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Summary⋅⋅⋅⋅ 

 

Among the four traditional causes of arterial hypoxemia (table 1) and 

hypercapnia (alveolar hypoventilation and VA/Q heterogeneity) VA/Q 

inequality is the most important mechanism of respiratory gas exchange 

impairment. In the mild 1970s a new technique has been developed able to 

study ventilation-perfusion ratios distributions named “multiple inert gases 

elimination technique”, MIGET. 

The technique is based on the quantitative relation of the blood-gas partition 

coefficient (λ) of a gas - the VA/Q ratio - and the capacity of an alveolar unit to 

exchange that gas (Fahri, 1967). By using 6 different inert gases in trace 

concentrations, covering a wide spectrum of partition coefficients from 0.005 

(SF6) to 300 (acetone), it is possible to characterize the distribution of the 

VA/Q ratios within the whole lung. By using a lung model of 50 compartments, 

retentions and excretions of six gases give an estimation of a continuous 

distribution of the pulmonary blood flow and alveolar ventilation, respectively, 

against VA/Q ratios on a logarithmic scale. 

A complete VA/Q study also analyses extra pulmonary factors determining 

gas exchange as cardiac output, total ventilation, oxygen consumption, FIO2, 

type and concentration of Hb, pH and body temperature.  

The two major advantages of this technique are: 

• It gives an estimation of alveolar ventilation and pulmonary blood flow 

without disturbing either vascular or bronchomotor tone; 
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• It facilitates the understanding of the complex interplay of intra and 

extra pulmonary factors determining pulmonary gas exchange. ⋅⋅⋅⋅ 

MIGET has been used to study the mechanisms of gas exchange impairment 

in main respiratory diseases, their eventual relationships with structural 

alterations, the effects of O2 breathing and the effects of some of the drugs 

commonly used. 

The first studies conducted between 70s and 80s on asthmatic patients 

described a variable degree of VA/Q inequalities (increased blood flow 

dispersion) beside a normal or mildly reduced PaO2.  

Patients with stable chronic severe asthma showed modest VA/Q 

abnormalities maintaining a near normal PaO2, despite a severe degree of 

airway obstruction, likely because of less inflammatory changes at a 

peripheral level or because of a more active hypoxic pulmonary 

vasoconstriction. These data contrast with those of COPD patients showing, 

for a similar degree of bronchoconstriction, much greater VA/Q inequalities.  

In acute severe asthma gross VA/Q abnormalities were observed, 

proportionally with asthma attack severity, with predominant bimodal blood 

flow distribution and a variable amount of cardiac output to areas with low 

VA/Q ratios. 

No correlation has been found between respiratory and inert gases exchange 

and airways bronchoconstriction indices. This finding suggests that 

spirometric abnormalities reflect predominantly bronchoconstriction in larger 

and medium sized airways, while gas exchange and VA/Q abnormalities 

reflect more peripheral airways impairment. 
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In COPD patterns and severity of VA/Q inequalities differ among patients and 

change with the evolution of the disease and with the clinical state of the 

patient. ⋅⋅⋅⋅ 

In all cases VA/Q inequalities appear to be the main cause of hypoxemia but 

no O2 diffusion limitation or true shunt have never been detected. 

No correlation has been found between severity of airflow obstruction and 

VA/Q inequalities as patients with mild to moderate COPD already show 

notable VA/Q mismatch. However the degree of VA/Q dispersion is usually 

higher in more severe patients. 

Barberà and coworkers studied the mechanisms of gas exchange impairment 

during COPD exacerbation. They observed increases in Log SDQ, low VA/Q 

ratio units, cardiac output and oxygen consumption. By using MIGET 

algorithm, they definitely demonstrated that gas exchange worsening during 

exacerbations is essentially due to VA/Q mismatching and amplified by the 

decreased mixed venous PO2, resulting from a greater VO2. 

The effects of bronchodilators in COPD have also been investigated since 

the beginning of 80s: an unexpected worsening of basal degree of VA/Q 

mismatching was observed after β2-agonists, likely as effect of hypoxic 

vasoconstriction release. 
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“Adenosine 5’-monophosphate (AMP) challenge in mild asthma: 

cellular and gas exchange responses” ⋅⋅⋅⋅ 

Abstract 

BACKGROUND: It has been suggested in asthma that bronchial challenge to 

indirect agents, such as 5’-adenosine monophosphate (AMP), offers a better 

estimate of airway inflammation than direct agents. We explored the effects 

of AMP challenge on lung function, including ventilation-perfusion (VA/Q) 

relationships as a marker of peripheral airway inflammation, and induced 

sputum, and compared with methacholine (MCh) bronchoprovocation. 

METHODS: A randomized, single-blinded, cross-over study using dose-

response curves was designed, one week apart. Twelve non-smoking mild 

asthmatics (age, 25±(SE)1 yr; FEV1, 92±4% predicted) were studied at 

baseline and 5, 15 and 45 min after equivalent target responses to provoke a 

30% fall in FEV1 (AMP, by 35±2%; MCh, by 37±2%). Sputum was collected 

before and 4 h after each challenge. RESULTS: Five min after challenge, 

PaO2 fell (AMP, by 4.1±0.4 kPa; MCh, by 4.3±0.4 kPa) due to VA/Q 

mismatching as assessed by an increased overall index of VA/Q 

heterogeneity (DISP R-E*; normal values, <3.0) (AMP, by 3.8±0.7; MCh, by 

4.6±0.7), without differences between agents. Compared with MCh, there 

were increases in cardiac output (by 20±8%) and oxygen consumption (by 

10±4%) (p<0.05 each) after AMP possibly related to an inotropic effect. Four 

h after challenge, sputum neutrophils increased after AMP (from 48±7% to 

62±6%, p<0.05) without associated changes in eosinophils. The number of 

neutrophils in the baseline sputum showed a significant correlation with the 
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concentration of IL-8 in the supernatant (r, 0.767; p<0.01) and with the 

increases in respiratory system resistances (Rrs; r, 0.803; p<0.01) and 

alveolar-arterial PO2 difference (AaPO2; r, 0.657; p<0.05) after AMP 

challenge. CONCLUSIONS: AMP challenge provoked an intense 

bronchoconstriction of similar magnitude to that of gas exchange 

abnormalities along with a neutrophilic response. MCh caused similar lung 

function changes without any sputum cellular effect. ⋅⋅⋅⋅ 

 

“Effects of nebulized salbutamol on pulmonary gas exchange during 

COPD exacerbations and in stable conditions”. 

Abstract 

Short-acting β2-agonists are commonly used in COPD, although their effects 

on pulmonary gas exchange are not fully understood.  

We investigated the effects of nebulized salbutamol (5 mg) on ventilation-

perfusion (VA/Q) inequalities in COPD patients during exacerbations (phase 

E) and in stable clinical condition (phase S). We studied 20 patients (1F:19M; 

5 smokers, 15 ex-smokers; 67±2[SEM] yrs; FEV1, 37±4% pred.) before and 

at 30 and 90 min after salbutamol. Nine patients completed both phases E 

and S (seven with VA/Q measurements in both phases), 11 only phase E.  

In phase E salbutamol significantly improved FEV1 and inspiratory capacity 

(by 14±3% and 10±3%; p<0.01), increased cardiac output (QT, by 13±3%, 

p<0.01) and decreased mean arterial pressure (MAP; by 8±2%, p<0.01), 

while PaO2 showed a mild, not significant, decrease only at 30 min (PaO2 

from 61.1±2.0 to 59.1±2.0) due to a mild increase in the dispersion of 
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pulmonary blood flow (Log SDQ; from 1.17±0.07 to 1.23±0.06, p<0.01). 

Patients of phase S, in comparison with phase E (paired analysis), showed a 

similar spirometric response to salbutamol but more marked and prolonged 

negative effects on gas exchange, as PaO2 passed from 70.7±4.4 to 

63.6±3.5 (30 min) and to 64.5±3.2 mmHg (90 min) and LOG SDQ passed 

from 0.96±0.09 to 1.12±0.13 and to 1.15±0.13 (two-ways ANOVA, p<0.01; 

p<0.02). QT and MAP responses to salbutamol in phase S did not 

significantly differ from phase E. ⋅⋅⋅⋅ 

The bronchodilator effect of salbutamol in COPD is associated with 

worsening of gas exchange and VA/Q mismatching due to pulmonary 

vasodilatation. This effect is more evident in stable condition as pulmonary 

vasculature tone is more relaxed and liable to vasodilatation than during 

exacerbations (hypoxic pulmonary vasoconstriction). 

 

In conclusion, the first study on AMP and MCh challenges in asthma was 

aimed at the investigation on the old hypothesis of dissociation between large 

and medium sized airways, accounting for the obstructive spirometric 

abnormalities of asthma, and small airways, where inflammatory and 

remodelling processes can affect gas exchange efficacy (PaO2, AaPO2, VA/Q 

balance) independently by the bronchomotor tone. Unfortunately we could 

not find any differences in terms of VA/Q imbalance between two challenges, 

as probably the impact of such an intense bronchoconstriction (PD30) is too 

high to let visible gas exchange differences specifically related to peripheral 

airways involvement. However the neutrofilic response we observed after 
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AMP is a confirmation that this model of airways challenge is more 

representative of natural broncho-constrictive and inflammatory processes of 

real asthma attacks. ⋅⋅⋅⋅ 

By continuing on this line of investigation on small airways we intend to 

integrate the information deriving from MIGET with old and newer other 

techniques (closing volume, exhaled NO, ventilatory scan, etc.) looking for 

parameters providing some functional and morphological information on 

pathological processes of small airways. We aim to evaluate the presence of 

VA/Q and gas exchange abnormalities, which remain commonly unidentified, 

beside mild spirometric abnormalities and to correlate them with the other 

parameters considered, hoping to achieve a new definition of small airways 

diseases in asthma. 

 

The second work focuses on COPD by comparing the effects of inhaled 

salbutamol on gas exchange during exacerbations and under stable 

conditions.  

In particular, this clinical research experience has provided a better 

knowledge of β2-agonists vasoactive and inotropic effects, potentially 

influencing the general hemodynamic balance, and has underlined, therefore, 

the complexity of the interaction among intra pulmonary and extra pulmonary 

factors determining pulmonary gas exchange in COPD. 
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Introduction⋅⋅⋅⋅ 

 

Principles of physiology and assumptions. 

The principal function of the lungs is to provide oxygen uptake (VO2) and 

carbon dioxide elimination (VCO2) adequate to satisfy the whole body 

metabolic request. Pulmonary gas exchange requires adequate levels of 

ventilation and perfusion in the alveoli. The old compartmental model of Fenn 

et al. and Riley and Cournard describes three ideal lung zones of ventilation-

perfusion matching: 1. the ideal lung, where ventilation and blood flow are 

appropriately apportioned; 2. the shunt fraction, in which perfusion reaches 

unventilated areas; the physiological dead space, where the compartment is 

ventilated but not perfused [1-2]. Unfortunately, this historical model is not 

sufficient to explain VA/Q relations inequalities that have been demonstrated 

to be the main cause of gas exchange abnormalities. Among the four 

traditional causes of arterial hypoxemia (table 1) and hypercapnia (alveolar 

hypoventilation and VA/Q heterogeneity) VA/Q inequality is the most important 

mechanism of respiratory gas exchange impairment [3-5]. 

Table 1. Factors determining arterial hypoxemia. 

                    Intrapulmonary               Extrapulmonary 

                                                                              Main factors  

• Alveolar hypoventilation • ↓Minute Ventilation 

• VA/Q mismatching • ↓Cardiac Output 

• Shunt • ↓Inspired PO2 

• Alveolar-end capillary O2 diffusion limitation • ↑O2 uptake 

  

                                                                      Secondary factors  

 • ↓P50 

 • ↓ [Hb] 

  • ↑pH 

P50= PO2 that corresponds to 50% oxyhaemoglobin saturation 
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Consequently, the most complete approach to investigate the 

pathophysiology of gas exchange impairment in respiratory diseases is the 

study of VA/Q inequality. ⋅⋅⋅⋅  

In the mild 1970s a new technique has been developed able to study 

ventilation-perfusion ratios distributions named “multiple inert gases 

elimination technique”, MIGET. 

This technique is based on the historical work of Fahri of the mid 1960s that 

demonstrated the quantitative relation of the blood-gas partition coefficient 

(λ) of a gas - the VA/Q ratio - and the capacity of an alveolar unit to exchange 

that gas [6]. 

The basic equation for a single lung unit gas exchange was established: 

PcPA=Pv·λ/(λ+VA/Q)     Equation 1 

This equation expresses mass balance during steady state elimination of the 

inert gas (gas not participating in metabolic processes) and indicates that 

both end capillary (Pc) and alveolar (PA) partial pressures of an inert gas 

(assumed to be equal in a single lung unit) depend on the partial pressure of 

this gas in the venous side of the capillary (Pv) and on the solubility of that 

gas, expressed as partition coefficient (λ) and the VA/Q ratio of the lung unit. 

As Pc/Pv and PA/Pv represent retention in the blood and excretion of the gas, 

respectively, the above equation can also be expressed as following: 

R = E = λ/(λ+VA/Q).    Equation 2 

The retention and excretion of an inert gas depend on its partition coefficient 

and on VA/Q ratio of that unit. By using 6 different inert gases in trace 
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concentrations, covering a wide spectrum of partition coefficients from 0.005 

(SF6) to 300 (acetone), it is possible to characterize the distribution of the 

VA/Q ratios within the whole lung within the widest possible range (from 0.05 

to 100). The six gases generally used, in increasing order of λ, are: SF6, 

ethane, cyclopropane, enflurane or halothane, diethilether and acetone. By 

using a lung model of 50 compartments, the retentions of six gases give an 

estimation of a continuous distribution of the pulmonary blood flow against 

VA/Q ratios on a logarithmic scale (fig 1). Analogously, the excretions of six 

inert gases provide an estimation of the distribution of the alveolar ventilation 

against VA/Q ratios. ⋅⋅⋅⋅ 

This technique, applicable both in health and disease, despite the classical 

division of lung in three functional department [1-2] permits to separate areas 

with low but finite VA/Q ratios (VA/Q ratio<0.1) from areas whose VA/Q ratios 

is zero (shunt), and regions with high VA/Q ratios (VA/Q ratio>10) from 

regions that are unperfused (dead space). After reaching a steady state, the 

concentrations of each gas are measured in the mixed arterial blood and 

mixed expiratory gas. The curve relating arterial concentration and solubility 

is transformed into a virtually continuous distribution of blood flow against 

VA/Q, using techniques of numerical analysis. The relation of between 

expired concentration and solubility is similarly converted into the distribution 

of ventilation. 
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Some important assumptions are at the base of MIGET: ⋅⋅⋅⋅ 

a. The existence of steady state conditions in all VA/Q units that means 

the constancy of excretion and retention during the whole period of 

measurements. 

b. Diffusion equilibration between alveolar gas and end capillary blood 

for each gas. 

c. A lung model consisting in a number of homogenous compartments in 

parallel, each with constant and continuous ventilation and perfusion. 

d. All diffusive processes affecting pulmonary gas movements are 

sufficiently rapid not to affect gas exchange. 

MIGET is able to provide then, a quantitative picture of lung units with 

particular VA/Q ratios in a good graphical representation and computes the 

amount of blood flow and ventilation associated with these lung units (Figure 

1). This image is useful in giving an overview of the distributions and 

suggesting patterns of distribution as unimodal (normal or broad), bimodal or 

trimodal. 

 

The quantification of VA/Q inequalities is better expressed through some 

numerical indices: 

• Mean V, Mean Q, mean values of VA/Q ratios of ventilation and 

perfusion curves. 

• Log SDV, Log SDQ, the standard deviation of mean values in a 

logarithmic scale. 
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• Low VA/Q, the percentage of blood flow in units whose VA/Q ratio is 

lower than 0.01. ⋅⋅⋅⋅ 

• High VA/Q, the percentage of blood flow in units whose VA/Q ratio is 

greater than 10. 

• Shunt, blood flow percentage to lung units with VA/Q ratio<0.05. No 

post-pulmonary shunt is detectable by MIGET. 

• Dead space, ventilation in units of VA/Q ratio>100.  

• DISP R-E*, the root mean square value of retention minus excretion, an 

overall index of VA/Q heterogeneity. 

As the MIGET algorithm does not consider diffusion limitations, the expected 

value of PaO2 through this mathematical model does not always correspond 

to the real PaO2 measured in the blood; the positive difference between 

expected and measured PaO2 can likely be ascribed to an oxygen diffusion 

limitation. 

Since the first works made in the 70s on the mathematical analysis of O2 and 

CO2 behaviour in blood, it was clear that variables derived from physiological 

gases (PaO2, PaCO2, alveolar-arterial PO2 difference [AaPO2], venous 

admixture and physiological dead space) vary with VA/Q matching, but also 

with changes in minute ventilation, cardiac output, inspired PO2,etc. (table 1) 

[7]. 

A complete VA/Q study also analyses extra pulmonary factors determining 

gas exchange as cardiac output, that can directly be measured (if inert 

gases levels are known in mixed venous blood, arterial blood and mixed 

expired gas) or using indocyanine green, total ventilation (VE), oxygen 
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consumption (VO2), FIO2, type and concentration of Hb, pH and body 

temperature. MIGET permits to estimate the influence of each of extra 

pulmonary factors by introducing the observed values (singly or in any 

combination) of each factor in the algorithm that calculates VA/Q inequality 

and the expected PaO2.
 ⋅⋅⋅⋅ 

This estimation is useful to understand the qualitative and quantitative role 

of each intra pulmonary and extra pulmonary factors in determining gas 

exchange. 

The two major advantages of this technique are: 

• It gives an estimation of alveolar ventilation and pulmonary blood flow 

without disturbing either vascular or bronchomotor tone; 

• It facilitates the understanding of the complex interplay of intra and 

extra pulmonary factors determining pulmonary gas exchange. 

 

Practical aspects 

Originally the technique was performed using inert gases levels determined 

from three different sites: mixed venous blood, arterial blood and mixed 

expiratory gas. The modality permits a direct measurement of all variables of 

equation 2 and a direct calculation of cardiac output.  It implies the placement 

of a catheter in the pulmonary artery.  

The version of MIGET most commonly used only requires mixed expiratory 

and peripheral venous sampling. In this case cardiac output is measured by 

indocyanine green (dye dilution) (Figure 2).  

                                                
Introduction. 



 17 

To inscribe the dye curve, 5 mg of dye in 1 ml of water are rapidly flushed 

into the venous catheter and arterial blood is withdrawn at a constant rate of 

20 ml·min-1. Adequate curves are obtained prior to recirculation for the 

conventional Stewart-Hamilton analysis with a cardiac output computer (DC-

410 Waters Instruments Inc. Rochester, MN). ⋅⋅⋅⋅ 

The following equation is at the base of cardiac output measurement: 

QT·λ·Pv=QT·λ·Pa+VE·PE      Equation 3 

Where PE is mixed expiratory gas and Pv can be computed from mass 

balance: 

Pv= Pa + (VE ·PE/λ·QT).      Equation 4 

Finally, a third modality of MIGET requiring only mixed expiratory and 

peripheral venous sampling is also available. This is obtained from a distally 

oriented canula inserted into a peripheral vein (usually in the forearm 

opposite to the side of the infusion of the inert gas solution). As inert gases 

are not metabolized by tissues after 90 min of infusion in a resting position 

virtual equilibration between blood and tissues is achieved and the peripheral 

venous blood reflects the inert gas concentration of the inflowing arterial 

blood. 
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Instrumentation 

Some fundamental instruments are necessary in MIGET: 

� Exhaled air mixing box (heated), for the mixed expiratory gas 

sampling: an adapted circuit takes the expired air to a mixing box (10 

L)  that is heated at a temperature of about 40-45 °C , in order to avoid 

inert gases deposition on tube internal walls. Mixed expiratory 

samples are collected from the mixing box to measure inert and 

respiratory gases. ⋅⋅⋅⋅ 

� Respirometer, Ventilatory recordings (minute ventilation, respiratory 

rate, tidal volume) are taken during the study. A  Wright respirometer 

is commonly used. 

� Inert and respiratory gases analyser. Inert gases detection is 

commonly made by a chromatograph accurately set-up to describe all 

gases peaks. Chromatograph is provided with a flame ionisation 

detector (FID) able to measure all gases excluding SF6 that are 

hydrocarbons and with an electron capture detector (ECD) to measure 

SF6 [8-9].  

� A cardiac output computer, if a pulmonary catheterisation is not 

performed. 
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MIGET in healthy subjects 

The typical VA/Q distribution of normal subjects aged less than 30 years at 

rest, breathing room air, is characterised by narrow perfusion and ventilation 

curves centred around 1 VA/Q ratio in the abscissa (figure 1).  

Mean values of the second moment of the distribution (Log SDQ and Log 

SDV) range from 0.35 to 0.43 [10]. The upper 95% confidence limit for Log 

SDQ is 0.60 and for Log SDV is 0.65 [11-14]. 

No perfusion in lung units with VA/Q ratios <0.005 (shunt) is present [15]. The 

amount of ventilation to lung units with VA/Q ratios >100 (dead space) is 

approximately 30%, including anatomical, physiological and instrumental 

dead space. ⋅⋅⋅⋅ 

Neither perfusion to lung units with VA/Q ratio <0.10 (low VA/Q) is observed, 

nor ventilation to lung units with VA/Q ratio>10 (high VA/Q). 

Cardus et al. investigated changes of VA/Q inequality in healthy subjects with 

aging [16]. By studying 64 individuals aged between 18 to 71 years they 

observed only a slight increase in Log SDQ and Log SDV in parallel with 

PaO2 mild decrease (by 6 mmHg). The upper 95% confidence limits in 

subjects aged 70 yrs were 0.70 for Log SDQ and 0.75 for Log SDV. They 

demonstrated that the observed decrease in arterial oxygenation (increased 

alveolar-arterial O2 gradient, AaPO2) with age is due to VA/Q inequality.  
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MIGET in respiratory diseases 

In the last three decades enormous progress has been made in the study of 

pathophysiology of acute and chronic respiratory diseases with the 

contribution of MIGET. 

After a wide investigation on MIGET in normal subjects under different 

conditions of exercise, altitude, O2 inspiratory fractions (FIO2) and age [10-

16], MIGET has been used to study the mechanisms of gas exchange 

impairment in main respiratory diseases, their eventual relationships with 

structural alterations, the effects of O2 breathing and the effects of some of 

the drugs commonly used [17-18]. 

The milestone in the literature on the contribution of MGET to pulmonary 

medicine is the series published on Thorax between 1994 and 1995 

composed of six articles [19-24]. ⋅⋅⋅⋅ 
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Bronchial asthma⋅⋅⋅⋅ 

The first description of gas exchange impairment (mild to moderate 

hypoxemia) in asthmatic patients belongs to two Australian chest physicians 

in the 1967 [25]. McFadden et al confirmed the presence of hypoxemia and, 

in more severe cases, of hypercapnia in 101 patients suffering an acute 

exacerbation of asthma [26]. They postulated that obstructive changes in 

peripheral airways could explain the refractoriness to standard 

bronchodilators and relapses. Since MIGET was introduced in respiratory 

medicine in the 70s, a big amount of information has been collected on the 

mechanisms of gas exchange impairment in the different clinical forms of 

asthma. 

The first study of Wagner on asymptomatic asthmatics in the 1978 showed 

that beside normal values of PaO2 (all but one patient had normal or slightly 

reduced PaO2) a bimodal blood flow distribution (increased Log SDQ) was 

described, with areas with low VA/Q ratio [27]. Subsequent studies showed 

lower prevalence of VA/Q inequalities, probably as a consequence of 

differences in patient selection, clinical management and treatment [28-31]. 

 In patients with stable chronic severe asthma the VA/Q abnormalities were 

quite modest (broad unimodal distribution, mildly increased Log SDQ and 

Log SDV) [32-33]. Likely, these patients maintain a near normal PaO2 

despite a severe degree of airway obstruction because of less inflammatory 

changes at a peripheral level or because of a more active hypoxic pulmonary 

vasoconstriction. This findings contrast with those of COPD patients that, 
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with a similar degree of bronchoconstriction, show much greater VA/Q 

inequalities and gas exchange impairment. ⋅⋅⋅⋅ 

In acute severe asthma gross VA/Q abnormalities were observed, 

proportionally with asthma attack severity, with predominant bimodal blood 

flow distribution and a variable amount of cardiac output to areas with low 

VA/Q ratios [34-36]. Neither dead space nor high VA/Q ratios were described. 

The increased concentration of inspired O2 and the administration of 

bronchodilators appeared to enhance the perfusion of low VA/Q ratios. 

All these studies have led to some general conclusions: 

• Usually PaO2 is relatively preserved; this data could be explained with 

the contribution of increased ventilation and cardiac output (extra 

pulmonary factors); 

• No correlation has been found between respiratory and inert gases 

exchange and airways bronchoconstriction indices [37-38]. This 

suggests that spirometric abnormalities reflect predominantly 

bronchoconstriction in larger and medium sized airways, while gas 

exchange and VA/Q abnormalities reflect more peripheral airways 

impairment. 
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COPD ⋅⋅⋅⋅ 

Chronic obstructive pulmonary diseases are characterised by a wide 

spectrum of gas exchange abnormalities, ranging from mild hypoxemia to 

severe respiratory failure requiring ventilatory support. In all cases VA/Q 

inequalities appear to be the main cause of hypoxemia [39]. By converse, no 

O2 diffusion limitation or true shunt have been demonstrated in COPD 

patients. 

The patterns and the severity of VA/Q inequalities differ among COPD 

patients and change with the evolution of the disease and with the clinical 

state of the patient. 

An historical work of Wagner and coworkers described tow different patterns 

of VA/Q mismatch in a group of severe COPD patients [39]. Some patients 

showed an increased number of high VA/Q ratio units (high pattern); other 

patients showed numerous areas with low VA/Q ratios (low pattern) (Figure 

3). While the high pattern was more frequent among emphysematous 

patients, no other consistent association between VA/Q pattern and clinical 

pictures was found. 

Other studies followed this one but no correlation was found between 

severity of airflow obstruction and VA/Q inequalities as patients with mild to 

moderate COPD already showed notable VA/Q mismatch [40-41]. However 

the degree of VA/Q dispersion of these patients was lower than in more 

severe patients. 

During exacerbations it has been observed worsening of VA/Q distributions 

that are probably related to reversible functional abnormalities (mucus 
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impaction, bronchospasm, bronchial wall oedema) [42-43]. Barberà and 

coworkers studied the mechanisms of gas exchange impairment during 

COPD exacerbation [43]. Thirteen patients were studied during 

hospitalization and approximately 5 weeks after discharge. During 

exacerbations they observed increases in Log SDQ, due to a greater 

perfusion of low VA/Q ratio units, in cardiac output and oxygen consumption 

(VO2). By analysing the specific effect of each intra and extra pulmonary 

factor determining arterial oxygenation through MIGET logarithm it was 

demonstrated that gas exchange worsening during exacerbations is 

essentially due to VA/Q mismatching and amplified by the decreased mixed 

venous PO2, resulting from a greater VO2. 
⋅⋅⋅⋅ 

The effects of bronchodilators in COPD have been investigated since the 

beginning of 80s, as they have known spirometric and clinical effects but not 

so clear effects on gas exchange. The bronchodilation induced by these 

drugs was unexpectedly accompanied by a worsening of basal degree of 

VA/Q mismatching, likely as effect of a possible interaction with the 

mechanism of hypoxic vasoconstriction [44-46]. This hypothesis is sustained 

by the work of Melot and coworkers that described a fall in pulmonary 

vascular resistance and PaO2 after the administration of nifedipine, a calcium 

channel blocker, able to suppress the beneficial effect of hypoxic 

vasoconstriction [47].  

Other bronchodilators, like ipratropium bromure or aminophylline, acting 

through different mechanisms of action, did not change VA/Q balance [45,48]. 
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Figure 1. 

Ventilation-perfusion distributions. Ventilation (○) and perfusion (●) are 

plotted against VA/Q ratio on a logarithmic scale in a resting young healthy 

subject breathing room air. Both curves are centred (first moment) around a 

VA/Q ratio of 1 and they are narrow (second moment). No perfusion to low 

VA/Q units (VA/Q ratio<0.1) nor ventilation to high VA/Q units (VA/Q ratio>10) 

are observed. Note also the absence of shunt. Each individual data point 

represents a particular amount of blood flow (●) or alveolar ventilation (○) to 

the corresponding pulmonary compartment (VA/Q ratio). Total cardiac output 

corresponds to the sum of the 50 blood flow points and total alveolar 

ventilation is the sum of the 50 ventilation points. ⋅⋅⋅⋅ 
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Figure 2. 

With this MIGET modality mixed expiratory gas and arterial blood samples 

are collected; the inert gases solution is infused into a peripheral superficial 

vein. Through the arterial catheter the dye dilution is detected after 

indocyanine green bolus (5 mg of dye in 1 ml of water ) is rapidly flushed into 

the venous catheter and arterial blood is withdrawn at a constant rate of 20 

ml·min-1. ⋅⋅⋅⋅ 
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Figure 3. 

A) Ventilation-perfusion distribution in patient with emphysema-type COPD. 

Note the bimodal pattern of ventilation distribution (○) with areas with high 

VA/Q ratio. B) Ventilation-perfusion ratio distribution in a patient with 

bronchitis-type COPD. The blood flow distribution (●) is bimodally shaped 

due to the presence of alveolar units with low V/Q ratio. ⋅⋅⋅⋅ 
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 INTRODUCTION⋅⋅⋅⋅ 

 

Adenosine 5’-monophosphate (AMP) is a natural nucleoside and 

mediator of airway inflammation increasingly used in inhalational challenge 

tests even though its pathophysiology remains insufficiently understood. It is 

a potent indirect agent inducing bronchoprovocation through the activation of 

inflammatory pathways at the level of bronchial surface and through local or 

central neuronal reflexes.[1-3]  

It has been suggested that AMP is a more potent inflammatory mediator than 

methacholine (MCh), a well-known bronchoconstrictive agent directly acting 

on airway tone. Compared to direct agents such as MCh and histamine, an 

AMP challenge could reproduce the lung function abnormalities 

spontaneously occurring during asthma attacks and better detect the 

inflammatory events of the disease at both central and peripheral airways.[4-

8]  

Accordingly, we hypothesized that AMP challenge in asthmatic patients could 

evoke greater gas exchange abnormalities and a different cellular response 

to that induced by MCh. There is evidence for a partial dissociation between 

expiratory airflow obstruction and gas exchange disturbances in acute 

asthma, since spirometric abnormalities, that mainly reflect narrowing in large 

and middle-sized airways, do not run in parallel to gas exchange 

abnormalities, better correlated to more peripheral airways dysfunction. [9-

11]  
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On this basis we used the multiple inert gas elimination technique (MIGET) to 

comprehensively assess pulmonary gas exchange and induced sputum 

cellular composition after AMP and MCh challenges producing an equivalent 

degree of bronchoconstriction. The comparison of the results obtained by the 

two challenges could facilitate a better insight into the pathophysiology of 

AMP and asthma.⋅⋅⋅⋅ 
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MATERIAL AND METHODS⋅⋅⋅⋅ 

 

Study population. Twelve non-smokers patients (5 females) with 

stable mild asthma were recruited for the study, as approved by the Ethical 

Research Committee at Hospital Clínic of Barcelona (age, 25±1 yr; FEV1, 

3.7±0.2 L [92±4% predicted], FEV1/FVC, 80±3%; PD20, 0.4±0.2 µmol). All 

subjects gave informed written consent after the purpose, risks and potential 

benefits of the study were explained to them. Inclusion criteria were: age 

between 18 and 45 yr; diagnosis of bronchial asthma according to GINA 

criteria [12]; FEV1>70% predicted (>1.5 L); a positive MCh (PD20<1.9 µmol) 

bronchial challenge on their first visit; absence of respiratory co-morbidities or 

any systemic or cardiopulmonary disease other than asthma; no asthma 

exacerbation within the last 6 weeks before the study; no treatment with 

systemic glucocorticosteroids in the previous 3 months. One patient received 

regular inhaled glucorticosteroids (budesonide, 400 µg b.i.d.) and two 

patients fixed inhaled combination therapy (budesonide/formoterol, 320/9 µg 

b.i.d.). All patients referred use of rescue short-acting β2-agonists. 

 

Study design. A randomized, double-blinded, cross-over design was 

used. After a first visit to evaluate the clinical and functional status, a sample 

of induced sputum was collected in a second visit, one week later. Then, 

after another week, the patients were challenged with AMP and MCh (Sigma-

Aldrich Química SA, Madrid, Spain), using a nebuliser attached to a breath-

activated dosimeter (Spira Elektro2, Respiratory Care Center, Finlandia), one 
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week apart. The nebuliser was set to nebulise for 0.6 s at a pressure of 200 

kPa with a flow of 0.6 L/s. During the challenges the patients breathed room 

air 1and were seated in an armchair. All asthma medication was withheld for 

48 h before arrival to the laboratory and patients were asked to refrain from 

caffeine-containing beverages/foods for at least 12 h before testing. After 

ensuring steady-state conditions, a set of duplicate measurements of all 

variables was obtained (baseline). Maintenance of steady-state conditions 

was demonstrated by stability (±5%) of both ventilatory and haemodynamic 

variables, and by the close agreement between duplicate measurements of 

mixed expired and arterial O2 and CO2 (within ±5%). The patients were then 

challenged with AMP/MCh following the recommended standardized 

procedures. [13-15] Doubling concentrations of AMP/MCh (from 0.39 to 400 

mg/dL) were administered by 5 consecutive dosimeter inhalations until the 

30% fall in FEV1 was achieved; at this point, resistance of respiratory system 

(Rrs) was also measured. Duplicate measurements were repeated after 5, 

15, and 45 min. All sets consisted in the following steps in sequence: FEV1, 

Rrs and ventilatory recordings; inert and respiratory gas sampling; and, 

haemodynamic recordings. Four hours after the beginning of each AMP/MCh 

challenge, induced sputum was collected. No patient needed rescue 

medication with short-acting bronchodilators during or immediately after the 

end of the study. ⋅⋅⋅⋅ 

 

Measurements. On the day of the study, forced spirometry (CPF-S; 

Medical Graphics Corporation, St. Paul, MN USA) was performed according 
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to ATS recommendations, using our own predicted equations.[16][17] Rrs, 

PaO2, PaCO2 and pH, the alveolar-arterial PO2 difference (AaPO2), oxygen 

uptake (VO2) and carbon dioxide production (VCO2), minute ventilation (VE) 

and respiratory rate (RR) were measured, or calculated, as previously 

described. [18] MIGET was used to estimate the distributions of VA/Q ratios 

without sampling mixed venous inert gases. Cardiac output was directly 

measured by dye dilution technique (indocyanine green), in the customary 

manner.[18-19] A three-lead electrocardiogram, heart rate (HR) and systemic 

arterial pressure (Ps) and arterial oxygen saturation (SaO2) through a 

pulseoximeter (HP M1020A, Hewlett-Packard, Boblingen, Germany) were 

continuously recorded throughout the whole study (HP 1046A Monitor, 

Hewlett-Packard, Waltham, MA, USA). ⋅⋅⋅⋅ 

 

Induced sputum. We performed the inhalation for the same period (7 

min) of increasing concentrations of hypertonic saline (3%, 5%, 7%) following 

the technique described by Pizzichini et al.[20] The procedure was stopped 

when an adequate sputum sample was collected (approximately 1 g of 

plugs), or if troublesome symptoms were present. The sputum was 

processed within 30 and 120 min from the collection of the more viscid 

proportions of the sputum (plugs). The reproducibility of measurements was 

calculated by the intraclass correlation coefficient. In two patients, sputum 

data were not available due to their poor viability (<50%). Interleukin-8 (IL-8) 

in sputum supernatants was also assessed. 
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Statistical analysis. Results are expressed as mean±SE and 95% 

confidence interval (CI). The effects of AMP and MCh challenges on the 

different end-point variables were assessed by a two-way repeated analysis 

of variance (ANOVA). Whenever there was a significant difference, post hoc 

comparisons at each time point were performed using paired t-test. Sputum 

cell differences were assessed using Paired t-test. Pearson’s rank test was 

used for correlations. All analyses were performed with SPSS version 10.1 

(SPSS Inc, Chicago, IL, USA). Statistical significance was set at p<0.05 in all 

instances.⋅⋅⋅⋅ 
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RESULTS⋅⋅⋅⋅ 

 

Baseline conditions. There were no clinical or functional differences 

between MCh and AMP study days, all patients having normal VA/Q 

distributions (Table 1).[21] 

 

Lung Function after AMP/MCh challenges. Along with a comparable 

degree of bronchoconstriction (FEV1 fall: AMP, 35±2%; MCh, 37±2%; Rrs 

increase: AMP, 114±18%; MCh, 92±13%) both AMP and MCh challenges 

(cumulative doses, 6.67±13.33 mg and 0.15±0.13 mg) produced, at 5 min, 

similar gas exchange abnormalities, as shown by a decreased PaO2 (by 

31±3% and 32±3%) and an increased AaPO2, respectively (Table 2). The 

arterial oxygenation defects observed after both challenges were essentially 

caused by mild-to-moderate VA/Q imbalance, as reflected by increases in the 

dispersion of blood flow (Log SDQ, normal values, ≤0.60 [21]) and DISP R-E* 

(normal values, ≤3.0) (Table 2).[22] Broadened unimodal VA/Q patterns were 

observed in each participant. All these abnormalities showed at 15 and 45 

min a similar trend to recover after both challenges, except for a mild, 

residual, increased Rrs and AaPO2 observed at the last time point. By 

contrast, compared with MCh, AMP induced at 5 min increases in VO2 (by 

10±4%) and in QT (by 20±8%) (p<0.05 each); VO2 also resulted increased at 

45 min and QT at 15 min (Table 2).  
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Induced sputum. Four hours after AMP challenge neutrophils 

increased from 48±7% to 62±6%, (p<0.05) without other associated cellular 

changes (Table 3; Figure 1). By contrast, the cellular composition of induced 

sputum collected after MCh did not vary from baseline. The number of 

neutrophils in the baseline sputum showed a significant correlation with the 

concentration of IL-8 in the supernatant (r, 0.769; p<0.01) and with the 

increases in Rrs (r, 0.803; p<0.01) and AaPO2 (r, 0.657; p<0.05) observed 

after AMP challenge (Figure 2). A significant correlation was also shown 

between the baseline concentration of IL-8 in the sputum supernatant and 

the increase in Rrs at 5 min on AMP study day (r, 0.726; p<0.01). ⋅⋅⋅⋅ 
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DISCUSSION⋅⋅⋅⋅ 

 

There were two major novel findings in our study. Firstly, we 

demonstrated that AMP bronchoconstriction provoked, in patients with mild 

asthma, identical gas exchange abnormalities and VA/Q imbalance than MCh 

while undergoing an equivalent degree of airflow limitation. Secondly, the 

AMP challenge caused mild neutrophilia in induced sputum 4 hours after 

challenge. In addition, we confirmed that AMP is an effective and clinically 

well-tolerated bronchoconstrictive agent that associates haemodynamic and 

metabolic effects.[6] 

There is strong evidence in the literature that bronchial responsiveness to 

AMP correlates well with airways inflammatory markers (blood and sputum 

eosinophils) and that reflects acute changes in airways inflammation, as seen 

by therapeutical (corticosteroids) and/or environmental (allergens avoidance) 

interventions.[4][7][8] On this basis, we postulated that AMP challenge, by 

acting through inflammatory mechanisms, could be more influential in small, 

peripheral airways, thereby inducing greater gas exchange and VA/Q 

abnormalities than MCh, a more centrally acting agent. Notwithstanding, our 

study failed to confirm our hypothesis, in that after both challenges patients 

showed a similar degree of hypoxaemia and increased AaPO2, due to 

identical VA/Q mismatching. It is generally held that gas exchange 

impairment in asthma is mainly induced by small airways, but experimental 

studies have shown that the VA/Q imbalance becomes much more disrupted 

with larger airways narrowing. It is highly likely that the intense level of 

                                                
Polverino E et al. AMP and asthma. 



 43 

bronchoconstriction (∼ PD30) could hide any difference in VA/Q mismatching 

due to the different bronchoconstrictive mechanisms of action of AMP and 

MCh. ⋅⋅⋅⋅ 

Our study demonstrated that AMP is a well-tolerated effective 

bronchoconstrictive agent, with an average cumulative dose ratio to MCh of 

approximately 45. Furthermore, AMP challenge induced increases QT and 

VO2 at different points in time, possibly as a consequence of the inotropic 

effects of AMP and its metabolite adenosine, via the activation of specific 

receptors (A2).[23] These complementary effects need to be taken into 

account in the management of asthmatic patients with potential 

cardiovascular disturbances. 

In conjunction with the functional abnormalities alluded to, there was a 

significant mild increase in neutrophils in induced sputum 4 hours after AMP 

inhalation. Although there is certain evidence of a correlation between 

cellular composition of the sputum and AMP responsiveness in asthmatic 

patients, there are few data regarding the effects of AMP challenge on 

induced sputum.[4] Van der Berge and coworkers showed an increase in 

eosinophils in the sputum collected 1 hour after AMP inhalation in patients 

with mild asthma, at variance with our finding.[24] Differences in patients’ 

characteristics, inhalational procedures and, above all, in the time course of 

sputum collection after challenge might explain in part  these discrepancies. 

Notwithstanding, it might be possible that our finding reflect a late, 

neutrophilic stage of the inflammatory process triggered by AMP challenge. 

By contrast, the study of Van der Berge may well reflect an earlier phase, 
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mainly characterised by eosinophilic involvement. [24] In a previous work 

with mild asthmatic patients, we observed an increase in neutrophils in the 

sputum 4 hours after challenge with platelet-activating factor (PAF), a potent 

inflammatory mediator possibly involved, but never sufficiently proven, in the 

pathogenesis of asthma.[25] This late, neutrophilic response to PAF may 

thus support our hypothesis about the inflammatory response to AMP 

challenge. A different study in asthmatic patients challenged with inhaled 

leukotriene D4 (LTD4), demonstrated an increase of eosinophils in the 

sputum 4 hours after challenge, also shown by our group at a shorter time 

point (75 min) after LTD4. [26][27] The activation of a different pathway of 

bronchoconstriction (direct mechanisms of action) could explain such 

different findings. A confirmation of the validity of our “neutrophilc model of 

bronchoconstriction” comes from the interesting observation that a greater 

number of neutrophils in the baseline sputum and  higher concentrations of 

IL-8 in the sputum supernatant, a chemotactive factor of neutrophils, 

correlated closely with the mechanic (Rrs) and gas exchange (AaPO2) 

abnormalities provoked by AMP. ⋅⋅⋅⋅In summary, for the same degree of 

bronchoconstriction, AMP challenge did not induce more marked gas 

exchange disturbances than MCh, but caused mild neutrophilia in induced 

sputum at 4 hours after challenge.  
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Table 1. Basal conditions on AMP and MCh days. 2 

 
 
 
Rrs: respiratory system resistance; PaO2: arterial oxygen partial pressure; 
AaPO2: alveolar-arterial oxygen partial pressure difference; VO2: oxygen 

uptake; QT: cardiac output; Log SDQ: dispersion of pulmonary blood flow 
(dimensionless); DISP R-E*: dispersion of retention minus excretion inert 
gases corrected for dead space (dimensionless). 
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AMP MCh 

FEV1, L 3.2 ± 0.2 3.2 ± 0.2 

FEV1, % predicted 85 ± 6 83 ±  6 

FEV1/FVC % 81 ± 3 81 ± 2 

Rrs, cm H2O·L-1·s 4.6 ± 0.3 4.6 ±  0.4 

PaO2, KPa 13.4 ± 0.3 13.5 ±  0.2 

AaPO2, KPa 0.52 ± 0.16 0.27 ±  0.12 

VO2, mL·min-1 197 ± 9 186 ± 12 

QT, L·min-1
 5.7 ± 0.3 5.6 ±  0.3 

Log SDQ 0.47 ± 0.04 0.44 ±  0.02 

DISP R-E* 3.15 ± 0.49 2.38 ±  0.26 
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Table 2. Mean differences (and 95% IC) after AMP and MCh challenges. 3 
 

  5 min 15 min 45 min p value
† 

 

AMP -1.1 (-1.3 to -1.0) -0.6 (-0.8 to -0.5) -0.3 (-0.4 to -0.1) NS FEV1, L 

MCh -1.2 (-1.4 to -1.0) -0.7(-0.8 to -0.5) -0.2 (-0.4 to -0.1)  

Rrs, cm H2O·L-1·s AMP 4.9 (3.4 to 6.5) 3.7 (0.9 to 6.6) 1.6 (0.2 to 3.0) NS 

 MCh 4.3 (2.9 to 5.6) 2.7 (1.4 to 3.9) 1.9 (1.1 to 2.7)  

PaO2, KPa AMP -4.1 (-4.9 to –3.2) -2.1 (-3.1 to –1.3) -0.4 (-1.2 to 0.5) NS 

 MCh -4.3 (-5.3 to –3.3) -2.7 (-3.9 to –1.5) -0.9 (-1.9 to 0.1)  

AaPO2, KPa AMP 3.3 (2.7 to 4.0) 1.7 (0.9 to 2.5) 0.7 (0.4 to 1.6) NS 

 MCh 3.7 (2.8 to 4.5) 2.3 (1.6 to 3.1) 0.8 (0.3 to 1.3)  

VO2, mL·min-1 AMP 21 (2 to 40)
‡
 10 (-6 to 26) 17 (0.0 to 34)

‡
 <0.05 

 MCh 8 (-8 to 23) 1 (-12 to 15) -3 (-22 to 16)  

QT, L·min-1 AMP 1.0 (0.2 to 1.8)
‡
 0.6 (0.1 to 1.1)

‡
 0 (-0.3 to 0.3) <0.01 

 MCh 0.2 (-0.2 to 0.5) 0 (-0.45 to 0.49) -0.2 (-0.6 to 0.1)  

Log SDQ AMP 0.27 (0.18 to 0.36) 0.13 (0.03 to 0.23) 0.05 (0.04 to 0.14) NS 

 MCh 0.38 (0.26 to 0.49) 0.27 (0.17 to 0.36) 0.12 (0.06 to 0.18)  

DISP R-E* AMP 3.77 (2.25 to 5.28) 1.41 (0.22 to 2.60) 0.33 (-1.45 to 0.80) NS 

 MCh 4.59 (3.09 to 6.08) 3.26 (1.75 to 4.77) 1.65 (0.81 to 2.49)  

 
 
For abbreviations see Table 1. 
† Significance of the interaction between the effects of the bronchoprovocative agent and time course (repeated measures ANOVA);  
‡ p<0.05 compared with MCh (paired t-test). 

                                                
Polverino E et al. AMP and asthma. 



 

Table 3. Induced sputum analysis before and after AMP and 
MCh challenges4 

 
 

  Baseline AMP MCh 

Total Cell Count, x104·g-1 1,124 ± 215 1,136 ± 278  985 ± 230 

Cell viability, %  71± 3 71 ± 5      71 ± 3 

Squamous cells, %   3 ± 1   4 ± 1  4 ± 1 

Macrophages, %       36 ± 5 31 ± 5      43 ± 8 

Lymphocytes, %  4 ± 0   2 ± 1  4 ± 1 

Neutrophils, %       48 ± 7  62 ± 6*      47 ± 9 

Eosinophils, %       10 ± 5   4 ± 1  5 ± 3 

IL-8, pg/mL   2204 ± 702   1624 ± 522  1246 ± 206 

 
 
Values are mean ± SE; * p: 0.02 compared with baseline (paired t-test). 
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 INTRODUCTION 

 

Episodes of exacerbations are the most common complications in the 

natural history of chronic obstructive pulmonary diseases (COPD). These 

episodes are always characterized by a significant worsening in pulmonary 

gas exchange that results in severe hypoxemia with or without hypercapnia 

[1]. Both arterial hypoxemia and hypercapnia are modulated by a complex 

interplay between intrapulmonary (ventilation-perfusion [VA/Q] mismatching) 

and extrapulmonary (minute ventilation [VE], cardiac output [QT], and oxygen 

consumption [VO2]) factors [2]. It has been demonstrated that the principal 

mechanism of arterial hypoxemia in patients with COPD is VA/Q imbalance, 

both in stable conditions and during exacerbations [3]. 

Short-acting β2-agonists [SABAs] are one of the mainstays of treatment of 

COPD exacerbations [4].  

SABAs are potent bronchodilators but also vasoactive agents  with inotropic 

and chronotropic effects, hence potentially influencing different aspects of 

cardiopulmonary function [5]. However, a comprehensive assessment of the 

effects of such bronchodilators on intrapulmonary and extrapulmonary 

determinants of gas exchange during COPD exacerbations remains 

unsettled. Accordingly, we investigated in patients with COPD exacerbations 

needing hospitalization the effects of a therapeutic dose of nebulized 

salbutamol (5.0 mg) on pulmonary gas exchange using the multiple inert gas 

elimination technique (MIGET). 
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The same patients were studied during stable conditions, 2-3 months after 

their episode of exacerbation in order to assess how the factors contributing 

to gas exchange abnormalities vary during recovery in response to nebulized 

salbutamol and to facilitate, therefore, a better insight into the 

pathophysiology of COPD.   
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 MATERIAL AND METHODS⋅⋅⋅⋅ 

 

Study population. We studied 20 patients (1 female; 5 smokers, 15 

ex-smokers, 58 ± 8 pack-years), mean (± SEM) age 67 ± 2 yrs who fulfilled 

the criteria for the diagnosis of COPD [6] and were admitted to hospital 

because of an acute exacerbation of their disease, according to the decision 

of the attending physicians. At the inclusion in the study ten patients reported 

a history of more than 10 yrs of COPD, 6 patients between 5 and 10 yrs, 4 

patients less than 5 yrs. Pulmonary function tests performed during stable 

conditions (before or after 2-5 months the exacerbation episode) showed a 

severe airflow obstruction (post-bronchodilator FEV1: 39 ± 4% of pred.; FVC: 

2.8 ± 0.2 L; FEV1/FVC ratio: 0.40 ± 0.03), a normal total lung capacity (TLC: 

108% ± 4 of pred.) a severe lung hyperinflation (RV: 187 ± 13% of pred.; 

IC/TLC: 0.28 ± 0.03) and a moderate-to-severe reduction of carbon 

monoxide transfer factor (DLCO: 53 ± 4% of pred.; KCO: 65 ± 5% of pred.). 

Patients showed moderate hypoxemia and mild hypercapnia (PAO2: 65.7 ± 

2.7 mmHg; PaCO2: 42.1 ± 1.5 mmHg). As two patients died for medical 

complications before completing the study (one for an acute intestinal 

occlusion, the other during an exacerbation of the respiratory disease) and 

other two were lost at follow-up (multiple re-exacerbations) data of lung 

volumes, DLCO and arterial blood gases in stable conditions are available 

only from 16 patients. All patients were in GOLD stages III or IV. On 

admission to the emergency room, patients showed moderate hypoxemia 

(PaO2 62.2 ± 2.2 mmHg) and hypercapnia (PaCO2 44.4 ± 3.0 mmHg) with a 
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normal arterial pH (7.42 ± 0.01) even considering that in 6 and 3 cases, 

respectively, the first measurement of arterial gases was performed with 

supplemental oxygen of 1 and 2 L/min. Patients with complications 

(pneumonia, pulmonary thromboembolism, pleural effusion) and with 

comorbidities, like bronchial asthma, lung cancer and cardiovascular 

diseases or requiring mechanical ventilation were excluded from the study. 

All patients received standard treatment with supplemental oxygen, inhaled 

bronchodilators (salbutamol and ipratropium bromure), intravenous 

corticosteroids and antibiotics. The mean length of hospital stay was of 7 ± 1 

days. 

 

Study design. Patients were studied within the first 4 days (median, 

3) of hospitalization, when they were able to breathe through the breathing 

circuit and 2-3 months after hospital discharge, once they were in stable 

condition and in absence of any other re-exacerbation of the respiratory 

disease from the first study. Medication as decided by the attending 

physician was maintained unmodified. Only one patient received 

supplemental oxygen therapy at 1.5 L/min (16 hours daily) after the 

exacerbation. During the studies all patients were afebrile, breathed room 

air7and were seated in an armchair. Measurements were performed before 

(at least 6 hrs after the last dose of inhaled bronchodilators and intravenous 

corticosteroids) and at 30 and 90 min after nebulization of 5mg of salbutamol. 

After ensuring steady-state conditions, a set of duplicate measurements of all 

variables was obtained at each time point. Maintenance of steady-state 

conditions was demonstrated by stability (±5%) of both ventilatory and 
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haemodynamic variables, and by the close agreement between duplicate 

measurements of mixed expired and arterial O2 and CO2 (within ±5%). All 

sets of measurements consisted in the following steps in sequence: FEV1, 

forced vital capacity (FVC), inspiratory capacity (IC) and ventilatory 

recordings; inert and respiratory gas sampling; haemodynamic recordings 

(systemic arterial pressure; cardiac output, QT; heart rate, HR).  

Spontaneous sputum was collected before and between 30 and 90 min after 

salbutamol.   

 

Measurements. On the day of the study, forced spirometry and 

Inspiratory capacity (IC)  (CPF-S; Medical Graphics Corporation, St. Paul, 

MN USA) were performed according to ATS/ERS recommendations, using 

our own predicted equations.[7][8] PaO2, PaCO2 and pH, alveolar-arterial 

PO2 difference (AaPO2), oxygen uptake (VO2) and carbon dioxide production 

(VCO2), minute ventilation (VE) and respiratory rate (f) were measured, or 

calculated, as previously described. [9] MIGET was used to estimate the 

distributions of VA/Q ratios without sampling mixed venous inert gases. 

Unfortunately, VA/Q data were lost for technical problems in 4 studies of the 

exacerbation phase and in one study of stable phase. QT was directly 

measured by dye dilution technique (indocyanine green), in the customary 

manner.[9][10] A three-lead electrocardiogram, heart rate (HR) and systemic 

arterial pressure and arterial oxygen saturation (SaO2) through a 

pulseoximeter (HP M1020A, Hewlett-Packard, Boblingen, Germany) were 

continuously recorded throughout the whole study (HP 1046A Monitor, 
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Hewlett-Packard, Waltham, MA, USA). Exhaled breath condensate (EBC) 

was also collected before and at 90 min after salbutamol using the 

EcoScreen (Jaeger, Germany), according to ATS/ERS recommendations.  

[11]   

Statistical analysis. Results are expressed as mean ± SE. The 

effects of nebulized salbutamol on the different end-point variables in each 

phases of the study (exacerbation and stable condition) were assessed by a 

one-way and two-ways repeated analysis of variance (ANOVA). Whenever 

there was a significant difference, post hoc comparisons at each time point 

were performed using paired t-test. All analyses were performed with SPSS 

version 11.1 (SPSS Inc, Chicago, IL, USA). Statistical significance was set at 

p<0.05 in all instances.⋅⋅⋅⋅ 
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RESULTS 

 

Exacerbation.   

 

At baseline, patients showed a severe degree of bronchoconstriction (FVC, 

36 ± 2% of predicted; FEV1, 24 ± 2% of predicted), with high values of VE and 

f (Table 1). Mean PaO2 was moderately to severely reduced (range, 45.7 - 

76.0 mmHg) while PaCO2 was moderately increased (range, 33.3 - 68.2 

mmHg). Gas exchange abnormalities run in parallel with moderate-to-severe 

VA/Q imbalance: the dispersions of both blood flow (Log SDQ, range: 0.60 - 

1.75) and ventilation (Log SDV, range: 0.70 - 1.26) distributions and the 

overall index of VA/Q heterogeneity (DISP R-E*, range: 8.7 - 20.7) were 

increased (Table 1). Shunt (percentage of blood flow to units with VA/Q 

ratio<0.005) and areas with high (10 - 100) VA/Q ratios were negligible, while 

areas with low (<0.1, excluding shunt) VA/Q ratios and dead space (>100 

VA/Q ratios) were moderately increased. Patients showed increased QT and 

HR with normal values of mean arterial pressure (Ps) and O2 uptake (VO2). 

At 30 min, nebulized salbutamol significantly improved FEV1 (by 14%) and IC 

(by 10%), while VE and f remained stable. PaO2 and PaCO2 slightly 

decreased along further significant increases in AaPO2 (by 2.0 mmHg), in 

Log SDQ (by 7%) and in areas with low VA/Q ratios (by 27%). In addition, 

salbutamol increased QT (by 13%) and HR (by 11%) and decreased Ps (by 8 

mmHg). At 90 min, in comparison with baseline, FEV1, IC, were still 

increased; respiratory (PaO2, PaCO2, AaPO2) and inert (Log SDQ, Low VA/Q, 
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DISPR-E*) gas exchange indices showed a trend toward baseline. 

Hemodynamic changes (increased HR and decreased Ps) were still present 

at 90 min, except for QT that showed a trend toward baseline. VO2 remained 

stable during all the study. 

 

Stable conditions. ⋅⋅⋅⋅ 

 

Nine patients of the initial sample were excluded from the second phase of 

the study for multiple re-exacerbations and two individuals, as previously 

described, died. The remaining nine patients repeated the study 14 ± 3 

weeks after discharge, once they were in clinical stable conditions. At 

baseline, as compared to exacerbation, patients had lower VE (p<0.05), a 

comparable f and a similar airflow obstruction but less hyperinflation, as 

shown by greater IC (p<0.02) (Table 2). Gas exchange impairment and VA/Q 

inequality were significantly minor under stable condition as shown by PaO2, 

AaPO2 and Log SDQ (p<0.05 each). Cardiac Output and HR (p<0.05), as 

expected, were lower than during exacerbation. No significant differences 

were observed in Ps and VO2. At 30 min, nebulized salbutamol induced 

significant increases in FEV1 (by 17%) and IC (by 17%) without any change 

in the ventilatory pattern (VE, f) (Table 3). We also observed significant 

decrease in PaO2 (by 6.7 mmHg) and increase of AaPO2 (by 5.3 mmHg), 

with an unchanged PCO2. Arterial deoxygenation was associated with a 

significant worsening in VA/Q imbalance as shown by increases in Log SDQ 

(by 15%) and DISP R-E* (by 33%). In addition, salbutamol induced 
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significant increases in QT (by 23%), HR (by 17%) and VO2 (by 24 mL/min) 

and decreased Ps (by 6 mmHg). At 90 min FEV1 and IC were still increased, 

the arterial deoxygenation (PaO2, AaPO2) was similar to 30 min, such as the 

increases in Log SDQ and DISPR-E* (Table 3). Also the hemodynamic 

changes (increased QT and HR, decreased Ps) were still present at 90 min, 

while VO2 returned to baseline. 

 

Comparison between exacerbation and stable COPD.  

 

By comparing the effects of salbutamol observed during both phases of the 

study (9 patients, 7 with complete VA/Q data) through a two-ways ANOVA 

analysis, we detected similar spirometric and hemodynamic responses, as 

shown by FEV1, IC and QT time courses in Figure 1. By contrast, whereas 

arterial oxygenation showed only negligible changes during the exacerbation, 

PaO2 in stable COPD decreased by 7 ± 2 mmHg at 30 min and by 6 ± 2 

mmHg at 90 min and AaPO2 increased by 5 ± 1 mmHg (30 min) and 6 ± 1 

mmHg (90 min) (p<0.01 each). Similarly, VA/Q inequality worsening after 

salbutamol resulted significantly greater and longer under stable conditions, 

as shown by DISP R-E* time course (Figure 1). In fact, during the 

exacerbation DISP R-E* increased by 6% at 30 min and returned to baseline 

at 90 min; by contrast under stable conditions we observed an increase of 

31% up to 90 min (p<0.05). ⋅⋅⋅⋅ 
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DISCUSSION⋅⋅⋅⋅ 

 

During COPD exacerbations nebulized salbutamol induced significant 

bronchodilator (increases in FEV1 and IC) and hemodynamic (increased QT 

and heart rate, decreased MAP) effects up to 90 min after nebulized 

salbutamol. We also observed a temporary, further, deterioration of VA/Q 

distribution accompanied by a mild gas exchange worsening 30 min after 

salbutamol. 

The same patients in stable convalescence showed a similar response to 

salbutamol in terms of spirometric and hemodynamic changes, even though 

at baseline they were in better clinical and functional conditions. By contrast, 

worsening in gas exchange and VA/Q imbalance were much greater in stable 

conditions and lasted up to 90 min after salbutamol. 

The strict relation between gas exchange and VA/Q imbalance has been 

widely investigated. Barberá and coworkers by studying COPD exacerbated 

patients, estimated that 46% of hypoxemia is attributable to VA/Q inequality, 

whether a 28% to the combined effect of increased VO2 and QT[3]. In our 

study VO2 did not appear to play a significant role in both phases of the study 

while QT was higher during the exacerbation. As QT increase is able to 

augment the oxygen concentration of mixed venous blood and potentially 

counterbalance the effects of VA/Q imbalance on arterial oxygenation, it has 

often supposed an important contribution of QT in determining PaO2 in COPD 

exacerbations.  
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By contrast, our study shows similar QT responses after salbutamol in both 

COPD exacerbation and stable convalescence, but a significant 

deoxygenation only in stable COPD, suggesting only a limited role of QT in 

determining PaO2. 

A worsening of arterial oxygenation and VA/Q balance after β2-agonists 

administration has been previously described and ascribed to the release of 

hypoxic pulmonary vasoconstriction [12-16]. Ringsted and coworkers, in 

comparison with our study, observed an analogous response of VA/Q 

distributions after the administration of intravenous terbutaline in stable 

COPD patients with a similar degree of bronchoconstriction[14]. Viegas  et al. 

also described similar data with the administration of nebulized fenoterol in 

stable COPD patients [16]. Our data confirm this hypothesis as PaO2 fall in 

stable conditions runs in parallel with the increased dispersion of pulmonary 

blood flow (Log SDQ), suggesting pulmonary vasodilatation.  

However, this phenomenon appears to be mild during COPD exacerbations 

as probably in presence of more hypoxemia, airflow obstruction, 

hyperinflation and higher hyperkinetic vascular state, the pulmonary vascular 

tone is more hypoxic and more constricted, hence less liable to 

vasodilatation. By contrast, under stable conditions gas exchange response 

to salbutamol is much greater as, in less hypoxemic conditions, the 

pulmonary vasculature is less constricted and more sensitive to 

vasodilatation i.e. hypoxic pulmonary vasoconstriction release and further 

VA/Q worsening. 

Similarly, the work of Ringsted showed minor VA/Q and gas exchange 

abnormalities in those patients who presented very severe airways 
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obstruction, likely because pulmonary vascular tone and its flexibility are 

limited in more advanced stages of COPD such as during exacerbations [15]. 

A clinical implication of this finding is that particular attention is necessary 

when SABA are administered to COPD patients as arterial oxygenation can 

temporarily worsen notwithstanding the general improvement of dyspnoea 

that is likely more related, to the degree of hyperinflation than to PaO2 [17]. 

In conclusion, this work by offering a complete and paired analysis of all 

parameters modulating respiratory gas exchange under different clinical 

conditions, clarifies effects and mechanisms of action of β2-agonists in COPD 

and, contemporary, underlies the central role of hypoxic pulmonary 

vasoconstriction in regulating VA/Q and gas exchange efficacy in COPD.  
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Table 1. Acute effects of salbutamol during COPD exacerbations (n= 20). 
 

 
Baseline 30 min 90 min p† 

FEV1, L 0.73 ± 0.06 0.83 ± 0.07** 0.81 ± 0.06** <0.01 

IC, L 1.62 ± 0.13 1.76 ± 0.13** 1.77 ± 0.13** <0.01 

VE, L/min 8.6 ± 0.4 8.9 ± 0.4 8.6 ± 0.5 NS 

f, min-1 17 ± 1 18 ± 1 18 ± 1 NS 

PaO2, mmHg 61.1 ± 2.0 59.1 ± 2.0 60.7 ± 2.0 NS 

PaCO2, mmHg 46.2 ± 2.1 44.7 ± 1.9** 44.3 ± 1.6 <0.02 

AaPO2, mmHg 36.5 ± 2.5 38.5 ± 2.3** 35.2 ± 2.5 <0.01 

HR, min-1 90 ± 3 99 ± 4** 95 ± 3** <0.01 

Ps, mmHg. 95 ± 3 87 ± 2** 89 ± 2** <0.01 

QT, L/min 7.1 ± 0.4 8.0 ± 0.5** 7.3 ± 0.4 <0.01 

VO2, mL/min 242 ± 7 249 ± 8 257 ± 8 NS 

Shunt, % of QT 1.8 ± 0.7 2.0 ± 0.8 1.7 ± 0.7 NS 

Low VA/Q, % QT 9.5 ± 2.4 12.6 ± 3.0** 8.7 ± 2.2 <0.05 

Log SDQ 1.17 ± 0.07 1.23 ± 0.07** 1.13 ± 0.08 <0.01 

Log SDVE 1.00 ± 0.04 0.99 ± 0.04 0.98 ± 0.04 NS 

High VA/Q, % VE 1.3 ± 0.7 1.4 ± 0.7 1.1 ± 0.4 NS 

Dead space, % VE 34.5 ± 2.0 35.8 ± 1.9 35.2 ± 2.0 NS 

DISP R-E* 14.9 ± 0.8 15.9 ± 0.9 14.0 ± 1.0** <0.01 
 

† 
Repeated measures ANOVA; ** p<0.05, post-hoc analysis (paired t-test) compared with baseline.

 
Definition of the abbreviations. 

f: respiratory rate; AaPO2: alveolar-arterial oxygen difference; MAP: mean systemic arterial pressure; Shunt, % of QT: % of QT to 

lung units with VA/Q ratios<0.05. Low VA/Q, % QT: % of QT to lung units with VA/Q ratio< 0.1, excluding shunt; Log SDQ: dispersion 
of blood flow distribution (normal, 0.30-0.65); Log SDV: dispersion of the alveolar ventilation distribution (normal, 0.30-0.60); High 
VA/Q, % VE: % of VA to lung units with VA/Q ratio>10, excluding dead space; dead space: % of VA to lung units with VA/Q ratio> 

100; DISPR-E*: dispersion of retention minus excretion inert gases corrected for dead space (normal, ≤ 3). 
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Table 2. Spirometric, hemodynamic and gas exchange data during exacerbations and under stable 
conditions (n= 9).  
    
 

 
Exacerbation 

 

Stable 
Conditions 

 
p† 

FEV1, L 0.76 ± 0.08 0.97 ± 0.16 NS 

FEV1, % pred. 24 ± 2 31 ± 4 NS 

FVC, L 2.15 ± 0.18 2.42 ± 0.25 NS 

FEV1/FVC% 51 ± 3 54 ± 5 NS 

IC, L 1.56 ± 0.15 1.99 ± 0.26 <0.02 

VE, L/min 8.9 ± 0.5 7.3 ± 0.5 <0.05 

f, min-1 17 ± 1 17 ± 2 NS 

PaO2, mmHg 63.5 ± 3.0 70.7 ± 4.4 <0.05 

PaCO2, mmHg 43.0 ± 1.9 43.4 ± 1.8 NS 

AaPO2, mmHg 36.9 ± 4.1 26.5 ± 3.1 <0.01 

QT, L/min 6.5 ± 0.4 5.7 ± 0.5 NS 

HR, min-1 81 ± 4 73 ± 4 <0.05 

Ps, mmHg 90 ± 4 96 ± 4 NS 

VO2, mL/min 246 ± 11 211 ± 12 NS 

SHUNT  % QT 0.5 ± 0.4 0.9 ± 0.5 NS 

Low VA/Q % QT 8.8 ± 3.6 4.5 ± 2.6 NS 

Log SD Q 1.24 ± 0.11 0.98 ± 0.09 <0.05 

Log SD VE 0.93 ± 0.05 0.91 ± 0.07 NS 

High VA/Q  % VE 0.37 ± 0.23 1.63 ± 0.82 NS 

Dead Space  % VE 35 ± 3 33 ± 4 NS 

DISP R-E* 14.58 ± 1.40 11.72 ± 1.39 NS 
 

† 
Paired t-test analysis;

 
(n= 7 for VA/Q variables). Definition of the abbreviations: see Table 2. 
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Table 3. Effects of salbutamol during stable conditions (n= 9). 
    
 

 Baseline 
 

30 min 90 min p† 

FEV1, L 0.97 ± 0.16 1.13 ± 0.20** 1.16 ± 0.20** <0.01 

FEV1, % pred. 31 ± 4 36 ± 5** 36 ± 9** <0.01 

FVC, L 2.42 ± 0.25 2.57 ± 0.27** 2.62 ± 0.29** <0.05 

FEV1/FVC% 40 ± 5 45 ± 5** 44 ± 5** <0.05 

IC, L 1.99 ± 0.26 2.26 ± 0.28** 2.24 ± 0.28** <0.01 

VE, L/min 7.3 ± 0.5 7.9 ± 0.5 7.4 ± 0.4 NS 

f, min-1 16 ± 2 15 ± 1 16 ± 1 NS 

PaO2, mmHg 70.7 ± 4.4 63.2 ± 3.4** 64.3 ± 3.2** <0.05 

PaCO2, mmHg 43.4 ± 1.8 43.0 ± 1.6 42.6 ± 1.7 NS 

AaPO2, mmHg 26.5 ± 3.1 32.0 ± 2.8** 33.6 ± 3.0** <0.01 

QT, L/min 5.7 ± 0.5 7.0 ± 0.6** 6.5 ± 0.5** <0.01 

VO2, mL/min 211 ± 12 232 ± 11** 213 ± 14 <0.01 

HR, min-1 73 ± 4 85 ± 4** 82 ± 3** <0.01 

Ps, mmHg 96 ± 4 91 ± 4** 89 ± 4** <0.05 

SHUNT  % QT 0.84 ± 0.44 1.36 ± 0.50** 1.32 ± 0.54** <0.05 

Low VA/Q % QT 4.11 ± 2.43 8.06 ± 3.54 9.61 ± 3.92 NS 

Log SDQ  0.96 ± 0.09 1.12 ± 0.13** 1.15 ± 0.13** <0.05 

Log SDV 0.91 ± 0.06 1.02 ± 0.07 0.96 ± 0.06 NS 

High VA/Q  % V 1.39 ± 0.73 0.98 ± 0.71 0.89 ± 0.68 NS 

Dead Space  % V 32.80 ± 4.10 34.21 ± 3.63 35.56 ± 2.89 NS 

DISP R-E* 11.35 ± 1.31 14.68 ± 1.48 14.14 ± 1.47 <0.01 
† 
Repeated measures ANOVA; ** p<0.05, post-hoc analysis (paired t-test) compared with baseline; (n=8 for VAQ data).  

Definition of the abbreviations: see Table 1. 
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⋅⋅⋅⋅ Conclusions and future perspectives 
⋅⋅⋅⋅ 
 

The main research work has been focused on the basic pathophysiology of 

gas exchange of two very common respiratory diseases, asthma and chronic 

obstructive pulmonary disease. 

Particularly, research on bronchial asthma has been conducted through a 

model of bronchial challenge with adenosine 5’monophosphate that is 

considered today innovative as it can simulate a real asthma attack through 

the activation of indirect inflammatory and bronchoconstrictive patterns. In 

particular we wanted to investigate the old hypothesis of dissociation 

between large and medium sized airways, accounting for the obstructive 

spirometric abnormalities of asthma, and small airways, where inflammatory 

and remodelling processes can affect gas exchange efficacy (PaO2, AaPO2, 

VA/Q balance) independently by the bronchomotor tone [1-2]. The existence 

of “a small airways disease” in asthma is an issue giving rise to an increasing 

interest of chest physicians. Unfortunately only MIGET studies of Wagner PD 

and Rodriguez Roisin R could give some scientific support to this hypothesis 

that remains difficult to detect as large airways tone influences the insight of 

pathological events affecting the more peripheral part of the lung. In addition, 

if we exclude few invasive methodologies analysing directly lung tissue (for 

instance, pulmonary biopsy), there are few possibilities to investigate 

pathophysiology of peripheral airways. A big contribution has been given by 

MIGET providing a picture of ventilation and distributions in functional lung 

units without interfering with broncho-motor and vascular tones. Even being a 
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difficult and not practical technique it gives, with the necessary experience 

and practice, a fundamental contribution to clinical research. Today we 

consider of great interest the investigation on small airways through the 

integration of MIGET with old and newer other techniques in order to obtain a 

better control and follow-up of the disease and to verify new therapeutical 

approaches. ⋅⋅⋅⋅On this base a new research protocol on mild-to-moderate 

asthma has been proposed in order to study patients with intermittent 

symptoms, treated with combined inhaled therapy (2-agonists - 

corticosteroids), by using different techniques able to provide some functional 

and morphological information on pathological processes of small airways. In 

particular we plan to study: 

1. Flow-volume curves, with particular attention at medium and low volumes 

(MEF and FEF 25-50-75];  

2. Closing volume; an increased value of closing volume or closing capacity 

expresses the precocious collapse of lower parts of the lungs and seems 

to be a good marker of small airways obstruction even in presence of a 

normal FEV1; 

3. Bronchial and alveolar production of NO; exhaled NO is considered a 

good marker of airways inflammatory disorders and a recent 

mathematical model is able to discriminate the bronchial and alveolar 

production by applying different resistances at mouth. 

4. Respiratory gases and AaPO2, through the direct measurement of 

respiratory rate (VCO2/VO2);
 ⋅⋅⋅⋅ 

5. MIGET; 
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6. Pulmonary ventilation scan. It analyses pulmonary ventilation distribution 

through the inhalation of TC99-labelled micro-particles; the recent 

technique, developed in the Cardio-Thoracic Department of Pisa, avoids 

adequately spotting images due to large airways deposition of the 

particles and allows a good definition of more peripheral ventilated areas.  

The aim is to evaluate the presence of VA/Q and gas exchange 

abnormalities, which remain commonly unidentified, beside mild spirometric 

abnormalities and to correlate them with the other parameters considered, 

hoping to find a new definition of small airways diseases in asthma through 

the combination of new and old techniques and new parameters specific for 

small airways able to open to new follow-up and therapeutical approaches. 

 
 

The other respiratory disease object of the present investigation with 

the contribution of MIGET is that heterogeneous group of clinical, functional 

and biological conditions called “chronic obstructive pulmonary diseases”, 

including, basically, chronic bronchitis, emphysema and, according to some 

authors, chronic asthma when flow obstruction reversibility is lost.  

Particularly, this clinical research experience has underlined the complexity 

of the interaction among intra pulmonary and extra pulmonary factors 

determining pulmonary gas exchange in COPD. Few methodologies can 

probably provide so complete information about pathophysiological 

mechanisms of a respiratory disease as MIGET. In addition, the model of 

study adopted in this work has two major advantages: ⋅⋅⋅⋅ 
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- it provides a better knowledge of β2-agonists that are not only 

bronchodilators but also vasoactive and inotropic agents profoundly 

influencing, therefore, the general hemodynamic balance; ⋅⋅⋅⋅ 

- it underlines the central role of pulmonary circulation and vascular tone 

regulation in pathophysiology of COPD, whereas the “vascular side” of 

respiratory diseases is often forgotten and airways abnormalities are uniquely 

considered. 

On the base of this research experience on COPD a new research protocol is 

actually been considering, aimed at the investigation of COPD heterogeneity 

that remains, despite the enormous progresses made in this field, an 

unsettled issue. 

Despite a universal definition of COPD, including all diseases characterized 

by poorly reversible airflow limitation [3], huge clinical, functional and 

radiological differences are described among individuals with COPD label 

and, more important, prognosis is diverse [4] and response to therapy may 

be different. COPD includes different specific phenotypes, chronic bronchitis 

(CB) pulmonary emphysema (PE) and, according to some authors, chronic 

asthma, when airways obstruction reversibility has disappeared. Major 

differences exist between asthma and COPD (CB/PE): clinical history, 

bronchial responsiveness, DLCO, biological markers and structural 

alterations of the lung usually permit to differentiate asthma from CB/PE, 

even for a similar degree of airway obstruction. A recent work of Fabbri et al. 

[5] highlights the importance of comparing asthma and chronic bronchitis 

patients of the same age class and with a comparable degree of airflow 
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obstruction. By using imaging (HRTC), functional (including salbutamol 

reversibility and methacholine responsiveness) and pathological techniques 

(exhaled NO, induced sputum, BAL, bronchial biopsy) the authors defined 

different phenotypes: patients with a history of asthma had more eosinophils 

in blood, sputum, BAL and airway mucosa, and a higher CD4/CD8 ratio of T 

cells infiltrating the airway mucosa. As expected, they also had less residual 

volume, higher DLCO, exhaled NO and reversibility to bronchodilator and 

steroids, and a lower HRTC-emphysema-score. ⋅⋅⋅⋅ 

It is clear that a large variability exists also within the big group of patients 

with chronic bronchitis with or without emphysema, in symptoms (perception 

of dyspnoea, presence of cough and phlegm, etc.), time course, radiological 

aspects and systemic effects of the disease. Important functional differences 

are also observed in DLCO, residual volume and hyperinflation.  

In addition, beyond the old definition of COPD subtypes of “blue brothers” 

and “pink puffer” that correspond to important pathological and functional 

differences, today it has become common to differentiate patients by 

systemic effects of COPD, on the basis of exercise capacity, body mass 

index and the involvement of peripheral muscles. 

At the origin of such variability is probably the existence of different 

pathogenetic mechanisms, different factor risks and predisposing factors that 

are not easy to unravel. The literature on MIGET in COPD has put into 

evidence the existence of different patterns of VA/Q distributions and has 

showed the intent to find some correlation between functional data and 

structure even with some difficulties but the combination of MIGET with more 
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modern radiological and biological techniques could give us much more 

information [6-8] ⋅⋅⋅⋅ 

The coexistence of chronic inflammation and oxidative stress alterations at 

level of small airways, of obstructive bronchiolitis and of parenchymal 

destruction in a variable proportion, makes COPD pathology extremely 

heterogeneous [9-11].  On this line, a new project of investigation has been 

planned on COPD heterogeneity (functional, biological and radiological 

features) that integrates the information deriving from HRCT and functional 

tests with ventilation - perfusion study (MIGET), biological measurements 

and markers of systemic involvement. 

The model of VA/Q study before and after the administration of inhaled 

salbutamol, a bronchodilator and vasoactive agent, could help to investigate 

the interplay of intra-pulmonary and extra-pulmonary factors modulating gas 

exchange in different pathogenetic conditions. 

The information deriving from the analysis of cell composition, inflammatory 

and oxidative stress markers in sputum and BAL (IL-8, TNF-a, NE, VEGF, 

MMP, NCA) and exhaled breath condensate (EBC) (8-isoprostane, MDA, 

LTB4, cys-LT) and from exhaled NO (bronchial and alveolar fractions) is 

fundamental to investigate the chronic inflammatory process causing airway 

remodelling, narrowing of small airways and loss of lung elastic recoil, and 

could have important therapeutical implications. 

Three classes of COPD patients could be selected, similar for age (55 - 65 

years) and airway obstruction (FEV1:  50 - 70% of predicted), by clinical 

history and radiological aspects: chronic asthma, chronic bronchitis with and 
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without emphysema. Possible targets of investigation are: the effects of 

inhaled salbutamol on gas exchange and ventilation/perfusion relationships; 

differences among the three classes of patients by the analysis of sputum, 

BAL, exhaled air and blood samples. The correlation among basal 

measurements of pulmonary function, gas exchange, inflammatory and 

oxidative stress markers can also be evaluated. The peripheral involvement 

could be evaluated through 6 min walking test and the evaluation of free fat 

mass (bio-electric impedance). ⋅⋅⋅⋅ 
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