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Introduzione



Questa tesi contiene parte del lavoro svolto negli ultimi tre anni presso i laboratori congiunti del CNIT

e della la Scuola Superiore Sant’Anna di Pisa, dove ho lavorato nel gruppo di Sistemi Ottici sotto la

supervisione del prof. Ernesto Ciaramella, ed in parte presso il Dipartimento di Fisica dell’Università

di Pisa, sotto la supervisione del prof. Nicolò Beverini. Durante questi anni ho avuto l’opportunità di

lavorare su vari filoni di ricerca (studio di sorgenti laser impulsate, esperimenti di processamento dei

segnali tutto ottico, sistemi di protezione dei guasti di rete,...) inquadrati in differenti progetti di ricerca,

ed anche in Università straniere (Massachussetts Intitute of Technology MIT di Boston, USA). In questa

tesi verrà comunque descritta solo una parte dei risultati sviluppati. In particolare, verrà discussa la ricerca

svolta mirata alla realizzazione di sotto-sistemi che possono essere impiegati nei sistemi di comunicazione

ottica (o, più in generale nelle Reti Ottiche) basate su trassmissioni di dati alla frequenza di cifra di

40 Gb/s. Ogni sottos-sistema sarà presentato seguendo un ordine che riproduce quello in cui questi sotto-

sistemi sono impegati effettivamente: inizierò descrivendo una sorgente di impulsi ottici ad altissimo bit-

rate da impiegare nei sistemi ottici multiplati a divisione di tempo (OTDM); si passerà poi alla descrizione

di vari convertitori di lunghezza d’onda che sono utilizzati nei nodi di rete; per concludere, verrà discussa

una unità tutta ottica per i recupero del sincronisimo, che è tipicamente impiegata alla fine di un sistema

di trasmissione ed è usata per affiancare i ricevitori veri e propri.

Tutte queste funzionalità sfruttano le proprietà ottiche non lineari di dispositivi tra i più comunemente

usati nei sistemi di comunicazione ottici: le fibre ottiche e gli amplificatori ottici a semiconduttore. Oltre

che dalla natura “tutto-ottica”, tutti questi dispositivi (o funzionalità) sono accumunati dalla ricerca di

semplicità sia realizzativa che progettuale: come verrà mostrato caso per caso, ogni sotto-sistema è stato

realizzato cercando di ricorrere al minor numero possibile di dispositivi per ridurre la complessità globale.

Questo è un punto fondamentale per dimostrare che le tecnologie “tutto-ottiche” possono rappresentare

un’alternativa all’elettronica.

Ogni “sotto-sistema” verrà trattato separatamente in un capitolo. Ogni capitolo contiene una breve discus-

sione sulle novità introdotte, rispetto a soluzioni simili presentate in letteratura o in commercio. Benchè il

lavoro riportato in questa tesi è essenzialmente di carattere sperimentale, per migliorarne la comprensione

e la completezza ogni capitolo contiene dei paragrafi in cui l’argomento viene illustrato dal punto di vista

teorico.

La tesi è divisa in 4 capitoli secondo lo schema seguente:

1. Introduzione ai sistemi di comunicazione basati su fibra ottica: un capitolo introduttivo per sp-

iegare l’evoluzione e la struttura e possibili scenari delle Reti Ottiche ed introdurre i motivi fondanti

della ricerca riportata nella tesi.

2. Una sorgente solitonica, in chapter 2

Questo capitolo contiene una discussione sulla progettazione e la realizzazione di una sorgente laser

da impiegare in sistemi OTDM. La sorgente è progetatta per produrre impulsi di durata inferiore

al picosecondo ad una frequenza di ripetizione di 40 GHz repetition rate. La sorgente è studiata

per essere utilizzata direttamente nei sistemi di comunicazione, senza la necessità di dover ricorrere
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a stadi di processamento successivi (come la risagomatura degli impulsi, la loro compressione o

la rimozione di piedistallo). Gli impulsi sono generati tramite un fenomeno di propagazione in

regime non-lineare controllato in una fibra ottica particolare. Benchè la sorgente sia stata progettata

per essere impiegata in sistemi OTDM, dato il suo spettro ottico largo e periodico potrebbe essere

utilizzata anche in altri ambiti, come verrà discusso più volte nel corso della tesi.

3. Esperimenti di conversione di lunghezza d’onda(includendo anche espeimenti di conversione di

lunghezza d’onda multipla), inchapter 3.

In questo capitolo, la conversione di lunghezza d’onda (ovvero il trasferimento della modulazione

contenuta su un segnale ottico ad uno su una portante a lughezza d’onda differente) è dimostrata

attraverso diverse tecniche, principalmente ricorrendo alle dinamiche veloci non-lineari deli am-

plificatori a semiconduttore. In tutti questi esperimenti, verrà trattata in dettaglio anche la realiz-

zazione della conversione di lunghezza d’onda simultaneamente su più canali: in particolare questa

funzionalità è ritenuta molto importante per le reti di accesso di prossima generazione..

4. Uno circuito tutto ottico per l’estrazione del segnale di sincronia da un segnale modulatoin

chapter 4

Lo schema presentato in questo capitolo per i recupero del sincronismo rappresenta un notevole

passo in avanti rispetto ai circuiti presentati precedentemente in letteratura, sia in termini di ef-

ficienza che di compattezza. Il dispositivo è basato sull’implementazione tutta-ottico del Tank-

Circuit (largamente utilizzato in elettronica). Questo circuito si è dimostrato molto versatile: in

particolare è stato dimostrato il suo impiego con diversi formati di modulazione, sia con traffico

continuo che a pacchetti. Il circuito inoltre è adatto per un’integrazione fotonica ibrida.
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Introduction



This thesis contains part of the work developed over the last three years at Scuola Superiore S.Anna

and CNIT joint laboratories (IRCPhonet) in Pisa, where I worked in the Optical System Group under

the supervision of prof. Ernesto Ciaramella, and partially at Physics Dept. of Pisa University under

the supervision of prof. Niccolò Beverini. During the these years I had the opportunity to work on

several different topics (realization of pulsed laser sources, experiments on all-optical signal processing

and optical networks failure-protection) and in different research projects. However, here I will describe

all the research works aimed to realize subsystems that can be employed in Optical Systems (or, more

widely, in Optical Networks) based on 40 Gb/s optical signals. Each subsystem is presented following a

logic sense that reproduces the same order in which they can be “implemented” in real systems: I will

start describing a pulse source, that represents the first element in every optical communication link; then I

will describe the implementation of several kinds of wavelength converters that are employed at networks

intermediate nodes; finally I will discuss an all-optical clock recovery unit, that is expected to be placed

at links ends, as an helper for receivers apparatus.

All the functionalities are realized exploiting the non-linear optical properties of the most common de-

vices used in Optics Communications, i.e., Optical Fibers and Semiconductor Optical Amplifiers (SOAs).

Beside the “all-optical” nature of subsystems, a common feature that characterizes all the reported works

is represented by the design and realization simplicity: as it will be shown, each system has been designed

in order to reduce the overall complexity and the number of used components; this is a critical factor to-

ward integration of all-optical circuits. This is also a very important point to demonstrate that all-optical

technologies can be a reliable alternative to electronics.

Each subsystem will be treated separately in its own chapter; each chapter will include a brief discussion

about the novelty of the proposed solution and the improvements in respect to previous published results.

Even if the work reported has been developed mainly experimentally, for better clarity and completeness

each topic will be accompanied by some theoretical consideration.

The thesis is composed in 4 chapters and structured as follows:

1. Introduction to Fiber-Optic Communication Systems and Networks: an introductory chapter

to explain Fiber-Optic Communications Systems and Optical Networks. The role of this chapter is

to illustrate structures, scenarios and the needing for the various research results (laser sources ans

all-optical signal processing functionalities) that are treated in the Thesis.

2. An optical soliton source, in chapter 2

This chapter contains the design issues and the realization of laser source for Optical Time Do-

main Multiplexed (OTDM) systems. The source is designed to produce sub-picosecond pulses at

40 GHz repetition rate (in order to be used in real systems without the needing of further process-

ing, like pulse reshaping, compression or pedestal suppression). Pulses are generated by a carefully

optimized and controlled non-linear light propagation phenomenon in a proper Optical Fiber. The

pulses quality guarantees the possibility to perform directly OTDM for operations at 160 Gb/s. Al-

though this source was designed mainly for Optics Communication purposes, due to its broad op-
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tical spectrum it has a number of other possible applications which will be also discussed through

the thesis.

3. Wavelength conversion experiments(including also multi-wavelength conversion), inchapter 3.

Wavelength conversion is demonstrated by means of several techniques, mainly exploiting the

fast non-linearities of SOAs. In all these experiments, a particular regard is given to the multi-

wavelength (1 to N) conversion that is a key functionality especially in next-generation access

networks.

4. An all-optical clock recovery scheme, in chapter 4

The scheme presented here represents a net improvement respect to previous circuits previously

reported in literature in terms of performances and compactness. It consists in the realization of the

well-known Tank Circuit (used in many electrical circuits to implement Optical Clock Recovery) in

the Optical Domain.The circuit revealed a good versatility, being able to operate for several different

modulation formats, and also with burst traffic. The circuit is suitable for hybrid integration.
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1 Introduction to Fiber-Optic Communication

Systems and Networks

The (massive) deployment of Fiber-Optics Communication Systems is, interestingly, a three-face phe-

nomenon. First, it involves scientific and technical issues: fundamental physics needed for continuous

technology improvements is at the base of the constant evolution of those systems. Second, the devel-

opment of optics communication systems had an important industrial and economical impact: in every

country the major telecom corporations have been involved in this process, realizing a fertile ground for

new emerging markets. Not last, the development of Fiber-Optics Communication Systems has been

accompanied by the evolution and the spreading of the Internet, that turned out to have a peculiar social

importance: Internet generated innovative art forms, new communications styles and novel forms of social

organizations.

Fiber-Optics Communication Systems offer the larger transmission capacity ever. In the second half of the

twentieth century it was realized that the use of optical waves as the signal carriers (instead of an electrical

or a radio signal) had the potential to increase by several orders of magnitude the capacity of communi-

cation systems. Until that time Communication Systems were based on electrical cables -telegraph and

telephony- or radio links. Since those times a huge effort has been spent to boost Fiber-Optic Communi-

cation Systems technology. However, several years were needed before the technology was ready for this

new generation systems. Although the mainingredientsfor those systems were discovered quickly (the

laser appeared in 1960 and the design of optical fibers in 1966), thereal revolution took place in 1970,

when a compact optical source (a GaAs semiconductor laser) and a low-loss transmission medium (the

optical fiber)became simultaneously available. Then, accompanied by continuous technology advance-

ments, the transmissive reach and and the capacity of Fiber-Optics Communication Systems have been

continuously increased and are still expected to increase.

In the past several issues concerning lightwave systems were addressed: the development of laser op-

erating at 1.5 µm (where optical fibers exhibit the lowest attenuation) and the introduction of optical

amplification (lumped or distributed) leaded to very long unrepeated transmissions. All-optical process-

ing techniques which enable the transfer of signal processing capabilities from the electrical to the optical

domain are also being developed. Other actual research targets include: system capacity increasing by

means of new channel multiplexing (for example sub-carrier modulation); alternative modulation formats

that are resilient to transmission impairments; component integration to allow for reduced coupling losses,

increased efficiencies, lowered power consumptions, easy mass production.

Interestingly, part of the technology developed to support fiber-optic systems is actually being used also
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1 Introduction to Fiber-Optic Communication Systems and Networks

in other fields: optical sensors technology, as an example, benefits from fiber technology. Another field

of application that is taking benefit from Fiber-Communications is the one of the so called Optical Inter

Connects, that are expected to replace electrical buses on electrical boards.

Fiber-Optics Communication Systems Building Blocks

Lightwave Systems can be divided in three major classes:

POINT-TO-POINT LINK systems. They are the usual optical communication systems. Depending on their

length they are defined asshort, long and ultra-long haul.Point-to-point links can be employed even

in undersea communications, where points that are thousand of kilometers apart are connected. Point-

to-point (p-2-p) links exist also for much shorter reaches, e.g. inside a building. P-2-p links are usually

installed for telephony and Internet communications.

Fundamental components of a lightwave p-2-p link are: a transmitter (made of an optical source and an

electro-optical modulator); a fiber; a receiver (made of a photodiode to convert optical bits in an electrical

signal and an electrical receiver). When transmission distances are in the range of 20÷100 m optical am-

plification is needed. Optical amplification is commonly realized by means of Erbium Doped Fiber Am-

plifiers (EDFA). In EDFA, optical amplification is obtained by a Stimulated Emission process generated

by the amplified signal itself. EDFAs have a gain window that extends all over the range of wavelengths

used in Fiber-Optic Communication Systems. Depending on the signal bit-rate and link length, distor-

tions accumulated along the propagation can generate transmission impairments. Those impairments can

be due to the linear effects of Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD). CD

is responsible for a linear distortion induced on the propagating signal due to different propagation veloc-

ities of the chromatic components contained in the signal itself. PMD is also a dispersion phenomenon,

but it is related to the different propagation velocities corresponding to different polarization modes. It is

a stochastic effect, and is usually negligible for transmission bit-rate below 40 Gb/s. Transmissions can

be impaired also by non-linear propagation effects, which can be observed when signals propagate with

a power level above a certain level. In case of multichannel systems, non-linear effects can be responsi-

ble for induced cross-talk among the channels. Distortions induced by CD, PMD and non-linearities can

be reducedby means of dedicated compensators placed periodically along the link, or at the link ends

(Figure 1.1). In some cases, depending on various parameters and on the system design, it is useful to

insert an ad-hoc pre-compensation stage after the transmitter.

Figure 1.1: Point-to-point fiber links with periodic compensation of losses and accumulated distortions

Longer transmission reaches can be obtained by using regenerators. An optical regenerator is a receiver-

transmitter pair that detects the bit stream, converts it to an electrical signal that is regenerated (reshaped,
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1 Introduction to Fiber-Optic Communication Systems and Networks

re timed and re-amplified) and then retransmitted. Regenerators, if placed periodically along the link,

cancel the distortions accumulated in each link span. The span length depends on a number of factors

(the modulation format used, the bit-rate, dispersion compensation strategy,....). Before the introduction

of optical amplifiers, typical span lengths were in the order of about 80÷100 km. To avoid the double

electro-optic conversion in each repeater (optical to electrical and then electrical to optical), all-optical

regenerators are currently investigated; in some cases (depending on which physical effect they are based)

they can be bit-rate and/or modulation format transparent.

Figure 1.2: Point-to-point link with in line regenerators. Regenerators could be realized also with all-optical tech-
nologies.

BROADCAST AND DISTRIBUTION NETWORKSsystems are used when information is sent to different

subscribers simultaneously. Systems for thi applications are cable television, telephone services, com-

puter data links. In this case the use of the fiber is advantageous: a single fiber allows the distribution of

a large number of channels, each one with a huge bandwidth.

Recently, much attention has been dedicated to passive distribution networks, commonly referred to Pas-

sive Optical Networks (PON). The passive term indicates that if the network nodes have lengths below

20 km, it is possible to avoid optical amplification. In this case, by using cheap components (power split-

ters) it is possible to deliver the traffic routed to each subscriber using a simple and effective architecture.

In this case star power splitters or cascaded power splitters can be used, each with varying splitting ratio

( Figure 1.3).

Figure 1.3: Example of a passive broadcast network.

LOCAL-AREA NETWORKS are deployed where a large number of users within a local area (e.g. a small

office) are interconnected, and each user can access the network randomly. The random access offered to

multiple users is the main distinctive character of this class of networks. To this aim, dedicated protocols

have been developed:Ethernetis probably the most famous, being at the base of theInternet. Ethernet was

designed to work initially at 10 Mb/s; later 100Mb/s and 1Gb/s were introduced; today its standardization

for 10 Gb/s systems is ready. Common LAN network topologies are the star-coupled and bus networks,
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1 Introduction to Fiber-Optic Communication Systems and Networks

much similar to those employed in Broadcast networks, or ring topology. In small environments, those

three configurations are often realized by coaxial, electrical cables or wireless links. In LAN, each node

contains a transmitter-receiver pair, that can also act as repeater; data are exchanged in form of packets

instead of continuous streams.

Figure 1.4: Passive 8x8 Star-coupler realized by means of a 12 fused silica directional couplers. Path from upper-
left node is evidenced.

Star-couplers can be eitheractiveor passive.In both cases the users are connected by a point-to-point

link. Passive star-couplers can be easily realized by means of directional couplers (seeFigure 1.4): those

kind of couplers are realized in fused silica. With passive star-couplers each destination node receives all

the traffic generated by all the other nodes. In this case, each node has to select its own data; this selection

is realized by means of the network protocol. Active couplers are able to redirect each packets to only one

user (or more than one in case of multicast connections): this is done by a receiver-transmitter pair, and

dedicated electrical logic.

Bus topology is less convenient from the power budget point of view. Assuming a constant insertion loss

δ at each tap, ifC is the fraction of power extracted at each splitter, the power available atN− th user is:

PN = PTC[(1−δ )(1−C)]N−1 (1.0.1)

In aNxN star coupler instead, the available power is:

PN =
PT

N
(1−δ )log2N (1.0.2)

Consideringδ = 0.05,PT = 1mW, PN = 0.1µW, it can be found thatN can be as high as 500 in case of

star coupled topology and only 60 in case of bus topology.

In LAN networks, the broadcast term is referred to connections established among one node andall the

LAN node. In some case, it is useful to send the information to a subset of selected networks node. Such

connections are defined asMulticastconnections. Multicast is currently realized with the help of power

splitters (either star, bus or ring), and an appropriate protocol; today Multicast connections are possible

thanks to active digital routers that perform the appropriate traffic redirection. However, several proposal

for the realization of access networks suggested to assign a dedicated wavelength to each node: in this
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1 Introduction to Fiber-Optic Communication Systems and Networks

case, the multicast functionality could be obtained realizing the so-called wavelength multicast: this kind

of multicast can be effectuated by transferring the information contained in a channel simultaneously to

several channels, each one at its own wavelength. This operation is known as Wavelength Multicasting1.

This problem will be addressed inchapter 3, where two different schemes to realize this functionality will

be presented.

Transmitters and Receivers

Fiber-Optics Communication Systems use mainly digital codings. Each transmitted bit lasts for a certain

period of timeTB known as bit period. The number of bit transmitted in the unit time (bits per second)

is called bit-rateB = T−1
B . In the simplest case, the binary representation, each bit can contain one of

two possible symbols, known asmarkandspace(or “1” and “0”). There are two major classes in which

modulation formats can be divided:Return-to-Zero (RZ)andNon-Return-to-Zero (NRZ).In the first case,

in each bit slot the symbol “1” is represented by a pulse shorter than the bit slot: its amplitude returns to

zero before the time slot ends. In the case of NRZ coding instead, the optical “pulse” remains at an high

level and does not drop to zero between two successive “1” symbols. In this case, the pulse duration is not

pre-determined. The main difference between those formats, can be found in the bandwidth: at the same

signaling rate, the bandwidth of an NRZ signal is about 2 times smaller than the corresponding RZ signal.

This can be understood if one thinks that for NRZ transmissions there is a minor number of transitions

per bit.

A Continuous Wave (CW) optical carrier before the modulation, can be generally written as:

~E (t) =~uE0cos(ω0t +φ) (1.0.3)

where~u is a polarization unit vector,E0 is the amplitude,ω0 is the frequency andφ is the phase. The

optical carrier can be modulated in amplitude, phase, frequency or a combination of those quantities. Ad-

ditionally, it is possible to modulate the signal in polarization. In case of digital modulation, the various

schemes are known asPhase-Shift Keying (PSK), Frequency-Shift Keying (FSK)andPolarization-Shift

Keying (PolSK).Probably the simplest modulation scheme is the so calledOn-Off Keying (OOK)and

consists of changing the signal intensity between two levels, of which one is set to zero. This modulation

format is the simplest also because it can be received directly by a photodiode, which is able to detect

intensity variations. PSK, FSK and PolSK instead have constant intensity (they are often referred as Con-

stant Enveloped (CE) formats): they need ademodulatorthat converts the modulated signal to an OOK

signal, in order to be received by a photodiode. However, CE formats have been recently demonstrated to

be advantageous for their resilience to CD .

Usually, data to be transmitted are generated in electrical domain, and then transferred to the optical

carrier: the modulation can be performed by applying the electrical signal directly on the laser source

1In case of a single destination channel, this operation is defined Wavelength Conversion.
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1 Introduction to Fiber-Optic Communication Systems and Networks

Figure 1.5: Schematic representation of common modulation formats for the NRZ case.

or by external modulation, through an electro-optical modulator. Direct modulation is convenient and

useful for signals transmitted at low bit-rates (usually no more than 2.5 Gb/s). Direct laser modulation is

accompanied both by intensity and frequency modulation: thus, an OOK modulation performed in this

way is always accompanied by a frequency modulation (or chirp) that can increase signal distortions along

the fiber.

External modulation can be performed with a variety of electro-optical modulators. Usually, Electro-

Absorption (EAM) or Mach-Zender (MZM) based modulators are used in systems implementations.

EAM are semiconductor devices that change they absorption coefficient when driven with a current above

a determined threshold. For this reason, they are useful to realize OOK transmissions. MZM modulators

instead are integrated Mach-Zender interferometers in which the arms relative phase-delay is controlled

by an electrical signal. In most cases, electrical signal generator provide NRZ signals. When RZ coding

is needed, it is possible to transform the electrical NRZ data stream into an RZ optical signal, by replacing

the input CW optical carrier represented in1.0.3with a “pulse” train with repetition rate corresponding to

the signaling rate, and pulse-width shorter than the bit-time.

PSK and PolSK can be simply realized by launching a CW into an electro-optical crystal; if the input

polarization is parallel to one of the crystal principal axes, Phase Modulation is obtained. Otherwise,

Polarization Modulation can be performed by entering the modulator with a linear polarization state, with

45◦ direction, in respect to the crystal contained into the modulator.
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1 Introduction to Fiber-Optic Communication Systems and Networks

(a) (b)

Figure 1.6: (a) Mach-Zender Modulator: in the picture, only one arm is phase-modulated. (b) A phase modulator.
Both modulators are usually realized onLiNbO3 substrates. Polarization modulation can be conve-
niently realized by using a Phase Modulator in which the input light has a linear polarization state, with
45◦ direction in respect to crystal axis.

Multiplexing: WDM and OTDM systems

In order to fully exploit the huge bandwidth offered by Optical Fibers it is necessary to transmit many

channels simultaneously through multiplexing. It is possible to realize multiplexing in several ways:

the most common are wavelength and time division multiplexing. Wavelength Division Multiplexing

systems instead are realized by using a dedicated optical carrier wavelength for each channel. Optical

Fibers exhibit a 15 THz window in which transmission losses are minimized around the 1500 nm, thus

making possible to multiplex a large number of channels (Figure 1.7). At the receiver end, each channel

(both in OTDM and in WDM systems) must be demultiplexed and received separately. Several standards

have been developed for WDM systems.

WDM systems can be divided in two major categories: Coarse and Dense. Coarse WDM systems are

characterized by a large wavelength spacing: originally the term CWDM was meant for systems with

channels allocated both in 1300 and 1500 nm windows. Recently WDM have been standardized as sys-

tems with 20 nm channel spacing. This large spacing allows to use uncooled lasers: due to large spacing

it is possible to avoid laser wavelength stabilization and saving the cost of thermal stabilizers. Dense

WDM (DWDM) systems instead are designed to multiplex an higher number of channels. In this case,

to obtain the closer wavelength spacing, it is needed to use highly stabilized lasers. However, the lack

of spacing DWDM systems are made possible by the use of Erbium Doped Fiber Amplifiers (EDFAs)

which guarantee simultaneous amplification of WDM multiplexed channels in the range approximately

from1530 to 1560 nm, without introducing significant cross-talk. Grid spacing have been standardized

at 200,100, 50 and 25 GHz, leading to systems with more than 160 aggregated channels2. The lack of

optical amplifiers with larger wavelength operational range limited the realization of CWDM systems to

local networks. The typical structure of a point-to-point WDM link is represented inFigure 1.8.

2It should be considered that the bit-rate of each channel is limited by the frequency spacing. For example, a 25 GHz grid is
not compatible with channels modulated at 40 Gb/s.
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1 Introduction to Fiber-Optic Communication Systems and Networks

Figure 1.7: Typical optical fiber losses. In correspondence of the region around 1.3 and 1.5µm there are losses
minima. Those region are called respectively Second and Third window, and occupy a region of 12
and 15 THz respectively. In those regions it is possible to allocate simultaneously multiple channels,
realizing WDM systems.

Figure 1.8: Schematic structure of a point to point WDM link. Multiplexing and demultiplexing are realized by
means of AWGs. As a common p2p link, it can be composed of several spans.

In point-to-point links, multiplexing and demultiplexing can be realized by Arrayed Waveguide Gratings

(AWG). An AWG is a dispersive guided medium such that when a number of WDM channels enter

into it, each channel is spatially separated on a dedicated fiber at its exit. At the same time, if used in

reversedirection, it allows to multiplex signals coming from different emitters (with distinct wavelength

on different input fibers) on a single output fiber (Figure 1.9).

Optical Fibers have a linear transfer function that can be expressed as a filter (eiβ (w)ωL whereω is the

carrier frequency,β (ω) is the parameter accounting for chromatic dispersion andL is the fiber length.
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Figure 1.9: Schematic principle of an AWG.

However, above a power threshold, fibers can become a non-linear propagation medium: due to the

fiber small sections ( 50÷ 100µm2), signals propagate with very high intensities even at low powers.

This threshold depends on several fiber design parameters. Fiber non-linearities have been exploited to

perform a variety of all-optical processing functions: optical switches, non-linear mixing, optical sampling

devices, pulse train generation, .... In WDM transmission, the non-linear fiber response can be really

detrimental. Non-linearities generate channels interactions that induce undesired cross-talk among the

channels. Such effects are not easy to avoid: long span reaches requires high launch powers. Several

solutions have been proposed to mitigate those impairments. The introduction of distributed amplification

helped partially to solve this problem: it allows to reduce the launch power and to maintain the average

power below the non-linear threshold all along the link.

Figure 1.10:The use of distributed Raman allows to avoid propagation regimes in which non-linear effects can
impair the signal. With distributed amplification it is also possible to avoid propagation in regimes in
which the average power is too low in which noise can be accumulated.

Time Division Multiplexed (TDM) is a type of digital multiplexing in which two or more apparently si-

multaneous channels are derived from bit stream, by interleaving pulses representing bits from different

channels. TDM was first introduced at electrical level to aggregate telephone traffic of different sub-

scribers in a single, larger capacity channel; TDM realizes a single channel at high bit-rate instead of N

channels with lower capacity. TDM bit-rates were standardized by ITU consortium. A standard voice

signal has a bandwidth of 64 kbit/s, determined using Nyquist’s Sampling Criterion. TDM takes frames
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of the voice signals and multiplexes them into a TDM frame which runs at a higher bandwidth. So if the

TDM frame consists of n voice frames, the bandwidth will ben∗64kbits/s. Each individual multiplexed

stream is called tributary channel. TDM has been standardized in the SDH protocols, which define multi-

plexing rates, and operations such frames add and drop. OTDM is an extension of TDM in optical domain.

It differs with WDM in two major points: first, all the channel multiplexed with OTDM do not need to

be at a distinct frequency; second, OTDM requires RZ coding. WDM instead can be realized with both

NRZ and RZ codings. OTDM systems are able to increase the bit-rate of a single optical carrier to values

as high as 320 Gb/s. An OTDM transmitter is depicted inFigure 1.11. It requires a pulse source with

repetition rate corresponding to the tributary bit-rate. This pulse train is divided in a number of tributary

channels that are modulated independently, properly delayed and then coupled together by means of a

power splitter. Each branch is delayed by an amount of(n−1)/NBwhereN is the number of bit streams

multiplexed,B is the tributary bit-rate, andn= 1, ...,N. In most cases, Mode Locked (ML) lasers are used

to this aim. However, it is required that the pulses have a pulse-widthτ < (NB)−1in order to fit within

the aggregated bit-time. If the source does not fulfills this requirements, a compression stage is needed

before performing the multiplexing. Inchapter 2it will be presented an alternative pulse source: it is not

based on the common used ML technique, and provides directly short pulses, ready to be multiplexed to

an higher bit-rate. Due to its high output power it also eliminates the need of a pre-amplifier, like shown

in Figure 1.11.

Figure 1.11:Typical OTDM transmitter. A pulsed source is power split. Each branch is modulated, properly
delayed and then recombined.

Demultiplexing of OTDM signals is more complex and requires always a clock signal. With clock signal,

it is meant a periodic pulse train with a repetition rate that match the bit-rate of the tributary channels.

This clock signal is used tosamplethe desired tributary channel. The sampling can be performed with

electro-optical or all-optical devices. In general, the latter are preferred because can operate at higher

speed. In cases in which an all-optical clock signal is not available at the receiver, an additional unit, a

Clock Recovery (CR) circuit is needed. A CR circuit is able to recover the original periodic pulse train

from the modulated one. In practice it fills with a pulse the bit-slot in which pulses are not present. This

functionality will be discussed in more detail inchapter 4, where a novel and compact all-optical solution

to perform this task will be presented.
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Figure 1.12: Illustration of Clock Recovery functionality: a CR unit removes the modulation from an RZ signal,
and extract a produces pulse train.
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2 A Soliton Pulse Source for 40 Gb/s systems

2.1 A soliton source based on adiabatic compression in Dispersion Shifted

Fiber

In the following section I will describe the realization of a soliton-like pulse source based on the Adiabatic

Compression (AC) of a sine-modulated wave by non-linear propagation in a optical fiber. It will be

shown that this technique is suitable to produce optical pulse trains to be used in Optical Time Domain

Multiplexed (OTDM) Systems. Several kind of sources were demonstrated using this principle in the past.

However most of those implementations are based on AC compression of pulses that are already available

(i.e. generated by other sources). On the contrary, the source presented here is based on the simultaneous

pulse formation and compression in the same non-linear medium. The first part of the chapter provides

basic concepts of light propagation in optical fibers and a review of the Adiabatic Compression (AC) of

solitons in Optical Fibers; the second part is focused on experimental results.

2.1.1 Theory

2.1.1.1 Pulse propagation in Optical Fiber

Light propagation in Optical Fibers is determined by small number of parameters: the attenuation, the

chromatic dispersion and a non-linearity coefficient. All these parameters appear in the wave propagation

equation (also known as Non Linear Schroedinger Equation (NLSE) [1]) that in optical fibers assumes the

form:

i du
dz =−γ |u|2u+ D̂u− iαu (2.1.1)

D̂ =−
∞

∑
n=2

inβn

n!

(
∂

∂ t

)n

(2.1.2)

Hereu(z, t) is the Electric Field complex amplitude at positionz and timet. Even if a vectorial represen-

tation would provide a complete description the electric field can be treated as a scalar; this approximation

is valid for a wide range of scopes (at least for all the ones included in this thesis) and enough to introduce

basic concept of light propagation in fibers. In2.1.1, the time variablet is measured in a reference frame

that travels with the light. Attenuations, or losses are most due to Rayleigh scattering and is represented by

the parameterα. As a scattering process, the attenuation is a function of the wavelength. However, across
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2 A Soliton Pulse Source for 40 Gb/s systems

the spectral region of interest for optical communications (the C-band1), its value it’s almost constant and

is equal to 0.2dB/km (or 0.46km−1 linear scale).

Chromatic Dispersion is represented by the operatorD̂ and accounts for the different propagation veloci-

ties of the various chromatic components contained in the fieldu. This phenomenon is due to the refraction

index dependence on the signals wavelength:n = n(λ ). In the D̂ series expansion each term accounts

for different order contribution to the chromatic dispersion. Each tern is effective on a determined time

scale: The higher is the order, the fastest are the signal dynamics needed to observe the corresponding

effects. Typical optical communication signals do not exceed picosecond time scales variations; thus a

good representation can be obtained in most cases by retaining only the second order contribution,β2,

while the third order contributionβ3 becomes important to describe propagation of signals with temporal

variations on time scales below 1 ps.β2 is generally not constant vs. the wavelength, even in C-band:

its value depends on the material (fused silica) and on the geometrical properties of the fibers (waveguide

diameter, for example). For classical optical fibers, in which the propagation is based on total internal re-

flection,β2 shows generally a monotone behavior in the region of interest. Typical values range from−1

to−20ps2/km(depending on the fiber and the wavelength). Each type of fibers differ mainly in the slope

of this curve. The wavelength at whichβ2 cross the zero value, is calledZero-Dispersion Wavelength.

Most modern fibers, based on light-trapping due to photonic band-gap effects, can be designed instead

with almost arbitrary dispersion profile.

Table 2.1:Typical Dispersion Coefficients Values for different Optical Fibers.

Fiber Types β2( ps2

km) β3( ps3

km)
Single Mode (G.652) -20 0.005

Dispersion Shifted (G.655) −3÷3 0.063
Dispersion Compensating 80÷160 0.02

The non-linear parameterγ accounts for interactions between fields that simultaneously propagate into

the fiber, new frequencies generation, self-phase modulation effects. In optical fiber, non-linearities are

due to the optical Kerr-effect, that describes the non-linear polarization response of fused silica induced

by the traveling waves. Kerr effect [2] is observed in centro-symmetric materials, and it is manifested

through a variation of the index ellipsoid of the material when an external electrical field is applied to the

material itself. The effect is non-linear because the refraction index modification is proportional to the

square of the applied field:

∆n ∝ |E|2

thus, in a Kerr media, the refraction index is usually written as:

1The C-band is defined as a wavelength region ranging from 1530 to 1565 nm. The C-band is all contained in the so called
third window.This “window” corresponds to the the interval with lowest attenuation level in optical fibers.

19



2 A Soliton Pulse Source for 40 Gb/s systems

n(ω, |E|2) = n0(ω)+n2
|E|
ε

2

(2.1.3)

wheren2 is a scalar coefficient if we consider a uni-axial material, andω is the optical pulsation. When

a very intense optical field traverses a Kerr material, Kerr effect can be observed even without applying

external bias fields: in this case, it is the electrical field associated to the optical beam itself that generates

an refraction index perturbation. This particular effect it is known as Optical Kerr Effect, and it is the one

responsible for optical non-linearities in fibers. For Optical Kerr effect, the squared electric field in2.1.3

is the optical wave intensityI , thus the Optical Kerr effect can be written as

n(ω, I) = n0(ω)+n2I (2.1.4)

The relation betweenn2 in 2.1.3and2.1.4and the parameterγ that appears in the propagation equation

(eq:2.1.1),

γ =
n2ω

cAe f f
(2.1.5)

wherec is the speed of light, andAe f f is the fiber core effective area (strictly related to transverse mode

dimensions). As it can be seen from its definition, fixed the optical power,γ contains a dependency on

optical intensity (through the effective areaAe f f). As in optical fibers the core size vary in the range of

2÷90µm it is possible to observe the Optical Kerr effect even with relatively small average power levels

(tens of mW). To observe the same effects in bulk media, higher power levels would be required.

Standard fused-silica single-mode fibers have non-linear coefficients with a value around 2.2 1
Wkm. In

more recent fibers, designed with small sized cores or with photonic crystal transverse structure,γ can

reach higher values (101
Wkm). The highest non-linear coefficient instead has been reached recently by

combining a small structure guiding cores (such as 2.2µm2) and doping techniques. Doping has been

tested with chalcogenide [3] or bismuth-oxide [4] compounds. In particular, with this technique it was

possible to reach non-linear coefficient values up to 11001
Wkm (so 3 orders of magnitude higher respect to

the standard fibers). However, those fibers are also characterized by high dispersion values; for example,

the bismuth-oxide doped fiber shows a value of−280ps/nm/km. In this case, the losses are also increased

due to the extremely small core sizes.

When considering pulses propagation in fibers it is possible to extract important qualitative information

by taking in consideration other few parameters without constraining hypothesis on the pulse temporal

shape: those parameters are the peak powerP0 and pulse-widthT0. This is possible by retaining only the

second order contribution of̂D operator and introducing a normalized amplitudeU as

u(τ,z) =
√

P0e−αzU(τ,z)

whereτ = t−z/vg

T0
is the time variable defined in a reference frame moving with the pulse, and normalized

to the pulse-width. The electric field is normalized, by accounting for the losses. After that it is possible
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to re-cast the wave propagation equation2.1.1in another form, and to define two important length-scales

that characterize the pulse evolution:

i ∂U
∂z = sgn(β2)

2LD

∂ 2U
∂τ2 − e−αz

LNL
|U |2U (2.1.6)

LD = T2
0

β2
LNL = 1

γP0
(2.1.7)

The first length scale,LD, indicates the length over which it is possible to observe linear propagation

(i.e, over which linear effects manifest). A similar meaning can be associated to the lengthLNL that

indicates the length over which non-linear effects can be observed. From their definitions, it is clear

that those quantities do not depend on the fiber only (through the parametersγ andβ2), but also on the

pulse properties (its widthT0 and the peak powerP0). Once fixed the fiber and the pulse parameters the

propagation regime is than regulated by the ratioLD
LNL

.

Through the definition of the linear and non-linear scale lengths it is also possible to study the pulse

propagation considering separately linear and non-linear regimes and then combining them together to

describe the complete pulse evolution.

In linear regime, a pulse-shape is altered by chromatic dispersion: the accumulated distortions can gener-

ate pulse broadening or modify the pulse symmetry properties. Broadening effects are related to second

order dispersion, while symmetry effects are due to third-order dispersion. Due the low relative mag-

nitude of third-order dispersion compared to the second order dispersion coefficient (more than 2 order

of magnitude for the various fibers, cfr. tab.Table 2.1), it is possible to observe the third-order effects

only when the second-order dispersion is negligible (i.e., near the zero-dispersion wavelength), or with

sub-picosecond pulses. To derive a general description of distortions induced in linear propagation regime

for arbitrary pulse shapes let’s consider the propagation equation obtained by settingγ = 0 andα = 0 in

eq.2.1.1:

i
∂U
∂z

= D̂U (2.1.8)

obtained by settingγ = α = 0 in eq.2.1.6. If D̂ expansion is retained up to the 3rd order, the solution is

given by:

U (z, t) =
1

2π

∫ ∞

−∞
Ũ(0,ω)e(

i
2β2ω2z+ i

6β3ω3z−iωt)dω (2.1.9)

whereŨ(0,ω)is the Fourier Transform of the field atz= 0.

Even if eq.2.1.9furnishes a complete and exact solution, it does not provide directly information about

the pulse-width evolution neither about the amount of asymmetry acquired during the propagation. Those

information can be obtained by the following argument. The pulse-width can be defined through the

Root-Mean-Square width, defined as
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σ =
[〈

t2〉−〈t〉2]1/2

where the〈〉operation indicate the time averaging2. Then, its evolution can be described by means of the

first and second moments of time variablet, that evolve as (in analogy with the Ehrenfest’s theorem for

the case for position and momentum observables described by a Schroedinger equation) :

d〈t〉
dz = i

〈[
D̂, t
]〉

(2.1.10)

d
〈
t2
〉

dz
=−

〈[
D̂,
[
D̂, t
]]〉

(2.1.11)

Here,〈t〉 governs the asymmetry of the pulse, while
〈
t2
〉

is a measure of the pulse broadening. Higher

order moments can be calculated, and define the skewness and kurtouis of the pulse (3rd and 4th moments

respectively).2.1.10and2.1.11can be integrated analytically, and their solution is given by:

〈t〉= a0 +a1z

〈
t2〉= b0 +b1z+b2z2

where the coefficient depend only on the initial field shapeU(z= 0, t) and are given by:

a0 =
∫ ∞
−∞U∗

0 (t) tU0(t)dt

a1 = i
∫ ∞

−∞
U∗

0 (t)
[
Ĥ, t
]
Uo(t)dt

b0 =
∫ ∞

−∞
U∗

0 (t)2U0(t)dt

b1 = i
∫ ∞

−∞
U∗

0 (t)
[
Ĥ, t2]U0(t)dt

b2 =−1
2

∫ ∞

−∞
U∗

0 (t)
[
Ĥ,
[
Ĥ, t2]]U0(t)dt

In non linear propagation regime, (discarding the linear effects) the pulse evolution is affected mainly by a

phenomenon known as Self Phase Modulation (SPM). This effect describes a dephasing effect among the

2the average is defined as〈t p〉=
∫

t p|U(z,τ)|2dτ∫
|U(z,τ)|2dτ
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chromatic components inside a pulse. The dephasing depends on instantaneous power: each chromatic

component in the pulse exhibits a nonlinear phase rotation. SPM is evident analytically from the NLSE

(eq.2.1.1), once the non linear propagation effects are isolated (i.e. by puttingD̂ = 0̂):

∂U
∂z

=
ie−αz

LNL
|U |2U (2.1.12)

By direct integration, the pulse evolution is given by:

U(z,τ) = U(0,τ)eiφNL(z,τ) (2.1.13)

where

φNL = |U(0, t)|2 1−e−αz

αLnl
(2.1.14)

While a dephasing effect is observed also in the linear regime, here the dephasing is such that pulse

intensity shape is unaffected (eq.2.1.13): this means that the pulse acquire a chirp. Due to the losses, this

effect is not observed for every propagation length. For this reason, it is convenient to introduce another

length (known as Effective Length) defined as:

Le f f =
1−e1−αL

α

as the fraction of the fiber length in which the non-linearity can be considered effective.

The dephasing effect in non-linear propagation regime is accompanied by the generation of new frequen-

cies. This can be evinced by analyzing2.1.14. The phase variation implies an instantaneous optical

frequency difference across the pulse, from its carrier frequencyω0 (a chirp). This frequency difference

can be expressed as

δω(t) =−∂φNL

∂ t
=−1−e1−αz

αLNL

∂

∂ t
|U(0, t)|2 (2.1.15)

The chirp increases with the propagating distance. Thus new frequency components are continuously

created while pulse propagate down the fiber.

In real systems, it is not possible to separate linear and non-linear effects; this is particularly true in fibers

with high non-linear coefficients: in those fibers the enhanced non-linearity is obtained by reducing the

effective area; at the same time, this increases the losses and changes the dispersion properties (that are

tightly related to the waveguide dimensions). As result, the linear and non-linear lengths overlap.

If proper boundary conditions are matched, it is possible to observe a mutual cancellation of non-linear

and linear propagation effect: this leads (if losses are neglected) to the formation of solitons. Phenomeno-

logically, a soliton is a pulse that propagates indefinitely without changing its electric field.
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2.1.1.2 Adiabatic Compression of Solitons in Optical Fibers

Adiabatic Compression of solitons in optical fiber has been extensively studied in the past years [5], [6],

[7], [8]: it is based on the intrinsic soliton stability against small energy perturbations that can be observed

in anomalous dispersion regime [9]. Using the standard terminology, this stability can be expressed by

means of the conservation of the soliton order N. For the fundamental solitons ( defined by N = 1) this is

expressed by the conservation lawγT2
0 P0

β2
= 1. This condition is equivalent to

LD

LNL
= 1 (2.1.16)

In such conditions the soliton envelope is found to be an hyperbolic secant function, defined as:

U(z,τ) = P0sech(τ)ei z
2 (2.1.17)

When stability conditions apply, optical solitons react to an energy perturbation (amplification or atten-

uation, depending on the perturbation sign) by reshaping themselves adjusting their width in order to

maintain the soliton order unaltered. Of course this stability it is not achieved for every energy perturba-

tion. For example, in a uniform and lossy fiber, this process can observed on small propagation distances

(where the attenuation losses are negligible and thus can be treated like a perturbation); in this case, it is

found that the soliton increases its pulse-width (to keep constant the productT0×P0). For longer propaga-

tion distances, when the propagation became essentially linear, some chromatic components can escape

from the soliton envelope and radiate away, thus destroying the soliton [10]. A simple evaluation of the

pulse-width evolution of a soliton in presence of small energy perturbation can be derived as follow. A

first order soliton (hyperbolic secant envelope, eq.2.1.17) carries an energyE equal to:

E = 2P0
TFHWM

1.763
=

3.525|β2|
γTFWHM

After perturbing soliton energy by a factor G (over a propagation length z), the following relations hold:

E (z)
E (0)

= G =
β2(z)γ(0)TFWHM(0)
β2(0)γ(z)TFWHM(z)

This means that the pulse-width scales as:

TFWHM(z) =
β2(z)γ (0)TFWHM(0)

β2(0)γ (z)G
(2.1.18)

In the case of uniform fibers (such that dispersion and non-linearity do not change along z,β2(z) =
β2(0) andγ (z) = γ (0)) with constant losses (G= e−αz), the pulse-width increases exponentially with the

distance:
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TFWHM(z) = TFWHM(0)eαz

As stated before, this is only valid for small energy perturbation (i.e., for propagation lengths in which the

relation2.1.16holds).

Eq. 2.1.18states that the pulse-width is not affected only by the gain: choosing a fiber with appropriate

dispersion or non-linearity coefficient that vary along the longitudinal dimension, it is possible to control

the pulse-width and to compensate for the perturbation effects. Thus, with a proper non-uniform fiber it

is possible to maintain the same soliton profile, compress or stretch the pulse. For example, by choosing

a dispersion profile such thatβ2(z) = β2(0)e−αz (with α equal to the attenuation coefficient of the fiber)

it is possible to compensate exactly the effect of attenuation along the propagation; in this regime, even

if constantly loosing power, the soliton maintains its proportions (the productT0×P0). In this sense, it

could be said that using dispersion tailoring techniques, it is possible to obtain aneffective amplification.

The same balance could be in principle obtained by using a fiber with increasing non-linear coefficient.

From an experimental point of view, it is not simple nor practical to realize optical fibers with the desired

non-uniform parameters. Experiments were carried out by using cascade fibers with decreasing zero-

dispersion wavelength, so that the soliton experience astepdispersion profile. Of course, with this kind

of solutions, it is not possible to design arbitrary shaped dispersion (or non-linearity) profiles.

Even if from a theoretical point of view, dispersion tailoring is equivalent to anactive amplification,

Adiabatic Compression obtained with dispersion tailoring is less effective. In fact, the compression ratio

that can be achieved is given byβ2(0)/β2(z) (assuming a monotone dispersion profile). This means that

the compression ratio is limited by the initial value of the dispersion (as negative dispersion values are not

acceptable for soliton propagation); in literature, compression factors near by 20 were reported.

Higher order solitons support higher compression ratios [11], but their temporal shapes are not always

compatible with the requirements of Optical Systems.

A trade-off between compression performance and soliton characteristics, has been shown by Pelusi and

Liu [11]. They reported that compression ratio can be improved using solitons of order 1<N<2. In

their work, they analyze this phenomenon studying several different dispersion profiles. They shown

compression factors up to 50: the price to pay in this case, is to handle with pulses that present small chirp

and/or pedestal. Chirp and pedestal can be detrimental for pulse transmissions.

Eq.2.1.18shows that also distributed amplification (i.e. a fiber in which the gain parameter is a function

of the propagation distance,G = G(z)) can be useful to the aim of pulse compression.

Distributed amplification, offers a number of advantages and it is easier to implement. The most simple

distributed amplification scheme is achieved with Raman amplification [12]. Raman amplification exploits

the Raman Scattering that can be observed in molecular media. In Raman Scattering a photon of an

incident field (called the pump) is annihilated to create a photon at lower frequency (known asStokes

wave), shifted by the vibrational modes of the molecules in the medium. At the same time, another

photon is created in order to conserve the energy and the momentum. In this process the incident light
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acts as a pump for generating the Stokes waves. If photons at Stokes wave energy are already present in

the medium, they experience amplification at pump expenses.

It is also possible to combine together both distributed amplification and dispersion decreasing fibers.

Distributed amplification can be useful to obtain higher compression ratios. An advantage offered by

the distributed amplification is that imposing proper boundary conditions, it is possible to obtain almost

arbitrary gain profiles in the same fiber (by changing for example pumps power and insertion points).

For example, it was shown by [13] that using a configuration with double Raman pumping (both co-

propagating and counter propagating) it is possible to realize quasi-loss-less links. Quasi loss-less links

are characterized by a gain parameter such that|G| is almost equal to 1 all over the fiber. In this way

soliton propagation over distances up to 50 km has been demonstrated. However this solution is not

free of limitations; high power levels can generate other undesired non-linear effects (as Stimulated Bril-

loiun Scattering). Compression of soliton in presence of amplification was studied by Blow, Doran and

Wood [14]. They studied soliton dynamics related to amplification processes. They derived that solitons

are compressed and that the propagation lead to a stable solution (depending on initial soliton order).

Their work also shown that the compression is characterized by a pulse-width oscillating behavior (with

decreasing oscillation depth along the propagation) around the final stable solution. Another important

conclusion was that a pulse traveling in a amplified fiber tends to converge to a soliton order that depends

on the accumulated gain. As it will be shown shortly, this is also important for the realization of the source

described in this chapter. Blow et al. paper was limited to the case of constant gain but it is easy to extend

their result to the more general case in whichG = G(z).

This is possible by solving numerically the standard pulse propagation equation (eq.2.1.1) in which the

loss coefficient is replaced by a distributed gainG(z):

i
du
dz

=−γ |u|2u+
1
2

β2
∂ 2u
∂ t2 − iG(z)u (2.1.19)

In 2.1.19, the loss coefficient has been replaced by the quantityG(z) which represents the amplification

(or attenuation) along the fiber. The gain/loss profileG(z) can be determined by first calculating the power

profile P(z) of a continuous wave propagating into the amplified fiber. Then, the gain coefficient is given

by the relation:

instantaneous

G(z) =
1

P(z)
dP
dz

This approximation is valid if the amplification process does not depend on the instantaneous signal

shape. OnceG(z) has been determined,2.1.19can be solved with standard numerical integration method.

In particular,2.1.19can be solved by the Split Step Fourier Method [1]. An implementation of such

algorithm will be included in Appendix A.
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2.1.2 Source design

As already mentioned, the pulse source was realized exploiting the AC phenomenon. The main novelty

introduced with this scheme, in respect to the previous published works in this area, is that this source

combines the processes of pulse generation and compression in the same non-linear medium (the optical

fiber). The pulses formation stage, is obtained by launching a sine-modulated wave into a Dispersion

Shifted Fiber. It was previously demonstrated by Ciaramella and Artiglia [15] that launching a sine-

modulated wave into a fiber with proper dispersion can lead to soliton train formation. This phenomenon

is strictly related to the modulation instability. In optical fibers, Modulation Instability is a phenomenon

observed when a CW light is let propagate over long distances [16]: if the CW (carrying a powerP0) light

is affected by a small amplitude modulation (from noise, for example), such modulation is amplified

over the propagation. This phenomenon however can be only observed if the propagation occurs in

anomalous dispersion regime. The amplification process is governed both by the non-linear and dispersion

coefficients of the fiber. The gain experienced by the noise at various frequencies detuned of an amount

Ω from the CW light carrier frequencyω0 is given by

g(Ω) = |β2Ω|
√

Ω2
c−Ω2 (2.1.20)

whereΩc is a characteristic frequency determined by the fiber parameters and is given byΩc = 4γP0
β2

. In

particular, the non-linear coefficient governs the frequency of the amplitude modulation at which amplifi-

cation reach the maximum value at a frequencyΩmax, given byΩmax=∓ Ωc√
2

=∓
√

2γP0
β2

.
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Figure 2.1: Modulation Instability Gain Curve in Optical Fibers (β2 =−20ps2/km, γ = 2(Wkm)−1 , P0 = 1W ).

This phenomenon is strictly related to the Four Wave Mixing (FWM) process [17], that will be treated

in next chapterchapter 3. In our case the initial instability is represented by sine-like wave, that evolves

into a pulses train. Adding a distributed amplification stage in the same fiber can improve the soliton

formation, leading to narrower pulses. To obtain distributed amplification, we used a counter-propagating

Raman laser. The counter propagating configuration, was used mainly for two reason:
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1. The counter propagating Raman amplification is characterized by a lower noise contribution in

respect to the co-propagating configuration. Raman amplification is characterized by fast response

times (about 80f s ) [18], so that, power fluctuations on pump wave, can be reflected in power

fluctuation of the amplified signal. However in counter-propagating configuration the noise of the

Raman pump is averaged over the amplifier transit time, with a net effect of a low-pass filter [19]

2. By adjusting the power levels of input sine-like wave and the counter-propagating pump it is pos-

sible to adjust the gain/loss curve profileG(z) as it will be discussed more in detail later in this

chapter. This allows to achieve the optimal compression factor compatible with the required soli-

ton order. The possibility to adjust the gain/loss profile it is also an important advantage from the

experimental point of view, because it provides an easy and quick way to tune not only the output

pulse-width but also other pulses properties (mainly the chirp and the pedestal residual), in order to

obtain the desired quality pulses.

The source can be described by a very simple block diagram (Figure 2.2).

Figure 2.2: Source block diagram: a sine-modulated wave is compressed into a fiber by means of non-linear effects
enhanced with distributed parametric amplification.

In this block diagram, an input sine-like wave is launched into a non -linear fiber, where it is adiabatically

compressed to form a pulse train. Adiabatic compression is enhanced by inserting a counter-propagating

Raman pump into the other end of the fiber, as discussed before.

All the details about the methods that can be used to experimentally realize this block diagram and the

choice and characteristics of the single needed components will be discussed insubsection 2.1.3.

In the simplified model represented inFigure 2.2, three main parameters determine the pulses formation

and compression:

1. The signal input power (determined by the lumped amplification stage).

2. The Raman diode laser power (or, equivalently the Raman amplification factor).

3. Fiber dispersion
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The first two parameters are important because they set the gain/losses profile defined above, through the

coupled equations that describe the counter-propagating Raman amplification [1]:

dIs
dz

= gRIsIp−αsIs

dIp
dz

= gR
λs

λp
IsIp +αpIp

In these equations,αs,p represent the fiber attenuation coefficients for the signal and the Raman pump

(they are slightly different, due to the different wavelengths3), Is,p are the signal and pump intensities,

λs,p are the wavelengths of signal and pump waves, and finallygR represent the Raman gain coupling

coefficient, indicating the energy exchange between the pump and the signal (Stokes wave). For the sake

of the simplicity we can choose the maximum Raman gain condition (λs−λp ' 100nm in silica) so that

the Raman gain tilt can be neglected. Typical values are chosen for loss coefficient (respectively 0.2 and

0.35dB/km for signal and pump).

Those equations were solved numerically by setting the signal and pump intensities at the opposite fiber

ends as initial conditions. InFigure 2.3it is shown a typical signal power profile along the fiber. In this

case, it is reported the result of a simulation over a 20 km long fiber. It can be seen how in the first half

of the fiber, the signal experiences attenuation, while the Raman amplification becomes dominant in the

second half, where the pump is more intense. It is also interesting to see that in the reported condition,

the pump shows a little depletion. The ratio between the signal power level at the output of the fiber in

presence of and without the Raman amplification is defined as Raman on-off gainGon−o f f .

Figure 2.3: Raman gain profile in counter propagating configuration. It can be seen that for high Raman pumping
power levels, the pump is affected by slight depletion near the insertion point. For comparison, it is
also plotted the loss curve for the signal, indicating the power profile alongz when amplification is not
supplied. The Raman on-off gain is defined as the power difference between the cases in which the
amplification is supplied or not.

3We remember that the Raman laser is down-shifted by100 nm respect to the signal
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The third parameter taken in consideration here is represented by the chromatic dispersion of the fiber,

that determines the pulse evolution in the initial section of the fiber (where propagation is not significantly

affected by the amplification, seeFigure 2.3), as well as the pulse compression in the second fiber half,

where the amplification is dominant. To better understand the role of each parameter simulations are

run for an input 40GHz sine-wave (matching the desired pulse train repetition rate) and considering a

fixed signal power at the DSF input (30mW) for a wide variety of combinations of the two most critical

parameters, i.e. the dispersion and the Raman gain. For simplicity, in the following we useD (fiber

chromatic dispersion coefficient given in ps/nm/km) andGon−o f f to account for the two effects. The

obtained results significantly depend on these two parameters, as indeed only a proper combination gives

the desired soliton-like condition (chirp free and 1ps pulse-width).

As far as the chromatic dispersion is concerned, the optimum value resulted to beD' 2ps/nm/km, signif-

icantly lower compared to values used in [20], [21] and higher than for fibers with no Raman gain [15] (in

the last case, 40 GHz solitons requireD≥ 1ps/nm/km). Moreover theD value is not as critical as in [15].

Indeed simulations indicate that there is a quite wide range of acceptableD, so that in a practical source

λs could be tuned with no critical limitations due to the dispersion slope of the DSF. It should be said,

however that choosing dispersion values outside this range pulse generation is sub-optimal. For example,

lowering the dispersion ( for example toD = 0.5ps/nm/km, as inFigure 2.5-a) the pulses are generated

with pedestal. On the contrary, choosing dispersion values that too high from the optimum value, it is

possible to obtain always good pulses, but with non-optimal compression factor (output pulse-width up

to 5ps) . This is shown inFigure 2.5-b where output traces of pulses obtained with numerical simulation

with fiber dispersion equal toD = 10ps/nm/kmare reported.

Gon−o f f instead should be between 11÷14dB. Lower Raman gain gives broader pulses, while excess

gain typically results into higher order solitons: indeed, close to the best operating conditions, the source

pulse-width can be slightly tuned by changingGon−o f f . This can be seen from simulation results shown

in Figure 2.4in which two different results are reported, forGon−o f f set to 8 and 20dB respectively.
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Figure 2.4: Impact ofGon−o f f parameter on pulses formation. The figure reports two results of numerical simula-
tions, ran withD = 2ps/nm/kmand launch power set to 20mW. The main effect of the Raman gain
is to affect pulses compression. In the case in which the amplification is maximized, it is possible to
obtain very short pulses (0.5ps) but with a small pedestal.

The launch power, has also a major impact on the pedestal formation under the pulses. An example of what
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(b) D = 10ps/nm/km

Figure 2.5: Impact of Chromatic Dispersion on pulses formation. Those figures represent the pulses formation
obtained with a numerical simulation. In this case, launch power was set to 20mW while Raman Gain
Gon−o f f was set to 13dB. CD is responsible for pedestal formation at extremely low values (a), while
it lowers the compression factor for higher values.
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Figure 2.6: Impact of launch Power. Those figure represent the result of a numerical simulation obtained forD =
2ps/nm/km , Gon−o f f = 13dB and launch power set to 10mW. As it can be seen in (a), pulses are
formed, but they are not solitons. This it is remarked in (b) where it is reported the simulated result of
the propagation of the produced pulses over 10kmof fiber with sameD parameter: the pulse clearly do
not maintain their shape along the propagation.

it is obtained with low launch power (10mW)is reported inFigure 2.6. This set of simulation has been ran

with D = 2ps/nm/kmandGon−o f f = 13dB. Also in this case it is obtained a pulses formation, but there

is not enough separation between adjacent pulses. InFigure 2.6-b it is also reported the propagation over

10km long fiber of the pulse generated with 10mW : it is almost clear that we not have a soliton pulse, as

the pulse-width varies along the propagation.

When the sine-modulated wave is launched with higher power into the fiber, we obtain very short pulses,

but again with pedestal formation: still this is not good for time domain multiplexing. The numerical

simulation results of this case, are shown inFigure 2.7.

In the same figure, it is also possible to observe that propagating that pulses, those are affected by self-

frequency shift (due to the high peak power and the short duration). This latter effect is evidenced by the

increase of propagation speed (that, in the case of solitons, it is determined by the pulse carrier frequency).

Always in b) it is possible to notice that the pedestal varies along the propagation.
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Figure 2.7: Impact of launch power. Launch power is set to 70mW. The other simulation parameters are the same
of Figure 2.6. In b) it is possible to observe the self-frequency shift effect due to the high peak power
of the obtained pulse.

Optimal values for pulses generation with pulse-width around 1psand pedestal free, can be found tuning

the 3parameters inside the range shown up to know.

Figure 2.8: Simulation results of pulses produced with optimal parameters. Both time and optical spectrum traces
are reported.

In Figure 2.8two typical optimal results are shown. They are obtained forD = 2ps/nm/km andgR =
13dB. AsD andgR are optimized, the output pulses are very similar to fundamental solitons. On the

left we report the output pulse train and on the right we show the optical spectrum. The output intensity

profile is well matched with asech2 fitting and, for each pulse the productγP0T2
0 /β2 is very close to 1,

i.e. the theoretical value for fundamental solitons. Furthermore, the simulated propagation of the obtained

pulses along a loss-less uniform fiber (with sameγ andD) shows no appreciable distortion.

These results suggest that the fiber output is very close to a regular soliton train.
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2.1.3 Experimental Realization

The source was experimentally realized in a number of successive revisions that lead us to a final engi-

neered configuration in a closed box, ready to use. All those variations differ mainly in the choice of the

single components, but always around the model treated in the previous sections.

Figure 2.9: Source Experimental Setup. LD: Laser Diode; RF: Radio Frequency generator; EDFA: Erbium Doped
Fiber Amplifier; DS: Dispersion Shifted Fiber; WDM: Wavelength Division Multiplexing Coupler; OI:
Optical Isolator

The experimental setup is reported inFigure 2.9. It will be illustrated here discussing the various ex-

perimental aspects. Results from previous section can be summarized by saying that the optimal model

parameters can be represented as follows:

Table 2.3:Summary of optimal values (as resulting from numerical simulations) for the modeling parameters that
have been individuated.

Intensity Modulator ext. ratio >20dB
EDFA output power 14dBm

Fiber Length 20 km
Group Velocity Dispersion 2 ps/nm/km

Raman Gain 13 dB

The first requirement, cannot be satisfied experimentally, because typical 40Gb/s modulators cannot

offer extinction ratio values beyond 12dB. The other parameters, instead, can be fully satisfied with

commercially available components. The fiber dispersion of 2ps/nm/kmwas matched by using a DSF

with λ0 = 1535nm and a CW source emitting around 1560nm. From an experimental point of view,

the dispersion value (fixed the zero-dispersion length of the fiber) can be tuned by adjusting the CW

carrier wavelength. To this aim, the first experiments in which we tested the feasibility of the source and

make a comparison with the numerical modeling, have been realized by using a tunable CW laser source.

Moreover, as deducted from the simulations, the dispersion value it is not critical: little variations still give

good solitons at the output. This property, turned out to be interesting, because the tunability of CW initial

signal, results also in a tunability of the source itself, giving to it an important added value. Other tests

however were carried out using commercial Distributed Feedback Lasers. DFB lasers of course offer a

number of advantages in term of compactness, low power consumption (typical operating current around

100mA) andintegrability.

Another scheme that was used to realize the source, consists in the replacement of all the sine-like gen-

eration stage (including the IM), as sketched inFigure 2.10: it requires two CW sources with the proper
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Figure 2.10:Two LDs emitting at frequencyf1 and f2 coupled with the same polarization states, produce an inten-
sity modulation that behaves like a sine wave at frequencyf = | f1− f2|. Moreover, if the lasers are
phase-locked each other, it is possible to control the phase of the intensity modulated signal.

frequency spacing, a polarization controller and a 3dB coupler. This scheme limits the possibilities to use

the source in telecom applications (due the lack of an interfacing with an external clock); but it can help

to reach very high degree of stability if the two CW sources are frequency locked.

Having tested the source in all those configurations, we can affirm that the pulses generation can be

obtained with any sine-like wave in the input with a sufficient modulation depth (corresponding to ampli-

tude extinction ratios greater than 12dB). In an Optical Network environment, this is important because

it means that the source can be realized using as input signal a waveform obtained from any proper

source available in the Network, for example a signal extracted from an optical clock recovery circuit (see

chapter 4).

FromTable 2.3we see that the optimal launch power level into the DSF fiber is quite high (' 30mW):

unfortunately at those values Brillouin Scattering is stimulated. It causes the light to be retro-reflected and

inhibits the soliton formation.

Stimulated Brillouin Scattering is a threshold effect: it is observed when an optical signal with adequate

average power propagates into an optical fiber. Above the threshold an acoustic wave is excited into the

fiber, modifying the optical fiber properties, in particular, its index of refraction.A significant fraction of

the signal power is then transferred to a back-reflected wave that propagates in the opposite direction. In

this process, the signal wave, exciting the acoustic mode into the fiber is referred as apump signalwhile

the back-reflected wave is known asStokes wave.The threshold is determined by several parameters fixed

by the fiber (length, geometry and material) but also on the signal spectrum. The threshold is expressed

as:

Pth '
21Ae f f

gBLe f f

(
1+

∆νs

∆νB

)
(2.1.21)

whereAe f f denotes the fiber effective area,Le f f the fiber effective length (considering the losses),gB

is the Brillouin gain coefficient (around 4×10−11m/W), ∆νB is the SBS interaction bandwidth (approx.

20MHzat 1550nm) and finally∆νs represents the signal bandwidth.

SBS is a detrimental effect for our purposes. In fact, for the fiber used in the experiments, the threshold

powerPth is very low, less than 20mW, thus below the needed power of 30mW that is required to produce

the desired AC. This limits the amount of light that can propagate into the fiber to generate the pulses as

discussed in the previous section, and it has to be suppressed.
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Looking at eq.2.1.21, and taking in account the typical value of SBS interaction bandwidth∆νB, it can be

seen that SBS threshold can be increased by increasing the signal carrier spectral line-width of few tens

of MHz: to this aim, both external and direct frequency modulations can be effective.

Direct frequency modulation is achieved by direct modulation of the laser pump current (because for

a DFB laser the emission wavelength is directly proportional to the intensity of pump current). Such

current modulation will produce a laser line-width broadening related to the modulation depth: if a proper

modulation depth is chosen, it is possible to achieve optical line broadening in the region of MHz, even

modulating the pump current at lower frequencies (kHz). The required direct modulation depth depends

on theλ vs. current characteristic function of the laser. For commercially available DFB lasers typical

modulation depth values needed to suppress SBS are below 5%.

External frequency modulation, being obtained with the help of an external frequency modulator, has to

be performed at the same frequency of the desired broadening. External frequency modulation should

be in theory preferable to amplitude modulation: in fact, even if this kind of modulation reduce the

power on the optical carrier, it offers the advantage of keeping the signal with a constant envelope (before

the RF modulation). Current modulation instead, is transformed directly in low-frequency amplitude

modulation (due to the dependency of the laser power on the pump current intensity). In turn, this low

frequency amplitude modulation can be transformed in timing-jitter, especially if they are transmitted

over long distances. On the other end, timing-jitter would be also induced by frequency modulation itself

(as soliton speed depends on carrier frequency). Moreover, a frequency modulation requires an additional

modulator increasing the source complexity. We decided finally to apply a low-frequency direct current

modulation to the DFB used to extract the initial CW signal; direct current modulation reflect both in a

weak wavelength and power modulation of the CW. As it will be seen later, the use of direct modulation

has a very low impact on the source timing-jitter.

In the preliminary tests, the pump signal bandwidth was increased both using an internal function of the

employed tunable laser, that enables it to lase in a multi-mode configuration, and with an external phase

modulator driven by an arbitrary waveform generator at the proper frequency (tens of MHz).

In the final implementation we realized a simple electrical tunable oscillator that has been integrated into

the DFB power supply board, in order to supply the required current modulation at few kHz.

The following figures show the setup used to verify the SBS suppression obtained by modulating directly

the DFB laser current. The measurements are taken by measuring the back-reflected power from the fiber,

following the scheme illustrated inFigure 2.11.

Figure 2.12shows the reduction of SBS obtained with direct laser modulation (current dithering). When

dithering is applied the SBS threshold is increased from 12 dBm to a value beyond 18 dBm. We tested

several modulation patterns at different frequencies, and with different modulation depths. Several com-

binations of modulation frequency and modulation depth ensure the SBS suppression. Among them, we

have chose the one that need the to lowest modulation depth, in order to minimize the possible impairment

that can derive from it. We found that in our case, the best performance are obtained dithering the diode

current with a sinusoidal waveform at 300kHz, with a modulation depth of 3%.
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Figure 2.11:Setup used to test SBS suppression. An EDFA in conjunction with a Variable Optical Attenuator
(VOA) is used to set the signal launch power level. The VOA was used because it allows a finer
control over the signal power. An Optical Isolator (OI) avoids that back-reflected light hits the Laser
Diode (LD). The back-reflected power is measured with a Power Meter (PM), after it is separated by
a 1-99% coupler.

Figure 2.12:Effect of SBS suppression by direct modulation of laser pump current. Without laser dithering light
is back-reflected from the fiber by SBS with a threshold power level that is around 12dBm; after
direct current modulation the threshold is increased to higher values (that cannot be reached with the
available EDFA).

The 40GHz sine-like modulation was finally impressed by using a tunable Radio Frequency (RF) gener-

ator: in preliminary experiments, due to the lack of a 40GHz RF generator, we also used a commercial

40GHzLiNbO3 based Intensity Modulator (IM) driven at 20GHz and biased at null-point, in order to

obtain a modulation at the double frequency. This experimental trick, proposed first in [22] has the dis-

advantage of a low initial extinction-ratio (around 8dB). Another important difference with the case of

modulation directly at 40GHz is the spectrum shape: in the doubling case, the carrier frequency is sup-

pressed. In later experiments we used both RF tunable generator and a small integrated 40GHz oscillator,

with fine-tuning option only.
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The EDFA used to set the proper launch power into the non-linear finer, is also a commercial component.

No special requirements are requested here (apart from the high power output). In theintegratedversion

of the source, we used a fixed gain EDFA, using at its output a Variable Optical Attenuator to control the

power that it launched into the fiber

We used two configurations to achieve Raman amplification. First we used a commercial system, made

by 3 single diodes emitting at distinct wavelengths around 1460 nm to achieve amplification around 1560

nm. Those pumps were coupled together and sent into the fiber by using a multi-wavelength coupler. The

system provided a control over the power level of each diode: this control was used both to adjust the gain

profile curve and to move the gain peak, that was found to have a width of about 10nm. In practice, we

found no significant difference in pulses compression for different gain profiles, until the amplified signal

is close to the Raman gain peak. In a later setup we replaced this source with a couple of Fabry-Perot

(FP) diodes emitting around 1480 nm. The two pumps were coupled together by means of a Polarizing

Beam Splitter: this ensure that Raman amplification is distributed over all the polarization axes in the

fiber; in fact, being the DS fiber non polarization maintaining, the signal polarization changes in random

way along the fiber. Those FP diodes can be controlled both with working temperature and injection

current. Although they are not stable at all in wavelength they furnish a flat gain profile around the desired

region (1560nm). Both Raman diodes, had typical relative intensity noise (RIN) around 110dB/Hz. From

indications taken by [19] we estimated a−50dB power fluctuation transferred to the amplified signal.

The Raman pump (whatever the diode used) is removed by using an Optical Isolator at the input end of

the fiber in order to avoid that it enter the EDFA damaging it (Figure 2.9).

Typical pulses produced by the source are reported inFigure 2.13, where it is possible to observe a typical

time domain trace (obtained with an high-bandwidth optical sampling oscilloscope that was available at

the time by courtesy of Agilent Technologies Italia) and a spectrum image.

Figure 2.13:Left: Optical Sampling Oscilloscope (by courtesy of Agilent Technology Italia) image of the pulse
train at 40GHz. Right: experimental measure of the Optical Spectrum. In the spectrum it is possible
to note residual 20GHz tones from the initial impressed modulation (see in the text)

The Optical Sampling Oscilloscope used to observe the pulse quality, is based on asynchronous sampling

in a Periodically Poled Magnesium doped lithium niobate (PPMgLN) crystal. The sampler is claimed to
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have 1THz bandwidth, and allows to observe the very fast dynamics of sub-picosecond pulses without

introducing distortions [23]. The optical sampled traces provide information on the pulse intensity only;

it is impossible to extract information about the optical phase across the pulse.

Those figures refer to the case in which the modulation is achieved by doubling a 20GHz RF tone as

explained above. Such tones are present (even if at quite lower intensity) in the spectrum because we

cannot bias the IM exactly at null point. This is due to a non ideal behavior of the available Mach-Zender.

As a consequence, there is a residual trace of the original 20 GHz RF tone. As the input lightwave, the

generated sequence is Carried Suppressed (i.e. made of pulses with alternating phase): this feature may

have positive applications, however it is avoided in the configuration that uses a conventional 40 GHz

modulation scheme. Beside this, it is possible to observe the triangular shape of the spectrum envelope.

This is a direct consequence of thesech2 shape that characterizes both the time and spectrum profiles (sech

is a function that is invariant respect to the Fourier transform operation);sech2 has a triangular shape in

logarithmic scale.

Autocorrelation and optical spectrum traces recorded with direct 40GHz modulation can be observed in

Figure 2.14-Figure 2.15.

Figure 2.14:Auto-correlation trace of the produced solitons. In this case, the Raman gain is adjusted in order to
achieve 1.5pspulses.

In this case, the Raman gain was set in order to achieve 1.5ps pulses. Autocorrelation gives nor direct

information about the pulse intensity, nor phase information. Those information could be retrieved by

means of Frequency Resolved Optical Gating (FROG) measurement apparatus, which was not available

(and, however, its realization was far beyond the scope of this thesis work). Phase and amplitude infor-

mation would be required to affirm the soliton character of the produced pulses. However, a combined

reading of intensity and optical spectrum traces together with numerical modeling results lead us to affirm
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Figure 2.15:Experimental Optical Spectrum trace of a pulse train produced with direct 40GHz modulation. The
spectrum envelope triangular shape is marked in the figure.

that the produced pulses are very close to be fundamental solitons.

This can be evinced first of all by fitting the intensity profiles with thesech2 profile. Looking at the

spectrum, it can be easily recognized that its envelope it is characterized by a triangular shape (in logarithm

scale representation) indicating an hyperbolic secant profile. The absence of chirp (phase modulation

along the pulse) can be verified by evaluating the time-bandwidth product: its value is always estimated

to be around 0.316, value that characterizes transform-limited hyperbolic secant pulses.

In the previous section, it was underlined that the main parameters that should be taken in consideration

for this kind of source are:

• Fiber Dispersion

• Signal power level at DSF input

• Raman induced gain (parametrized as on-off Raman gain)

It is pretty simple to vary all those parameters in numerical simulations: but it is also possible from an

experimental point of view. The signal power level at the input of the fiber can be easily done with the help

of a variable attenuator. We noticed that this has a major influence on the pedestal that can be observed in

the produced pulses. The dispersion parameter instead, can beeffectively variedby tuning the wavelength

of the CW signal launched into the fiber: this is true because the fiber dispersion profile is not constant.

As result, by tuning the CW signal it is possible to experimentally measure the compression behavior for
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various dispersion values (just as it has been done with numerical simulations); at the same time it allows

to characterize the source tunability: it is important to know this parameter to understand the applications

in which the source can be employed. It should be noted that varying the signal wavelength would require

to adjust correspondingly the wavelength of the Raman pump, in order to maintain the Raman amplifying

condition (λs− λp ' 100nm) and to avoid to change the Raman on-off gainGon−o f f together with the

chromatic dispersion. In other words, it not possible to vary experimentally dispersion and Raman gain

independently as it has been done with simulations, so that in this case simulations and experimental

observation cannot be compared directly.

Figure 2.16:Source tunability measurement: good pulses, pedestal free and with pulse-width< 1.5pscan be ob-
tained over a 20 nm range, by tuning the initial wavelength.

With the help of a tunable laser, we performed the measurement of pulses Full Width Half Maximum

(FWHM) for a wavelength range between 1540 and 1565nm. The FWHM as been evaluated from auto-

correlation traces. The results are plotted inFigure 2.16. As it can be seen, the pulse-width is almost

unchanged over an interval of 15 nm, then it increase versus lower wavelengths. Outside this range, the

compression scheme is not working as desired: pedestal arises and the pulses become distorted; at lower

wavelengths the Raman amplification is less effective (we exit from the amplification condition), while

for higher wavelengths the EDFA is not capable to sustain the required power (around 30mW) to start

non-linear propagation into the fiber.

The effect of a wrong value of the launch power, is evidenced inFigure 2.17: the image represents an

autocorrelation trace of a pulse train obtained with the launch power set to 17dBm (about 50mW). As

expected, and in agreement with numeric simulation (seeFigure 2.7) a pedestal arises.

The other parameter that can be varied experimentally is the Raman gain: this can be simply done by

changing the power level of the Raman pump. The increase of Raman amplification causes further com-

pression of the pulses. However, the output pulses are no more fundamental soliton-like, as denoted by

the formation of pedestal. Strictly speaking, it is not easy to decide whether or not they are higher order

solitons. In any case, compression in time domain gives raise to larger spectrum: while on one side this

produces worst quality pulses, on the other side it allows to produce a signal with a wide spectrum made

of periodical spaced lines (known as acomb spectrum). Increasing the Raman gain (beside to an increased

output power) results into a great increased spectrum width. Such spectrum can find application in sev-
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Figure 2.17:Autocorrelation trace of pulse produced with a non-optimal input power level. As predicted by nu-
merical simulations, the pulses are affected by pedestal.

eral non-linear optics experiments, serving as optical reference in mixing experiments. In others possible

application, it can also be used as Multi-Wavelength source. Retaining the same experimental setup, and

strongly increasing the Raman gain, it is possible to frequency filter the enlarged spectrum obtained at

the output to carve pulses in different spectral windows, thus obtaining in each one a pulse train with the

carrier set around the filter position. With this parameters, the overall output power is also increased. For

example, rising the Raman pump power in order to achieve an on-off gain equal to 20dB, it is possible to

obtain an average output power of 150mW. This process is illustrated inFigure 2.18, where are reported

the full-spectrum –inset (a) and two filtered output around 1543 and 1564nm - inset (b) and (c). In this

case, the filter bandwidth is around 2nm. The spectra are shifted vertically for a better clarity.

Figure 2.18:By setting the source parameters to produce an ultra-broad spectrum, it is possible to obtain pulses
at different wavelength by using proper filtering. a) The full spectrum obtained by increasing Raman
gain into the source. b) and c) Filtering effect at two different wavelengths.
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In the time domain the pulses are not solitons, and their pulse-width is limited by the filter bandwidth.

The pulse-width is not constant at various filter positions: this is due to the fact that the spectrum it is

not perfectly symmetrical. Also the power varies along the spectrum: this is more obvious, as the main

contribute to the total power is given by the region around the carrier wavelength. Those variations are

reported inFigure 2.20. The pulse-width (estimated by the autocorrelation traces assuming a Gaussian

pulse) is always less than 3 ps. The pulse quality is not optimal as in the previous case, but still good

shaped, with no pedestal and with an high extinction ratio between adjacent pulses. Typical traces are

reported in?? for pulses filtered at 1540nm and 1560nm. These characteristics make this kind of source

suitable for higher bit-rate multiplexing (for example to 80GHz).

Figure 2.19:Autocorrelation trace of pulses obtained by filtering the output signal at a) 1540nmand b) 1560nm.
As it can be seen the pulses show a minimal pedestal; pulses obtained by filtering the spectrum are not
suitable to be multiplexed to higher bit-rates.

This kind of tunability is really different from the one shown before. In the first case, we tuned the input

CW wavelength; in this case the tunability is obtained by we spectral filtering the source output port.

While the first method offers the possibility to have higher quality pulses and with homogeneous char-

acteristics (pulse-width and power) all over the tunability range, with the second technique it is possible

to power split the source output and then filter simultaneously each derived stream: in this case, it could

be possible to use the source in a hybrid WDM/OTDM system. In this case, the pulse-width fluctuations

can be compensated by a proper choice of dedicated filter on each stream while the power variations can

be flattened by using dedicated lumped amplification stages (that do not alter the pulses shape, if provide

chromatic dispersion compensation) or attenuators.

2.1.4 Source engineering

Putting together all the considerations illustrated above, we realized a engineered version of the source

with the purpose to realize aninstrumentready to be used. To this aim, some components have been

realized ad-hoc, while others were commercially available. Most of the components used to assembly

the source in the various versions presented in the previous sections arespace invasive: power supplies,

laser controllers, amplifiers, etc, usually require a whole lab bench. So, the engineering required to

choose smaller components, in order to fit everything into a box. The first problem we found is that in
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Figure 2.20:Power and pulse-width (FWHM) excursion of the pulses, moving a 2nmfilter along the broad spectrum
produced by the source.

several cases it was difficult to find integrated components with specifications comparable to the ones

offered by laboratory instrumentation. For example, it is impossible to find a small laser diode in standard

butterfly package tunable over the range shown inFigure 2.16. Hence in some cases, we choose a trade-

off between compactness of the components and their performance, taking care that the overall result was

still acceptable. To cope with this problem we designed the source in order that all the components that

could limit the sources performance can beby-passedwith external instrumentation.

In this way, the source can operate by itself, as a stand-alone piece of equipment, but there is also the

possibility toimproveits performance if needed by recurring to external devices.

Beside the lack of tunability of DFB laser (that show only a limited tunability range), the other critical

component was the RF clock used to generate the 40GHz modulation. We choose a compact and inte-

grated voltage controlled oscillator, with a line-width of the order of few kHz. RF oscillator, however,

provides a tunability range of 10MHz.

To solve those problems, we provided two inputs on the box front panel: one for an external laser source

(a tunable laser, or a DFB emitting on another wavelength), and one for an external RF generator. This

can be used when the source has to be triggered to an external data stream, or when the source has to be

used in application where higher stability is required.

The box has been divided in two layers. In the lower one we inserted most of the electronic parts: the

Raman pumps, one EDFA and the DFB used as initial CW wave. All these components were inserted into

a 19′′rack that has been realized ad-hoc for this purpose. Each element has been mounted over a board

that can be removed (each one separately): in this way all the module can be easily replaced in case of

a break. The controls of each module are available on the module front panel and each module can be

turned on/off separately. The DFB current control is blocked in order to emit on the desired wavelength
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(1559.8nm), while the dithering current is always applied through a simple oscillator circuits that can be

frequency tuned between 250 and 400kHz. The EDFA module provides only a control on the current of

its internal pumps: changing the pump currents correspond to a change also the in the Raman gain profile.

In this case, we decided to set the pump current in order to get an optimal gain profile (with the maximum

gain); we also control the power at the output of the EDFA with a Variable Optical Attenuator that can be

operated by a knob on the front panel.

The Raman diodes are two Fabry-Peròt cavity lasers, with a nominal emission power equal to 400mW.

Those diodes, have an emission wavelength that has a strong dependency on the temperature (because the

FP cavity length that fixes the emission wavelength depends on it). For this reason, it is very important to

set their temperature to match the required wavelength (to match the Raman amplification condition) and

then using the current control to set the emission power. Strictly speaking, those diodes, do not have a

single wavelength spectrum: they emit over a range of wavelength fixed by the internal FP Free Spectral

Range. Diodes temperature is controlled by Peltièr cells. At working conditions, the diodes operate at

high temperature (∼ 40◦C) and they can be damaged if over-driven. For this reason, they are controlled

by an external PC via a standard RS232 interface that allows their monitoring. However, the external

computer it is not needed to operating the source, because the values of current and temperature of each

pump are stored into an on-board memory. The pump fiber pig-tails are polarization maintaining and were

fusion spliced to a polarization beam splitter: this allows to achieve distribute amplification over all the

polarization states inside the DS fiber.

The box contains 3 different power supplies. The first one is dedicated to the DFB laser, the EDFA

amplifier and the Raman pumps. It is capable to furnish a total current of 5 A. While the DFB laser

operates at very low current levels (100mA) the EDFA requires about 1 A while the Raman pumps need

a current of 1.3 A each. In this way, there is more than 1 A as safety margin. The power supplies for all

the remaining parts hosted in the upper level (electric modules, RF generator, Intensity Modulator,..) are

in the rear section of the lower layer.

In the upper layer, we inserted the DSF spool, the Intensity Modulator, and the RF generator. The RF

generator signal is split in two arms (by means of an electrical splitter): one arm is connected to the front

of the panel, and can be used to extract a clock signal. The other arm drives the Intensity Modulator

through the help of a narrow-band electrical amplifier. The amplifier guarantees aVπ = 5V that is needed

to operate correctly the Intensity Modulator. The modulator needs a bias voltage, supplied by one of the

power supply located in the lower layer. This bias can be regulated by a knob on the front panel: this

parameter cannot be fixed, because the bias point of the crystal contained into the modulator depends on

temperature fluctuations. It was impossible (and, in any case beyond our control) to keep the box at a

fixed temperature (also because the Raman pumps produce a lot of heating inside the box itself), so we

decide to leave the control on the panel, in order that the bias voltage can be set in every moment the best

value. To help air flowing into the box, we used a holed metal plane to divide the two layers.

The external box (60x40x30 cm) cover is reported inFigure 2.23
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Figure 2.21:Section (Upper View) of the lower layer of the box containing the source.

Figure 2.22:Section (Upper View)of top layer. In this figure the elements are not reproduced in-scale but the
components displacement is respected. Solid lines indicate optical fibers, while dashed lines indicates
electrical wires. The passages that allow fiber pig-tails from parts in the lower layer (EDFA, Raman
pump and DFB laser) are also shown.

2.1.5 Time Domain Multiplexing to 160Gb/s

As mentioned previously, one of the main principle on which this source is designed around, is the possi-

bility to implement direct optical time domain multiplexing to higher bit-rate. In particular, this has been
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Figure 2.23:Source cover.

done upgrading the source repetition rate to 160GHz. This has been done by means of a time interleaver

OTDM multiplexer. In the Multiplexer, each stage is composed by a splitter in which the incoming flux is

divided in two separate fluxes with equal power; then on one of the arm the signal is delayed (of half-bit

time) and then aggregated again with the remaining one . In each stage, the delay line contains a polariza-

tion controller, to ensure that the aggregate flux is all on the same polarization state. Moreover, each stage

is realized with DS fiber, in order to reduce the effects due to chromatic dispersion. The Multiplexer we

used was a commercial device, and it was designed to multiply repetition rate by a factor 16, thus passing

from a fundamental repetition rate of 10GHz to an aggregated flux at 160GHz. Summing all the splitter

losses, the total losses are around 15dB (being composed of 5 3dB couplers that cannot be by-passed).

Thus, in this case, even if the produced pulses are solitons, they loose their solitary behavior after entering

the multiplexer, because of the strong losses, and the soliton relationγT2
0 P0

β2
= 1 is not verified anymore.

This means that into the multiplexer, dispersive effects are dominant. The multiplexer contained around

10 m of fiber. With picosecond pulses, this means that (supposing asech2shape) their are not significantly

affected by chromatic dispersion broadening. Thus, it is only sufficient to amplify them in order to set the

optimal value of peak power in order to acquire the solitary nature again in the fiber where they will be let
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propagate.

Figure 2.24:Structure of multiplexer used to obtain a 160GHz pulses stream. The Multiplexer is composed of 4
stages in which the incoming flux is divided, relatively delayed and then aggregated again. In each
stage the repetition rate is doubled, and a polarization controller (PC) allows to set the final stream
on the same input polarization state. In each state the delay line can be by-passed by means of a
mechanical switch (S). To pass from 40 to 160GHz repetition rate only 2 stages are required. Total
loss is 15dB, independently on the number of stages used.

A typical trace of a 160GHz pulse train is reported inFigure 2.25. In this case, it is possible to ob-

serve a non-optimal amplitude equalization, due to a non-perfect losses equalization in each stage of the

multiplexer that was used.

Figure 2.25:Optical Time Domain Multiplexing from 40 to 160GHz repetition rate. The image has been recorded
with an Optical Sampling Oscilloscope (courtesy of Agilent Technologies Italia)

As it can be seen from the picture, the absence of pedestal is very important to realize this multiplexing

operation. As a further step, we created a modulated sequence at 160GHz, using a modulated signal at the

input of the multiplexer. The signal is modulated with a Pseudo Random Bit Sequence with 231−1 bits.

The output extinction ratio is of about 13dB, as indicated inFigure 2.26. The quality of the aggregated

frame can be observed in awider view ( Figure 2.26on the left).

This modulated sequence, has been transmitted over a DS fiber spool 10km long. Due to the lack of

an additional amplifier needed to amplify the pulses in order to sustain fundamental soliton propagation,

we choose a fiber with the minimum available dispersion. The fiber had the zero-dispersion wavelength

λ0 = 1555nm. With this dispersion value (practically zero, as we tuned the source wavelength to match

the fiber zero-dispersion wavelength), the signal can travel without significant broadening for all the fiber

47



2 A Soliton Pulse Source for 40 Gb/s systems

Figure 2.26:Creation of a modulated sequence at 160Gb/s. As it can be seen from the eye diagram shown in the
left, the output sequence has an extinction ratio of 13dB.

Figure 2.27:Eye diagram of a 160Gb/s sequence. This picture has been recorded with an Optical Sampling Oscil-
loscope (by courtesy of Agilent Technologies Italia), after multiplexing the 40Gb/s modulated signal
shown inFigure 2.26(right)

length. On the other hand, the chromatic dispersion is still present via the 3rdorder contribution which

impresses a small amount of asymmetry over the pulses.

2.2 Conclusions

In conclusion, we have shown the design and the realization of a soliton source for 40Gb/s optical systems

that is tunable over a range of more than 20nm. The source is able to produce sub-picosecond pulses that
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Figure 2.28:Transmission of an OTDM frame at 160Gb/s aggregate bit-rate. The received eye diagram is still
open. Due to some experimental constraints, it was not possible to re-amplify the signal after the
multiplexing stage, so this is not aproper soliton transmission. Asymmetry acquired by the pulses (
Figure 2.26andFigure 2.27) is attributed to 3rdorder dispersion.

are pedestal free, in order to be ready for time-multiplexing to higher bit-rates. From a theoretical analysis

it can be inferred the soliton nature of the produced pulses. By slightly tuning theon-off Raman gain, it is

possible to adjust the pulse-width to various experimental needs, without changing significantly the pulse

pedestal in a range of 0.8÷3ps. On the contrary, doubling the optimalon-off Raman gain it is possible

to use the source in another regime, in which it can be used as a multiwavelength pulse source, useful,

for example in hybrid WDM/OTDM systems. Those features, show an high degree of flexibility of the

sources, making possible to use it in a variety of experiment.

As discussed in the chapter, the source is realized from an input sine-like wave. We stressed the fact that,

whatever the sine-like modulation is produced, it is possible to transform it into a regular, high quality,

pulse train. This feature makes the source a good candidate to operate in Optical Networks. For example,

it could be possible to use a signal from an All-Optical-Clock-Recovery circuit (seechapter 4) as starting

signal to produce a pulse train (for example in a all-optical RZ regenerator).

While the source engineering has been completed, there is still some theoretical investigation that can be

done. By design, the repetition rate stability of the source is directly related to the repetition rate of the RF

signal that impress the initial modulation (the two stability values should be coincident). Unfortunately

it was not possible to experimentally measure this stability, but there is an ongoing effort to make this

measurement in the near future (this point will be treated with more details insection 4.3). However it

could be certainly interesting to study from a theoretical point of view, if the adiabatic compression with

distributed amplification can add significant timing jitter . This information is extremely important to
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understand if the source can be used (and under which limitations) as an optical reference for frequencies

multiple of 40GHz [24].
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3 Wavelength Conversion and Optical

Broadcasting

Broadcasting and Multicasting are two concepts derived from IP networks; they refer to particular Internet

connections established from one single host to multiple destinations. Broadcast and Multicast concepts

differ mainly in the number of hosts participating in the connection: while the termBroadcastrefers to a

connection between one host andall the network nodes, the termMulticastrefers to connections realized

between one source node andselectednetwork nodes. As a consequence of this, Broadcast connections

are limited only to a single network1, while Multicast connections can be realized across several different

networks, even if not directly connected. Broadcast and Multicast are used for different purposes. In IPA

networks, Broadcast is generally used by single hosts to send a query to all the hosts in a subnet, to gather

and exchange service information (for example when a computers joins or leaves the network). Multicast

instead is widely used to realize different applications: video conferencing, video distribution, distance

learning and so on.

In Ethernet networks each host receives all packets traveling in its network but selects only the packets

directed to him, or, more in general, packets related to connections established by the host itself. This

simplify the realization of Broadcast and Multicast connections. In case of a single (sub)network, Multi-

cast or Broadcast are realized by simply sending the stream on reserved addresses on which each host is

listening; then, each host that doesn’t want to be part of the Multi/Broad-cast connection will discard the

stream. In this case, there is no need to replicate the information for each host. In more complex cases, in

which the stream source and the group of receivers are located on different physical networks, the stream

needs to be replicated at each network crossing: digital routers take care of this operation through a variety

of network protocols.

In future transparent optical networks, however, this kind of operations should be carried out in the optical

domain to fully benefit the capabilities offered by the all-optical processing techniques. Several architec-

ture are being proposed to this aim. Some of them (especially for the access networks) propose tolabel

connections between the various hosts with a specific wavelength. In this case, to realize a multicast op-

eration, the data stream from the source host, needs to be replicated foreachwavelength corresponding

to the hosts interested in receiving it. In this case, the network needs a wavelength multicast, i.e. the

information carried by a signal at a wavelengthλ0 must be transferred simultaneously to different set of

wavelengthsλ1, ...,λN each one corresponding to a unique connection with one network host. The trans-

1Broadcast connections are limited to sub-networks only also for practical reason: a broadcast connection over the entire
Internet (i.e. a connection between one host and ALL the Internet host) would imply a planetary congestion.
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fer process is known in literature as “wavelength conversion”. In this sense the terms“multicast” and

“broadcast” can be considered synonymous.2

This chapter is dedicated to the description of two different wavelength multicast implementations. In

one case the multicast is realized at a bit-rate equal to10Gb/s by means of a Four Wave Mixing (FWM)

process: from thesystem designpoint of view this means that the destination wavelengths must be not

presentbeforethe conversion process. The primary benefit of this feature is found in the cost saving and

architecture simplicity. Another benefit of this solution consists in the transparency to the modulation

format deriving from the FWM properties.

In the second case, the multicast is performed at 40Gb/s and the information is transferred to a set of

wavelengths that are locally generated. This solution is realized through a non-linear induced polarization

switching in a semiconductor optical amplifier, and it is not transparent to the modulation format, but it

requires lower operation power levels, and enables operations at higher bit-rates.

3.1 Multi-pump FWM configuration for multicast operation

The first scheme to realize multi-wavelength conversion is based on a particular multi-pump Four Wave

Mixing configuration. It is a variation of a scheme proposed in [25]. Here this technique is demonstrated

for 10Gb/s On-Off-Keyed modulated signals, but, due to the coherency of the process, it is expected to

work with any modulation format. The scheme has been realized exploiting the FWM in two different

media: a Semiconductor Optical Amplifier (SOA) and an optical fiber. Optical response of the two media

is driven by fundamentally different processes (non-linear polarization response in the fiber, and gain

dynamics in the SOA) but the FWM process shows some common characteristics. In the following, we

first review the FWM process in SOAs and Fibers; then we detail the experimental setup used to test

the proposed solution, discussing the results obtained using an SOA or a Fiber as a NL medium and the

potential improvements that could be achieved with ad-hoc realized components.

3.1.1 Four-Wave Mixing in Optical Fibers and Semiconductor Optical Amplifiers

The non-linear polarization response of an optical medium is described by the relation:

P = ε0(χ
(1)E + χ

(2) : EE+ χ
(3) : EEE+ ...) (3.1.1)

Here, with standard notation,ε0 is the vacuum permittivity andχ(i) is the i−order susceptibility. The

relative weight of second and third order contributions depends on the particular medium through its

symmetry properties. We already seen inchapter 2how the third-order susceptibility it is responsible for

the Kerr effect (as stated in the NLSE,2.1.1) in fibers; it is also responsible for waves interaction, and

2In the following the term multicast and broadcast we will be used as synonymous of “wavelength multicast”.
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thus for waves mixing. This can be qualitatively explained considering an optical field composed of four

waves oscillating at frequenciesω j( j = 1, ..,4) traveling in the same medium:

E =
1
2

4

∑
j=1

A j(z)ei(k j z−ω j t) +c.c (3.1.2)

wherek j = n j ω j

c is the propagation constant andn j is the refraction index of the wavej. Both in fibers

and semiconductor, the waves are collinear. While evaluating3.1.1with 3.1.2as input field, several terms

arises at frequencies that are linear combinations of the input ones. Limiting the nonlinear polarization

response analysis toχ(3) we obtain:

P =
1
2

[
Σ4

j=1Pje
i(k j z−ω j t)

]
+c.c

where, for example

P1 =
3ε0

4
χ

(3)
[
|A1|2A1 +2

(
|A2|2 + |A3|2 + |A4|2

)
A1 +2A∗2A3A4eiθ+ +2A2A3A4eiθ− + ...

]
(3.1.3)

In 3.1.3θ+andθ−are defined as:

θ+ = (k1−k2−k3−k4)z− (ω1−ω2−ω3−ω4) t

θ+ = (k1 +k2−k3−k4)z− (ω1 +ω2−ω3−ω4) t

Each term in3.1.3represents a different non-linear effect: the first one represents the so called Self Phase

Modulation (SPM) and accounts for non-linear phase shifts induced by the field atω1 itself; the second

term represents the Cross Phase Modulation (XPM) and accounts for non-linear phase shifts induced

by the other fields (ω2, ω3, ω4) on the field atω1. The other terms represent wave coupling processes.

Mixing processes are not always verified: their occur only in absence of phase mismatch betweenE1 and

P1, governed byθ+andθ−.

The term containingθ+ accounts for a process in which three photons at frequenciesω2, ω3, ω4 transfer

energy to a photon at frequencyω1 = ω2+ω3+ω4 (three photons absorption). The other term containing

θ− instead represents the interaction in which two photons at frequenciesω1 andω2 are annihilated with

simultaneous creation of two photons at frequenciesω3 andω4 such that:

ω +ω2 = ω3 +ω4 (3.1.4)

The phase matching condition for this process to occur is:
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∆k = k3 +k4−k1−k2 = 0

This energy transfer can lead to amplification of waves atω3 andω4, if they are initially present, or lead

to their generation if only the first two waves (atω1 andω2) are launched into the fiber. One of the most

important case for wavelength conversion experiment is the degenerate case (ω1 = ω2 = ω): if only one

wave atω (referred as pump-wave) is launched into the fiber,ω3 andω4 can be generated from noise with

a frequency shiftΩs = ω1−ω3 = ω4−ω1.

In an optical fiber, the coupled evolution of the four waves along the fiber is obtained by inserting eq.

3.1.2into the propagation equations of the optical fiber already discussed inchapter 2, obtaining:

dA1
dz = i δnω1

c

[(
|A1|2 +2∑k6=1 |Ak|2

)
A1 +2A∗2A3A4ei∆kz

]
dA2
dz = i δnω2

c

[(
|A2|2 +2∑k6=2 |Ak|2

)
A2 +2A∗1A3A4ei∆kz

]
dA3
dz = i δnω3

c

[(
|A3|2 +2∑k6=3 |Ak|2

)
A3 +2A1A2A∗4e−i∆kz

]
dA4
dz = i δnω4

c

[(
|A4|2 +2∑k6=4 |Ak|2

)
A4 +2A1A2A∗3e−i∆kz

]
(3.1.5)

where∆k = (n3ω3 +n4ω4−n1ω1−n2ω2)/c is the wave vector mismatch, andδn is the non-linear pa-

rameter that couples the fields evolution3. Each equation contains the interaction terms corresponding to

self-phase modulation, cross-phase modulation and wave mixing as discussed above.

It is possible to find general solutions for3.1.5on several textbooks [26], [1]. Here, it will be analyzed the

case of FWM processes in degenerate case because the experiment treated in this chapter is based on this

configuration.

In degenerate configuration only three waves are involved in the interaction; we rewrite the set of equation

3.1.5with boundary conditions such that there are only two input waves, a pump wave atω = ω1 and a

signal wave atω2(i.e. A3(0) = 0). With the further assumption that the approximation of non-depleted

pump is valid, it is possible to show that the evolution of the waves powers (or, equivalently of their

intensities) is given by [27]:

P2(L) = P2(0)
[
1+
(

1+ κ2

4g2

)
sinh2(gL)

]
P3(L) = P2(0)

(
1+ κ2

4g2

)
sinh2(gL)

(3.1.6)

In 3.1.6, L indicates the propagation length,κ = ∆k+γ(2P) the net phase-mismatch (accounting for chro-

matic dispersion and phase modulation induced by the non-linearity),g =
√

4γ2P2− κ2

4 is the parametric

3Hereδn indicates the optical Kerr effect coefficient that inchapter 2was indicated asn2. The notation change is used to avoid
confusion with the wave indexes.
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gain coefficient andP is the input pump signal power.

According to3.1.6the signal wave atω2 is amplified and a new wave atω3 (not present at the input) is

generated by the FWM process. The generated wave is commonly referred asidler.

From3.1.6it is possible to extract 2 remarkable points:

1. Instantaneous gain

A common feature of non-linearities in optical fibers, is that the response is very fast: typical life-

times of excited virtual states are in the order of fewf s [18]. This means that the idler wave follows

instantaneously all the variations in the input signal. In other words, a modulation imprinted on the

input signal, is transferred to the idler wave, except from an additive constant. Introducing the time

dependency in3.1.6, the evolution of signal and idler waves can be rewritten as:

P2(L, t) = P2(0, t)
[
1+
(

1+ κ2

4g2

)
sinh2(gL)

]
P2(L, t) = P2(0, t)

(
1+ κ2

4g2

)
sinh2(gL)

(3.1.7)

This is thecore idea of wavelength conversion using FWM: the idler wave follows the signal tem-

poral variations, thus carrying all the information encoded in the signal. For the conversion process

it is possible to define a conversion efficiency parameter as

ηc =
P3(L)
P2(0)

=
4(γP2)2

g2 sinh2(gL) (3.1.8)

With the same principle, and same configuration (input made by a pump wave, plus an input modu-

lated signal), FWM can be used to realize simple AND-type logic ports that can be used in several

devices: the idler signal appears only when both the signal and pump waves have anhigh (in binary

logic) valueat fiber input.

2. Bandwidth

FWM efficiency strongly depends on pump power, the fiber length, and the phase matching condi-

tion; fixed the input pump power level, and the fiber length, it is possible to determine the FWM

efficiency bandwidth enclosed initem 3.1.8. This has been done by Stolen et al [27]: they defined

the FWM efficiency bandwidth∆ΩFWM the region in which the efficiency decreases by a factor

of π2/4: this results in a bandwidth slightly larger than the full-width half-maximum but greatly

simplifies the bandwidth derivation.

In the limit in which the phase mismatch is dominated by the material dispersionκ � γP, it can be

found that the parametric gain expressed asP3(L)/P3(0) is given by [27]

Gp ' 1+ γPL
sin2(κL/2)
(κL/2)2 (3.1.9)
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with a corresponding bandwidth equal to

∆ΩFWM =
π

β2ΩsL
(3.1.10)

whereβ2 is the chromatic dispersion coefficient,Ωs is the signal-pump frequency detuning andL is

the fiber length.

At higher pump power levels, the approximated expressionitem 3.1.9is not valid anymore, and the

bandwidth is given by:

∆ΩFWM =
1

|β2|Ωs

[(
π

L

)2
+(γPL)2

]1/2

(3.1.11)

that approximatesitem 3.1.10in the limit κ � γP.

The interaction bandwidth increase with the propagation distance, but decrease with pump-signal

frequency detuning, while it can be enhanced operating near the zero-dispersion wavelength: in

particular, in the spectral region in whichβ2 approaches zero the bandwidth is determined by higher

order dispersion parameters. This is why fibers with flat dispersion profiles have been developed

[28], [29]: in such fibers, thewalk-off tends to the infinite and the interaction efficiency is limited

mainly by the fiber attenuation. The fiber lengths needed to observe FWM depend of course on a

number of parameters, but it can be said that in typical experimental conditions fiber Lents of several

kilometers are needed. Those lengths can be shortened using optimized fibers having huge non-

linear coefficients [30], [31]. It was shown that many devices realized in the past with kilometers-

long fiber spools have been realized with few meters long dedicated fibers (an example was given

in [32]).

FWM can be observed also in SOAs, and can be described (from a phenomenological point of view) in

the same way it has been done for an optical fiber: two photons are annihilated to generate two other

photons at different frequencies satisfying3.1.4. But FWM in SOA is driven by fundamentally different

processes respect to the ones discussed for the fibers. A first important difference is that while the FWM

in fibers is mediated exclusively by the non-linear refraction index modification, in an SOA the FWM

is mediated both by refractive index and gain modulation. As in any optically active medium the gain

provided by an SOA can be modified by an optical wave passing through it: this increases the coupling

(and the interaction) between more waves that travel through the same SOA at the same time.

An SOA consists of a waveguide in which a semiconductor material (usually InGaAsP compounds) is

electrically pumped in order to obtain a population inversion between material valence and conduction

bands in order to provide light amplification at proper wavelengths. An SOA is much similar to a semi-

conductor laser: the SOA differs from the semiconductor laser because its facets are treated with anti-

reflection coatings to avoid lasing condition. To further reduce undesired reflections some devices are

realized with tilted facets. The electrical pumping is realized by embedding the active region in a p-n

junction (thus acting as a diode). The active material is characterized by an higher refractive index than
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the surrounding p-n junction; thus the active material acts like a waveguide. This kind of structure (also

known as double hetero-structure) also helps in carriers confinement in the active region. In order to re-

duce the threshold electrical current needed to obtain population inversion (typical threshold values are

around 20 mA at room temperature) the waveguide is realized so that it is possible to achieve also a lateral

confinement. Lateral confinement can be achieved by gain or index guiding techniques, the latter being

preferred because allow to obtain light amplification with lower threshold currents.

Light amplification inside an SOA can be represented by the formula [33]:

g(z) =
ḡ

1+P(z)/Ps
[1− εP(z)] (3.1.12)

in whichz is the propagation length into the semiconductor, andP(z) is the total wave power. In eq.3.1.12,

Ps is the saturation power. The saturation power depends on the bulk material and on the SOAs design;

typical values are in the order of few mW. As expressed in eq.3.1.12, the SOA gain can be modulated

by the input powerP(z): this means that a probe signal can experience the gain modulation induced by a

stronger pump signal (such phenomenon is known as Cross Gain Modulation and can be very useful for

all-optical signal processing [34]).

The gain variations induced by a traveling wave are very fast, but do not follow instantaneously the

traveling wave power excursions: indeed the eq.3.1.12is only an approximation as it does not contain the

non-instantaneous response. The gain recovery is determined by several mechanism occurring into the

semiconductor [35]. To explain the FWM process, 3 of those processes are particularly important. Those

processes can be divided in two classes:inter-band(radiative and non-radiative decays) andintra-band

processes.

• Inter-band processes are due to the carrier density modification via the usual absorption and emis-

sion processes induced by the light traveling into the SOA. While the light is amplified by stimulated

emission transitions (thus reducing the carrier density in the conduction band), the population in-

version is not kept constant: there is a recovery time in which the carriers are re-pumped again

in conduction band to re-establish the population inversion (and consequently the gain condition).

Beside radiative processes, there are also non-radiative decays process (Auger effect) that concur to

those inter-band relaxation times.

Inter-band process due to radiative decays are characterized by relaxation times on a range of

0.1−1ns, while non-radiative decays occur on a time scale of 100ps.

• Intra-band processes are related to carrier density redistribution inside the SOA energy bands after

the interaction between the traveling wave and the SOA itself. Occurring in the same band, those

processes are much faster and have recovery times on scales of hundreds of femtoseconds. The first

process is the so called Spectral Hole Burning (SHB). This phenomenon accounts for an hole that

is formed into the energy density spectrum after a stimulated process. Stimulated processes occur

only for transition that correspond to traveling wave pulsation: this means that electrons in valence
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band will be removed only in correspondence of well determined energy levels, creating a hole in

the carrier distribution. Those holes arefilled by carriers diffusion processes.

Another important intra-band process is related to the so called Carrier Heating effect: it can be

found that the carriers temperature increases after stimulated transitions or two-photon absorption

processes. The relaxation time associated with this process is typically in the order of few ps.

The non-linear contribution to the wave mixing can be treated in a similar way as it has been done for

the optical fiber case by writing amplitude couple equations for the various fields that are involved in the

wave mixing process. In the degenerate case (in which two fields have the same frequency), it is possible

to write such equations in the form [36], [37], [38]:

dEp,q(z)
dz = 1

2 (g(z)−αl )Ep.q(z)

dEs(z)
dz = 1

2 (g(z)−αl )Es(z)−κ(z)E2
pE∗

q(z)ei∆kz

(3.1.13)

In eq.3.1.13, Ep,q represent respectively the electric fields associated to the pump and probe waves, while

Es is the signal wave (the converted signal);αm represents internal losses of the SOA. As in the fiber

coupled equations,∆k = 2kp−kq−ksrepresents a phase mismatch factor andκ(z) is the coupling factor.

If the interaction between the pump and probe signal are neglected,κ(z) can be expressed phenomeno-

logically as:

κ(z) =
1
2

ḡ

1+ P(z)
Ps

3

∑
m=1

1− iαm

1− i2π f τm

1
Pm

(3.1.14)

Here, the summation overm takes in account the three processes that are determinant for FWM:m= 1,2,3

for carrier density modulation, carrier heating and SHB respectively;τm indicates the relaxation time,Pm

the saturation power associated with the single mechanism, whileαm indicates the ratio between the real

and imaginary parts of the refractive index change induced by them-th mechanisms;f indicates the

frequency detuning between the pump and the probe waves.

Using the boundary conditionEs(z= 0) = 0, it is possible to find the following expression for the signal

at the output of the SOA:

Es(l) =−
E2

p(l)E
∗
qκ(l)ei∆kl

0.23G+ i∆kl
(3.1.15)

whereG ∝
∫ l

0 (g(z)−αl )dz.

As for the fibers, it can be seen that in the degenerate case it is possible to generate a wavelength converted

copy of the probe waveEq conserving its amplitude and phase modulation characteristics. Also in SOA

case the wavelength conversion process is coherent. It should be noted however that this expression

does not take in account the gain recovery dynamics. A full description of such behavior can be found

in [39], [33].
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3.1.2 Multicast Conversion by means of a multi-pump configuration in SOAs and Optical
Fibers

We have seen how in thecommonconfiguration (one strong pump at frequencyΩ and one probe atΩ +
ω0), FWM interaction produces a signal atΩ−ω0. In some cases, it is possible that the waves involved in

this process interact, generating cascaded products; for example, the interaction between the pump and the

signal can produce an idler wave, atΩi = Ω+2ω0: in turn, the wave atΩi could interact with all the other

waves atΩ, Ω+ω0, ..., generating always new product. Of course, this process is strongly limited by the

phase matching conditions and from the decreasing intensity of those higher-order products. Generally

thoseextra produced waves, are characterized by very low intensity (and correspondingly by very low

OSNRs). This means that of all the FWM products, only the firsts can be generally used as converted

signals. Therefore, FWM based devices are not usually suitable to realize wavelength conversion to more

than one wavelength simultaneously, i.e. multicast devices. However it has been shown that enhancing the

FWM process with parametric amplification (for example Raman amplification, discussed inchapter 2),

the generated components show high OSNR values also on higher harmonics, and there were suggestions

to indicate that in this way FWM could be used to realize a multicast device [40] in which the information

is transferred from the input signal to each higher order FWM product. However, this technique shows

a fundamental limitation: the OSNR of the generated waves is not homogeneous (it decreases with the

product order); this introduces system limitations.

To overcome those limitation, we realized a multicast device with a multi-pump configuration [41], [42],

sch etched inFigure 3.1. The system is designed in order that distinct FWM processes (each for every

pump) arises in a non-linear medium. Due to the phenomenological similarities between FWM in fibers

and SOAs, the proposed scheme has been tested in both materials, comparing the differences in the quality

of the converted channels. In the multi-pump configuration, each pump (indicated asP1, P2, P3 in the

following) provides the generation of 2 converted channels.

In the scheme, the input signals (Ch4), enters into the non-linear device (a fiber or an SOA, as discussed

below), with the same state of polarization of the pumpP1, thus producing the idler indicated as Ch3, via

a degenerate FWM interaction. The pumpP1 and the signals are detuned so that the frequency spacing

betweenCh3 andCh4 is 200GHz, a value compatible with the ITU grids for standard WDM systems.

Together with the pumpP1, other two pumps,P2,andP3, are sent into the non-linear medium;P2 andP3

have an orthogonal polarization state respect toP1, (seeFigure 3.1) thus avoiding an interaction with it.

In the fiber, the beating betweenP1 ands produces an index modulation that is transferred to the pumps

P2 andP3, producing a side-band modulation on them and thus creating the copiesCh1, Ch2, Ch5 and

Ch6.

Inside the SOAs, instead, the beating betweenP1 ands, is transferred to the pumpsP2 andP3 by the

effect of index modulation and gain modulation: this lead to two advantages. The first is that the set of

channelCh1, Ch2, Ch5 andCh6 shows enhanced OSNRs respect to the one obtained when the fiber

acts as non-linear medium; but most important the conversion efficiency of this set of channels is almost

independent from the position of the two pumps, as long as the pumps are placed in the region in which
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Figure 3.1: Scheme of the multi-pump configuration. The pumps P1, P2, P3 have a particular relative state of
polarization, that allows to produce 5 copies of the input signals (ch4) in the figure.

the SOA gain is flat [25]. This means that when the wavelengths of the pumpsP2 or P3 is changed,

the corresponding couple of multicasted signals are translated in frequency by the same amount. From a

system point of view, this allows for flexible selection of output wavelengths.

The proposed device has been realized experimentally as described inFigure 3.2.

A DFB laser atλ = 1554.3nm is modulated by a commonLiNbO3 Mach-Zender interferometer driven

by a 10Gb/s PRBS (Pseudo Random Bit Sequence) pattern generator to produce a set 231−1 bits long

pattern. The signal is amplified and then inserted into the multicast device. In the multicast device, the

three pumps are injected into the SOA. The relative State of Polarization of the pumps (P1 orthogonal to

P2 andP3) has been achieved with polarization controllers and a Polarization Beam Splitter: one port is

used to inject the co-polarized pumpsP2 andP3, while the other (that selects orthogonal polarization) is

used for the modulated signals and the pumpP1 coupled together by means of a 3dB splitter. Fixed the

wavelength of the incoming signal, the wavelength of the three pumps are selected in order that all the

produced channels are 200GHz spaced, as shown inFigure 3.1. The four waves (the 3 pumps and the

modulated signal) are sent into the non-linear medium.

In the case of the SOA, we used a commercially available, pigtailed device with 25dB small signal gain

and 5dBm saturation power. As non-linear fiber we used a 3.5km long Dispersion Shifted Fiber (DSF)

with λ0 = 1555nmand dispersion slope of about 0.07ps/(nm2k̇m). The short length of the fiber permitted

to relax the constraints imposed by the phase-matching conditions; this also allowed to obtain a flat

conversion efficiency among the converted channels. The pump signals didn’t need to be amplified, so

that the overall complexity was reduced considerably, and the ASE noise contribution from the amplifiers

was avoided.

The multicast channels have been extracted singularly by means of an AWG to be characterized with

Bit-Error-Rates (BER) measurements.
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Figure 3.2: Experimental setup of the Multicast device. An input signal is realized by external modulation of a DFB
laser. The multicast device is “grouped” into the figure. The input signal is co-polarized to the pump
P1 (by means of a polarization controller) and then sent into the Non-Linear medium. The State of
Polarization described inFigure 3.1is obtained by means of a Polarization Beam Splitter (PBS). At the
output of the multicast device each channel is separated by means of a 100GHzAWG and then sent into
a 3×25 km transmission span. Through a Bit Error Rate tester each channels has been characterized
in terms of power penalty, in order to measure the impact of the pattern effect induced during the
conversion process (as discussed in the text). The insets show the eye-diagram of the input channel and
typical eye diagram of the converted channels.

Figure 3.3: Comparison of the output spectra after the multiwavelength conversion. a) SOA; b) fiber
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In Figure 3.3, the spectrum of the converted channels is shown both for SOA (a) and the fiber (b).

Detailed information about OSNR, power levels and conversion efficiencyη of wavelength converted

signals are reported in the table below:

SOA DS Fiber

λ (nm) Input

Power

(dBm)

Output

Power

(dBm)

OSNR

(dB)

η Input

Power

(dBm)

Output

Power

(dBm)

OSNR

(dB)

η

CH1 1549.5 -17.3 28 -24.3 -21.7 28 -31.4

P2 1550.3 9.3 8.2

CH.2 1551.1 -22.5 23 -29.5 -21.6 27 -31.3

CH.3 1552.7 -15.4 30 -22.4 -19.9 29 -29.6

P1 1553.5 9.8 9.7

CH.4 (S) 1554.3 7 3.7 48 -3.3 9.7 7.1 54 -2.6

CH.5 1555.9 -16.5 25 -23.5 -21.6 26 -31.3

P3 1556.7 8.9 8.1

CH. 6 1557.5 -20.7 23 -27.7 -22.0 24 31.7

In both cases, the OSNR of the converted signal, is greater than 23dB and it is compatible with the value

of 20dB required for 10Gb/s modulated signals. Conversion efficiency is different in the two cases: in the

SOA, the values are generally greater than about 7dB in respect to the values obtained using the non-linear

fiber; the fiber shows lower conversion efficiency but more homogeneous values among the channels (η

is inside a range of 2 dB). The needed input power levels (for the incoming signal) are comparable for

both media.

An important difference is given by the signal to pump power ratio. It could be noted that while in the

SOA case the input signal power level has been kept 4dB under the pumpP1, in the fiber case it was

possible to keep the input signal and the pump with the same power level, thus increasing the conversion

efficiency. This is due to a fundamental limitation of FWM in SOAs: if the input signal power is enough

to induce strong gain modulations, those are imposed also on the pump. The beating between theCh.4 and

P1 is responsible for the generation of all the other channels, but it also can affectCh.3 introducing Inter-

Symbol-Interference (ISI) due to the gain modulation generated by the beating. The wavelength converted

signalCh.3 shows improved OSNR values when the signal power is increased, and this affects positively

the signal quality. But over athreshold valueof the signal to pump power ratio, while the OSNR can be

still increased, pattern effects arise in the converted channel due to the gain modulation effect: as briefly

discussed above, the gain modulation is not instantaneous but is affected by a recovery time (due to the

carrier density modification). The gain recovery dynamics are strongly affected by the intensity pattern of

the incoming signal4. Pattern effects introduce two main limitations: first of all, they introduce ISI, thus

affecting the power penalty of the converted channels; second, they pose a limit on the possibility to use the

converted channels in successive wavelength conversion operations. In an Optical Network environment,

in which a single channel could be wavelength converted at each node, it is important that the penalties

4Pattern effect arises in particular when sudden power variations occurs
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accumulated at each conversion are minimized, otherwise a channel couldn’t be routed on more than

few nodes. The pattern effects should be minimized to allow Cascaded Wavelength Conversions stages.

The limit of the signal to pump power ratio in FWM in SOAs that allows to minimize pattern effects

with limited conversion penalties, depends on a number of factor: the signal bit-rate, and the physical

properties of the SOA in which the FWM takes place. The power levels of all the waves involved in

the multicast device were experimentally optimized in order to find a trade-off condition minimizing the

pattern effects and the power penalty on all the converted channels, while obtaining the best OSNR and

conversion efficiency values. Typical values reported in literature show that optimal values of signal to

pump power levels ratio should be around−10dB; in our case, such ratio wouldn’t be enough to generate

all the channel copies. Indeed we found that a signal to pump power ratio around−4dB was necessary to

obtain acceptable results for all the channels, introducing a slight signal distortion as shown inFigure 3.4.

Figure 3.4: Input (a) and Converted (b) signals eye diagrams in the case of SOA. The converted eye diagram is
taken just after the multicast device, before amplification. The induced pattern effect due to the high
signal to pump power levels ratio (around−3dB) is evidenced in a circle for better clarity. The eye
diagrams are recorded with a 60GHz photodiode. Time division scale is 20ps/div on both images.

It should be noted that despite the pattern effect, the eye-diagram of the converted channels is still wide

open.

To characterize the penalties introduced by this pattern effect, we performed a set of BER measurements.

First we measured the power penalty of each channel just after the multicast device (in Back-to-Back

configuration). The results are shown inFigure 3.5-a). This first serie of BER measurements shows the

power penalty accumulated during the wavelength conversion process. We found a power penalty lower

than 2.5dB for all the converted channels at a BER reference value of 10−9. It is worth to note that

the worst BER values are associated to channels 2 and 6; these channels are characterized by the lowest

OSNR values (further decreased after the output preamplifier, cfr.Figure 3.2). The other channels suffer

from lower penalties that seem less directly related to OSNR, higher than 19 dB (the value required for

having 10−9BER with our receiver) on all the channels; the performance difference among the various

channels might be due to some different XGM contribution and/or to some low in-band high-order FWM

product (the channels are frequency equi-spaced, so high order FWM products due to one pump can fall

in correspondence of channels generated by the conversion operated by other pumps).

As mentioned before, some of the channels (namelyCh1, Ch3, Ch5) are spectral inverted copies of the
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Figure 3.5: BER measurements to characterize power penalties of converted channels when SOA is used as Non-
linear Medium. a) BER performed on each channel after AWG demodulation. b) BER of selected
channels before and after 3x25km span transmission (cfrFigure 3.2). Back to back curve is reported on
each graph for completeness.

input signal: to test how this property and the distortion effect due to XGM affect differently each channel

during a transmission, some channels have been inserted in a metro-like system testbed that was available

in the laboratory. This metro-like testbed is a ring network composed by 3 spans of Single Mode Fiber

each one 25km long. We sent one converted channel at time into the ring network to fully emulate a real

system in which each channel is routed to its proper output port, multiplexed with other signals coming

from other point of the network, and then transmitted. The test has been carried out with 2 channels,

comparing the BER after the multicast device and after the transmission stage. The results are reported

in Figure 3.5-b. After 75km the accumulated power penalty due to the transmission is less than 1dB at a

BER of 10−9.

In the case of the fiber (in which the FWM is mediated only by an index modulation that can be consid-

ered instantaneous) there are no pattern effects induced on the eye-diagram. Paying the price of a lower

conversion efficiency, the channels show uniform OSNR values. Despite this, we still observe a similar

amount of power penalty between the channels after the Multicast device (measured in Back-to-Back

configuration at the output of the multicast device), as it is reported inFigure 3.6

In the case of a DS Fiber, we outline that an higher number of multicast channels could be generated in

the same scheme by using additional pumps being mainly limited by the phase matching condition among

the fields propagating in the fiber. Hence, the use of a shorter piece of properly optimized photonic crystal

fiber with flat dispersion slope, together with additional pumps, could allow for an increased number of

multicast signals, overcoming phase matching impairments and realizing a more compact device. When
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Figure 3.6: BER in Back-to-Back configuration for the converted channels when a DS Fiber has been used as a
Nonlinear Medium.

using additional pumps however, a critical point could arise by the effect of the FWM interaction among

adjacent co-polarized pumps on the orthogonal polarized signals. Indeed, this process generates two CW

signals at exactly the same wavelength as Ch. 2 and Ch. 6.

In principle, the same scheme could be used (both in a fiber or an SOA) with 100GHz or 50GHz grid

spacing: this would allow for higher conversion efficiency, because of the lowers andP1 detuning, and

hence better performance. In that case, however it should be noted that also the pumps would have a

lower detuning. This means that to remove them at the device output, it is required to have filters with

minimized cross-talk.

3.1.3 Conclusions

We realized a 1 to 6 WDM multicast device for 10Gb/s signals based on a particular multi-pump FWM

scheme that has been tested and compared in an SOA and a DS fiber, that, despite being based on dif-

ferent non-linearities show similar behaviors. The multicast device has been tested with OOK amplitude

modulated signals, but it is expected to have good performance with constant envelope signals (such as

phase modulated, DPSK encoded signals), due to the coherent nature of FWM. SOA-based device shows

higher and wider conversion efficiency, while the DS-Fiber based device can guarantees uniform con-

verted signals OSNR values. Flat conversion efficiency could be obtained with ad-hoc designed fibers.

Both schemes show comparable power penalties on converted channels (less than 2.5dB in both cases)

and could be realized in principle with finer grid spacing.
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3.2 Multiple Wavelength Conversion in SOAs by means of Nonlinear

Polarization Rotation

The second Multicast implementation presented here is realized for signals at higher bit-rates (40Gb/s).

Apart from the different bit-rate operation, main differences with the previous scheme are:

1. Instead of FWM, we exploited the induced birefringence in an SOA by an input signal; this phe-

nomenon is known as Nonlinear Polarization Rotation.

2. Conversion process is not coherent: this means that the input signal must be amplitude modulated

(or converted to an amplitude modulation format before entering the multicast device).

3. There is no need forpump signals:it is only required that destination wavelengths must be locally

available (in the previous scheme they were generated inside the multicast device itself).

4. Due to the different process the incoming signal requires lower power levels: this represents an

improvement from the system point of view.

As in previous section, we first review the induced Non Linear Polarization Rotation process in SOAs,

and then we describe the experimental realization of the device.

3.2.1 Nonlinear Polarization Switching in Semiconductor Optical Amplifiers.

Nonlinear Polarization Switching (NPS) in SOAs is based on the polarization rotation experienced by a

probe beam traveling in a semiconductor traversed by a stronger pump beam. The pump beam change

the gain provided by the SOA on its two principal axis. This behavior was characterized by Mishra et al.

In [43] they measured the different gain experienced by an SOA on different principal axis vs the pump

energy of a pump pulse. For this experiment they used 120fs pulses from an Optical Parametric Oscillator

at 1520nm at low repetition rate (72MHz). Their results are reported inFigure 3.7.

A typical experimental configuration used to observe this effect, is ditched inFigure 3.8. A probe signal

is launched in the medium, with a linear polarization state oriented at 45◦ in respect to the principal axes

of an SOA. At the other end of the SOA, a Polarization Controller is set in order that in absence of the

pump signal the light is routed to one port of a Polarization Beam Splitter (PBS). When a pump signal

is launched into the SOA with enough power to modify the SOA index ellipsoid, the polarization of the

probe signal is rotated: if the index modification is enough to rotate the state of polarization of the probe

signal by 90◦, the light exit on the second PBS port, thus realizing the so called Nonlinear Polarization

Switch (NPS).

The rotation mechanism can be understood considering that each component of the probe signal, propa-

gates along the SOA principal axes independently. At the exit of the SOA, they collect a phase mismatch

that is proportional to the index variation induced by the pump power. This effect is maximum when the
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Figure 3.7: Experimental measurement of polarizations dependent gain for TE and TM modes in a SOA as a func-
tion of a pump pulse energy. (from [43]).

pump is aligned with one of the principal axis of the SOA5. This system is similar to a Mach-Zender

interferometer in which the two arms are represented by the path corresponding to the two principal axes

of the medium, and the relative delay is controlled by the pump signal.

The phase-mismatch between the two axes is transformed into an amplitude variation by means of a

PBS. This allows to use NPS in SOA for wavelength conversion purposes if the probe signal is chosen to

have a different wavelength of the pump. More in general, NPS in SOA allows to transfer a modulation

information to any other wave acting as a probe in the SOA. NPS is related to SOA gain dynamics, and

for this reason the converted channel can suffer from the pattern effects discussed in the previous section.

The NPS realized with an SOA can be compared to the so called Kerr-Shutters that can be realized with

Kerr media. The Kerr Shutter is also based on the non-linear induced birefringence phenomenon. They

are of course deeply different processes. For example, for Kerr media, the induced rotation is linearly

proportional to the pump beam, while for the NPS this is not true (seeFigure 3.7). Another important

difference is found in the response times: while the relaxation times in a Kerr medium (like a fiber) are

almost instantaneous, in a SOAs the polarization rotation is related the gain dynamics (that are in the order

of hundreds of picoseconds as seen in the previous paragraph) and can pose a limitation on the highest

operational speed that can be reached.

Another important difference between Kerr effect and SOAs dynamics is in the dependence between

5Refraction index modification is not critically dependent on the state of polarization of the pump.
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Figure 3.8: Principle of Induced birefringence in SOA by injection of a strong pump. A probe signal enter the
SOA with a linear polarization state at 45◦ respect to the axes. The 2 probe components that propagate
independently one from the other experience different gain and phase shift. Once recombined, at the end
of the device the two components interfere (constructively or destructively) depending on the relative
phase shift. On the right, it is shown a typical setup used to observe this effect. Two signals are coupled
with proper polarization (achieved with the help of separate Polarization Controllers) into an SOA. At
the output, a Polarization Beam Splitter, is used to select positive or negative interference states.

the principal axes on the induced birefringence. While in the fiber, the index modulation on one axis

is independent from the other, in the case of a SOA the gain dynamics on the two principal axes are

coupled by carrier dynamics. As a result, in the fiber the optical modes corresponding to the principal

axes propagate independently, while in the SOA, the two modes have an indirect interaction mediated by

the carriers density distribution.

A simple model that explains the characteristics of NPS in SOAs was given by Dorren et al. in [44].

The model starts by adiagonalizationof the propagation equation along the SOA principal axes. The

propagation equation is a generalization of3.1.13and it can be written as:

(
∂

∂ t
+vTE(TM)

g
∂

∂z

)
ATE(TM)(z, t) =

1
2

[
ΓTE(TM)

(
1+ iαTE(TM)

)
gTE(TM)(z, t)−α

TE(TM)
int

]
ATE(TM)(z, t)

(3.2.1)

here,A(z, t) is the slowly varying complex envelope of the optical field,vg is the group velocity,Γ is

the confinement factor,g(z, t) is the gain function,α is the phase-modulation parameter andαint repre-

sent internal losses. The indexTE(TM) accounts for the different parameters corresponding to the two

propagation modes. The slowly complex envelope can be expressed as:

ATE(TM)(z, t) =
√

STE(TM)(z, t)eiΦTE(TM)(z,t) (3.2.2)

whereSTE(TM)(z, t) is the power carried by the field andφTE(TM) is its phase. Considering the geomet-

rical properties of the waveguide inside an SOAs, it could be assumed with good approximation thatTE

andTM polarizations couple the electrons in the conduction band with two distinct reservoirs of holes.
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Labeling the number of electrons in conduction band withnc(z, t) and the number of holes involved in

x andy transitions withnx andny respectively, it is possible to approximate the linearized gain for both

polarization as

gTE(TM)(z, t) = ξ
TE(TM) [nc(z, t)+nx(y)(z, t)−N0

]
(3.2.3)

whereξ denotes the gain coefficient andN0 is the total number of electronic states involved in the transi-

tion. The gain factor can be corrected in case of strong intense beams to account for saturation due to the

carrier heating effect:

ξ
TE(TM) =

ξ
TE(TM)
0

1+ εSTE(TM)

whereε has typical values around 10−7 per photon in the SOA. Assuming that the total number of holes

is equal to the number of electrons, i.e.

nc(z, t) = nx(z, t)+ny(z, t)

it is possible to obtain a system of coupled equations for the gain on the two polarization directions in the

SOA:

gTE(z, t) = ξ TE [2nx(z, t)+ny(z, t)−N0]
gTM(z, t) = ξ TM [2ny(z, t)+nx(z, t)−N0]

(3.2.4)

The final step of the model is obtained by specifying the rate equations for the carriers. Forx polarization,

it can be written as:

∂nx(z, t)
∂z

=−nx(z, t)− n̄x

T1
−

nx(z, t)− f ny(z, t)
T2

−gTE(z, t)STE(z, t)

The two time constantsT1 andT2 account for electro-hole recombination time (usually of the order of

hundreds of picoseconds) and inter-hole relaxation times (in the order of femtoseconds). The factorf ,

known in literature asimbalance factor, is introduced phenomenologically to account for the tensile strain

induced by the pump field, that enhances transitions onTM mode. In case of unstrained material,f = 1,

while in the general case,TM gain will be larger thanTE one, so thatf < 1. Neglecting ultra-fast carriers

related effects (T2) it is possible to find an equilibrium condition

n̄x =
n̄ f

1+ f
n̄x = n̄

1+ f

wheren̄ = I
eT1, I is the electric pump current ande the electronic unit charge.
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The phase difference accumulated during the propagation in the SOA betweenTE andTM modes, can

be evaluated from the propagation equations3.2.1:

θ = φ
TE−φ

TM =
1
2

(
αTEΓTEgTE

vTE
g

− αTMΓTMgTM

vTM
g

)
L (3.2.5)

whereL represents the SOA length.

The two fields propagated along the different SOA axes interfere in the PBS ports following the expres-

sion:

Sout = STE(L)+STM(L)+
√

STE(L)STM(L)cosθ (3.2.6)

where

STE(TM) = STE(TM)
in e

(
ΓTE(TM)gTE(TM)−α

TE(TM)
in

)
L

v
TE(TM)
g (3.2.7)

The output field given by3.2.7is obtained solving the gain equations for both modes.

Eq. 3.2.6, expresses the switching capabilities of NPS in SOAs. When the pump beam is present with

a power level in order to induce a relative phase-shift ofπ

2 on the probe signal, the output reaches one

PBS port, while, when this is not the case (there is no significant phase shift in absence of the pump), the

output field is routed to the other PBS port.

The pump field can be separated from the signal beam in a couple of way: with a bandpass filter, if the

pump and the probe have different wavelengths, or using a counter-propagating pump configuration in the

SOA if the two signals have the same wavelengths.

3.2.2 Experimental Results

The non-linear switching process described above has been realized to perform single and multiple wave-

length conversion experiments for a NRZ, 40Gb/s amplitude modulated signal.

The setup is based on the scheme sketched inFigure 3.8, and is represented in detail inFigure 3.9.

The incoming data signal was obtained by using a common DFB, CW laser atλ = 1556.5nm modulated

by an Electro-Absorption Modulator driven by a 39.813Gb/s pattern generator, set to generate a Pseudo

Random Bit Sequence 231− 1 bits long in NRZ format. A Polarization Controller was also used to

maximize the extinction-ratio of the modulator (around 8dB). This signal is sent into the multicast device

after passing into a polarization controller used to set the right polarization state at the input of the SOA.

A set of four CW lasers, 200GHz spaced is also coupled into the SOA. These local channels have the

same polarization state. They are coupled together by means of an AWG and pass through a polarization
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Figure 3.9: Experimental setup used to perform 40Gb/s single and multiple wavelength conversion using nonlinear
polarization switching in a SOA. In the picture, multicast device and the receiver used to perform
the characterization are grouped in separate blocks. The same setup was used for single and multiple
conversion; single conversion was realized by turning on only one of the channels of the Multi-λsource.

controller before being coupled into the SOA. The pump signal works as the pump wave, and induces the

switching effect simultaneously on the local channels.

At the SOA input, the incoming signal enters with a power level of 13dBm, while each CW signal is set to

have 6.5dBm power. The signals are carefully polarization-optimized. The local channels enter the SOA

with a linear polarization state and polarization angle of 45◦s in respect to the SOA axes (as discussed

in the previous section). At the SOA output, by another Polarization Controller, the polarization of all

these signals is rotated so that the transmission through the PBS output is zero when the co-injected pump

signal is zero. The pump power is set so that in correspondence of optical ones on the pump signals, the

local channels experience a polarization rotation and thus are transmitted through the selected PBS port.

With the same polarization state of all the inverted signals, by exchanging the PBS port, the wavelength

conversion can be realized in inverted logic-mode.

The SOA is a commercially available pigtailed device, with 31dB small signal gain, 10dBm output satu-

ration power, and 1.5dB polarization dependent gain. In this device, electron-hole recombination time is

quite fast, and the gain is recovered at 60% in 12ps. The PBS had an extinction-ratio between the ports of

about 30dB. At the output of the multicast device, an AWG was used to separate each converted channel.

For single conversion, we sent a CW probe signal 800GHz detuned in respect to the incoming data signal.

The eye-diagrams of input and converted signal are reported inFigure 3.10.

The converted signal eye-diagram shows a clear aperture. The spectrum of the converted channel is shown,

together with a BER measurement, inFigure 3.11. It is possible to observe a residual FWM product, that

in this case is not detrimental, because it is placed far away from the converted channel.

71



3 Wavelength Conversion and Optical Broadcasting

Figure 3.10:Comparison between input eye-diagram (a) and converted channel eye diagram. Traces are recorded
with a 45GHz bandwidth photodiode. In both figures time scale is 5 ps/div.

Figure 3.11:Left: spectrum of the pump and converted channel. It is possible to observe also a spurious FWM
product. Right: BER measurement comparison for the incoming signal and the converted signal. Less
than 1dB penalty is produced during the conversion.

The BER measurement is realized using the setup illustrated inFigure 3.9. A variable attenuator and an

high gain amplifier are used to vary the OSNR of the signal to be characterized, while a 1.2nm Bandpass

Filter (used to reject ASE noise from the amplifier) and another attenuator are used to keep at a constant

level (−2dBm) the power sent to the receiver. The OSNR measure was realized by using an Optical

Spectrum Analyzer, with a spectral resolution of 0.1nm. This is a different BER characterization, respect

to the one made for the wavelength conversion device shown in the previous section: it guarantees that

the BER measurements are not limited by the Photodiode Sensitivity.

The same characterization was made when all the four local CW channels were coupled together in the

Nonlinear Polarization Switch.

The channels were 200GHz spaced each other. The eye diagram of each channel, obtained by filtering

with an AWG, are reported in figFigure 3.12. Despite some noise on the mark level, all the channels show

a clear eye opening. The intensity noise is probably due to the beating of the different FWM components

that arise in the multi-mixing process in the SOA. Several FWM tones are unavoidably generated between

the four co-polarized channels. Moreover, internal channels (two and three), jammed by more FWM
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Figure 3.12:Eye diagram for each of the converted channels. Despite some noise on the high level, the eye opening
is clear on all the channels.

components show higher intensity noise than aside channels (one and four). These contributes are clearly

visible in the spectrum of the converted channels, reported inFigure 3.13.

While the maximum conversion efficiency is obtained for the CW signals with SOP at 45◦ with respect

to the SOA axis, the switching process has a noncritical dependence on the SOP of the pump signal. This

can be understood by noticing that the phase difference between the co-propagating modes in the SOA is

proportional to differential gain between the two modes. In case of polarization insensitive devices, the

differential saturated gain has only a slight dependence from the SOP of the saturating signal. Indeed we

found limited variations at the SOA output in the case of limited changes of the incoming signal SOP. On

the other hand, when we performed abrupt changes of the input signal SOP, a slight re-optimization of the

polarization controller at the SOA output was required. This behavior is likely due to the residual PDG

of the device. The intensity of the four converted channels at the AWG output is between 2 and 4 dBm,

hence conversion efficiency of the switch for all the channels is in the range between 8.5 and 10.5dB.

BER performance of the converted channels outside the multicast device are reported inFigure 3.14.

In this case, all the four CW channels are turned on (see spectrum in 2). The maximum OSNR penalty

is around 3.2 dB for Channels 1 and 2. This penalty is related to the distortions in the mark level that

are shown inFigure 3.12. Nevertheless, those penalty levels are significantly lower than those previously

obtained at 40 Gb/s using an alternative technique [45].
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Figure 3.13:Spectrum of the output of the converted signals. FWM products are evident.

3.3 Conclusions

In this chapter, we reported two different techniques that enable the multicast operation for intensity

modulated signals. The first technique, being based on a FWM process is transparent to the modulation

format. In particular, the same experiment could be realized with constant envelope modulation formats

for example Differential Shifted Phase Keying (DPSK). This choice would benefit the SOA operation with

two main advantages: first of all the constant envelope ensures to avoid all the gain recovery dynamics

related problems (the pattern effects evidenced inFigure 3.4). This enable higher bit-rate operations. It

should be said using very high non-linear SOA devices in which gain recovering times can be shortened,

makes possible to operate wavelength conversion at higher bit-rates also for amplitude modulated signals.

However, the same bit-rate could be reached using constant envelope modulation formats withslower

SOAs. Another big advantage offered by constant envelope formats is the possibility to use higher power

probe signals. Indeed, as it was mentioned insubsection 3.1.1in a degenerate FWM process the pump

and the probe signal should not interact: in the case of constant envelope modulation formats, in which

there is not gain modulation, it is possible to enhance the pump to probe power ratio, thus enhancing the

conversion efficiency.

The second technique shown in this chapter, demonstrates that nonlinear polarization switching can be

effectively used for multiwavelength conversion purposes forNRZsignals up to 40Gb/s. Respect to other
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Figure 3.14:BER evaluation on all the selected channels

results reported in literature, we obtained better results on the penalty, reducing it almost to zero in the

case of single wavelength conversion (against the 3dBpenalty reported in [46]).

This technique is not modulation format transparent, but allows to obtain very high conversion efficiencies.

In fact with this technique, it is possible to adjust polarization of the local CW channels in order to set to 0

the transmitted power in correspondence of 0-bit levels in the incoming data signal; at the same time, the

average power on the ”1”-bits in the converted signals, are proportional both to the incoming data signal

power and the local CW signals powers.
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This chapter is dedicated to the discussion of the results obtained in the realization of all-optical clock

recovery circuits. After a brief introduction on in which CR circuits will be reviewed by discussing their

role in optical networks, their characteristics and requirements, an overview of typical all-optical clock

recovery implementations will be given. Then the chapter will be focused on two techniques proposed

to accomplish the clock recovery operation in optical domain. The first solution is based on periodic and

sharp filtering of a modulated data signal; the second is based on the realization of a phase locked loop by

means of a metal-semiconductor point contact diode.

4.1 Overview of common techniques used for all-optical Clock Recovery

In communication systems by means of Clock Recovery it is mean the task that allows to extract a syn-

chronism information from an incoming modulated signal. The the recovered clock it is useful to further

process the incoming signal itself (for example for regeneration at intermediate nodes) or to trigger other

devices like a receiver at the end on the transmission link. Clock Recovery extraction is a fundamental

operation in asynchronous systems. Typically clock signals extraction is accomplished by first converting

the incoming optical signal to the electric domain, then performing the Clock Recovery in the electronic

domain. This Optical/Electrical conversion process requires in principle low power levels: in fact, the first

optical-electric conversion can be performed with very low optical power levels (down to−40dBm). This

is important, because the clock recovery operation has to be realized usually at the end of a transmission

line, where the power is usually very low. The CR operation in the electrical domain has been proven

to be a well established and affordable task. However, the O/E conversion poses several limitations:

first of all it requires wide-band photodiodes to perform the O/E conversion and wide-band electronic

components to perform the digital processing; but also appropriate high-frequency cables, and optionally

electro-optical modulators, that are very expensive components. Even if the actual technology allows to

achieve elaboration of high bit-rate electronic signals (up to 100GHz) it is not reasonable to think that

this limit can be increased endlessly. Moreover, highest bandwidth photo-receivers reported in literature

operate at frequencies up to 80GHz thus, lower than the electrical processing speed limit.

Clock Recovery in optical domain, on the other end, does not suffer from thisspeedlimitation; most

important, as it will be shown in this chapter, all-optical CR can be realized with circuits made of few

integrable optical components. In this case, as for may all-optical circuits, one of the major drawback is

represented by the requirement on optical power levels required to accomplish the clock extraction: most
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all-optical CR circuits are often based on non-linear optical effects, thus requiring proper input power

levels.

The future Asynchronous Optical Packet Switched Networks will also benefit the use of all-optical CR

circuits. It has been recently been shown that with the use of proper techniques (one of them is proposed in

this thesis) it is possible to perform clock extraction after reading few bits of an incoming signal: this is an

essential operation to achieve packet-by-packet clock recovery in asynchronous networks where packets

arrive at random times to each node, and being able to perform data retiming (for regeneration purposes)

or drive burst data receivers.

All-optical clock recovery circuits are designed and realized using the same principles of signals elabora-

tion that are exploited to realize CR circuits in electrical domain. Respect to other class of functionalities

that can be realized with coherent non-linear effects (for example wavelength conversion) Clock Recovery

extraction it is not generally transparent to the modulation formats; it preserves however the advantage of

high speed operation.

Several techniques were developed in the past to accomplish CR in optical domain. It can be said that they

have a common feature. All the techniques are based on themanipulationof the optical spectrum of the

input modulated signal; even if a signal is modulated, it always contains atraceof the periodicity fixed by

the modulation bit-rate: any modulated signal spectrum containsclock lines at a frequency spacing equal

to the bit-rate.

This can be derived directly by calculating the power spectrum of a digital amplitude modulated signal.

We start by considering an amplitude modulated signal that contains a Random-Bit-Sequence. Such signal

can be written as:

x(t) = ∑
k

akp(t−kTb)

where,ak represents thek-th symbol in the sequence,

p(t) = Π
( t

τ

)
=

{
1 t ≤ τ

0 t > τ
(4.1.1)

represents a squared pulse (that has value 1 into a bit and 0 outside it), andTb is the bit duration (so that

the bit-rate is defined asrb = 1
Tb

).

The power spectrum for the signalx(t) is given by:

Gx ( f ) =
1

T2
b

|P( f )|2
∞

∑
n=−∞

Ra(n)e− j2πn f Tb

where f is the frequency,P( f ) is the Fourier Transform of the pulse signal andRa is the auto-correlation

function of the random pattern sequencea . The auto-correlation function, defined asRa(n) =< ak ∗
ak−n >, can be expressed as:
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Ra(n) =

{
σ2

a +m2
a n = 0

m2
a n 6= 0

in case of a random bit sequence pattern ;maandσa are respectively the statistical mean and variance of

theakdistribution.

In the case of a NRZ signal with square pulses like in eq.4.1.1, the single symbol spectrum is given by:

P( f ) =
1
rb

sinc

(
f
rb

)
(4.1.2)

For an RZ pulse (assuming a square shape similar to the one defined in eq.4.1.1but with half duration)

the symbol spectrum is given by:

P( f ) =
1

2rb
sinc

(
1

2rb

)
(4.1.3)

where thesinc function is defined assinc(x) = sin(πx)
πx . The origin of the factor12 in the RZ spectrum can

be understood thinking that an RZ pulse has value “1” only for half the bit duration time (it has a 50%

duty-cycle).

After some elaboration, the spectrum is found to be:

Gx ( f ) =
σ2

a

Tb
|P( f )|2 +

(
ma

T:b

)2 ∞

∑
n=−∞

∣∣∣∣P( n
Tb

)∣∣∣∣2 δ

(
f − n

Tb

)
(4.1.4)

From eq. 4.1.4, it can be seen that the power spectrum ofx(t) is composed of lines positioned at the

harmonics of the bit-rate1Tb
(unlessma = 0 or P( f ) = 0 for f = 0 and f = n

Tb
for all n). In the case of an

ideal NRZ modulated signal the symbol spectrum is such that it is null in correspondence of all the clock

lines: P( f ) = 0 for f = n/Tb at anyn 6= 0. As a consequence the NRZ signal spectrum is a continuous

sinc function without clock lines. In real applications, however, those lines are present (even if with very

low intensities) also for NRZ signals. This is due to a series ofnon-idealprocesses that happen in the

signal generation, as it will be discussed in this chapter. The main cause of this the finite-bandwidth of

the devices (both electronic and opto-electronic) used to produce NRZ data: it is impossible to achieve

experimentally anidealNRZ signal with perfect squared pulse as in eq.4.1.1. The clock lines are present

in the spectrum but are really weak (compared to he ones contained in ideal RZ signals spectra, that

instead are characterized by the presence of strong clock lines). This make possible to realize clock

recovery circuits using the same techniques used in RZ systems also for those modulation formats (as

NRZ) that ideally do not contain clock lines: in those cases the signal is first elaborated to enhance the

clock lines intensity, and then the clock recovery operation is performed.

Exploiting the presence of clock lines in the input signals spectra (or having enhanced the ones in NRZ

signals), some all-optical clock recovery circuits use the input modulated signal toseedother systems

78



4 Optical Clock Recovery at 40 Gb/s

(either active or passive) that can resonate at multiple or sub-multiples of the clock frequency. Typical

resonant systems used for this purposes are optical cavities (active or passive) with high merit factor and

self-pulsating lasers. The basic idea is that the resonant device selects only the clock components and

suppresses the spectral regions where the information is contained.

Another widely used scheme is the Phase Locked Loop: in this case, through a phase comparator, the

incoming signal is mixed with a local oscillator (at the same clock frequency) whose phase is controlled

by a feedback circuit in order to be synchronized to the input signal. Those circuits can be realized both

in electrical and optical domain: relying on a feedback system, PLL are usually able to reach the lock

conditions after time averaging operations, and therefore are not characterized by ultra-fast locking times.

A Clock Recovery circuit can be characterized by a number of parameters:

• Locking-Range: this parameter indicates the range of frequencies around the system bit-rate in

which the clock recovery can be performed. The higher is the locking range, the more tolerant is

the circuit in respect to possible small variations of the bit-rate.

• Capture Time: this parameter indicate how many bits must be received by the circuit before a clock

signal is generated and synchronization occurs. This parameter should be as short as possible, in

order to be able to follow all the deviations from the nominal clock.

• Holding Time: this parameter indicates the time during which the clock signal keeps to be emitted

by the circuit when long sequences of constant ’0’ symbols are transmitted1.

In Optical Time Division Multiplexed (OTDM) systems, it could be important to extract both the single

channel clock (known aspre-scaled clock) or the aggregated stream clock: the needed clock depends on

the application purposes. For example, pre-scaled clock could be useful for demultiplexing or add/drop

operations.

A typical clock recovery circuit that exploit aresonancephenomenon, is based on injection locking of a

properly tuned mode-locked cavity (either active or passive). If the cavity length matches the incoming

data signal bit-rate, clock recovery occurs.

In Figure 4.1it is shown an example of this technique proposed by Smith and Lucek [47]. In this case,

the incoming data signal is coupled to the cavity by means of a Non-Linear Optical Modulator (NOM)

so that the data signal is practically not affected. The signal is transferred to the cavity that starts lasing

at the frequency1T . In this case the clock signal is a stream of pulses. This scheme has been proposed

in a huge number of variants, and it is possible to divide them in two main categories: circuits that are

based on active or passive mode-locked cavities. In active cavities, the cavity gain is modulated by an

electro-optical modulator inserted in the cavity itself and driven by an external local oscillator; in this

case, the cavity is driven by two external forces: the incoming data signal and the gain modulation.

1It should be noted that while for RZ data streams long sequences of ’1’ symbols are beneficial for CR, in the case of NRZ
streams long sequences of ’1’ symbols are detrimental (because for all the sequence the signal has no amplitude variations).
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Figure 4.1: Clock Recovery circuit based on a mode-locked cavity. (After [47]). An incoming data signal, ampli-
tude modulated, RZ, is partially coupled to a passive laser cavity tuned to resonate to the bit-rate.

This technique allows to obtain clock signals with very low timing jitter and enhanced mode-locking

operations. However, those systems are not tolerant to frequency mismatch between the local oscillator

and signal bit-rate: it is accepted that the two driving forces are only slightly detuned, otherwise the

mode-lock cavity cannot lase. Therefore, with injection locking of active mode-locking laser it is possible

to realize clock recovery circuits with a very limited locking range (few MHz). On the contrary, in

passive cavities, the cavity gain is regulated by passive non-linear elements, such saturable absorbers

[48], SOAs [49], fiber loops [50], that guarantee higher locking ranges (several hundreds of MHz). As

drawback, those circuits require high input power levels, in order to generate the desired non-linearities

into the cavity. In passive cavities, the resonance frequency is determined practically only by the cavity

length itself: in active configurations instead, it is possible to drive the cavity in harmonic mode (i.e.: at

frequencies that are multiples of the cavity fundamental).

It has been demonstrated that the same technique of injection locking can be achieved with the self-

pulsating DFB lasers [51].

In this case the clock recovery is achieved by forcing the lasers self-pulsation to be synchronous to the

incoming data signal. Using the self-pulsing DFB lasers, clock recovery can be performed in the inco-

herent or coherent mode [52]. In incoherent mode clock recovery is mediated by carrier modulations

in the laser cavity induced by the intensity modulation associated to the data stream. The incoherent

mode is wavelength (and potentially polarization) insensitive but suffers from low sensitivity and pattern-

dependent timing jitter. Moreover, the sensitivity (minimum injection power) is bit-rate dependent and

decreases exponentially with bit rate beyond the inverse of the carrier lifetime. In coherent mode instead,

two optical spectral lines associated with the clock component in the data stream directly injection lock

the two optical spectral lines associated with self-pulsation. The coherent mode has high sensitivity and

virtually no speed limit but is both polarization and wavelength sensitive. An example of this technique is

reported inFigure 4.2(from [51]). In that case, the incoming data is first wavelength converted in order
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Figure 4.2: Scheme of (after [51]) clock recovery obtained using a self-pulsating laser. The incoming data signal
modulates the self-pulsating laser forcing it to emit at the frequency corresponding to the incoming data
signal bit-rate. In this particular case, the circuit has been made wavelength independent, by adding a
wavelength converterbeforethe clock recovery stage.

to obtain a copy of incoming data signal at a wavelength matching the free self-pulsating laser one (this is

to make the clock recovery circuit wavelength and polarization independent), than sent to the CR circuit.

The circuit itself is also polarization independent as long the wavelength converter itself is polarization

independent.

Another class of Optical Clock Recovery Circuits is represented by the Optical Phase Locked Loops. In

this case, through an optical phase comparator, an incoming signal is synchronized to a local oscillator,

whose phase is controlled (by means of a feedback circuit) in order to match the incoming data signal

one.

Figure 4.3: Example of Phase Locked Loop circuit (after [53]. The non-linear interferometer (SLALOM) is used
to obtain an error signal that is proportional to the phase mismatch between the incoming data and local
clock. The error signal is then used to correct the phase of the local oscillator.

The phase comparator is realized using an opticalmixerthat couples the local clock and the incoming data

signal. Mixers exploiting non-linearities in SOAs [54], [7], [55] and Optical Fibers [56], [57] have been

demonstrated. Most of the non-linear effects used to realize the mixing process can be defined, to some
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extents bit-rate independent. This means that using Optical Phase Locked Loops it is possible to operate

at very high bit-rate without adding too much complexity, if the mixer bandwidth is wide enough. On the

other side, Optical Phase Locked Loops require an optical clock source, and this is not always compatible

with design and low-cost constraints typical of modern Optical Systems.

4.2 Optical Tank Circuit

4.2.1 Theory

All the CR illustrated circuits are based on non-linear optics effects. The next class of CR circuits that

that will be discussed do not rely on such non-linearities, and the operating principle on which they are

based it is derived from the electronics world. They rely on an optical implementation of the so called

Tank Circuit. This technique is based on a periodical and sharp filtering of the incoming data signal.

If we consider an RZ data signal, its spectrum will be composed of a set of clock lines, spaced at the signal

bit-rate, plus a continuous spectrum with a shape depending on the pulse shape. This can be evinced by

4.1.4. Such spectrum is sketched inFigure 4.4. If an RZ modulated signal is sent through a periodic

filter with the same periodicity of the clock lines in the spectrum (i.e. the periodicity corresponding to

the signal’s bit-rate), the resulting signal will be composed of the clock lines only; the filtering process

removes the modulation information from the data signal. The filter should be also sharp enough in order

to remove the more modulation information is possible.

To this aim, the best class of periodical filters is represented by Fabry-Perot cavities (a simple cavity

with high reflectivity mirrors), or by a ring resonator (that provide the same transfer function). Both are

characterized by a periodical frequency response. A periodical filter is characterized by equi-spaced power

transmission peaks. Each transmission peak has the same functional form. The frequency separation

between the peaks is known asFree Spectral Range(FSR), while the ratio between the FSR and the

transmission line-width is known asFinesse(F) and indicates the filter selectivity. As known, the FSR of

a Fabry-Peròt is given by its lengthL and refraction indexn as from the relation:

FSR=
c

2nL
(4.2.1)

The intensity of the transmitted light is given by:

IT =
(1−R)2

(1−R)2 +4Rsin2( π f
FSR)

II (4.2.2)

whereII is the input intensity andR is the mirrors reflectivity (the mirrors reflectivity is assumed to be the

same for both the cavity mirrors). The Finesse, instead is given by:

F =
π
√

R
1−R

(4.2.3)
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In the limit F � 1 the Finesse is related to the FP filter line-width∆ f by the relation∆ f = 2π

F .

Similar considerations, hold for ring resonator; in a ring resonator the cavity length should be related to

the ring radius while the reflectivity with the ring input and coupling coefficient.

Three point are critical in the choice of the filter transfer function:

• The filter Free Spectral Range must match the bit-rate.

• The pass-band peaks of the filters must be superimposed to the clock lines contained in the spec-

trum.

• The line-width of the filter must be larger than the source line-width, but not too larger, to obtain

the maximum modulation removal.

Figure 4.4: Working Principle of Fabry-Peròt filtering of an RZ data signal: the periodical filter extract only the
clock lines, this transforming an input modulated signal in a periodic stream.

The clock recovery extraction can be also analyzed in the time domain: it is possible to think to a pulse

of the sequence that enter the filter. It will start bouncing into the cavity, exiting with decaying energy at

each round-trip. Moreover, the pulse train exiting from the cavity is spaced by a periodT corresponding

to 1
FRS. Thus it can be said the the Fabry-Peròt cavity fills any bit slot with missing pulses (the ’0’ bits)

with a pulse. However, this process is characterized by a decay time, fixed by the photon life-time into
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the cavityτ = nL/c(1−R). The number of pulses extracted in the timeτ is given byτB whereB is the

data bit-rate. Writing this product, it can be seen that the number of pulses exiting the cavity in the decay

time is given by:

N∼=
F
2π

(4.2.4)

The numberN from eq.4.2.4shows that the tolerance to long ’0’ bits sequences depends on the FP filter

Finesse. It should be said that, even if a long ’0’s sequence lasts for a time shorter than the decay time (so

that the Tank Circuit can tolerate it), the output pulses will not have the same amplitude and the clock will

not be amplitude equalized: this means that the extracted signal, even if semi-periodic2, it is not suitable

for direct use. it could be observed that increasing the Finesse it would be possible to extend endlessly

the number of pulses in the decay time: this is a paradox that can be resolved including the losses in

the FP filter description. Moreover, the Finesse cannot be increased arbitrarily: if on one end increasing

the Finesse value benefits the holding time of the circuit, on the other end too high Finesse values can

introduce other problems: if the source line-width (i.e. the line-width of the optical carrier) is larger than

the FPF transmission band-width, the filtering effect can be detrimental. Moreover taking into account

the finite line-width∆ fs of the signal laser source, it can be shown that the resonator Finesse is lowered

by a factor:

Fe f f =
∆ fres

∆ fres+∆ fs
Fres (4.2.5)

where∆ fresandFres are the resonator transmission peak line-width and Finesse respectively, andFe f f is

the effective lowered Finesse. This relation poses a limitation to the highest source line-width that is

compatible with the needed Finesse value (fixed by the required holding time of the circuit). An upper

limit value for the source line-width can be found from4.2.5:

∆ fs≤ B

(
1

Fe f f
− 1

Fres

)
(4.2.6)

Fortunately, this limitation is relaxed for high bit-rate systems: in fact, while the decay timeτ is fixed by

the cavity mirrors reflectivity, the number of bits contained in the decay timeτ increase with the bit-rate.

This means that standard DFB sources used in modern communication systems are compatible with this

kind of clock recovery technique [58].

From these considerations it can be evinced that the all-optical Tank Circuit woks better at high bit-rates,

with relevant advantages for the future optical networks.

There were some implementations of optical tank circuit to achieve all-optical clock recovery. A funda-

mental milestone was posed by Jinno [58], who realized this circuit at very low bit-rates (5 GHz). Several

2The signal exiting from the FP filter cannot be defined as periodic because of the amplitude modulation: still, the pulses
emerging from the filters are equi-spaced in time
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attempts were tested at higher bit-rates: in those implementations, however, the FP filtering was used as

anhelpermechanism for the CR circuit already illustrated in the previous section (mainly to seed other

optical cavities [59],[60],[61],[62]). In the following instead we will demonstrate that a properly designed

FP filter can act as the main CR circuit element even at high-bit rates (40Gb/s).

4.2.2 Experimental Realization and Results

The technique discussed above, will be shown experimentally with amplitude modulated data signals at

40Gb/s (both NRZ and RZ). Due to important differences in the spectrum of RZ and NRZ signals, the

circuit cannot be used in both cases. RZ implementation will be discussed first, and then the results will

be extended to the case of NRZ input signals.

4.2.2.1 Clock Recovery from 40Gb/s RZ signals

The setup used to realize the clock recovery with RZ data is represented inFigure 4.5. It should be noted

that the whole circuit is composed only by the two elements enclosed into the dashed box: the rest of the

experimental setup regards the realization of the data stream and the diagnostic instrumentation (optical

spectrum analyzer, electrical spectrum analyzer or optical sampling oscilloscope).

The incoming data signal is generated by external modulation of a DFB laser emitting atλ = 1559.3nm

with a low chirp electro-absorption modulator (EAM). This first modulation stage, it is used to produce a

pulsesequence; we used this technique because the limited instrumentation in the laboratory didn’t allow

to build the soliton source described inchapter 2for this experiment. This pulse train is not intended to

be transmitted, and its spectrum is perfectly compatible with the requirements for this measures, so the

lack of a soliton source is not a major limitation for the experiment purpose. The EAM is driven by a

tunable RF generator, with frequency set to 39.97GHz. This value was chosen in order to match the FSR

of the available Fabry-Peròt filter. The Fabry-Peròt filter was a commercial device, with fiber pigtails

characterized by an high Finesse value (270) and 4dB insertion loss. The device can be temperature

controlled by means of a fine Peltier cell in order to shift the transmittance spectrum. We found that

temperature variations do not introduce sensible FSR changes with wavelength shifting. Moreover, as it

will be discussed later, until the Finesse is kept constant against temperature fluctuations, the FSR it is not

a crucial parameter in this circuit: it turned out that this system can provide locking ranges in the order of

hundreds of MHz.

Figure 4.5: Experimental setup realized for 40Gb/s Clock Recovery from an RZ modulated signal
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The filter capabilities do not strictly depend on the polarization state of the incoming signal, so that

the whole circuit is also polarization independent. The pulses train has been encoded with a second

modulation stage in which a Mach-Zender LiNbO3 modulator was employed. Due to the lack of a 40Gb/s

pattern generator, we modulated the pulses train imposing over it a 9.9925Gb/s data stream, composed

of a 231−1 long Pseudo Random Sequence (PRBS). We modulated the RZ pulses train with a PRBS at

exactly a quarter of the pulse frequency. The pattern and the RF generator are synchronized by a common

reference signal at 10MHz. With this technique we overcome the lack of a 40Gb/s pattern generator,

producing a sequence of pulses modulated four at a time. This data signal is not actually pseudo-random

but shows, compared to a 10Gb/s PRBS, four times longer sequences of zero symbols (i.e, the longest

sequence is 31x4 = 124 bits long). This means that this technique allows a better testing and stressing of

the CR circuit.

The modulation trace can be seen inFigure 4.6(left). The eye diagram is affected by a poor extinction

ratio offered by the EAM in the pulses formation stage, and on the long rise and fall response time of the

10Gb/s Mach-Zender modulator. From the point of view of the clock extraction this is not a problem:

after all, clock recovery circuits are positioned at the end of a line when the signals are often distorted, and

not in optimal shape. The spectrum of the input signal is also plotted inFigure 4.6(right): in the spectrum

(recorded with a resolution of 0.1nm) the clock lines and the modulation superimposed are clearly visible.

Figure 4.6: Eye diagram of the modulated pulses at 40Gb/s. On the right the optical spectrum is plotted (recorded
with a 0.1nm resolution).

The modulated signal, is directly injected into the Fabry-Peròt filter. The signal at the output, and its

spectrum are plotted inFigure 4.7. As it can be seen, the zero symbols are completely removed, and

the original periodicity is recovered. However, the pulse sequence still shows a strong low-frequency

modulation. The origin of this residual modulation is understood by thinking to the time response of the

FP filter. As discussed in the previous section, the pulses exit from the cavity with a decaying intensity.

With the Finesse value provided by the FP (270), from4.2.4it can be seen that the number of pulses in

the decay time is of about 43. With our modulation scheme, as indicated before, we have ’0’s sequences

long up to 124 bits: this explain the residual low amplitude modulation. The CR signal is thus pattern

dependent and not suitable to be used as a clock signal for further incoming signal processing.

The residual modulation was removed by simple further processing. To this aim, we exploited the high-

pass filter property of saturated Semiconductor Optical Amplifiers (SOA). A detailed description of SOAs
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Figure 4.7: Eye diagram (left) and optical spectrum (right) of the signal extracted at the output of the Fabry-Peròt.

is well beyond the purposes of this thesis so that the following statements will be not discussed deeply,

but it can be shown that a SOA have a transfer function given by:

X(ω) = GCW

1+
ln( G0

GCW
)

GCW−1 − iωτc

1+GCW
ln( G0

GCW
)

GCW−1 − iωτc

(4.2.7)

whereω is the modulation frequency,GCW is CW amplifier gain andG0 is the unsaturated amplifier gain

(the linear, or small signal gain). The CW amplifier gain, can be found from the closed equation:

GCW = G0e−(GCW−1) Pin
Ps

wherePin is the SOA input power andPs is the SOA saturated power. The frequency response is expressed

by |X(ω)|2; a schematic diagram of the frequency response is shown inFigure 4.8. As it can be seen, at

high frequency, the response is flat, and proportional to the CW power gain, and the modulation depth is

conserved at high frequencies.

Typical commercially available SOAs have cut frequencies around 1GHz : these considerations lead us

to employ an SOA to remove the low modulation content of the FP extracted signal, thus amplitude

equalizing the clock.

This effect it is clearly shown inFigure 4.9.

The clock signal extracted from the circuit, shows no amplitude modulation, but it is clearly affected by

a low modulation depth. This can be justified looking at the input signal, that it characterized by a non

perfect extinction ratio: in fact, a very long sequence of ’1’ bits should be not practically affected by this

circuit, thus preserving also the poor extinction ratio.

We also studied the radio frequency spectra of the recovered clock to realize a measurement of the timing

jitter of the extracted clock.

The radio frequency (RF) spectra of the signals as detected by a 50-GHz photodiode and a 40-GHz

electrical spectrum analyzer (ESA) are reported inFigure 4.10. In Figure 4.10we report on the left the
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Figure 4.8: Schematic diagram of the frequency response of an SOA.δ is the modulation depth.

Figure 4.9: Clock signal after SOA equalization. On the left it is shown the eye-diagram of the clock. The effect
of low frequency amplitude modulation (compared toFigure 4.7is clear). On the right the optical
spectrum of the clock is reported.

RF spectrum of the input modulated signal, while inFigure 4.10on the right it is reported the RF spectrum

of the clock recovered signal. The modulated signal exhibits continuous spectral components around the

carrier and around the 40-GHz clock line together with 10 GHz and multiple clock lines, which are due to

the particular modulation scheme previously described. From the spectra it is clearly possible to see how

the clock extraction circuit removes all the spectral components but the carrier and the 40-GHz line. In

this way, the spectrum of the recovered clock results quite similar to the one obtained for the original 40-

GHz train. We measured 60-dB side-mode suppression, with 3-kHz resolution bandwidth for the 40-GHz

clock line.

To further assess our scheme, we first measured the relative standard deviation (RSTD) of the 40-GHz
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Figure 4.10:RF spectra of input modulated signal (left) and clock recovered signal (right). The input spectrum
shows 10GHz spaced lines, due to the particular modulation scheme (see the text). The removal of
modulation in the region 0−40 GHz is evident. On the left figure, it is possible to observe 3steps
corresponding to three different sensitivity regions of the available Electrical Spectrum Analyzer.

recovered signal. The RSTD is defined as the ratio between the standard deviation and the mean value

of the amplitude taken with the oscilloscope. We found that the amplitude stability suffers from a very

limited degradation, i.e., from 0.4% RSTD of the input signal to 0.5% RSTD of the recovered clock,

although we had very long zero sequences at the input. Time jitter characterization of the clock signal is

then obtained from the single sideband (SSB) phase noise spectrum.

Figure 4.11:Single Side Band noise spectra of the input 40GHz pulse train and of the clock recovered signal.

Figure 4.11shows the SSB noise spectra of the original 40-GHz pulse train and of the recovered clock
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signal. The spectrum is normalized to the resolution bandwidth of the ESA. Numerical integration of this

spectrum on the tail of the clock frequency component results in an upper limit for the root mean square

(rms) of the time jitterσ jitter . As known, the jitter can be estimated by [63], [64]

σ jitter ≤
T
2π

√
2
∫ f2

f1
L( f )d f (4.2.8)

whereT is the pulse repetition rate (here 25 ps) andL( f ) is the Single Side Band (SSB) noise spectrum.

We numerically integratedL( f ) from the off-set frequencyf1 = 50Hz up to f2 = 10MHz (note thatL( f )
cannot be accurately measured in the limited very low-frequency regionf < f1, but the corresponding

error can be neglected). Thus, we obtain 87 and 497f s as upper limits forσ jitter of the input and the

clock recovered signal, respectively. Even considering this upper bond value (' 0.5ps), the recovered

clock jitter is comparable with values generally reported in literature and well within the specified limits

for the current optical transmission systems (around 10% of the bit rate). By changing the bit rate of the

input signal, we found that the locking range is around 150MHz. This value is quite larger than usually

reported, and it is directly determined by the FWHM of the periodic FPF transmission (and hence, by the

Finesse). Even when the signal and the transmittance peak of the FPF are detuned by 75MHz and the

signal attenuation is 3dB higher than when they are exactly wavelength matched, we still obtain a good

quality recovered signal.

4.2.2.2 Clock Recovery from 40Gb/s NRZ signals

The same circuit was also tested with NRZ signals. Even if the clock recovery extraction principle is the

same of the RZ signal, there is an important difference: a pure NRZ signal (in which the unit symbol

is a perfectly rectangular shaped function) does not carry clock lines in its spectrum. This can be seen

evaluating the4.1.4for the signal

x(t) = ∑
k

ukp(t−kT)

where

p(t) = Π
( t

T

)
=

{
A |t|< T/2

0 |t|> T/2
(4.2.9)

andT is the signal period. As known, the Fourier Transform of the rect function is thesinc(x) = sin(πx)
πx ,

so thatP( f ) = sinc( f ) with the symbols of4.1.4.

If the sequence is completely random, we have:

σ2
a = A2

4 m2
a = A2

4 (4.2.10)
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Inserting4.2.10into4.1.4we have:

Gx( f ) =
A2

4rb
sinc2 f

rb
+

A2

16

∞

∑
n=−∞

sinc2(n)δ ( f −nrb) =
A2

4rb
sinc2 f

rb
(4.2.11)

In4.2.11all the clock lines (represented by theδ functions) vanish because in correspondence of the lines,

thesinc() approaches zero: thus the spectrum of an ideal NRZ data stream does not show clock lines, but

only a continuous distribution around the zero frequency.

In the practice, however, the signal cannot be represented by a rect function: it is impossible to obtain

instantaneous transactions between the high and zero level. So, in the practice it is possible to have

signals whose spectra do not have zeros in correspondence of the clock lines, and then it is possible to

observe optical spectra with clock lines, even if with very low intensities. Usually, those lines have so low

intensities that it is not possible to apply directly the filtering process to extract a clock: the incoming data

signal has to be pre-processed, to enhance interested lines in the spectrum.

The presence of these clock lines is derived to the finite bandwidth frequency response of the apparatus

that encode the signal (pattern generator and electro-optical modulators). This means that, fixed the cut-

off frequency of the data encodersfc and electro-optical modulators that forms the modulated optical

signal, the clock lines in the spectrum can be more intense as the bit-raterb increases. As result, the

optical processing for clock recovery extraction from NRZ signals seems more suitable than electronic

clock recovery and it is expected to work more efficiently at higher bit-rates.

The pre-processing stage can be realized in several ways. We used a simple pre-processor, made by an

SOA and a tunable bandpass filter (Figure 4.12).

Figure 4.12:Schematic representation of the pre-processor: a combined action of SOA non-linear effects and fil-
tering reshape the signal spectrum to enhance on of the weak clock lines.

When the NRZ signal enters in the SOA, the spectrum is red-shifted, and a corresponding overshoot is

observed in correspondence of the leading edge of the signal. This overshoot is selected by means of the

tunable filter. The spectrum is then strongly distorted toward longer wavelengths, and correspondingly

the clock lines on the “higher wavelength side” of the spectrum, are enhanced.

The overshoot effect, can be observed inFigure 4.13. The tunable filter can be optimized in order to

maximize the overshoot. In the frequency domain, this is equivalent to select the spectrum region where

the clock lines are located. Signals processed with this technique are often known in literature as Pseudo-

RZ signals.
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Figure 4.13:Effect of the pre-processor. a) input data stream b) signal output after the pre-processor. In correspon-
dence of the leading edge, an overshoot can be observed.

The experimental spectrum distortion can be observed inFigure 4.14. In the input spectrum (dashed

curve), the clock lines are weak (about 23dB under the carrier). After the pre-processing, the clock to

carrier ratio is enhanced of about 15dB. It can be noted that even if enhanced, the line seems todisappear

into the spectrum. This is not a problem in our case, because we operate a sharp filtering.

Figure 4.14: Induced spectrum distortion in the pre-processor. The tunable bandpass filter has a 0.8nm bandwidth.
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This signal is now suitable to be processed with the same circuit shown before. The complete experimental

setup is drawn inFigure 4.15.

Figure 4.15:Complete setup of 40Gb/s NRZ Clock Recovery. The inset show the eye diagram of the signal at
various stages: input, after the pre-processor and the extracted clock.

The modulation is realized by a DFB laser emitting atλ = 1549.9nm externally modulated by a Mach-

ZenderLiNbO3 based modulator, driven by a 231−1 long PRBS.

The signal enter the pre-processor with an input power of about 6dBm. After the first SOA, the signal

is passed through a tunable bandpass filter with 0.8nm bandwidth. The preprocessed signal (Pseudo RZ

signal) is then inserted into the clock-recovery circuit, realized with the same components used in the RZ

case. While in the RZ experiment the clock signal at the output of the FP filter was affected by a strong

low frequency amplitude modulation, due to the presence of the long ’0’ bit sequences (up to 124 ’0’ bit)

due particular modulation scheme, in this case, the longest ’0’ bit sequence lasts foronly 31bits. In this

case, we still expect a low frequency amplitude modulation, but with lower modulation depth.

This can be seen in the eye-diagram of the clock signal extracted at the output of the FP filter (Figure 4.16-

a). As in RZ case (Figure 4.7) the zero level is completely removed, but there is still a trace of amplitude

modulation. The comparison shows also a net reduction of the amplitude fluctuation due to the shorter

length of the ’0’ bit sequences. Some of the noise in the output of the FP filter could be also attributed to

the amplified spontaneous emission accumulated in the amplifiers in the pre-processor stage and before

the clock recovered signal. The EDFA in the setup is needed to guarantee that the clock signal enters the

equalizing SOA (SOA2 inFigure 4.15) with a power level that can bring it in saturation regime: if SOA2

it is not saturated, the equalizing effect it is not observed.

Both SOAs are polarization independent devices with 28dBm small signal gain and 5dBm output satura-

tion power.

The spectra of the clock recovered signal is reported and compared to the spectrum of preprocessed signal

(Figure 4.17). As it can be seen, the double red-shifting effect (experienced in second SOA) further

increases the clock to carrier ratio, taking it to−3dB about: the overall increase is then estimated to be

around 22dB.

This enhancement is more evident in the RF spectrum (Figure 4.18). The spectra are recorded with a
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Figure 4.16:Detail of signal evolution at every stage of clock recovery circuit. All figures are recorded with a 55
GHz photodiode and a sampling oscilloscope in eye-mask mode. All images have time scale set to 10
ps/div.

50GHz photo-detector and a 40GHz spectrum analyzer set to a Resolution Band Width (RBW) of 3MHz.

As it can be seen, the modulation components are all removed and the clock line is strongly enhanced

(more than 30dB).

Integrating the SSB RF spectrum as in2.1.7, we found a upper value for the timing jitter of 0.2ps, slightly

lower than the one obtained in the RZ case. This can be explained with the presence (in the case of RZ

signal) of a stronger modulation at the output of the FP filter: as an SOA induce a phase shift on the signal

that it is proportional to the gain; in that case, the pulses with different input power experience different

gains, and then different phase-shifting, thus increasing the overall timing jitter.

At the moment of the realization of this experiment, a 40Gb/s Bit-Error-Rate measurement system was

available, and the extracted optical clock was used to synchronize the receiver: we obtained error-free

operation in back-to-back configuration, thus demonstrating the validity of the circuit.
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Figure 4.17:Effect of FP filter (continuous line) on the preprocessed signal (dashed line)

4.3 Optical Phase Comparator with Point Contact Diodes

As discussed at the beginning of this chapter, another technique used to obtain a clock-recovery sig-

nal, consists in the use of a Phase-Locked-Loop circuit that minimizes the phase delay between a local

oscillator and the incoming signal. Usually, the phase extraction is based on non-linear response of a

medium, that is generated only when both the local and incoming signals are temporary superimposed

in the medium itself: the intensity of the non-linear signal produced by the interaction is taken as a

measure of the relative phase delay of the signal. We tested this scheme using as non-linear medium a

Point-Contact-Diode.

4.3.1 Metal-Semiconductor Point Contact Diodes

Metal-Semiconductor Point Contact Diodes are systems composed by a contact between a fine metal

wire and a (p or n doped) crystal. Many types of point contact diodes have been developed during the

last 50 years: Metal-Insulator-Metal, Schotky diodes have been widely used in microwaves applications.

PCD have been also used as mixer in metrology applications, exploiting their wide detection spectrum.

Depending on the crystal used, they can detect radiation with wavelengths from visible to infrared: this

allows to perform mixing between waves that are very far in the electromagnetic spectrum, leading to the
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Figure 4.18:Comparison between the input and clock-recovered signals RF spectra. The clock line is strongly
enhanced (more than 30dB).

possibility of direct high precision measurement of laser frequencies. Beside this peculiarity, as the re-

sponse time is the reciprocal of the difference between the signals frequencies, those device are extremely

fast.

A schematic representation of this diodes is reported inFigure 4.19

The wire, also known in literature ascat whiskercan be hook-shaped, in order to ensure a pressure against

the crystal. Unlike other kind of junctions (thep-n junction, for example) its properties depend on the wire

pressure against the crystal: by varying it, it is possible to vary the contact resistance, thus its performance.

The pressure of the contact can be controlled by means of a translation stage, as shown inFigure 4.19-a).

During the construction of the diode, an high current is usually let flow across the contact, in order to

generate a polarized zone (around the contact) thus forming ap-n junction. This process, represented in

Figure 4.19, is known aselectroforming.

The diode is used by sending different signals over the contact region and then analyzing the produced

signals at its edges, usually with a electrical spectrum analyzer, in order to study the mixing products.

Several different processes concur to the generation of the signal. One of them, is the tunneling effect,

typical of Schottky diodes. Several papers reported the evidence of another process, probably of thermal

nature, that could be responsible for the different responsivity of the diode respect to different mixing
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Figure 4.19:Schematic representation of a point contact diode. a) The wire can be hook-shaped in order to guaran-
tee a good pressure on the contact. b) After a current injection through the contact, the region around
the contact become polarized, thus forming a pn junction.

orders. However, there is still not a complete theory that describe those device [65].

As crystal, several sample were tested. The best performance were obtained with aGaSbsamplen-doped

with Teand a carriers concentration of 6−8x1017cm−3.

The choice ofGaSbcrystal is also important to use the PCD with infrared radiation (around the spectral

region of interest for Optics Communication), because,GaSbhas an absorption peak around 1550nm. In

practice,GaSbacts as aphotodiodewhile the whisker acts like anantennato detect the RF radiation.

The tip radius, as well as the whisker diameter, are not expected to be critical parameters for the detection

and mixing properties of the PCD [65]. Small tips radius offer faster response and higher mixing band-

width; but at the same time, too small tips radius (under hundreds nanometers) can lead to very delicate

and short lived contacts. A good compromise between contactsmallnessandstability has been found by

Carelli and co-workers using tungsten wires, with 127µm diameter and a tip electrochemically etched to

the desired radius (typically 100nm) by immerging it into a 2N−HaOH solution.

PCD could be used inn Optics Communications for various application. Among them, PCD could be

employed for timing-jitter measurement for high repetition rate sources. Timing Jitter of a periodic pulse

train can be determined by analyzing it spectrum. Assuming that the individual pulse shape is specified

by a functionf (t), and the repetition rate is 1/T if the train is affected both by amplitude modulation and

timing jitter, its power spectrum can be expressed as:

P(ω) =
(

2π

T

)2 ∣∣ f̃ (ω)
∣∣[δ (ωn)+PA(ωn)+(2πn)2PJ(ωn)

]
(4.3.1)

where f̃ is the Fourier Transform of pulse intensity temporal profile,ω is the optical frequency, and

PA(ω) andPJ(ω) are the power spectrum of amplitude modulation and timing jitter respectively. In4.3.1,
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n indicates thenth harmonic in the spectrum.

Of course the various harmonics are equi-spaced by an amount equal to1
T as from the relation:

ωn = ω0±
n
T

= 2π( f0±n fr)

whereω0is the pulse train carrier andfr is the pulse train repetition rate. It can be seen how the amplitude

noise modulation is distributed with the same weight over all the harmonics, while the timing jitter contri-

bution scales asn2 and thus is more evident on higher harmonics. To isolate the timing jitter contribution

in the spectrum, it is necessary to measure the line-width of two harmonics in the spectrum: one at lown

and another with highn. Then comparing their line-width, it is possible to measure the timing jitter con-

tribution, and hence, to derive information about the deviation on the repetition rate of pulse train under

test.

This procedure, is commonly applied to low repetition rate pulse source; for a source operating at few

MHz repetition rate, it is possible, with an adequate electrical spectrum analyzer, to study harmonics

up order 50. For higher repetition rate pulse train, this is more difficult, due to the limited bandwidth

of available instrumentation. If we consider the source presented inchapter 2, it is impossible to study

harmonics at higher order than the first (40GHz ) because the widest bandwidth photodiodes have a

pass-band of about 60GHz: in this case, it is impossible to retrieve timing jitter information with direct

detection. The PCD presented in this section, can help in doing a down conversion with high frequency

Microwave generators, due to its wide range of detection. In principle, mixing the optical pulse source

and a microwave reference (with known stability) it is possible to observe higher harmonics, and hence to

extract information about the optical source stability. This kind of test as been performed with a couple

of microwave source. Preliminary results about mixing between the source reported inchapter 2can be

observed here. Those measurements, are still in progress and the reported results are intended to be only

demonstrative. The mixing between the optical pulse source and an external microwave generator is given

by a series of beating. The generic beating is given by:

fbeat = |M( fn1− fn2)−N fMW| (4.3.2)

where fn1and fn2 are two harmonic of the optical signal andfMW is the microwave source frequency.N

andM indicate the mixing order.

The relation4.3.2has been verified for first-order mixing (N = 1,M = 1). To this aim, we produced an

optical sine-modulated wave by using a external modulation of a CW laser at 1550nm.The CW wave

was modulated with a continuously tunable RF source (between 0 and 40GHz ) driving a Mach-Zender

modulator biased at null point (in order to double the modulation frequency).

The obtained wave was then mixed onto the PCD together with a Microwave oscillator emitting at a

frequency around 72GHz. The microwave oscillator is coupled to a Gunn waveguide that is placed close

to the PCD whisker that act like an antenna. The optimal positioning is determined by maximizing the

98



4 Optical Clock Recovery at 40 Gb/s

Figure 4.20:Experimental confirmation of the relation4.3.2, obtained by coupling a microwave oscillator emitting
at 72GHz with a optical sine-like wave at a variable frequency between 66 and 80GHz.

detected signal. The output power of the Gunn oscillator was 10mW. The coupling of the pulsed source

on the PCD was realized by putting the fiber output of the optical source in close contact with the PCD’s

crystal. While varying the modulation frequency, we recorded the frequency of the obtained beating. The

result is plotted inFigure 4.20.

An example of second order beating is reported inFigure 4.21. It is possible to observe a screen image

of a beat note at 8GHz obtained by irradiating the PCD with the pulse source and a Microwave oscillator

emitting at a frequency around 72GHz. This beat note, is the result of the mixing withN = 2 andM =
1(referring to eq.4.3.2).

As indicated before, a typical application of this mixing experiment, could be found in the noise charac-

terization of high repetition rate optical signals, provided that the microwave reference is stable enough.

Conversely, this method can be used to characterize microwave signals considering the optical signal as a

stable reference.

A second class of operation that can be performed with PCD regards the clock recovery. In the following,

it will be shown how the PCD can act as a Phase Comparator to lock an incoming signal to a local

oscillator. It should be noted that the reported results are similar to those that can be obtained with a PIN

photodiode, since down-conversion using the Gunn MW it is not needed. This is because both the local

oscillator and the signal we used have a repetition rate that is in the bandwidth of common photodiodes.

However, by using a down-conversion process as described before, it should be possible to fully take the

advantage of the high-bandwidth response offered by the PCD.
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Figure 4.21:Beat note of a mixing experiment between a Gumn oscillator emitting around 72GHz and an optical
pulse source at 40GHz repetition rate.. The reported beat note is at 8GHz (40×2−72 GHz).

To show how the PCD can be effectively used as delay detector between two pulse trains, we realized the

experimental setup shown inFigure 4.22.

Figure 4.22:Experimental setup to measure the phase delay between two periodic signals. A single RF generator
at 10GHz is used to produce a sine-modulated wave and a pulse train, by means of an electro-optic
Mach-Zender modulator. The two streams are delayed each other and then are combined over the
PCD. Both a Sampling Oscilloscope and a electrical spectrum analyzer are used to measure the delay.

We first produce two sine-modulated waves by modulating a CW laser at 1555nmwith a common Mach-

Zender modulator, driven by an RF generator at 10GHz. One of the sine-like wave is then compressed

in a Single Mode Fiber (exploiting the modulation instability phenomenon illustrated inchapter 2) to

obtain a stream of 20ps pulses. One of the two stream is passed into a piezo-electrical delay-line that

can be tuned to set a delay in a range of±300ps. In the other arm, a polarization controller and a

Variable Optical Attenuator (VOA) are used to ensure that the two streams are coupled onto the PCD
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with comparable power and identical polarization, in order to maximize the mixing effect. One sampling

oscilloscope is used to position the relative delays to the desired values, and the usual Electrical Spectrum

Analyzer is used to monitor the PCD response. The basic principle on which this phase comparator is

used is the following. The mixing between spectral lines of the two pulse trains leads to the generation

of some components in the low-frequency noise spectrum at the output of the PCD. Those components

are maximum when the pulses are time-overlapped and decrease when they are out of phase. Hence, by

integrating the beating noise spectrum in the low-frequency region, it is possible to extract an error signal

that depends on the relative time delay between the pulse trains.

The result of the experiment is plotted inFigure 4.23

Figure 4.23:Error signal. The error signal is maximum when the two streams are superimposed. It is possible to
measure an extinction ratio of about 15dB.

This error signals has been recovered by numerically integrating the low frequency spectrum. In principle,

it could be retrieved by realizing an electronic circuit that perform the integration inreal time. Such error

signal can be set to drive a dedicated delay line that can maintain the two streams in a synchronous state,

thus realizing a phase locked loop.

4.4 Conclusions

In this chapter, we presented 2 different setup to obtain clock-recovery. The first one, is all-optical, and it

has been demonstrated to work for RZ and NRZ (with the help of a pre-processing stage) data streams at

40Gb/s. The method is based on a periodic and sharp filtering of the incoming data signal. The second

method, instead, is based on the ultra-fast response properties of a Metal-Semiconductor Point Contact

Diode. The second method was not fully investigated, but the preliminarily results shown that there is the

possibility to build a phase comparator based on this peculiar technology. On this side, there is still much
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to do: in particular the PCD can be a very useful instrument to determine the timing jitter properties of

the soliton source analyzed inchapter 2.

The all-optical clock recovery scheme shown in this chapter, was demonstrated for amplitude modulated

signal. It can be shown (experiments are being carried out at the time of writing) that with proper adapta-

tions, it could be operated also with constant envelope modulation formats (such Differential Phase Shift

key for example). The major improvement outlined in this research work is that the FP can be the true

optical element that allows to perform the CR from a modulated signal, while in the past it has always

been considered as an element able to improve the CR characteristics of already assested complex CR

circuits.

Despite of its simplicity, there is still some perspective work on all-optical clock recovery experiments

that can be done in the future, mainly in three directions; first, due to the intrinsic simple design, the

clock recovery setup is a good candidate to be integrated on a small-scale photonic chip. FP filters, can

be for example realized by means of micro-rings or integrated waveguides. Among the benefits that could

come from the integration process, it is worth to mention the net reduction of the power needed by the

circuit to work properly. The SOA used in the experiments are devices closed into butterfly packages that

show significant coupling losses. The other direction in which those clock recovery experiments can be

extended, is the test of the device in a real transmission line. It is not simple to predict how the filtering

process behave at the end of a transmission line, where noise and distortions are superimposed to the

signal. However, some steps are already moved in this direction by [66]. They shown that the circuit

proposed in this thesis has been used in a 1.250.000km transmission: in particular, the clock recovery

circuit has been used at each regeneration stage (every 60km).

Another promising feature of the proposed CR circuit is the short capture time offered by the FP capabili-

ties. The CR circuit, is a good candidate (also because its high degree of integrability) to be implemented

in optical burst receivers. This was already demonstrated in [67], and other works are being carried on at

the moment of writing.
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This work has focused on several experimental realizations of subsystems and devices that can be succes-

fully used in next generation Optical Communication Systems, and more in general in Optical Transparent

Networks that are expected to be realized in the next decades. Optics Communications is a continuously

growing field, feeded by the always increasing bandwidth demand both from network service providers

and end-users. One of the main motivations behind this work was to find solutions and develop subsys-

tems for Optical Systems with a special regard for design simplicity. Simplicity is not only a requirement

inspired by the “low-cost” paradigm; the simplicity requirement was also a key-point to demonstrate that,

even if Electronics can offers arbitrary circuits with capabilities and functionalities that we still lack in

Optical domain (also due to the longer experience maturated in the field), it is possible to develop simple

all-optical circuits providing functionalities that can replace and overcome the performance offered by the

Electronic counter-part. Moreover some of the developed devices are potentially integrable1, adding an

important value to the research developed.

The devices developed in the thesis cover many functionalities needed in optics communication systems;

the main results can be summarized in the following point.

• A soliton pulse source

The source is capable to produce pulses at a 40 GHz repetition rate, and the produced pulse train is

suitable to frequency upgrades up to 160 GHz

The source is based on Adiabatic Compression (AC) in a dispersion shifted fiber: while AC is a

known phenomenon and it was already used to demonstrate pulse generation, in this thesis it has

been demonstrated how the AC can be enhanced (by counter-propagating Raman amplification) to

form a regular, pedestal free, high power (100 mW), wavelength tunable pulse train. The source

has been engineered in a box and provides tunability of central emitting wavelength over a range of

more than 20 nm, and pulse-width over a range between 4 and 2 ps.

The source is designed to have an internalfree-runningclock reference but also accept external

precision reference clock to be used in real transmission systems.

• Multi-wavelength converters

1Unfortunately due to the lack of proper instrumentation, it was not possible to realize the integration of the proposed solutions.
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We shown the possibility to realize multi-wavelength converters, based on non-linear effects in

SOAs. SOAs are actually the most promising non-linear optical element to perform optical pro-

cessing, and are the true candidates to realize the integration of a big number of functionalities on

a single chip. We shown 2 non-linear effects in which it is possible to obtain simultaneous wave-

length conversion to multiple destination wavelengths, at 10 and 40 Gb/s.

This functionality will be important in particular in Access Networks to deliver traffic associated to

multimedia stream applications.

Both devices are easily integrable and realized using a single SOA, thus representing an advance in

multi-wavelength converters technology.

• Clock Recovery Circuit

CR was demonstrated at 40Gb/s both for NRZ and RZ encoded signals by using a Fabry-Peròt

filter as a key element in the device. Here, the main advance in respect to what was previously re-

ported in literature is represented by the demonstration that a FP filter with adequate finesse can be

effectively used as the main component to achieve CR extraction at bit-rates up to 40Gb/s : in the

past it was always used as apreprocessorfor CR circuits. Due to the passiveness of this technique

we expect that for a proper scaled finesse value the CR using a FP filter should work also at higher

bit-rates.

The tank circuit proposed in this work has been already used by other research group to demon-

strate all-optical clock recovery from burst data traffic [66], [68], [67], showing a good acceptance

of the results reported. Integration of a variant of the proposed circuit (in which the equalizing SOA

has been replaced by an integrated SOA-based Mach-Zender interferometer) has also been demon-

strated recently [69] to realize a 3R burst receiver.

• Outlooks

Several possible research lines could be started from the results reported in the thesis. The pulse

source still needs further work in order to fully characterize its noise properties: this is a necessary

step to understand if it could be used as frequency reference in high-precision mixing experiments.

Both noise characterization and mixing experiments can be carried out with Point Contact Diodes .

Preliminary measurements in this directions have been performed, and are still under evaluation.

The Non-linear Polarization Switch used to realize the multiwavelength converter, has been proved

to be effective also to other means: for example, we have encouraging results showing the possibil-

ity for this switch to have regenerative properties.

In general, it could be said that eachblockrealized in the thesis can be further developed to be used

with other modulation formats. For example, the pulse source, can be used to realize novel exper-

iments on the transmission of RZ signals encoded with a Differential Phase Shift Keying (DPSK)

modulation. This particular modulation scheme is, among other things, compatible with the pro-
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posed CR scheme.

At the moment of writing, we are also testing the CR circuit on NRZ-DPSK signals, that due to

the constant envelope, are characterized by stronger resilience to transmission impairments. The

circuit has been tested also on packets data traffic: preliminary results, shown that due to the short

capture time of the circuit it is possible to perform packet-by-packet CR, obtaining clock streams

with the same length of the incoming packets, that is an important step toward the realization of an

asynchronous packets receiver.
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