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Preface 

 
The aim of this PhD course was to explore a broad overview on the topic of the 

Structure-Property Relationship (SPR) with a strong emphasis on the pratical aspects. 

The basic principle the study of SPR is based on is that all the chemical, 

physicochemical, biological or other functional properties of a molecule are dependent 

on its structure. Usually the reasons for undertaking a SPR study are either the 

characterization of the properties of a molecule (interpretation or razionalization phase) 

or the attempt to design a new structure in order to obtain a desidered property 

(prediction phase). The first choice is, in any case, a necessary step for obtaining the 

second one. 

The interest in razionalizing and optimizing the process of SPR stems from 

considerations of cost-effectiveness. Since the costs of chemical research are very high, 

the need for making the process of understanding the relationships between structure 

and function more efficient has a very high priority in the strategy of all chemical 

companies. A classical example is the one of drug research: attempting to design a new 

drug by trial and error is obviously a very inefficient approach (even though in some 

forms this is a method still in use), while knowing which are the pharmacophoric 

elements of a basic molecular structure allows for a contained number of specific 

modifications. This, in turn is more likely to provide the desired properties and a great 

saving in time and resources. 

Therefore it is of critical importance to utilize all the theoretical methods that will allow 

the access or the extraction of all possible information hidden in the individual facts 

about structure and properties of molecule. In this view I could say that the common 

denominator of this PhD course is in fact information extraction and information 

manipulation. 

Data in chemical research, and in particular in drug discovery, is varied and oftentimes 

very complex. In drug discovery one has to make sense of different type of data such as 

structural, biological, physico-chemical, pharmacological, toxicological and so on, 

which, ultimately have to be associated to a single molecular structure. In order to sort 
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out these data and extract appropriate information, a number of tools have been devised 

on computers and workstations in the form of different programs; the reader will find 

that many of these tools and methods have been used during this PhD course. 

More in details in Chapter 1 the homology modeling of the adenosine receptors was 

explored and accompanied to the pharmacophoric analysis and synthesis of new 

compounds.  

In Chapter 2 the analysis of the MMP-inhibitor interaction led us to implement the 

Amber Forcefield, and the following docking analysis allowed the design of new 

selective inhibitors. 

The modeling of the activate form of the cannabinoid receptors (Chapter 3) 

corresponded to an attempt for going away from the homology modeling procedures; 

together with the goal of obtaining a quantitative model from an automated docking 

study. 

In Chapter 4 the study of ligand-estrogen receptor interaction was developed exploring 

the free energy calculation, while finally in the last Chapter the angiotensin receptor 

AT1 construction led us to propose a new binding orientation for the non-peptide 

antagonists, using the 3D-QSAR approach as validation and predictive method. 
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1.1 MODELING OF THE A1 AND A2A HUMAN ADENOSINE RECEPTORS: 

 
Tuccinardi T, Ortore G, Manera C, Saccomanni G, Martinelli A* Eur. J. Med. Chem. In Press (DOI: 

10.1016/j.ejmech.05.09.011) 

 

1.1.1 Introduction. 

Adenosine receptors are members of the superfamily of G protein-coupled receptors 

(GPCR). As such, they are single polypeptide chains possessing seven hydrophobic 

transmembrane-spanning segments that couple to an effector molecule through a 

trimeric G protein complex. 

To date, four adenosine receptor subtypes have been cloned; these include the A1 and 

A3 receptors, which inhibit adenylyl cyclase, and the A2a and A2b receptors, which 

stimulate adenylyl cyclase.1 

In the present study, we focused our attention on the interaction of ligands with the A1 

and A2aARs; the A1AR was initially cloned from the thyroid gland of dogs,2 and was 

later isolated from several other species.3,4 The A1AR is a protein of 326 aminoacids, 

which has a high affinity for N6-substituted adenosine analogues. Several highly 

selective A1AR compounds are available, including the agonist N6-

cyclopentyladenosine (CPA).5 The carboxyl terminus of the A1AR is shorter than that of 

the A2aAR, whereas the amino terminus is longer. At the aminoacid level, the A1 and 

A2aARs are generally 60% identical within the transmembrane domains.3,4,6 Unlike the 

A1AR, the A2aAR has a high affinity for 5’-substituted adenosine agonists and a low 

affinity for N6-substituted compounds.7 Highly selective A2aAR agonists are available, 

and include the compound CGS-21680.8 

These receptors are important pharmacological targets in the treatment of a variety of 

conditions such as asthma, neurodegenerative disorders, psychosis and anxiety, chronic 

inflammatory diseases and many other physiopathological states that are believed to be 

associated with changes in adenosine levels.9-11 

In particular the development of agonists for the adenosine A1AR receptor, able to 

mimic the central inhibitory effects of adenosine (and so inhibiting neurotransmitter 

release), may therefore be clinically useful as neuroprotective agents. On the contrary  

A1AR selective antagonists have been developed as antihypertensives and potassium-
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saving diuretics, cognition enhancers and useful therapeutics for the alleviation of the 

symptoms of Alzheimer’s disease.12,13  

Furthermore A2AAR agonists are potentially useful for the treatment of cardiovascular 

diseases, such as hypertension, ischemic cardiomyopathy, inflammation, and 

atherosclerosis,14,15 and A2AAR antagonists have been proposed as novel therapeutics 

for Parkinson’s disease and may also be active as cognition enhancers, neuroprotective 

and antiallergic agents, analgesics, and positive inotropics.16-18  

Consequently, selective and potent agonists or antagonists at the adenosine receptor 

subtypes are needed for therapeutic intervention; however, a clear picture of how these 

receptors bind their various ligands has not emerged yet. A knowledge of the 3D 

structure of adenosine receptors could be of great help in the task of understanding their 

function and in the rational design of specific ligands. However since GPCRs are 

membrane-bound proteins, high-resolution structural characterization is still an 

extremely difficult task. For this reason, great importance has been placed on molecular 

modelling studies, and, in particular in the last few years, on homology modelling 

techniques. The publication of the first high-resolution crystal structure for rhodopsin,19 

a GPCR superfamily member, provides the option of homology modelling to generate 

3D models based on detailed structural information. With the aim of achieving a better 

understanding of experimental results, in the present study we constructed the A1AR 

and A2aAR three-dimensional model of the seven α-helical transmembrane domains, 

using bovine rhodopsin as a template . 

To test these models, we carried out the docking of certain A1 and A2aAR selective 

agonists. 

1.1.2 Computational methods. 

All the calculations were carried out by means of the Batchmin programme of the 

MACROMODEL suite,20 using the Amber forcefield and making the dielectric 

“distance-dependent” constant equal to 4.0. The molecular dynamics (MD) simulations 

were performed at 300° K, with a timestep of 1.0 fs and an equilibration time of 40 ps, 

while all the minimizations were carried out by means of 2000 Steepest Descent steps, 

followed by Conjugate Gradient until a convergence of 0.05 kJ/Å•mol. 

The graphic manipulations and visualizations were performed by means of the 
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Maestro,20 WebLabViewer,21 and Chimera22 programs, while the quantum mechanical 

calculations were carried out using the Gaussian03 program.23 

1.1.2.1 Amino acid numbering. To refer to specific amino acids sequences, the 

numbering system suggested by Ballesteros and Weinstein was used.24 The most highly 

conserved residue in each transmembrane helix (TMH) was assigned a locant value of 

0.50, and this number was preceded by the TMH number and followed in parentheses 

by the sequence number. The other residues in the helix were given a locant value 

relative to this.  

1.1.2.2 Molecular modeling All the information regarding the primary structure of 

human A1 and A2a receptors, and their subdivision into transmembrane, cytoplasmatic 

and extracellular domains, was obtained from the GPCR Data Bank.25 We modelled 

only the TM domains, since the function of the loops has still not been defined. 

Although site-directed mutagenesis suggests a role for adenosine receptor loops, and in 

particular for the second extracellular (E2) ones, it remains unclear whether the E2 loop 

is in direct contact with ligands, or whether it contributes to the overall physical 

architecture of the receptor protein.26-28 After defining the primary structure, the 

secondary and tertiary ones were defined by using the structure of bovine rhodopsin as a 

template.19 The receptor-template superimposition was carried out maintaining the 

maximum analogy between the receptors, and choosing the regions with a conserved or 

semi-conserved sequence. The alignment was studied on several adenosine receptors by 

means of the ClustalW program29 using the blosum algorithm, with a gap open penalty 

of 10 and a gap extension penalty of 0.05. As shown in Figure 1, the alignment was 

guided by the highly conserved amino acid residues, including the D/ERY motif 

(D/E3.49, R3.50, and Y3.51), the two proline residues P4.50 and P6.50 and the NPXXY 

motif in TM7 (N7.49, P7.50, and Y7.53).30 We used the 3D X-ray crystallographic 

structure of bovine rhodopsin registered in PDB (1F88) as a direct template to construct 

the 7 TM helical structure of the A1AR, using the Maestro programme to substitute the 

residues of rhodopsin not conserved in the receptor; subsequently, each model helix was 

capped with an acetyl group at the N-terminus and an N-methyl group at the C-

terminus. In order to consider the mutagenesis data regarding TM3, it was necessary to 

rotate the third helix of the receptor by approximately 90°. 
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                                            TM1                              _  
                                 |                       |           | 
AA1R_HUMAN       -------MPPSISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAV 
AA1R_MOUSE       -------MPPYISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAV 
AA2AR_HUMAN      ----------MPIMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAA 
AA2AR_MOUSE      -------------MGSSVYIMVELAIAVLAILGNVLVCWAVWINSNLQNVTNFFVVSLAA 
AA2BR_HUMAN      ---------MLLETQDALYVALELVIAALSVAGNVLVCAAVGTANTLQTPTNYFLVSLAA 
AA2BR_MOUSE      ---------MQLETQDALYVALELVIAALAVAGNVLVCAAVGASSALQTPTNYFLVSLAT 
AA3R_HUMAN       ----MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLAL 
AA3R_MOUSE       ---MEADNTTETDWLNITYITMEAAIGLCAVVGNMLVIWVVKLNPTLRTTTVYFIVSLAL 
OPSD_BOVIN       SPFEAPQYYLAEPWQFSMLAAYMFLLIMLGFPINFLTLYVTVQHKKLRTPLNYILLNLAV 
                                          :   ..  *.*.  ..     *:     :::.**  
                       TM2                              TM3         _ 
                                 |           |                      | 
AA1R_HUMAN       ADVAVGALVIPLAILINIG--PQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKI 
AA1R_MOUSE       ADVAVGALVIPLAILINIG--PQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKI 
AA2AR_HUMAN      ADIAVGVLAIPFAITISTG--FCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRI 
AA2AR_MOUSE      ADIAVGVLAIPFAITISTG--FCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRI 
AA2BR_HUMAN      ADVAVGLFAIPFAITISLG--FCTDFYGCLFLACFVLVLTQSSIFSLLAVAVDRYLAICV 
AA2BR_MOUSE      ADVAVGLFAIPFAITISLG--FCTDFHGCLFLACFVLVLTQSSIFSLLAVAVDRYLAIRV 
AA3R_HUMAN       ADIAVGVLVMPLAIVVSLG--ITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRVKL 
AA3R_MOUSE       ADIAVGVLVIPLAIAVSLQ--VKMHFYACLFMSCVLLIFTHASIMSLLAIAVHRYLRVKL 
OPSD_BOVIN       ADLFMVFGGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCK 
                 **: :    :. ::  .           * :      :  . :: :*:.:*:.**: :   
                                      TM4           _ 
                            |                       | 
AA1R_HUMAN       PLRYKMVVTPRRAAVAIAGCWILSFVVGLTPMFGWNN----LSAVERAWAANGSMGEPVI 
AA1R_MOUSE       PLRYKTVVTQRRAAVAIAGCWILSLVVGLTPMFGWNN----LSEVEQAWIANGSVGEPVI 
AA2AR_HUMAN      PLRYNGLVTGTRAKGIIAICWVLSFAIGLTPMLGWNN----CGQPKEGKNHSQGCGEGQV 
AA2AR_MOUSE      PLRYNGLVTGMKAKGIIAICWVLSFAIGLTPMLGWNN----CSQTDE--NSTKTCGEGRV 
AA2BR_HUMAN      PLRYKSLVTGTRARGVIAVLWVLAFGIGLTPFLGWNSKDSATNNCTEPWDGTTNESCCLV 
AA2BR_MOUSE      PLRYKGLVTGTRARGIIAVLWVLAFGIGLTPFLGWNSKDSATSNCTELGDGIANKSCCPL 
AA3R_HUMAN       TVRYKRVTTHRRIWLALGLCWLVSFLVGLTPMFGWN----------MKLTSEYHRNVTFL 
AA3R_MOUSE       TVRYRTVTTQRRIWLFLGLCWLVSFLVGLTPMFGWN----------RKATLASSQNSSTL 
OPSD_BOVIN       PMSNFRFG-ENHAIMGVAFTWVMALACAAPPLVGWSR----------YIPEGMQCSCGID 
                 .:    .    :    :.  *::::  . .*:.**.                   .     
                                     TM5           _ 
                         |                         | 
AA1R_HUMAN       KCEFEKVISMEYMVYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSG--DPQKY 
AA1R_MOUSE       KCEFEKVISMEYMVYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSG--DPQKY 
AA2AR_HUMAN      ACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRIFLAARRQLKQMESQPLPGERARST 
AA2AR_MOUSE      TCLFEDVVPMNYMVYYNFFAFVLLPLLLMLAIYLRIFLAARRQLKQMESQPLPGERTRST 
AA2BR_HUMAN      KCLFENVVPMSYMVYFNFFGCVLPPLLIMLVIYIKIFLVACRQLQRTELMDHS----RTT 
AA2BR_MOUSE      TCLFENVVPMSYMVYFNFFGCVLPPLLIMLVIYIKIFMVACKQLQSMELMDHS----RTT 
AA3R_HUMAN       SCQFVSVMRMDYMVYFSFLTWIFIPLVVMCAIYLDIFYIIRNKLSLNLSNSK---ETGAF 
AA3R_MOUSE       LCHFRSVVSLDYMVFFSFITWILVPLVVMCIIYLDIFYIIRNKLSQNLTGFR---ETRAF 
OPSD_BOVIN       YYTPHEETNNESFVIYMFVVHFIIPLIVIFFCYGQLVFTVKEAAAQQQ-------ESATT 
                      .    . :* : *.  .: **:::   *  :.    .                   
                                      TM6          _                TM7      _ 
                          |                        |        | 
AA1R_HUMAN       YGKELKIAKSLALILFLFALSWLPLHILNCITLFCPS--CHKPSILTYIAIFLTHGNSAM 
AA1R_MOUSE       YGKELKIAKSLALILFLFALSWLPLHILNCITLFCPT--CQKPSILIYIAIFLTHGNSAM 
AA2AR_HUMAN      LQKEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPD-CSHAPLWLMYLAIVLSHTNSVV 
AA2AR_MOUSE      LQKEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCST-CQHAPPWLMYLAIILSHSNSVV 
AA2BR_HUMAN      LQREIHAAKSLAMIVGIFALCWLPVHAVNCVTLFQPAQGKNKPKWAMNMAILLSHANSVV 
AA2BR_MOUSE      LQREIHAAKSLAMIVGIFALCWLPVHAINCITLFHPALAKDKPKWVMNVAILLSHANSVV 
AA3R_HUMAN       YGREFKTAKSLFLVLFLFALSWLPLSIINCIIYFN----GEVPQLVLYMGILLSHANSMM 
AA3R_MOUSE       YGREFKTAKSLFLVLFLFALCWLPLSIINFVSYFD----VKIPDVAMCLGILLSHANSMM 
OPSD_BOVIN       QKAEKEVTRMVIIMVIAFLICWLPYAGVAFYIFTHQG--SDFGPIFMTIPAFFAKTSAVY 
                    * . :: : :::  * :.***   :            .       :  .::: .:   
                          _             
                          |            
AA1R_HUMAN       NPIVYAFRIQKFRVTFLKIWNDHFRCQPAPPIDEDLPEERPDD------- 
AA1R_MOUSE       NPIVYAFRIHKFRVTFLKIWNDHFRCQPKPPIEEDIPEEKAED------- 
AA2AR_HUMAN      NPFIYAYRIREFRQTFRKIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQ 
AA2AR_MOUSE      NPFIYAYRIREFRQTFRKIIRTHVLRRQEPFRAGGSSAWALAAHSTEGEQ 
AA2BR_HUMAN      NPIVYAYRNRDFRYTFHKIISRYLLCQADVKSGNGQAGVQPALGVGL--- 
AA2BR_MOUSE      NPIVYAYRNRDFRYSFHKIISRYVLCQAETKGGSGQAGAQSTLSLGL--- 
AA3R_HUMAN       NPIVYAYKIKKFKETYLLILKACVVCHPSDSLDTSIEKNSE--------- 
AA3R_MOUSE       NPIVYACKIKKFKETYFLILRAVRLCQTSDSLDSNMEQTTE--------- 
OPSD_BOVIN       NPVIYIMMNKQFRNCMVTTLCCGKNPLGDDEASTTVSKTETSQVAPA--- 
                 **.:*    :.*:                                      

Figure 1. Alignment of the adenosine receptors and bovine rhodopsin 

(OPSD_BOVIN) amino acid sequences. The highly conserved patterns of the 

D/ERY motif (D/E3.49, R3.50, and Y3.51), P4.50 and P6.50 and the NPXXY 

motif (N7.49, P7.50, and Y7.53) are marked with black. The other identical 

residues are indicated with “*” and marked in grey in the TMs, while the 

conservatively replaceable residues are indicated with “:” and “.”. 
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The A1AR was subjected to a preliminary minimization and 200 ps of MD, after which 

the final structure was minimized. When MD simulations are carried out in the gas 

phases, skipping the explicit environment requires the use of a set of restraints, to 

replace the natural stabilizing effects of the membrane bilayer on the TM domains. 

Accordingly, restraints with a force constant of 10 Kcal/mol•Å2  where applied to 

backbone for the first 100 ps, and for the remaining 100 ps, these restraints were 

reduced to 1 Kcal/mol•Å2. 

The A1AR model obtained by means of these calculations was complexed with a high 

affinity ligand, and the complex was optimized. 

CPA was chosen for this purpose, since it is commonly used in binding experiments as 

a radioligand;5 it was docked into the receptor, bearing in mind the known mutagenesis 

data. 

The CPA geometry was optimized at the AM1 level, and the atomic charges were 

calculated using the RESP31 method with the 6-31G* wave function. 

The CPA was then manually introduced into the binding site in such a manner as to give 

H bond interactions with T3.36(91), S3.39(94), T7.42(277), and H7.43(248) and a 

lipophilic interaction (through the cyclopentyl moiety) with L3.33(88), in accordance 

with the main mutagenesis data (see Table 1). 

The complex modelling was performed by means of a total of 800 ps of molecular 

dynamics. In order to consider the stabilizing presence of the membrane around the 

receptor, all the alpha carbons of the protein and the intra-helix H bonds were blocked 

during modelling by means of decreasing force constants; moreover also the main 

ligand-receptor interactions (shown in Table 2) were restrained. More specifically, an 

initial restraint with a force constant of 10 Kcal/mol•Å2 was applied on all the alpha 

carbons, this force constant decreased during the whole MD, and in the last 200 ps, its 

value was 0.1 Kcal/mol•Å2. As regards the intra-helix H bonds and the main ligand-

receptor interactions, a restraint of 10 Kcal/mol•Å2  and 50 Kcal/mol•Å2  was applied.  

Every 200 ps of MD simulation, the conformation with respect to which the alpha-

carbon restraints were defined was updated; this fact, together with the intra-helix H 

bond constraints, allowed us to take into account the effects of the non-conserved 

prolines on the helix conformation. 
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Table 1. Mutational analysis for A1 and A2aAR agonist interaction. 

      
 Gen. 

Numb. 
A1AR Mutational results A2AR Mutational results 

TM1 1.37 G14 T: increased affinity32 T11  
 1.39 E16 A: reduced 4- to 40-fold33 E13 Q: slight reduction34 
 1.48 P25 L: modest reduction32 L22  
 1.54 I31 C: no variation32 C28 1.54 

TM2 2.41 C46 A/S: no variation35 Y43  
 2.45 S50 A: no variation32 S47  
 2.50 D55 A: increased affinity33 D52  
 2.60 L65 F: no variation32 F62  

TM3 3.25 C80 A/S: no detectable binding35 C77  
 3.27 M82 F: no variation35 F79  
 3.30 C85 A/S: reduced 4- to 13- fold35 C82  
 3.31 P86 F: reduction of affinity32 F83  
 3.32 V87 A: no variation32 V84 L: marginal variation36 
 3.33 L88 A: reduction of affinity32* L85  
 3.36 T91 A: reduction of affinity32 T88 A: reduction of affinity37 
 3.37 Q92 A: reduction of affinity32 Q89 A: increased affinity37 
 3.38 S93 A: no variation33 S90 A: marginal variation38 
 3.39 S94 A: no detectable binding33 S91 A: marginal variation37 

TM4 4.49 C131 A: no variation38 C128  
 4.53 S135 A: no variation38 S132  
 4.59 T141 A: no variation38 T138  
 4.62 F144 L: no variation38 L141  

L4-5  R154  E151 A: loss of affinity27 
  C169 A: no detectable binding35 C166  
  E172  E169 A: loss of affinity27 
  K173  D170 K: no variation27 
  S176  P173 R: no variation27 

TM5 5.41 F184  F180 A: marginal variation40 
 5.42 N185  N181 S: reduction of affinity40 
 5.43 F186  F182 A: loss of affinity40 

TM6 6.52 H251 A: no variation39 H250 L: loss of affinity39 
 6.55 N254  N253 A: loss of affinity40 
 6.56 C255 A: no variation35 C254 A: marginal variation40 
 6.59 L258  F257 A: loss of affinity40 

L6-7  C260 A: no variation35 C259  
  C263 A: no variation35 C262 G: no variation35 

TM7 7.39 I274  I274 A: loss of affinity40 
 7.42 T277 A: reduction of affinity41 S277 A: reduction of affinity40 
 7.43 H278 L: loss of affinity42 H278 A: loss of affinity40 
 7.46 S281  S281 A: loss of affinity40 

* When L3.33(88) was converted to Alanine, the binding of ligands with N6 substituents was reduced to a 
greater extent than ligands without N6 substituents. 
 

After the MD, three steps of  minimization were applied to the structure obtained as the 

average of the last 100 ps. During all these steps, a restraint of  0.1 Kcal/mol•Å2 was 

applied to the alpha carbons, and the restraint on the intra-helix H bonds was removed, 

while as regards the main ligand-receptor interaction in the first two steps, a restraint of 
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30 and 10 Kcal/mol•Å2 was applied, respectively, and in the last step the restraint was 

removed. The same procedure was applied to several different starting interaction 

geometries, with the aim of exploring other binding possibilities, but at the end of the 

modelling procedure, only the above-described one shown in Figure 3a maintained all 

the interactions considered important by mutagenesis studies (see Table 1). 

With the aim of validating this model, 300 ps of MD simulation were performed, in 

which the backbone of the receptor was fixed, but all the ligand-receptor restraints were 

removed; a sampling of the last 200 ps conformation showed that during the simulation, 

none of the main ligand-receptor interactions were missed (the variation of the 

interatomic distances corresponding to these interactions was always less than 20%). 

Furthermore, the average of the last 200 ps was minimized without constraints, and the 

superimposition between the initial and the final CPA conformation showed an RMSD 

of 0.96 Å. The backbone conformation was also evaluated by inspection of the Psi/Phi 

Ramachandran plot obtained from PROCHECK analysis.43  

As shown in the Ramachandran plot in Figure 2, the distribution of the Psi/Phi angles of 

the model is within the allowed regions and no residues have disallowed conformations.  

 
Figure 2. Ramachandran plot of the A1AR. The most 

favoured regions are coloured red, additional allowed, 

generously allowed and disallowed regions are 

indicated as yellow, light yellow and white fields, 

respectively. 
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In order to obtain the A2aAR model we applied the same procedure described above, 

using two starting structures as templates: bovine rhodopsin and the A1AR model 

obtained after the first 200 ps of MD. As the two results differ very slightly, we 

preferred to use the second model, because in this way, the manual rotation of the TM3 

was identical in both receptors. 

The obtained A2aAR model was complexed with a high affinity ligand, and the complex 

was optimized. The complex modelling was carried out by using CGS-21680,8 a 

selective agonist, considering the interactions with N6.55(253), S7.42(277), H7.43(278) 

and S7.46(281), suggested by mutagenesis data (see Table 1). 

Also for CGS-21680 some other starting binding positions were considered but, like 

CPA with the A1AR, at the end of the modelling procedure, none of them maintained all 

the interactions considered important by mutagenesis data.  

At this point the docking of the A1AR selective agonists CPA, RPIA, CADO, the non-

selective agonist NECA and the A2aAR selective agonists CGS-21680 was performed 

manually in both receptors. All the compounds tested present the adenine group as their 

central core, and the initial docking position of the ligands was obtained by 

superimposing this group on those of the final structure of CPA and CGS-21680 in the 

A1 and A2aAR, respectively. In this position, all ligands exhibit the interaction suggested 

by mutagenesis data (see Table 2). 

The ligand geometry was optimized at the AM1 level, and the atomic charges were 

calculated using the RESP31 method with the 6-31G* wave function. To model the 

various ligand-receptor complexes, 800 ps of molecular dynamics were applied in the 

same conditions described above, using a constraint scheme analogous to the one used 

for A1 and A2aAR complex modelling.  
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Table 2. Ligands used to perform the docking and their main interactions with the two receptors. 

 
 R R1 R2 

CPA 
 

H CH2-OH 

RPIA H CH2-OH 

CADO H Cl CH2-OH 

NECA H H 
 

CGS21680a H 
  

aCGS21680 presents a further interaction at the level of the carboxylic group with Asn181 

 

1.1.3 Results and discussion 

In general, docking of agonists to GPC receptors is subject to greater uncertainty than 

antagonists, as rhodopsin is crystallized in its inactive state. Until now, there is only a 

rough picture of the conformational changes that occur during receptor activation. 

Recent studies suggest that receptor activation could be due to a different rearrangement 

of TM3 and TM6.44 Furthermore, on the basis of UV absorption analysis, it has been 

suggested that when rhodopsin is activated, the χ1 rotamer of the high conserved residue 
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W6.48(265) shifts from gauche+ to trans;45 and recently, a 3D model for meta-II 

rhodopsin was published, featuring a similar change to the conformation of W6.48.46 

Interestingly, this rotamer switch was also confirmed in the present study: during the 

MD simulation of both the A1 and the A2aAR complexed with all the agonists, the χ1 

rotamer  of W6.48 spontaneously shifted from gauche+ to trans. Therefore, for our 

purposes, although we do not wish to neglect other dynamic features of the GPCR 

structure, we prefer, in the absence of a crystal structure of a representative activated 

GPCR, not to change the template on the basis of hypothesized structures that may turn 

out to be inaccurate.  

Table 3 shows the residues involved in the first and second spheres of the binding sites 

for the ligand-receptor A1 and A2a complexes studied. For both receptors, the binding 

site is positioned between TM3, TM6 and TM7, and all the residues considered 

important by mutagenesis studies are in the first sphere of the binding site. 

 
Table 3. Residues involved in binding sites of A1 and A2a receptors. Residues in the first sphere are 
involved in the binding site with a distance lower than 4 Å, the second sphere includes the residues 
involved in the binding site with a distance between 4 and 6 Å. Residues that appear from  mutagenesis 
to be of crucial importance are indicated in bold, while non-conserved residues are highlighted in grey. 

Receptor Residues first sphere Residues second sphere 

A1AR 

 
L3.33(88), L3.35(90), T3.36(91), 
Q3.37(92), S3.39(94), I3.40(95), 
A3.42(97), L3.43(98), F5.43(186), 
F6.44(243), S6.47(246), W6.48(247), 
L6.51(250), N6.55(254), I7.39(274), 
T7.42(277), H7.43(278), S7.46(281) 
 

 
L2.46(51), V3.32(87), V4.56(138), 
G4.57(139), V5.39(182), 
Y5.40(183), N5.42(185), 
W5.46(189), V5.47(190), 
H6.52(251), L6.59(258), A7.47(282) 

A2aAR 

 
A2.49(51), V2.53(55), V3.32(84), 
L3.35(87), T3.36(88), S3.39(91), 
V5.39(178), N5.42(181), F5.43(182), 
L6.51(249), H6.52(250), 
N6.55(253), F6.59(257),  I7.39(274), 
S7.42(277), H7.43(278), S7.46(281) 
 

 
L2.46(48), D2.50(52), L3.33(85), 
Q3.37(89), I3.40(92), L3.43(95), 
P4.60(139), W6.48(246), I6.54(252), 
C6.56(254), T6.58(256), 
M7.35(270), N7.45(280) 

 
Table 4 shows the principal interactions of the different compounds inside the two 

receptors. 
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Figure 3a shows the docking, in the A1 and A2aAR binding sites, of CPA, the most 

A1AR selective ligand among those tested. In the A1 subtype, according to the 

mutagenesis data, CPA gives H bonds with T3.36(91), S3.39(94), T7.42(277), 

H7.43(248) and lipophilic interactions with L3.33(88) (through the cyclopentyl moiety) 

and with F5.43(186), F6.44(243), W6.48(247) and L6.51(250) (through the adenosinic 

group). In the A2a subtype, the H bonds are maintained, but the lipophilic interactions 

with L3.33(85), F6.44(242), W6.48(246) and L6.51(249) are absent, because of the 

different position assumed by CPA in this receptor. 

The other two A1AR selective agonists, RPIA and CADO, interact with both receptors 

in the same manner as CPA. They present in both receptors the H bonds with T3.36(91), 

S3.39(94), T7.42(277), and H7.43(248) and show only in the A1 subtype lipophilic 

interactions with F5.43(186), F6.44(243), W6.48(247). NECA, instead, which has a 

similar activity in the two receptors, possesses, besides the H bonds showed by the other 

ligands, a further H bond in the A2aAR with N6.55(253), which is suggested by 

mutagenesis studies to be of great importance for this receptor subtype. Furthermore, 

this agonist shows a lipophilic interaction with L6.51 and F6.44 in both the A1AR and 

the A2aAR. 

Figure 3b illustrates CGS-21680 docked into both sites of the A1AR (on the left) and 

the A2aAR (on the right); it also shows that the ligand interacts with T3.36, N5.42, 

N6.55, S7.42, H7.43 and S7.46 through H bonds. In the A2aAR, the aromatic substituent 

is stabilized by F5.43(182) and H6.52(250) residues (at 4.2Å and 3.4Å from the 

aromatic ring), whereas in the A1AR, these residues are far away (4.8Å and 5.7Å from 

the aromatic ring), and are unable to interact with CGS-21680. 
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Figure 3. a. CPA docked into the A1AR (left) and A2aAR (right) binding sites. b. CGS-21680  

docked into the A1AR (left) and A2aAR (right) binding sites. Interatomic distances between H-

bonded atoms are indicated in blue; carbon-carbon distances showing lipophilic interactions are 

indicated in red. All distances are in Angstroms. 

 

Figure 4a shows the volumes of the cavities between CPA and the two ARs, thus 

indicating the different dimensions of the two binding sites, which could be important in 

determining the selectivity of the derivatives considered. 

The A1AR binding site cavity is small and allows close interaction with the ligand, 

while in the A2aAR , less bulky ligands like CPA cannot occupy the larger site so 

efficiently. 

As regards the binding of CGS-21680, Figure 4b confirms that in the A2aAR, the 

aromatic substituent is effectively stabilized, whereas in the A1AR, the large dimensions 

of the pocket where the substituent is inserted do not allow a strong interaction. 
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Figure 4. a. CPA docked into the A1AR (left) and A2aAR (right) binding sites. The volumes of the cavities 

between CPA and the two receptors are shown. b. CGS-21680 docked into the A1AR (left) and A2aAR (right) 

binding sites. The volumes of the cavities between CGS-21680 and the two receptors are shown. 

 
All these observations are confirmed by the energy calculations of the ligand-receptor 

interactions obtained by means of the Batchmin program20 on the final structures of the 

complexes (see Table 5). 

The interaction energies between the receptor and the ligand were calculated by 

subtracting the energy of the separate ligand and receptor from the energy of the 

receptor-ligand complex. These energies are not rigorous thermodynamic quantities, but 

can only be used to compare the relative stability of the complexes of the same ligand in 

different receptors. Consequently, these interaction energy values cannot be used to 

predict binding affinities, since changes in entropy and solvation effects are not taken 

into account. 
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Table 5. Binding affinity (Ki values) and interaction energy (kcal/mol) of selective agonists for the 

A1AR and the A2aAR.38 

 A1 receptor A2a receptor 

Ligand 
Ki 

(nM) 
Interaction Energy (Kcal/mol) 

Ki 

(nM) 
Interaction Energy (Kcal/mol) 

  VdW Elect. Total  VdW Elect. Total 

CPA 2.3 -29.1 -2.65 -31.75 790 -22.63 -4.12 -26.76 

CADO 1.39) -28.45 -3.59 -32.04 180 -20.38 -3.44 -23.82 

RPIA 2.0) -31.66 -2.45 -34.11 860 -29.50 -2.51 -32.01 

NECA 14 -23.45 -2.72 -26.17 20 -25.33 -2.56 -27.90 

CGS-21680 290 -43.10 -6.93 -50.03 27 -46.48 -7.16 -53.64 

 
These calculations underline the fact that A1/A2a selectivity is mainly influenced by the 

different ability of the two receptors to give lipophilic interactions, instead of giving 

different H bonds. This would confirm the hypothesis that A1AR-selective ligands 

exhibit a lower level of interaction in the A2aAR due to the larger dimensions of the 

binding site cavity, which does not allow a strong lipophilic interaction. Analogously, in 

the case of CGS-21680, the low activity shown in the A1AR could be due to the low 

stabilization of the aromatic substituent inside the lipophilic pocket. 

As shown in Table 3, there are only few non-conserved residues among the A1 and A2a 

binding sites, and they cannot justify the different binding cavity size. However, on 

comparing the two receptors, we observe a different disposition of the TMs: this could 

be due to the fact that in the A1AR, the residues P1.48(25), P3.31(86) and P5.49(92) act 

as flexible molecular hinges, changing the folding of the helices of TM1, TM3 and 

TM5; in the A2aAR, these residues are not conserved, thus determining a different 

rearrangement of the helices, with the formation of a large binding site cavity. Site-

directed mutagenesis shows that in the A1 receptor, the substitution of the P1.48(25) and 

P3.31(86) with Leucine and Phenylalanine respectively, causes a reduction in agonist 

affinity (see Table 1), suggesting their structural role. 

The different disposition of the helices is confirmed by an analysis of the H bonds that 

spontaneously form during the MD of the complexes and are present at the end of the 

modelling procedure in all the ligand-receptor complexes (see Table 6). This 
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rearrangement in the A2aAR concerns only TM2, TM3 and TM5, leaving the binding 

site free. 

 
Table 6. Inter-helix H-bonds in the A1and A2aAR found after molecular modelling optimization. 

 
Inter-helix bonds in the A1 receptor Inter-helix bonds in the A2a receptor 

S2.45(50)-W4.50(132) E1.39(13)-Y7.36(271) 

I3.34(89)-S4.53(135) F2.42(47)-A3.45(97) 

I3.46(101)-Y7.53(288) Q3.37(89)-N5.42(181) 

Y5.40(183)- H6.52(251) A3.47(99)-Y5.58(197) 

Y5.58(201)-L6.41(240)  

I6.40(239)-N7.45(280)  
The S2.45(50)-W4.50(132) H bond is lacking in the CADO and CGS21680-A1AR complex, 
while the A3.47(99)-Y5.58(197) in the CGS21680-A2aAR complex is replaced by 
Y5.58(197)-V6.41(39). 

 
In the A1AR, instead, H bonds are generated, involving and re-arranging all the TM 

domains, and turning the side chains into the inter-helix space. In particular the 

interactions of L6.41(240) with Y5.58(201) and of H6.52(251) with Y5.40(183), drag 

F6.44(243), W6.48(247) and L6.51(250) towards the binding cavity, allowing an 

effective stabilization of the adenosinic group of the agonists. 

1.1.4 Conclusions. 

We have provided 3D models of the A1 and A2a adenosine receptors, based on the 

highest resolution structure of bovine rhodopsin. A model of the agonist-receptor 

complexes was constructed and validated by means of docking studies. The structural 

effects of ligand binding have been examined on the basis of hydrogen bonds, lipophilic 

interactions and binding energies in the final complexes obtained from manual docking. 

Results show that A1/A2a selectivity is not mainly influenced by a different H bond 

network between ligand and receptor, as the selective A1 agonists present the same H 

interactions in both receptors. What appears to be decisive is the lipophilic factor: in the 

A1 subtype, the compounds with a high affinity present lipophilic interactions with 
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L3.33(88), F5.43(186), F6.44(243), W6.48(247) and L6.51(250). Among them, the only 

residue that has been tested by mutagenesis in the A1AR is L3.33(88). In our model, this 

aminoacid shows a strong interaction with the N6-substituted ligands (CPA and RPIA), 

and this is in agreement with the mutagenesis studies that highlight an important 

interaction with these compounds.32 

As regards the A2a affinity, our studies have confirmed that the interaction with 

N6.55(253) is crucial, moreover, the docking of CGS21680 shows that the selectivity of 

this compound could be due to the presence of the R1 substituent, which is able to 

interact with the lipophilic residues of TM5 and TM6.  

The different lipophilic interaction in the two receptors seems to be mediated by the 

different dimensions of the inter-helix channel, due to the structural diversity of the two 

receptors and to the consequent diversity of the inter-helix H-bond network. In 

particular, three non-conserved Prolines, P1.48(25), P3.31(86) and P5.49(92), allow a 

different interaction in the A1 receptor between the TMs, thus determining a smaller 

binding site cavity. These differences allow ligands with large substituents, like CGS-

21680, to interact well with the A2aAR; in the A1AR, instead, the small dimensions of 

the binding site allows a good interaction only with small ligands, like adenosine.
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1.2 MOLECULAR MODELING STUDY OF THE INTERACTION OF THE 1,8-

NAPHTHYRIDINE COMPOUNDS WITH THE BOVINE AND  HUMAN A1 

ADENOSINE RECEPTORS. 

 
Ferrarini PL*, Betti L, Cavallini T, Giannaccini G, Lucacchini A, Manera C, Martinelli A, Ortore G, 

Saccomanni G, Tuccinardi T. J. Med. Chem. 47 (2004) 3019-3031 

 

1.2.1 Introduction. 

Adenosine receptors from different species show a good amino acid sequence homology 

(82-93 %), the only exception is the A3 subtype, which only exhibits 74 % primary 

sequence homology between rat and human or sheep.47-49  

Although there is only little difference in the A1 receptor sequence of different species,50 

some species differences in agonist binding have been reported.51  

The bovine A1 receptor has an affinity for agonist and antagonist ligands that is 10-fold 

higher than that of rat and human receptors; in the bovine receptor, the typical A1 

receptor rank order of potency R-PIA > NECA > S-PIA is partially altered in that it has 

a specifically reduced binding affinity for the 5'-substituted adenosine analogues 

compared with rat and human receptors.52  

Furthermore, N6-substituted adenosine derivatives, such as R-PIA, are more potent at 

bovine than at human or rat A1 receptors. This phenomenon has been called the "phenyl 

effect", and is the strongest at the bovine A1 receptor.51 

A new series of 1,8-naphthyridine derivatives (see Table 1) bearing various substituents 

in different positions of the heterocyclic nucleus were synthesized in order to analyze 

the effects produced on the affinity towards the bovine and human adenosine receptors. 

The results indicate that all the 1,8-naphthyridine compounds generally possess a higher 

affinity towards the bovine A1 receptor compared with the human A1 receptor.  

A molecular modeling study of the docking of the 1,8-naphthyridine compounds with 

both the bovine and the human A1 adenosine receptors was carried out with the aim of 

explaining the marked decrease in the affinity towards human A1 adenosine receptors in 

comparison with bovine A1 adenosine receptors. 
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1.2.2 Results and Discussion. 

The model of the hA1AR previously obtained (see Chapter 1.1) was optimized so as to 

interact suitably with the specific ligand DPCPX, on the basis of the available site 

directed mutagenesis data,28,32,33,35,53 which suggested that residues Ser94 and His251 

were fundamental for the affinity of the antagonists. Therefore, the starting geometries 

of the complexes between the hA1AR and the the antagonist DPCPX were arranged in 

such a manner that the ligand could favorably interact with these two residues. 

The computational procedures are the same fully described in the previous chapter. 

The model of the bA1AR was constructed on the basis of the hA1AR model, following a 

similar procedure. Figure 1 illustrates DPCPX docking into both the site of the hA1AR 

(on the left) and the bA1AR (on the right) and shows that DPCPX interacts at a similar 

distance with Ser94 and His251 through its hydroxylic functions by means of H-bonds 

which appear to be shorter and therefore stronger in the hA1AR (d=2.9 and 3.0 Å) than 

the bA1AR (d=3.1 Å). However, a series of lipophilic interactions due to Leu90, Ile95, 

Leu250, Ala273 and Ile274 are able to better stabilize DPCPX in the bA1AR: the 

cyclophentyl group interacts with Ala273 in hA1AR (d = 4.1 Å) and Ile274 (d=4.4 Å), 

while it interacts with Ala273 (d = 4.0 Å) and Leu90 (d = 4.0 Å) in bA1AR; moreover, 

in bA1AR the two n-propyl chains are able to interact with Ile95 (d = 3.9 Å) and 

Leu250 (d = 4.0 Å), while in hA1AR there is only the interaction with Ile95 (d = 4.3 Å). 

 
Figure 1. DPCPX docked into the hA1AR (left) and bA1AR (right) 

binding site. Interatomic distances between H-bonded atoms are reported 

in blue; lipophilic interactions are reported in red (.Angstroms). 
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Table 1. Affinity of 1,8-Naphthyridine Derivatives in Radioligand Binding Assays at Bovine Brain A1, A2A 

and Human Brain A1 and A2A Receptors. a,b 

 
a Inhibition of specific [3H]CHA binding to bovine and human brain cortical membranes expressed as 

Ki ± SEM (n = 3) in nM. 
b Inhibition of specific [3H]CGS21680 binding to bovine and human striatal membranes expressed as Ki 

± SEM (n = 3) in nM. 
c Cep = ethylcarbethoxypiperazinyl; d Pipz = piperazinyl; e Pip = piperidinyl; f Morph = morpholinyl. 
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Figure 2 shows that the fairly limited structural differences that exist in the 

transmembranal regions of the two receptors hA1AR and bA1AR (only seven residues) 

are, however, able to induce a clear difference in the 3D arrangement of the seven 

helices in the two models (the RMSD calculated on the backbone is 3.79 Å). An 

important point in determining the conformational differences in the models of the 

hA1AR and the bA1AR could be the replacement of the Met82 residue of the hA1AR 

with Lys82 in the bA1AR, which induces a different arrangement of the interhelix H-

bonds and therefore helices TM2 and TM3 are closer in the case of the hA1AR. The 

RMSD between the alpha carbons of helix 2 and the corresponding alpha carbons of 

helix 3 is 9.8 Å in the case of the hA1AR and 10.5 Å in the case of the bA1AR.  

The different arrangement of these two helices also modifies the rest of the structure 

and, as a consequence, the binding pocket appears to be narrower in the bA1AR than in 

the hA1AR and this fact could be the reason of the interaction differences shown in 

Figure 1.  

 
Figure 2. Superimposition of the complexes of DPCPX with 

hA1AR (blue) and bA1AR (orange); the seven not conserved 

residues of the seven transmembranal helices are shown. 
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Some 1,8-naphthyridine derivatives were then docked into the two receptor models; the 

compounds selected for this purpose were 16, 22, 28, 29, 50, 51 and 52, which 

possessed different Ki values towards the hA1AR and the bA1AR. 

The docking procedure was carried out by taking into account the site directed 

mutagenesis data, as for DPCPX. Therefore the selected compounds were initially 

placed in the receptor sites so that they could interact favourably with Ser94 and 

His251.  

The groups of compounds considered capable of interacting at the same time with these 

two residues were the substituent in position 4 and the nitrogen in position 8, which 

possess suitable chemical characteristics and a suitable spatial arrangement. Therefore 

the two interaction geometries A and B, shown in Figure 3, are to be taken into 

consideration: in the first one, A, the substituent in position 4 gives an H bond with 

Ser94 and the nitrogen in position 8 gives an H-bond with His251; in the other one, B, 

the same groups of the selected compounds give H-bonds with the same residues, but in 

an inverse manner. 

 
Figure 3. The two possible geometries for the 

interaction of 1,8-naphthyridine derivatives with 

A1 adenosine receptors. 

 
The complexes thus obtained (two for each compound and for each receptor model) 

were then optimized by means of molecular dynamic simulations followed by energy 

minimization with the AMBER force field. 

The antagonist-receptor interaction energies were calculated as the sum of the non-

bonded terms of the molecular mechanics steric energy referring to the interaction 

between the atoms of the receptor model and the atoms of the ligand. 

All active compounds prefer arrangement B when they are fitted into both the hA1AR 

and the bA1AR. The differences in the interaction energy between the two 
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arrangements, A and B,  range from 2 to 6 kcal/mol. 

The relative values of the interaction energy are reported in Table 2 and indicate that all 

active ligands have a more favorable interaction with the model of the  bA1AR and this 

is in agreement with the greater affinity of the considered ligands towards the bA1AR 

with respect to the hA1AR; a correlation between these values and the selectivity ratio 

can also be observed. 

 
Table 2. Interaction energies (Kcal/mol) of  hA1AR and bA1AR models and selected ligands. 

Compd A1bARa conf.b A1hARa conf.b select.c ∆Ed 

DPCPX -30.2 - -26.7 - 27 3.5 
16 -29.7 B -24.0 B 2000 5.7 
22 -27.4 B -25.2 B - - 
28 -27.3 B -22.2 B 640 5.1 
29 -30.7 B -26.3 B 1750 4.4 
50 -21.1 B -24.1 B - - 
51 -22.6 A -21.0 B 31 1.6 
52 -23.0 B -21.9 B 20 1.1 

aSum of the non-bonded terms of the interaction between the atoms of the receptor 
model and the atoms of the ligand; barrangement energetically preferred by the ligand 
for interaction with the receptor model (see Fig. 4); cselectivity of the ligand computed 
as the ratio between the Ki for hA1AR and Ki for bA1AR; the selectivity is not reported 
in the case of inactive compounds; denergy difference between the interaction energy 
of the ligand with hA1AR minus the interaction energy with bA1AR; the energy 
difference is not reported in the case of inactive compounds. 

 
In Figure 4 the complex between compound 16, the most selective one, and the two 

models of the hA1AR and bA1AR receptors is shown. Figure 4 also reports the volumes 

of the cavities between the ligand and the receptors, and is thus able to visualize the 

difference in the dimensions of the two binding sites, which could be quite important in 

determining the selectivity of the 1,8-naphthyridine derivatives considered.  

The compounds considered here are less bulky than classic A1AR antagonists, and 

therefore they can interact more strongly with the sterically restricted site in the bA1AR, 

while they cannot occupy so efficiently the larger site of the hA1AR, as already 

indicated by the interaction energy values reported in Table 2. 

In Figure 5 the details of the interaction of compounds 16 and 29 with the human and 

bovine A1AR are presented. In the case of the complex with the bA1AR, these 

antagonists are able to give H-bonds with Ser94 and His251 and at the same time their 

phenyl substituent in position 2 is able to give a hydrophobic interaction with Ile270 
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and other residues that make up a pocket (Tyr271, Ala273, Ile274). The pocket in the 

bA1AR is able to optimally accept the phenyl ring linked in position 2 of the 

naphthyridine system, and therefore this structural feature of the bA1AR binding site 

could explain the higher activity found for compounds that possess only an 

unsubstituted phenyl ring in position 2 of the naphthyridine system like, for example, 16 

and 29. In fact, the presence of substituents on this phenyl ring, as, for example, in 13, 

26 and 43 and the replacement of this phenyl ring with a less bulky group, as in 50, 51 

and 52, induces a decrease in the affinity. Moreover, the insertion of a spacer between 

the naphthyridine system and this phenyl ring, as in 46, induces the almost complete 

loss of affinity. 

In the case of the hA1AR, the H-bonds and the hydrophobic interaction are weaker due 

to the larger dimensions of the site; moreover in this receptor, Ile270 is substituted by 

the less hydrophobic Thr270. 

In particular, the lipophilic pocket in the hA1AR is larger and the presence of a phenyl 

ring linked in position 2 is less important for the affinity. 

 
Figure 4. Compound 16 docked into the hA1AR (left) and bA1AR (right) 

binding sites. The volumes of the cavities between 16 and the two 

receptors are shown. 
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Figure 5. Compounds 16 (up) and 29 (down) docked into the hA1AR (left) and 

bA1AR (right) binding sites.  

 

1.2.3 Conclusions. 

In order to verify if the great A1 species selectivity showed by a series of 1,8-

naphthyridine derivatives could be explained in terms of a difference between the 

binding site of the native hA1AR and the bA1AR, these two sites were modelled, taking 

into account the available mutagenesis data. The interaction energy values of the 1,8-

naphthyridine derivatives with the two receptor models were in agreement with their 

affinities, and therefore with the observed species selectivity; the better interaction with 

the bA1AR seems to be due to the smaller size of the binding site of this receptor, which 

allows a particularly good interaction with these 1,8-naphthyridine derivatives. In fact, 

the molecules of these ligands have a lower hindrance with respect to the classic A1AR 
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antagonists like DPCPX, and therefore they can better occupy this site. The Figure 6 

shows that the volume of DPCPX is larger than that of 16 and that it is mainly due to 

the precence of the freely rotatable n-propyl chains in the structure of DPCPX. 

 
Figure 6. Molecular volumes of DPCPX (up) and 16 (down). 

 
Other differences in the structure of the hA1AR and the bA1AR, and in particular in the 

loop regions, could provide further reasons for the species selectivity, but the results of 

the molecular modeling study suggest that in the case of the 1,8-naphthyridine 

derivatives, their interaction with the intrahelical binding site of the two receptors 

should be surely responsible for this selectivity. 

1.2.4 Experimental section. 

1.2.4.1 Computational details. All the molecular mechanics and molecular Dynamics 

calculations were performed through the Macromodel20 program by using the AMBER 

forcefield. The electrostatic charges were those included in the forcefield and a 

distance-dependent dielectric constant of 4.0 was used. In molecular mechanics 

minimizations (MM) the minimized value was the Conjugated Gradient until a 
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convergence value of 0.1 Kcal/A·mol; in molecular dynamics simulations (MD) the 

temperature was set at 300 °K and the time step was 1 femtosecond.  

All graphic manipulations and visualizations were performed by means of the 

InsightII54 and WebLabViewer21 programs. 

1.2.4.2 Modeling of the bA1AR. The procedures for the modeling of the bA1AR model 

were the same already used for the hA1AR (see Chapter 1.1), but this time the template 

was the hA1AR model and not bovine rhodopsin. In this case, due to the high homology 

between the hA1AR and the bA1AR, neither translation nor rotation of helices was 

required. 
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1.3 PHARMACOPHORE BASED RECEPTOR MODELING: THE CASE OF 

ADENOSINE A3 RECEPTOR ANTAGONISTS. AN APPROACH TO THE 

OPTIMIZATION OF PROTEIN MODELS. 

 

1.3.1 Introduction. 

A3 receptor activation results in general hypotension and in mast-cells 

degranulation,55,56 selective antagonists of these receptors may be used in clinical 

practice as anti-inflammatory57 as well as cerebroprotective58,59 and antiasthmatic 

agents.60 

In the last decade, due to the importance of this new candidate biological target, a great 

effort has been made to design and synthesize new potent and selective agonists and 

antagonists of the human A3 adenosine receptor (hA3AR). Due to the lack of 

experimental 3D structural data about hA3AR binding site, the rational design of hA3AR 

antagonists has been commonly pursued through the construction of receptor models or, 

alternatively, by QSAR/3D-QSAR approaches - such as CoMFA - using experimental 

data obtained by a previous generation of ligands. As a result of all this reseach, several 

classes of compounds, including pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine 

derivatives,61-63 triazoloquinazoline derivatives,64 isoquinoline and quinazoline 

analogues,65-67 3,5-Diacyl-2,4-dialkylpyridine,68-70 and pyridine derivatives,71,72 have 

been synthesized and tested as hA3AR antagonists. 

The wish to synthesize a new generation of potent and selective antagonists, with 

improved ADME profile with respect to previous analogues (increased water 

solubility), drove us to engage in the development of a novel modeling approach. In our 

research we actually merged the capabilities of two generally mutually exclusive drug 

design computational methodologies, that is pharmacophore73 and homology 

modeling,74 to drive the building of a predictive three-dimensional model of the human 

A3 receptor. Differently from the standard homology model building so far reported in 

literature,63,68,75 where the raw 3D structure is usually refined by means of molecular 

mechanics calculations on its complex with a high affinity ligand, for the aim of our 

work we indeed used a pharmacophoric model to drive the refinement of the receptor 

model. The idea beyond this approach was to gain information from a set of ligands, by 
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means of a 3D-QSAR methodology, in order to increase the probability of 

characterizing the most important features for ligand recognition. 

With this idea in mind, we generated several common feature hypotheses for ligands of 

the human A3 receptor, from which the three most promising pharmacophores were 

selected: they were all characterized by good statistical parameters and prediction 

ability towards a test set. Moreover they were very similar in terms of features 

composition and disposition in three-dimensional space. At the same time, a raw model 

of hA3AR was generated by homology modeling, using bovine rhodopsin as a 

template19 and molecular interaction fields (MIF) were calculated for each 

transmembrane helix, with the aim to localize the minimum-energy interaction points. 

Each pharmacophore was then manually docked into the raw binding site, which was 

adjusted as well, to get the highest correspondence between the centroid of each 

pharmacophoric element and the corresponding local minimum of the MIFs. One 

peculiar alignment was obtained for each pharmacophore through such a procedure so 

that, after having chosen four reference compounds, twelve ligand-protein complexes 

could be used to refine the receptor model. Each one of the twelve complexes was in 

fact relaxed - according to a protocol fully described in this report - and evaluated in 

terms of energies and “features correspondence”, to gain both the final optimum hA3AR 

model and the best performing pharmacophore, which was used again to export the 

relative alignment of four more compounds for a qualitative validation step. The 

predictive power of the final receptor model was probed still further by the finding of a 

quantitative correlation between experimental free energies of binding and theoretical 

values, calculated by the application of a scoring function. 

Finally, some novel putative A3 antagonists were designed, synthesized and biologically 

evaluated, to test the reliability of our combined modeling strategy. 

1.3.2 Results and Discussion. 

1.3.2.1 Pharmacophore generation. hA3AR antagonists are characterized by great 

structural diversity, making difficult a common chemical pattern to be found.61-72 

Nevertheless, certain common electronic and steric features have been already reported 

in the literature based on a combination of ab-initio calculations, electrostatic potential 

map comparisons and steric and electrostatic alignment (SEAL) analyses.76 Starting 
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from the 55 A3 antagonists showed in chart 1, Prof. Botta and co-workers developed 

two pharmacoforic models HYPO1, HYPO2 (see Figure 1) using the Catalyst 4.6 

software package.77  

 
Chart 1. hA3AR Antagonists Considered During the Pharmacophore Generation and Validation 

N N

N
N

N

N
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O

1a-r  

NN

N

N

R1

Cl

O

2a-e  
3a-q

N

X R2

R1

 

NR2

R4

R5
R3

O

4a-m  

NR2

R4

R5
R3

O

R1

5a-b  
cmpd R1 R2 R3 R4 R5 X

1a Ethyl NHCONH-(4-SO3H-Ph)
1b Ethyl NH2 
1c Methyl NHCONH-(3-Cl-Ph)
1d Ethyl NHCONH-4-CH3-Ph
1e Ethyl NHCONH-4-F-Ph
1f Ethyl NHCONH-(2-OCH3-Ph)
1g Ethyl NHCONH-(2-Cl-Ph)
1h Ethyl NHCONH-(3-Cl-Ph)
1i Methyl NHCONH-Ph
1j Ethyl NHCONH-(4-OCH3-Ph)
1k Methyl NHCONH-4-Pyridyl
1l Propyl NH2 

1m Propyl NHCONH-(4-OCH3-Ph)
1n H NH2 
1o Methyl NHCONH-(4-OCH3-Ph)
1p Ethyl NHCONH-(4-NO2-Ph)
1q Propyl NHCONH-Ph
1r Propyl NHCONH-(4-SO3H-Ph)
2a NH2  
2b NHCO-Ph  
2c NHCOCH2-Ph  
2d NHCOCH2CH3  
2e NHCOCH3  
3a NHCO-(4-OCH3-Ph) 2-Pyridyl CH
3b NHCO-Ph 2-Pyridyl CH
3c NHCO-(4-CH3-Ph) 2-Pyridyl CH
3d NHCO-(3,4-CH3-Ph) 2-Pyridyl CH
3e NHCO-(3,4-OCH3-Ph) 2-Pyridyl CH
3f NHCO-3Cl-Ph 2-Pyridyl CH
3g NHCO-3OCH3-Ph 2-Pyridyl CH
3h NHCONH-Ph 2-Pyridyl CH
3i NHCONH-Ph H N
3j NHCONH-Ph 2-Pyridyl N
3k NHCONH-Ph 3-Pyridyl N
3l NHCONH-Ph 3-CH3-2-Pyridyl N

3m NHCONH-Ph N,N-Diethylamino N
3n NHCONH-Ph 1-Pyrrolidinyl N
3o NHCO-(4-Cl-Ph) 2-Pyridyl CH
3p NHCO-(2,4-CH3-Ph) 2-Pyridyl CH
3q NHCO-(3-CH3-Ph) 2-Pyridyl CH
4a  Methyl O-Ethyl Methyl COO-Ethyl
4b  Methyl O-Propyl Methyl COO-Ethyl
4c  Methyl O-Ethyl Ethyl COO-Ethyl
4d  Methyl O-Ethyl Ethyl COO-Ethyl
4e  Ethyl O-Ethyl Ethyl COO-Ethyl
4f  Ethyl O-Ethyl Ethyl COO-
4g  Ethyl O-Ethyl n-Propyl COO-
4h  Ethyl O-Propyl Ethyl COO-
4i  Methyl S-Ethyl Methyl COO-Ethyl
4j  Propyl S-Ethyl Ethyl COO-Ethyl
4k  Methyl S-Ethyl Propyl COO-Ethyl
4l  Ethyl S-Ethyl Ethyl COOCH2C

4m  Ethyl S-Ethyl Ethyl COO-Ethyl
5a Methyl Methyl O-Ethyl Ethyl COO-Ethyl
5b Methyl Ethyl S-Ethyl Ethyl COO-Ethyl
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Figure 1. HYPO1 (a) and HYPO2 (b) superposed to compound 1k. Pharmacophore features are color-coded: 

green for hydrophobic (HYD), blue for hydrogen bond acceptor (HBA) and red for aromatic ring (RA). 

 

In Figure 1 the whole set of features of both pharmacophores is displayed superposed to 

compound 1k, the most active compound among those tested. Both hypotheses were 

characterized by five features and shared a common scheme consisting of three 

hydrophobics at the vertices of a triangle (HYD1, HYD2 and HYD3). They differed for 

a hydrogen bond acceptor (HBA1) pointing towards opposite directions, and for a 

hydrogen bond acceptor (HBA2), which replaced, in HYPO2, the ring aromatic (RA) 

found in HYPO1. 

On the basis of what already reported by some of us about the importance of an 

hydrogen bonding donor (HBD) interaction between the NHCONH group present on 

great part of the compounds considered in this study and hA3AR,61,63 Catalyst was 

pushed to generate new hypotheses with at least one HBD feature. As a result of this 

effort HYPO3 was chosen for further investigation according to the aforementioned 

selection rules. 

In Figure 2 the whole set of features of HYPO3 is displayed superposed to compound 

1k. HYPO3 presented once more the recurring scheme of three hydrophobic 

interactions laying at the vertices of a triangle. No more RA features were present in the 

model, while two hydrophilic interactions (one HBA and one HBD) appeared by one 
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side of the triangle. HYPO1, HYPO2 and HYPO3 were then exported and manually 

docked into the receptor model as described afterward in this article. 

 
Figure 2. HYPO3 superposed to compound 1k. Pharmacophore features 

are color-coded: green for hydrophobic (HYD), blue for hydrogen bond 

acceptor (HBA) and pink for hydrogen bond donor (HBD). 

 

1.3.2.2 Receptor modeling and structure optimization. All the information regarding 

the primary structure of the human A3 receptor, and the subdivision into 

transmembrane, cytoplasmatic and extracellular domains were obtained from the GPCR 

Data Bank.25 A raw structure of hA3AR was obtained through molecular modeling, 

using bovine rhodopsin as a template.19 The receptor-template superposition was carried 

out maintaining the maximum analogy between them, and choosing the regions with a 

conserved or semi-conserved sequence. The alignment was studied on several adenosine 

receptors by means of the ClustalW programme29 and was guided by the highly 

conserved amino acid residues (see the Figure 1 in Chapter 1.1), including the D/ERY 

motif (D/E3.49, R3.50, and Y3.51), the two Pro residues P4.50 and P6.50 and the 

NPXXY motif in the TM7 (N7.49, P7.50, and Y7.53).30 

The raw hA3AR model was then disassembled, and molecular interaction fields (MIF) 

were calculated for every single transmembrane helix, by means of GRID program,78 

with the aim of investigating the best regions of protein-protein and ligand-protein 

interactions. Several probes were used at this stage (see Table 1 for details), such as to 
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resemble both helix-helix interactions and the features present in the hypotheses 

proposed by Catalyst and previously described. 

 
Table 1. Details of the probes used for MIF calculations: the complementary Catalyst 

features are reported in the last column 

Probe Brief description Complementary Catalyst 
feature 

H Hydrogen HYD 

DRY The hydrophobic probe HYD 

C1= sp2 CH aromatic or vinyl RA 

N:= sp2 N with lone pair HBA 

N1= sp2 Amine NH cation PI, HBD 

NH= sp2 NH with lone pair HBA, HBD 

N1+ sp3 amine NH cation PI, HBD 

N1: sp3 NH with lone pair HBA, HBD 

N2 Neutral flat NH2 e.g amide HBD 

N2= sp2 Amine NH2 cation PI, HBD 

N2+ sp3 amine NH2 cation PI, HBD 

N2: sp3 NH2 with lone pair HBA, HBD 

NM3 Trimethyl ammonium cation PI 

O1 Alkyl hydroxyl OH group HBA, HBD 

OC2 Ether or furan oxygen HBA 

O sp2 carbonyl oxygen HBA 

F- Fluorine anion  
 

After having reassembled the seven helices, the points of local minimum energy of each 

MIF were visualized superposed to them. At this point, Catalyst hypotheses were 

manually docked singularly, and for each of them a manual rearrangement of the 

relative positions and orientations of the helices was performed in order to: a) superpose 

each pharmacophoric feature found by Catalyst to a minima of a complementary MIF 

(i.e. the MIF able to favourably interact with such a feature, as shown in Table 1); b) 

retain the crucial interactions between the pharmacophore features and some important 
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residues, as highlighted by site directed mutagenesis studies (see Table 2 for the 

mutagenesis details).79-82  

 
Table 2. Mutational analysis for the human A3 receptor antagonists interaction. 

Region A3AR Mutational results 

TM3 H95 A: reduction of affinitya 

L 4-5 K152 A: reduction of affinitya 

TM6 W243 A: reduction of affinitya 

 L244 A: modest variationa 

 S247 A: modest reduction of affinitya 

 N250 A: lost of bindinga 

TM7 H272 E: reduction of affinitya 

 Y282 F: reduction of affinityb 
aSee reference 79. bSee reference 80 

 

Having started from three pharmacophoric models (HYPO1, HYPO2 and HYPO3), 

three different receptor models (MODEL1, MODEL2 and MODEL3) were obtained by 

this procedure. In all the three cases, the homology model directly obtained through 

bovine rhodopsin as template were not able to take into account all the mutagenesis data 

(see Table 2). In particular, in contrast with these data, Hys95 and Hys272 did not point 

towards the intrahelical channel. Therefore. the TM3 and TM7 were to be rotated 

respectively of 60° clockwise and 90° counter-clockwise (extra cellular point of view), 

to let them turn towards the intra-helical channel therefore allowing the interaction of 

Hys95 and Hys272 with the ligands. On the other hand, in agreement with a finding of 

Gouldson et al.,83 rotations and translations of the TM domains are important steps in 

ligand-receptor interaction process in different GPCRs. 

Due to the antagonist profile of the considered ligands, possible rearrangements of the 

receptor in an activate form able to interact with the agonists was not take into account. 

Figure 3 shows the three receptor models and the alignment between the three different 

pharmacoforic hypotheses (HYPO1, HYPO2, and HYPO3) and the MIFs calculated as 

above described. As reference, compound 1k is also displayed. 
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Figure 3. The three receptor models complexed with 1k and the alignment between the three pharmacoforic 

hypotheses and the MIFs (displayed as spheres) calculated on the transmembrane helices. In blue are 

represented the MIFs obtained through the DRY probes, in green the one calculated with OC2 and N:= 

probes, in orange the MIF derived by the calculation with C1 probe, while in magenta is reported the MIF 

obtained through the NH= probe. 

 

In MODEL 1 the aromatic feature RA (orange in the figure), matched by the core of 1k, 

highlights a π-π interaction with Trp243. This residue has been widely reported to play 

an important role in antagonists recognition.79-81 HBA1 (green in the figure) correctly 

maps the hydrogen bond between the C=O of the ligand and the side chain NH of 

Asn250. This residue, if mutated, causes loss of affinity for both agonists and 

antagonists.79-81 Finally, HYD1 (blue in the lower right part of the figure), HYD2 (in the 

lower left part of the figure) and HYD3 (in the upper part of the figure) correspond to 

three receptor hydrophobic clefts (H1, H2 and H3), delimited by: i) Phe239, Trp243, 

Hys272 (H1); ii) Leu102, Phe239, Trp243 (H2) and iii) Hys95, Phe182, Trp185, Tyr254 

(H3). 

In MODEL 2 the hydrogen bond interaction between the C=O of the ligand and the side 

chain NH of Asn250 (HBA1) and the correspondence between HYD3 and the lipophilic 

cleft constituted by Hys95, Phe182, Trp185, Tyr254 were maintained. Differently from 

MODEL 1, HYD1 (blue in the lower left part of the figure) corresponded to the 

lipophilic cleft constituted by Leu102, Phe239, Trp243 and HYD2 (in the lower right 

part of the figure) corresponded to a lipophilic interaction with Leu246. Regarding the 
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HBA2 feature, not present in HYPO 1, it matched with a H bond interaction between 

the nitrogen of the central nucleus of the ligand and His95. 

As shown in Figure 3 the features of HYPO3 determined a completely different 

disposition of the pharmacoforic model inside MODEL 3: HYD1 (blue in upper part of  

figure) corresponded to a lipophilic cleft delimited by Met146, Phe182 and Trp185, 

HYD2 (in the lower left part of the figure) corresponded to an interaction with Trp185, 

while HYD3 (in the lower right part of the figure) matched to a lipophilic interaction 

with Leu246 and His272. Regarding the electrostatic interaction HBA1 (green in 

figure), it corresponded to a H bond interaction with Tyr254 while HBD1 (coloured 

magenta in figure) matched to the H bond between the C=O of Asn250 and the NH of 

the ligand. 

In order to determine which of the three models was the most reliable, derivatives 1j, 

1k, 2c, 3a, among the ones used in the 3D-QSAR studies, were chosen as reference 

compounds and manually docked into each one of the three receptor models, using both 

alignment rule and conformer of the corresponding pharmacophoric hypothesis. The 

twelve generated complexes were then subjected to a relaxation protocol (see the 

Experimental Section). 

Regarding the agreement with the mutagenesis data, the analysis of the results 

highlighted that for MODEL 1 all the four ligands interacted in the A3 receptor with 

His95, Trp243, His272 and formed an H bond with Asn250. 

In MODEL 2 there are the lipophilic interactions with His95, Trp243, His272 for all the 

four ligands, while only three ligands possessed the electrostatic interaction with 

Asn250, but for the A3-3a complex it was absent. Furthermore in all the final complexes 

it was not possible to find the H bond interaction predicted by HYPO2 on the nitrogen 

of the aromatic system (HBA2 feature). 

In MODEL 3 all the ligands interacted with His95, Trp243, His272 and Asn250, 

however, as a result of the optimization procedure (see Experimental Section), in the 

A3-2c and A3-3a complexes the ligands interacted with Asn250 as H bond acceptor, in 

contrast to the pharmacophoric hypothesis (HYPO3) which predicted an HBD feature 

(HBD1). 
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Therefore, although the mutagenesis data were generally respected for all the three 

models, only MODEL 1 was able to respect for all the four tested compounds both the 

mutagenesis data and the pharmacophoric features predicted by Catalyst. 

As second test for verifying the reliability of the models, the ligand-receptor interaction 

energy was calculated for all the twelve complexes. Generally it was not possible to find 

a quantitative correlation between the calculated energy of the complexes and the 

activity of the compounds, mainly because of the lack of the solvation and entropic 

terms. However, in this case, only the interaction of the same ligand with different 

conformations of the same receptor was to be evaluated and therefore these terms could 

be considered approximately constant. 

As shown in Table 3, MODEL 1 showed the highest interaction energy for all four 

ligands. Although the difference in energies between the three models is small and 

probably likely within the error of the method, the fact that for all ligands the best 

interaction energy was found with MODEL 1, suggested to select this model. 

 
Table 3. Interaction energies (KJ/mol) of compounds 1i, 1k, 2c, 3a in the three considered alignment models: 

MODEL 1, MODEL 2 and MODEL 3. 

cmpd MODEL 1 MODEL 2 MODEL 3 

1j -55.9 -52.1 -53.5 

1k -61.4 -53.4 -56.8 

2c -58.5 -53.5 -55.7 

3a -55.2 -47.0 -47.6 

 

Finally, compounds 2d, 3i, 4a and 4f were docked inside the three models using the 

same protocol applied for compounds 1j, 1k, 2c, and 3a.  

To probe which of the three models were the most reliable, the free energies of binding 

of the complexes with compounds 1k, 1j, 2c, 2d, 3a, 3i, 4a and 4h were calculated by 

means of the AutoDock 3.0 scoring function.84 This docking application proved in fact 

to be reliable in many works present in literature,85,86 since its free energy function, 

based on the principles of QSAR, has been parameterized using a large number of 



1.3 Pharmacophore based receptor modeling: the case of adenosine A3 receptor 

 44 

protein-inhibitor complexes for which both structure and inhibition constants were 

known. 

As shown in Table 4 and Figure 4, a good correlation between the experimental and 

calculated values of free energy of binding for all the studied compounds was obtained 

only for MODEL 1 as the quadratic correlation (r2) has a value of 0.69 while for 

MODEL 2 and MODEL 3 r2 has the value of  0.56 and 0.57 respectively.  

 
Figure 4. Experimental versus calculated (AutoDock) binding energy of 

compounds 1k, 1j, 2c, 2d, 3a, 3i, 4a and 4h (indicated with ■) 
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Table 4. Ki (nM) of the compounds analyzed, Experimental Binding 

Energy (GExp, Kcal/mol), and AutoDock Binding Energy (GCalc, Kcal/mol) 

for all the A3 receptor complexes. 

   MOD 1 MOD 2 MOD 3 

cmpd Ki Gexp Gcalc Gcalc Gcalc 

1k 0.04 -14.18 -12.05 -11.10 -11.29 

1j 0.60 -12.57 -12.84 -12.79 -11.00 

2c 0.65 -12.53 -12.80 -12.09 -11.64 

2d 7.66 -11.07 -10.81 -9.30 -9.46 

3a 17 -10.59 -11.78 -9.58 -11.24 

3i 1180 -8.08 -9.22 -7.72 -10.03 

4a 4470 -7.29 -10.00 -9.00 -7.71 

4h 7.94 -11.04 -10.54 -8.57 -11.42 
 

All these results suggested MODEL 1 was the best model and for this reason it was 

chosen for further analyses; consequently also the HYPO 1 hypothesis should be 

considered the best one.  

With the aim to achieve a qualitative knowledge of the features of hA3AR, the eight 

relaxed complexes of compounds 1k, 1j, 2c, 2d, 3a, 3i, 4a and 4h were compared each 

other through the superposition of the seven helices. The outcome of such a procedure is 

shown in Figure 5. The most evident result was that the receptor model was able to vary 

the width and shape of its three hydrophobic clefts in order to accommodate different 

ligands. In particular, Trp185 could act as a gate, making the H2 and H3 clefts wider or 

narrower. In the case of compounds showing a Ki<1 nM (left part of Figure 5), H2 was 

very small, thus allowing a perfect matching with the ligand and the wider H3 was able 

to accommodate long chains such as phenylcarbamoyl moieties. On the other hand, for 

compounds showing Ki>1 nM (right part of Figure 5), Trp185 was in a sort of “open” 

conformation so that weaker contacts were possible with the ligands. Therefore, the 

model seemed to be able to discriminate between very active compounds (Ki<1 nM) 

and less active ones (Ki>1 nM). 
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Figure 5. Superposition of the complexes of hA3AR with the most active ligands, 1j, 1k and 

2c (left) and with the less active ones, 2d, 3a, 3i, 4a and 4f (right); for sake of clarity, only 

residues under consideration are reported 

 

Regarding the interactions between 1k and the hA3 receptor, beyond the interactions 

mentioned above, already suggested by site directed mutagenesis studies, the residue 

Tyr254 assume in our A3 model an important role as it formed a H bond with the 

pyridyl ring of the ligand (see Figure 6). This interaction could justify the improved 

activity of compounds like 1k, presenting a proper hydrogen bonding acceptor group in 

that region (4-pyridyl) and the irreversible inhibition of p-fluorosulfonyl-pyrazolo[4,3-

e]1,2,4-triazolo[1,5-c]pyrimidine derivatives.87 The interaction with Tyr254, residue 

non-conserved in other adenosine receptors, could still more explain the high selectivity 

of 1k. 

 
Figure 6. Side view of MODEL1, complexing 1k into its intrahelical region and details of the important 

interactions. 
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1.3.2.3 Design and synthesis of hA3AR antagonists. The analysis of the recognition 

geometry of compound 1k into MODEL1 suggested some structural changes to be 

made on the pyrazolotriazolopyrimidines, with the aim to improve both their water 

solubility and ADME properties together with the structural features which appear to be 

fundamental for the activity and selectivity.  

Particularly, a small hydrophilic pocket, bordered by two serine residues (Ser242 and 

Ser275), lay empty nearby the H1 cleft of the receptor. Hence, the introduction of a 

short alkyl chain at N8 of 1k, terminating with a hydrophilic group, was hypothesized, 

to verify the possibility to give rise to binding interactions within this pocket. 

On the contrary it appears that the interactions with His98, Trp243, Asn250, Tyr254 and 

His272 (see Figure 6) are to be conserved; therefore the tricyclic system of 1k together 

with the pyridine-urea moiety should be maintained. 

Following these observations compounds 16, 17 and 18 (see Figure 7) were designed, 

virtually evaluated in silico (applying the whole modeling procedure described above), 

synthesized and tested for their affinity towards human A1, A2A, A2B and A3 adenosine 

receptors (see the Experimental Section). 
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Figure 7. Compound synthesized and tested. 

 

The affinity values measured are shown in Table 5, which also shows the theoretical 

values, predicted for the A3 receptor by the AutoDock scoring function (notably, the 

scoring function hypothesized an activity in the range between 0.5 and 2 nM for these 

ligands). Compound 17 resulted the most promising selective A3 antagonist. The 

docking of this derivative into MODEL 1 is shown in Figure 8: the expected hydrogen 

bonding interaction between the hydroxyl substituent at N8 and Ser275 is highlighted. 

Even if the affinity of 17 for the A3 receptor dropped of about two orders of magnitude 

with respect to compound 1k, nevertheless, its receptor subtypes selectivity was 
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completely conserved and this could confirm the importance of the pyridine ring for the 

A3 selectivity. As regards the affinity drop, this could be due to a partial damage of the 

π-π stacking interaction with Trp243 due to the formation of the new hydrogen bond 

(see Figure 8) as well as to an entropy penalty associated with the high number of 

degrees of freedom of the alkyl chain, in any case there is a quite good affinity 

prediction by our hA3AR model. 

 
Table 8. Affinity Values of the Compounds Synthesized During this Work (See the Parmacology Section) 

Ki (nM) 
cmpd 

hA1
a hA2A

b hA2B
c hA3

d Predicted hA3
e 

16 >1000 >1000 >1000 5.1 (4.1-6.5) 1.78 

17 350±30 >1000 >1000 2.0 (1.7-2.4) 0.78 

18 >1000 >1000 >1000 34 (28-40) 1.58 

aDisplacement of specific [3H]DPCPX binding at human A1 receptors expressed in CHO cells. bDisplacement 

of specific [3H]ZM 241385 binding at human A2A receptors expressed in CHO cells. cDisplacement of specific 

[3H]MRE2029F20 binding at human A2B receptors expressed in CHO cells. dDisplacement of specific 

[3H]MRE3008F20 binding at human A3 receptors expressed in CHO cells. ePredicted A3 Ki affinity (using our 

A3 model and AUTODOCK scoring function). 

 
Figure 8. Compound 17 docked into the putative binding site. An hydrophilic moiety at N8 may be accounted 

for an interaction with the Ser275. 
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1.3.3 Conclusions. 

The construction of a human G-protein coupled receptor model through a homology 

procedure solely based on the bovine rhodopsin structure is a quite unreliable task, 

because of usually low homology percentages and the high degree of mobility of the 

helices. The use of mutagenesis data is nowadays an important improvement of the 

procedure because it allows to take into account residues experimentally found to be 

necessary for interaction. The relative positions of these residues, however, remain 

unknown and can be only hypothesized through the docking into the receptor of a 

ligand, which retains all these interactions: generally the alignment for this docking is to 

be manually performed. In the procedure described herein, differently, the use of a 

pharmacophoric model, representing the activity data of a lot of ligands, allowed the 

building of a receptor model in which the relative positions and distances between 

important residues was determined by the distances between pharmacophoric features. 

As a whole, our combined modeling strategy, slightly differs from canonical 

procedures. The building of 3D-QSAR models in fact, helped us to exploit a set of 

active molecules to highlight statistically relevant features in ligand-receptor 

interactions and such an information resulted to be crucial to generate a reliable model 

of hA3AR (MODEL1). The information produced through docking studies, in like 

manner, allowed to select the best performing pharmacophore model (HYPO1), among 

a set of plausible hypotheses. 

MODEL1 seemed to be able to explain different modes of binding of very active 

compounds with respect to less active ones and also to reproduce with a good 

approximation the free energies of binding. The model was also able to explain the 

selectivity of 1k towards the hA3AR due to the presence of the non-conserved residue 

Tyr254 and therefore suggested that a mutagenesis study on this residue could be of 

great importance for the knowledge of the molecular features determining the selectivity 

at the AR subtypes. 

The reliability of our synergistic approach was tested by the rational design and 

synthesis of a series of novel compounds. Biological assays evidenced that reasonably 

good activity values were reached and, at the same time, water solubility was enhanced 

with respect to previously synthesized compounds. 
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1.3.4 Experimental section. 

Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations were 

performed using the AMBER force field as implemented in the MacroModel software 

package,20 using a “distance-dependent” dielectric constant of 4.0. Electrostatic charges 

for the set of ligands were calculated with RHF/AM1 semi-empirical calculation and 

RESP program.31 

All MM minimizations were performed with either Polak-Ribier conjugate gradient or 

steepest descent as minimizers and a threshold value of 0.05 kJ/Å•mol as the 

convergence criterion. The temperature was set at 300 °K and the time step was 1.0 fs in 

MD simulations. 

All graphical manipulations and visualizations were performed by means of the 

InsightII,54 UCSF-CHIMERA88 and WebLab Viewer21 programs. 

The alignment of several adenosine receptors was studied with the ClustalW program29 

using the blosum algorithm, with a gap open penalty of 10 and a gap extention penalty 

of 0.05. From the ClustalW alignement, the structure of the seven TM helices of hA3AR 

and the first intracellular loop were constructed directly from the coordinates of the 

corresponding amino acids in rhodopsin by means of Modeller program.89 Through 

Maestro interface the TM3 and TM7 were rotated respectively of 60° clockwise and 90° 

counter-clockwise (extra cellular point of view), to let Hys95 and Hys272 turn towards 

the intra-helical channel. As the amino acid length differs from the template and for the 

rotation of TM3 and TM7 the other loops were constructed by means of the “Loop 

optimization method” of Modeller, applying the “very_slow” loop refinement method. 

The model was subjected to a preliminary minimization and to 400 ps of MD (after 50 

ps of equilibration), the final structure was then minimized. When MD simulations were 

carried out in the gas phase, all the alpha carbons of the TM of the protein were blocked 

by means of decreasing force constants, to simulate the stabilizing presence of the 

membrane around the receptor. For the first 200 ps, restraints with a force constant of 

10 Kcal/mol•Å2 were applied to Cα, and for the remaining 200 ps these restraints were 

gradually reduced to 1 Kcal/mol•Å2. 

The refinement of the ligand-protein complexes was initially performed by means of a 

total of 400 ps of MD. All the alpha carbons of the TM, and the main ligand-receptor 
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interactions were constrained during the trajectory by means of decreasing force 

constants. More in detail, an initial restraint with a force constant of 10 Kcal/mol•Å2 

was applied on the alpha carbons, this force constant decreased during the whole MD 

and in the last 200 ps a value of 0.1 Kcal/mol•Å2 was applied. As regard the H bond 

ligand-receptor interactions, suggested by the HBA1, HBA2 and HBD1 features found 

by Catalyst, a restraint of 50 Kcal/mol•Å2 was applied in order to stabilize a ligand-

receptor complex structure maintaining all these interactions. After the end of the MD 

simulation, three steps of minimization were applied on the average structure obtained 

during the last 100 ps of the MD run. During these three steps a restraint of 0.1 

Kcal/mol•Å2 was applied on the alpha carbons, while as regard the main ligand-receptor 

interaction, in the first two steps a restraint of respectively 25 and 10 Kcal/mol•Å2 was 

applied and in the last one the restraints were removed. 

The quantitative evaluation of the free energy of binding of the twelve complexes was 

performed by means of the AutoDock scoring function,84 using the Lamarckian Genetic 

Algorithm. The region of interest used by AutoDock was defined considering the 1k 

docked in hA3AR as center group; in particular a grid of 40, 54, and 50 points in x, y, 

and z direction was build centered on the center of mass of 1k. A grid spacing of 0.375 

Å and a distance-dependent function of the dielectric constant were used for the 

energetic maps calculation. 
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2.1 AMBER FORCE FIELD IMPLEMENTATION, MOLECULAR MODELING 

AND DESIGN OF A NEW MMP-2/MMP-1 SELECTIVE INHIBITOR. 

 
Tuccinardi T, Martinelli A*, Nuti E, Carelli P, Balzano F, Uccello-Barretta G, Murphy G, Rossello A* Bioorg. 

Med. Chem In press (DOI: 10.1016/ j.bmc.2006.01.056) 

 

2.1.1 Introduction. 

Metalloproteinases are one of the five catalytic classes of proteinases found in man. All 

metalloproteinases use a Zn2+ ion, linked stably to their catalytic site, to effect amide 

bond hydrolysis on their natural peptide substrates.2 Several types of zinc enzymes are 

known and are presently the object of intensive studies, e.g. carboxypeptidase A (CPA), 

histone deacetylases (HDACs), tumour necrosis factor α-convertase (TACE), and 

matrix metalloproteinases (MMPs).3 The human MMP family is known to include at 

least 23 enzymes, divided into four sub-groups on the basis of their substrate specificity: 

collagenases (MMP-1, -8, -13), gelatinases (MMP-2, -9), stromelysins (MMP-3, -10, -

11), and membrane-type MMPs (MT-MMPs).4 MMP activity is highly regulated at 

many levels and, under normal conditions it is controlled by endogenous inhibitors 

known as tissue inhibitors of MMPs (TIMPs).5 Uncontrolled over-expression of MMPs 

can promote a variety of diseases including arthritis, tumour metastasis, multiple 

sclerosis and periodontal degradation. On this basis a large number of MMP inhibitors 

(MMPi) have been developed as potential therapeutic agents.3,4-12 Many of the known 

MMPi  contain a zinc-binding group (ZBG) linked to different scaffolds to ensure 

strong interactions within the co-factor-binding regions of these enzymes; among them  

the more developed and potent class of MMPi utilizes a hydroxamate as the ZBG.13-21 

Among the MMPs, the two gelatinases (MMP-2 and MMP-9), matrilysin (MMP-7), and 

MT1-MMP (MMP-14) play a significant role in certain key functions of tumour cells, 

facilitating metastatic tumour dispersion and angiogenesis, resistance to apoptosis and 

activation of EGF receptors.22-28 In the past, some potent “broad spectrum” MMPi have 

been proposed and tested against tumours, but at present none of them are on the 

market.29,30 In fact, many of these new molecules have determined a severe 

musculoskeletal syndrome, with fibroproliferative effects in the joint capsule of the 
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knee.31-33 These effects are thought to be linked to an impairment of normal tissue 

remodelling governed by MMP-1 and/or by sheddases such as TNF-�-convertase.34 For 

these reasons, a lack of activity with respect to MMP-1 is considered to be an important 

factor in reducing some of the side effects found for "non-selective" MMPi.35 The 

recent development of synthetic MMPi possessing a good potency and selectivity 

towards the two gelatinases, together with the discovery that some of these molecules 

active on MMP-2 show important pro-apoptotic effects on tumour cell cultures, confirm 

the validity of their use as potential anti-tumour agents.3,7-9,13-21,36-38 Nowadays new 

compounds possessing a selective inhibitory activity on MMPs that are over-expressed 

in tumours are in great demand, with particular reference to viability control and 

invasiveness of the cancer cell, and many groups and pharmaceutical companies all over 

the world are involved in improved studies on these new synthetic MMPi, not only to 

develop new drugs but also to discover new agents to be used as diagnostics in 

cancer.39,40 As reported above, it has been demonstrated that the catalytic zinc ion in the 

active pocket of MMPs is directly involved in the degradation of extracellular matrix 

components. In the latent form of gelatinases, the active site presents the zinc bound to 

three histidine residues and blocked by the sulphydrylic group of a cysteine. During 

activation, the detachment of the propeptide also involves the dissociation of this 

residue, and the active site becomes accessible for the substrate.41 A mechanism has 

been proposed for the catalytic activity, on the basis of structural information. In the 

first step, the zinc ion is tetrahedrally coordinated to three histidines and a water 

molecule; during proteolysis, the water donates a proton to Glu219 (1HFC42 sequence 

number), which transfers it to the nitrogen of the scissile amide bond that is stabilized 

by Ala182; this is followed by the generation of a salt bridge between Glu219 and the 

free amine of the cleaved substrate.43 As the zinc ion plays an important role in the 

substrate degradation, one of the possible strategies to develop new MMPi is based on 

the search for the best ZBG able to compete with the substrate in zinc coordination. 

Common ZBGs of MMPi include hydroxamates, carboxylates, thiolates, and 

phosphonates.44-46 Among these the hydroxamate  group has proved to be the most 

potent (100-2000 times compared with their carboxylate analogue).45 It is known from 

crystallographic data that two zinc atoms are present in MMPs: a structural tetra-
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coordinated atom, which is linked with three histidines and an aspartate with a 

tetrahedral structure, and a catalytic atom, which, in the presence of hydroxamate 

inhibitors, is linked to three histidines and the ligand with a penta-coordination in a 

bipyramidal trigonal geometry, considering that the hydroxamate group behaves like a 

bidentate ligand.47-49 Some new N-arylsulfonyl-substituted alkoxyaminoaceto 

hydroxamic acid derivatives have recently been synthesized and tested, and proved to 

possess a good selectivity for MMP-2 over MMP-1;50 these may be considered as 

promising leads for the development of new selective inhibitors of metalloproteinases. 

A rational planning of these inhibitors requires the availability of adequate molecular 

models, to make it possible to study the mechanism of the enzyme-ligand interaction. 

Resolution of the crystal structure of MMP-2 gave researchers the opportunity to 

develop new compounds by means of a structure-based approach; so far, however, no 

X-ray structures of the MMP-2-inhibitor complexes have been reported, and there is a 

real need for theoretical studies on the binding mode of MMP-2 with its inhibitors, since 

they can provide insight into the interaction occurring in the active site. In order to 

perform the docking of ligands with metalloproteinases, the use of computational 

methods has proved to be problematic, because of the restrictions imposed by the 

presence of the zinc ion. These applications are developed on the basis of an empirical 

force field, which cannot be used directly in the design of ZBGs of MMPs51 and other 

metalloproteinases, given the lack of parameters relating to the metallic ions. The use of 

generalized parameters in the case of these ions is highly unadvisable, considering that 

the coordination bonds formed by these ions largely depend on the nature of the ligands. 

There are two ways to model the force field of this zinc ion: the bonded model and the 

non-bonded model. In the bonded model, the coordinates between zinc and ligand/MMP 

are described by the commonly used bonded terms, including bond stretching.52-57 On 

the contrary, in the non-bonded approach, Van der Waals and non-bonded electrostatic 

terms are used to model the zinc-ligand/MMP interactions. The non-bonded method is 

very sensitive to the choice of electrostatic model, and can suffer from an inability to 

retain a low coordination number. Furthermore, with the AMBER force field, the non-

bonded approach generally fails to give the correct coordination number, even when 

long-range electrostatic interactions are correctly accounted for using an infinite 
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cutoff.55,58 For all these reasons, we adopted the bonded approach for the zinc ion 

representation, and therefore specific parameters for the zinc ion were to be added to the 

AMBER force field.59 There are many works in the literature regarding the theoretical 

study of the zinc ion: in 1996 Ryde studied the coordination of the catalytic zinc ion in 

alcohol dehydrogenase through combined quantum-chemical and molecular mechanical 

calculations,60 while in 1999 he wrote a theoretical study regarding carboxylate binding 

modes.61 In 2002 Torrent et al. performed an ONIOM study of Methane 

Monooxygenase and Ribonucleotide Reductase,62 and in 2002 Olsen et al. published a 

quantum mechanical study concerning the influence of a hydrogen-bonding network on 

β-Lactamase.63 Regarding MMPs, Donini55 and recently Rizzo64 carried out respectively 

MM-PBSA and MM-GBSA calculations on certain ligands complexed with MMP-1, 

MMP-2 and MMP-3, using the zinc non-bonded model. As regards the zinc bonded 

model, Toba et al58 reported molecular dynamics and free energy perturbation studies 

carried out on enzyme-inhibitor complexes of human fibroblast collagenases, using 

AMBER force field parameters coming from human carbonic anhydrase II studies.65 

These parameters were taken from a tetrahedral model, in which the tetra-coordinated 

zinc atom was linked with three histidine residues and one water molecule or hydroxide 

ion; in other cases, the crystal structure of hydroxamate inhibitors complexed with 

MMPs revealed that the catalytic zinc was penta-coordinated with three histidine 

nitrogens in MMPs and two hydroxamate oxygens in inhibitors. Consequently, specific 

force field parameters to study MMPs and their complexes with hydroxamate inhibitors 

needed to be calculated by quantum mechanical ab initio methods. In this work, we 

calculated the force field parameters for the structural zinc and the catalytic zinc 

complexed with hydroxamate inhibitors, and we subsequently tested their efficacy. 

Furthermore, we studied the docking of some known inhibitors with MMP-1 and -2 and 

from an analysis of the results, we designed a new MMP-2 active and selective 

inhibitor. 

2.1.2 Results and Discussion 

2.1.2.1 Parameters calculations and testing. Starting from the MMP-1 structure 

derived from experimental crystallographic studies (2TCL66), we calculated the 

geometry, the partial charges and the force constant parameters concerning for the two 
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zincs of the metalloproteinases, using the methods reported in the Experimental section. 

Table 1 shows all the parameters obtained using this procedure.  

In order to test the parameters obtained and to verify whether they could be used for 

molecular dynamics (MD) simulations, we carried out 1 ns of MD on the X-ray 

structure of MMP-1 (1HFC42) complexed with HAP (see Experimental section for 

details) using our parameters. As shown in Figure 1A, after 140 ps of MD, the system 

reached an equilibrium, since the total energy for the last 900 ps remained constant. 

Analysing the RMS deviation from the X-ray structure of all the heavy atoms of the 

complex, we observed that after an initial increase, in the last 700 ps the RMSD 

remained approximately constant around the value of 1 Å (see Figure 1B), suggesting 

that our MD procedure was correct. As regards the geometry of the sites surrounding 

the two zincs, during MD we analyzed the RMS deviation from the X-ray structure of 

the position of the two zincs and the heavy atoms of the groups that were bound to the 

zincs (three imidazole and the hydroxamic fragment for the catalytic zinc and three 

imidazoles and the carboxylic fragment for the structural zinc). 

As shown in Figure 1C and 1D, after the first 50 ps of MD, both systems were stabilized 

with a good RMSD: the average of the RMSD was 0.54 Å for the catalytic zinc binding 

site and 0.53 Å for the structural one. In order to verify whether using our parameters, 

the zinc bonded model gave a better geometry than the zinc non-bonded model, we 

carried out a second simulation on the MMP-1 X-ray structure, applying the same 

procedure seen above, but considering the two zincs as non-bonded. Figures 1C and 1D 

showed that considering the two zinc atoms as non-bonded, the RMSD became worse, 

exceeding the value of 1 Å in some steps, and in both sites the RMSD average of MD 

was 0.84 Å. Thus these results confirmed that the use of the zinc non-bonded model 

determined a worse geometry of the zinc binding site compared with the one obtained 

using the bonded model. 
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Table 1. Parameters calculated for the structural and catalytic zinc binding sites 
Structural Zn binding site Catalytic Zn binding site 

  

Interaction Bond length Force Interaction Bond length Force 

Z1–N* 2.0766 99.00 Z2-N2 2.1051 80.00 

Z1-O 2.0192 132.00 Z2-NT 2.1619 70.00 

   Z2-O1 2.1070 95.00 

   Z2-O2 2.1111 103.50 

   O1-N2 1.4061 520.00 

Interaction Angle Force Interaction Angle Force 

N*-Z1-N* 111.0000 10.00 N2-Z2-N2 111.8620 8.00 

C-N*-Z1 126.0000 27.00 N2-Z2-NT 97.9730 8.00 

C-O-Z1 108.3030 39.00 N2-Z2-O2 123.3505 8.75 

O-Z1-N2 112.0000 11.55 N2-Z2-O1 90.2945 9.50 

O-Z1-NU 95.3530 11.55 NT-Z2-O2 86.7380 8.25 

   NT-Z2-O1 165.1020 12.85 

   O1-Z2-O2 78.3650 9.90 

   C-N*-Z2 126.0000 26.50 

   N2-O1-Z2 111.8140 67.00 

   Z2-O2-C 110.5900 33.00 
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Figure 1. Analysis of the MD simulation of HAP complexed with MMP-1. (a) Total energy (Kcal/mol) 

of the system plotted vs time, (b) root-mean-square deviation (rmsd) in angstroms (Å) between the 

system and the X-ray starting structure for all the heavy atoms, (c) rmsd between all the heavy atoms of 

the catalytic zinc binding site and the X-ray starting structure for the bonded zinc system and non-

bonded zinc system (d) ) rmsd between all the heavy atoms of the structural zinc binding site and the 

X-ray starting structure for the bonded zinc system and non-bonded zinc system 

 

From the X-ray structure of the complex, we observed that the ligand formed six H 

bonds with the MMP-1. As shown in Figure 2, HAP interacts with Gly179, Leu181, 

Ala182, Glu219, Pro238 and Tyr240 (1HFC42 sequence number). The complex obtained 

by minimizing the average structure of the last 900 ps of MD showed that all the six H 

bonds were still present and that the ligand position was very similar to the X-ray one, 

since the RMSD between the heavy atoms of the ligand was 1.25 Å. Moreover, this 

value was principally determined by the different position of the phenyl substituent: the 

RMSD of the heavy atoms of the ligand, excluding those of the phenyl ring, was 0.36 Å 

(see Figure 3). 
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Figure 2. Interaction scheme of HAP complexed with MMP-1. 

 

 
Figure 3. Binding position of HAP into MMP-1 after  MD compared with the starting X-ray one. 

 

All these analyses proved that the new parameters calculated and our dynamics 

procedure were reliable and could be used for further docking studies. 

2.1.1.2 Docking studies. We docked Batimastat, CGS 27023A, Prinomastat and 

compound a50 (see Table 2) into the MMP-1 and MMP-2 using the same procedure 

described above. 
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Table 2. Ligands used for the docking studies and their MMP-1, -2 

inhibitory activity and MMP-1/MMP-2 selectivity. 

Batimastat CGS 27023A 

 

IC50(nM)7 IC50(nM)7 

MMP-1 MMP-2 MMP-1 MMP-2 

10 4 33 20 

Ratio 2.5 Ratio 1.7 

Prinomastat Compound a 

 
IC50(nM)7 IC50(nM)7 

MMP1 MMP2 MMP1 MMP2 

8 0.08 12460 12.4 

Ratio 100 Ratio 1004 

 

As regards the initial placement of the ligands, the position of Batimastat was very 

similar to that of HAP, while the other three ligands were introduced inside the binding 

site in such a manner that they could interact with Leu181, Ala182, Glu219 and with the 

S1’ pocket, in agreement with the experimental data relative to structurally correlated 

MMP-ligand complexes (see Experimental section). 

2.1.2.3 MMP-1 complexes. At the end of the simulation, Batimastat presented all the 

interactions shown by HAP, with the formation of H bonds with Gly179, Leu181, 

Ala182, Glu219, Pro238 and Tyr240 (see Figure 5A). The IC50 values of the two 

inhibitors confirmed our data as they had a very similar inhibition potency (in MMP-1 

HAP showed an IC50 of 7 nM, and Batimastat 10 nM). As regards CGS 27023A, the 

pyridine substituent interacted in the S2’ site while the isopropyl group was directed 

towards the His183 of the structural zinc binding site. The hydroxamate formed H 
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bonds with Ala182 and Glu219, while one of the oxygen atoms of the sulfonamido 

group interacted with Leu181 and Ala182, forming two H bonds, and the p-

methoxyphenyl group was inserted into the S1’ pocket (see Figure 5B). As is already 

known, the MMP-1 S1’ pocket is small and closed by the non-conserved residue 

Arg214 (leucine in MMP-2). Although this residue shows conformational flexibility, it 

is known that the low inhibition potency of many inhibitors against MMP-1 is often due 

to the presence of large P1’ groups that  would require large conformational changes in 

order to interact with the S1’ pocket.67 Also in our simulation, the presence of the p-

methoxyphenyl group in the S1’ pocket determined a movement of the Arg214: in the 

initial structure, this residue was stabilized by four H bonds, three of them with Leu235 

and Thr241 (two H bonds), and a fourth intramolecular H bond between the carboxy 

and amino groups of the same Arg214 (see Figure 4A); during the simulation, we 

observed the rotation of the δ torsional of the arginine with the disappearance of the 

intramolecular H bond and the H bond with Leu235, thus determining an increase in the 

pocket depth (see Figure 4) 

 
Figure 4. Analysis of the S1’ cavity in the X-ray structure (A) and after modelling with CGS 

27023A (B). The presence of the p-methoxyphenyl group determines the movement of Arg214 and 

an increase in cavity depth. 

 

This movement of Arg214 was not observed during the simulation of MMP-1 

complexed with Batimastat and HAP, confirming that the conformational adjustment 
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was due to the interaction of the p-methoxyphenyl substituent. The position of 

Prinomastat in MMP-1 was similar to that of  CGS 27023A but there were some 

differences: the hydroxamate formed an H bond with Glu219, losing the interaction 

with Ala182, and one of the oxygen atoms of the sulfonamido group interacted only 

with the nitrogen of Leu181, losing the interaction with Ala182 (see Figure 5C). As 

regards the S1’ pocket, the movement of Arg214 was very similar to that seen in the 

CGS 27023A-MMP-1 simulation. We observed the rotation of the δ torsional of the 

arginine and the loss of all the H bonds except those with Thr241, but in this complex, 

the nitrogen of the P1’ group of Prinomastat formed an H bond with Thr241. As regards 

compound a, it was unable to penetrate with the P1’ substituent inside the S1’ pocket 

completely, thus determining a major solvent exposure of the ligand and low 

interactions with the MMP-1 binding site, including a bad coordination of the 

hydroxamate with the zinc atom. As shown in Figure 4D, after about 280 ps of MD, the 

ligand lost the two H bonds of the oxygen atoms of the sulfonamido chain with  Leu181 

and Ala182, and only the interaction of the hydroxamate with Glu219 and Ala182 

remained. These simulations indicated that Batimastat showed a good inhibition 

potency, since it presented six H bonds with the protein. CGS 27023A showed four H 

bonds, but in order to interact in the S1’ pocket, the P1’ group determined a 

conformational adjustment of Arg214, with a consequent decrease in inhibition potency. 

In the MMP-1-Prinomastat complex, we observed the same movement of the arginine, 

with the formation of a new H bond in the S1’ pocket, however the large dimensions of 

the P1’ substituent caused its incomplete penetration into the S1’ pocket, determining as 

a consequence the loss of the important interactions with Ala181. Compound a proved 

to be practically inactive in the MMP-1; this was probably due to the presence of the 

biphenyl group, since this substituent was not able to interact in the S1’ pocket, and this 

fact determined the loss of the interaction of the oxygen atoms of the sulfonamido group 

with Ala181 and Leu182. 
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Figure 5. Docking of Batimastat (A), CGS 27023A (B), Prinomastat (C) and compound a (D) 

into MMP-1. The main interatomic distances are reported in blue, all distances are in Angstroms. 

 

2.1.2.4 MMP2 complexes. The docking of Batimastat into MMP-2 showed all the same 

H bonds that were also present in the MMP-1 complex, thus confirming the low 

selectivity of this ligand. As in the MMP-1, CGS 27023A showed the pyridine 

substituent in the S2’ site, while the isopropyl group was directed towards the His166 

(1QIB68 sequence number) of the structural zinc binding site. The hydroxamate formed 

H bonds with Glu202 and Ala165, while the sulfonamido group interacted with Leu164 

and Ala165, forming two H bonds, and the p-methoxyphenyl group interacted in the S1’ 

pocket. Prinomastat presented a disposition very similar to that of CGS 27023A: with 

the hydroxamate it formed two H bonds with Glu202 and Ala165, while the 
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sulfonamido group interacted with Leu164 and Ala165. As regards the P1’ substituent, 

it was inserted into the S1’ pocket and formed an H bond with Thr227. Similarly, 

compound a showed the four H bonds with Glu202, Ala165 and Leu164, and the 

biphenyl system was inserted into the S1’ pocket. 

2.1.2.5 Design of new compounds. An analysis of the eight complexes suggested that 

Batimastat showed a good inhibition potency because of the presence of several H 

bonds; however, these interactions were maintained in both proteins, and for this reason, 

this ligand did not show any selectivity. On the contrary CGS 27023A showed a low 

level of selectivity, which was probably due to the conformational change that occurred 

in the MMP-1 pocket to allow the penetration of the p-methoxyphenyl group. 

Prinomastat presented a large P1’substituent, which, although forming two H bonds, 

determined a conformational adjustment of the ligand in the MMP-1, with the loss of 

the two crucial interactions with Leu181 and Ala182; this fact could explain its good 

MMP-2/MMP-1 selectivity. Compound a was found to be the most selective ligand of 

the four analyzed, and this fact could be due to the presence of a large P1’ group, rigid 

and unable to form H bonds, or to interact with the MMP-1-S1’ pocket. This analysis 

suggested that in order to maintaining the MMP-2/MMP-1 selectivity, the presence of 

the biphenyl group as a P1’ substituent could be very useful. In order to improve the 

MMP-2-inhibitor potency of compound a, maintaining its MMP-2/MMP-1 selectivity, 

an analysis of the binding site characteristics could be decisive. For this reason, by 

means of the GRID program,69 we examined the molecular interactions fields (MIFs) 

obtained for different probes for the MMP-2. In particular, the examination of the DRY, 

C1= and C3 probes revealed that besides the lipophilic pocket, corresponding to the S1’ 

pocket, there was a second pocket in which a lipophilic interaction was favourable, and 

this pocket corresponded to the zone occupied by the CGS 27023A isopropyl group. For 

this reason, we hypothesized that the design of an analogue of compound a with an 

isopropyl substituent on the alpha carbon atom might be able to increase the MMP-2 

inhibition (see Figure 6), while maintaining a low MMP-1 inhibitory potency, due to the 

biphenyl group interaction. The substitution of the C alpha determined the formation of 

a chiral carbon; Figure 7 shows the docking into MMP-2 of the two enantiomers of the 

designed ligand. In both complexes, the inhibitors formed all the H bonds shown by 
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compound a, but unlike (R)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-

methylbutanamide (compound (R)-b), the S enantiomer (compound (S)-b) presented the 

isopropyl group directed towards the core of MMP-2, and with this disposition the 

substituent was unable to interact in the region defined by GRID, leading to worse 

interactions with the protein. 

 
Figure 6. GRID analysis of the MMP-2/compound (R)-b complex. The green surface 

indicates the lipophilic area highlighted by using the DRY probe; the isopropyl substituent 

which could interact in this zone is coloured magenta. 

 

 
Figure 7. Superimposition of (R)-b (grey) and (S)-b (green) docked into MMP-2. Unlike 

(R)-b, the isopropyl substituent of (S)-b is directed towards the core of the metalloprotein. 
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2.1.2.6 Biological results. Table 3 shows the inhibitory indices (IC50) towards MMP-1 

and MMP-2 of the N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-

methylbutanamides ((R/S)-b, (R)-b and (S)-b), compared with those of the previously 

described N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)acetamide (compound 

a). Selectivity indices for MMP-2 over MMP-1, reported in parentheses, are expressed 

as ratios of their inhibitory indices. On MMP-2, the substitution on the P1 site with an i-

Pr group on the carbon atom alpha to the hydroxamate improves the inhibitory potency 

about five times, passing from compound a (IC50 = 12.4 nM) to racemic (R,S)-b (IC50 = 

2.44 nM). The (R)-b enantiomer shows an improvement of the potency on MMP-2 of 

threefold (IC50 = 0.81 nM) compared with its racemate (R,S)-b and about nineteen 

times, compared with its dystomer (S)-b (IC50 = 15.2 nM). An analysis of the selectivity 

indices for the N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-

methylbutanamides ((R/S)-b, (R)-b and (S)-b) and the alpha un-substituted compound N-

hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)acetamide (compound a) indicates 

that the newly synthesised P1 substituted (i-Pr group) compounds maintain a good 

selectivity profile. As can be seen, the MMP-1/MMP-2 ratios are range from 241.8 for 

the racemic (R/S)-b to 600 for the eutomer (R)-b respectively. A comparison of these 

selectivity indices with that of the previous N-hydroxy-2-(N-isopropoxybiphenyl-4-

ylsulfonamido)acetamide (compound a) indicates a reduction of about two times of the 

selectivity ratio MMP-1/MMP-2 passing from the new, most potent MMP-2 inhibitor, 

(R)-b to compound a. In every case, a comparison between the new in vitro potent 

antiangiogenic agent MMP-2 inhibitor (R)-b1 and the reference drugs used, indicates 

that this compound is 24.7 times more potent on MMP-2 than the reference drug CGS 

27023A. Moreover (R)-b proves to be 352.9 and 6 times more selective than CGS 

27023A and Prinomastat respectively. 
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Table 3. Inhibitory activity of N-hydroxy-2-(N-isopropoxybiphenyl-4-

ylsulfonamido)acetamide (compound a) and N-hydroxy-2-(N-isopropoxybiphenyl-4-

ylsulfonamido)-3-methylbutanamides ((R/S)-b, (R)-b and (S)-b)  (showed in figure) towards 

MMP-1 and MMP-2. 

 
 IC50 (nM)  

Compd MMP-1a MMP-2a MMP-1/MMP-2 
ratio 

a 12460±960 12.4±1.5 1004.9 
(R/S)-b 590±25 2.44±0.28 241.8 
(R)-b 486±76 0.81±0.22 600 
(S)-b 1199 ±52 15.2±1.3 78.9 

a Mca-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH2 and Mca-Pro-Leu-Gly-Leu-Dpa-Ala-

Arg-NH2 have been used as substrates for MMP-1 and MMP-2 respectively; b selectivity 

indices are reported as MMP-1/MMP-2 IC50 ratios. 

 

2.1.3 Conclusions.  

In a rational planning of the new biphenylsulfonamido- based hydroxamate derivatives 

recently studied by us, which possess a good selectivity for MMP-2 over MMP-1, we 

obtained the parameters for studying MMPs and their complexes with hydroxamate 

inhibitors by means of the AMBER force field. This modified force field was able to 

simulate the geometrical data coming from X-ray structures, thus making it possible to 

carry out reliable molecular modelling studies on hydroxamate inhibitor-MMP 

complexes. On the basis of the docking studies, the two enantiomers of N-hydroxy-2-

(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamide, (R)-b and (S)-b, were 

designed and synthesised, as more potent MMP-2 inhibitors than our previous 

compound a. An analysis of the inhibition profile on MMP-1 and MMP-2 of these two 

inhibitors shows that the eutomer (R)-b is 24.7 times and 15.3 times more potent than 

CGS 27023A and the parent compound a on MMP-2, maintaining a higher index of 

MMP-2/MMP-1 selectivity compared with the CGS 27023A and Prinomastat. On this 

basis, the hydroxamate (R)-b can be considered as a progenitor of a new class of 

biphenylsulfonamido-based inhibitors that differ from a in the presence of an alkyl side 
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chain in the P1’ position, and show a good potency and selectivity profile on the two 

MMPs studied. 

2.1.4 Experimental section. 

2.1.4.1 Parameters Calculations. In order to obtain all the parameters regarding the 

structural and catalytic zinc, it was necessary to optimize the geometry of the two 

systems, calculate the partial charges, and then estimate and optimize the missing Force 

constants. 

2.1.4.1.1 Geometry optimization. Starting from the geometry coming from the 

experimental crystallographic structure of MMP-1,66 we constructed two models 

referring to the two zinc ions with their chemical surroundings. The model referring to 

the structural zinc was made up of three methylimidazoles and one acetate ion, while 

the one referring to the catalytic zinc was made up of three methylimidazoles and one 

acetylhydroxamate ion (see figures of Table 1 where R is replaced by methyl). These 

models were subjected to a full geometry optimization by means of quantum 

mechanical calculations based on the Gaussian98 programme,70 using the B3LYP 

chemical model with a Lanl2DZ basis set, a direct SCF calculation and an SCF 

convergence criterion to 10-5. The B3LYP chemical model has been shown to be an 

accurate density functional method,71 and it gives as good or better geometries and 

energies as MP2 ab initio methods for first-row transition metal complexes.72 The 

B3LYP model is a combination of the Becke three-parameter hybrid functional73 with 

the Lee-Yang-Parr correlation functional (which also includes density gradient 

terms).74,75As regards the basis set, we used Lanl2DZ; this means that the zinc atom is 

described through the Los Alamos non-relativistic electron core potential of Hay and 

Wadt76 and an essentially double-zeta basis set including 3d orbitals and 3d diffuse 

functions for the valence shell. In this basis set, the rest of the atoms are described 

through the Dunning-Huzinaga full double- ζ basis set.77 This method has already been 

tested and has been found to be suitable to deal with systems containing metal atoms, 

and in particular zinc.62,78 

2.1.4.1.2 Partial charges. The next step was to determine the charges to be assigned to 

the zinc, to its chemical surroundings, and, lastly, to the ligands. The method used was 

an analysis of the RESP79 (Restrained Electrostatic Potential fit); the basic idea behind 
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this charge-fitting algorithm is that the charges on non-hydrogen atoms are restrained to 

an “optimal” value of zero. The RESP charges show less conformational variability than 

the standard ESP charges.  

2.1.4.1.3 Force Constants. A frequency analysis was carried out on the two models, and 

the diagonal elements of the Hessian matrix, calculated in their internal coordinates, 

were used as the value of the stretching constants. The bending force constants were 

approximated to one tenth of the relative stretching constants. The torsional force 

constants for zinc were not taken into consideration, since the geometry refers to a 

structure which is quite rigid and devoid of any significant torsional freedom.65 Given 

that molecular mechanics not only takes into consideration the binding terms, but also 

the non-binding ones (Coulombian and van der Waals interactions), unlike quantum 

mechanics which determines the total energy, it was necessary to test the values of the 

force constants, obtained by means of frequency calculations, within the AMBER force 

field, and, where necessary, to adjust these values. For this reason, several 

conformations were taken into consideration, in which the stretching and bending values 

were varied around the equilibrium value. Quantum mechanical calculations were 

carried out on these models by the B3LYP/LanL2DZ method, together with energy 

calculations based on the AMBER force field with the parameters calculated for the 

zinc ion. Only small adjustments were required to the force constants obtained from the 

frequency calculation, in order to obtain the best agreement between the energy values 

calculated by the two methods. In fact the modified AMBER force field after 

optimization was able to calculate the conformational energy of the model with a very 

good agreement with respect to the DFT-B3LYP-LanL2DZ method and, for the 

different parameters, the RMS of the difference between the relative energies 

(Kcal/mol) calculated by means of quantum mechanics (B3LYP/LanL2DZ) and those 

calculated by means of molecular mechanics (AMBER) showed an average value of 

0.85 Å. 

2.1.4.2 MD Simulations. All simulations were performed using AMBER 8.0.80 MD 

simulations were carried out using the modified parm94 force field at 300 K. An 

explicit solvent model TIP3P water was used and the complexes were solvated with a 

15 Å water cap. Sodium ions were added as counterions to neutralize the system. Prior 
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to MD simulations, two steps of minimization were carried out; in the first stage, we 

kept the protein fixed with  a constraint of 500 Kcal/mol and we just minimized the 

positions of the water molecules; then in the second stage, we minimized the entire 

system applying a constraint of 20 Kcal/mol on the α Carbon. The two minimization 

stages consisted of 5000 steps in which the first 1000 were Steepest Descent (SD) and 

the last 4000 Conjugate Gradient (CG). Molecular dynamics trajectories were run using 

the minimized structure as a starting input, and the particle mesh Ewald (PME) 

algorithm was used for dealing with long-range interactions.81 The time step of the 

simulations was 2.0 fs with a cutoff of 12 Å for the non-bonded interaction and SHAKE 

was employed to keep all bonds involving hydrogen atoms rigid. Constant-volume was 

carried out for 40 ps, during which the temperature was raised from 0 to 300 K (using 

the Langevin dynamics method); then 600 ps (1 ns for the X ray complex) of constant-

pressure MD were carried out at 300 K. All the α Carbons not within 15 Å of the 

catalytic zinc were blocked with a harmonic force constant of 20 Kcal/mol•Å. The final 

structure of the complexes was obtained as the average of the last 500 ps of MD 

minimized with the CG method until a convergence of 0.05 Kcal/ Å•mol.  

2.1.4.3 Docking of the Ligands. The four inhibitors were placed into MMP-1 (1HFC42) 

and MMP-2 (1QIB68) using as reference positions those of the MMP complexes 

determined by X-Ray and NMR methods deposited at the Protein Databank.82 For 

Batimastat, we superimposed the binding site of MMP-1 and MMP-2 on the MMP-8-

Batimastat complex (1MMB83). As regards Prinomastat, we used the position of a 

diphenyl-ether sulphone-based hydroxamic acid complexed with the MMP-1 (966C84) 

as a template, while for CGS 27023A and compound a we used the NMR study carried 

out on MMP-2 complexed with a hydroxamic acid inhibitor (1HOV85). 

2.1.4.4 GRID Calculations. The GRID box dimensions were chosen to encompass all 

the important parts of the active site. The grid spacing was set to 1 Å, and the molecular 

interaction fields (MIFs) were calculated for the DRY (hydrophobic probe), C1= (sp2 

CH aromatic or vinyl), C3 (methyl CH3 group), N2 (neutral flat NH2, e. g., amide), O 

(sp2 carbonyl oxygen) and OH (phenol or carboxy OH) probes using the GRID 

program, version 22.69 
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3.1 CANNABINOID CB2/CB1 SELECTIVITY. RECEPTOR MODELING AND 

AUTOMATED DOCKING ANALYSIS 

 
Tuccinardi T, Ferrarini PL, Manera C, Ortore G , Saccomanni G, Martinelli A* J. Med. Chem. 49 (2006) 984-

994 

 
3.1.1 Introduction. 

It has been about 41 years since Gaoni and Mechoulam identified ∆9-

tetrahydrocannabinol (THC) as the principal psychoactive molecule present in 

cannabis.1,2 

The pharmacological effects of cannabinoids are mediated through at least two 

receptors, termed CB1 and CB2, although recently, a lot of evidence has been reported 

about the detection in mouse brain of a third cannabinoid receptor subtype.3 

As regards their distribution and functionality, CB1 receptors are predominantly located 

in the central nervous system, and they are probably responsible for most of the overt 

pharmacological effects of cannabinoids.4-7 The CB2 receptor is found in peripheral 

tissues, like spleen, tonsils and immunocytes.8 This subtype is of particular interest, 

since it has been identified as a potential target for therapeutic immune treatment, due to 

its involvement in signal transduction processes in the immune system. Furthermore, a 

synthetic analogue of THC has recently proved to have significant anti-inflammatory 

and antitumor effects without any psychoactive effects, and it has been determined that 

its antineoplastic effect was mediated primarily through actions on CB2 receptors. For 

all these reasons, at present, research and development of new potent and selective 

ligands for CB2 is still of great importance.9 

Both CB1 and CB2 are seven-transmembrane (TM) receptors that belong to the 

rhodopsin-like family Class A of G protein-coupled receptors (GPCRs), and control a 

wide variety of multiple intracellular signal transduction pathways. CB1 and CB2 

agonists inhibit adenylyl cyclase by activation of a pertussis toxin-sensitive G-protein;10 

moreover CB1 activation inhibits the calcium channels and activates inwardly rectifying 

potassium channels.11 
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How do GPCRs change their conformations, in response to agonist binding, to activate 

the associated G-proteins? There are two main hypotheses to account for ligand-

mediated G-protein activation, conformational selection model12 and ligand induction.13 

According to the conformational selection model, there are two conformations of the 

receptor, the inactive (R) and the active (R*) one; the agonist preferentially binds the 

receptor in the R* conformation, thus increasing the duration of the period in which the 

receptor remains in the active state. The ligand induction model predicts that transition 

between the R and R* state is extremely rare in the absence of the agonist, and the free 

energy of the agonist binding to R is used to facilitate (or induce) the transition to R*. 

Bovine rhodopsin, crystallized by Palczewsky et al,14 provided the first direct 

visualization of the seven-transmembrane helices of a G-protein-coupled receptor in the 

inactive state. As regards the activated state, spectroscopic techniques on purified 

receptor preparations permitted the first direct insight into structural changes that occur 

during receptor activation, suggesting the conformational differences between the 

inactive and active states.13 

A knowledge of the 3D structure of cannabinoid receptors could be of great help in the 

task of understanding their function and in the rational design of specific ligands. For 

this purpose, many biochemical, pharmacological and computational studies have been 

carried out on cannabinoid receptors. 

Cannabinoid receptor agonists can be divided into four structurally distinct classes of 

compounds. These include classic cannabinoids (like ∆9-THC), non-classical 

cannabinoids, represented by CP55940, aminoalkylindoles, such as WIN55212-2, and 

endogenous cannabinoids like arachidonylethanolamide, also called anandamide 

(AEA).11 

Aminoalkylindoles derivatives are structurally dissimilar from the other classes, and as 

site-direct mutagenesis has revealed that the set of aminoacids important for their 

binding differs significantly from those of the other classes of ligands, the binding site 

of this type of ligand is probably different from the others.15 

As regards in the CB1 receptor more specifically, mutation studies have reported that a 

K3.28(192)A mutation results in a greater loss in affinity for AEA and CP55940, while 

the WIN55212-2 affinity remains unchanged.16 In other case, the mutation of 
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F3.36(191)A, W5.43(279)A and W6.48(356)A in the CB1 receptor determined a loss of 

affinity only for WIN55212-2, whereas the AEA and CP55940 affinity was 

unaffected.17 As regards the CB2 receptor, Song and co-workers reported that the 

mutation of F5.46(197)V determined a 14-fold decrease in CB2 affinity for WIN55212-

2, while the CP55940 and AEA affinity was unchanged.18 

In the present study, we constructed and refined a three-dimensional model of the CB1 

and CB2 receptors in their activated forms. Furthermore, we analysed the docking of 

WIN55212-2 in both receptor models, with the aim of finding the reasons for its 

selectivity towards the CB2 receptor. 

Finally, the CB2 receptor model thus constructed was used for an automated docking 

approach on several selective CB2 ligands by means of AUTODOCK 3.0.19 

3.1.2 Results and Discussion. 

3.1.2.1 Molecular modelling. Models of the CB1 and CB2 receptors were generated 

using the bovine rhodopsin structure determined at 2.8 Å as a template.14 The length of 

the transmembrane helices of the two receptors was defined by aligning the rhodopsin  
primary sequence with both receptor sequences using CLUSTAL W,20 and verifying the 

probable presence of the α-helix by means of the Psipred programme (see Figure 1).21,22  

Following the suggestion of Salo et al,23 we omitted the highly conserved Proline 

residue P5.50(215) of rhodopsin, considering the presence of a gap in that position. 

It is well-known that rhodopsin was crystallized in its inactive state, and therefore the 

CB models obtained with the procedure described above represent an inactivated state; 

according to the activation hypothesis, this state is not suitable for studying the binding 

of agonists, and the receptor models should be built in their active state. 

The activation of the GPC receptors seems to be determined by a different 

rearrangement of TM3 and TM6, since the disruption of interaction between these two 

helices produces constitutive receptor activation, and in particular, the extent of 

constitutive activation is closely correlated with the extent of conformational 

rearrangement in TM6.24 
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Figure 1. Alignment of the cannabinoid receptors and bovine rhodopsin (1F88) amino acid sequences. 

The identical residues are highlighted in black, while the α helix and β sheet prediction carry out by 

Psipred is respectively marked  in grey and underlined 

 

Computational and experimental studies have indicated that conformational switches 

can be generated in the TM helices as a result of the formation of flexible molecular 

hinges by a residue of Proline.25  

During activation in the β2 adrenergic receptor, P6.50(288) permits the movement of the 

intracellular end of TM6 away from TM3 and upwards towards the lipid bilayer, 

suggesting that probably the crucial movements for activation involve flexibility about 

the hinge formed by the highly conserved Proline in TM6 (P6.50).26 

Conformational memories calculations of TM6 in the ß2 adrenergic receptor, combined 

with mutation and SCAM studies, suggested the presence of a rotamer toggle switch 

able to modulate the TM6 Proline kink; according to this hypothesis C6.47(285)_trans / 

W6.48(286)_gauche+ / F6.52(290)_gauche+ represent the inactive form of the ß2 

adrenergic receptor, while C6.47_gauche+ / W6.48_trans / F6.52_trans represent the 

active state.27 
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As regards the activation of CB receptors, Singh and co-workers suggested that 

W6.48(356) / F3.36(200) interaction may act as the toggle switch for CB1 activation, 

with W6.48_gauche+ / F3.36_trans representing the inactive and W6.48_trans / 

F3.36_gauche+ the CB1 active form.28  

Following the indications of these studies, therefore, in order to analyse the agonist 

binding interaction, we modified the inactive template of our CB1 and CB2 receptors by 

rotating TM3 and TM6 in a counter-clockwise direction (extracellular point of view) 

and straightening TM6, using P6.50 as a flexible hinge; finally, we adjusted the 

conformation of the χ1 rotamer of W6.48 and F3.36: trans the former and gauche+ the 

latter. 

The receptor models thus obtained were optimized through 400 ps of molecular 

dynamics (MD), in accordance with the procedure described in the experimental 

section.  

The backbone conformation was evaluated by inspection of the Psi/Phi Ramachandran 

plot obtained from PROCHECK analysis.29 

As shown in the Ramachandran plots of Figure 2, the distribution of the Psi/Phi angles 

of both models are within the allowed regions and no residue has a disallowed 

conformation.  

 
Figure 2. Ramachandran plot of the CB1 (on the left) and CB2 (on the right) receptor. The most 

favoured regions are coloured red, additional allowed, generously allowed and disallowed regions are 

indicated as yellow, light yellow and white fields, respectively. 
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3.1.2.2 Docking of WIN55212-2. The models obtained with these calculations were 

complexed with a high affinity ligand, and the complexes were optimized. 

WIN55212-2 was chosen for this purpose, since it is commonly used in binding 

experiments and because it shows a high activity in both receptors, in particular CB2 

(see Table 3). It was docked bearing in mind the known mutagenesis data. 

In the CB1 receptor F3.36(200), W5.43(279) and W6.48(356) might be important for 

WIN55212-2 binding,17 whereas CB2 mutagenesis studies suggest the importance of  

S3.31(112)30 and F5.46(197)18 in this subtype. In order to consider these interactions, 

we inserted the ligand with the morpholinic group positioned between TM3 and TM4, 

while the naphthyl substituent was directed towards the central core of TM5 and TM6. 

In this manner, the lipophilic core of the ligand was able to interact with W5.43 and 

W6.48, and in the CB2 receptor the naphthyl ring could interact with F5.46(197) and 

the morpholinic group with S3.31(112). 

The two complexes were then submitted to 400 ps of MD (see experimental section for 

details) and Figure 3 shows the docking of the ligand in the two receptors.  

 
Figure 3. WIN55212-2 docked into the CB1 (left) and CB2 (right) receptors (extracellular point of view). 
 

In the CB1R, the binding site is characterised by a lipophilic pocket delimited by  

F3.36(200), W5.43(279) and W6.48(356), which principally interact through aromatic 

stacking with the naphthyl and indole ring system (for distance analysis, see Table 1), 
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while the morpholinic group is positioned in a secondary lipophilic pocket formed by 

L3.26(190), P4.60(251) and L4.61(252). 

 
 Table 1. Principal WIN55212-2-Receptor interaction in CB1 and CB2. Distances 

exceeding 7 Å are not reported but indicated as --. 

 WIN55212-2 

 Interaction with CB1 (Å) Interaction with CB2 (Å) 

 Naphthyl Indole Morph. Naphthyl Indole Morph. 
L3.26 -- 5.43 3.52 -- 4.21 -- 

F3.27/L3.27 -- -- 6.25 -- 3.50 4.06 
G3.30/S3.31 -- -- 3.81 -- 5.68 3.20 

F3.36 4.94 5.70 -- -- -- -- 
P4.60 -- 4.01 3.72 -- 3.69 3.59 
L4.61 -- -- 3.90 -- -- 3.78 
W5.43 4.37 6.70 -- 3.54 6.20 -- 

V5.46/F5.46 -- -- -- 4.08 -- -- 
W6.48 -- 5.05 -- 5.90 -- -- 

 

The CB2 binding site is similar to the CB1 one, with a primary lipophilic pocket 

delimited by F3.36(117), W5.43(194), W6.48(258), but the WIN55212-2 orientation is 

slightly different. In the CB2 site, the ligand veers away from F3.36(117), since it feels 

the effect of a strong interaction with F5.46(197), which is a non-conserved residue 

(V5.46(282) in the CB1) capable of stabilising the naphthyl ring. As regards the 

secondary lipophilic pocket in which the morpholinic group is positioned, the 

substituent interacts with L3.27(108), P4.60(168) and L4.61(169), and the non-

conserved S3.31(112) (G3.31(195) in the CB1R) forms a hydrogen bond with the 

oxygen atom of the morpholinic group. As can be seen in Figure 4, the main 

interactions of WIN55212-2 with the CB2 receptor were stable: the hydrogen bond with 

S3.31(112), the aromatic stacking and the π-π interaction of the naphthyl ring with 

F5.46(197) and W5.43(194), respectively, were maintained during all the last 100 ps of 

MD.  
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Figure 4. Distances of the main interaction between WIN55212-2 and the CB2 

receptor during the last 100 ps of MD simulation. In black, distances between the 

naphthyl ring of the ligand and the centroid of the aromatic nucleus of F5.46(197), 

in red, distances between the centroid of the naphthyl ring and the indole of 

W5.43(194), in green, distances between the O of the morpholinic ring and the OH 

of the S3.31(112). The distances were updated every 2 ps. 

 

In order to validate our hypothesis and to characterize the structural differences of the 

two binding sites, we examined the molecular interaction fields (MIFs) obtained by 

means of the GRID programme31 for ten different probes (see Table 2).  

 
Table 2. Overview of GRID Probes used in this study 

Name Chemical group 
DRY Hydrophobic probe 
C1= sp2 CH aromatic or vinyl 
C3 Methyl CH3 group 

OC2 Ether oxygen 
OH Phenol or carboxy OH 
N: sp3 N with lone pair 
CL Organic chlorine atom 
O sp2 carbonyl oxygen 
O1 Alkyl hydroxyl OH group 

ArCONHR Aromatic cis or trans amide 

 



3.1 Cannabinoid CB2/CB1 selectivity. Receptor modeling and docking analysis 

 97

An analysis using C1= and C3 probes showed the presence in both receptors of a large 

lipophilic pocket corresponding to the space occupied by the naphthyl and indole ring of 

WIN55212-2, and a secondary one corresponding to the morpholinic position. 

Moreover, the OC2 probe showed the presence in the CB2 binding site of a favourable 

interaction area in the space occupied by the morpholinic group (see Figure 5). 

Thus, the observation of the two binding sites and an analysis using different probes 

encouraged us to carry on a further development of these models. 

 
Figure 5. GRID analysis using the C1= (green surface) and OC2 (red surface) probes into the CB1 (left) and 

CB2 (right) receptors. The C1 probe shows the presence in both receptors of a large lipophilic pocket and a 

small secondary one, while the OC2 probe shows the presence in the CB2 receptor of a favourable interaction 

area in the secondary lipophilic pocket 

 

3.1.2.3 Docking of AEA. In order to further test the validity of the models, we docked 

into both receptors the most well known endogenous ligand AEA, which has a 

completely different structure with respect to WIN55212-2, through an automated 

docking procedure (see experimental section for details).  

In CB1 AEA adopts an U-shaped molecular conformation and it is placed among TM2-

3-6-7 with the aliphatic chain directed towards the intracellular side of the receptor. The 

amide oxygen atom of the ligand interacts with K3.28(193), in agreement with site 

directed mutagenesis studies,16 and the hydroxy group forms an H bond with 

S7.39(383). The residues that delimited the AEA binding pocket are principally 



3.1 Cannabinoid CB2/CB1 selectivity. Receptor modeling and docking analysis 

 98 

hydrophobic, including F2.57(170), F3.25(189), L3.29(193), V3.32(196), F3.36(200), 

F7.35(379), in agreement with the CB1 model proposed by McAllister et al.17 Anyway, 

differently from this model, in our study F2.57(170) interacts with the aliphatic chain of 

AEA through a C-H•••π interaction, whereas F3.25(189) has an interaction with the 

amide oxygen atom. 

In the CB2 receptor AEA does not interact with K3.28(109), but it forms a H-bond with 

S3.31(112) through the amide oxygen atom, and this is in agreement with mutagenesis 

studies.30 Moreover, the hydroxy group interacts with the oxygen backbone of 

L3.27(108).  

The CB2-AEA binding is included among TM3-4-5-6, as for WIN55212-2, and the 

AEA aliphatic chain interacts principally with W5.43(194) and W6.48(258). 

The AEA docking results seem to support the validity of these CB1 and CB2 models 

since they are in good agreement with the main mutagenesis data available for this 

ligand. 

3.1.2.4 Automated docking. In order to investigate the characteristics of the CB2 

model and also its predictivity, we chose from relevant literature 96 ligands (see Table 

3) that probably interact in  the WIN55212-2 binding site, and using the AUTODOCK 

3.0 programme19 we docked these compounds into the CB2 model. On the basis of their 

central nucleus and substituents, they can be divided into two classes, indole and 

naphthyridine derivatives. As concerns the indole derivatives, GTPγS assays indicated 

that JWH-151 is a full agonist at CB2, whereas JWH-120 and JWH-267 are partial 

agonists;32 as for the naphthyridine derivatives, our studies concerning the modulation 

of mast cell activation33 highlight that compound 3g is a full agonist.34 For these reasons 

we consider it more reasonable to dock all the ligands tested into the activated form of 

the CB2 receptor.  

The chosen parametrization of AUTODOCK (see experimental section) was tested for 

its ability to reproduce the binding geometry of WIN55212-2 obtained by means of the 

molecular dynamics procedure. AUTODOCK easily found the binding geometry 

corresponding to the one obtained by manual docking, as the rms deviation between the 

lowest energy docked conformation and the WIN55212-2 manually docked one was 

0.62 Å (rms evaluated over all the heavy atoms of the ligand). 
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Table 3. Structure and binding data of the ligands used in this study. In the last column is indicated which 

cluster was used in the automated docking. (ener.= the cluster with the best average of estimated free energy, 

pop. = the best populated cluster, - = the considered cluster don’t belong to none of these two classes). “G 

sper” and “G calc” indicate, respectively, the experimental and calculated binding free energy (Kcal/mol). 

“morph” indicated the morpholine ring.  
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3.1.2.5 Analysis of naphthyridine derivatives. These compounds can form an 

intramolecular H bond between the carbonylic oxygen atom and the amidic NH (see 

Table 4). Our studies suggested that this interaction had a high strength, about 30 

Kcal/mol (see experimental section for details), and consequently this H bond was 

considered to be maintained also during interaction in the binding site. For this reason, 

during the AUTODOCK protocol, we blocked the torsions involved in this 

intramolecular bond (torsions d1 and d2 in Table 4), in order to prevent the loss of  this 

interaction.  

 
Table 5. Energy difference between the two optimized models 

Model a Model b 

  

∆Energy (Emodel a-Emodel b) = -31,53 Kcal/mol 

 

Figure 6A shows the docking of  3a into the CB2 binding site. The ligand position is 

similar to that of WIN55212-2: 3a gives H bonds with S3.31(112) through the 

morpholino substituent, and there is a lipophilic interaction between the cyclohexyl 

group and W5.43(194) and F5.46(197), in agreement with the mutagenesis data and our 

binding hypothesis. As regards the naphthyridine ring, it is stabilized by lipophilic 

interaction with L3.26(107), I3.29(110), M6.55(265) and L6.59(269).  

Compound 6a is 20-fold more potent than 3a and differs only in the R group, because 

the ethylmorpholino group is substituted by the p-F-benzyl moiety. As shown in Figure 

6B, the lowest energy docked conformation of compound 6a has a binding position very 

similar to the one shown by 3a (the rms between the heavy atom positions of the 

naphthyridine rings of the two ligands in the CB2 binding site is 0.58 Å). As for 3a, the 

cyclohexyl group of compound 6a interacts with W5.43(194) and F5.46(197) while the 
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R substituent forms an H bond with S3.31(112) (with the fluorine atom). Moreover, the 

aromatic ring of this substituent is stabilized by the secondary lipophilic pocket formed 

by  L3.27(108), P4.60(168) and L4.61(169), and this could be the reason for the higher 

affinity shown by this ligand. 

The presence of a benzyl substituent in R1 determines a decrease in the affinity. For 

example, compound 6e differs from 6a only in the presence of the R1 benzyl instead of 

the cyclohexyl group, and shows a 10-fold lower affinity for the CB2 receptor. 

The superimposition of the binding site of 6e on that of 6a, shows that in the docking of 

6e, the presence of an R1 rigid substituent like benzyl causes a translation of the  

naphthyridine ring towards the extracellular side of the receptor (the rms between the 

heavy atoms of 6e and 6a naphthyridine rings is 2.12 Å), determining worse interactions 

with the residues that stabilize the naphthyridine ring (see Figure 6C), with the 

consequent decrease in affinity. 

 
Figure 6. Docking of 3a (A), 6a (B), and superimposition (C) of ligands 6a and 6e (respectively coloured 

magenta and sky blue) in the CB2 binding site. The main interatomic distances are reported in blue, all 

distances are in Angstroms. 

 

3.1.2.6 Analysis of indole derivatives. All the compounds that present a  3-(1-

naphthoyl)indole as their central nucleus show a binding position very similar to the one 

observed for WIN55212-2. The docking of compound JWH-007, which is 10-fold less 

potent than WIN55212-2, shows that the naphthyl ring is stabilized by  W5.43(194), 

F5.46(197) and M6.55(265), while the indole ring interacts with L3.26(107), I3.29(110) 

and L6.59(269). The R pentyl substituent is inserted into the secondary lipophilic 

pocket formed by L3.27(108), P4.60(168) and L4.61(169), but of course it is not able to 
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form the H bond with S3.31(112), and this could be one of the reasons for the lower 

affinity of this ligand, compared with that of the WIN55212-2 affinity (see Figure 7A). 

The compounds (1-17) bearing the morpholinic ring linked to the C3 position of the 

indole system and the aromatic group linked to the N1 position (in an opposite manner 

compared with WIN55212-2, which presents the morpholinic substituent linked to N1 

and the 1-naphthoyl group in the C3 position), show a different placement of the indole 

ring in the CB2 binding site, compared with the indole position of the 3-(1-

naphthoyl)indole analyzed. 

The docking of compound 9, which presents these structural characteristics, shows that 

the 3-acetylmorpholine moiety is inserted into the secondary lipophilic pocket and 

forms  the H bond with S3.31(112), while the N1-2,3-dichlorobenzoyl substituent 

interacts with W5.43(194), F5.46(197) in the same manner as the naphthyl group of the 

3-(1-naphthoyl)indole compounds (see Figure 7B). Comparing the position of JWH-

007 with that of this ligand, we observe  that the aromatic and morpholinic groups have 

the same disposition, but for this reason, unlike from JWH-007, the indole ring of 

compound 9 is upset, with the nitrogen directed towards the intracellular side of the 

receptor (see Figure 7C). 

 
Figure 7. Docking of JWH-007 (A) and 9 (B) into the CB2 binding site, and superimposition of the two 

ligands (C) showing the opposite disposition of the indole ring, with the nitrogen pointing towards the 

intracellular side of the receptor for compound 9 and towards the extracellular side for JWH-007. 

 

These observations might suggest that the nitrogen of the indole system should not be 

important for the interaction, and that the role of the whole indolic system could be only 
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that of an aromatic core able to place the substituents in the right disposition in the CB2 

receptor binding site. 

3.1.2.7 Binding free energy estimation. Figure 8 reports the plot of experimental 

binding energy versus the average estimated binding free energy of the chosen cluster 

(see experimental section) obtained by using the scoring function of AUTODOCK. The 

value of the quadratic correlation is very low (R2=0.31); however we observed that the 

plot splits the ligands into two different groups. Analyzing the structural characteristics 

of the compounds belonging to the two groups, we observed that the overestimated one 

was composed of all the ligands that had the morpholinic substituent.  

Considering the plot constituted by two different groups  and calculating the two 

quadratic correlations, we obtained a value of 0.79 for the morpholinic derivatives and a  

value of 0.70 for all the other ligands. Moreover, the predictive power of the model was 

tested by leave-one-out (LOO) cross-validation method,37 where compounds are deleted 

one after another and prediction of the activity of the deleted compound is based on the 

QSAR model. This analysis showed a good predictive internal ability for both 

morpholinic derivatives (q2=0.74) and the other ligands (q2=0.69).  

As the scoring function of AUTODOCK make use of an empirical approach, and the 

free energy function is based on the principles of QSAR (quantitative structure-activity 

relationships) and was parameterized using a large number of protein-inhibitor 

complexes for which both structure and inhibition constants were known, the split of the 

ligands into two groups might be due to an overestimation of the AUTODOCK scoring 

function for the interaction between the morpholinic substituent and our CB2 model. 
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Figure 8. Plot of the experimental binding energy versus the average estimated 

binding free energy of the chosen cluster. Ligands with a morpholinic group are 

indicated by ■, while all the others are indicated by Ө. The quadratic correlations, R2 

were calculated only for the ligands possessing a CB2 affinity greater than 1000 nM. 

 
In order to verify if our CB2 model was able to predict the activity of other ligands, we 

used the 1-penthyl-3-phenylacetylindoles recently published by Huffman et al38 as test 

set.  

Table 5 shows the 28 compounds tested, their experimental and predicted free energy of 

binding and the calculated SDEP (Standard Deviation of Errors of Prediction). 

The nine ligands with the best CB2 affinity show an ortho substituent on the aryl ring 

(JWH-252, JWH-250, JWH-306, JWH-311, JWH-314, JWH-203, JWH-204, JWH-

249 and JWH-305). In our model the high affinity of these ligands could be explained 

by their interaction with T3.37(118), that for most of them consists in the formation of a 

H bond, since the displacement of the substituent in meta or para position determined 

the loss of this interaction.  
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Table 5. Structure and binding data of the ligands used as test set. In the last column is indicated which cluster 

was used in the automated docking. (ener.= the cluster with the best average of estimated free energy, pop. = 

the best populated cluster, - = the considered cluster don’t belong to none of these two classes). “G sper” and 

“G pred” indicate, respectively, the experimental and predicted binding free energy (Kcal/mol). In the last row 

is reported the SDEP value. 

 
 

The nine ligands with the best CB2 affinity show an ortho substituent on the aryl ring 

(JWH-252, JWH-250, JWH-306, JWH-311, JWH-314, JWH-203, JWH-204, JWH-

249 and JWH-305). In our model the high affinity of these ligands could be explained 

by their interaction with T3.37(118), that for most of them consists in the formation of a 

H bond, since the displacement of the substituent in meta or para position determined 

the loss of this interaction.  
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3.1.3 Conclusions 

We have constructed 3D models of the active conformation of the cannabinoid receptors 

CB1 and CB2 based on crystallized bovine rhodopsin (1F88). 

A model of WIN55212-2  complexed with both receptors is described by means of 

docking studies, and a comparison of the CB2 and CB1 binding sites showed that the 

CB2/CB1 selectivity is mainly determined by interaction with the residues S3.31 and 

F5.46 in the CB2. These residues, corresponding to G3.31 and  V5.46 in the CB1, are 

not conserved, and site-directed mutagenesis suggests that they play an important 

role.18,30 

These results suggested that the CB2/CB1 selectivity could be increased by the presence 

in the ligands of a lipophilic group able to interact in the CB2 with F5.46 and a group 

able to form a H bond with S3.31. 

Using the AUTODOCK programme we docked several ligands into the CB2 model, and 

their disposition in the receptor confirmed our binding hypothesis. Moreover, the results 

obtained using this method showed a good correlation between the estimated free 

energy binding and the experimental binding data.  

In order to better verify the predictivity of our CB2 model, an external test set of 28 

ligands was used and the SDEP value obtained suggests that this model can be 

considered quite reliable and predictive. 

The cannabinoid receptors are an interesting therapeutic target, in fact many 

computational studies on these receptors have been recently published.39-42 Our studies 

may be very useful in the search for new compounds, and a large database virtual 

screening analysis using this cannabinoid receptor model is already in progress. 

3.1.4 Experimental sections. 

3.1.4.1 Amino acid numbering. To refer to specific amino acids sequences, the 

numbering system suggested by Ballesteros and Weinstein is used.43  

The most highly conserved residue in each transmembrane helix (TMH) is assigned a 

value of 0.50 and this number is preceded by the TMH number and followed in 

parentheses by the sequence number. The other residues in the helix are given a locant 

value relative to this.  
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3.1.4.2 Nomenclature of χ1 rotamer. For the χ1 torsion angle we used the 

nomenclature describe by Shi et al.44 When the heavy atom in the γ position is in a 

position opposite the backbone nitrogen, looking from the ß-carbon to the α carbon, the 

χ1 is said to be trans; from the same viewpoint, when the γ heavy atom is opposite the 

backbone carbon,  the χ1 is said to be gauche+. 

3.1.4.3 Methods. The crystal structure of bovine rhodopsin was taken from the Protein 

Data Bank,45 while all the primary sequences were obtained from the SWISS-PROT 

protein sequence database.46  

As the function of the loops has still not been definite, like other authors47-49 we 

modelled only the TM domains of the two receptors. Furthermore, site-directed 

mutagenesis shows that the perturbation of the first extracellular loop does not affect the 

binding of WIN55212-2,50 and in the second extracellular loop, only the mutation of 

two cysteines determines the loss of binding of the ligand, but the authors hypothesized 

that the mutation of these conserved residues resulted in an important structural 

perturbation, perhaps the elimination of a disulfide bridge.51  

The sequential alignment of  rhodopsin and the human cannabinoid receptors CB1 and 

CB2 was performed by means of CLUSTAL W,20 using the Blosum series as a matrix, 

with a gap open penalty of 10 and a gap extension penalty of 0.05. The Psipred 

programme21,22 was used in order to verify the presence of α-helices in our TM 

sequence hypothesis. 

Our results were in a perfect agreement with Salo et al.23 who had taken into 

consideration several TM receptor sequences for alignment. 

All the molecular mechanics and molecular dynamics calculations were performed by 

means of the Macromodel program52 by using the AMBER Forcefield. The electrostatic 

charges were those included in the forcefield and a distance-dependent dielectric 

constant of 4.0 was used. In molecular mechanics calculations (MM) the minimization 

algorithms were Steepest Descent followed by Conjugated Gradient until a convergence 

value of 0.05 kcal/Å•mol; in molecular dynamics simulations the temperature was set at 

300 °K and the time step was 1 femtosecond.  
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All graphic manipulations and visualizations were performed by means of the Maestro52 

and WebLabViewer programmes,53 while the quantum mechanical calculations were 

carried out using the Gaussian03 programme.54 

The backbone conformation of the resulting protein structures was evaluated by 

inspection of the Psi/Phi Ramachandran plot obtained from PROCHECK analysis,29 

whereas ligand docking was performed using AUTODOCK 3.0.19 

3.1.4.4 Construction of the activated CB1 and CB2 receptors. The 3D X-ray 

crystallographic structure of bovine rhodopsin registered in the Protein Data Bank was 

used as a direct template to construct the 7-TM helical structure of the CB1 and CB2 

receptors by means the Maestro programme, on the basis of the alignment obtained 

from CLUSTAL W and Psipred analysis. Each model helix was capped with an acetyl 

group at the N-terminus and with an N-methyl group at the C-terminus. Each TM was 

subjected to preliminary minimization followed by 200 ps of MD, using a constraint of 

50 Kcal/mol on the Cα and on the intra-helix H bonds.  The final structures were then 

minimized using the same constraint. The receptor was reassembled on the basis of the 

rhodopsin structure rotating TM5 by 180° to let W5.43 and V/F5.46 turn towards the 

intra-helical channel.16 The whole system was then subjected to preliminary 

minimization followed by 400 ps of MD, using a constraint of 20 Kcal/mol on the Cα 

and a constraint with a decreasing force constant (10 to 0.1 Kcal/mol) on the intra-helix 

H bonds. 

The activated states of CB1 and CB2 were created by modification of the rhodopsin-

based models thus obtained, by rotating TM3 and TM6 in a counter-clockwise direction 

(extracellular point of view), straightening TM6 and adjusting the conformation of the 

χ1 rotamer of W6.48 and F3.36 to trans and gauche+ respectively. The modified TM6 

was optimized with the procedure used above for single TMs, and then the whole model 

was subjected to preliminary minimization, followed by 400 ps of MD, using a 

constraint of 20 Kcal/mol on the Cα and finally a minimization was applied to the 

structure obtained as the average of the last 100 ps. 

3.1.4.5 Docking of AEA. The ligand was submitted to a  conformational search of 1000 

steps with an energy window for saving structure of 10 KJ/mol. The algorithm used was 

the Montecarlo method with MMFFs as the forcefield and a distance-dependent 
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dielectric constant of 1.0. The ligand was then minimized using the Conjugated 

Gradient method until a convergence value of 0.05 kcal/Å•mol, using the same 

forcefield and dielectric constant used for the conformational search. Then the ligand 

was docked into both receptors using the AUTODOCK 3.0 program.19 The regions of 

interest used by AUTODOCK were defined by considering T3.33 as the central residue 

of a grid of 56, 46, and 50 points in the x, y, and z directions. A grid spacing of 0.375 Å 

and a distance-dependent function of the dielectric constant were used for the energetic 

map calculations. 

Using the Lamarckian Genetic Algorithm, the compound was subjected to 250 runs of 

the AUTODOCK search, in which the default values of the other parameters were used. 

Cluster analysis was performed on the docked results using an RMS tolerance of 1.0 Å.  

3.1.4.6 Docking of WIN55212-2. The ligand was submitted to a  conformational search 

using the same parameters described above. For WIN55212-2, the best conformation 

was an s-trans geometry, in agreement with Reggio et al.55  

The atomic charges of the ligand were calculated by using the RESP method with the 6-

31G* wave function on a structure previously minimized at the AM1 level. 

WIN55212-2 was docked into both receptors through 400 ps of MD applying a 

constraint of  20 Kcal/mol on the Cα. Furthermore we applied a constraint on the main 

ligand-receptor interactions with a decreasing force constant (10, 5, 1 kcal/mol) on the 

first 300 ps of MD, leaving the ligand free in the last 100 steps. Finally a minimization 

was applied to the structure obtained as the average of the last 100 ps.  

3.1.4.7 Analysis of naphthyridine derivative geometry. In order to measure the 

strength of the intramolecular H bond, we used a method similar to the one employed 

by Cuma and co-workers.56 

We optimized models a and b of Table 4, using the B3LYP chemical model57 with a 6-

31G+* basis set; as regards the optimization of model b, we used a constraint on the 

torsion involved in the H bond in order to prevent the formation of the H bond during 

optimization. The energy difference between the two optimized systems was about 30 

Kcal/mol, and this value gives us an idea of the high strength of this interaction. 

3.1.4.8 Docking of the ligands. Three representative ligands (3a, JWH007, 9) were 

submitted to a  conformational search using the same method described for AEA and 
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the best conformation was used as a general scaffold for the construction of the initial 

geometry of all the compounds; in all cases, the initial geometries thus obtained were 

then minimized. 

Automated docking was carried out by means of the programme AUTODOCK 3.0;19 

AUTODOCK TOOLS58 was used to identify the torsion angles in the ligands, add the 

solvent model and assign partial atomic charges (Gasteiger for the ligands and Kollman 

for the receptors). The regions of interest used by AUTODOCK were defined by 

considering WIN55212-2 docked into the CB2 receptor as the central group; in 

particular, a grid of 54, 50, and 52 points in the x, y, and z directions was constructed 

centred on the centre of the mass of WIN55212-2. A grid spacing of 0.375 Å and a 

distance-dependent function of the dielectric constant were used for the energetic map 

calculations. 

Using the Lamarckian Genetic Algorithm, all docked compounds were subjected to 100 

runs of the AUTODOCK search, in which the default values of the other parameters 

were used. Cluster analysis was performed on the docked results using an RMS 

tolerance of 1.0 Å.  

As we considered the WIN55212-2 binding geometry to be the one able to stabilize the 

active form of the CB2 receptor, the selection of the right cluster for each ligand docked 

was performed mainly on a geometrical basis, i.e. by choosing the best cluster among 

those in which the ligand had a binding geometry similar to that of WIN55212-2; 

namely, the one with a substituent inserted between TM3 and TM4 and another 

substituent directed towards the intracellular side of the receptor. 

As regards the most active compounds (those with a Ki lower than 1000 nM), it was 

found that for 85% of them the chosen cluster was also the one with the best average of 

estimated free energy, while for 6% of them the chosen cluster was the best populated 

one.  

For ligands 16, 25b, JWH241, JWH236, JWH079, JWH261 and JWH266 (9%), the 

chosen cluster did not belong to either of these two types (see Table 3) since neither the 

cluster with the best average of estimated free energy, or the best populated one 

possessed a binding  geometry similar to that of WIN55212-2. 
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As regards the ligands that showed a Ki higher than 1000 nM, the chosen cluster for 

25% of them was the one possessing the best average of estimated free energy and for 

12.5% the best populated one, whereas  for 37.5% the chosen cluster did not belong to 

either of these two types; finally, for four ligands (25%) there were no clusters with a 

binding geometry similar to that of WIN55212-2, and therefore the cluster with the best 

average of estimated free energy was chosen. 
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3.2 DESIGN OF 4-OXO-1,8-NAPHTHYIRIDINE AND QUINOLIN-4(1H)-ON-3-

CARBOXAMIDE AS NEW CB2 SELECTIVE AGONISTS 

 

3.2.1 Introduction. 

The docking study of naphthyridine derivatives de3scribed in Chapter 3.1 highlighted 

the ligand-receptor interactions able to determine an increase of the affinity and 

selectivity. In particular this analysis suggested that for preserving a good CB2/CB1 

selectivity and improving the CB2 affinity, it seemed to be necessary: (i) the presence of 

a non aromatic R2 substituent able to interact into the CB2 with the not conserved 

residue F5.46(197); (ii) a lipophilic R1 substituent with a H bond acceptor atom able to 

interact into the CB2 with the not conserved S3.31(112). 

For these reasons a new series of 7-methyl-1,8-naphthyridin-4-one-3-carboxamide 

derivatives were synthesized and tested. For seven compounds of this series the virtual 

screening into the CB2 model predict an affinity lower than 13nM whereas for one 

compounds was calculated a poor affinity. 

Furthermore our studies suggested that some features of these derivatives seemed to be 

not important for the interaction with the CB2 receptor; in particular the methyl group 

(R3) did not seem to strongly interact with any lipophilic residues of the CB2 receptor 

and the N8 atom of the naphthyridine ring showed a secondary role since it did not 

interact with any polar residue (see Figure 1). The virtual screening into CB2 receptor 

of compounds in which the methyl group (R3) was removed or substituted with a 

chlorine atom and compounds in which the naphthyridin-4-one ring was substituted 

with a quinolin-4-one as central nucleus, highlighted that these ligands seem to maintain 

a good CB2 affinity and in some cases the affinity seemed to be greater than their 

methyl substituted and naphthyridine analogues. In light of these considerations new 

1,8-naphthyridin-4(1H)-on-3-carboxamide and quinolin-4(1H)-on-3-carboxamide 

derivatives in which the R3 methyl group was removed or substituted with a Chlorine 

atom were synthesized.  

All the compounds tested could formed an intramolecular H bond between the 

carbonylic oxygen and the amidic NH creating a pseudocycle planar to the 

naphthyridine ring and our studies suggested that this interaction had a high strength. In 
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order to verify the ability of our CB2 model to discriminate between active and inactive 

ligands and also to verify if the formation of a planar pseudocycle was important for the 

interaction inside the CB2 receptor, new compounds characterized by the presence of an 

hydroxyl group in position 4 of the naphthyridine nucleus instead of the carbonylic 

oxygen atom and by the absence of the aromaticity of the cycle (which virtual screening 

predicted a CB2 affinity greater than 750 nM) were synthesized and tested. 

3.2.2 Results and Discussion 

3.2.2.1 CB1 receptor affinity. The results reported in Table 1 for the 1,8-naphthyridin-

4(1H)-on-3-carboxamide derivatives CB35-CB61 show that, as reported in the 

previously Chapter, the compounds with an ethylmorpholino group in position 1 (CB60 

and CB61) regardless of both the nature of the carboxyamido substituent in position 3 

and the substituent in position 7 of the heterocyclic nucleus, exhibited a poor affinity, 

with Ki values >1000. Analogously the compounds CB55, CB57 and CB58 bearing in 

position 1 of the naphthyridine nucleus N-phenyl-N-ethylpiperazinyl group, phenethyl 

group or p-methoxybenzyl group respectively possess very low affinity with Ki values 

>1000. The presence in position 1 of a benzyl group whether substituted or not led to 

compounds with an interesting affinity; in particular the p-fluoro-benzyl derivatives 

CB35 and CB38 showed the highest affinity towards the CB1 receptor, with Ki values 

of 8.7 nM and 4.3 nM respectively.  

As regards the structural modifications at the position 3 of the 1,8-naphthyridine 

nucleus the substitution of carboxycyclohexylamide group with carboxy-4-methyl-

cyclohexylamide or carboxycyclohehepthylamide leads to compounds exhibiting an 

increase in the affinity towards the CB1 receptor, as is clear from a comparison of 

compounds CB35-CB39 with the corresponding 3-carboxycyclohexylamide derivatives 

previously studied.35 

Furthermore the substitution of the methyl group in position 7 of the 1,8-naphthyridine 

nucleus with an atom of chlorine or the lack of any substituent in the same position 

reduces the CB1 receptor affinity as can be seen from a comparison of compounds 

CB41-CB45 and CB60, CB61 with the corresponding 7-methyl-1,8-naphthyridine 

derivatives previously studied.35 
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Finally the 4-hydroxy-tetrahydro-1,8-naphthyridine derivatives CB47, CB49, CB50 and 

the quinolin-4 (1H)-on-quinoline derivatives CB64 and CB65 are lacking of affinity 

towards CB1 receptor, with Ki value >1000. 

The results show that some of the compounds studied possess an interesting affinity at 

CB1 receptor. In particular the 1,8-naphthyridine derivatives CB35 and CB38 exhibit a 

remerkakable affinity with Ki < 10 nM but are not selective for this receptor. 

 
Table 1. Radioligand binding data of compounds CB34-CB47, CB49, CB50, CB60, CB61, CB63, CB64 and 

CB65. 

N N

O

R1

O

NHR2

R3 N N

OH

R1

O

NHR2

R3 N

O

R1

O

NHR2

R3

CB 34-46,55,57,58,60,61 CB 47,49,50 CB 63-65  
        

Compd R R1 R2 KiCB1a KiCB2b KiCB1/ 
KiCB2 

Pred 
KiCB2 

CB35 p-fluorbenzyl 4-methylcyclohexyl methyl 8.7 ± 1.6 1.4 ± 0.1 6 3.99 
CB36 o-fluorbenzyl 4-methylcyclohexyl methyl 37.5 ± 5.4 8.4 ± 0.3 4 5.77 
CB37 benzyl cycloheptyl methyl 143.2 ± 9.1 5.1 ± 1.3 28 7.76 
CB38 p-fluorbenzyl cycloheptyl methyl 4.3 ± 0.6 1.0 ± 0.1 4.3 2.66 
CB39 o-fluorbenzyl cycloheptyl methyl 149.4 ± 1.8 13.4 ± 4.7 11 3.57 

CB55 N-phenyl-
Nethylpiperazine cyclohexyl methyl > 1000 > 1000  2956.88 

CB57 phenethyl cyclohexyl methyl > 1000 16.3 ± 1.2 > 62 4.46 
CB58 p-methoxyenzyl cyclohexyl methyl > 1000 35.8 ± 2.1 > 28 12.08 
CB41 Benzyl cyclohexyl cloro 463.6 ± 1.1 24.6 ± 9.7 19 63.61 
CB42 p-fluorbenzyl cyclohexyl cloro 495 ± 49.4 21.4 ± 1.0 23 9.33 
CB43 o-fluorbenzyl cyclohexyl cloro 171.2 ± 12.3 18.1± 2.7 9.5 7.76 
CB44 o-fluorbenzyl cyclohexyl H 384.1 ± 45.3 13.0 ± 1.4 29 73.73 
CB45 benzyl cyclohexyl H >1000 48.6 ± 18.0 > 21 102.79 
CB60 Ethylmorph 4-methylcyclohexyl Cl > 1000 40.5 ± 7.7 > 25 125.45 
CB61 Ethylmorph Cyclohexyl H > 1000 67.2 ± 11.6 > 15 57.82 
CB47 o-fluorbenzyl cyclohexyl methyl >1000 >1000  1013.71 
CB49 Ethylmorph 4-methylcyclohexyl methyl >1000 >1000  777.38 
CB50 benzyl Cyclohexyl methyl >1000 >1000  1763.56 
CB64 benzyl Cyclohexyl H >1000 4.8 ± 0.4 > 210 39.37 
CB65 Ethylmorph Cyclohexyl Cl >1000 3.3 ± 0.4 > 303 17.87 
SDEP       0.69 

a Affinity of compounds for CB1 receptor was evaluated using mouse brain membranes and [3H]CP55,940. 
bAffinity of compounds for CB2 receptor was evaluated using mouse spleen and [3H]CP55,940. 

 
3.2.2.2 CB2 receptor affinity. The results obtained indicate that, in according with that 

previously reported,35 the N-benzyl-1,8-naphthyridine derivatives possess higher 

affinity than the N-ethylmorpholino derivatives as is clear from a comparison of 

compounds CB35, CB36 CB44 and CB45 with CB60 and CB61. For the N-benzyl-1,8-
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naphthyridine derivatives (CB35-CB39, CB41-CB45, CB58 ), the presence of an atom 

of fluorine on the benzyl increase the affinity, above all of the substitution is the para 

position. In particular the p-fluorobenzyl-1,8-naphthyridine derivatives CB35 (Ki = 1.4 

nM) and CB38 (Ki = 1 nM) proved to be the compounds with the highest affinity in this 

series. Furthermore the N-phenethyl-1,8-naphthyridine derivative CB57 showed a good 

affinity with a Ki value of 16.3 nM. On the contrary the compound bearing in position 1 

of the naphthyridine nucleus a N-phenyl-N-ethylpiperazinyl group (CB55), possesses 

very low affinity with Ki value >1000. 

As had previously be found for the CB1 receptor, the substitution of 

carboxycyclohexylamide (cyclohexylamide) group at the position 3 of the 1,8-

naphthyridine nucleus with carboxy-4-methyl-cyclohexylamide or 

carboxycyclohehepthylamide determines  an increase in the affinity towards the CB2 

receptor, as confirmed by a comparison compounds CB35-CB39 with the 

corresponding 3-carboxycyclohexylamide derivatives previously studied.35 

Furthermore the substitution of the methyl group in position 7 of the 1,8-naphthyridine 

nucleus with an atom of chlorine or the lack of any substituent in the same position 

determine generally the maintenance or an increase of the affinity (except for 

compounds CB42 and CB45 that showed a fourfold and fivefold decrease of affinity 

respect to the methyl-analogues). 

Analogously to results for the CB1 receptor, the 4-hydroxy-1,8-naphthyridine 

derivatives CB47, CB49, and CB50 exhibit a poor affinity towards CB2 receptor, with 

Ki value >1000. 

Finally compounds CB64 and CB65 in which, as suggested by virtual screening, the 4-

one- naphthyridine system was substituted by the 4-one-quinoline, possess a remarkable 

affinity with Ki value of 4.8 and 3.3 nM respectively. The most compounds showed a 

good affinity for the CB2 receptor. In particular the 1,8-naphthyridin-4-one derivatives 

CB35-CB39 and the 4-one-quinoline derivatives CB64 and CB65 possess a remarkable 

affinity with Ki <10 nM. As regards the selectivity towards CB2 receptor the 1,8-

naphthyridine CB44, CB45, CB57, CB58, and CB60, show a good selectivity with 

KiCB1/KiCB2 >20. Furthermore 4-one-quinoline derivatives CB64 and CB65 exhibit a 

very important CB2 receptor selectivity with KiCB1/KiCB2 >208 and >303 
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respectively which result higher than that reported for the analogous compounds 

previously published (KiCB1/KiCB2=143 for the best compound).59 

3.2.2.3 Molecular modeling. Using the AUTODOCK 3.0 program19 the compounds 

showed in Table 1 were docked into the CB2 receptor, their activity were predicted 

basing on the published computational model described in Chapter 3.1 (see 

Experimental section for details) and as indicated by the SDEP value (0.69) reported in 

Table 1 there was a quite good correlation between the experimental and the calculated 

Ki. Furthermore all the ligands with a CB2 affinity greater than 1000 nM were predicted 

with an affinity greater than 750 nM. As suggested by our model the compound with the 

best CB2 affinity was CB38. The docking showed that the CB2 binding pocket was 

delimited by TM3, TM4, TM5 and TM6, and the cycloheptyl substituent of compound 

CB38 was directed towards the intracellular side of the receptor interacting with 

W5.43(194) and F5.46(197) (see Figure 1). As concern the p-F-benzyl group it 

interacted in a lipophilic task constituted by L3.27(108), P4.60(168) and L4.61(169) and 

the Fluorine atom formed a H bond with S3.31(112). 

 
Figure 1. Compound CB38 docked into CB2 receptor model. 

 

The docking of compound CB65 (see Figure 2), the most CB2/CB1 selective ligand of 

this series, revealed also that the presence of the Chlorine atom could contribute to the 

increase of the CB2 affinity and CB2/CB1 selectivity, since it could interact with the 

non conserved S6.58(268) (Aspartate in the CB1). 
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Figure 2. Compound CB65 docked into CB2 receptor model. 

 

Finally the docking of the inactive compounds CB47, CB49 and CB50 revealed that the 

lack of the planarity determined a different position of the central lipophilic core, 

determining worse interactions with the receptor. As shown in Figure 3 the central core 

of CB50, comparing to the position of the naphthyridine ring of 4a was upset, far way 

from TM3 and directed towards TM5 determining worse interaction with M6.55(265) 

and L3.27(107); furthermore this disposition determined a worse interaction of the 

cyclohexyl ring with F5.46(197), being at a distance of 4.7 Å (while for 4a was 4.0 Å). 

 
Figure 3. Superimposition of compounds 4a and CB50 docked into CB2 receptor. 

3.2.3 Conclusions. 

In the present study, through a structure based approach, we tried to improve the activity 

and selectivity of 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives which had 

shown to be a new class of CB2 ligands. 
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For this purpose, following the suggestion obtained from the docking of ligands into a 

CB2 receptor model, new 4-oxo-1,8-naphthyiridine and  quinolin-4(1H)-on-3-

carboxamide were designed, synthesized, and tested on the CB1 and CB2 receptors. 

Some of these compounds showed a good CB2/CB1 selectivity and a high CB2 affinity 

in an agreement with the values predicted by the docking study. In particular, CB38, 

which presented the p-F-benzyl and cycloheptyl substituents bounded to the 4-oxo-1,8-

naphthyiridine nucleus showed a CB2 affinity value of 1 nM. 

The substitution of the 4-one-naphthyridine central nucleus with the 4-one-quinoline 

determined a general increase of the CB2 affinity. For compound CB65 the good CB2 

affinity was also accompanied by an high CB2/CB1 selectivity and the docking studies 

suggested that the interaction of the chlorine substituent with the not conserved residue 

S268 in the CB2 receptor seemed to be one of the reasons able to explain the high 

selectivity value.  

Finally, the low affinity showed by the new 4-hydroxy-tetrahydro-1,8-naphthyridine 

derivatives confirmed the hypothesis about the fundamental role of the presence of a 

planar pseudocycle. 

These results provide interesting additions to the currently available SAR for the 

cannabinoid agonist ligands, opening up a new research field for designing new 

cannabinoids receptor agonists, characterized by a high CB2/CB1 selectivity. 

3.2.4. Experimental section. 

Ligands were submitted to a conformational search of 1000 steps with an energy 

window for saving structure of 10 KJ/mol. The algorithm used was the Montecarlo 

method with MMFFs as the forcefield and a distance-dependent dielectric constant of 

1.0. The ligands were then minimized using the Conjugated Gradient method until a 

convergence value of 0.05 kcal/Å•mol, using the same forcefield and dielectric constant 

used for the conformational search. Automated docking was carried out by means of the 

programme AUTODOCK 3.0;19 AUTODOCK TOOLS58 was used to identify the 

torsion angles in the ligands, add the solvent model and assign partial atomic charges 

(Gasteiger for the ligands and Kollman for the receptors). The regions of interest used 

by AUTODOCK were defined by considering the previously published WIN55212-2 

docked into the CB2 receptor as the central group of a grid of 54, 50, and 52 points in 
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the x, y, and z directions. A grid spacing of 0.375 Å and a distance-dependent function 

of the dielectric constant were used for the energetic map calculations. As all the 

compounds can form an intramolecular H bond and our previously study suggested an 

high strength for this interaction (see Chapter 3.1), this H bond was considered to be 

maintained also during interaction in the binding site. For this reason, during the 

AUTODOCK protocol, we blocked the torsions involved in this intramolecular bond in 

order to prevent the loss of  this interaction. Using the Lamarckian Genetic Algorithm, 

all docked compounds were subjected to 100 runs of the AUTODOCK search, in which 

the default values of the other parameters were used. Cluster analysis was performed on 

the docked results using an RMS tolerance of 1.0 Å, and the cluster with the best 

average of estimated free energy was chosen. In order to predict the binding affinity of 

the ligands, a correlation model very similar to that obtained in our previous chapter 

was used: the only difference was that also the test set previously used for validate the 

predictivity of the model was now incorporated in the training set. Figure 4 shows the 

plot of experimental binding energy versus the average estimated binding free energy 

and the equation used for the prediction calculation. 

 
Figure 4. Plot of the experimental binding energy versus the average estimated binding free energy of the 

chosen cluster. Ligands with a morpholinic group are indicated by ■, while all the others are indicated by ○.  
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4.1 PREDICTIONS OF BINDING OF ESTROGEN RECEPTOR LIGANDS BY A 

COMBINATION OF MOLECULAR DYNAMICS AND CONTINUUM 

SOLVENT MODELS 

 

4.1.1 Introduction. 

The estrogen receptor (ER) is a member of the nuclear receptor superfamily that 

functions as a ligand-regulated transcription factor.1 Many physiological processes can 

be regulated by selectively activating or inhibiting the ER with appropriate agonist or 

antagonist ligands. Positive effects on the maintenance of bone mineral density,2 on 

blood lipid levels, and on vasomotor and central nervous system functions3 are 

generally considered to justify the use of estrogen agonists as agents in the treatment of 

postmenopausal osteoporosis,4 atherosclerosis,5 hot flush responses, and Alzheimer's 

disease.6 Unfortunately, the activation of the ER also results in an increase in breast and 

uterine cancer.7-9 Therefore, molecules, such as tamoxifen and raloxifene, that block the 

tumor-promoting effects of endogenous estrogens are currently used in the therapy and 

prevention of breast cancer.10-12 These drugs, however, are not pure estrogen 

antagonists, because they promote estrogen-like effects in certain tissues; rather, they 

are termed selective estrogen receptor modulators (SERMs).13,14 SERMs are particularly 

attractive as therapeutic agents because they are able to block estrogen action at those 

sites where stimulation would be undesirable, such as the breast and uterus, but at the 

same time stimulate estrogen actions in other tissues where they are desired, such as the 

bone and liver.11,15 A great deal of effort has been devoted to the task of understanding 

the processes by which SERMs are able to exert tissue-specific estrogen agonist and 

antagonist effects and to improve upon their already rather favorable profile of 

selectivity. More recently, a second subtype of the estrogen receptor, named ER, was 

discovered.16,17 The two ERs share about 95% homology in their DNA binding 

domains; as regards the ligand binding domains (LBD), they share only a modest 

homology (58% identity), but their ligand binding cavities are nearly identical, differing 

by only two amino acid residues (ERα L384 and M421 are respectively replaced by 

ERβ M336 and I373).18 
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The tissue distribution patterns of ERα and ERβ however, are rather different,15,19 as are 

their biological functions, some of which have been revealed by in vivo studies on 

receptor subtype-specific knockout mice.20-22 The tissue-selective pharmacology of 

SERMs is thought to result from their different action on each ER subtype and/or by the 

different interactions that the ER-ligand complex might have with the cellular 

coregulatory proteins or effector components that vary from tissue to tissue.23,24 

A new series of anthranylaldoximes derivatives (see Table 1) bearing various 

substituents were synthesized and tested and the results indicate that this new class of 

compounds showed interesting ER binding properties on both receptors subtypes (ERα 

and ERβ).  

A docking study of these anthranylaldoximes compounds with both the ERs was carried 

out and the results were further investigated through the recently developed MM/PBSA 

(molecular mechanics-Poisson Boltzmann surface area) approach. 

 
Table 1. Ligand used for the docking study (Kd is espressed as nM) 

 
Compd R1 R2 R3 R4 R5 Kd ERα Kd ERβ α/β ratio 

L4 H H H H CH3 4 9 2.2 
L5 OH H H H CH3 3 42 14.0 
L6 CH3 H CH3 H CH3 17 25 1.5 
L7 H CH3 H CH3 CH3 4 22 5.5 
L11 H H OH H CH3 13 64 4.9 
L12 OH H OH H CH3 8 323 40.4 
L13 OCH3 H OCH3 H CH3 7 97 13.9 
L14 H OH H OH CH3 112 1004 9.0 
L15 H OCH3 H OCH3 CH3 24 325 13.5 
L16 H H H H CH2CH3 33 963 29.2 
L17 H H H H H 7 17 2.43 
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4.1.2 Results and Discussion. 

X-ray structures of ERα (1G5025) and ERβ (1X7J26) were complexed with estradiol and 

the complexes were subjected to 900 ps of molecular dynamics (MD) simulation (see 

Experimental section for details). In ERβ the missed loop M410-N421 were constructed 

by means of Modeller program27 using 1QKN18 as template. As shown in Figure 1A, 

after about 100 ps of MD, both systems reached an equilibrium, since the total energy 

for the last 800 ps remained constant. Analysing the RMS deviation (RMSD) from the 

X-ray structures of all the heavy atoms of the proteins, we observed that after an initial 

increase, in the last 800 ps the RMSD remained approximately constant around the 

range of 0.9-1.0 Å for ERα and 0.7-0.8 Å for ERβ (see Figure 1B). 

 
Figure 1. Analysis of the MD simulation of estradiol complexed with ERα (black) and ERβ (red). In the first 

plot the Total energy of the system vs the time was reported; in the second plot the RMSD between all the 

heavy atoms of the receptors and the two X-ray starting structures was reported. 
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Figure 2 shows the minimized average structures of the binding site of the two receptors 

complexed with estradiol. As also confirmed by the H bond analysis of the MD 

simulations (see Table 2), estradiol presented a very similar interaction scheme into 

both receptors: by means of 17’-hydroxy group it interacted with H524(475), while 

through the 3’-hydroxy substituent it formed a H bond with E353(305). Furthermore, as 

already suggested by Brzozowski and Pike18,28 a water molecule seems to be the central 

core of a H bond network system between E353(305), R394(346) and estradiol (that 

interacted with water molecule through the 3’-hydroxy substituent). 

 
Figure 2. Hydrogen-bonding network of the estradiol in the ERα (left) and ERβ (right). 

 
Table 2.Hydrogen bonds analysis of the E353(305)-R394(346)-Water-Estradiol-H524(475) system during the 

MD simulation into both receptors.  

ERα 

Donor AcceptorH Acceptor Distance (Å) % Occupied 

E353@OE2 EST@HO3 EST@O3 2.55 100 

H524@ND1 EST@OH1 EST@O17 3.03 97 

WAT@O R394@HH12 R394@NH1 2.98 94.95 

E353@OE1 WAT@H1 WAT@O 2.70 91.20 

EST@O3 WAT@H2 WAT@O 2.95 65.75 

WAT@O R394@HH22 R394@NH2 3.24 63.10 

ERβ 

E305@OE2 EST@HO3 EST@O3 2.60 100 

H475@ND1 EST@OH1 EST@O17 3.08 94.20 

WAT@O R346@HH12 R346@NH1 2.99 95.20 

E305@OE1 WAT@H1 WAT@O 2.79 84.25 

EST@O3 WAT@H2 WAT@O 3.1 59.21 

WAT@O R346@HH22 R346@NH2 3.18 70.80 
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Using the two minimized average structures reported above as receptors, compounds 

showed in Table 2 were docked using an automated docking procedure by means of 

AUTODOCK29 (see Experimental section). 

Conformational search of these ligands revealed the presence of an intramolecular H 

bond with the formation of a pseudocycle. The quantomechanical optimization of L4 

suggested that this interaction had a good strength, about 4 Kcal/mol (see Experimental 

section for details), and consequently this H bond was considered to be maintained also 

during interaction in the binding site. For this reason, during the AUTODOCK protocol, 

we blocked the torsions involved in this intramolecular bond, in order to prevent the 

loss of this interaction. 

The docking studies revealed that, as already suggested for other ER ligands30 these 

compounds could interact into ERs through two different binding orientations. 

Figure 3 shows these two possible binding orientations, in both cases the originated 

pseudocycle the phenolic ring of estradiol, interacting with the E353(305)-R394(346)-

WAT system. Concerning the other parts of the ligands in the A binding orientation the 

aromatic ring 1 was directed towards H524(475) and interacted with L/M384(336), 

M388(340), M/I421(373), I424(376) and L525(476), while the aromatic ring 2 

interacted with L346(298), F404(356), M343(295). Conversely in the B binding 

orientation the aromatic ring 1 interacted with L346(298), F404(356), and M343(295) 

while the aromatic ring 2 with M388(340), L/M384(336), I424(376) and L525(476). 

 
Figure 3. Docking of compound L4 into ERα, the binding mode A is shown on the left side, while on the 

right is shown the binding mode B. 

 

As shown in Table 3 all the ligands showed in the ERα, orientation A as the preferred 

one while in the ERβ for six ligands the preferred binding orientation was B. 
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However for L4 in ERα and L4, L5, L7, L11, L12, L13, L14, L16 and L17 in ERβ, the 

difference between the estimated free energy of binding for the two orientation was 

lower than 0.5 Kcal/mol. Thus, while the AUTODOCK results could be considered 

reliable for indicating the preferred orientation for ERα, this was not the case for ERβ. 

 
Table 2. Preferred binding conformation (Pref) of the ligands into ERα and ERβ. The 

free energy difference between orientation A and B, calculated by means of 

AUTODOCK scoring function, was also reported (∆EA-B). When AUTODOCK found 

only one of the two orientations the free energy difference was indicated as “--“. 

 ERα ERβ 

Compd Pref. Or. ∆EA-B Pref. Or. ∆EA-B 

L4 A -0.39 B +0.37 

L5 A -2.00 A -0.44 

L6 A -- A -0.85 

L7 A -0.66 B +0.31 

L11 A -1.44 A -0.37 

L12 A -- A -0.47 

L13 A -0.99 B +0.49 

L14 A -- B +0.15 

L15 A -- B +0.91 

L16 A -- B +0.48 

L17 A -- A -0.26 

 

Therefore, in order to make a more precise analysis of the ligand-receptor interaction 

and to find more reliable results about the preferred orientation of the ligand into ERα 

and ERβ, all the ligand-receptor complexes were used as starting structure for 500 ps of 

MD simulation. 

Successively the MD trajectories were further analyzed through the MM-PBSA method 

that has shown to accurately estimate the ligand-receptor energy interaction. This 

approach averages contributions of gas-phase energies, solvation free energies and 

solute entropies calculated for snapshots of the complex molecule as well as the 

unbound components, extracted from MD trajectories according to the procedure fully 

described in the Experimental section. 
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In particular, for each ligand was taken into account as starting point both the A and B 

orientations found by AUTODOCK in both ERs for a total of 44 calculations; in the 

case of the ligands for which AUTODOCK did not find any B orientation into the ERα; 

they were built on the basis of the B orientation found for the unsubstituted compound 

L4. 

In Table 4 were reported the MM-PBSA results calculated for each ligand (A and B 

conformation) into both receptors. The analysis of the energies difference between the 

two orientations for each ligand highlighted that all the compounds showed into both 

receptor A orientation as the preferred one, only L12-ERβ complex showed an higher 

interaction energy when L12 was positioned in the B orientation. 

After the MD simulations the ligands interaction observed in the starting structures 

(obtained by means of AUTODOCK) were generally maintained. In both orientations 

the pseudocycle interacted with the E353(305)-R394(346)-WAT system, while the two 

aromatic group interacted with M343(295), L346(298), L/M384(336), M388(340), 

F404(356), M/I421(373), I424(376) and L525(476), as described above. 

The biological data showed for all the compounds tested an ERα selectivity and, as 

already mentioned above, the ERα and ERβ binding site are identical except for the 

presence of L384 and M421 in ERα that are substituted by Met336 and I373 in ERβ. In 

our receptor models the compounds showed a good interaction with M421 in ERα, as 

for all the tested ligands the distance between the aromatic ring and the methyl group of 

methionine was about 3.4 Å while in ERβ the distance between I373 and aromatic ring 

was greater than 4 Å. Regarding L/M384(336), into both receptors this residue was far 

away from ligands (the distance was greater than 4 Å) and thus it affected only slightly 

the ligand-receptor interaction. 

Therefore the interaction with the not conserved residue L384 in the ERα could be one 

of the reasons of the ERα selectivity of these ligands. 
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Figure 4a shows the superposition of the binding sites of ERα and ERβ complexed with 

L5, with the two not conserved residues L/M384(336) and M/I421(373) represented as 

stick. The compound formed H bonds with the E353(305)-R394(346)-WAT system 

through the pseudocycle group into both receptors; furthermore the R1 hydorxy 

substituent formed a H bond with H524(475), simulating the interaction of 17’-hydroxy 

group of estradiol. 

The substitution in the meta position of the two aromatic rings with an hydroxyl group 

determined a decrease of affinity into both receptors; Figure 4b shows the superposition 

of the binding sites of ERα and ERβ complexed with L14, which was the less active 

into both receptors among all the compounds tested. The figure highlights that both the 

meta hydroxyl substituents were unable to interact with any residue, confirming the 

biological results. 

 
Figure 4. Superposition of the binding sites of ERα and ERβ complexed with L5 (on the left side) and L14 

(on the right side). The ligand-ERα complex was coloured byatom while the ligand-ERβ in blue. In stick were 

reported the two not conserved residue L/M384(336) and M/I421(373) (coloured red in the ERβ)  

 

L12 is the ligand with the highest ERα/ERβ selectivity and our models suggested only 

for this compound that the B orientation in which the R3 hydroxy group formed a H 

bond with H524(475) could be the preferred orientation (see Figure 5) in the ERβ. 

In order to verify if using the MM-PBSA method it was possible to extrapolate a 

quantitative correlation between the calculated free energy and the experimental affinity 

of the ligands for ERs, using the AMBER module nmode (see Experimental section for 

details) the entropic contribute was estimated for the best 11 ligand-receptor complexes. 

As shown in Figure 6, reporting the experimental versus the calculated free energy of 
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binding (see Table 5) and considering L15 as an outlier there is a good quadratic 

correlation for both receptors (R2 = 0.83 for ERα and R2 = 0.81 for ERβ).  

 
Figure 5. Best binding orientation for L12 into ERα (on the left side) and ERβ(on the right side). 

 
Figure 6. Experimental free energies of binding (∆Gexp) vs predicted (∆Gcalc) for the eight ligands with ERα 

(left) and ERβ (right).  The values are expressed as Kcal/mol. 
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4.1.3 Conclusions. 

In this study we present a docking analysis of estrogen ligands in ERα and ERβ. The 

results obtained show that the pseudocycle of the ligands used for this study is able to 

interact with the Arg/Water/Glu system like the estradiol molecule. Furthermore we 

report calculations of binding free energies between these ligands and both ERs through 

the recently developed MM/PBSA approach; the calculated binding free energy is in 

fine agreement with the experimentally determined value, showing for both receptors a 

quadratic correlation  greater than 0.80. 

Since the estrogen receptors are an interesting therapeutic target, these studies may be 

very useful in the search for new compounds, more active and selective for both 

receptors. 

4.1.4 Experimental Section. 

4.1.4.1 Amino acid numbering. For ERα and ERβ was used respectively the 1G50 and 

1X7J reference numbering, when the amino acid was referred to both receptors in 

parenthesis was indicated the ERβ numbering. 

4.1.4.2 Analysis of the compounds geometry. Conformational search of the tested 

compounds revealed the presence of two low energetic conformations (see Table 6) and 

conformation a showed an intramolecular H bond and the formation of a pseudocycle. 

In order to measure the different stability of the two conformations and the strength of 

the intramolecular H bond, both conformation were optimized using the B3LYP/6-

31G+* method. The energy difference between the two optimized system was about 4 

Kcal/mol and this value gave us an idea of the strength of the intramolecular H bond 

and the better energetic stability of the conformation a. 

 
Table 6. Energy difference between the two optimized conformation of lig4. 

Conformation a Conformation b 

  
∆Energy (Econf. a-Econf. b) = -4.00 Kcal/mol 
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4.1.4.3 Automated docking procedure. The ligands were submitted to a 

conformational search of 1000 steps with an energy window for saving structure of 10 

KJ/mol. The algorithm used was the Montecarlo method with MMFFs as the forcefield 

and a distance-dependent dielectric constant of 1.0. The first conformation that showed 

the intramolecular H bond was then minimized using the Conjugated Gradient method 

until a convergence value of 0.05 kcal/Å•mol, using the same force field and dielectric 

constant used for the conformational search.  

Automated docking was carried out by means of the programme AUTODOCK 3.0;29 

AUTODOCK TOOLS was used to identify the torsion angles in the ligands, add the 

solvent model and assign the Kollman and the Gasteiger partial atomic charges to the 

protein and to the ligands respectively. The regions of interest used by AUTODOCK 

were defined by considering estradiol into both receptors as the central group; in 

particular, a grid of 46, 44, and 44 points in the x, y, and z directions was constructed 

centred on the centre of the mass of this compound. A grid spacing of 0.375 Å and a 

distance-dependent function of the dielectric constant were used for the energetic map 

calculations. Using the Lamarckian Genetic Algorithm, the docked compounds were 

subjected to 100 runs of the AUTODOCK search, in which the default values of the 

other parameters were used. Cluster analysis was performed on the results using an 

RMS tolerance of 1.0 Å.  

4.1.4.4 MD simulations. All simulations were performed using AMBER 8.0.31 MD 

simulations were carried out using the parm94 force field at 300 K. An explicit solvent 

model TIP3P water was used and the complexes were solvated with a 10 Å water cap. 

Sodium ions were added as counterions to neutralize the system. Prior to MD 

simulations, two steps of minimization were carried out; in the first stage, we kept the 

protein fixed with a constraint of 500 Kcal/mol and we just minimized the positions of 

the water molecules; then in the second stage, we minimized the entire system applying 

a constraint of 20 Kcal/mol on the α Carbon. The two minimization stages consisted of 

5000 steps in which the first 1000 were Steepest Descent (SD) and the last 4000 

Conjugate Gradient (CG). Molecular dynamics trajectories were run using the 

minimized structure as a starting input. The time step of the simulations was 2.0 fs with 

a cutoff of 12 Å for the non-bonded interaction and SHAKE was employed to keep all 
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bonds involving hydrogen atoms rigid. Constant-volume was carried out for 100 ps, 

during which the temperature was raised from 0 to 300 K (using the Langevin dynamics 

method); then 500 ps (800 ps for the ERα and Erβ complexed with estradiol) of 

constant-pressure MD were carried out at 300 K. All the α Carbons were blocked with a 

harmonic force constant of 10 Kcal/mol•Å. The final structure of the complexes was 

obtained as the average of the last 400 ps (700 ps for the Erα and Erβ complexed with 

estradiol) of MD minimized with the CG method until a convergence of 0.05 Kcal/ 

Å•mol. 

For the ligands the force fields parameters were taken from GAFF while the atomic 

partial charges were derived by semiempirical AM1 geometry optimization and 

subsequent single point Hartree-Fock (HF)/6-31G* calculation of the electrostatic 

potential, to which the charges were fitted using the RESP procedure.32 

In order to verify if using these parameters the ligands were able to maintain the 

intramolecular H bond and consequently the pseudocycle, the simulation protocol 

applied to the receptor-ligand complex as described above, were applied on compound 

L4 immersed in an explicit solvent model TIP3P water with a 20 Å water cap. The 

minimized average of the last 400 ps of MD showed the presence of the intramolecular 

H bond and the pseudocycle, furthermore the superimposition of this structure with the 

one optimized with the QM method (conformation a of Table 6) showed a value of 0.40 

of RMSD (evaluated on all the atoms). 

4.1.4.5 Energy evaluation. We extracted from the last 400 ps of MD of the 44 ligand-

ER complexes, 200 snapshots (at time intervals of 2 ps) for each species (complex, 

receptor and ligand). The various MM-PBSA energy terms in equation 1 were 

computed as follows. 

 

eq1  G = Gpolar + Gnonpolar + Emm –TS 

 

Electrostatic, van der Waals and internal energies (Emm) were obtained using the 

SANDER module in Amber8.0. Polar energies (Gpolar) were obtained from the PBSA 

module of Amber8.0 program (using the Poisson-Boltzman method) applying a 
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dielectric constants of 1 and 80 to represent gas and water phases, respectively. 

Nonpolar energies (Gnonpolar) were determined using the MOLSURF program. 

In order to compare the energetic interactions of the two orientations (A and B in Figure 

3) of the same ligand into the same receptor we took into account only the first three 

terms of equation 1, considering approximately constant the entropic value.  

Solute entropy was evaluate only for the best orientation of each ligand into the two 

receptors, in order to correlate the predicted free energy of binding (calculated as in 

equation 2) with the experimental one. It was estimated using the NMODE module of 

Amber8.0 on a total of 10 snapshots. Prior the normal mode calculations, each species 

(complex, receptor, or ligand) was subjected to a CG energy minimization using a 

distance dependent dielectric, until a convergence of 0.00001 Kcal/mol Å. 

 

eq2 ∆Gbind = Gcomplex – (Gprotein + Gligand) 
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5.1 PROPOSAL OF A NEW BINDING ORIENTATION FOR NON-PEPTIDE 

ANTAGONISTS: AT1 HOMOLOGY MODELING, DOCKING AND 3D-QSAR 

ANALYSIS. 

 

5.1.1 Introduction. 

Renin-Angiotensin-Aldosterone System (RAAS) is a proteolytic cascade that plays an 

important role in the electrolyte homeostasis and in the regulation of blood pressure but 

is also involved in the pathogenesis of hypertension and renal diseases. 

The RAAS begins with the release of the aspartic protease renin from the 

juxtaglomerular cells of the kidney. This enzyme is responsible for the conversion of 

angiotensinogen to the inactive decapeptide angiotensin I . In turn, angiotensin I is 

cleaved by Angiotensin Converting Enzyme (ACE) to produce the octapeptide 

Angiotensin II (AngII) which constitutes the main effector hormone of RAAS. 

AngII is the major regulator of blood pressure, electrolyte balance, and endocrine 

functions related to cardiovascular diseases such as hypertension. Moreover, it has been 

shown that AngII plays a role in various pathological situations involving tissue 

remodeling, such as cardiac hypertrophy. Recent findings;1,2 indicate the involvement of 

this peptide also in cancer.  

AngII affects most of the biological functions by activating selective membrane-

bounded receptors. Two distinct subtypes of AngII receptors [type 1 (AT1) and type 2 

(AT2)] have been identified, and both belong to the G protein-coupled receptor 

superfamily (GPCRs). 

AT1 and AT2 are seven transmembrane-spanning receptors comprising an extracellular 

glycosilated region connected to the seven transmembrane α-helices linked by three 

intracellular and three extracellular loops. The carboxy-terminal domain of the protein is 

cytoplasmic and is a regulatory site. AT1 is a 359 aminoacids protein, while AT2 is 

formed by 363 amino acids and is 30% homologous to AT1. Both receptors are N-

linked glycosylated post-translationally. 

AT1 receptors are expressed in various parts of the body and mediate all of the known 

effects associated to AngII such as vasocostriction, aldosterone release, and other 

functions that tend to elevate blood pressure and cause hypertrophy and hyperplasia of 
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target cells. In contrast, AT2 receptors are highest expressed in fetal tissue in which are 

responsible to mediate organ remodelling, and are poorly represented in the adult, 

appearing only at the site of inflammation, tissue damage or other forms of cellular 

stress such as ischaemia. AT2 receptor seems to be responsible of both the inhibition of 

cell growth and the promotion of apoptosis.3 Although the role of AT2 receptor is less 

understood, it is usually retained that it exerts opposing effects to the AT1 receptor. 

Given the important role played by RAAS in the hypertension, this system constitutes 

the principal target of an effective therapy. The first choice class of drugs influencing 

the RAAS targeting is represented by ACE-inhibitors.  

These drugs block the formation of AngII and also prevent the conversion of bradykinin 

to inactive peptides. Although bradykinin may contribute to the beneficial effects of 

ACE inhibitors through its vasorelaxing effect, its accumulation determines some 

disadvantages such as  the development of cough and angioedema  which are side-

effects often associated with the ACE-inhibitors therapy. Moreover ACE-inhibitors do 

not completely suppress AngII, because its formation is ensured also by ACE-

indipendent pathways. For these reasons, it became important the development of AngII 

subtype 1 receptor antagonists (AT1 antagonists or sartans) as a new class of 

antihypertensive used in the treatment of hypertension,4 heart failure5 and renal 

diseases.6 Although precise mechanisms have not yet been elucidated to explain all of 

the beneficial effects, sartans are unique in their ability to provide such benefits with a 

limited side-effect profile.7 

The first non-peptide AT1 antagonist which represents the prototype of the sartans was 

losartan. The major active metabolite of losartan, EXP3174, generated by the oxidation 

of the 5-hydroxymethyl group on the imidazole ring, is 10-40 times more potent than 

losartan itself and is therefore responsible for the majority of its pharmacological 

activity. 

At this time, many selective, potent and orally available sartans have been developed 

and are used to treat both hypertension and damage associated with diseases such 

atherosclerosis and diabetes. 

Although all sartans bind with high affinity to the AT1 receptor and share a common 

mechanism of action, there are differences in the modes of interactions with the 
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receptor.8,9 Sartans such as losartan, eprosartan and tasosartan bind to receptor 

displaying degrees of surmountability. Valsartan, irbesartan, candesartan and the active 

metabolite of losartan (EXP3174) are termed insurmountable antagonist, in contrast to 

surmountable antagonists which do not impair the maximum response to AngII. 

A possible explanation for this different response is that the surmountable antagonists 

interfere with receptor activation by occupying an intramembrane site that overlaps with 

the space occupied by the agonist; while insurmountable antagonists induce 

conformational changes that prevent the agonist binding. Another proposal hypothesizes 

that surmountable antagonists dissociate rapidly from receptor, whereas insurmountable 

antagonists bind tightly and dissociate so slowly as to cause functional loss of the 

occluded receptors.10 

A knowledge of the 3D structure of AT1 receptor could be of great help in the task of 

understanding the antagonists interaction and in the rational design of specific ligands; 

however since GPCRs are membrane-bound proteins, high-resolution structural 

characterization is still an extremely difficult task.  

Several studies have been performed to investigate the binding site of the AT1 receptor 

and the disposition of its residues; using all these information in the present study a 

homology model of the human AT1 receptor was constructed and surmountable and 

insurmountable antagonists were docked. 

Furthermore in order to obtain a quantitative model able to measure the reliability of the 

constructed receptor and also to provide a predictive system exploitable for designing of 

new AT1 antagonists, a 3D-QSAR model was calculated, basing on the alignment 

obtained docking several ligands into the AT1 receptor. 

5.1.2 Results and Discussion. 

5.1.2.1 Homology modeling. AT1 receptor model was generated using the recent 

bovine rhodopsin crystal structure determined at 2.2 Å (1U1911) as the template. The 

sequence alignment was studied on several Angiotensin receptors. As shown in Figure 1 

the alignment was guided by the highly conserved amino acid residues, including the 

asparagine residues N1.50, the LA-AD (L2.46, A2.47, A2.49, and D2.50) and D/ERY--

V (D/E3.49, R3.50, Y3.51, and V3.54) motif, the highly conserved triptophane W4.50, 



5.1 AT1 homology modeling, docking and 3D-QSAR analysis 

 150

the two proline P4.59 and P6.50, and the NPXXY motif in TM7 (N7.49, P7.50, and 

Y7.53).12 

 
Figure 1. Alignment of the angiotensine receptors and bovine rhodopsin (OPSD_BOVIN) amino acid 

sequences. The highly conserved patterns of the LA-AD (L2.46, A2.47, A2.49, and D2.50), D/ERY motif 

(D/E3.49, R3.50, and Y3.51), the highly conserved triptophane W4.50, the two proline P4.59 and P6.50, and 

the NPXXY motif in TM7 (N7.49, P7.50, and Y7.53) are marked with black. The other identical residues are 

in bold. In the first and last line of the alignment scheme were reported the numeration of the human AT1 

and bovine rhodopsin respectively, while the TM of bovine rhodopsin were reported in grey.  
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Using this alignment the AT1 receptor model was built and was then subjected to a 

simulated annealing protocol by means of Modeller program.13 The backbone 

conformation of the best scored structure was evaluated with the PROCHECK 

software14 (see Experimental section for details) and the analysis of the Psi/Phi 

Ramachandran plot indicated that only two amino acids of the loop fragments (H24 and 

S186) had a disallowed geometry.  

The obtained results suggested that the created molecular model of the AT1 receptor 

could be used for further studies. 

5.1.2.2 Docking of losartan. Site directed mutagenesis suggested an important role for 

many residues, in particular the affinity of losartan seemed to be principally influence 

by the presence of K3.24(102), K5.42(199),15 V3.32(108), A4.60(163),16 and 

N7.46(295)17 (even if this last residue could be responsible of the conformational 

changes that occur in the AT1 receptor activation18,19).  

The analysis of the disposition of these residues in the AT1 receptor model highlighted 

that, with the exception of K3.24(102) which was far away and directed toward the 

extracellular side of the receptor, all the others residues were comprised in a limited 

region compatible for the interaction with losartan. Furthermore aligning the AT1 

receptor model with the bovine rhodopsin crystal structure came out that the residues 

listed above (principally V3.32(108), K5.42(199) and N7.46(295)) delimited a region 

which corresponded to the binding site of retinal. 

Keeping all these things in mind, the non peptide antagonist losartan was docked into 

the AT1 receptor model using the AUTODOCK program20 and building a “docking 

box” that included the main mutagenesis data (see Experimental section for details). 

The best docked structure of losartan highlighted an interaction of the hydroxymethyl 

substituent with K5.42(199), V3.32(108) interacted with the biphenyl system, 

A4.60(163) with the n-butyl substituent, while N7.46(295) seemed to not interact with 

the ligand.  

Finally the tetrazole ring did not appear to interact with any residue suggested important 

by mutagenesis studies but instead it was stabilized by a H bond with Y184. 
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All the recent AT1 receptor models suggested for the tetrazole ring an interaction with 

K5.42(199),17,21 however as there were none experimental evidence able to exclude 

others binding dispositions we proceeded with further refinements and evaluations. 

The losartan-AT1 receptor complex obtained through the automated docking procedure 

was refined by means of 1 ns of molecular dynamics (MD) simulation.  

A vacuum MD simulation can lead to severe distortions, especially of the loop 

structures, and the primary source of these distortions appear to be formation of 

artifactual H-bonds.22 Furthermore a vacuo MD simulation requires the use of a set of 

restraints, to replace the natural stabilizing effects of the membrane bilayer on the TM 

domains, reducing the free movement of the helices. In order to avoid these problems 

we carried out the simulation in a fully hydrated phospholipid bilayer environment 

constituted by dipalmitoylphosphatidylcholine (DPPC) molecules solvated by TIP3 

water molecules; as described in the experimental section. 

The system contains 192 DPPC molecules, 7410 water molecules, 16 Chlorine atoms, 

the AT1 receptor and losartan, for a total of 52940 atoms. 

The stability of the model was evaluated by calculating the total energy of the system; 

as shown in Figure 2, after 400 ps of MD, the system reached an equilibrium, since the 

total energy for the last 600 ps remained approximately constant. Analysing the root 

mean square deviation (RMSD) of all the α Carbons of the TM helices from the starting 

AT1 model structure, we observed that after an initial increase, in the last 400 ps the 

RMSD remained included between the value of 1.5 and 1.8 Å (see Figure 2B), 

suggesting that our MD procedure was correct. 
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Figure 2. Analysis of the MD simulation of losartan complexed with AT1. In the first plot the Total energy of 

the system vs the time was reported; in the second plot the RMSD between all the heavy atoms of the receptor 

was reported 

 

Figure 3 shows the AT1-losartan complex embedded into DPPC bilayer, the binding 

site was limited by TM3, TM4, TM5, TM6, TM7 and the second extracellular loop 

(EL2). Regarding losartan it showed the tetrazole ring and the hydroxymethyl 

substituent turned in the direction of the extracellular side of the receptor.  

Biophysical studies showed that losartan interacts with the interface of phospholipid 

membranes;23,24 basing on these studies Zoumpoulakis et al. hypothesized that losartan 

bound onto the receptor after a first step which involves incorporation and interaction 

with membrane bilayers. Regarding the location of losartan into phospholipid core, it 

was found to locate itself near the interface and showed a H bond between the 
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hydroxymethyl group and the phospholipid phosphate group while the tetrazole 

substituent interacted with four N+(CH3)3 head groups of the phospholipid. The binding 

conformation of losartan obtained in our MD simulation and its disposition inside the 

receptor were compatible with this possible mechanism of interaction. The position of 

the antagonist was in the upper part of the receptor, in the region comprised between the 

TM3-7 helices and furthermore the losartan conformation inside the receptor was 

similar to the one suggested able to interact into the membrane.21 

 
Figure 3. Losartan-AT1 receptor complex inserted into the DPPC bilayer model 

 

Figure 4 shows the binding site of losartan into AT1 receptor. The biphenyl ring of the 

antagonist was positioned among TM3, TM6 and TM7, in a lipophilic cavity principally 
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delimited by V3.32(108), V179, W6.48(253), H6.51(256), I7.39(288) and Y7.43(292). 

The anionic tetrazole ring was directed towards the extracellular side of the receptor and 

interacted with T175 and Y184, that are two residue of EL2, and formed a third H bond 

with H6.51(256). Regarding the 2’-butyl substituent it was directed towards TM4 and 

interacted in a secondary lipophilic pocket constituted by S3.33(109), L3.36(112), 

Y3.37(113), A4.60(163), F171 and F182 of EL2 while the hydroxymethyl group formed 

a H bond with K5.42(199). 

 
Figure 4. Losartan docked into the AT1 binding sites. Interatomic distances between H-bonded atoms are 

indicated in yellow. 
 

In the last three years studies on the AT1 receptor using the substituted-cysteine 

accessibility method (SCAM)25,26 and the methionine proximity assay27 investigated the 

disposition of the residues belonging to TM3, TM6, TM7 and part of EL3. More in 

details these studies suggested that A3.28(104), N3.35(111), L3.36(112), Y3.37(113), 

F6.44(249), W6.48(253), H6.51(256), T6.55(260), A277, V280, T7.x(282), A7.34(283), 

I7.37(286), A7.42(291), F7.44(293), N7.45(294), N7.46(295), C7.47(296), L7.48(297), 

and F7.52(301) should oriented themselves within the water-accessible crevice of the 

AT1 receptor and in our receptor model among all these residues only A7.34(283), 

I7.37(286) and F7.44(293) were not oriented within the water-accessible crevice. 

However regarding F7.44(293), the authors suggested that the terminal part of the TM7 
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structure is somewhat destabilized, permitting outward pointing residues to turn 

intermittently inwards.27 

As regards the interaction of losartan into AT1 receptor, site directed mutagenesis 

suggested the importance of V3.32(108).16 In 1995 Noda et al15 revealed that mutation 

of K5.42(199) with alanine, glutamate and arginine determined more than tenfold 

decreased of binding affinity, while the mutation of lysine with glutamine determined 

only a twofold decrease of losartan affinity. Regarding H6.51(256) Takezako et al17 

highlighted that the mutation with alanine determined an important affinity decrease 

only when accompanied by the K5.42(199)A mutation, suggesting a complementary 

role for H6.51(256), otherwise Noda et al15 for the mutation H6.51(256)A reported a 

twofold decreases of affinity of losartan. Thus all these studies were in agreement with 

our AT1-losartan model. 

Other mutagenesis studies suggested for the residues D2.50(74), N3.35(111), 

S3.39(115), N7.45(294) and N7.46(295) a fundamental role in the activation process of 

the receptor.19,28-32 In our model these residues were not directly involved in the 

interaction with losartan, however as shown in Figure 5 they interacted each other 

constituting a H bond network system able to connect TM2, TM3 and TM7, probably 

controlling the inactive-active state of the receptor. 

Thus these observations were in agreement with the hypothesis of a “structural role” for 

N7.46(295) instead of a direct interaction with losartan.18,19 

 
Figure 5. H bond network system of TM2, TM3 and TM7 
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5.1.2.3 Docking of insurmountable antagonists. In order to investigate the binding 

characteristics derived by the interaction of an insurmountable antagonist, starting from 

the AT1 receptor model obtained through the simulated annealing protocol we docked 

by means of Autodock the active metabolite of losartan (EXP3174) (see Experimental 

section for details).  Then, the complex of best docked structure with the AT1 receptor 

were subjected to 1 ns of MD using the same protocol applied for losartan. 

The results obtained from the MD simulation showed that the binding disposition of the 

ligand was similar to the one of losartan, with the biphenyl ring located into the 

lipophilic task delimited by V3.32(108), V179, W6.48(253), H6.51(256), I7.39(288) 

and Y7.43(292) and 2’-butyl substituent that interacted in the secondary lipophilic 

pocket constituted by S3.33(109), L3.36(112), Y3.37(113), A4.60(163), F171 and F182. 

However as shown in figure 6, respect to losartan, EXP3174 was shifted about 2.7 Å 

towards TM5. This disposition determined the loss of the H bond of tetrazole with 

T175, which resulted far away (5.3 Å from the tetrazole ring), while the interaction with 

Y184 and H6.51(256) were maintained.  

Regarding the imidazole ring, it showed a new H bond with Y3.37(113) while the 

carboxylate group interacted with K5.42(199) and moreover it formed a second H bond 

with Q6.52(257) 

 
Figure 6. Superimposition between EXP3174 and losartan (coloured 

blue and green respectively) docked into the AT1 binding sites. 
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From this analysis came out that even though EXP3174 did not interact with T175, like 

losartan; however it showed two additional interaction with Y3.37(113) and 

Q6.52(257), moreover the carboxylate group formed a ionic interaction with 

K5.42(199) which should be stronger with respect to the H bond interaction of the 

hydroxymethyl group of losartan. 

Overall, it seemed to appear that the EXP3174-AT1 binding interaction was stronger 

than the losartan-AT1 interaction; therefore these observation were in agreement with 

the hypothesis that, differently from surmountable, insurmountable antagonists could 

bind tightly and dissociate so slowly as to cause functional loss of the occluded 

receptors. 

Furthermore the interaction of the carboxylate group with K5.42(199) and Q6.52(257) 

were in agreement with site directed mutagenesis data, which suggested for these two 

residues a fundamental role in the insurmountable antagonism binding.14,33 

In order to verify if the interaction with K5.42(199) and Q6.52(257) was only a 

peculiarity of EXP3174 or, as suggested by mutagenesis data it was showed also by 

other insormountable antagonists, using the receptor obtained through the simulation 

with EXP3174, the other three insormountable antagonists candesartan, irbesartan and 

valsartan (see Figure 7) were docked through an automated docking procedure (see 

Experimental section for details). 

 
Figure 7. Insurmountable antagonists used in the docking study. 
 

As shown by Figure 8 all the ligands exhibited a binding disposition very similar to 

EXP3174, furthermore K5.42(199) and Q6.52(257) were involved in the binding of all 

the three ligands, interacting with the carboxylate group of candesartan and valsartan 

and the carbonylic oxygen of irbesartan. 
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Figure 8. Docking of EXP3174 (A), candesartan (B), ibesartan (C), valsartan (D) docked into the AT1 

binding site. 

 

5.1.2.4 3D-QSAR. In order to verify the reliability of our modelled AT1 receptor and 

also to obtain a quantitative model able to predict the activity of new ligands, 63 non-

peptide antagonists34-36 (see Table 1) were docked into the AT1 receptor, and for each 

ligand the best docked conformation was used for the development of a 3D-QSAR 

model (see Experimental section). 
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Table 1. Ligands used for the 3D-QSAR study. 

 
Compd R1 R2 R3 

IC50 
(µM) 

4 Cl CH2COOH COOH 1.6 
5a Cl CH2COOCH3 NH2 100 
6 CH2COOH Cl COOH 19 
7* Cl CH2OH COOH 1.7 
8 CH2OH Cl COOH 100 
9 Cl CH2OAc COOH 5.3 

10 Cl CH2COOH CH2COOH 13 
11 Cl CH2COOCH3 NO2 100 
12 Cl CH2COOCH3 NHCH2Ph 40 
13 Cl CH2OH CHO 28 
15* Cl CH2OH OCH3 100 
17 Cl CH2COOCH3 NHCO(CH2)2COOH 46 
18* Cl CH2COOCH3 NHCO(CH2)3COOH 32 
19 Cl CH2COOCH3 NHCOCH=CHCOOH (cis) 11 

22 Cl CH2COOCH3 

 

0.14 

23* CH2COOCH3 Cl 

 

0.42 

24 Cl CH2OCH3 

 

0.28 

25 Cl CH2COOCH3 

 

3.1 

26 Cl CH2COOCH3 

 

5.8 

27 Cl CH2COOCH3 

 

0.79 
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30 Cl CH2COOCH3 

 

0.40 

31 Cl CH2COOCH3 

 

0.08 

32 Cl CH2COOCH3 

 

0.032 

33 Cl CH2COOCH3 

 

0.018 

34* Cl CH2OCH3 

 

0.042 

35* Cl CH2OCH3 

 

5.70 

36 Cl CH2COOCH3 

 

0.19 

38 Cl CH2COOCH3 NHCOCF3 27 

39 Cl 
  

1.2 

48 Cl CH2COOCH3 

 

11 

53 Cl CH2OCH3 

 

0.012 
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Compd R1 R2 IC50 (µM) 

54 CH2COOH 3-COOH 100 
55 CH2COOH 2-COOH 38 

56 
  

3.8 

59 CH2COOCH3 

 

100 

 

 
Compd R2 R4 

R5 X A IC50 
(µM) 

2a n-C4H9 Cl CH2OH Single bond 3-CO2H 0.49 
2b n-C4H9 H CH2OH Single bond 3-CO2H 1.1 
2c n-C4H9 Cl CH2OCOCH3 Single bond 3-CO2H 2.5 
2d n-C4H9 Cl CH2OCH3 Single bond 3-CO2H 2.9 
3a n-C4H9 Cl CH2OH CO 2-CO2H 0.16 
3b n-C4H9 CH2OH Cl CO 2-CO2H 0.34 
3c n-C4H9 CH2OCOCH3 Cl CO 2-CO2H 1.4 
3d n-C4H9 Cl CH2NHCO2CH3 CO 2-CO2H 0.27 
3e* n-C4H9 Cl CH2OCH3 CO 2-CO2H 0.15 
4x n-C4H9 Cl CH2OH O 2-CO2H 0.40 
5 n-C4H9 Cl CH2OH S 2-CO2H 0.40 

6a n-C4H9 Cl CH2OH OCH2 2-CO2H 0.92 
6b n-C4H9 H CH2OH OCH2 2-CO2H 0.31 
6c n-C4H9 Cl CH2OCOCH3 OCH2 2-CO2H 1.8 
6d n-C4H9 Cl CH2OCH3 OCH2 2-CO2H 1.2 
6e n-C3H7S H CH2OH OCH2 2-CO2H 5.9 
6f n-C2H5S H CH2OH OCH2 2-CO2H 12 
7x n-C4H9 Cl CH2OH Trans-CH=CH 2-CO2H 5.4 
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Compd R2 R4 R5 X Y IC50 (µM) 
S-8307 n-C4H9 Cl CH2CO2Na Cl H 40 
S-8308* n-C4H9 Cl CH2CO2Na NO2 H 13 

EXP6155 n-C4H9 Cl CH2CO2Na H CO2Na 1.6 
 

 
Compd R2 R4 R5 X IC50 (µM) 

EXP7711 n-C4H9 Cl CH2OH CO2H 0.3 
EXP8823 n-C4H9 Cl CO2H CO2H 0.092 
EXP9019* n-C4H9 Cl CHO CO2H 0.94 
EXP9020 n-C4H9 H CHO CO2H 0.55 
EXP9270 C2H5CH=CH Cl CH2OH CO2H 0.08 
EXP9654* C2H5CH=CH Cl CHO CO2H 0.33 

losartan n-C4H9 Cl CH2OH 

 

0.019 

 

The 3D-QSAR analysis was carried out using C3, OH probe and a combination of them. 

To measure the goodness of the different probes, the three 3D-QSAR models were 

characterized by correlation coefficient (r2), predictive correlation coefficient (q2) and 

cross-validated standard deviation of errors of prediction (SDEPCV). As summarized in 

Table 2 the model obtained through OH probe seemed to be the best one.  

Furthermore an external test set of ten antagonists (marked with a “*” in Table 1) were 

used to test the predictive ability of the models and this analysis confirmed that the OH 

probe was the best selection (SDEPTest-Set=0.54, see Table 2 and Figure 9). 

 



5.1 AT1 homology modeling, docking and 3D-QSAR analysis 

 164

Table 2. Statistical results of the 3D-QSAR models. 

Model Grid probes Vars PC r2 q2 SDEPcv SDEPTest-Set 

1 C3 1168 5 0.98 0.72 0.57 0.64 
2 OH 1086 4 0.97 0.76 0.52 0.54 
3 C3 and OH 2011 5 0.98 0.74 0.54 0.60 

 

 
Figure 9. Plot of model 2: experimental/predicted pIC50 is reported, the test set is represented as ∆. 

 

One important feature of 3D QSAR analysis is the graphical representation of the 

model, usually aimed at making its interpretation easier. In the GOLPE program, there 

are several options for displaying the final model. Among these PLS pseudocoefficient 

and the activity contribution plots are very useful. PLS coefficient plot allows the 

visualization of favourable and unfavourable interactions between the probes and the 

molecules under study, while the activity contribution plot is different for every 

molecule within the training set and gives the possibility to display spatial regions that 

are individually important for the selected molecule. In Figure 10A and 10B are 

reported the PLS coefficients plot of model 2. Figure 10A shows negative PLS 

coefficients; in particular there is eight principal regions (A-H) with negative values in 

which a favourable interaction between a substituent and the probe determines an 

increase of activity whereas unfavourable interaction between a substituent and the 

probe determines a decrease of activity. Otherwise positive PLS coefficients reported in 
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Figure 10B (yellow surface) show areas where a favourable interaction between a 

substituent and the probe determines a decrease of activity whereas unfavourable 

interaction between a substituent and the probe determines an increase of activity; in 

this picture three main regions (A’, G’, H’) and other six secondary regions (B’-F’, I’) 

where recognized. 

 
Figure 10. Negative (A) and positive (B) regions of the PLS coefficient plot obtained with the OH probe. The 

activity contributions plots (green polyhedrons represent positive contributions whereas red polyhedrons 

negative contributions to the activity) for compounds 53 (C), 3a (D), 6a (E) and 10 (F) were also reported.  
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Figure 10C-10F reported compounds 53, 3a, 6a and 10 embedded in their activity plot 

contributions; positive contribution to the activity is coloured as a green polyhedron 

while negative contribution to the activity is coloured as a red polyhedron. 

Figure 10C highlights that the sulfonate group of 53 (characterized by the best IC50 

value, 0.012 µM) make favourable interaction with the regions C, D and E, while the 

unsubstituted nitrogen of the imidazole group interacts with region A. Concerning the 

yellow regions that give a positive contribution to the activity plot, they could be 

considered as lipophilic contributions that increase the activity of the ligand; for 53 the 

n-butyl chain make favourable interactions with region A’, the sulfonate phenyl ring 

with H’ and G’ while the chlorine atom with region C’. 

Compound 3a is about 13 fold less potent then 53 and it is characterized by the presence 

of 2-benzoylbenzoate substituent instead of the biphenyl-2-sulfonate and the 

hydroxymethyl substituent instead of the methoxymethyl. Figure 10D shows that the 

carboxylate function makes favorable interactions with E and D regions, while the 

hydroxymethyl group interacts with B region and the carbonylic function makes 

favourable interactions with the F zone. However, respect to 53 the presence of 2-

benzoylbenzoate group determines the shift of the ligand with the loss of the interaction 

with C and A regions. As regards the steric contributions the interaction with A’, C’, G’ 

and H’ were maintained. 

The presence of 2-(phenoxymethyl)benzoate instead of 2-benzoylbenzoate determines a 

decrease of activity, compound 6a differs from 3a only for the presence of this group 

and it is about six fold less active. As shown in figure 10E the absence of the carbonylic 

function determines the lost of the favourable interaction with the F region and a 

reduction of the interaction of the carboxylic group with the E region. 

Compound 10 shows a low activity (IC50=13 µM), and in fact as shown in figure 10F 

the substitution of the benzoate group with an acetate determines the loss of the 

interaction with the E, D and G’ regions. 

As the alignment of the ligands were performed using the structures docked into the 

AT1 receptor, it would be useful to check for matching between the AT1 receptor and 

the 3D-QSAR maps. 
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In Figure 11 the binding site of the AT1 receptor is overlapped with the 3D PLS 

coefficient maps. There is a close match between the receptor and the PLS surfaces: the 

A region is in proximity of Y113, region B correspond to Q6.52(257), while C is 

comprised between K5.42(199) and Y184. Region D corresponds to T175, the E region 

is comprised between the backbone of C180 and S3.29(105) while F is comprised 

between S3.29(105) and S3.33(109). As regards the yellow surfaces, regions A’ and B’ 

correspond to the secondary lipophilic pocket principally constituted by Y3.3.37(113), 

A4.60(163) and F171 and region E’ corresponds to H6.51(256). Finally the main 

regions G’ and H’ are in close proximity of V179 and I7.39(288) the first one while 

region H’ corresponds to V3.32(108). 

 
Figure 11. PLS coefficient plots obtained with the OH probe superimposed to the AT1 receptor binding site 

 

5.1.3 Conclusions.  

We have constructed the 3D model of the inactive conformation of the AngII receptor 

AT1, based on crystallized bovine rhodopsin (1U1911). 

The docking of losartan into AT1 receptor confirmed that K5.42(199), V3.32(108), and 

A4.60(163)15,16 interacted with the ligand, in agreement with mutagenesis data. 

Regarding the anionic tetrazole ring of losartan, it did not appear to interact with any 

residue suggested important by mutagenesis data and in particular, in contrast with the 
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recent published AT1 homology model, it did not interact with K5.42(199).17,21 

Otherwise it was principally stabilized by a H bond with Y184 and further interactions 

with T175 and H6.51(256).  

Residues D2.50(74), N3.35(111), S3.39(115), N7.45(294) and N7.46(295) interacted 

each other constituting a H bond network system able to connect TM2, TM3 and TM7: 

as site direct mutagenesis suggested for them a fundamental role in the activation 

process of the receptor18,19,29-31 they probably controlled the inactive-active state of the 

receptor interacting each other. 

Regarding the insurmountable interaction of EXP3174, it was explained through a 

strong binding interaction, moreover the model was in agreement with the important 

role of the interaction of K5.42(199) and Q6.52(257) with the insurmountable 

antagonists EXP3174, candesartan, valsartan and irbesartan. 

Finally in order to measure the reliability of the constructed AT1 receptor and also to 

provide a quantitative model useful for the prediction of the affinity of new designed 

antagonists, using the alignment obtained through an automated docking procedure, 63 

non-peptide antagonists were included into a 3D-QSAR model and the results showed a 

good correlation. 

In conclusion our AT1 receptor model proposed a new hypothesis about the binding 

interaction of the non-peptide antagonists inside the AT1 receptor, encouraging further 

analyses for new residues which could be fundamental for the ligand-receptor 

interaction. Furthermore as the AT1 antagonists are an interesting therapeutic target the 

information obtained, combined with the calculated 3D-QSAR model could allow a 

quantitative evaluation of new designed non-peptide antagonists. 

5.1.4 Experimental Section. 

5.1.4.1 Amino acid numbering. To refer to specific amino acids sequences, the 

numbering system suggested by Ballesteros and Weinstein is used.37 

The most highly conserved residue in each transmembrane helix (TMH) is assigned a 

value of 0.50 and this number is preceded by the TMH number and followed in 

parentheses by the sequence number. The other residues in the helix are given a locant 

value relative to this.  
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5.1.4.2 Homology modeling. The crystal structure of bovine rhodopsin was taken from 

the Protein Data Bank,38[nota 45 cann] while all the primary sequences were obtained 

from the SWISS-PROT protein sequence database.39 

The sequential alignment of bovine rhodopsin and the AT receptors was performed by 

means of CLUSTAL W,40 using the Blosum series as a matrix, with a gap open penalty 

of 10 and a gap extension penalty of 0.05.  

The TM helices, the first and second intracellular and extracellular loop of the AT1 

receptor were constructed directly from the coordinates of the corresponding amino 

acids in rhodopsin by means of Modeller program.13 The other loop regions, as the 

amino acid length differs from the template were constructed by means of the “Loop 

optimization method” of Modeller, applying the “very_slow” loop refinement method. 

During the construction of the receptor and the loop refinement, the presence of a 

disulfide bridge between C101 and C180 was taken into account as it was present in the 

bovine rhodopsin; furthermore, as suggested by mutagenesis studies41 we considered 

also the formation of a disulfide bridge between C18 and C274.  

Starting from this receptor ten structures were generated, through the “very slow MD 

annealing” refinement method, as implemented in Modeller and on the basis of the 

DOPE assess method the best receptor model was chosen. The backbone conformation 

of the resulting receptor structure was evaluated by inspection of the Psi/Phi 

Ramachandran plot obtained from PROCHECK analysis.14 

5.1.4.3 Docking of losartan and EXP3174. The ligands were submitted to a  

conformational search of 1000 steps with an energy window for saving structure of 10 

KJ/mol by means of MACROMODEL program.42 The algorithm used was the 

Montecarlo method with MMFFs as the forcefield and a distance-dependent dielectric 

constant of 1.0. The ligands were then minimized using the Conjugated Gradient 

method until a convergence value of 0.05 kcal/Å•mol, using the same forcefield and 

dielectric constant used for the conformational search. Both ligands were docked into 

AT1 receptor using the AUTODOCK 3.0 programme.20 The regions of interest used by 

AUTODOCK were defined by considering atom CZ3 of W6.48(253) as the central 

residue of a grid of 50, 44, and 48 points in the x, y, and z directions so that the main 

residues suggested important by site directed mutagenesis were considered. A grid 
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spacing of 0.375 Å and a distance-dependent function of the dielectric constant were 

used for the energetic map calculations. 

Using the Lamarckian Genetic Algorithm, the compound was subjected to 100 runs of 

the AUTODOCK search, in which the default values of the other parameters were used. 

Cluster analysis was performed on the docked results using an RMS tolerance of 1.0 Å.  

The best two docking conformations were complexed with AT1 receptor and then 

subjected to MD simulations. 

5.1.4.4 MD simulations. All simulations were performed using AMBER 8.0.43 The two 

complexes were embedded into a phospholipid bilayer previously stabilized constituted 

by DPPC molecules. The receptor-ligand complexes were manually inserted into the 

enter of the DPPC bilayer in such a way that the α helices of the receptor were oriented 

approximately parallel to the hydrocarbon chains of the phospholipids. After that all 

phospholipids within a radius of 1 Å around the receptor were deleted.  

MD simulations were carried out using the modified parm94 force field at 300 K. An 

explicit solvent model TIP3P water was used and the system were solvated on the 

“extracellular” and “intracellular” side with a 15 Å water cap. Chlorine ions were added 

as counterions to neutralize the system. Prior to MD simulations, three steps of 

minimization were carried out; in the first stage, we kept the protein and phospholipids 

fixed with  a constraint of 500 Kcal/mol and we just minimized the positions of the 

water molecules; then in the second stage, we minimized the phospholipids-water 

system applying a constraint of 500 Kcal/mol on the protein, and finally in the last step 

we apply a constraint of 50 Kcal/mol only on the Cα of the receptor. The three 

minimization stages consisted of 5000 steps in which the first 1000 were Steepest 

Descent (SD) and the last 4000 Conjugate Gradient (CG). Molecular dynamics 

trajectories were run using the minimized structure as a starting input, and the particle 

mesh Ewald (PME) algorithm was used for dealing with long-range interactions.44 The 

time step of the simulations was 2.0 fs with a cutoff of 12 Å for the non-bonded 

interaction and SHAKE was employed to keep all bonds involving hydrogen atoms 

rigid. Constant-volume was carried out for 100 ps, during which the temperature was 

raised from 0 to 300 K (using the Langevin dynamics method); then 900 ps of constant-

pressure MD were carried out at 300 K. In the first 400 ps of MD all the α Carbons of 
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the receptor were blocked with a harmonic force constant that during these 400 ps 

decrease from 50 to 1 Kcal/mol•Å, while in the last 600 ps there were no constraints. 

The final structure of the complexes was obtained as the average of the last 500 ps of 

MD minimized with the CG method until a convergence of 0.05 Kcal/ Å•mol. 

General Amber Force Field (GAFF) parameters were assigned to ligands and DPPC 

molecules, while the partial charges were calculated using the AM1-BCC method as 

implemented in the Antechamber suite of Amber 8. 

The phospholipid bilayer system was previously stabilized by 600 ps of MD using the 

same parameters described above. Prior to MD simulations, two steps of minimization 

were carried out; in the first stage, we kept the phospholipids fixed with  a constraint of 

500 Kcal/mol and we just minimized the positions of the water molecules; then in the 

second stage, we minimized the phospholipids-water system applying a constraint of 

100 Kcal/mol on the heavy atom of the phospholipids. In the first 200 ps of MD all the 

heavy atoms of the DPPC molecules were blocked with a harmonic force constant that 

during these 200 ps decreases from 100 to 10 Kcal/mol•Å, while in the last 400 ps there 

were no constraints. The structure of the bilayer system in which were embedded the 

two AT1 receptor complexes was obtained as the average of the last 300 ps of MD 

minimized with the CG method until a convergence of 0.05 Kcal/ Å•mol. 

5.1.4.6 Docking of insurmountable antagonists. Candesartan, irbersartan and 

valsartan were docked into AT1 receptor using the minimized average of the last 500 ps 

of MD simulations of the AT1-EXP3174 complex as receptor. The regions of interest 

used by AUTODOCK were defined by considering EXP3174 complexed into AT1 as 

the central group; in particular, a grid of 40, 40, and 48 points in the x, y, and z 

directions was constructed centred on the centre of the mass of this antagonist. A grid 

spacing of 0.375 Å and a distance-dependent function of the dielectric constant were 

used for the energetic map calculations. 

Using the Lamarckian Genetic Algorithm, the docked compounds were subjected to 100 

runs of the AUTODOCK search, in which the default values of the other parameters 

were used. Cluster analysis was performed on the results using an RMS tolerance of 1.0 

Å, and the best docked structures were considered. 
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5.1.4.7 3D QSAR. 5.1.4.7.1 Alignment of the molecules. The ligands showed in Table 1 

were docked into AT1 receptor using the same procedure seen above for the 

insurmountable antagonists, but the minimized average of the last 500 ps of MD 

simulations of the AT1-Losartan complex were used as receptor. For each ligand the 

best docked structure was chosen and this receptor-based alignment was used for the 

further studies. 

All the ligands reported in literature that showed more than 6 AUTODOCK atom types 

were not taken into consideration for the limits of the software. 

5.1.4.7.2 Data set. The GOLPE program46 was used to define three 3D QSAR models, 

using GRID interaction fields [nota] as descriptors (see below). The training set were 

composed by 53 compounds characterized by affinity values spanning about 4 orders of 

magnitude, the minimum value of 4.00 (expressed as –log IC50) being associated with 

compounds 11, 54, 59, 5a and 8 and the maximum value of 7.92 being associated with 

compound 53. Similarly, compounds belonging to the test set showed affinity value 

ranging from 4.0 (compound 15) to 7.38 (compound 34) and were uniformly distributed 

along the activity range (see Figure 9). 

5.1.4.7.3 Probe selection. The GRID program46 was used to describe the previously 

superposed molecular structure. Interaction energies between selected probes and each 

molecule were calculated using a grid spacing of 1 Å. The C3 (corresponding to a 

methyl group), OH (corresponding to a phenolic OH group) and a combination of them 

were used to calculate the molecular interaction fields (MIFs). 

5.1.4.7.4 Variable selection. The MIFs of the training set were imported in GOLPE; it is 

well known that many of the variables derived from GRID analysis could be considered 

as noise, which decreases the quality of the model. For this reason variable selection 

was operated by zeroing values with absolute values smaller than 0.06 Kcal/mol and 

removing variables with standard deviation below 0.1. Moreover, variables which 

exhibited only two values and had a skewed distribution were also removed. 

The smart region definition (SRD) algorithm47 was applied with 10% of the active 

variables as number of seed (selected in the PLS weights space), a critical distance 

cutoff of 2.5 Å, and collapsing distance cutoff of 4.0 Å. The groups were then used in 

the Fractional Factorial Design (FFD) procedure. FFD selection was applied two time, 
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until the r2 and q2 value did not increase significantly using the cross-validation routine 

with five random sets of compounds. 
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