
Daniele Ludovici

Performance Analysis of RR
and FQ Algorithms in

Reconfigurable Routers

Tesi di Laurea Specialistica

Università di Pisa

Anno Accademico 2005/2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14693036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Università di Pisa

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Performance Analysis of RR and FQ
Algorithms in Reconfigurable Routers

Tesi di

Daniele Ludovici

Relatori:

Prof. Luciano Lenzini .

Prof. Cosimo Antonio Prete

Candidato:

Daniele Ludovici .

Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2006

Performance Analysis of RR and FQ
Algorithms in Reconfigurable Routers

Daniele Ludovici

Abstract

Faculty of Electrical Engineering, Mathematics and Computer
Science

Currently, we are witnessing a trend in network routers to in-
clude reconfigurable hardware structures to provide flexibility
at improved performance levels when compared to software-only
implementations. This permits the run-time reconfiguration of
the hardware resources, i.e., to change their functionality (for
example, from one scheduling algorithm to another), to adapt to
changing network scenarios. In particular, different scheduling
algorithms are more efficient in handling a specific mix of incom-
ing packet traffic in terms of various criteria (e.g., delay, jitter,
throughput, and packet loss). Therefore, reconfigurable hard-
ware is able to provide improved performance levels and to allow
more efficient algorithms to be utilized when different incoming
packet traffic patterns are encountered. This project investi-
gates the possibilities to improve upon end-to-end delays, jitter,
throughput, and packet loss by exploiting the availability of a
flexible hardware structure such as an field-programmable gate
array (FPGA). The aim of the project is to provide an overview
on adaptive scheduling using reconfigurable hardware. Conse-
quently, we investigate different scheduling algorithms that pro-
vide QoS provisioning for traffic streams that are sensitive to

packet delay and jitter, e.g., mpeg video traffic. The investigation utilizes the NS-2 simulator for
which we generate realistic network scenarios. Our approach is based on understanding which kind
of traffic is passing in the network, and subsequently change the scheduling algorithm accordingly in
the core router to meet specific performance requirements. The investigated scheduling algorithms
are taken from two well-known families, i.e., Round Robin (RR) and Fair Queuing (FQ). Our in-
vestigation confirmed the idea on the behavior of the two investigated scheduling algorithm: WFQ
outperforms WRR in terms of end-to-end delay, jitter and throughput but it is more expensive than
it at a computational level. Nonetheless, it is possible to find a tradeoff between the required area
in FPGA and the level of performance desired for a kind of stream.

to my family, for the infinite love and support they give

me every day of my life

i

Contents

List of Figures vii

List of Tables viii

Acknowledgements ix

Ringraziamenti x

1 Introduction 1
1.1 Quality of Service . 1

1.1.1 QoS parameters . 3
1.2 Goals & Methodology . 4
1.3 Overview . 5

2 Scheduling Algorithms 7
2.1 Classification of Scheduling Algorithms 7
2.2 FIFO (First In First Out) . 8
2.3 Priority Scheduling . 8
2.4 Fair Scheduling Algorithms . 9

2.4.1 Round Robin . 9
2.4.2 Fair Queuing algorithms . 11

2.5 Summary . 15

3 Simulation Setup 17
3.1 NS-2 - The Network Simulator . 17

3.1.1 Overview . 17
3.2 Getting results in NS-2 . 20
3.3 Differentiated Services Architecture for IP QoS 21

3.3.1 Queue Management . 21
3.3.2 Drop Tail . 22
3.3.3 An Overview of RED . 22
3.3.4 Multiple RED Parameters 23
3.3.5 Diffserv Architecture . 24

3.4 MPEG4 Model . 26
3.5 Competing Streams . 28

3.5.1 Costant Bit Rate . 28
3.5.2 Poisson . 28

ii

3.6 Motivation . 29
3.7 Cost Analysis . 31
3.8 Summary . 32

4 Modifications to NS-2 33
4.1 Monitor Agent . 33
4.2 Support for Reconfiguration to the Simulator 37

4.2.1 Reconfiguration Delay . 42
4.3 Weighted Fair Queuing Implementation 43

4.3.1 Formulas . 43
4.3.2 The code . 44
4.3.3 GPS properties and complexity 48

4.4 Summary . 49

5 Simulations 50
5.1 Confidence Intervals . 50
5.2 Random Variables . 53
5.3 Fairness Evaluation . 54
5.4 Simulation Scenario . 58
5.5 Traffic Load Variation . 58

5.5.1 Delay . 59
5.5.2 Jitter . 60

5.6 Queue Weight Variation . 61
5.6.1 Delay . 62
5.6.2 Jitter . 64

5.7 Splitting Traffic . 65
5.8 Final Reflections . 66
5.9 Summary . 67

6 Conclusions and Future Research 68
6.1 Summary . 68
6.2 Main contributions . 69
6.3 Future Research Directions . 69

Bibliography 73

A MPEG-4 Source Code 74

B Diffserv Module 80

C Overview on FPGAs 112
C.1 What is a FPGA . 112

C.1.1 Historical Roots . 113

iii

C.1.2 Architecture . 114
C.1.3 FPGA design and programming 115
C.1.4 FPGA with Central Processing Unit Core 116

iv

ACRONYMS

AF Assured Forwarding
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
CBR Costant Bitrate
CLB Configurable Logic Block
CPLD Complex Programmable Logic Device
DRR Deficit Round Robin
DSP Digital Signal Processor
Diffserv Differentieted Services
FCFS First Come First Served
FPGA Field Programmable Gate Array
FQ Fair Queuing
GPS General Processor Sharing
IntServ Integrated Services
NAM Network Animator
NS-2 Network Simulator v2
OO Object Oriented
QoS Quality of Service
PGPS Packet Generalized Processor Sharing
RED Random Early Detection
RR Round Robin
SLA Service Level Agreement
SLS Service Level Specification
SP Strict Priority
TES Transform Expand Sample
W2FQ+ Worst Case Weighted Fair Queuing
WFQ Weighted Fair Queuing
WRR Weighted Round Robin

v

List of Figures

1.1 A QoS-aware Network Model . 2

2.1 FIFO Scheduler . 8
2.2 Priority Queuing Scheduler . 9
2.3 Round Robin Scheduler . 10
2.4 WRR Scheduler . 11
2.5 Graphical representation of a GPS Server 12
2.6 Different packet output between WFQ and WF2Q+ (picked from [14]) 15

3.1 Simplified User’s View of NS-2 . 17
3.2 C++ and OTcl: The Duality . 19
3.3 Architectural View of NS-2 . 20
3.4 NAM: Network Animator . 20
3.5 Different Queue Management mechanisms 21
3.6 Scenario with different kind of queues 22
3.7 Devices in a Diffserv Domain . 25
3.8 Audio and Video in the Internet . 26
3.9 Implementation Complexity of Packet Scheduler 32

4.1 Trace File structure . 33
4.2 Reconfiguration Idea . 37

5.1 Overall arrangement of streams and sub-streams [9] 53
5.2 Network Scenario for Fairness Evaluation 56
5.3 Fairness evaluation with VBR and CBR sources 57
5.4 Network Scenario with load variation 59
5.5 MPEG4 delay variation for different traffic load with CBR 60
5.6 MPEG4 delay variation for different traffic load with Poisson 60
5.7 MPEG4 jitter variation for different traffic load with CBR 61
5.8 MPEG4 jitter variation for different traffic load with Poisson 61
5.9 Simulation Scenario with Queue Weight Variation 62
5.10 MPEG4 delay variation for different queue weight with CBR 63
5.11 MPEG4 delay variation for different queue weight with Poisson . . 63
5.12 MPEG4 jitter variation for different queue weight with CBR 64
5.13 MPEG4 jitter variation for different queue weight with Poisson . . . 65

C.1 FPGA [21] . 112
C.2 Typical FPGA logic block . 114
C.3 Locations of the FPGA logic block pins 114
C.4 Switch Box Topology . 115

vi

C.5 Xilinx FPGA . 117

vii

List of Tables

3.1 Part of TCL code using MPEG4 source 27
3.2 Configuration lines to add in the NS-2 default file 28
3.3 Excerpt of CBR Tcl code . 29
3.4 Excerpt of Poisson Tcl code . 29

4.1 Trace-file Example . 34
4.2 Set of simulations with reconfiguration 40
4.3 Packet drop for Round Robin . 40
4.4 Packet drop for RR→WRR . 41
4.5 Packet drop for WRR . 41
4.6 Code Mapping Device Delay, C++ 42
4.7 Code Mapping Device Delay, Tcl 43

5.1 T-Student . 51
5.2 Tracefile setup . 55
5.3 Fairness evaluation with MPEG4 and CBR 56
5.4 Fairness evaluation with MPEG4 and Poisson 56
5.5 Fairness evaluation with MPEG4 and our VBR 56
5.6 Fairness evaluation with CBR and our VBR 57
5.7 Delay evaluation with CBR and our VBR 57
5.8 Simulation Plan 1 . 58
5.9 Simulation Plan 2 . 58
5.10 Queue Weights . 62
5.11 Delay splitting the traffic or not . 66

viii

Acknowledgements

This work represents a very important step for my life and i would like to thank
all the people that supported me during this period.
First of all, i would like to thank Stephan Wong for the valuable guidance through
my work, for his infinite patience and the advice he suggested to me during the
development of this thesis. Moreover, the great friendship he showed me from the
beginning.
Thanks to Stamatis Vassiliadis for the opportunity he gave me to study in his
group and the great confidence shown in all of our discussions.
I really thank all the people i have met in the CE group that have contributed to
make this experience unforgettable.

Daniele Ludovici
Delft, The Netherlands
2006

ix

Ringraziamenti

Quelle che state leggendo sono le ultime righe che scrivo per completare questo
lavoro che è sbocciato nella terra dei tulipani, delle canape e delle bitterballen. È
stata una grande avventura per la quale devo ringraziare in ordine sparso le persone
che mi hanno accompagnato in questi mesi di soggiorno esterofilo: Giacomino,
Sergio, Alessandro, Lecorbudar, Mikko, Dimitris, Arcilio, Yizhi, Maristella, Gino,
Mattia, Maximilian, Roberto, Lars, Juhan, gli olandesi di cui non ricordo i nomi,
la mia cara Bea, Gianni, Lo Maestro, Joaho, Daniel, Andrea, Roberto, Mauro,
Christian, tutti i ragazzi del CE-group che mi hanno sempre fatto sentire a casa
e tutte le altre centinaia di persone che ho conosciuto e di cui non mi ricordo in
questo momento. I sette mesi olandesi mi hanno dato tanto ma forse mi hanno
tolto anche qualcosa. . . qualcosa che mi ha sempre incoraggiato a non mollare mai
e a cercare sempre il meglio per me, per questo non potrò che esserti per sempre
grato, grazie Pamy. Prima dei tulipani c’è stata la torre pendente, Pisa mi rimarrà
per sempre nel cuore grazie agli amici di casa Guelfi che hanno reso questi anni
di permanenza un vivere in famiglia. Peppino e le nostre lunghe chiacchierate.
Gabriele, tutta la pasta che m’ha fatto mangiare e i gol che per lui ho rifinito.
Daniele e le nottate a vedere Smallville e altre serie TV insieme. Grazie a Stefano
e Rocco B. fedeli compagni di corso e impagabili amici di strada. Grazie a Rocco
V. per i suoi gol mangiati e la tagliata con la rucola. Grazie a Valerio, il suo saper
fotografare e il suo passo felpato nel giocare a calcetto. Grazie ad Andrea, la sua
pizza al pesto e il suo saper compilare. Grazie a Giuseppe (Re Artù) Arturi. Grazie
a tutte quelle della casa “di la”: Maddalena, Elisabetta, Giulia, Cristina, Olga,
Anna, Marianeve, Sara, M.Elisa e tutte quelle che non hanno passato il casting ma
avrebbero voluto. Grazie a Filippo e il suo folle modo di essermi amico. Grazie
a Nino e la siora Baglini per tutta la comprensione dimostrataci nel sopportarci
come vicini. Grazie a tutti quelli contro i quali ho inveito giocando a calcetto e
che mi hanno lasciato il setto nasale al suo posto. Grazie ad Angelo, Antonio e
Massimo. Grazie a Mad-house per le cene al crostino, Elisqui e il suo maledetto
gatto, Gianfa e la sua logorroica dolcezza, Francesca e il suo sorridere sempre,
Valeria che mi assomiglia in quanto essere panda femmina. Grazie a Gianluca che
sopporta Elisqui. Grazie agli amici di Perl.it. Non ci sarebbe stata Pisa senza i
747 metri sul livello del mare più belli del mondo, grazie a tutti i miei amici di
sempre, Diego e Sandro, Annalisa e Michela, Donato tuttofare, Verdura e Cilento
ormai ballerini, Cervo e Cirillo, Zio Lauro, Carlo, Francesca, Tucio, i cugini Mario
e Gianluca, Andrea, Simona e ora anche Alessandro :-), Giovanna, Celentano e
Borra, McGuiver e Manganozzo, Piero e Ileana, Francesco che non mi è venuto a
trovare e Desy, i cuginetti Luca, Marcolino e Marco, tutti gli zii che ho. Grazie a

x

Mauro per avermi fatto appassionare all’informatica e per esser l’amico unico che
è. Grazie a tutti gli insegnanti che ho avuto e in particolare a quelli che mi hanno
trasmesso la voglia di viaggiare. Grazie a Zio Spartaco a Zia Graziella. Grazie a
Nonna Natalina e Zia Laura per l’immenso amore che avete per me. Un pensiero
ai miei nonni che anche da lassù saranno tanto felici.
Grazie a mia madre, mio padre e mio fratello per avermi convinto ad inseguire i
miei sogni sempre e comunque.

Daniele Ludovici
Delft, The Netherlands
2006

xi

Introduction 1
Currently, we are witnessing a trend in network routers to include FPGA struc-
tures to provide flexibility in scheduler implementations at improved performance
levels when compared to software-only implementations. This allows run-time re-
configuration of, e.g., scheduling algorithms utilized, to adapt to changing network
scenarios. This thesis describes the project that investigate the possibilities to im-
prove upon end-to-end delays, jitter, throughput, and packet loss by exploiting the
availability of a flexible hardware structure such as an FPGA.

This chapter introduces the main argument of this thesis. First of all, we give
an overview about the concept of Quality of Service (QoS), discussing its differ-
ences with the best-effort approach and justifying the motivations that lead to the
development of a new paradigm for the Internet. Subsequently, we introduce the
most important metrics for the QoS, i.e., end-to-end delay, jitter, throughput, and
packet loss. Finally, we point out the objectives and the motivations of the project
described in this thesis.

1.1 Quality of Service

Internet and computer networks are becoming part of our daily life, a change
that affects universities, commercial organizations, and consumers. These net-
works support a huge amount of different applications like e-mail, web, audio, and
video services, including television on demand and file transfer. Furthermore, the
requirements for these applications are growing quickly, and probably this fact
will continue in the near future. Recently, the provision of service guarantees has
become an important issue, which was caused by both the heterogeneity of ap-
plication requirements and the growing commercialization of the Internet. It is
not possible to sell products as television-on-demand or audio streaming with a
network infrastructure that does not guarantee on the desired service level.

Currently, the Internet is based on the best-effort model, which means “as
much as possible, as soon as possible”. According to this definition, each packet
has the same expectation of treatment as it transits a network. Even if this could
be enough for traditional Internet applications, such as web, e-mail, news groups,
etc., new multimedia applications and services create a new demand to bring dif-
ferent levels of service to packet traffic. The main reason is that, depending on a
service, and if possible on the desired level of this service, the traffic characteristics
and its requirements for network transport functionality may vary. For instance,

1

CHAPTER 1. INTRODUCTION 2

some of these applications are telnet sessions that usually generate low traffic but
have high interactivity requirements; some are file transfer protocol (FTP) ses-
sions with bursts of kilobytes or even megabytes, for which the throughput is a
fundamental aspect compared with the interactivity; some are hypertext trans-
fer protocol (HTTP) transactions that open a transport connection to transmit a
handful of packets but do not need an high bandwidth utilization and some are
audio or video streams that require a good bandwidth utilization, a low delay as
well as a low jitter. If the Internet handles all data in the same way, then it can
result in unacceptable, if not completely unusable, service. For example, if video
and file transfer traffic are mixed together in the same part of the network, then
the file transfer can experience congestion and packet losses due to the video ap-
plications that send data at the constant rate. In turn, the video traffic will not
slow down, but will experience losses and poor voice quality due to the presence
of the bursty file transfer operations. Therefore, the enhanced Internet architec-
ture should provide different service classes to indicate the treatment of individual
packets and flows and to allocate the suitable resources for all of them.

Figure 1.1: A QoS-aware Network Model

The objective of network QoS is to quantify the treatment that a particular
packet can expect. A good QoS architecture should provide a way to specify
performance objectives for different classes of packets, as well as suggestions on
how to meet those performance goals. It has to be clear that QoS cannot create
additional bandwidth. When some packets get better treatment, other packets will
get worse treatment. Therefore, the objective of QoS is to distribute resources in
such a way that all the performance objectives are met.

The QoS stems from the concept that some traffic is more important compared
to other and should be treated accordingly. In addition, economical reasons exist
such as the Internet has become mission-critical for commercial companies. In an
environment, a provider can offer services with specific performance level associat-
ing them with a cost consequently, it is possible for the provider to tie the provided
expected performance level (or quality) with a price for the service.

CHAPTER 1. INTRODUCTION 3

From the customer’s point of view (either a provider, a user, or another orga-
nization), the first step towards the QoS is the Service Level Agreement (SLA),
which is negotiated with a provider. The SLA defines the QoS requirements, the
anticipated load, actions to take if the load increases the negotiated value for the
service level, pricing etc. Since the SLA includes rules and actions in the human
readable form, it has to be translated into the machine readable representation.
For these purposes, the SLA is partitioned into several documents. The Service
Level Objectives (SLO) specifies metrics and operation information to enforce and
monitor the SLA. The Service Level Specification (SLS) specifies the handling of
a customers traffic by a service provider.

To characterize the QoS requirements and actions in the SLS, a provider and a
customer must specify them with a set of well-known parameters, or performance
metrics, so that a provider can translate them into the router configuration. The
fundamental parameters are throughput, delay, jitter, and packet loss [16].

1.1.1 QoS parameters

In this section, the most important QoS parameters are introduced. A definition
is provided with a short description of the meaning of the parameter.

Throughput specifies the amount of bytes (or bits) that an application can
send during a time unit without losses. It is one of the most important parameters
because most applications include it in the set of their QoS requirements. It should
be noted that the throughput stands for the long-term rate of an application. Due
to the packet-based nature of most networks, the short-term rate may differ from
the long-term value. Therefore, it is usually the case that the throughput refers
to the average rate of an application. Consequently, one can use other parameters
such as the maximum or the rate and the minimum rate.

Packet delay is a fundamental characteristic of a packet-switched network and
it represents the delay required to deliver a packet from a source to destination.
It is also called end-to-end delay. Each packet inside a network is routed to its
destination via a sequence of intermediate nodes. Therefore, the end-to-end delay
is the sum of the delays experienced at each hop on the way to the destination.
It is possible to think about such delay as consisting of two components, a fixed
one which includes the transmission delay at a node and propagation delay on the
link to the next node, and a variable component which includes the processing and
queueing delays at the node.

Jitter specifies the delay variation between two consecutive packets. It is
an important parameter for the interactive applications, such as on-line audio
and video conversations. Since data exchange between two applications involves
sending a significant number of packets, it is often the case that jitter specifies the
maximum delay variation observed between the two consecutive packets. However,
one can also use a smoothing equation to obtain some mean value over the sequence

CHAPTER 1. INTRODUCTION 4

of packets. Regardless of the interpretation, ideally the jitter should equal to zero
because the bigger its value is, the larger the buffer of a receiving application must
be to compensate for the delay variations between the packets.

Packet loss, as its name indicates, characterizes the number of dropped pack-
ets during transmission. This parameter is critical for those applications that
perform guaranteed data delivery because every time a router drops a packet, a
sending application has to retransmit it, which results in ineffective bandwidth
utilization. It is also important for some real-time applications since packet drops
reduce the quality of transmitted video and/or audio data. Since the number of
dropped packets depends on the duration of a session, the packet loss is expressed
usually as a ratio of the number of dropped packets to the overall number of packets
[16].

Fairness: considering an allocation problem: i users, a vector x where the i-th
coordinates represent the allocation for user i, i.e., the rate to which the user i
can emit data. A feasible allocation of rates x is “max-min fair” if and only if an
increase of any rate within the domain of feasible allocations must be at the cost
of a decrease of some already smaller rate. Depending on the problem, a max-min
fair allocation may or may not exist. However, if it exists, it is unique. The name
“max-min” stems from the idea that it is forbidden to decrease the share of sources
that have small values, therefore, in some sense, the flows with small values are
privileged.

1.2 Goals & Methodology

How can reconfigurable hardware structures, e.g., FPGAs, be efficiently used in
routers to improve their performance in terms of, for example, end-to-end delay,
jitter, and throughput for different types of network traffic?

Certainly, knowledge of the traffic characteristics in a certain network scenario
may lead to different choices in the system configuration. This knowledge is not
always available a priori, therefore the approach is to dynamically understand
which kind of traffic is travelling inside the backbone and changing the scheduling
algorithm accordingly. This choice can bring a performance improvement in terms
of different network metrics. The problem of using an FPGA can be viewed also
from the efficiency point of view, that is, using different scheduler algorithms takes
more or less space in the hardware device depending on the choice. An investigation
on the different possibilities adopting one choice or the other is necessary and
also a tradeoff between them can be found. It is possible to think of using this
available space on the device with the possibility to handle more stream sessions
simultaneously or try to improve the performance of the cheaper algorithm using
a different approach in the traffic management.

To reach these goals, this work provides an overview on adaptive scheduling
using reconfigurable hardware, giving some guidelines which would help a network

CHAPTER 1. INTRODUCTION 5

administrator in choosing the configuration which best fits to the requirements of
his scenario. Consequently, we investigate different scheduling algorithms that pro-
vide QoS guarantees for traffic streams that are sensitive to packet delay and jitter,
e.g., MPEG video traffic. The investigation has been carried out with the NS-2
simulator [18] which represents a standard de facto for research in the networking
environment. The main steps of this work are:

• add a real-time traffic source in NS-2 to evaluate the performance of our
approach in a realistic scenario;

• add an experimental support for the run-time reconfiguration of the schedul-
ing algorithm in the simulator module implementing the scheduler;

• add the Weighted Fair Queuing scheduler to the simulator and test it;

• evaluate the trend of QoS metrics with or without the modification;

• evaluate the benefits that the reconfiguration can give in terms of saved
FPGA area.

For the first evaluation, the approach is mainly based on understanding which kind
of traffic is passing in the network and change the scheduling algorithm in the core
router to meet certain performance requirements. For the WFQ scheduler testing,
a test suite is constructed composed of a particular scenario and an ad-hoc script
that has been created. To evaluate the benefits in terms of saved FPGA area, a
comparison between two schedulers was performed. The investigated scheduling
algorithms are taken from two well-known families, i.e., Round Robin (RR) and
Fair Queuing (FQ).

1.3 Overview

The remainder of the thesis is organized as follow: Chapter 2 gives an overview
about the two big algorithm families: round-robin and fair queuing providing a
classification of scheduling algorithms and giving a description of them, introduc-
ing which ones we are going to use in our simulations. Chapter 3 describes the
simulation environment as well as the differentiated services architecture for the
IP QoS; in this chapter the MPEG4 model is introduced and its support in the
simulator described together with a cost analysis of the implementation in FPGA
of the chosen algorithms. Chapter 4 presents the monitor agent developed to trace
the results in the simulator, also the modifications that are needed to support the
reconfigurability are described; at the end of the chapter, the WFQ implementation
in NS-2, an algorithm that is not available with the standard simulator distribution
and that has been added, is presented. In Chapter 5, the methodology to evaluate
the results of the experiments is described, and the results of these simulations are

CHAPTER 1. INTRODUCTION 6

presented and analyzed. Chapter 6 summarizes the work with the last reflections
and gives some ideas for future investigations.

Scheduling Algorithms 2
In this chapter, an overview of the scheduling algorithms available in the network
simulator will be provided, and the choice of two of these strategies is explained
basing on some of their characteristics.

The selection of an appropriate scheduling algorithm is a key point to build a
network environment with QoS capabilities. Considering a simple case, a service
provider has to share the output bandwidth between all data flows such that each
flow obtains a fair portion of bandwidth resources. In this approach, we are assum-
ing that each single flow has the same requirements. However, due to the diversity
of the existent applications, a data flow may require a certain minimum amount
of the output bandwidth, and this can lead to unequal bandwidth allocation between
flows. Therefore, a service provider has to choose the correct disciplines to ensure
that the requirements of all the data flows are met.

2.1 Classification of Scheduling Algorithms

A service discipline can be classified as either work-conserving or non-work-
conserving [26]. With a work-conserving discipline, a scheduler is never idle when
there is a packet to send. With a non-work-conserving discipline, each packet is
assigned an eligible time, this parameter represent the time for the packet depar-
ture and if no packet is eligible, none will be transmitted even when a scheduler
is idle; with such kind of disciplines, a scheduler can be idle at any time, in an
effort to smooth out the traffic pattern [4]. Both these classes have drawbacks
and advantages. The work-conserving disciplines are suitable for those environ-
ments in which applications can adjust their transmission rates and can react to
the packet losses. Indeed, if there are available bandwidth resources, the applica-
tion can start to send more data achieving the higher throughput and the better
network utilization. If later a congestion occurs, some number of packets will be
dropped which will signal the sending application to slow down the data trans-
mission. Though the work-conserving disciplines allow to completely utilize the
output bandwidth, they alter the traffic profile as packets move from one node to
another. Usually the traffic profile represents the temporal properties of a traffic
stream and it is represented in terms of rate and burst size. As a result, the pro-
vision of the end-to-end guarantees, and especially the delay guarantees, becomes
an art that involves many network management solutions. As opposed to this,
the non-work-conserving disciplines do not change the traffic profile because the

7

CHAPTER 2. SCHEDULING ALGORITHMS 8

Scheduler

Input Queue Output Queue

Figure 2.1: FIFO Scheduler

server delays the packet transmission to respect this profile; this behavior simplifies
the provision of the end-to-end guarantees. The non-work-conserving disciplines
eliminate traffic distortions by delaying packets and, thus, preserving the traffic
profile. However, as mentioned above, some bandwidth resources remain unuti-
lized. At the moment, most manufactures of the telecommunication equipment
rely upon the work-conserving disciplines. The main reason is that they allow to
utilize bandwidth resources more efficiently. Furthermore, two QoS frameworks
proposed by the IETF rely upon the work-conserving schedulers. Hence, we will
also focus on this class of scheduling disciplines [16].

2.2 FIFO (First In First Out)

This is the classical scheduling algorithm deployed in the best-effort approach in the
Internet and it is also know as FCFS (First Come First Served, Figure 2.1). With
this algorithm, the data are sent in the same order in which they are received. The
complexity of this approach is very low and it is also very efficient to implement in
hardware. It is a work-conserving algorithm and because its characteristics it has
been adopted by a large number of network architectures. Unfortunately, FIFO
has several limitations:

• it does not provide fairness;

• the support to control congestion is limited.

This kind of scheduler is not suitable for stream like multimedia traffic, because
it is not able to isolate real-time sessions from best effort ones. In this case, there
is no way to guarantee a specific level of quality to real-time sessions.

2.3 Priority Scheduling

Priority Queuing is one of the first attempts utilized to provide different services
and it is able to isolate the sessions among these services.

The concept is as follows: the traffic is inserted into different queues that are
served according to their priority. Highest priority queues are served as soon as
they have packets. This mechanism can bring to starvation if highest priority
classes have a large amount of traffic and therefore it is not fair.

CHAPTER 2. SCHEDULING ALGORITHMS 9

This mechanism is work-conserving and it is particularly interesting when the
network has a small amount of high priority traffic (for example real-time sessions),
because the performance of the best effort traffic is not worsened too much.

The highest priority class has the entire output link bandwidth available. The
class that follows has the entire link bandwidth decreased by the amount used by
the first class, and so on. Therefore, traffic within each class is influenced only by
the traffic sent by the classes that have a higher priority than itself. This algorithm

Output LinkPriority
Scheduler

Input Queues

Lowest
Priority
Queue

Figure 2.2: Priority Queuing Scheduler

is not very robust because it requires an admission control in order to ensure that
the highest priority class does not receive too much bandwidth. Moreover, there
are several situations where the service guaranteed by priority queuing is much
better than the service required by the sessions. In this case, the priority queuing
is not able to delay a high priority packet in order to increase the service pattern
for other sessions; for these reasons priority queuing is not a good choice for a
network mixing best effort and real-time traffic [1].

2.4 Fair Scheduling Algorithms

The Fair Queuing algorithm was originally proposed in [12] by Nagle in order to
solve the problem of malicious or erratic TCP implementations. The goal of the
algorithm is to guarantee each session with a fair share of network resources, even
though some sessions are transmitting at a much higher rate than the allocated
one. This class of algorithm is defined fair, because it allows the fair sharing of
the bandwidth among all the users [14].

2.4.1 Round Robin

Round Robin (RR) scheduling represents the simplest solution for the controlled
bandwidth sharing. Using this scheduling algorithm, a packet is dequeued in a
so-called round-robin manner and outputs one packet from a queue. Of course, it
is not possible to provide any QoS capabilities with such a scheme. Nagle’s idea
was to maintain, at each node, a separate queue for each traffic sources and to

CHAPTER 2. SCHEDULING ALGORITHMS 10

transmit packets at the head of queues in round-robin order. Empty queues are
skipped, so that, given n active sources, the overall effect is to allow each source to
send one packet every n packets transmitted on the link because each source has
to wait a complete round to be served the next time.

Input Queues

Round
Robin
Scheduler

Output Link

Figure 2.3: Round Robin Scheduler

Having n queues with n users, each of them gets exactly 1

n
of the total link

bandwidth. This approach suffers from several limitations:

• it ignores packet lengths, so it works well (with respect to fairness) just when
the average packet size over the flow duration is the same for all flows;

• the performance depends on the arrival pattern; a packet arriving at an
empty queue, just after its turn in the round-robin, must wait until the other
(n − 1) queues have been served;

• it requires a-priori knowledge of the number of sessions (because we put the
traffic of each session in a separate queue) but in most cases this is not
realistic.

2.4.1.1 WRR - Weighted Round Robin

The WRR scheduler works in a cyclic manner, serving consequently the input
queues. The weight is a variable that indicates how many packets have to be sent
for each cycle from each queue. If a queue has fewer packets than the value of the
weight, the WRR scheduler outputs the existent number of packets and begins to
serve the next queue. The WRR scheduler does not take the size of the transmitted
packets into account. As a result, it is difficult to predict the actual bandwidth
that each queue obtains. In other words, it is difficult to use only the weight values
as the means to specify the amount of the output bandwidth. Suppose that wi is
the value of the weight associated with the ith queue. If Li is the mean packet
size of the ith input queue, then wiLi bytes of data are sent during each cycle on
average. If there are m input queues, then it is easy to show that the average

CHAPTER 2. SCHEDULING ALGORITHMS 11

Input Queues

Output Link

Weight

2

1

2

3

Weighted
Round Robin
Scheduler

Figure 2.4: WRR Scheduler

amount of data transmitted from all queues during one cycle can be approximated
by:

m
∑

i=1

wiLi (2.1)

Expression 2.1 is referred to as the frame size. Taking the mean packet size
and weights of all queues into account, it is possible to approximate the output
bandwidth for the given kth queue:

wkLk
∑

i wiLi

B, k ∈ (1, m) (2.2)

where B specifies the output bandwidth of an interface, on which a router imple-
ments WRR. By approximating the average bandwidth of each queue, it is possible
to provide the QoS guarantees [16].

2.4.1.2 DRR - Deficit Round Robin

Deficit Round Robin is one modification of WRR to improve the fairness. DRR can
guarantee fairness in terms of throughput. In DRR, the packet scheduler maintains
a state variable called Deficit-Counter to control the amount of dequeued traffic
precisely. A quantity called Quantum is added to Deficit-Counter in each round.
If the length of the packet at the top of the queue is less than Deficit-Counter,
the packet scheduler can dequeue the packet and then subtracts the packet length
from Deficit-Counter. Otherwise, it accesses the next queue.

Although DRR requires only O(1) processing work per packet in order to guar-
antee bandwidth, it must calculate the length of every packet and the calculation
of the packet length takes computational resources of the router [25].

2.4.2 Fair Queuing algorithms

The problem of fair network resource allocation has led to the development of a
class of algorithms that provide tight end-to-end delay bounds and efficient re-

CHAPTER 2. SCHEDULING ALGORITHMS 12

source utilization. These algorithms try to approximate the ideal behavior of the
Generalized Processor Sharing algorithm (GPS), which is described in the following
section.

2.4.2.1 GPS - Generalized Processor Sharing

GPS [13] has been proposed by Parekh and Gallager in 1993, it is based on a
fluid model, so it assumes that the input traffic is infinitely divisible and that all
sessions can be served at the same time. This is a work-conserving server and it
guarantees each session to receive a service rate gi of at least:

gi =
θi

∑N
j=1

θj

r (2.3)

where r is the server rate and θi is the weight for the i-th session.
GPS treats each packet as infinitely divisible, so the scheduler picks a small

piece of data from each session and transmits it on the output link. Because this
assumption, GPS can transmit a fluid flow instead of bits. For example, having
two sessions m and n, each of which with weight 1, an algorithm like Bit by Bit
Round Robin transmits one bit of the first session and a bit of the second session.
GPS, instead, always uses half bandwidth transmitting session m data and the
other half transmitting session n data. An important feature of GPS is that it

Output Link

Fluid Model

Input Queues

GPS Server

Packets

Figure 2.5: Graphical representation of a GPS Server

is possible to compute a worst-case delay bound for leaky bucket1 constrained
sessions. However, GPS is impractical because it assumes the server can serve
all the sessions simultaneously and the traffic is infinitely divisible. Therefore, it
needs to be approximated by a packet algorithm. In the next section we are going
to introduce two of these: WFQ and WF2Q+.

1the leaky-bucket implementation is used to control the rate at which traffic is sent to the
network. A leaky bucket provides a mechanism by which bursty traffic can be shaped to present
a steady stream of traffic to the network, as opposed to traffic with erratic bursts of low-volume
and high-volume flows [20].

CHAPTER 2. SCHEDULING ALGORITHMS 13

2.4.2.2 WFQ - Weighted Fair Queuing

One of the first scheduling algorithm proposed to approximate GPS was WFQ, it
schedules packets according to their arrival time, size, and the associated weight.
Upon the arrival of a new packet, a “virtual finish time” is calculated and the packet
is scheduled for departure in the right order with respect to the other packets. This
“virtual finish time” represents the time at which the same packet would finish to
be served in the GPS system. Then, WFQ outputs packets in the ascending order
of the virtual finish time. Such an approach enables the sharing of resources
between service classes in a fair and predictable way. Furthermore, it is possible
to estimate the bandwidth allocation and the worst-case delay performance, which
makes the use of the WFQ discipline very attractive for the provision of QoS,
and especially for the provision of the end-to-end guarantees. Suppose that B is
the total throughput of an output link on which a router implements WFQ. If all
sessions of the WFQ scheduler are active, then each class receives a portion of the
total bandwidth, which is determined by its weight wi and is equal to wiB. B
is the available bandwidth. Hence, to simplify the expression, we assume that it
holds for all weights wi that

∑

i

wi = 1, wi ∈ (0, 1) (2.4)

By knowing the QoS requirements of all data flows, we can find values for wi such
that all the QoS guarantees are ensured.

2.4.2.3 QoS requirements

It is possible to associate each service class with a proper weight w that indicates
the allocated bandwidth. Having Ni active flows within the i-th class, then each
flow gets a bandwidth that can be approximated by:

Bf
i =

wiB

Ni

(2.5)

Bf
i can be viewed as one of the QoS parameters that specifies the required band-

width of a flow belonging to the i-th service class. Thus, the minimum value of
the weight, which provides the necessary amount of bandwidth for every flow, is
given by

wi ≥ Ni

Bf
i

B
(2.6)

The inequality states that a provider can allocate more resources than necessary.
Therefore, if the network has free bandwidth resources, then a provider can allo-
cate, either explicitly or implicitly, more bandwidth to a service class.

Due to buffering, scheduling, and transmission of packets, the size of a router’s
queue varies all the time. On the other hand, the length of a queue in a routing

CHAPTER 2. SCHEDULING ALGORITHMS 14

node has an impact on the queuing delay and on the overall end-to-end delay of
a packet. It can be shown that under WFQ the worst-case queuing delay is given
by the following expression, where Lmax denotes the maximum packet size:

D =
σ

ρ
+

Lmax

B
(2.7)

In (2.7), it has been assumed that each incoming flow is regulated by the token
bucket [2] with the bucket depth σ and the token rate ρ. Parameters σ and ρ can be
viewed as the maximum burst size and the long term bounding rate respectively.

2.4.2.4 WF2Q+ - Worst Case Weighted Fair Queuing

WF2Q+ is less complex to implement compared with WFQ because it uses a
system virtual function that is calculated from the packet system itself and not
from GPS, indeed, another advantage is that, there is no need to stamp each
packet with its start and finish time, instead it is sufficient to have just one start
and finish time for each connection. WF2Q+ approximates GPS more closely, its
delay is better than WFQ in a lot of cases, but not always. It has been shown
that WF2Q+ does not always outperform WFQ for real-time sources [22]. WFQ
presents a better delay than WF2Q+ in situations with bursty traffic with variable
packet size, which are typical with real-time sources, of course the augment of
end-to-end delay for multimedia traffic, gives better delay guarantees for all other
source non-real time traffic in the network. For this reason WFQ has been chosen
for our investigation. However, for completeness we introduce the main idea of
WF2Q+ in this section.

In WF2Q+ the rule to pick up a packet from a queue is lightly modified by the
WFQ rule:

WFQ: the packet having the lower exiting time according to the correspondent
GPS system, will be the first one to exit under the WFQ scheduler.

WF2Q+: the packet having the lower exiting time according to the correspon-
dent GPS system, and that has already started its service under the GPS
scheduler, will be the first one to exit under WF2Q+ scheduler.

This difference can be understood looking at the Figure 2.6. At time 1 the
situation is the following:

• WFQ: the first packet finishing its service under GPS is Pkt1,1 and it will be
scheduled in WFQ;

• WF2Q+: the packets having already started their service under GPS are
Pkt0,2, Pkt0,3, Pkt0,4 and Pkt0,5. The first one that will finish is Pkt0,2

(but another one should also be scheduled in this example, because they are

CHAPTER 2. SCHEDULING ALGORITHMS 15

Figure 2.6: Different packet output between WFQ and WF2Q+ (picked from [14])

finishing all together), so this will be the next packet being scheduled by
WF2Q+.

WF2Q+ represents an improvement from the implementation point of view
compared with WFQ because it exploits a different virtual function to take into
account the virtual time, and it is also an improvement for the complexity view-
point (O(N) against O(log(N))).

2.5 Summary

In this chapter, the round-robin and the fair queuing families of algorithms have
been presented. A classification of these scheduling disciplines has been furnished
and each algorithm has been described. The FIFO and priority scheduler are
unsuitable to provide fairness as well as QoS guarantees. The priority scheduler
can also bring to the starvation if the high priority classes have a large amount of
traffic to send. RR, WRR, and DRR have been described as representative of the
round-robin families. These algorithms are simple to implement but they do not
provide QoS guarantees and in certain situation they cannot share correctly the

CHAPTER 2. SCHEDULING ALGORITHMS 16

bandwidth to the competing streams. The fair queuing family has been introduced
presenting the theoretical model of General Processor Sharing (GPS) from which
all the approximations are based on. The most well-known of this algorithm ap-
proximation have been presented: weighted fair queueing (WFQ) and worst case
weighted fair queuing (WF2Q+). They are more complex to implement compared
with the round robin algorithms.

Simulation Setup 3
This chapter introduces the NS-2 Network Simulator; then, we discuss the Diffserv
support presenting in the simulator through the Nortel Diffserv module [17]. An-
other section introduces the MPEG4 model that has been used in the simulations.
The last part of the chapter is dedicated to the motivation leading to the use of an
FPGA and the cost analysis of WFQ and WRR in hardware.

3.1 NS-2 - The Network Simulator

3.1.1 Overview

NS-2 is an event driven network simulator developed at UC Berkeley that simulates
several IP networks. It implements network protocols such as TCP and UDP,
traffic source behavior such as FTP, Telnet, Web, CBR and VBR, router queue
management mechanism such as Drop Tail, RED and CBQ, routing algorithms
such as Dijkstra, and more. NS-2 also implements multicasting and some of the
MAC layer protocols for LAN simulations. The NS-2 project is now a part of
the VINT project that develops tools for simulation results display, analysis and
converters for network topologies. NS-2 is written in C++ and OTcl, Tcl is a
script language with object-oriented extensions developed at MIT1. The core of
the simulator is written in C++ instead the simulation setup is written in Tcl. To
add a component in the simulator, as a scheduler or a network object, the C++
code needs to be modified while to setup and run a simulation, a Tcl scenario has
to be created.

1Massachusetts Institute of Technology

Figure 3.1: Simplified User’s View of NS-2

17

CHAPTER 3. SIMULATION SETUP 18

As depicted in Figure 3.1, in a simplified user’s view, NS-2 is OTcl script
interpreter, that has a set of simulation libraries. Within these, there are network
setup (plumbing) module libraries, they are implemented as member functions of
the base simulator object. In other words, to use NS-2, a program in OTcl script
language has to be written.
To create and run a network simulation:

• write an OTcl script initializing an event scheduler;

• set up the network topology using network objects and library functions;

• define traffic paths:

- set traffic source and destination;

- define time to start sending traffic and when stop;

- define characteristics between links connecting nodes;

• set a method to trace the results;

• start the simulator object.

The term ”plumbing” is used for a network setup, because setting up a network
can be viewed as plumbing possible data paths among network objects by setting
the ”neighbor” pointer of an object to the address of an appropriate object. If a
new network object has to be written, it has to be created either by writing a new
object or by making a compound object from the object library, and plumb the
data path through the object. This might be a complicated job, but the plumbing
OTcl modules actually make it very easy. The power of NS-2 comes from this
plumbing.

Another major component of NS-2 beside network objects is the event sched-
uler. An event in NS-2 is a packet ID that is unique for a packet with scheduled
time and a pointer to an object that handles the event. In NS-2, an event scheduler
keeps track of simulation time and fires all the events in the event queue scheduled
for the current time by invoking appropriate network components, which usually
are the ones who issued the events, and let them do the appropriate action asso-
ciated with packet pointed by the event. Network components communicate with
one another passing packets, however this does not consume actual simulation
time. All the network components that need to spend some simulation time han-
dling a packet (i.e., need a delay) use the event scheduler by issuing an event for
the packet and waiting for the event to be fired to itself before doing further action
handling the packet. For example, a network switch component that simulates a
switch with 20 microseconds of switching delay issues an event for a packet to be
switched to the scheduler as an event 20 microsecond later. The scheduler after 20

CHAPTER 3. SIMULATION SETUP 19

microsecond dequeues the event and fires it to the switch component, which then
passes the packet to an appropriate output link component.

Another use of an event scheduler is timer. For example, TCP needs a timer to
keep track of a packet transmission time out for retransmission (transmission of a
packet with the same TCP packet number but different NS-2 packet ID). Timers
use event schedulers in a similar manner that delay does. The only difference is that
the timer measures a time value associated with a packet and does an appropriate
action related to that packet after a certain time goes by, and does not simulate a
delay.

NS-2 is written not only in OTcl but in C++ too. For efficiency reason, NS-2
separates the data path implementation from control path implementations. In
order to reduce packet and event processing time (not simulation time), the event
scheduler and the basic network component objects in the data path are written
and compiled using C++. These compiled objects are made available to the OTcl
interpreter through an OTcl linkage that creates a matching OTcl object for each
of the C++ objects, and makes the control functions and the configurable variables
specified by the C++ object act as member functions and member variables of the
corresponding OTcl object. In this way, the controls of the C++ objects are given
to OTcl. It is also possible to add member functions and variables to a C++
object. The objects in C++ that do not need to be controlled in a simulation or
internally used by another object do not need to be linked to OTcl. Likewise, an
object (not in the data path) can be entirely implemented in OTcl. Figure 3.2
shows an object hierarchy example in C++ and OTcl. One thing to note in the
figure is that for C++ objects that have an OTcl linkage forming a hierarchy, there
is a matching OTcl object hierarchy very similar to that of C++.

Figure 3.2: C++ and OTcl: The Duality

Figure 3.3 shows the general architecture of NS-2. In this figure a general
user (not an NS-2 developer) can be thought of standing at the left bottom corner,
designing and running simulations in Tcl using the simulator objects in the OTcl li-
brary. The event schedulers and most of the network components are implemented
in C++ and available to OTcl through an OTcl linkage that is implemented us-
ing tcl. The whole thing together makes NS-2, which is a OO (object-oriented)
extended Tcl interpreter with network simulator libraries.

CHAPTER 3. SIMULATION SETUP 20

Figure 3.3: Architectural View of NS-2

3.2 Getting results in NS-2

This section explains how to obtain NS-2 simulation results. As shown in Figure
3.1, when a simulation is finished, NS-2 produces one or more text-based output
files that contain detailed simulation data, if specified to do so in the input Tcl
(or more specifically, OTcl) script. The data can be used for simulation analysis
or as an input to a graphical simulation display tool called Network Animator
(NAM) that is developed as a part of VINT project [18]. NAM (Figure 3.4) has
a nice graphical user interface similar to that of a CD player (play, fast forward,
rewind, pause and so on), and also has a display speed controller. Furthermore,
it can graphically present information such as throughput and number of packet
drops at each link, although the graphical information cannot be used for accurate
simulation analysis. As we’ll see later in Section 4.1, we have developed a module

Figure 3.4: NAM: Network Animator

to keep track of some metrics without have to use the NS-2 tracefile, this solution
is useful because with a long time simulation these tracefiles would generate a big

CHAPTER 3. SIMULATION SETUP 21

huge amount of files with a lot of data that are not interesting for our investigation.
The next section presents the module that we have used to differentiate the

traffic and an overview of Diffserv Architecture.

3.3 Differentiated Services Architecture for IP

QoS

In the traditional IP networks the service offered to the end-user is best-effort
(“as much as possible as soon as possible”); in this kind of model, every user
packets compete equally for network resources. This model doesn’t give support
to multimedia traffic and mission-critical applications, because it doesn’t permit
to differentiate the traffic. Much more attention has been placed on developing
IP Quality of Service (QoS), which allows network operators to differentiate the
traffic basing on different level of treatment [17].

Differentiated Services, or DiffServ, is an IP QoS architecture based on packet
marking that allows packets to be prioritized according to user requirements. A
scheme known as Assured Forwarding (AF) has been proposed as a potential user
of Diffserv. Assured Forwarding provides differential treatment of traffic by dis-
carding lower priority packets during congestion times. Although the Assured
Forwarding mechanism does not explicitly require a particular queue type, it is
suited for RED (Random Early Detection) [17].

3.3.1 Queue Management

When the buffer in a queue is becoming full, the Queue Management algorithm is
used to decide which packet has to be dropped. This algorithm works on a single
queue of the network node, if there are more queues on that node, more instances
of a queue management are needed. It is also possible to have, within the single
node, a queue treated with RED management and another one treated with Drop
Tail.

Random Early Detection

Drop Tail

Threshold

Scheduler

Scheduler

Figure 3.5: Different Queue Management mechanisms

CHAPTER 3. SIMULATION SETUP 22

3.3.2 Drop Tail

When there is no more space on the buffer, the last arrived packets are dropped.
This is the simplest approach called Drop Tail. The available space in the queue
depends on the buffering mechanism deployed in that network node: different
queue management could be employed for each queue.

This algorithm suffers from limitation, because the packets are discarded when
the queue is full and the network utilization varies a lot. Supposing to have a
TCP source, experimenting a certain number of losses, the two agents decrease
their sending rate. With this behavior, the network oscillates between high traffic
and low traffic and it is not able to create an equilibrium. Moreover there can
be malicious effects due to the source synchronization, where one source does not
experiment any drop and another does [14]. In our simulations, this kind of queue
has been utilized on the links connecting the edge routers with the sources and the
destinations as shown in Figure 3.6, these links are green; instead the RED queue
has been employed in the links between edge and core router and in the figure
these are red.

Figure 3.6: Scenario with different kind of queues

3.3.3 An Overview of RED

RED (Random Early Detection) is a congestion avoidance algorithm that can
be implemented in routers. The basic queue algorithm for routers is known as
Drop Tail. Drop Tail queues simply accept any packet that arrives when there is
sufficient buffer space and drop any packet that arrives when there is insufficient
buffer space.

RED gateways instead attempt to detect incoming congestion by computing
a weighted average queue size, since a sustained long queue is a sign of network
congestion. Its behavior is based on a threshold: RED mechanism starts the
dropping process when the number of packets stored is larger than this value. The

CHAPTER 3. SIMULATION SETUP 23

number of packets dropped (i.e., the probability that an incoming packet has to be
dropped) increases as soon as the number of queued packets increases. When the
number of packet reaches the maximum queue size, all the incoming packets are
dropped (drop probability equal to 1). In this condition the RED algorithm has
the same behavior of the Drop Tail one. RED keeps traces of the past status of the
queue. The variable (number of packets in queue) that indicate that the algorithm
has to start dropping packets does not depend simply on the amount of packets in
queue, but it is calculated by means of an exponential moving weighted average
function (EMWA) that is able to discriminate a short term burst and a long term
congestion. Short-term bursts are quite common in the Internet because of the
bursty nature of data traffic. In this case the algorithm does not operate. Vice
versa, it must intervene when, for a certain amount of time, the number of packets
in queue is above a certain threshold. This means that the network is starting to
be overloaded so that it is likely to experiment congestion in a short time interval.
RED operates only in presence of a responsible end-to-end adjustment mechanism.
RED itself (i.e., dropping packets) is not enough to decrease the amount of traffic
into the network. The congestion is avoided thanks to the TCP responsiveness
that, in presence of drops, decreases the rate of the incoming traffic because of its
typical sawtooth behavior. Clearly this approach does not work with malicious
sources. RED cooperates with the enhanced version of TCP (TCP NewReno,
TCP SACK) in decreasing the sawtooth behavior that is a peculiar characteristic
of this protocol. Drop Tail can discard a lot of packets together so that a TCP
session can experiment more than a packet loss per window of data. This triggers
a timeout and the throughput of that session decreases. With RED is less likely
to experiment more than one loss per window of data: TCP can recover with the
Fast Retransmit Algorithm and the session does not experiment any timeouts.

For a RED gateway that drops packets, rather than marking a congestion bit,
the following three phases sum up its algorithm:

Phase 1: Normal Operation. If the average queue size is less than the mini-
mum threshold, no packets are dropped.

Phase 2: Congestion Avoidance. If the average queue size is between the min-
imum and maximum thresholds, packets are dropped with a certain proba-
bility. This probability is a function of the average queue size, so that larger
queues lead to higher drop probabilities.

Phase 3: Congestion Control. If the average queue size is greater than the
maximum threshold, all incoming packets are dropped.

3.3.4 Multiple RED Parameters

The Diffserv architecture provides QoS by dividing traffic into different categories,
marking each packet with a code point that indicates its category, and scheduling

CHAPTER 3. SIMULATION SETUP 24

packets according to their code points. The Assured Forwarding mechanism is a
group of code points that can be used in a Diffserv network to define four classes of
traffic, each of which has three drop precedences. Those drop precedences enable
differential treatment of traffic within a single class.

Assured Forwarding uses the RED mechanism by enqueuing all packets for a
single class into one physical queue that is made up of three virtual queues (one
for each drop precedence). Different RED parameters are used for the virtual
queues, causing packets from one virtual queue to be dropped more frequently
than packets from another. Using a proper traffic shaper on the edge router, a not
conform traffic can be moved from a virtual queue with a higher drop preference
to another one with lower; then this declassed traffic will be penalized during the
congestion phase.

For example, one code point might be used for assured traffic and another for
best effort traffic. The assured packet virtual queue will have higher minimum
and maximum thresholds than those of best effort queue, meaning that best effort
packets will enter the congestion avoidance and congestion control phase prior to
assured packets.

3.3.5 Diffserv Architecture

The Diffserv architecture has three major components:

Policy: is specified by network administrator about the level of service a class of
traffic should receive in the network.

Edge router: router marks packets with a code point according to the policy
specified.

Core router: examines packets’ code point marking and forwarding them accord-
ingly.

DiffServ attempts to restrict complexity to only the edge routers.
A policy specifies which traffic receives a particular level of service in the net-

work. Although a policy and resource manager is a necessary component of a
Diffserv network that allows an administrator to communicate policies to the edge
and core devices, it is not important for the NS-2 Diffserv implementation. In-
stead, policy information is simply specified for each edge and core device through
the Tcl scripts.

CHAPTER 3. SIMULATION SETUP 25

Figure 3.7: Devices in a Diffserv Domain

The notion of edge and core devices, as illustrated in Figure 3.7, is key to the
understanding of the NS-2 Diffserv implementation.

Edge Router Responsibilities:

• examining incoming packets and classifying them according to policy speci-
fied by the network administrator;

• marking packets with a code point that reflects the desired level of service;

• ensuring that user traffic adheres to its policy specifications, by shaping and
policing traffic.

Core Router Responsibilities:

• ensuring that user traffic adheres to its policy specifications, by shaping and
policing traffic;

• forwarding incoming packets according to their markings. (Core routers pro-
vide a reaction to the marking done by edge routers).

The DiffServ architecture provides QoS by dividing traffic into different cat-
egories, marking each packet with a code point that indicates its category, and
scheduling packets accordingly. The DiffServ module in NS-2 can support four
classes of traffic, each of which has three dropping precedences allowing differen-
tial treatment of traffic within a single class. Packets in a single class of traffic
are enqueued into one corresponding physical RED queue, which contains three
virtual queues (one for each drop precedence).

CHAPTER 3. SIMULATION SETUP 26

Different RED parameters can be configured for virtual queues, causing packets
from one virtual queue to be dropped more frequently than packets from another.
A packet with a lower dropping precedence is given better treatment in times of
congestion because it is assigned a code point that corresponds to a virtual queue
with relatively lenient RED parameters.

All these features allow to differentiate a multimedia stream by other kinds
of traffic, and to think about internal modification of the scheduler, to permit
reconfiguration in case of particular condition as the ingress of a particular stream.
This simulator module has been exploited for this reason and modified as presented
in Chapter 4.

3.4 MPEG4 Model

Our investigation is focused on the study of QoS applied to delay sensitive traffic
types, e.g. MPEG4. For this reason, an an MPEG4 traffic source to NS-2 was
added. This traffic generator uses the Transform Expand Sample Methodology.
We have chosen such kind of traffic source because the transfer of digital video will
be a crucial component of the design of future home networking applications. This
transfer was made feasible by the advancement of digital video encoding techniques
that reduced the bandwidth required for this transfer to a practical level. MPEG4
is an encoding technique that is suitable for home networking applications with
its low bit rate. It also has the advantage that allows viewers to interact with
encoded objects. One of the motivations behind establishing the ISO Moving-
Picture-Experts-Group (MPEG) family of standards for digital video encoding is
that a lot of researchers and communication experts believe that, sooner or later,
all the devices that are part of our daily life will be connected to the Internet.

Figure 3.8: Audio and Video in the Internet

CHAPTER 3. SIMULATION SETUP 27

Connecting those devices and appliances to the Internet will require the trans-
fer of video or at least will include video transfer as an enhancement. This family
of standards includes MPEG1, MPEG2, and MPEG4. MPEG4 is the one that is
most suitable for the Internet [5]. The main feature of importance to the network
is MPEG4’s capability of real-time adaptive encoding. This enhances network uti-
lization and enables MPEG4 senders to be more responsive to changes in network
conditions. It generates video in three different frame types (I, P, and B) that
serve to encode different portions of the video signal in different levels of quality.

This kind of traffic generator can be used to study MPEG4 behavior and per-
formance through simulation. This is relevant because it permit us to reproduce
a more realistic scenario to simulate multimedia transfer on the Internet. Our
objective is to study this performance and properties combined in a Diffserv envi-
ronment using simulation. This traffic generator is able to generate traffic that has
almost the same first and second order statistics as an original trace of MPEG4
frames that is generated using an MPEG4 encoder [7]. The source code of this
traffic generator is in the Appendix A.

Table 3.1 contains a chunk of TCL code to set up a MPEG4 traffic generator
in NS-2.

set source [$ns node]

set udp0 [new Agent/UDP]

$ns attach-agent $source $udp0

set vdo [new Application/Traffic/MPEG4]

$vdo set initialSeed_ 0.4

$vdo set rateFactor_ 5

$vdo attach-agent $udp0

$ns at 1.8 "$vdo start"

Table 3.1: Part of TCL code using MPEG4 source

The code shows how an application is placed on the top of an agent (UDP in
this case). It generates frames every 1/30 seconds. It’s also possible to change
it in the C++ source code and recompile. To obtain the correct behavior of this
traffic generator, a directory called video model where we are going to run the TCL
scripts has been created. This directory contains 6 statistic files provided with the
source package. We need also to add two lines in the tcl/lib/ns-default.tcl file as
shown in Table 3.2.

The rateFactor parameter indicates how much it is possible to scale up (or
down) the video input while preserving the same sample path and autocorrelation

CHAPTER 3. SIMULATION SETUP 28

Application/Traffic/MPEG4 set rateFactor_ 1

Application/Traffic/MPEG4 set initialSeed_ 0.5

Table 3.2: Configuration lines to add in the NS-2 default file

function for the frame size distribution. The initialSeed is used to start generating
the first frame in the model. This implementation has been taken from [7].

3.5 Competing Streams

In this section, the flows that will be utilized in the scenarios described in the
Chapter 5 are presented and also some excerpts of code are illustrated. These
streams compete against the multimedia traffic and every set of simulation is re-
peated twice. They are basically used to evaluate the performance of the MPEG
stream in a real scenario.

3.5.1 Costant Bit Rate

This kind of source generates traffic according to a deterministic rate. Packet size
is constant but optionally some randomizing dither can be enabled on the inter-
packet departure intervals. In the Table 3.3 a snippet of code follows, in which
it is clear how to set up an application sending such kind of traffic. Usually an
application is placed on top of an agent like UDP/TCP, and this agent needs a
connection with the destination (sink). At the application level it is possible to set
some parameters as packet size and sending rate.

3.5.2 Poisson

This traffic application is set up on a UDP agent too. The generator is an Expo-
nential On/Off and it can be configured to behave as a Poisson process by setting
the variable burst time to 0 and the variable rate to a very large value. The C++
code guarantees that even if the burst time is zero, at least one packet is sent.
Additionally, the next interarrival time is the sum of the assumed packet transmis-
sion time (governed by the variable rate) and the random variate corresponding
to idle time . Therefore, to make the first term in the sum very small, make the
burst rate very large so that the transmission time is negligible compared to the
typical idle times [18]. This generator can be forced to use a random variable as
shown in the Table 3.4.

CHAPTER 3. SIMULATION SETUP 29

set udp1 [new Agent/UDP]

$ns attach-agent $s1 $udp1

$udp1 set fid_ 10

$ns simplex-connect $udp1 $sink1

set cbr1 [new Application/Traffic/CBR]

$cbr1 attach-agent $udp1

#$cbr1 set packet_size_ $packetSize

$cbr1 set packet_size_ 675

$udp1 set packetSize_ $packetSize

$cbr1 set rate_ 3.3Mb

Table 3.3: Excerpt of CBR Tcl code

set udp0 [new Agent/UDP]

$ns attach-agent $s2 $udp0

$udp0 set fid_ 20

$ns simplex-connect $udp0 $sink1

set rng0 [new RNG]

$rng0 next-substream

set poisson0 [new Application/Traffic/Exponential]

$poisson0 set packetSize_ 675

$poisson0 set burst_time_ 0

$poisson0 set idle_time_ 0.002631

$poisson0 set rate_ 100Gb

$poisson0 attach-agent $udp0

$poisson0 use-rng $rng0

Table 3.4: Excerpt of Poisson Tcl code

3.6 Motivation

Recently, reconfigurable hardware has been used to build network solutions. Due to
the availability of high bandwidths resulting from high capacity links, the packets
can be transmitted through the link at high speeds. Therefore, the router has to
be fast enough to be able to switch packets from incoming links into one of the

CHAPTER 3. SIMULATION SETUP 30

outgoing link at a speed that matches the available link speed [23]. Reconfigurable
hardware is a kind of hardware whose functionality may change in response to the
demands placed upon the system while it is running. This gives us both flexibility
of software and the performance of hardware. Today’s FPGA technology allows
reconfigurable hardware to be integrated into standard PC hardware as well as into
dedicated router system. With a hardware like this it is possible to offer support
for task CPU intensive.

These hardware reconfiguration capabilities can be beneficial from different
aspects. Some of these benefits are listed below:

• performance can be gained from limited hardware resources by tuning con-
figuration parameters on a flexible hardware architecture;

• hardwired data structures can be used to accelerate performance by elimi-
nating the drawbacks of traditional memory storage-based data structures;

• the system cost can be reduced by fitting multiple features and applications
on a single reconfigurable hardware platform or by partitioning an application
into some stages being configured serially on a smaller platform.

Some of currently available field-programmable gate arrays support partial recon-
figuration in a few microseconds and full reconfiguration in a few milliseconds.
This has made reconfigurable systems more attractive to researchers due to their
capability of implementing reconfigurable hardware in real world [3].

The service providers are increasingly confronting the crucial necessity to sep-
arate and control their traffic at the service, application, and user level; this mo-
tivation brings to employ a lot of commercial solutions using FPGA in the core
network. With the current high bandwidths, these requirements translate into the
capability of supporting QoS mechanisms in the hardware equipment at various
switching points in the network. Thinking about the flexibility, it is possible to
customize the traffic management through configuration and run-time parameters
while for the scalability, the FPGA resources can scale according to the number of
queues and the channel in the application. Comparing this solution with an ASIC
or standard product solution, we are going to incur in a significant amount of
risk. Volumes are uncertain, which leads to exorbitant non-recurring engineering
(NRE) costs. FPGAs naturally fit for implementing traffic managers because of
the limitation of this risk and the ability to differentiate a traffic manager solution.
Additionally, it is possible to use a reconfigurable solution to add and support new
services in the future.

Our idea start from the concept that we want to utilize the features of recon-
figurable hardware to improve the execution of scheduling operation:

• possible to exploit the feature of reconfigurability, in other words, the schedul-
ing algorithm can be changed basing on some condition inside the network.

CHAPTER 3. SIMULATION SETUP 31

• running this operation in hardware can speed up some particular function
that in software are executed slower than in hardware;

The first issue is addressed by our investigation while the second is a challenge
for future investigations and could bring another increment at performance level.
We address the first issue from the software point of view. Our analysis, and
the choice of the scheduling algorithms to evaluate in the simulator, start from a
research about the implementation costs of these algorithms in FPGA.

3.7 Cost Analysis

Every server uses a different scheduling algorithm to decide the order in which the
requests have to be served. A scheduling discipline should satisfy the following
requirements:

1 is easy to be implemented;

2 provide fairly distributed bandwidth to competing streams;

3 guarantees performance bounds for a wide range of traffic types;

4 allows easy admission control decision.

Within the lot of different approaches proposed in literature, Weighted Round
Robin (WRR) and Weighted Fair Queuing (WFQ) are perhaps these two most
adopted disciplines [19]. Our analysis starts from a literature research on the hard-
ware implementation of the two above mentioned algorithms. Several disciplines
have been proposed in literature to provide QoS.

It has been shown that meeting packet-time requirements of multi-gigabit links
is difficult using only a software based implementation [24]. To maintain high link
utilization, the scheduler algorithm must be able to make a decision on the packet
to schedule in a time:

packet length

line speed
(3.1)

This trend leads to think about architectural framework that can provide schedul-
ing algorithm solutions, balancing performance and constraints and making trade-
offs required in their physical realization [6]. Figure 3.9 (b) shows if the required
scheduling rate, can be realized in silicon or reconfigurable logic given the imple-
mentation complexity of a given scheduling discipline. For serving a big number
of streams, a higher scheduling rate is needed (Figure 3.9 (a).

Devices with FPGA on board represent a good solution to address these prob-
lems. We took the information about the implementation in hardware of WRR
and WFQ in a Virtex II Device. The typical basic architecture of this device con-
sists of an array of configurable logic blocks (CLBs) and routing channels. A WFQ

CHAPTER 3. SIMULATION SETUP 32

Figure 3.9: Implementation Complexity of Packet Scheduler

implementation in a Virtex II device takes more than 2400 configurable logic block
(CLB) [19] and for the same number of streams to handle, WRR takes 1500 CLB
[15]. So utilizing all the CLB available on this device it is possible to save almost
70% of area depending on the chosen algorithm. This leads to a big challenge, it is
possible to think to a more dynamic handling of the traffic: the unutilized area in
the FPGA can save power consumption or using it, it is possible to handle more
stream sessions with a different scheduling algorithm. This is what we are going
to address in this work.

3.8 Summary

In this chapter, the network simulator and all the environment utilized in the
simulations has been introduced. It has been described how to create a simulation
scenario and how to get results in NS-2. A description of the differentiated services
architecture for IP QoS has been furnished together with the support offered by
the simulator through the Nortel Diffserv module. The MPEG4 model has been
described and some excerpts of code permitting to set up a multimedia traffic
source, in the simulator, has been explained. A short description of the competing
streams utilized in the typical network scenario together with the MPEG4 stream
has been provided, and also for them some excerpts of code have been explained.
The last part of the chapter has illustrated the motivation bringing to the choice
of utilize reconfigurable hardware and a cost analysis of the chosen scheduling
algorithms in hardware has been presented.

Modifications to NS-2 4
In this chapter, the modifications to the simulator are presented and some excerpts
of code are commented. Section 4.1 introduce the implementation of an agent to
monitor the results of the simulation; Section 4.2 describe how the support to the
reconfigurability has been obtained and Section 4.3 presents the implementation of
WFQ scheduler in the simulator.

4.1 Monitor Agent

In order to have output files with data on the simulation (trace files) or files used
for visualization (NAM files), we need to tell to the simulator to keep track of
traffic in the network with a set of dedicated commands, i.e., open, trace-all, flush-
trace, close. When tracing into an output ASCII file, the trace is organized in 12
fields as depicted in Figure 4.1. The meaning of these fields is as follows:

Seq
Num

Dst
Addr

Src
AddrFidSize

PktPkt
Type

To
Node

From
NodeTimeEvent

Pkt
IDFlags

Figure 4.1: Trace File structure

Event represents the event type. It is given by one four possible symbols e, +,
-, d which correspond respectively to receive (at the output of the link),
enqueued, dequeued and dropped;

Time gives the time at which the event occurs;

From Node is the input node of the link at which the event occurs;

To node gives the output node of the link at which the event occurs;

Pkt Type gives the packet type (for example, CBR, or TCP. The type corre-
sponds to the name that we gave to those applications);

Ptk Size gives the packet size;

Some flags ;

33

CHAPTER 4. MODIFICATIONS TO NS-2 34

Fid is the flow id of IPv6 that a user can set for each flow at the input OTcl
script. One can further use this field for analysis purpose; it is also used
when specifying stream color for the NAM display;

Src Addr is the source address given in the form of “node.port”;

Dst Addr is the destination address, given in the same form;

Seq Num is the network layer protocol’s packet sequence number. Even though
UDP implementation in a real network does not use sequence number, NS-2
keeps track of UDP packet sequence number for analysis purposes;

Pkt ID field shows the unique ID of the packet.

For example, it is possible to take a look to the following lines in Table 5.2
extrapolated from a trace file:

r -t 0.1058 -s 11 -d 5 -p video -e 1000 -c 40 -i 0 -a 40 -x 11.0 9.0 -1 —— null
+ -t 0.1058 -s 5 -d 7 -p video -e 1000 -c 40 -i 0 -a 40 -x 11.0 9.0 -1 —— null
- -t 0.1058 -s 5 -d 7 -p video -e 1000 -c 40 -i 0 -a 40 -x 11.0 9.0 -1 —— null
h -t 0.1058 -s 5 -d 7 -p video -e 1000 -c 40 -i 0 -a 40 -x 11.0 9.0 -1 —— null
r -t 0.1058 -s 12 -d 5 -p video -e 1000 -c 40 -i 2 -a 40 -x 12.0 9.0 -1 —— null
+ -t 0.1058 -s 5 -d 7 -p video -e 1000 -c 40 -i 2 -a 40 -x 12.0 9.0 -1 —— null
r -t 0.1058 -s 13 -d 5 -p video -e 1000 -c 40 -i 4 -a 40 -x 13.0 9.0 -1 —— null
+ -t 0.1058 -s 5 -d 7 -p video -e 1000 -c 40 -i 4 -a 40 -x 13.0 9.0 -1 —— null

Table 4.1: Trace-file Example

Using the trace commands may result in the creation of huge files, about 1 Giga-
bytes of data for each simulation, this leads to two main problem:

• a lot of disk writes with a considerably slow down simulation time;

• difficult to parse the data file generated.

For these reasons, a new agent has been implemented and it is also possible to
monitor only metrics of interest. In the NS-2 architecture, it is possible to put an
agent on a node doing what is needed; it is also possible to use predefined agents
or implement your own. In the next frames there is a chunk of code implementing
this special agent.

CHAPTER 4. MODIFICATIONS TO NS-2 35

Monitor Agent header file

1 /∗#i f n d e f ns udp h
2 #de f i n e ns udp h
3 ∗/
4 #include ”agent . h”
5 #include ” t r a f g en . h”
6 #include ”packet . h”
7 #include <fstream>
8
9 //” r tp timestamp” needs the samp lera te

10 #define SAMPLERATE 8000
11 //#de f i n e RTP M 0x0080 // marker f o r s i g n i f i c a n t e ven t s
12
13 c l a s s MyAgent : pub l i c Agent {
14 pub l i c :
15 MyAgent () ;
16 v i r t u a l void recv (Packet∗ pkt , Handler ∗) ;
17 p r i va t e :
18 double delay ;
19 } ;

Monitor Agent source file

1 #ifndef l i n t
2 stat ic const char r c s i d [] =
3 ”@(#) $Header : / n f s / jade / v in t /CVSROOT/ns−2/apps/udp . cc , \
4 v 1 .19 2001/11/16 22 :29 : 59 buchheim Exp $ (Xerox) ” ;
5 #endif
6
7 #include ”myagent . h”
8 #include ” rtp . h”
9 #include ”random . h”

10 #include ” address . h”
11 #include ” ip . h”
12
13 stat ic c l a s s MyAgentClass : pub l i c Tc lClass {
14 pub l i c :
15 MyAgentClass () : Tc lClass (”Agent/MyAgent”) {}
16 TclObject ∗ c r e a t e (int , const char∗const ∗) {
17 return (new MyAgent ()) ;
18 }
19 } c la ss my agent ;
20

CHAPTER 4. MODIFICATIONS TO NS-2 36

21 MyAgent : : MyAgent () : Agent (PT UDP) {
22 delay = 0 ;
23 }
24
25 // Agent/Udp in s t p r o c recv { from data } { puts data }
26 // put in timestamp and sequence number ,
27 // even though UDP doesn ’ t u s u a l l y have one .
28
29 void MyAgent : : r ecv (Packet∗ pkt , Handler ∗){
30 hdr cmn∗ cmn = hdr cmn : : a c c e s s (pkt) ;
31 char nome f i l e [1 0 2 4] ;
32 char d im f i l e [1 0 2 4] ;
33 char a r r i v e f i l e [1 0 2 4] ;
34 hdr ip ∗ hdr iph = hdr ip : : a c c e s s (pkt) ;
35 int f l ow i d=hdr iph−>f l ow id () ;
36 // p a c k e t t mypacket = cmn−>ptype () ;
37 // p r i n t f (” type : %d − f l ow i d : %d\n” ,mypacket , f l o w i d) ;
38 double now = Scheduler : : i n s tance () . c l o ck () ;
39 delay = now − (cmn−>timestamp ()/SAMPLERATE) ;
40 s p r i n t f (nome f i l e , ” f i l e d%d” , f l ow i d) ;
41 f s t ream d e l a y f i l e (nome f i l e , i o s : : out | i o s : : app) ;
42 d e l a y f i l e <<delay<<endl ;
43 // p r i n t each r e c e i v e d packe t dimension in a f i l e
44 // s e p a r a t e l y depending on the kind o f the packe t
45 std : : s p r i n t f (d im f i l e , ” f i l e d%d dim” , f l ow i d) ;
46 std : : f s t ream dim(d im f i l e , std : : i o s : : out | std : : i o s : : app) ;
47 dim<<cmn−>s i z e ()<< std : : endl ;
48
49 std : : s p r i n t f (a r r i v e f i l e , ” f i l e d%d a r r i v e ” , f l ow i d) ;
50 std : : f s t ream ar r (a r r i v e f i l e , std : : i o s : : out | std : : i o s : : app) ;
51 arr<<now<<std : : endl ;
52
53 Packet : : f r e e (pkt) ;
54 }

The recv() function is called every time a packet is received. So we access to the
packet, take its flow id to distinguish it from other kinds of traffic, that is, we need
to put every delay (or any metric) of a separate stream in a different file. In this
way, it will be very simple to evaluate the average end-to-end delay, and the jitter,
processing them with a simple shell or Perl script. To calculate the throughput we
also need of the packet size, so we gather them into another separate file. The file
name is built on the base of file ID, in this way different data-stream separation is

CHAPTER 4. MODIFICATIONS TO NS-2 37

obtained automatically. The packet delay is calculated reading the time-stamp in
the packet common-header and subtracting it by the current time obtained thanks
the clock method of Scheduler instance. To calculate the packet size, it is possible
to use the size() method of the common-header class.

4.2 Support for Reconfiguration to the Simula-

tor

The work starts from the assumption that reconfigurable hardware is available in
the router, so it is possible to change many network parameters in the device, to
obtain a better performance for some streams. With an FPGA on board, it is
possible to think to change the scheduling algorithm inside the core router, and
meet some requirements.

Why do we need to change the scheduling disciplines? As it has been discussed
before, different scheduling algorithms take different space in FPGA being imple-
mented, and in the Section 3.7 it has been argued that WFQ implementation takes
almost double size in terms of area compared with WRR. This means that it is
possible to handle almost double the number of streams with this device [23]. It
is also possible to use a cheaper algorithm to save area in FPGA, and save power
turning off unitilized area. What we are going to address is the first problem, we
want to gain in performance more than saving power. Therefore, thinking about a
full utilization of this FPGA, we need to understand when and how to change the
algorithm. In the NS-2 implementation, every kind of traffic is identified by a dif-
ferent packet type. It is possible to access to the common header of the IP packet
and understand which kind of packet is going to be processed. During the queu-
ing phase, the packet type is recognized and therefore the scheduling algorithm is
changed.

Figure 4.2: Reconfiguration Idea

This operation is performed in the T.E.M (Traffic Evaluation Module) compo-
nent that we have developed. It is possible to do this mainly in two different ways.
First, a static threshold can be set and the scheduling algorithm is changed in hard-
ware when it is exceeded. Second, a ratio between different packet streams, within

CHAPTER 4. MODIFICATIONS TO NS-2 38

a specific time period, can be set to determine whether to switch the scheduling
algorithm or not. The second approach is more accurate, but choosing the size of
the interval and the desired threshold represents a challenge for further investiga-
tions. In this section, a comparison between the two methodologies is presented.
To add reconfiguration support to the simulator, the Diffserv module has been
modified. In particular the enqueue function has been altered to monitor, keep
track of the kind of traffic passing into the network and change the scheduling
algorithm consequently. Two main approaches have been adopted:

1. static threshold;

2. average load in a period.

Using the first one, the reconfiguration happens after a fixed number of video
packets has been received and forwarded by the core router (dropped packets are
not taken in account). This approach lacks in flexibility and it is not suitable for a
complex traffic situation, because there could be a long period without multimedia
transmission inside the backbone but it may be possible to have a big variation
between activity and inactivity interval of the sender. Of course this approach
presents a very easy implementation and does not introduce computational over-
head for the router. In the next frame, a snippet of code from the enqueue function
of the Diffserv module, illustrating this mechanism follows. The major problem is
that, if the threshold is passed, the system has no way to recognize whether the
MPEG4 traffic is continuing to flow. It would be possible to set a timer and try to
understand if such kind of traffic is not passing anymore, but it would be another
challenge to choice the value of this deadline.

enqueue function with fixed threshold

1 // adap t i v e change o f s c h edu l i n g a lgor i thm
2
3 // access to packe t ’ s common header and check which
4 // kind o f packe t i s i t
5 // see p a c k e t t f o r type o f packe t in packe t . h
6 //UDP = 2 , VIDEO = 4 , FTP = 28 , PARETO = 29 , POISSON = 29
7
8 // access to the packe t common header
9 hdr cmn∗ acce s spacke t = hdr cmn : : a c c e s s (pkt) ;

10 packe t t mypacket = accesspacket−>ptype () ;
11
12 // num video packet and num other packet are dec l a red
13 // in the header f i l e o f d i f f s e r v module
14
15 //update the number o f packe t s
16 (mypacket == 4) ? num video packet++ : num other packet++;

CHAPTER 4. MODIFICATIONS TO NS-2 39

17
18 //when the re are more than N video−packe t
19 // in the network , the s c h edu l i n g a lgor i thm
20 // i s changed in WRR
21
22 i f (mypacket == 4){
23 i f (num video packet >= N){
24 schedMode= schedModeWRR ;
25 p r i n t f (”num o f video packet=%d\n” , num video packet) ;
26 }
27 }

The second one is more accurate: a counter for each kind of packet is kept, every N
seconds a check on the ratio between the number of video packet, and the number
of the other packet, is calculated and if this ratio goes beyond a certain threshold,
then the scheduling algorithm is changed. Dimensioning the threshold is also a
challenge, but it is easier than the first approach and it should be possible also
to think of a solution with a movable threshold under certain conditions. In the
following frame, there is the code implementing the second strategy.

enqueue function with dynamic check

1 // adap t i v e change o f s c h edu l i n g a lgor i thm
2 // access to packe t ’ s common header and check which
3 // kind o f packe t i s i t
4 // see p a c k e t t f o r type o f packe t in packe t . h
5 //UDP = 2 , VIDEO = 4 , FTP = 28 , PARETO = 29 , POISSON = 29
6 // access to the packe t common header
7 hdr cmn∗ acce s spacke t = hdr cmn : : a c c e s s (pkt) ;
8 packe t t mypacket = accesspacket−>ptype () ;
9 // ge t the current time

10 double now = Scheduler : : i n s tance () . c l o ck () ;
11 // the v a r i a b l e ” doub le i n i t i a l ” i s dec l a red
12 // in the header o f t h i s module and i t ’ s s e t t e d to 0
13 // num video packet and num other packet are dec l a red
14 // in the header f i l e o f d i f f s e r v module
15 //update the number o f packe t s
16 (mypacket == 4) ? num video packet++ : num other packet++;
17 // the check i s performed every N seconds
18 i f (now − i n i t i a l > N){
19 // i f the number o f v ideo packe t i s about 5% of t o t a l
20 // in t h i s window , the s c h edu l i n g a lgor i thm i s changed
21 i f (num video packet >=
22 (((num video packet+num other packet)/100)∗5)){

CHAPTER 4. MODIFICATIONS TO NS-2 40

23 schedMode = schedModeWRR ;
24 }
25 else {
26 schedMode = schedModeRR ;
27 }
28 // put a t 0 the counter and
29 // update the i n i t i a l counter f o r the window
30 num video packet = 0 ;
31 num other packet = 0 ;
32 i n i t i a l = now ;
33 }

To validate this modification, here follows Table 4.2 with the results of a set of
simulations in which the use of Round Robin, Weighted Round Robin and Round
Robin with change in Weighted Round Robin are compared. In the first simulation,
every queue has been served by a Round Robin scheduler without the modifica-
tion. In the second, the modification has been applied and and the simulation run
changing the scheduling algorithm from RR to WRR. In the last simulation, the
scheduler is set on WRR. For the second and the last one, the queue weights are
set as shown in Table 4.2.

Delay (sec) RR RR→WRR WRR Weight
Poisson1 0.188199454862022 0.232979777481014 0.307661438617046 3
Poisson2 0.1885260599879 0.138676982735961 0.0952731051873826 7
MPEG4 0.17178877452345 0.105055283908694 0.0520737071567351 10

Table 4.2: Set of simulations with reconfiguration

Packet Drop TotPkts TxPkts link-drops
All 110451 88655 21796

Poisson1 38174 29749 8425
Poisson2 37809 29746 8063
MPEG4 34468 29160 5308

Table 4.3: Packet drop for Round Robin

In Tables 4.3, 4.4 and 4.5 the drop statistics are gathered for the three queues.
Of course, the queue weight does not make any sense for the simulation using RR,
because every queue has the same.

Looking at these results is possible to understand how with the reconfiguration
from RR to WRR is possible to recover the bad trend for the MPEG stream. Our

CHAPTER 4. MODIFICATIONS TO NS-2 41

Packet Drop TotPkts TxPkts link-drops
All 110451 88779 21672

Poisson1 38174 23435 14739
Poisson2 37809 33468 4341
MPEG4 34468 31876 2592

Table 4.4: Packet drop for RR→WRR

Packet Drop TotPkts TxPkts link-drops
All 110451 88958 21493

Poisson1 38174 17412 20762
Poisson2 37809 37078 731
MPEG4 34468 34468 0

Table 4.5: Packet drop for WRR

idea is to use reconfiguration and give priority to multimedia traffic only when this
kind of traffic is present in the network. Doing this, it is possible to save area in
FPGA and also handle more streams. This aspects will be described in more detail
later in Chapter 5.

CHAPTER 4. MODIFICATIONS TO NS-2 42

4.2.1 Reconfiguration Delay

As observed earlier, NS-2 does not offer any kind of support to the reconfiguration.
Another problem to be addressed is the lack of reconfiguration delay. When the
FPGA executes a scheduling change, in hardware this operation takes few millisec-
onds depending on a lot of factors and mainly each device has its own proper delay.
The only way to reproduce this factor is to introduce a constant delay between
each reconfiguration. How this fixed delay is chosen depends on real simulations
on hardware devices. In term of implementation, we will have one delay for each
available device. A module to set this factor has been designed and implemented.
It is possible to configure this parameter during the scenario setup. As described
in Chapter 3, the simulation scenario has to be set in a Tcl description file, so
the module maps the implementation code in C++ with the Tcl scenario code.
In Table 4.6, the C++ code implementing this features is shown. If no values are

void dsREDQueue::command(int argc, const char*const* argv) {

// ..

if (strcmp(argv[1], "setDevice") == 0) {

setDevice(argv);

return(TCL_OK);

}

// ..

return(Queue::command(argc, argv));

}

void dsREDQueue::setDevice(const char*const* device_tipe) {

// ..

if (strcmp(device_type, "XC2V6000") == 0) {

reconfiguration_delay = DELAY1;

}

else if (strcmp(device_type,"XCV1000") == 0) {

reconfiguration_delay = DELAY2;

}

// ..

}

Table 4.6: Code Mapping Device Delay, C++

specified, the default delay is set to zero, so in this case the reconfiguration does
not introduce time lag. It is possible to decide this value in the configuration Tcl
file like shown in the code in Table 4.7. This approach permits a more realistic

CHAPTER 4. MODIFICATIONS TO NS-2 43

set ns [new Simulator]

set e1 [$ns node]

set e2 [$ns node]

set core [$ns node]

$ns simplex-link $core $e2 6Mb 5ms dsRED/core

set qCE2 [[$ns link $core $e2] queue]

qCE2 setDevice XC2V6000;

Table 4.7: Code Mapping Device Delay, Tcl

evaluation of our problem.

4.3 Weighted Fair Queuing Implementation

This section discusses in detail the scheduling algorithm implementation in NS-2.
In the following sections, some excerpts of code are commented.

4.3.1 Formulas

WFQ has been introduced in Section 2.4.2.2, anyway the functions to calculate
when a packet has to be scheduled are presented here:

V (t + τ) = V (t) + (
τ

∑

φi∈Bj

) (4.1)

Sk
i = max{F k−1

i , V (t + τ)} (4.2)

F k
i = Sk

i + (
Lk

i

φi

) (4.3)

WFQ schedules packets according to their arrival time, size and associated
weight. When a new packet arrives, the virtual time is calculated and the packet
is scheduled starting from the packet with the least finish time. In this system an
event is defined as the arrival or departure from the GPS scheduler of a packet.
For each session, there is a weight associated with it represented by φi. For an
interval τ with a constant set of backlogged flows within any busy period, V (t+τ),
the virtual time in the GPS scheduler when the kth packet from session i arrives
or departs, is found from Equation 4.1 [11].

Bj denotes the busy sessions in the interval between two events and Lk
i is the

length of the kth packet in session i. For each packet arriving at the GPS scheduler,

CHAPTER 4. MODIFICATIONS TO NS-2 44

a start tag is calculated using 4.2. Sk
i represents the start tag of the kth packet in

session i and F k−1

i is the finish tag of the previous packet in session i, this one is
calculated by Equation 4.3. Next(t) can be obtained by Equation 4.4, it represents
the real time at which the next packet will leave the GPS system after an event at
time t, if there are no more arrivals after time t.

Next(t) = t + (FMIN − V (t + τ))
∑

i∈Bj

φi (4.4)

t is the time elapsed since the scheduler became active, FMIN is the minimum
value of finish tag for a packet that has still to depart from the GPS simulation. It
is possible to split the operation of a WFQ scheduler in two distinct phases: packet
arrival and packet departure. Let’s summarize the steps:

• Packet Arrival

– if system idle before packet arrival, then V (t) is set to zero. Otherwise
V (t) is updated with Equation 4.1;

– calculate start and finish tags for packet using Equations 4.2 and 4.3
respectively;

– if the session was not backlogged before then it is added to set Bj. Sum
of backlogged sessions is then modified;

– calculate real time of the next packet departure from the GPS system,
i.e., Next(t), from Equation 4.4;

• Packet Departure

– update the value of V (t) using Equation 4.1;

– dequeue the packet with the smallest finish tag, FMIN ;

– if a session is no longer backlogged when the packet is de-queued then
it is removed from set Bj ;

– calculate Next(t) using Equation 4.4.

4.3.2 The code

All the steps in the Packet Arrival phase are performed by the WFQenqueue()
function that, is called by the standard enqueue function of the Nortel Diffserv
module. This function updates the virtual time variables, inserts control data in
GPS List and invokes the scheduling of next departure.

Line 1 is the declaration of the function, the input consisting of a pointer to the
packet and its queue id.

CHAPTER 4. MODIFICATIONS TO NS-2 45

Line 3 to 4 access to the packet common header and obtain the packet size.

Line 6 obtain the current simulation time calling a scheduler method.

Line 8 to 16 update the virtual time, if the GPS system is idle, everything is
initialized to zero and the last virtual time to the current simulation time,
otherwise if the GPS is active all the parameters are update according to
Formula 4.1.

Line 18 to 21 calculate the finish time for that packet as in Formula 4.3.

Line 24 to 26 update the list of backlogged session and the sum of the weights
for the queues (this function is shown in the next frame).

Line 30 and 31 perform the list insertion in both the PGPG and the GPS list,
passing them the queue id of the packet being inserted and also the finish
time associated with it.

Line 33 to 38 schedule the next departure in the GPS reference system.

Update Weights Function

1 void dsREDQueue : : WFQupdateSum () {
2
3 sum = 0 ;
4
5 for (int i =0; i < numQueues ; i++) {
6 i f (B[i]) {
7 sum += queueWeight [i] ;
8 }
9 }

10 }

This function updates the weights for all the backlogged queue (line 5 to 9).

CHAPTER 4. MODIFICATIONS TO NS-2 46

WFQ Enqueue Function

1 void dsREDQueue : : WFQenqueue(Packet ∗p , int queueid) {
2
3 hdr cmn ∗hdr = hdr cmn : : a c c e s s (p) ;
4 int s i z e = hdr−>s i z e () ;
5
6 double now = Scheduler : : i n s tance () . c l o ck () ;
7
8 // v i r t u a l time update
9 i f (GPS idle) {

10 l a s t v t upda t e=now ;
11 v i r t t ime =0;
12 GPS idle =0;
13 } else {
14 v i r t t ime=v i r t t ime+(now−l a s t v t upda t e)/sum ;
15 l a s t v t upda t e=now ;
16 }
17
18 // l e t ’ s compute f i n i s h time
19 f i n i s h t [queueid] = (f i n i s h t [queueid] > v i r t t ime ?
20 f i n i s h t [queueid] : v i r t t ime)
21 +s i z e /(double) queueWeight [queueid] / (bandwidth /8) ;
22
23 // update sum and B
24 B[queueid]++;
25 WFQupdateSum () ;
26 i f (f abs (sum) < s a f e l i m i t) sum=0;
27
28
29 // i n s e r t i o n in the l i s t
30 PGPS list . i n s e r t o r d e r (queueid , f i n i s h t [queueid]) ;
31 GPS l i s t . i n s e r t o r d e r (queueid , f i n i s h t [queueid]) ;
32
33 // schedu l e next depar ture in the GPS re f e r en c e system
34 i f (wfq event !=0) {
35 Scheduler : : i n s tance () . cance l (wfq event) ;
36 d e l e t e wfq event ;
37 }
38 WFQscheduleGPS () ;
39 }

CHAPTER 4. MODIFICATIONS TO NS-2 47

On the other hand, the steps in the Packet Departure phase are executed by the
WFQdequeueGPS() function (in the next frame), this one is invoked by the sched-
uler. It updates the virtual time variables and schedules the next GPS dequeuing
event.

WFQ dequeue function

1 void dsREDQueue : : WFQdequeueGPS(Event ∗e) {
2
3 double now = Scheduler : : i n s tance () . c l o ck () ;
4
5 // update v i r t u a l time
6 v i r t t ime=v i r t t ime+(now−l a s t v t upda t e)/sum ;
7 l a s t v t upda t e=now ;
8
9 // e x t r a c t packe t in GPS system

10 int queueid=GPS l i s t . get data min () ;
11 GPS l i s t . e x t r a c t () ;
12
13 // update B and sum
14 B[queueid]−−;
15 WFQupdateSum () ;
16 i f (f abs (sum) < s a f e l i m i t) sum=0;
17
18 i f (sum==0) {
19 GPS idle =1;
20 for (int i =0; i < MAX QUEUES; i++) f i n i s h t [i]=0;
21 }
22
23 // i f GPS i s not i d l e , s chedu l e next GPS depar ture
24 d e l e t e e ;
25 i f (! GPS idle)
26 WFQscheduleGPS () ;
27 else
28 wfq event =0;
29 }

Line 1 is the function declaration, the input consisting of a pointer to the sched-
uler Event.

Line 3 obtain the current simulation time as usual.

Line 5 to 7 update the virtual time according to Formula 4.1.

CHAPTER 4. MODIFICATIONS TO NS-2 48

Line 9 to 11 extract the queue id of the packet and the packet as well.

Line 13 to 15 update the list of the backlogged queues and also the weight.

Line 17 to 20 if no one queue is backlogged puts the GPS system as idle and
reset the finish time for each queue.

Line 22 to 27 otherwise if the GPS system is not idle, a new departure will be
scheduled.

The system utilized to keep track of packet in the GPS system (and consequently
even in the WFQ) is a list template offering function performing the following
operation:

• get key min() and get data min() return the key and the data of the smallest
key element without extracting it from the list;

• extract() extracts the smallest key element from the list;

• insert order() interface uses flow-id knowledge to allow the implementation
of other data structures: Calendar Queues, array of Lists (a list per flow).

This file has been taken from the Alexander Sayenko’s implementation [16].

4.3.3 GPS properties and complexity

GPS has two main properties:

• it can guarantee an end-to-end delay to a leaky-bucket constrained queue
regardless of the behavior of other queues;

• it can ensure instantaneous fair allocation of bandwidth among all backlogged
queues regardless of whether or not their traffic is constrained;

but it is also well known that it is difficult to implement such a scheduler support-
ing a huge amount of queues with different bandwidth requirements. The main
difficulties can be summarized in:

• for each queue, a computation of system virtual time function has to be
performed;

• how can the scheduler handle the packet order transmission?

In literature, it is possible to find several proposed WFQ implementations, the
difference between them is mainly in the tradeoff between complexity and accuracy
in the computation of the system virtual time function [10]. We have chosen the
Packet Generalized Processor Sharing (PGPS): it uses the virtual time function
defined by the GPS system whose worst case complexity is O(N).

CHAPTER 4. MODIFICATIONS TO NS-2 49

4.4 Summary

In this chapter, the monitor agent implemented to trace the simulations results
was presented. This approach permits to save a lot of disk writes without incur
in a considerable slow down of the simulations. It also permits to avoid the te-
dious parsing of the results data file generated by the simulator. The module to
support the reconfiguration in the simulator has been illustrated describing the
main reconfiguration idea and the approach utilized. Some excepts of code have
been commented and the results of the utilization of this modification has been
presented. The module developed to add the possibility to simulate the reconfig-
uration delay (typical of an hardware device during the change of the scheduling
algorithm) has been described. At the end of the chapter, the weighted fair queuing
implementation has been presented starting from a theoretical definition arriving
to the code realization.

Simulations 5
This chapter presents the work of simulation performed to compare weighted round
robin and weighted fair queuing. The first and second sections are dedicated to the
tools utilized in the simulations to obtain reliable values. The first one presents a
script calculating “confidence interval”, which permits a realistic evaluation of the
results, the other one introduces a class available from the simulator, permitting to
use a random generator to vary the behavior of the traffic sources. Another section
presents the fairness evaluation for which a test program has been written. The
other sections discuss the simulations, and the last one points out the results of
this work.

5.1 Confidence Intervals

A confidence interval gives an estimated range of values which is likely to include
an unknown population parameter, the estimated range being calculated from a
given set of sample data.

If independent samples are taken repeatedly from the same population, and a
confidence interval calculated for each sample, then a certain percentage (confi-
dence level) of the intervals will include the unknown population parameter. Con-
fidence intervals are usually calculated so that this percentage is 95%, but we can
produce 90%, 99%, 99.9%, confidence intervals for the unknown parameter. The
width of the confidence interval gives us some idea about how uncertain we are
about the unknown parameter. A very wide interval may indicate that more data
should be collected before anything definitive can be said about the parameter; to
address this problem, another set of simulations can be performed changing the
seed of the random generator obtaining more value to estimate . Confidence in-
tervals are more informative than the simple results of hypothesis tests since they
provide a range of plausible values for the unknown parameter.

The confidence level is the probability value 1 − α associated to a confidence
interval. It is often expressed as a percentage. For example, say α = 0.05 = 5%,
then confidence level = (1 − 0.05) = 0.95, that is, a 95% confidence interval level

For each simulation set, the confidence interval has been calculated with a
confidence level of 95%. To easily calculate this interval, a Perl script has been
developed. Each simulation task collects the results in a separate directory named
with an incremental number to separate them. The Perl script walks through
these directories and calculates the mean delay (Formula 5.1) for each traffic flow

50

CHAPTER 5. SIMULATIONS 51

in each simulation, then the average mean is calculated and it is used to obtain the
variance (Formula 5.2). The last step consists in the the standard error computing
(Formula 5.3), from which the beam for the confidence interval can be derived
taking the value from the T-student Table 5.1 and multiplying this value for the
standard error. The choice of the value from the T-Student table depends on the
number of simulations performed and the confidence level desired.

x =
1

n

n
∑

i=1

xi (5.1)

σ2 =
1

n − 1

n
∑

i=1

(xi − x)2 =
n

n − 1

(

1

n

n
∑

i=1

x2

i − x2

)

(5.2)

standard error =

√

σ2

n
(5.3)

df/p 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005
1 0.324 1.000 3.077 6.313 12.706 31.820 63.656 636.619
2 0.288 0.816 1.885 2.919 4.302 6.964 9.924 31.599
3 0.276 0.764 1.637 2.353 3.182 4.540 5.840 12.924
4 0.270 0.740 1.533 2.131 2.776 3.746 4.604 8.610
5 0.267 0.726 1.475 2.015 2.570 3.364 4.032 6.868
6 0.264 0.717 1.439 1.943 2.446 3.142 3.707 5.958
7 0.263 0.711 1.414 1.894 2.364 2.997 3.499 5.407
8 0.261 0.706 1.396 1.859 2.306 2.896 3.355 5.041
9 0.260 0.702 1.383 1.833 2.262 2.821 3.249 4.780
10 0.260 0.699 1.372 1.812 2.228 2.763 3.169 4.586

Table 5.1: T-Student

CHAPTER 5. SIMULATIONS 52

These steps are summarized in the following frame.

Confidence Interval Calculation

1 #!/ usr / b in / p e r l −w
2 use s t r i c t ;
3 use L i s t : : U t i l qw(sum) ;
4
5 #ca l c u l a t e the mean
6 my @directory = 2 . . 9 ;
7 my @medie campionarie ;
8 my $ c o e f f c o n f = 2 .36462 ; #fo r 8 s imula t ions , n−1 = 7
9

10 foreach my $num (@directory){
11 #bu i l d the f i l e name f o r each d i r e c t o r y
12 my $ f i l ename = $num . ”/$ARGV[0] ” ;
13 open my $ f i l e , ’< ’ , $ f i l ename ;
14 my @samples ;
15 my $values sum ;
16
17 while (my $value = <$ f i l e >){
18 push @samples , $va lue ;
19 $values sum += $value ;
20 }
21 my $mean = $values sum / scalar @samples ;
22 push @medie campionarie , $mean ;
23 close $ f i l e ;
24 }
25 #average o f means
26 my $avg mean =
27 sum(@medie campionarie) / scalar @medie campionarie ;
28 #ca l c u l a t e var iance
29 my $summa ;
30 foreach my $elem (@medie campionarie){
31 $summa+=($elem−$avg mean)∗∗2 ;
32 }
33 my $var iance = (1/ ((scalar @medie campionarie) − 1))∗$summa ;
34 print ” average o f the means : $avg mean\n” ;
35
36 #ca l c u l a t e s tandard error
37 my $ e r r o r = sqrt ($var iance /(scalar @medie campionarie)) ;
38 my $beam = $ c o e f f c o n f ∗ $ e r r o r ;
39 print” i n t e r v a l [” , $avg mean−$beam , ” , ” , $avg mean + $beam , ”] ” ;

CHAPTER 5. SIMULATIONS 53

5.2 Random Variables

In NS-2, it is possible to use a class containing an implementation of the combined
multiple recursive generator MRG32k3a [8]. The concept utilized in this generator
is the following: 1.8 x 1019 independent streams of random numbers are provided,
each of which consists of 2.3 x 1015 sub-streams. A period is defined as the number
of random numbers before an overlap occur, and each sub-stream has a period of
7.6 x 1022. In Figure 5.1 a graphical idea of how the streams and sub-streams fit
together is provided.

Figure 5.1: Overall arrangement of streams and sub-streams [9]

It is possible to use a default random number generator (defaultRNG) created
at simulator initialization time. Each random variable in a simulation should use a
separate RNG object. As soon as a new RNG object is created, it is automatically
seeded to the beginning of the next independent stream of random numbers.

In our investigation we have to perform a statistical analysis on some metrics,
it is made using independent replications of a simulation. For each simulation
the seed of the generator is changed to ensure that the random numbers will be
independent. It is also possible to force a traffic source to use this random variable
being sure about traffic randomization.

CHAPTER 5. SIMULATIONS 54

5.3 Fairness Evaluation

NS-2 gives the possibility to create a particular traffic source using a TrafficTrace
file. In such file, each record consists of two 32-bits fields in network (big-endian)
byte order. The first one contains a delta δ expressed in microseconds, and it
represents the time until the next packet is generated. The second contains the
length in bytes of the next packet. We used this feature to create a Variable Bitrate
Traffic Source and to test the fairness of WRR and WFQ. In the next frame, a
snippet of Perl code follows. This script generates a random sequence of packets
with variable size, included within a certain interval, that can be specified during
the generation of the trace file.

VBR Traffic Generator

1 #!/ usr / b in / p e r l −w
2 use s t r i c t ;
3 use Tie : : F i l e ;
4 my $CONST = 1 000 000 ; #number o f d e s i r e d record ;
5 my $MICRO = 1 000 000 ; #microseconds cons tant va lue
6
7 i f (@ARGV != 4) {
8 print ”use : p e r l $0 [wa i t t ime] [min] [max] [f i l ename]\n” ;
9 exit ;

10 }
11
12 my ($wait t ime , $min , $max , $ f i l ename) = @ARGV;
13 open my $ f i l e , ’> ’ , $ f i l ename ;
14 binmode $ f i l e ;
15
16 for my $step (1 . . $CONST) {
17 my $ s i z e = $min + rand ($max − $min) ;
18 my $record = pack ’N∗ ’ , $wa i t t ime ∗ $MICRO, $ s i z e ;
19 print $ f i l e $ record ;
20 }
21
22 close $ f i l ename ;

This script fetches command line interfaces parameters and it generates the
number of packets desired. It is possible to specify the maximum and minimum
packet size, the program will generate packets within this interval. Once generated,
the record will be written in the Tracefile requested format. The datafile generated
by this script is utilizable by the traffic source in the Tcl source file as in Table 5.2

As introduced in Section 1.1.1 the fairness concept gives us a measure of how
much a scheduling algorithm can “well-distribute” the bandwidth to competitive

CHAPTER 5. SIMULATIONS 55

set tfile [new Tracefile]

$tfile filename mytracefile

set udp [new Agent/UDP]

$ns attach-agent $source $udp

$udp set fid_ 10

$ns simplex-connect $udp $sink1

set t1 [new Application/Traffic/Trace]

$t1 attach-agent $udp

$t1 attach-tracefile $tfile

Table 5.2: Tracefile setup

flows. Table 5.4 shows the results for the simulation performed with the scenario
in Figure 5.2. Each simulation is done replacing the generic source with

• CBR: constant bitrate

• Poisson

• Our Variable Bitrate Traffic Source

The MPEG4 source sends data with a variable packet size while CBR and
Poisson sources have a predefined 1000 bytes packet size. Every source sends
its traffic to Destionation1 and the MPEG4 server sends to Destination2. The
transmission rate, the weight of all the queues and also the transmission delay is
the same for every source. The queues between the edges and the core router use
DsRed queues (as described in 3.3.3), all the other queues use DropTail mechanism.
Simulation length is 10.000 seconds.

The following results in Table 5.4 and 5.3 show that, using WFQ, it is possible
to obtain a share of the bandwidth more accurate. In this case the outgoing link of
the core router is fully loaded and represents a bottleneck for the network. These
results are only for a fully loaded (125% of load on Core-Edge2 link) network but
the simulations have been done also with different loads 50(%), 75(%), 100(%)
and the bandwidth share in these cases is almost the same between the two algo-
rithms. To obtain a fair behavior with WRR, we need to know a priori the average
packet size of the variable bitrate flow, it represents a big problem. It should be
noted that it would be possible to use another algorithm than WRR to attack the
fairness problem, this algorithm is DRR (Section 2.4.1.2) and it presents a little

CHAPTER 5. SIMULATIONS 56

Figure 5.2: Network Scenario for Fairness Evaluation

modification in terms software implementation but it wastes area in FPGA and it
does not guarantees a tight delay bound for multimedia traffic. This test has been
carried out to make sure about the weighted fair queueing implementation in the
simulator, in fact from the theory we know that WFQ is more fair than WRR and
these results confirm the hypothesis [4].

Throughput (Mbit/s) WFQ WRR
MPEG4 2.860974929 2.311915367

CBR 2.861114501 3.410140991

Table 5.3: Fairness evaluation with MPEG4 and CBR

Throughput (Mbit/s) WFQ WRR
MPEG4 2.860978874 2.370964892
Poisson 2.861091613 3.334030151

Table 5.4: Fairness evaluation with MPEG4 and Poisson

Throughput (Mbit/s) WFQ WRR
MPEG4 2.960876420 2.460978874

VBR 2.971314601 3.530543925

Table 5.5: Fairness evaluation with MPEG4 and our VBR

Another test has been carried to make a comparison between WRR and WFQ.
In these simulations, the sources in the scenario are a CBR and a VBR. The avail-

CHAPTER 5. SIMULATIONS 57

able bandwidth on the bottleneck link is 4.5Megabit/s. The scenario is presented
in Figure 5.3.

Figure 5.3: Fairness evaluation with VBR and CBR sources

In the previous tests, the priority of the queues was the same, then the scheduler
didn’t give privileges to a kind of traffic or the other one. Now the queue weight
is set up giving priority to the VBR traffic and the result about the bandwidth
utilization is shown in Table 5.6.

Throughput (Mbit/s) WFQ WRR Queue Weight
CBR 1.430978874 1.548876420 2
VBR 2.861543925 2.744314601 4

Table 5.6: Fairness evaluation with CBR and our VBR

It is possible to note that using WFQ, the ratio between the bandwidth utiliza-
tion is kept better than using WRR. We have the same behavior for the end-to-end
delay as shown in Table 5.7.

Delay (sec) WFQ WRR Queue Weight
CBR 0.248 0.230 2
VBR 0.128 0.126 4

Table 5.7: Delay evaluation with CBR and our VBR

CHAPTER 5. SIMULATIONS 58

5.4 Simulation Scenario

Two main simulation sessions have been set up to study the behavior of the two
schedulers and how some factors, like traffic load and queue weight, influence their
performance:

Variable Traffic Load: the effect of changing the traffic load in the link between
the core router and the second edge has been studied. The impact of this
change on the metrics of interest has been evaluated.

Variable Queue Weight: the effect of changing the queue size of the MPEG4
class has been studied. The impact of this change on the metrics has been
evaluated as in the previous case.

In both these sets, the simulations are carried several times changing the random
seed in the simulator each time. The average value for every metric has been
calculated for every run. Later for these means, the mean over all the runs has
been calculated and its 95% confidence interval too. Table 5.8 and 5.9 summarizes
the simulation plan.

Variable Traffic Load
Traffic MPEG4 CBR Poisson
Netload 76.5% 86.5% 100% 110%

Table 5.8: Simulation Plan 1

Variable Class Weight
MPEG4 weight variation

CBR fixed
Poisson fixed

Table 5.9: Simulation Plan 2

5.5 Traffic Load Variation

A set of simulations to test the performance of WFQ and WRR has been carried
out. These simulations compare the two scheduling algorithm varying the traffic
load on the link of the core router. The scenario with two sending nodes is the
following: a MPEG4 source and another source, actually we alternate it with a
Constant Bit Rate source and a Poisson source. There are also a couple of edge
router and a core router in the middle. Each link has the same capacity (10 Mbps)

CHAPTER 5. SIMULATIONS 59

and the outgoing link for the core router has been set up at 6 Mbps creating a
bottleneck for the transfer. The transmission delay is 5ms. Each source starts
to send at the same time and they send the traffic to a unique sink. Figure 5.4
illustrates the network scenario. This simulation runs in nine main sessions, each
of which consists of eight simulations to calculate confidence interval; in every one
of the eight main sessions the sending rate of the MPEG4 node has been changed
to vary the load on the core router link. The duration is 1000 seconds for each
simulation.

Figure 5.4: Network Scenario with load variation

5.5.1 Delay

Figure 5.5 shows the average delay experimented by the MPEG4 traffic in different
load condition in the network. The comparison is made using one of the two
scheduler, and later the other one. It should be noted that the WFQ scheduler
treats this stream better when the traffic load reaches a fully loaded point. The
other kind of traffic in this scenario is a constant bitrate. The advantage using
sorted priority algorithms like WFQ instead WRR is that, in the former, the delay
(maximum but also the average) is proportional to the allocated rate, in the latter,
the proportionality is not so clear, because in the delay computation there a fix
term (the round period) dominating the term depending by the rate.

The same set of simulations has been repeated changing the other kind of traffic,
in this set, Poisson source traffic has been used. The result is shown in Figure 5.6.

The trend of delay is almost the same and it confirms the hypothesis also using a
poissonian traffic source competing for the resource allocation with the multimedia
stream.

CHAPTER 5. SIMULATIONS 60

Figure 5.5: MPEG4 delay variation for different traffic load with CBR

Figure 5.6: MPEG4 delay variation for different traffic load with Poisson

5.5.2 Jitter

In the same set of simulations, the jitter has been evaluated too. Figure 5.7 and
5.8 confirm how after the link saturation, Weighted Fair Queueing gives a better
jitter to the multimedia traffic compared with the Weighted Round Robin one.

This parameter is very important for streams like the MPEG4, because in
a video transmission, experimenting a big difference between the frame arrival
frequency is could be unacceptable.

CHAPTER 5. SIMULATIONS 61

Figure 5.7: MPEG4 jitter variation for different traffic load with CBR

Figure 5.8: MPEG4 jitter variation for different traffic load with Poisson

5.6 Queue Weight Variation

An alternative simulation scenario has been created to evaluate the impact of
changing the queue size of the multimedia stream, keeping the weights for the
other queues fixed. This scenario is presented in Figure 5.9 and the simulations
have been repeated with two different kind of traffics, CBR and Poisson and of
course the multimedia stream. There is a bottleneck on the link between the core
router and the second edge node, due to the fact that the sending rate of all the
sources is calculated to fully utilize that link.

This set of simulations compares the impact of the choice of the scheduler on

CHAPTER 5. SIMULATIONS 62

Figure 5.9: Simulation Scenario with Queue Weight Variation

the performance of the MPEG4 stream, in fact the same analysis is carried out
with WFQ and WRR. The queue weight of the multimedia traffic has been varied
starting from a condition of disadvantage, with respect to the other 3 streams,
arriving to a condition of very big vantage. A queue weight represents the class
that a flow belongs to. For the traffic source competing against the multimedia
node, this class is fixed and set up to the value as in Table 5.10, instead for the
MPEG4, it has been varied starting from 1 to 12.

Weight
Source 1 4
Source 2 6
Source 3 8
MPEG4 1 2 3 4 5 6 7 8 9 10 11 12

Table 5.10: Queue Weights

5.6.1 Delay

The result of this set of simulations has been plotted in Figure 5.10, in this case the
competing flows are CBR while in Figure 5.11 the competing flows are poissonian.
These figures plot the trend of the delay for the multimedia stream each time that
its class is changed. At a qualitative level, the trend between the two simulations
is the same apart the region in which the weight’s value is 1 and 4. This probably
happens because the drop percentage is very high when the MPEG4 class is low
so the delay behavior could be very random.

This figures also show that the zone in which the performance gain is maximum
is [4 - 8].

CHAPTER 5. SIMULATIONS 63

Figure 5.10: MPEG4 delay variation for different queue weight with CBR

Figure 5.11: MPEG4 delay variation for different queue weight with Poisson

This investigation can help to understand some criteria to address the prob-
lem of the correct choice of the reconfiguration time. This means that the area
of reconfigurability in terms of queue weights can be characterized. Having the
necessity of to handle more streams, the scheduler algorithm could be switched
from WFQ to WRR when the multimedia stream does not pose too strict delay
requirements. For example, unless the choice of the weight (for MPEG4) is within
the area [4 - 8], could be more suitable to utilize WRR than WRR because the gain
in terms of delay is not so high compared to the number of streams that would be
possible to handle adopting the other solution.

CHAPTER 5. SIMULATIONS 64

5.6.2 Jitter

For the jitter, the considerations are analogous, in the range [4 - 8], WFQ outper-
forms WRR and it should be also noted that assigning low weight to the MPEG4
stream, as it is possible to see from Figure 5.12 and 5.13, could result in an unstable
behavior of the arrive frequency on the destination.

Figure 5.12: MPEG4 jitter variation for different queue weight with CBR

Starting from a certain threshold (queue weight = 8) the jitter experimented
by the flow using WFQ or WRR tends to be the same, as shown in Figure 5.12.
The same trend is experimented by the multimedia traffic in case the competing
flows are poissonian as Figure 5.13 points out.

The surprising trend of the curve between [1 - 4] could be imputable to the
difference between the drop percentage experimented using one scheduler or the
other. With WFQ scheduler, in that range, the drop numbers are less than us-
ing WRR, this because WFQ share better the bandwidth, and consequently the
number of packets that can be sent is greater because the average packet size for
the multimedia traffic is less than that of CBR and Poisson (that are fixed and
greater). This factor may influence the average delay, resulting in an ambiguous
trend in that area. To address this problem a greater queue size (in terms of num-
ber of packets that can be enqueued in the buffer) could be used, depending on
the implementation; this solution can use area or memory in the device and this
has to be taken into account.

CHAPTER 5. SIMULATIONS 65

Figure 5.13: MPEG4 jitter variation for different queue weight with Poisson

5.7 Splitting Traffic

This investigation is finalized to understand and find a tradeoff between the use
of FPGA space and performance requirements to meet having the possibility of
change the scheduler. As we have shown in the previous sections, using a fair
queueing algorithm brings more benefits than a round robin in term of delay, jitter
and throughput. These benefits are paid from the fact that it is possible to handle
fewer number of streams compared with the use of a round robin scheduler, but
we also know that using such kind of scheduler we can dispose of more area in
FPGA. What we can do with this available area? As we said before, it is possible
to think to handle a number of streams greater without gain in performance, but
it is also possible to think to split the traffic present in a queue in more queues,
because a queue in a router has usually a limited buffer to store the packets. This
could bring a several effects like:

• reduction of packet drop;

• performance gain in term of delay.

The following table shows the results of a set of simulations made running
WRR as scheduler. There are 12 MPEG4 sources sending traffic to a destination,
there are also other three constant bit rate sources. These simulations have been
repeated splitting the multimedia traffic in two queues and not splitting it; also
the queue weight for this kind of traffic has been changed consistently: in case of
splitting, each queue has received the half value compared with the case of not
split. The queue weights for the CBR sources have been kept fixed and they are
set up to 4, 6 and 8.

CHAPTER 5. SIMULATIONS 66

Delay (sec)
Queue Weight Not Splitted Splitted

4 0.109042510 0.136568848
8 0.055353869 0.043299841
12 0.054353227 0.042517102

Table 5.11: Delay splitting the traffic or not

Also the packet drop is improved because when the queue weight for MPEG4
is set up to 4, the number of drop in the set of simulations without splitting are
more then the number of drop with split. This effect happens because having the
same size for the buffer in a queue, if we split the traffic in two queues is like if
we were using a queue with a double size in term of number of packet that can be
stored. These results lead to another challenge, is it possible to use more queues
to handle a particular stream when there is available space in the FPGA. This fact
should be investigated and the problem addressed on the hardware side.

5.8 Final Reflections

These simulations compared two possible scheduling algorithm to be used in a
router: Weighted Round Robin (WRR) and Weighted Fair Queuing (WFQ). The
first solution provides, having the same available area in FPGA, the possibility
to handle more streams than the second one or to save power switching off some
unutilized area. This approach lacks of support to QoS that can be obtained
changing it with WFQ. The second configuration (WFQ) permits a more accurate
provisioning of the required performance, paid with a bigger area utilization. WFQ
combined with a stream constrained by a leaky bucket can offer the possibility to
easily calculate a tight bound on the end-to-end delay.

Simulations results do not show unexpected behavior, nonetheless they permit
to draw attention to the different properties of the two solutions. These allow to
point out some guidelines which would give an help to a network administrator in
choosing the configuration which best fits to the requirements of his scenario.

end-to-end delay The two approaches fit differently the delay requirements. Us-
ing WFQ with a leaky bucket constrained stream, it is possible to calculate
a bound for this metric and provide it. WRR can serve a greater number of
streams despite of worse performance. In situation of reconfiguration, chang-
ing from WRR to WFQ can recover and improve the trend for the end-to-end
delay but attention should be posed on the problem of how to handle the
number of flows that the scheduler would leave out using WFQ after the
reconfiguration.

CHAPTER 5. SIMULATIONS 67

jitter If a multimedia traffic has to be served, the choice of WFQ is mandatory in
situation of high traffic load. Using the reconfiguration feature, the choice of
the disciplines has to be taken case by case because depending on the level
of privilege desired, also WRR could give good performance and permitting
to handle a greater number of streams.

throughput WRR suffers variable bit rate streams because it does not take into
account the packet size, if the average packet size is not known a priori, it
is very difficult to obtain an accurate share of the bandwidth. This prob-
lem can be solved using a fair queuing algorithm in which this problem is
automatically considered by the virtual finish function.

5.9 Summary

In this chapter the methodology utilized to evaluate the simulations and obtain
realistic results has been explained. A section has been dedicated to the fair-
ness evaluation illustrating the traffic source that has been developed to test the
scheduling algorithms. Furthermore, the simulation plans have been presented
describing the two approach utilized: traffic load variation and queue weight vari-
ation, in the former the load of the link between the core and the edge router
has been varied starting from a low level arriving to a fully utilization; in the
latter the queue weight for the multimedia stream has been modified simulation
by simulation keeping fixed the weights of the competing streams. For each set
of simulations, the end-to-end delay and the jitter has been evaluated and the
results discussed. The results confirm the hypothesis on the behavior of the two
investigated scheduling algorithm. The last section of the chapter has introduced
the idea of splitting traffic, some simulations have been carried out to understand
the response of the traffic to this idea and it should be investigated in the next
investigations.

Conclusions and Future

Research 6
This thesis aimed to study and compare different scheduling algorithms for the
choice of the best disciplines in a QoS aware network router using an FPGA.

6.1 Summary

In Chapter 2, the round-robin and the fair queuing families of algorithms were
presented. A classification of these scheduling disciplines has been provided and
each algorithm has been described. The FIFO and priority scheduler are unsuit-
able to provide fairness or QoS guarantees. The priority scheduler can also lead
to starvation if the high priority classes have a large amount of traffic to send.
RR, WRR, and DRR have been described as representative of the round-robin
families. These algorithms are simple to implement but they do not provide QoS
guarantees and in certain situations they cannot share correctly the bandwidth to
the competing streams. The fair queuing family was introduced by presenting the
theoretical model of General Processor Sharing (GPS) from which all the approxi-
mations are based on. The most well-known of this algorithm approximation have
been presented: weighted fair queueing (WFQ) and worst case weighted fair queu-
ing (WF2Q+). They are more complex to implement compared with the round
robin algorithms.

In Chapter 3, the network simulator and all the environment utilized in the
simulations has been introduced. It has been described how to create a simulation
scenario and how to get results in NS-2. A description of the differentiated services
architecture for IP QoS has been furnished together with the support offered by
the simulator through the Nortel Diffserv module. The MPEG4 model has been
described and some excerpts of code permitting to set up a multimedia traffic
source, in the simulator, was presented. A short description of the competing
streams utilized in the typical network scenario together with the MPEG4 stream
has been provided, and also for them some excerpts of code have been explained.
The last part of the chapter has illustrated the motivation bringing to the choice
of utilize reconfigurable hardware and a cost analysis of the chosen scheduling
algorithms in hardware has been presented.

In Chapter 4, the monitor agent implemented to trace the simulations results
has been presented. This approach permits to save a lot of disk writes without
incurring in a considerable slow down of the simulations. It also permits to avoid
the tedious parsing of the results data file generated by the simulator. The module

68

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 69

to support the reconfiguration in the simulator has been illustrated describing the
main reconfiguration idea and the approach utilized. Some excepts of code have
been commented and the results of the utilization of this modification has been
presented. The module developed to add the possibility to simulate the reconfig-
uration delay (typical of an hardware device during the change of the scheduling
algorithm) has been described. At the end of the chapter, the weighted fair queuing
implementation has been presented starting from a theoretical definition arriving
to the code realization.

In Chapter 5, the methodology utilized to evaluate the simulations and ob-
tain realistic results has been explained. A section has been dedicated to the
fairness evaluation illustrating the traffic source that has been developed to test
the scheduling algorithms. Furthermore, the simulation plans have been presented
describing the two approaches utilized: traffic load variation and queue weight
variation, in the former the load of the link between the core and the edge router
has been varied starting from a low level arriving to a fully utilization; in the
latter the queue weight for the multimedia stream has been modified simulation
by simulation keeping fixed the weights of the competing streams. For each set of
simulations, the end-to-end delay and the jitter has been evaluated and the results
discussed. The results confirm the hypothesis on the behavior of the two investi-
gated scheduling algorithm: WFQ outperforms WRR in terms of end to end delay,
jitter and throughput but it is more expensive than it at a computational level.
The last section of the chapter has introduced the idea of splitting traffic, some
simulations have been carried out to understand the response of the traffic to this
idea and it should be investigated in future investigations.

6.2 Main contributions

A theoretical analysis on several algorithms has been provided. This work would
provide a network operator with some guidelines helping him on the choice of the
scheduling discipline which best fit the needs of his environment. The support
for the scheduler reconfiguration has been added in the simulator as well as the
support for the reconfiguration delay of a real device. The splitting traffic idea has
been introduced and the first investigation has been carried on it. The tradeoff
in the choice of WFQ or WRR has been evaluated and a test suite to automatize
simulations and collect results has been created.

6.3 Future Research Directions

Some suggestions can be pointed out to inspire future investigations:

• the next research step should study the problem of reconfiguration in hard-
ware implementing this mechanism in a real device;

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 70

• a set of measures on the reconfiguration delay needs to be done;

• the possibility of a queue splitting is another important challenge to investi-
gate both software and hardware side.

Bibliography

[1] Chipalkatti, J. Kurose, and Townsley, “Scheduling policies for Real-Ttime
and non Real-Ttime Traffic in Statical Multiplexer”, Proceedings of IEEE
INFOCOM (1989), 774–783.

[2] R. Cruz, “A Calculus for Network Delay, part i:network elements in isola-
tion.”, IEEE Transaction on Information Theory 1 (1991), 114–131.

[3] Hamid Fadishei, Morteza Saheb Zamani, and Masoud Sabaei, “A Novel Re-
configurable Hardware Architecture for IP Address Lookup”, ANCS (Sympo-
sium on Architecture for Networking and Communications Systems) (2005),
81–90.

[4] Kevin Fall, “Scheduling Best-Effor and Guaranteed Connections”, 1999, URL
reference: http://www.cs.berkeley.edu/∼kfall/EE122/lec27/.

[5] R. Koenen, “MPEG-4 Overview”, IEEE SPECTRUM 36 (1999), no. 2.

[6] R. Krishnamurthy, S. Yalamanchili, K. Schwan, and R. West, “Share Streams:
a scalable architecture and hardware support for high-speed qos packet sched-
ulers”, Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium 20.

[7] A. Matrawy L., I. Lambadaris, and C. Huang, “MPEG-4 Traffic Modeling
Using the Transform Expand Sample Methodology”, Networked Appliances,
2002. Gaithersburg.Proceedings. IEEE 4th International Workshop on (2002),
249–256.

[8] Pierre L’Ecuyer, “Good parameters and implementations for combined multi-
ple recursive random number generators”, Operations Research (2001).

[9] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton, “An
object-oriented random number package with many long streams and sub-
streams”, Operations Research (2001).

[10] J. Lu and R. Robotham, “On the implementation of weighted fair queuing in
high speed networks”, Electrical and Computer Engineering, 2004. Canadian
Conference 2 (2004), 809–813.

[11] C. McKillen and S. Sezer, “A weighted fair queuing finishing tag computation
architecture and implementation”, SOC Conference, 2004. Proceedings. IEEE
International (2004), 270–273.

71

http://www.cs.berkeley.edu/~kfall/EE122/lec27/

BIBLIOGRAPHY 72

[12] J. Nagle, “On Packet Switches with Infinite Storage”, IEEE Transaction on
Communications 35 (1987), 435–438.

[13] Parekh and Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Singlenode Case”, ACM/IEEE
Transactions on Networking (1993), 344–357.

[14] Fulvio Risso, Quality of Service on Packet Switched Networks, Ph.D. thesis,
Politecnico di Torino, January 2000.

[15] L. Rohan and D. Taube, “Weighted Round
Robin Scheduling Module”, 2001, URL reference:
http://www.arl.wustl.edu/∼lockwood/class/cs535/project/fairqueue/index.html

[16] A. Sayenko, “Adaptive Scheduling for the QoS Supported Networks”, Master’s
thesis, University of Jyvaskyla, 2005.

[17] F. Shallwani, J. Ethridge, P. Pieda, and M. Baines, “A Network Simulator
Differentiated Services Implementation”, Open IP, Nortel Networks (2000).

[18] UCB/LBNL/VINT Network simulator NS-2 http://www.isi.edu/nsnam/ns/.

[19] Meina Song, Junde Song, and Hongwen Li, “Implementing a High Perfor-
mance Scheduling Discipline WF2Q+ in FPGA”, IEEE CCECE Canadian
Conference 1 (2003), 187–190.

[20] Wikipedia http://en.wikipedia.org/wiki/.

[21] Tom Murphy http://www.cs.cmu.edu/∼tom7/.

[22] P. Vellore and R. Venkatesan, “Scheduling Disciplines in Packet Switched
Networks”, IEEE Newfoundland Electrical and Computer Engineering Con-
ference.

[23] , “Performance Analysis of Scheduling Disciplines in Hardware”, Elec-
trical and Computer Engineering, 2004. Canadian Conference on 2 (2005),
715–718.

[24] R. West, K. Schwan, and C. Poellabauer, “Scalable scheduling support for
loss and delay constrained media streams”, IEEE Real Time Technology and
Application Symposium (1999).

[25] Ito Y., Tasaka S., and Ishibashi Y., “Variably Weighted Round Robin Rueue-
ing for Core IP Routers”, Performance, Computing, and Communications
Conference, 2002. 21st IEEE International (2002), 159–166.

http://www.arl.wustl.edu/~lockwood/class/cs535/project/fairqueue/index.html
http://en.wikipedia.org/wiki/
http://www.cs.cmu.edu/~tom7/

BIBLIOGRAPHY 73

[26] Sungwon Yi, Xidong Deng, G. Kesidis, and C. R. Das, “Providing Fair-
ness in Diffserv Architecture”, IEEE Global Telecommunications Conference
2 (2002), 1435–1439.

MPEG-4 Source Code A
MPEG-4 Source Code

/∗ −∗− Mode :C++; c−bas ic−o f f s e t : 8 ; tab−width : 8 ;
∗ indent−tabs−mode : t −∗− ∗ t
∗ Copyright (c) Xerox Corporation 1997. A l l r i g h t s r e s e rved .
∗
∗ License i s granted to copy , to use , and to make and to
∗ use d e r i v a t i v e works f o r research and e va l ua t i on purposes ,
∗ prov ided t ha t Xerox i s acknowledged in a l l documentation
∗ pe r t a i n i n g to any such copy or d e r i v a t i v e work . Xerox
∗ g ran t s no other l i c e n s e s expre s s ed or imp l i ed . The Xerox
∗ t rade name shou ld not be used in any a d v e r t i s i n g wi thout
∗ i t s w r i t t e n permiss ion .
∗
∗ XEROX CORPORATION MAKES NO REPRESENTATIONS CONCERNING
∗ EITHER THE MERCHANTABILITY OF THIS SOFTWARE OR THE
∗ SUITABILITY OF THIS SOFTWARE FOR ANY PARTICULAR PURPOSE.
∗ The so f tware i s prov ided ”as i s ” wi thout e xpre s s or
∗ imp l i ed warranty o f any kind .
∗
∗ These no t i c e s must be re ta ined in any cop i e s o f any par t
∗ o f t h i s so f tware .
∗/

/∗
∗ A source f o r MPEG4 t r a f f i c .
∗ Procduces t r a f f i c t h a t has the same marginal
∗ d i s t r i b u t i o n and au to co r r e l a t i on func t i on o f a s p e c i f i e d
∗ mpeg4 t race .
∗ A TES model i s deve loped f i r s t to ge t the s t a t i s t i c s and
∗ then the s t a t i s t i c s are used to genera te the t r a f f i c
∗/

#include <s t d l i b . h>
#include ”random . h”
#include ” t r a f g en . h”

74

APPENDIX A. MPEG-4 SOURCE CODE 75

#include ” ranvar . h”

class Frame {
public :

Frame(const char ∗ , const char ∗) ;
// ge t the next frame s i z e
void Get Frame (double &, int &);

protected :
RNG∗ rng ;
//number o f e n t r i e s in the innova t ion CDF t a b l e
int numEntry inv ;
//number o f e n t r i e s in the frame s i z e CDF t a b l e
int numEntry hist ;
// s i z e o f the CDF t a b l e (mem a l l o c a t i o n)
int maxEntry ;
//CDF t a b l e o f frame s i z e s (va l , c d f)
CDFentry∗ t a b l e h i s t ;
//CDF t a b l e o f innova t ion (va l , c d f)
CDFentry∗ t a b l e i n v ;
double value (double , CDFentry∗ , int) ;
double i n t e r p o l a t e (double x , double x1 , double y1 ,

double x2 , double y2) ;
int lookup (double u , CDFentry∗ , int) ;
void loadCDF(const char∗ f i l ename , CDFentry∗& ,

int &);
} ;

Frame : : Frame(const char∗ f i l e 1 , const char∗ f i l e 2) :
maxEntry (120) , t a b l e i n v (0) , t a b l e h i s t (0){
rng = RNG: : d e f au l t r ng () ;
loadCDF (f i l e 1 , t a b l e h i s t , numEntry hist) ;
loadCDF (f i l e 2 , t ab l e i nv , numEntry inv) ;

}

void Frame : : Get Frame (double &U, int &s i z e){
s i z e = int (va lue (U, t a b l e h i s t , numEntry hist)) ;
double rnd = rng −>uniform (0 , 1) ;
double w = value (rnd , t ab l e i nv , numEntry inv) ;
U = U + w;
U = U − f l o o r (U) ;
// smoothing us ing eata = 0.5
i f (U<0.5) U = U/0 . 5 ;

APPENDIX A. MPEG-4 SOURCE CODE 76

else U = (1−U) / 0 . 5 ;
}

double Frame : : va lue (double u , CDFentry ∗ t ab l e ,
int numEntry){

i f (numEntry <= 0) return 0 ;
int mid = lookup (u , t ab l e , numEntry) ;
return i n t e r p o l a t e (u , t a b l e [mid−1] . cd f ,

t a b l e [mid−1] . va l , t a b l e [mid] . cd f ,
t a b l e [mid] . va l) ;

}

double Frame : : i n t e r p o l a t e (double x , double x1 , double y1 ,
double x2 , double y2){

return (y1 + (x − x1) ∗ (y2 − y1) / (x2 − x1)) ;
}

int Frame : : lookup (double u , CDFentry∗ t ab l e ,
int numEntry){

// always re turn an index whose va lue i s >= u
int lo , hi , mid ;
i f (u <= tab l e [0] . cd f)

return 0 ;
for (l o =1, h i=numEntry −1; l o < hi ;) {

mid = (l o + hi) / 2 ;
i f (u > t a b l e [mid] . cd f)

l o = mid + 1 ;
else hi = mid ;

}
return l o ;

}

void Frame : : loadCDF(const char∗ f i l ename , CDFentry∗& tab l e ,
int & numEntry){

FILE∗ fp ;
char l i n e [2 5 6] ;
CDFentry∗ e ;
fp = fopen (f i lename , ” r ”) ;
i f (fp == 0)

return ;
i f (t a b l e == 0)

t a b l e = new CDFentry [maxEntry] ;

APPENDIX A. MPEG-4 SOURCE CODE 77

for (numEntry =0; f g e t s (l i n e , 256 , fp) ; numEntry ++) {
e = &tab l e [numEntry] ;
s s c an f (l i n e , ”%l f %l f ” , &e−>va l , &e−>cd f) ;

}
return ;

}
//
class VIDEO Traffic : public Tra f f i cGenera to r {

public :
VIDEO Traffic () ;
virtual double n ex t i n t e r v a l (int &);
double u0 ;
double r a t eFacto r ;

protected :
RNG∗ rng ;
const char∗ I F i l e 1 ;
const char∗ I F i l e 2 ;
const char∗ P F i l e 1 ;
const char∗ P F i l e 2 ;
const char∗ B Fi l e 1 ;
const char∗ B Fi l e 2 ;
char prev frame type , next f rame type ;
double i n t e r f r ame i n t e r v a l ;
int GOP count ;
virtual void s t a r t () ;
virtual void t imeout () ;
//random seeds f o r the th ree frame type s
double Ui , Up, Ub;
Frame ∗ i ;
Frame ∗p ;
Frame ∗b ;

} ;

stat ic class VIDEOTrafficClass : public TclClass {
public :

VIDEOTrafficClass () :
Tc lClass (” Appl i cat ion / Tr a f f i c /MPEG4”) {}

TclObject ∗ c r e a t e (int , const char∗const ∗) {
return (new VIDEO Traffic ()) ;

}
} c l a s s v i d e o t r a f f i c ;

APPENDIX A. MPEG-4 SOURCE CODE 78

VIDEO Traffic : : VIDEO Traffic (){
bind (” i n i t i a l S e e d ”,&u0) ;
bind (” ra t eFacto r ” ,& ra t eFacto r) ;
I F i l e 1 = ” . / video model / Imode l h i s t 1 ” ;
I F i l e 2 = ” . / video model / Imode l inv 1 ” ;
P F i l e 1 = ” . / video model / Pmode l h i s t 1 ” ;
P F i l e 2 = ” . / video model /Pmodel inv 1” ;
B F i l e 1 = ” . / video model /Bmodel hist 1 ” ;
B F i l e 2 = ” . / video model /Bmodel inv 1” ;
rng = RNG: : d e f au l t r ng () ;

}

void VIDEO Traffic : : s t a r t (){
Ui = u0 ;
s i z e = 0 ;
next f rame type = ’ I ’ ;
prev f rame type = ’ ’ ;
// f i r s t GOP i s 10 frames only
GOP count = 3 ;
//30 frame/ sec
i n t e r f r ame i n t e r v a l = 1 . 0 / 3 0 . 0 ;
i = new Frame (I F i l e 1 , I F i l e 2) ;
p = new Frame (P Fi l e 1 , P F i l e 2) ;
b = new Frame (B Fi l e 1 , B F i l e 2) ;
i f (agent) agent −>s e t pkt type (PT VIDEO) ;
running = 1 ;
t imeout () ;

}

void VIDEO Traffic : : t imeout (){
double f r ame in byte s ;
i f (! running)

return ;
/∗ f i g u r e out when to send the next one ∗/
nextPkttime = nex t i n t e r v a l (s i z e) ;
/∗ send a packe t ∗/
f r ame in byte s = ra t eFacto r ∗ s i z e /8 ;
agent −>sendmsg (f r ame in byte s) ;
/∗ s chedu l e i t ∗/
i f (nextPkttime > 0)

t imer . r esched (nextPkttime) ;
else

APPENDIX A. MPEG-4 SOURCE CODE 79

running = 0 ;
}

double VIDEO Traffic : : n e x t i n t e r v a l (int& s i z e){
i f (next f rame type == ’ I ’){

i−>Get Frame (Ui , s i z e) ;
Up = Ui ;
Ub = Ui ;
i f (prev f rame type == ’B ’)

next f rame type = ’B ’ ;
else next f rame type = ’P ’ ;
prev f rame type = ’ I ’ ;

} // end i f == I
else i f (next f rame type == ’P ’){

p−>Get Frame (Up, s i z e) ;
next f rame type = ’B ’ ;
prev f rame type = ’P ’ ;

} // end i f == P
else i f (next f rame type == ’B ’){

b−>Get Frame (Ub, s i z e) ;
i f (prev f rame type != ’B ’) next f rame type = ’B ’ ;
else i f (GOP count == 12){

next f rame type = ’ I ’ ; GOP count = 0;}
else next f rame type = ’P ’ ;

prev f rame type = ’B ’ ;
} // end i f == B
GOP count++ ;
return (i n t e r f r ame i n t e r v a l) ;

}

Diffserv Module B
Diffserv Module

/∗
∗ Copyright (c) 2000 Norte l Networks
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i b u t i on and use in source and b inary forms , wi th
∗ or wi thout modi f i ca t ion , are permi t ted prov ided t ha t the
∗ f o l l ow i n g cond i t i on s are met :
∗ 1 . Re d i s t r i b u t i o n s o f source code must r e t a i n the above
∗ copy r i g h t no t i ce , t h i s l i s t o f c ond i t i on s and the
∗ f o l l ow i n g d i s c l a ime r .
∗ 2 . Re d i s t r i b u t i o n s in b inary form must reproduce the
∗ above copy r i g h t no t i ce , t h i s l i s t o f c ond i t i on s and
∗ the f o l l ow i n g d i s c l a ime r in the documentation and/or
∗ other mate r i a l s prov ided with the d i s t r i b u t i o n .
∗ 3 . A l l a d v e r t i s i n g mate r i a l s mentioning f e a t u r e s or use
∗ o f t h i s so f tware must d i s p l a y the f o l l ow i n g
∗ acknowledgement :
∗ This product i n c l ud e s so f tware deve loped by Norte l
∗ Networks .
∗ 4 . The name of the Norte l Networks may not be used
∗ to endorse or promote produc ts de r i v ed from t h i s
∗ so f tware wi thout s p e c i f i c p r i o r w r i t t e n permiss ion .
∗
∗ THIS SOFTWARE IS PROVIDED BY NORTEL AND CONTRIBUTORS
∗ ‘ ‘AS IS ’ ’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
∗ INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
∗ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
∗ ARE DISCLAIMED. IN NO EVENT SHALL NORTEL OR
∗ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
∗ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
∗ SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE, DATA, OR
∗ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
∗ ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

80

APPENDIX B. DIFFSERV MODULE 81

∗ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
∗ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
∗ IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗
∗ Developed by : Farhan Shal lwani , Jeremy Ethr idge
∗ Peter Pieda , and Mandeep Baines
∗ Maintainer : Peter Pieda <pp ieda@norte lne tworks . com>
∗/

/∗
∗ dsred . h
∗
∗ The Pos i t i on s o f dsREDQueue , edgeQueue , and coreQueue in
∗ the Object Hierarchy .
∗
∗ This c l a s s , i . e . ”dsREDQueue” , i s p o s i t i on ed in the c l a s s
∗ h i e ra rchy as f o l l o w s :
∗
∗ Queue
∗ |
∗ dsREDQueue
∗
∗
∗ This c l a s s s tands f o r ” D i f f e r e n t i a t e d Se r v i c e s RED
∗ Queue ” . Since the o r i g i n a l RED does not suppor t
∗ mu l t i p l e parameters , and other f u n c t i o n a l i t y
∗ needed by a RED gateway in a D i f f s e r v a r c h i t e c t u r e ,
∗ t h i s c l a s s was c rea ted to suppor t the d e s i r e d
∗ f u n c t i o n a l i t y . This c l a s s i s then i n h e r i t e d by two
∗ more c l a s s e s , moulding the o l d h i e ra rchy as f o l l o w s :
∗
∗
∗ Queue
∗ |
∗ dsREDQueue
∗ | |
∗ edgeQueue coreQueue
∗
∗
∗ These c h i l d c l a s s e s correspond to the ” edge” and ” core”
∗ r ou t e r s in a D i f f s e r v a r c h i t e c t u r e .
∗

APPENDIX B. DIFFSERV MODULE 82

∗/
// Mod i f i ca t i on f o r the suppor t to Weighted Fair Queueing i s
// taken from the work o f Alexander Sayenko , see the
// B i b l i o g r a f y f o r more in format ion

#ifndef dsred h
#define dsred h
// need RED c l a s s specs (edp d e f i n i t i o n , f o r example)
#include ” red . h”
// need Queue c l a s s specs
#include ”queue . h”
#include ”dsredq . h”

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#include ”wfq− l i s t . h”
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ The dsRED c l a s s suppor t s the c rea t i on o f up to MAX QUEUES
∗ p h y s i c a l queues a t each network dev ice , wi th up to
∗ MAX PREC v i r t u a l queues in each queue . ∗/

// maximum number o f p h y s i c a l RED queues
#define MAX QUEUES 8
// maximum number o f v i r t u a l RED queues in one p h y s i c a l
// queue
#define MAX PREC 3
// maximum number o f code po in t s in a s imu la t i on
#define MAX CP 40
// d e f a u l t mean packe t s i z e , in bytes , needed f o r RED
// c a l c u l a t i o n s
#define MEAN PKT SIZE 1000

//enum schedModeType {schedModeRR , schedModeWRR,
// schedModeWIRR, schedModePRI } ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
enum schedModeType {schedModeRR , schedModeWRR ,

schedModeWIRR , schedModePRI , schedModeWFQ } ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#define PKTMARKED 3

APPENDIX B. DIFFSERV MODULE 83

#define PKT EDROPPED 2
#define PKT ENQUEUED 1
#define PKT DROPPED 0

/∗−−
s t r u c t phbParam

This s t r u c t i s used to maintain e n t r i e s f o r the PHB
parameter t a b l e , used to map a code po in t to a p h y s i c a l
queue−v i r t u a l queue pa i r .

−−∗/
struct phbParam {

int codePt ;
int queue ; // p h y s i c a l queue
int prec ; // v i r t u a l queue (drop precedence)

} ;

struct statType {
long drops ; // per queue s t a t s
long edrops ;
long pkts ;
long val id CP [MAX CP] ; // per CP s t a t s
long drops CP [MAX CP] ;
long edrops CP [MAX CP] ;
long pkts CP [MAX CP] ;

} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
class dsREDQueue ;

class WFQdsHandler : public Handler
{
public :

WFQdsHandler (dsREDQueue∗ queue) : q (queue) {} ;
void handle (Event∗ e) ;

protected :
dsREDQueue∗ q ;

} ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

APPENDIX B. DIFFSERV MODULE 84

/∗−−
c l a s s dsREDQueue

This c l a s s s p e c i f i e s the c h a r a c t e r i s t i c s f o r a D i f f s e r v
RED rou te r .

−−∗/
class dsREDQueue : public Queue {
public :

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
void WFQdequeueGPS (Event ∗) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

dsREDQueue () ;
// i n t e r f a c e to ns s c r i p t s
int command(int argc , const char∗const∗ argv) ;

protected :

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
void WFQenqueue (Packet ∗ , int) ;
void WFQscheduleGPS () ;
void WFQdequeuePGPS () ;
void WFQupdateSum () ;

Event∗ wfq event ;
WFQdsHandler wfq hand ;

int GPS idle ;
double v i r t t ime ;
double l a s t v t upda t e ;
double sum ;
double s a f e l i m i t ;

double f i n i s h t [MAX QUEUES] ;
unsigned int B [MAX QUEUES] ;

L i s t<int> GPS l i s t ;
L i s t<int> PGPS list ;

double bandwidth ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// the p h y s i c a l queues a t the rou te r

APPENDIX B. DIFFSERV MODULE 85

redQueue redq [MAX QUEUES] ;
// d rop ea r l y t a r g e t
NsObject∗ de drop ;
// used f o r s t a t i s t i c s g a t h e r i n g s
statType s t a t s ;
// current queue to be dequeued in a round rob in manner
int qToDq ;
// the number o f p h y s i c a l queues a t the rou te r
int numQueues ;
// the number o f v i r t u a l queues in each p h y s i c a l queue
int numPrec ;
// PHB t a b l e
phbParam phb [MAX CP] ;
// the current number o f e n t r i e s in the PHB t a b l e
int phbEntr ies ;
// used f o r ECN (E x p l i c i t Congestion No t i f i c a t i o n)
int ecn ;
// outgo ing l i n k
LinkDelay∗ l i n k ;
// the Queue Schedu l ing mode
int schedMode ;
// A queue we igh t per queue
int queueWeight [MAX QUEUES] ;
// Maximum Rate f o r P r i o r i t y Queueing
double queueMaxRate [MAX QUEUES] ;
// Average Rate f o r P r i o r i t y Queueing
double queueAvgRate [MAX QUEUES] ;
// Arr i va l Time f o r P r i o r i t y Queueing
double queueArrTime [MAX QUEUES] ;
int s l i c e c o un t [MAX QUEUES] ;
int pktcount [MAX QUEUES] ;
int wirrTemp [MAX QUEUES] ;
unsigned char wirrqDone [MAX QUEUES] ;
int queuesDone ;

//DAN−s
// count the number o f v ideo packe t (id=4)
// in the core rou te r
int num video packet ; //number o f v ideo packe t in the net
int num other packet ; //number o f o ther packe t in the net
// l a s t time tha t we have see ing a v ideo packe t
double l a s t s e e n vp ;

APPENDIX B. DIFFSERV MODULE 86

double i n i t i a l ;
//DAN−e

void r e s e t () ;
// used so f lowmonitor can monitor e a r l y drops
void edrop (Packet∗ p) ;
// enques a packe t
void enque (Packet ∗pkt) ;
// deques a packe t
Packet ∗deque (void) ;
// g iven a packet , e x t r a c t the code po in t marking from
// i t s header f i e l d
int getCodePt (Packet ∗p) ;
// round rob in s c h edu l i n g dequing a lgor i thm
int selectQueueToDeque () ;
// l o o k s up queue and prec numbers correspond ing
// to a code po in t
void lookupPHBTable (int codePt , int∗ queue , int∗ prec) ;
// e d i t s phb entry in the t a b l e
void addPHBEntry(int codePt , int queue , int prec) ;
void setNumPrec (int curPrec) ;
void setMREDMode(const char∗ mode , const char∗ queue) ;
void pr i n tS t a t s () ; // p r i n t va r i ous s t a t s
double ge tSta t (int argc , const char∗const∗ argv) ;
void printPHBTable () ; // p r i n t the PHB t a b l e
// Se ts the s chedu l a r mode
void setSchedularMode (const char∗ schedtype) ;

// Add a weig th to a WRR or WIRR queue
void addQueueWeights (int queueNum , int weight) ;
// Add a maxRate to a PRI queue
void addQueueRate(int queueNum , int r a t e) ;

void printWRRcount () ; // p r i n t va r i ous s t a t s

// app ly meter to c a l c u l a t e average ra te o f a PRI queue
// Modi f ied by xuanc (xuanc@is i . edu) Oct 18 , 2001 ,
// r e f e r r i n g to the patch con t r i b u t e d by
// Serg io Andreozzi <s e r g i o . andreo z z i@ lu t . f i >
void applyTSWMeter (int q id , int pk t s i z e) ;

} ;

APPENDIX B. DIFFSERV MODULE 87

#endif

Diffserv Module

/∗
∗ Copyright (c) 2000 Norte l Networks
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i b u t i on and use in source and b inary forms , wi th
∗ or wi thout modi f i ca t ion , are permi t ted prov ided t ha t the
∗ f o l l ow i n g cond i t i on s are met :
∗ 1 . Re d i s t r i b u t i o n s o f source code must r e t a i n the above
∗ copy r i g h t no t i ce , t h i s l i s t o f c ond i t i on s and the
∗ f o l l ow i n g d i s c l a ime r .
∗ 2 . Re d i s t r i b u t i o n s in b inary form must reproduce the
∗ above copy r i g h t no t i ce , t h i s l i s t o f c ond i t i on s and
∗ the f o l l ow i n g d i s c l a ime r in the documentation and/or
∗ other mate r i a l s prov ided with the d i s t r i b u t i o n .
∗ 3 . A l l a d v e r t i s i n g mate r i a l s mentioning f e a t u r e s or use
∗ o f t h i s so f tware must d i s p l a y the f o l l ow i n g
∗ acknowledgement :
∗ This product i n c l ud e s so f tware deve loped by Norte l
∗ Networks .
∗ 4 . The name of the Norte l Networks may not be used
∗ to endorse or promote produc ts de r i v ed from t h i s
∗ so f tware wi thout s p e c i f i c p r i o r w r i t t e n permiss ion .
∗
∗ THIS SOFTWARE IS PROVIDED BY NORTEL AND CONTRIBUTORS
∗ ‘ ‘AS IS ’ ’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
∗ INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
∗ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
∗ ARE DISCLAIMED. IN NO EVENT SHALL NORTEL OR
∗ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
∗ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
∗ SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE, DATA, OR
∗ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
∗ ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
∗ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
∗ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
∗ IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗
∗ Developed by : Farhan Shal lwani , Jeremy Ethr idge

APPENDIX B. DIFFSERV MODULE 88

∗ Peter Pieda , and Mandeep Baines
∗ Maintainer : Peter Pieda <pp ieda@norte lne tworks . com>
∗/

// Mod i f i ca t i on f o r the suppor t to Weighted Fair Queueing
// i s taken from the work o f Alexander Sayenko , see the
// B i b l i o g r a f y f o r more in format ion

#include <s t d i o . h>
#include ” ip . h”
#include ”dsred . h”
#include ” delay . h”
#include ”random . h”
#include ” f l a g s . h”
#include ” tcp . h”
#include ”dsredq . h”

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#include <math . h>
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗−−
dsREDClass d e c l a r a t i on .

Links the new c l a s s in the TCL he i ra rchy . See ”Notes
And Documentation f o r NS−2.”

−−−∗/
stat ic class dsREDClass : public TclClass {
public :

dsREDClass () : Tc lClass (”Queue/dsRED”) {}
TclObject ∗ c r e a t e (int , const char∗const ∗) {

return (new dsREDQueue) ;
}

} c l a s s d s r e d ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
in l ine void WFQdsHandler : : handle (Event∗ e) {

q−>WFQdequeueGPS(e) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗−−
dsREDQueue () Constructor .

APPENDIX B. DIFFSERV MODULE 89

I n i t i a l i z e s the queue . Note t h a t the d e f a u l t va l ue
a s s i gned to numQueues in t c l / l i b /ns−d e f a u l t . t c l must
be no g r e a t e r than MAX QUEUES (the p h y s i c a l queue
array s i z e) .

−−−∗/
//dsREDQueue : : dsREDQueue () : de drop (NULL) , l i n k (NULL){

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
dsREDQueue : : dsREDQueue () : de drop (NULL) , l i n k (NULL) ,

wfq hand (this) {

wfq event = 0 ;

v i r t t ime = la s t v t upda t e = sum = 0 ;
GPS idle = 1 ;
s a f e l i m i t = 0 .000001 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

bind (”numQueues ” , &numQueues) ;
b ind boo l (” ecn ” , &ecn) ;
int i ;

//DAN−s
// i n i t the c on t r o l paramters
num video packet = 0 ;
num other packet = 0 ;
l a s t s e e n vp = 0 ;
i n i t i a l = 0 ;
//DAN−e

numPrec = MAX PREC;
schedMode = schedModeRR ;

for (i =0; i<MAX QUEUES; i++){
queueMaxRate [i] = 0 ;
queueWeight [i]=1;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
f i n i s h t [i] = 0 ;
B[i] = 0 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

APPENDIX B. DIFFSERV MODULE 90

}

queuesDone = MAX QUEUES;
// Number o f e n t r i e s in PHB t a b l e
phbEntr ies = 0 ;

r e s e t () ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

void dsREDQueue : : WFQupdateSum ()
{
sum = 0 ;

for (int i =0; i < numQueues ; i++)
i f (B[i])

sum += queueWeight [i] ;
}

/∗−−
| Function : WFQenqueue()
| Descr i p t i on : updates v i r t u a l time va r i a b l e s , i n s e r t s
| con t r o l data in
| GPS and PGPS Li s t s , i nvoke s the
| s c h edu l i n g o f next depar ture
| Changes :
| Input : Packet ∗p , i n t queueid
| Output :
−−∗/

void dsREDQueue : : WFQenqueue(Packet ∗p , int queueid) {

hdr cmn ∗hdr = hdr cmn : : a c c e s s (p) ;
int s i z e = hdr−>s i z e () ;

double now = Scheduler : : i n s tance () . c l o ck () ;

// v i r t u a l time update
// formula 10 in ” v i r t u a l time implementat ion”

APPENDIX B. DIFFSERV MODULE 91

// paragraph
i f (GPS idle) {

l a s t v t upda t e=now ;
v i r t t ime =0;
GPS idle =0;

} else {
v i r t t ime=v i r t t ime+(now−l a s t v t upda t e)/sum ;
l a s t v t upda t e=now ;

}

// l e t ’ s compute f i n i s h time
// implements formula 11
f i n i s h t [queueid] = (f i n i s h t [queueid] > v i r t t ime ?

f i n i s h t [queueid] : v i r t t ime)
+s i z e /(double) queueWeight [queueid] / (bandwidth /8) ;

// update sum and B
B[queueid]++;
WFQupdateSum () ;
i f (f abs (sum) < s a f e l i m i t) sum=0;

// i n s e r t i o n in both l i s t s
PGPS list . i n s e r t o r d e r (queueid , f i n i s h t [queueid]) ;
GPS l i s t . i n s e r t o r d e r (queueid , f i n i s h t [queueid]) ;

// schedu l e next depar ture in the GPS
// r e f e r en c e system

i f (wfq event !=0) {
Scheduler : : i n s tance () . cance l (wfq event) ;
delete wfq event ;

}
WFQscheduleGPS () ;

}

/∗−−
| Function : WFQscheduleGPS ()
| Descr i p t i on : s c h edu l e s the next event in the GPS

APPENDIX B. DIFFSERV MODULE 92

| Changes :
| Input :
| Output :
−−∗/

void dsREDQueue : : WFQscheduleGPS() {

wfq event=new Event () ;

// implements l a s t unnumbered formula in
// ” Vi r tua l Time Implemetat ion” paragraph
// ”GPS Approach to f l ow . . . : s i n g l e node case ”

// Parekh e Ga l l a ge r
double tmp=(GPS l i s t . get key min ()− v i r t t ime)∗sum ;

// f o l l ow i n g l i n e i s th e re to recover e r ro r s due to
// f i n i t e p r e c i s i on

i f (tmp<0) tmp=0;
Scheduler : : i n s tance () . schedule ((Handler ∗)&wfq hand ,

wfq event , tmp) ;
}

/∗−−
| Function : WFQdequeueGPS()
| Descr i p t i on : i s invoked by schedu ler , dequeues GPS
| (but doesn ’ t
| dequeue PGPS) , updates v i r t u a l time
| v a r i a b l e s and s ch edu l e s the next GPS
| dequeuing event
| Changes :
| Input : Event ∗e
| Output :
−−∗/

void dsREDQueue : : WFQdequeueGPS(Event ∗e) {

double now = Scheduler : : i n s tance () . c l o ck () ;

// update v i r t u a l time
v i r t t ime=v i r t t ime+(now−l a s t v t upda t e)/sum ;
l a s t v t upda t e=now ;

APPENDIX B. DIFFSERV MODULE 93

// e x t r a c t packe t in GPS system
int queueid=GPS l i s t . get data min () ;
GPS l i s t . e x t r a c t () ;

// update B and sum
B[queueid]−−;
WFQupdateSum () ;
i f (f abs (sum) < s a f e l i m i t) sum=0;

i f (sum==0) {
GPS idle =1;
for (int i =0; i < MAX QUEUES; i++)

f i n i s h t [i]=0;
}

// i f GPS i s not i d l e , s chedu l e next GPS depar ture
delete e ;
i f (! GPS idle)

WFQscheduleGPS () ;
else

wfq event =0;
}

/∗−−
| Function : WFQdequeuePGPS()
| Descr i p t i on : i s invoked by selectQueueToDequeue and
| t h i s by dequeue which i s invoked by
| s imu la t i on . Determines from wich p h y s i c a l
| queue a packe t shou ld be dequeued and
| e x t r a c t s the c on t r o l data f o r t h a t packe t
| in the PGPS L i s t .
|
| Changes :
| Input :
| Output :
−−∗/

void dsREDQueue : : WFQdequeuePGPS () {

qToDq = PGPS list . get data min () ;

PGPS list . e x t r a c t () ;

APPENDIX B. DIFFSERV MODULE 94

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// RED queues i n i t i l i z a t i o n
void dsREDQueue : : r e s e t () {

int i ;

qToDq = 0 ; // q to be dequed , i n i t i a l i z e d to 0

for (i =0; i<MAX QUEUES; i++){
queueAvgRate [i] = 0 . 0 ;
queueArrTime [i] = 0 . 0 ;
s l i c e c o un t [i]=0;
pktcount [i]=0;
wirrTemp [i]=0;
wirrqDone [i]=0;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
f i n i s h t [i] = 0 ;
B[i] = 0 ;

}

GPS idle = 1 ;
v i r t t ime = la s t v t upda t e = sum = 0 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

s t a t s . drops = 0 ;
s t a t s . edrops = 0 ;
s t a t s . pkts = 0 ;

for (i =0; i<MAX CP; i++){
s t a t s . drops CP [i]=0;
s t a t s . edrops CP [i]=0;
s t a t s . pkts CP [i]=0;

}

for (i = 0 ; i < MAX QUEUES; i++)
redq [i] . qlim = l im i t () ;

APPENDIX B. DIFFSERV MODULE 95

// Compute the ” packe t time cons tant ” i f we know the
// l i n k bandwidth . The ptc i s the max number o f
// (avg s i z e d)
// pk t s per second which can be p laced on the l i n k .

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (l i n k)

{
for (int i = 0 ; i < MAX QUEUES; i++)

redq [i] . setPTC (l i nk −>bandwidth ()) ;

bandwidth = l i nk −>bandwidth () ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

Queue : : r e s e t () ;

}

/∗−−
vo id edrop (Packet∗ pk t)

This method i s used so t h a t f lowmonitor can monitor
e a r l y drops .

−−∗/
void dsREDQueue : : edrop (Packet∗ p)
{

i f (de drop != 0){
de drop −>recv (p) ;

}
else {

drop (p) ;
}

}

/∗−−
vo id applyTSWMeter(i n t q id , i n t p k t s i z e)
Update the average ra te f o r a p h y s i c a l Q (i nd i c a t e d by q i d) .
Pre : p o l i c y ’ s v a r i a b l e s avgRate , arr iva lTime , and winLen
ho ld v a l i d v a l u e s ;

p k t s i z e s p e c i f i e s the b y t e s j u s t dequeued (0 means no
packe t dequeued) .

APPENDIX B. DIFFSERV MODULE 96

Post : Adjus ts p o l i c y ’ s TSW s t a t e v a r i a b l e s avgRate and
arr iva lTime

(a l s o c a l l e d tFront) accord ing to the b y t e s sen t .
Note : See the paper ” E x p l i c i t A l l o c a t i on o f Best e f f o r
De l i v e ry Serv i c e ” (David

Clark and Wenjia Fang) , Sec t ion 3 .3 , f o r a d e s c r i p t i o n
o f the TSW Tagger .

−−∗/
void dsREDQueue : : applyTSWMeter (int q id , int pk t s i z e) {

double now , bytesInTSW , newBytes ;
double winLen = 1 . 0 ;

bytesInTSW = queueAvgRate [q id] ∗ winLen ;

// Modi f ied by xuanc (xuanc@is i . edu) Oct 18 , 2001 ,
// r e f e r r i n g to the patch con t r i b u t e d by
// Serg io Andreozzi <s e r g i o . andreo z z i@ lu t . f i >
newBytes = bytesInTSW + pk t s i z e ;

// Ca l cu l a t e the average ra te (SW)
now = Scheduler : : i n s tance () . c l o ck () ;
queueAvgRate [q id] = newBytes / (now −

queueArrTime [q id] + winLen) ;
queueArrTime [q id] = now ;

}

/∗−−
vo id enque (Packet∗ pk t)

The f o l l ow i n g method ou t l i n e s the enquing mechanism
fo r a D i f f s e r v rou te r .

This method i s not used by the i n h e r i t i n g c l a s s e s ; i t on ly
s e r v e s as an ou t l i n e .
−−∗/
void dsREDQueue : : enque (Packet∗ pkt) {

int codePt , eq id , prec ;
hdr ip ∗ iph = hdr ip : : a c c e s s (pkt) ;

//DAN−s
// doub le now ;
// adap t i v e change o f s c h edu l i n g a lgor i thm

APPENDIX B. DIFFSERV MODULE 97

// access to packe t ’ s common header and check which
// kind o f packe t i s i t
// see p a c k e t t f o r k ind o f packe t
//UDP = 2 , VIDEO = 4 , FTP = 28 , PARETO = 29 , POISSON = 29

/∗ hdr cmn∗ acce s spacke t = hdr cmn : : access (pk t) ;
p a c k e t t mypacket = accesspacke t−>ptype () ;

i f (mypacket == 2) {
i n t dim = accesspacke t−>s i z e () ;
p r i n t f (” s i z e o f udp packe t %d\n” , dim) ;

}
e l s e i f (mypacket == 4) {

i n t dim = accesspacke t−>s i z e () ;
p r i n t f (” s i z e o f v ideo packe t %d\n” , dim) ;

}
e l s e i f (mypacket == 29) {

i n t dim = accesspacke t−>s i z e () ;
p r i n t f (” packe t type : %d\n” , mypacket) ;
p r i n t f (” s i z e o f pare to packe t : %d\n” , dim) ;

}
∗/

//update the number o f packe t s
// (mypacket == 4)? num video packet++:num other packet++;
// p r i n t f (” v ideo=%d other=%d schedMode=%d\n” ,
// num video packet , num other packet , schedMode) ;
// ge t the current time

//now = Schedu ler : : i n s tance () . c l o c k () ;
// i f (now > 50){
// schedMode = schedModeWRR ;
// }

// p r i n t f (”now = %f , i n i t i a l = %f \n” , now , i n i t i a l) ;

// check every time window 1
/∗ i f (now − i n i t i a l > 0 .5){

// i f the number o f v ideo packe t i s about 5% of t o t
// in t h a t window , we change
i f (num video packet >=

APPENDIX B. DIFFSERV MODULE 98

(((num video packet+num other packet)/100)∗5)){
schedMode = schedModeWRR ;

}
e l s e {

schedMode = schedModeRR ;
}
// put a t 0 the counter and update the i n i t i a l counter
// f o r the window
num video packet = 0;
num other packet = 0;
i n i t i a l = now ;

// p r i n t f (” s imu la t i on time = %f \n” , now) ;
}
∗/

/∗
i f (now − l a s t s e e n v p >= 5){

p r i n t f (” sono 5 second i che non vedo un pacche t to v ideo :
%f \n” ,now − l a s t s e e n v p) ;

schedMode = schedModeRR ;
}

∗/

// p r i n t f (” t i p opa c ch e t t o : %d\n” , mypacket) ;

//when we have v ideopacke t in the net , we change
// the s c h edu l i n g a lgor i thm in WRR

/∗
i f (mypacket == 4){

i f (num video packet >= 1000){
// p r i n t f (” o l t r e 1000 pk t s \n” , num video packet) ;
schedMode= schedModeWRR ;

// p r i n t f (”num video packe t=%d\n” , num video packet) ;
}

l a s t s e e n v p = now ;
}

∗/

// p r i n t f (” schedMode = %d\n” , schedMode) ;

APPENDIX B. DIFFSERV MODULE 99

//DAN−e

//DAN−s
// p r i n t f (” p r i o = %d\n” , codePt) ;

//DAN−e

// e x t r a c t i n g the marking done by the edge rou te r
codePt = iph−>pr i o () ;
int ecn = 0 ;

// l o o k i n g up queue and prec numbers f o r t h a t codept
lookupPHBTable (codePt , &eq id , &prec) ;

// code added f o r ECN suppor t
// h d r f l a g s ∗ h f = (h d r f l a g s ∗) (pkt−>access (o f f f l a g s)) ;
// Changed f o r the l a t e s t v e r s i on in s t e ad o f 2 .1 b6
hd r f l a g s ∗ hf = hd r f l a g s : : a c c e s s (pkt) ;

i f (ecn && hf−>ec t ()) ecn = 1 ;

s t a t s . pkts CP [codePt]++;
s t a t s . pkts++;

switch (redq [eq i d] . enque (pkt , prec , ecn)) {
case PKT ENQUEUED:

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (schedMode == schedModeWFQ)

WFQenqueue (pkt , e q i d) ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

break ;
case PKT DROPPED:

s t a t s . drops CP [codePt]++;
s t a t s . drops++;
drop (pkt) ;

break ;
case PKT EDROPPED:

s t a t s . edrops CP [codePt]++;
s t a t s . edrops++;
edrop (pkt) ;
break ;

case PKTMARKED:
hf−>ce () = 1 ; // mark Congestion Experienced b i t

APPENDIX B. DIFFSERV MODULE 100

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (schedMode == schedModeWFQ)

WFQenqueue (pkt , e q i d) ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

break ;
default :

break ;
}

}

// Dequing mechanism fo r both edge and core rou te r .
Packet∗ dsREDQueue : : deque () {

Packet ∗p = NULL;
int queue , prec ;
hdr ip ∗ iph ;
int f i d ;
int dq id ;

// S e l e c t queue to deque under the s c h edu l i n g scheme
// s p e c i f i e d .
dq id = selectQueueToDeque () ;

// Dequeue a packe t from the under l y ing queue :
i f (dq id < numQueues)

p = redq [dq id] . deque () ;

i f (p) {
iph= hdr ip : : a c c e s s (p) ;
f i d = iph−>f l ow id () / 3 2 ;
pktcount [dq id]+=1;

// update the average ra te f o r pri−queue
// Modi f ied by xuanc (xuanc@is i . edu) Oct 18 , 2001 ,
// r e f e r r i n g to the patch con t r i b u t e d by
// Serg io Andreozzi <s e r g i o . andreo z z i@ lu t . f i >
// When the re i s a packe t dequeued ,
// update the average ra te o f each queue ()
i f (schedMode==schedModePRI)

for (int i =0; i<numQueues ; i++)
i f (queueMaxRate [i])

applyTSWMeter (i , (i == dq id) ?
hdr cmn : : a c c e s s (p)−> s i z e () : 0) ;

APPENDIX B. DIFFSERV MODULE 101

// Get the precedence l e v e l (or v i r t u a l queue id)
// f o r the packe t dequeued .
lookupPHBTable (getCodePt (p) , &queue , &prec) ;

// decrement v i r t u a l queue l en g t h
// Prev ious l y in updateREDStateVar ,
// moved by xuanc (12/03/01)
// redq [d q i d] . qParam [prec] . q len−−;
redq [dq id] . updateVREDLen(prec) ;
// update s t a t e v a r i a b l e s f o r t h a t ” v i r t u a l ” queue
redq [dq id] . updateREDStateVar (prec) ;

}

// Return the dequed packe t :
return (p) ;

}

// Ex t rac t s the code po in t marking from packe t header .
int dsREDQueue : : getCodePt (Packet ∗p) {

hdr ip ∗ iph = hdr ip : : a c c e s s (p) ;
return (iph−>pr i o ()) ;

}

// Reutrn the id o f p h y s i c a l queue to be dequeued
int dsREDQueue : : selectQueueToDeque () {

// I f the queue to be dequed has no elements ,
// l ook f o r the next queue in l i n e
int i = 0 ;

// Round−Robin
i f (schedMode==schedModeRR){

// p r i n t f (”RR\n ”) ;
qToDq = ((qToDq + 1) % numQueues) ;
while ((i < numQueues) &&

(redq [qToDq] . getRealLength () == 0)) {
qToDq = ((qToDq + 1) % numQueues) ;
i++;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
} else i f (schedMode == schedModeWFQ) {

APPENDIX B. DIFFSERV MODULE 102

WFQdequeuePGPS () ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// Weighted Round Robin
} else i f (schedMode==schedModeWRR) {

i f (wirrTemp [qToDq]<=0){
qToDq = ((qToDq + 1) % numQueues) ;
wirrTemp [qToDq] = queueWeight [qToDq] − 1 ;

} else {
wirrTemp [qToDq] = wirrTemp [qToDq] −1;

}
while ((i < numQueues) &&

(redq [qToDq] . getRealLength () == 0)) {
wirrTemp [qToDq] = 0 ;
qToDq = ((qToDq + 1) % numQueues) ;
wirrTemp [qToDq] = queueWeight [qToDq] − 1 ;
i++;

}
} else i f (schedMode==schedModeWIRR) {

qToDq = ((qToDq + 1) % numQueues) ;
while ((i<numQueues) &&

((redq [qToDq] . getRealLength ()==0) | |
(wirrqDone [qToDq]))) {

i f (! wirrqDone [qToDq]) {
queuesDone++;
wirrqDone [qToDq]=1;

}
qToDq = ((qToDq + 1) % numQueues) ;
i++;

}

i f (wirrTemp [qToDq] == 1) {
queuesDone +=1;
wirrqDone [qToDq]=1;

}
wirrTemp [qToDq]−=1;
i f (queuesDone >= numQueues) {

queuesDone = 0 ;
for (i =0; i<numQueues ; i++) {

wirrTemp [i] = queueWeight [i] ;
wirrqDone [i]=0;

}
}

APPENDIX B. DIFFSERV MODULE 103

} else i f (schedMode==schedModePRI) {
// Find the queue with h i g h e s t p r i o r i t y ,
// which s a t i s f i e s :
// 1 . nozero queue l en g t h ; and e i t h e r
// 2 . 1 . has no MaxRate s p e c i f i e d ; or
// 2 . 2 . has MaxRate s p e c i f i e d and
// i t s average ra te i s not beyond tha t l im i t .
i = 0 ;
while (i < numQueues &&

(redq [i] . getRealLength () == 0 | |
(queueMaxRate [i] &&

queueAvgRate [i]>queueMaxRate [i]))) {
i++;

}
qToDq = i ;

// I f no queue s a t i s f i e s the cond i t i on above ,
// f i n d the Queue with h i g h e s t p r i o r i t y ,
// which has packe t to dequeue .
// NOTE: the h igh p r i o r i t y queue can s t i l l have i t s
// packe t dequeued even i f i t s average ra te has beyond
// the MAX ra te s p e c i f i e d !
// I d e a l l y , a NO PACKET TO DEQUEUE shou ld be re turned .
i f (i == numQueues) {

i = qToDq = 0 ;
while ((i < numQueues) &&

(redq [qToDq] . getRealLength () == 0)) {
qToDq = ((qToDq + 1) % numQueues) ;
i++;

}
}

}
return (qToDq) ;

}

/∗−−
vo id lookupPHBTable (i n t codePt , i n t ∗ queue , i n t ∗ prec)

Ass igns the queue and prec parameters v a l u e s
correspond ing to a g iven code po in t .
The code po in t i s assumed to be pre s en t in the PHB
t a b l e . I f i t i s not , an error message i s ou tpu t t ed
and queue and prec are unde f ined .

APPENDIX B. DIFFSERV MODULE 104

−−∗/
void dsREDQueue : : lookupPHBTable (int codePt , int∗ queue ,

int∗ prec) {
for (int i = 0 ; i < phbEntr ies ; i++) {

i f (phb [i] . codePt == codePt) {
∗queue = phb [i] . queue ;
∗prec = phb [i] . p r ec ;
return ;

}
}
// q u i e t the compi ler
∗queue = 0 ;
∗prec = 0 ;
p r i n t f (”ERROR: No match found f o r code po int %d in

PHB Table .\n” , codePt) ;
a s s e r t (fa l se) ;

}

/∗−−
vo id addPHBEntry(i n t codePt , i n t queue , i n t prec)

Add a PHB t a b l e en try . (Each entry maps a code po in t
to a queue−precedence pa i r .)

−−∗/
void dsREDQueue : : addPHBEntry(int codePt , int queue ,

int prec) {
i f (phbEntr ies == MAX CP) {

p r i n t f (”ERROR: PHB Table s i z e l im i t exceeded .\n”) ;
} else {

phb [phbEntr ies] . codePt = codePt ;
phb [phbEntr ies] . queue = queue ;
phb [phbEntr ies] . p r ec = prec ;
s t a t s . val id CP [codePt] = 1 ;
phbEntr ies++;

}
}

/∗−−
vo id addPHBEntry(i n t codePt , i n t queue , i n t prec)

Add a PHB t a b l e en try . (Each entry maps a code po in t
to a queue−precedence pa i r .)

−−∗/
double dsREDQueue : : g e tS ta t (int argc ,

APPENDIX B. DIFFSERV MODULE 105

const char∗const∗ argv) {

i f (argc == 3) {
i f (strcmp (argv [2] , ” drops ”) == 0)

return (s t a t s . drops ∗ 1 . 0) ;
i f (strcmp (argv [2] , ” edrops ”) == 0)

return (s t a t s . edrops ∗ 1 . 0) ;
i f (strcmp (argv [2] , ” pkts ”) == 0)

return (s t a t s . pkts ∗ 1 . 0) ;
}

i f (argc == 4) {
i f (strcmp (argv [2] , ” drops ”) == 0)

return (s t a t s . drops CP [a t o i (argv [3])] ∗ 1 . 0) ;
i f (strcmp (argv [2] , ” edrops ”) == 0)

return (s t a t s . edrops CP [a t o i (argv [3])] ∗ 1 . 0) ;
i f (strcmp (argv [2] , ” pkts ”) == 0)

return (s t a t s . pkts CP [a t o i (argv [3])] ∗ 1 . 0) ;
}
return −1.0;

}

/∗−−
vo id setNumPrec (i n t prec)

Se ts the current number o f drop precendences .
The number o f precedences i s the number o f v i r t u a l
queues per p h y s i c a l queue .

−−∗/
void dsREDQueue : : setNumPrec (int prec) {

int i ;

i f (prec > MAX PREC) {
p r i n t f (”ERROR: Cannot de c l a r e more than %d

prcedence l e v e l s (as de f ined by MAX PREC)\n” ,
MAX PREC) ;
} else {

numPrec = prec ;

for (i = 0 ; i < MAX QUEUES; i++)
redq [i] . numPrec = numPrec ;

}
}

APPENDIX B. DIFFSERV MODULE 106

/∗−−
vo id setMREDMode(cons t char∗ mode)

s e t s up the average queue account ing mode .
−−∗/
void dsREDQueue : : setMREDMode(const char∗ mode ,

const char∗ queue) {
int i ;
mredModeType tempMode ;

i f (strcmp (mode , ”RIO−C”) == 0)
tempMode = r i o c ;

else i f (strcmp (mode , ”RIO−D”) == 0)
tempMode = r i o d ;

else i f (strcmp (mode , ”WRED”) == 0)
tempMode = wred ;

else i f (strcmp (mode , ”DROP”) == 0)
tempMode = dropTai l ;

else {
p r i n t f (”Error : MRED mode %s does not e x i s t \n” ,mode) ;
return ;

}

i f (! queue)
for (i = 0 ; i < MAX QUEUES; i++)

redq [i] . mredMode = tempMode ;
else

redq [a t o i (queue)] . mredMode = tempMode ;
}

/∗−−
vo id printPHBTable ()

Pr in ts the PHB Table , wi th one entry per l i n e .
−−∗/
void dsREDQueue : : printPHBTable () {

p r i n t f (”PHB Table :\n”) ;
for (int i = 0 ; i < phbEntr ies ; i++)

p r i n t f (”Code Point %d i s a s s o c i a t ed with Queue %d ,
Precedence %d\n” , phb [i] . codePt ,
phb [i] . queue , phb [i] . p r ec) ;

p r i n t f (”\n”) ;

APPENDIX B. DIFFSERV MODULE 107

}

/∗−−
vo id p r i n t S t a t s ()

An output method t ha t may be a l t e r e d to a s s i s t
debugg ing .

−−∗/
void dsREDQueue : : p r i n tS t a t s () {

p r i n t f (”\nPackets S t a t i s t i c s \n”) ;
p r i n t f (”=======================================\n”) ;
p r i n t f (” CP TotPkts TxPkts ld rops

edrops\n”) ;
p r i n t f (” −− −−−−−−− −−−−−− −−−−−−

−−−−−−\n”) ;
p r i n t f (” Al l %8ld %8ld %8ld %8ld \n” ,

s t a t s . pkts , s t a t s . pkts−s t a t s . drops−s t a t s . edrops ,
s t a t s . drops , s t a t s . edrops) ;

for (int i = 0 ; i < MAX CP; i++)
i f (s t a t s . pkts CP [i] != 0)

p r i n t f (”%3d %8ld %8ld %8ld %8ld \n” , i ,
s t a t s . pkts CP [i] ,
s t a t s . pkts CP [i]− s t a t s . drops CP [i]− s t a t s . edrops CP [i] ,
s t a t s . drops CP [i] , s t a t s . edrops CP [i]) ;

}

void dsREDQueue : : printWRRcount () {
int i ;
for (i = 0 ; i < numQueues ; i++){

p r i n t f (”%d : %d %d %d .\n” , i , s l i c e c o un t [i] ,
pktcount [i] , queueWeight [i]) ;

}
}

/∗−−
vo id setSchedularMode (i n t sched type)

s e t s up the s chedu l a r mode .
−−∗/
void dsREDQueue : : setSchedularMode (const char∗ schedtype) {

i f (strcmp (schedtype , ”RR”) == 0)

APPENDIX B. DIFFSERV MODULE 108

schedMode = schedModeRR ;
else i f (strcmp (schedtype , ”WRR”) == 0)

schedMode = schedModeWRR ;
else i f (strcmp (schedtype , ”WIRR”) == 0)

schedMode = schedModeWIRR ;
else i f (strcmp (schedtype , ”PRI”) == 0)

schedMode = schedModePRI ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

else i f (strcmp (schedtype , ”WFQ”) == 0)
schedMode = schedModeWFQ ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
else

p r i n t f (”Error : Scheduler type %s does not
e x i s t \n” , schedtype) ;

}

/∗−−
vo id addQueueWeights(i n t queueNum , i n t we igh t)

An input method to s e t the i n d i v i d u a l Queue Weights .
−−∗/
void dsREDQueue : : addQueueWeights (int queueNum ,

int weight) {
i f (queueNum < MAX QUEUES){

queueWeight [queueNum]=weight ;
} else {

p r i n t f (”The queue number i s out o f range .\n”) ;
}

}

// Set the i n d i v i d u a l Queue Max Rates f o r P r i o r i t y Queueing
// vo id dsREDQueue : : addQueueRate(i n t queueNum , i n t ra t e) {

i f (queueNum < MAX QUEUES){
// Convert to BYTE/SECOND
queueMaxRate [queueNum]=(double) r a t e / 8 . 0 ;

} else {
p r i n t f (”The queue number i s out o f range .\n”) ;

}
}

/∗−−
i n t command(i n t argc , cons t char∗ cons t ∗ argv)

APPENDIX B. DIFFSERV MODULE 109

Commands from the ns f i l e are i n t e r p r e t e d through t h i s
i n t e r f a c e .

−−∗/
int dsREDQueue : : command(int argc , const char∗const∗ argv) {

i f (strcmp (argv [1] , ” conf igQ ”) == 0) {
// mod i f i ca t i on to s e t the parameter q w by Thi lo
redq [a t o i (argv [2])] . c on f i g (a t o i (argv [3]) , argc , argv) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ”addPHBEntry”) == 0) {

addPHBEntry(a t o i (argv [2]) , a t o i (argv [3]) ,
a t o i (argv [4])) ;

return (TCL OK) ;
}
i f (strcmp (argv [1] , ”meanPktSize”) == 0) {

for (int i = 0 ; i < MAX QUEUES; i++)
redq [i] . setMPS (a t o i (argv [2])) ;

return (TCL OK) ;
}
i f (strcmp (argv [1] , ”setNumPrec”) == 0) {

setNumPrec (a t o i (argv [2])) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” getAverage”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
t c l . r e s u l t f (”%f ” ,

redq [a t o i (argv [2])] . getWeightedLength ()) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” g e tSta t ”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
t c l . r e s u l t f (”%f ” , g e tS ta t (argc , argv)) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” getCurrent ”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
t c l . r e s u l t f (”%f ” ,

redq [a t o i (argv [2])] . getRealLength () ∗ 1 . 0) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” p r i n tS t a t s ”) == 0) {

pr i n tS t a t s () ;

APPENDIX B. DIFFSERV MODULE 110

return (TCL OK) ;
}
i f (strcmp (argv [1] , ”printWRRcount”) == 0) {

printWRRcount () ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ”printPHBTable”) == 0) {

printPHBTable () ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” l i n k ”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
LinkDelay∗ de l =

(LinkDelay ∗) TclObject : : lookup (argv [2]) ;
i f (de l == 0) {

t c l . r e s u l t f (”RED: no LinkDelay ob j ec t %s” ,
argv [2]) ;

return (TCL ERROR) ;
}
l i n k = de l ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (schedMode == schedModeWFQ)

bind bw (”bandwidth ” ,&bandwidth) ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ WFQ add i t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

return (TCL OK) ;
}
i f (strcmp (argv [1] , ” ear ly−drop−t a r g e t ”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
NsObject∗ p = (NsObject ∗) TclObject : : lookup (argv [2]) ;
i f (p == 0) {

t c l . r e s u l t f (”no ob j ec t %s” , argv [2]) ;
return (TCL ERROR) ;

}
de drop = p ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ” setSchedularMode”) == 0) {

setSchedularMode (argv [2]) ;
return (TCL OK) ;

}

APPENDIX B. DIFFSERV MODULE 111

i f (strcmp (argv [1] , ”setMREDMode”) == 0) {
i f (argc == 3)

setMREDMode(argv [2] , 0) ;
else

setMREDMode(argv [2] , argv [3]) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ”addQueueWeights ”) == 0) {

addQueueWeights (a t o i (argv [2]) , a t o i (argv [3])) ;
return (TCL OK) ;

}
i f (strcmp (argv [1] , ”addQueueRate”) == 0) {

addQueueRate(a t o i (argv [2]) , a t o i (argv [3])) ;
return (TCL OK) ;

}
// Returns the we igh ted RED queue l en g t h f o r one v i r t u a l
// queue in packe t s
// Added by Thi lo
i f (strcmp (argv [1] , ”getAverageV”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
t c l . r e s u l t f (”%f ” ,
redq [a t o i (argv [2])] . getWeightedLength v (a t o i (argv [3]))) ;
return (TCL OK) ;

}
// Returns the l en g t h o f one v i r t u a l queue , in packe t s
// Added by Thi lo
i f (strcmp (argv [1] , ”getCurrentV”) == 0) {

Tcl& t c l = Tcl : : i n s tance () ;
t c l . r e s u l t f (”%f ” ,
redq [a t o i (argv [2])] . getRealLength v (a t o i (argv [3])) ∗ 1 . 0) ;
return (TCL OK) ;

}

return (Queue : : command(argc , argv)) ;
}

Overview on FPGAs C
C.1 What is a FPGA

A field programmable gate array (FPGA) is a semiconductor device containing pro-
grammable logic components and programmable interconnects. The programmable
logic components can be programmed to duplicate the functionality of basic logic
gates such as AND, OR, XOR, NOT or more complex combinational functions such
as decoders or simple math functions. In most FPGAs, these programmable logic
components (or logic blocks, in FPGA parlance) also include memory elements,
which may be simple flip-flops or more complete blocks of memories.

A hierarchy of programmable interconnects allows the logic blocks of an FPGA
to be interconnected as needed by the system designer, somewhat like a one-chip
programmable breadboard. These logic blocks and interconnects can be pro-
grammed after the manufacturing process by the customer/designer (hence the
term ”field programmable”) so that the FPGA can perform whatever logical func-
tion is needed.

FPGAs are generally slower than their application-specific integrated circuit
(ASIC) counterparts, can’t handle as complex a design, and draw more power.
However, they have several advantages such as a shorter time to market, abil-
ity to re-program in the field to fix bugs, and lower non-recurring engineering
costs. Vendors can sell cheaper, less flexible versions of their FPGAs which can-
not be modified after the design is committed. The development of these designs

Figure C.1: FPGA [21]

112

APPENDIX C. OVERVIEW ON FPGAS 113

is made on regular FPGAs and then migrated into a fixed version that more re-
sembles an ASIC. Complex programmable logic devices, or CPLDs, are another
alternative.[20]

C.1.1 Historical Roots

The historical roots of FPGAs are in complex programmable logic devices (CPLDs)
of the early to mid 1980s. CPLDs and FPGAs include a relatively large number of
programmable logic elements. CPLD logic gate densities range from the equivalent
of several thousand to tens of thousands of logic gates, while FPGAs typically range
from tens of thousands to several million.

The primary differences between CPLDs and FPGAs are architectural. A
CPLD has a somewhat restrictive structure consisting of one or more pro-
grammable sum-of-products logic arrays feeding a relatively small number of
clocked registers. The result of this is less flexibility, with the advantage of more
predictable timing delays and a higher logic-to-interconnect ratio. The FPGA ar-
chitectures, on the other hand, are dominated by interconnect. This makes them
far more flexible (in terms of the range of designs that are practical for implemen-
tation within them) but also far more complex to design for.

Another notable difference between CPLDs and FPGAs is the presence in most
FPGAs of higher-level embedded functions (such as adders and multipliers) and
embedded memories. A related, important difference is that many modern FP-
GAs support full or partial in-system reconfiguration, allowing their designs to be
changed ”on the fly” either for system upgrades or for dynamic reconfiguration as
a normal part of system operation. Some FPGAs have the capability of partial
re-configuration that lets one portion of the device be re-programmed while other
portions continue running.

A recent trend has been to take the coarse-grained architectural approach a
step further by combining the logic blocks and interconnects of traditional FPGAs
with embedded microprocessors and related peripherals to form a complete ”sys-
tem on a programmable chip”. Examples of such hybrid technologies can be found
in the Xilinx Virtex-II PRO and Virtex-4 devices, which include one or more Pow-
erPC processors embedded within the FPGA’s logic fabric. The Atmel FPSLIC
is another such device, which uses an AVR processor in combination with Atmel’s
programmable logic architecture. An alternate approach is to make use of ”soft”
processor cores that are implemented within the FPGA logic. These cores include
the Xilinx MicroBlaze and PicoBlaze, and the Altera Nios and Nios II processors,
as well as third-party (either commercial or free) processor cores.

As previously mentioned, many modern FPGAs have the ability to be repro-
grammed at ”run time,” and this is leading to the idea of reconfigurable computing
or reconfigurable systems CPUs that reconfigure themselves to suit the task at
hand. Current FPGA tools, however, do not fully support this methodology.

APPENDIX C. OVERVIEW ON FPGAS 114

Figure C.2: Typical FPGA logic block

It should be noted here that new, non-FPGA architectures are beginning to
emerge. Software-configurable microprocessors such as the Stretch S5000 adopt
a hybrid approach by providing an array of processor cores and FPGA-like pro-
grammable cores on the same chip. Other devices (such as Mathstar’s Field Pro-
grammable Object Array, or FPOA) provide arrays of higher-level programmable
objects that lie somewhere between an FPGA’s logic block and a more complex
processor.[20]

C.1.2 Architecture

The typical basic architecture consists of an array of configurable logic blocks
(CLBs) and routing channels. Multiple I/O pads may fit into the height of one
row or the width of one column. Generally, all the routing channels have the same
width (number of wires). An application circuit must be mapped into an FPGA
with adequate resources.

The typical FPGA logic block consists of a 4-input lookup table (LUT), and
a flip-flop, as shown in C.2. There is only one output, which can be either the
registered or the unregistered LUT output. The logic block has four inputs for the
LUT and a clock input. Since clock signals (and often other high-fanout signals)
are normally routed via special-purpose dedicated routing networks in commercial
FPGAs, they are accounted for separately from other signals.

For this example architecture, the locations of the FPGA logic block pins are
shown in C.3.

Each input is accessible from one side of the logic block, while the output
pin can connect to routing wires in both the channel to the right and the channel
below the logic block. Each logic block output pin can connect to any of the wiring
segments in the channels adjacent to it. Similarly, an I/O pad can connect to any
one of the wiring segments in the channel adjacent to it. For example, an I/O pad

Figure C.3: Locations of the FPGA logic block pins

APPENDIX C. OVERVIEW ON FPGAS 115

at the top of the chip can connect to any of the W wires (where W is the channel
width) in the horizontal channel immediately below it. Generally, the FPGA
routing is unsegmented. That is, each wiring segment spans only one logic block
before it terminates in a switch box. By turning on some of the programmable
switches within a switch box, longer paths can be constructed. For higher speed
interconnect, some FPGA architectures use longer routing lines that span multiple
logic blocks. Whenever a vertical and a horizontal channel intersect there is a
switch box. In this architecture, when a wire enters a switch box, there are three
programmable switches that allow it to connect to three other wires in adjacent
channel segments. The pattern, or topology, of switches used in this architecture
is the planar or domain-based switch box topology. In this switch box topology, a
wire in track number one connects only to wires in track number one in adjacent
channel segments, wires in track number 2 connect only to other wires in track
number 2 and so on. The figure C.4 illustrates the connections in a switch box.
Modern FPGA families expand upon the above capabilities to include higher level
functionality fixed into the silicon. Having these common functions embedded
into the silicon reduces the area required and gives those functions increased speed
compared to building them from primitives. Examples of these include multipliers,
generic digital signal processor (DSP) blocks, embedded processors, high speed IO
logic and embedded memories. FPGAs are also widely used for systems validation
including pre-silicon validation, post-silicon validation, and firmware development.
This allows chip companies to validate their design before the chip is produced in
the factory, reducing the time to market.[20]

C.1.3 FPGA design and programming

To define the behavior of the FPGA the user provides a hardware description
language (HDL) or a schematic design. Common HDLs are VHDL and Verilog.
Then, using an electronic design automation tool, a technology-mapped netlist is

Figure C.4: Switch Box Topology

APPENDIX C. OVERVIEW ON FPGAS 116

generated. The netlist can then be fitted to the actual FPGA architecture using
a process called place-and-route, usually performed by the FPGA company’s pro-
prietary place-and-route software. The user will validate the map, place and route
results via timing analysis, simulation, and other verification methodologies. Once
the design and validation process is complete, the binary file generated (also us-
ing the FPGA company’s proprietary software) is used to (re)configure the FPGA
device.

In an attempt to reduce the complexity of designing in HDLs, which have
been compared to the equivalent of assembly languages, there are moves to raise
the abstraction level of the design. Companies such as Cadence, Synopsys and
Celoxica are promoting SystemC as a way to combine high level languages with
concurrency models to allow faster design cycles for FPGAs than is possible us-
ing traditional HDLs. Approaches based on standard C or C++ (with libraries
or other extensions allowing parallel programming) are found in the Catapult C
tools from Mentor Graphics, and in the Impulse C tools from Impulse Accelerated
Technologies. Annapolis Micro Systems, Inc.’s CoreFire Design Suite provides a
graphical dataflow approach to high-level design entry. Languages such as Sys-
temVerilog, SystemVHDL, and Handel-C (from Celoxica) seek to accomplish the
same goal, but are aimed at making existing hardware engineers more productive
versus making FPGAs more accessible to existing software engineers.

To simplify the design of complex systems in FPGAs, there exist libraries of
predefined complex functions and circuits that have been tested and optimized to
speed up the design process. These predefined circuits are commonly called IP
cores, and are available from FPGA vendors and third-party IP suppliers (rarely
free, and typically released under proprietary licenses). Other predefined circuits
are available from developer communities such as OpenCores.org (typically ”free”,
and released under the GPL, BSD or similar license), and other sources.

In a typical design flow, an FPGA application developer will simulate the design
at multiple stages throughout the design process. Initially the RTL description in
VHDL or Verilog is simulated by creating test benches to stimulate the system
and observe results. Then, after the synthesis engine has mapped the design to
a netlist, the netlist is translated to a gate level description where simulation is
repeated to confirm the synthesis proceeded without errors. Finally the design is
laid out in the FPGA at which point propagation delays can be added and the
simulation run again with these values back-annotated onto the netlist.[20]

C.1.4 FPGA with Central Processing Unit Core

Some engineering applications have used a single FPGA device to replace the func-
tion of a simple embedded-microcontroller. More recently, a complete 32-bit CPU
(Central Processing Unit) core can be implemented through the programmable
logic of a high-capacity FPGA. Such CPU cores are called soft CPU core. Be-

APPENDIX C. OVERVIEW ON FPGAS 117

yond this, some FPGA devices contain dedicated hardware CPU core(s). Selected
Virtex parts from Xilinx contain 1 or more IBM PowerPC 405 CPU embedded
cores, in addition to the FPGA’s own programmable logic. For a given CPU ar-
chitecture, a hard (embedded) CPU core will outperform a soft-core CPU (i.e., a
programmable-logic implementation of the CPU.) The embedded CPU contains
exactly the logic and only the logic structures needed for the CPU’s function, and
the embedded CPU’s logic is task-specific optimized, whereas a softcore CPU must
live within the FPGA’s general-purpose logic fabric. Embedded CPUs can be also
easier to integrate into a FPGA-based application because the fixed-nature of the
embedded CPU possesses predictable timing characteristics, and the complexity
of an equivalent programmable-logic CPU consumes much more of the FPGA’s
scarce programmable-logic resources, complicating the placement & routing of the
design’s remaining non-CPU components.[20]

Figure C.5: Xilinx FPGA

	List of Figures
	List of Tables
	Acknowledgements
	Ringraziamenti
	Introduction
	Quality of Service
	QoS parameters

	Goals & Methodology
	Overview

	Scheduling Algorithms
	Classification of Scheduling Algorithms
	FIFO (First In First Out)
	Priority Scheduling
	Fair Scheduling Algorithms
	Round Robin
	Fair Queuing algorithms

	Summary

	Simulation Setup
	NS-2 - The Network Simulator
	Overview

	Getting results in NS-2
	Differentiated Services Architecture for IP QoS
	Queue Management
	Drop Tail
	An Overview of RED
	Multiple RED Parameters
	Diffserv Architecture

	MPEG4 Model
	Competing Streams
	Costant Bit Rate
	Poisson

	Motivation
	Cost Analysis
	Summary

	Modifications to NS-2
	Monitor Agent
	Support for Reconfiguration to the Simulator
	Reconfiguration Delay

	Weighted Fair Queuing Implementation
	Formulas
	The code
	GPS properties and complexity

	Summary

	Simulations
	Confidence Intervals
	Random Variables
	Fairness Evaluation
	Simulation Scenario
	Traffic Load Variation
	Delay
	Jitter

	Queue Weight Variation
	Delay
	Jitter

	Splitting Traffic
	Final Reflections
	Summary

	Conclusions and Future Research
	Summary
	Main contributions
	Future Research Directions

	Bibliography
	MPEG-4 Source Code
	Diffserv Module
	Overview on FPGAs
	What is a FPGA
	Historical Roots
	Architecture
	FPGA design and programming
	FPGA with Central Processing Unit Core

