-

parently invoking the epsilon compiler and the eAM in interpretation mode; the

REPL is often handy for quick tests, but a real interpreter would have some value

for developing.

3.7 epsilonlex and epsilonyacc

The epsilonlex scanner generator and the epsilonyacc parser generator are the

most mature and complex, if not very large, epsilon applications.

Both follow the algorithms in [ASU86]; epsilonlex is quite common in being based

on regular grammars. epsilonyacc makes up a more daring experiment, being a

canonical LR(1) parser generator.

Both tools employ complex algorithm and show examples of the state prob-

lem in several cases. See section 3.11.

epsilonlex and epsilonyacc are mutually self-hosting: each of them depends on

itself and on the other one for its frontend.

3.7.1 A frontend example

This is referred to the same interface shown at .

An epsilonlex scanner follows:

1 interface_code {}

2 implementation_code {}

3 grammar

4 <digit> ::= from 0 to 9;

5 <letter> ::= (from a to z) | (from A to Z);

6 <identifier> ::= <letter> (<letter> | <digit> | _ )*;

7 <comment> ::= ’ [ \n ]* \n;

8 <whitespace> ::= (\ | \t | \n)+;

9 rules

10 <whitespace> ignore

11 <digit>+ { integer_constant_token }

12 \+ { plus_token }
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13 - {minus_token}

14 \* {times_token}

15 / {divided_token}

16 sin { sin_token }

17 cos { cos_token }

18 \( { openpar_token }

19 \) { closepar_token }

20 <identifier> { variable_token }

This is an epsilonyacc parser:

1 interface_code { import derivative; }

2 implementation_code {}

3 nonterminals

4 <expression> : { expression }

5 terminals

6 integer_constant, variable, plus, minus, sin, cos, times, divided

7 openpar, closepar

8 <expression> ::=

9 integer_constant { Number(string_to_integer $1_text) }

10 | variable { Variable($1_text) }

11 | <expression> plus <expression> {Plus($1, $3) }

12 | <expression> minus <expression> {Minus($1, $3) }

13 | <expression> times <expression> {Times($1, $3) }

14 | <expression> divided <expression> { Divided($1, $3) }

15 | sin openpar <expression> closepar { Sin($3) }

16 | cos openpar <expression> closepar { Cos($3) }

17 | openpar <expression> closepar { $2 }

3.8 Recognition

In December 2002 the author had the honor to see epsilon officially accepted into

the GNU Project by Richard Stallman ([GNU], [Sta02]).

3.9 Applications

Several applications were developed and are distributed with in epsilon.

Several programming language interpreters are provided: as their name say they

are minimal versions of popular languages: in growing order of difficulty: µ-basic,

µ-lisp, µ-prolog. They can all be found under examples/.
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An implementation of call-by-name λ-calculus can be found at

examples/lambda calculus/.

Three classic graphic hacks were implemented: Wander, the Sierpinsky’s triangle

and a simple function plotter, whose most complicated part is the parser.

3.9.1 ICFP 2004 and 2005

The author took part to the ICFP programming contest (see [ICF06]) using epsilon.

The 2004 problem dealt with compilers, and the result was quite good. A writeup

can be found here: [Sai04].

3.10 Achievements

All the stated goals regarding the language were essentially met. The implementa-

tion, although not completely mature and polished, is usable. Efficiency is good,

and the system is very portable. The new implementation was also ported on Sparc

and UltraSparc processor with no problems.

The abstract machine can be extended by the user.

3.11 Shortcomings

3.11.1 The “state problem”

The lack of some epsilon construct to express stateful computation has became

evident in several cases in the author’s experience.

An example can be found in the term implementation in library/term.epb, where

the author was forced to manually “sequence” stateful operation, not having a

monad available.

But Haskell-style “state monads” ([J+99]) would provide some relief without solving

the core problem. Some particularly clear examples involve the generation of a

fresh variable or of a random number. When the user decides to compute an object

based on some implicit “state” information, hence using a monad, a very large
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part of the program text surroounding the changed part has to be restructured to

accommodate for a cascade of the type changes.

Said in another way, introducing a monad in a local effect tends to have e global

effect.

Despite all the problems it implies, mutable state appears to be more powerful as

an abstraction tool.

The problem remains open.

3.11.2 Other shortcomings

The need for subtype polymorphism is well expressed by the example at section 3.5.1.

Pattern matching12 would made the language much more concise and easy to

use.

A new compiler is needed, but first it should be decided exactly what kind

of language should be supported.

The current eAM has an acceptable performance, but it can be made faster. Its

source code optimized for performance is quite difficult to follow.

12Or much, much better: some way to allow the user to implement pattetn matching in a

functional setting. See [Ste98]



Chapter 4

Conclusions and future work

4.1 A more radical experiment

After a hiatus a new, third implementation of an epsilon Abstract Machine was

began in late 2006 as a way to overcome the inefficiencies of the current eAM.

The implementation is still immature, and the new implementation was conceived

bottom-up as a conscious design decision: the abstract machine must be still

lower-level and more efficient, even at the cost of sacrificing simplicity.

It is not clear yet what kind of language this infrastructure will be used for.

Ideally this should be a work for languages more than on a language.

A snapshot can be retrieved from CVS at

cvs -z3 -d:pserver:anonymous@cvs.savannah.gnu.org:/sources/epsilon checkout eam

Many choices, constraints and possibilities are still nebulous, but below some

already implemented ideas are quickly sketched. Of course some may be discarded

in the future.

• No predefined primitive data and operations (the user can define them in C).

• Register-based, for maximum efficiency. Abstract machine registers can and

should be allocated in hardware registers even if programming in C. This can

be done, as the implementation shows.

33



4.2. Future directions 34

• No predefined runtime structures: stacks and heap can be added by the user

if needed.

• No fixed calling conventions: different languages and even different function

may require ad-hoc calling conventions.

• eAML should support macros to be easier to generate code for, and for human

programmers.

• No bytecode, no interpretation loop in software: only native-code compilation

• new mark-and-don’t-sweep ([Wil94]) garbage collector optimized for tagged

data, hence ideal for concrete types

The new experimental compiler at stuff/benchmark/mubasic/, running on

the old eAM and generating code for the new one, seems to generate very high-

performance code.

4.2 Future directions

A project like epsilon can be expanded in most any conceivable direction and lends

itself to very creative experimentations. But implementations should be first of

all usable and solid, and wild experiments should also make place to consolidation

work.

A library should be built and possibly managed in a collective way if a user base of

any dimension; documentation should be written. Some public repository organized

like [CPA] might work.

One possible interesting pursuit would be a system for distributed program-

ming, with either implicit or explicit communication — or even both, at different

levels.

A functional language tends to be the right tool for manipulating other lan-

guages — and nowadays this implies work on the web, on databases, on biological
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data.

Functional languages can do all of this and more, but some theorethical questions

are still to be settled — and usability questions. Linear logic ([Cle]) could be a

promising direction, for example.
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