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6 CHAPTER 1. INTRODUCTION

1.1 Introduction

A variety of models for the specification and the verification of security pro-
tocols has been proposed in the last years, focusing on the different problems
that arise when studying distributed systems. While security issues are ad-
dressed in these models in many different ways, the techniques used can be
classified into two broad classes.

The first class is the class of models from computational complexity the-
ory. Computational models offer a very detailed, in-depth view of cryptosys-
tems and protocols. Often, models are defined using low level notions: it is
very common here to model messages as bit strings, and protocol partici-
pants as probabilistic Turing machines. In these models, security properties
usually require systems to be resilient to a class of adversaries. Adversaries
can run any algorithm (e.g. they are arbitrary Turing machines) and are
subject only to some computational complexity bounds and some proba-
bilistic constraint (typically, they must succeed in polynomial time with a
non-negligible probability). While these models are very well suited to study
virtually any aspect among the many facets of security, actually proving sys-
tems secure is a non trivial task. In fact, proofs in computational models
tend to be complex and long. Therefore the process of verifying systems can
be expensive, tedious and - most importantly - error prone.

The second class of models comes from formal methods. Formal models
abstract the behaviour of distributed systems so that one can reason about
its properties using high-level tools. Usually here, messages are modeled as
terms, and participants are specified in process calculi. Often, the use of
terms implicitly restricts the operations that can be performed on messages
to a small set of selected primitives. Consequently, the adversary is also
assumed to “play by the rules”: its behaviour must be specifiable through
the calculus and its data can only be processed by the given primitives. In
fact, formal security properties consider only the class of such adversaries.
While this definition only covers a strict subset of the computational ad-
versaries, verifying the robustness of systems against the formal adversaries
is simpler than its computational counterpart. Indeed, this simplicity is a
consequence of considering only a restricted class of adversaries. Often, se-
curity properties in formal models involve reachability over some transition
system, disregarding complexity and probability. Moreover, many semi-
automatic and automatic tools for carrying out security proofs have been
developed and successfully used to check protocols. Because of the higher
level abstraction, the process of formal verification is also less error prone
with respect to writing a proof in a computational model.

Research has focused on establishing connections between the two ap-
proaches. Ideally, one would use formal methods and tools to prove security
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properties as those definable in the computational models. Bridging the gap
between the two worlds would unite the simplicity offered by formal models
with the very precise view given by computational models. To this aim,
work has been started in two opposite directions.

A first line of results proceeds in the direction from computational to
formal models. Some selected “basic blocks” used in formal proofs are con-
sidered to establish a computational soundness property for these blocks.
For instance, formal methods often use some equivalence relation between
terms to model indistinguishability, i.e. the fact that no reasonable formal
adversary can distinguish between them. Computational soundness for such
a relation would ensure that any reasonable computational adversary can not
distinguish between the encoding of formally-equivalent terms. Obviously,
this is possible only if the encoding used satisfies some robustness property.
So, this line of work also focuses on which assumptions one would require on
the cryptosystem to ensure that the computational model behaves exactly
as the formal model.

The other direction is the one from formal to computational models.
Here, the focus is on making the models less abstract, by introducing in
the model some notions from the computational world. For example, the
adversaries in probabilistic formal models can be more faithful to the com-
putational adversaries than the ones in deterministic formal models. Also,
formal methods can take into account the cost associated to attacks, and
therefore relate to the computational complexity. In essence, this line of
work is about weakening the strong assumptions of current formal models
about 1) the capabilities of the adversary and 2) the underlying cryptosys-
tem. From another point of view, weakening the assumptions made in formal
models also means to consider a more powerful adversary, which still “plays
by the rules” of the model but has less restrictions on what it can do.

Looking at the many formal models proposed so far, we see that a large
number of them share a common model of adversary. The assumptions
behind this kind of adversary were firstly described by Dolev and Yao [32], so
that it is commonly addressed as the Dolev-Yao adversary. Being so widely
employed in formal models, this adversary is indeed a de facto standard.

We now briefly summarize the ideas behind the Dolev-Yao model. When
a protocol is run by its participants, messages are exchanged over a public
communication channel. The Dolev-Yao adversary can eavesdrop on this
channel and intercept messages as they are sent through. In this way, the
adversary is able to learn the messages. The adversary can then operate on
the collected data and in this way add new data to its knowledge. Further,
the adversary can take any piece of data it knows and deliver it to a protocol
participant, pretending that is a message from someone else.

The actual operations the adversary is allowed to perform in the model
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are doubtlessly a very significant part of the model itself. In a computational
model we would restrict these to a class of algorithms, but in formal models
data are represented as terms, and this heavily influences the operations
that can be performed over it. Most commonly, in formal models one con-
siders a limited, fixed number of such operations, only. These operations are
often chosen so that they cover exactly the cryptographic primitives used in
the protocols one wants to study. Common choices include encryption and
signature primitives. So, both the protocol participants and the adversary
use the same well-known tools to handle data and produce messages. This
greatly simplifies the model, and allows for agile reasoning about the secu-
rity of a protocol. However, choosing a fixed set of operations also means
restricting the adversary to those alone. Indeed, the power of many tools for
protocol verification derives from that they heavily rely on these restrictions.

One of the most common restrictions in formal models lies in that there is
no way of decrypting a message other than using the right key. This is often
modeled by having no operation to manipulate an encrypted term other
than decryption. In other words, the underlying cryptosystem is assumed
to be so robust that encryptions convey no information at all about their
contents: this is the ideal, or perfect encryption assumption.

In Chapter 2, we relax this assumption by explicitly allowing the adver-
sary to break encryptions through a special operation. Of course, this only
happens only under suitable hypotheses, so that the adversary is not able to
disrupt just any protocol. For this, we borrow from the computational model
the idea to use probability and complexity to constrain the adversary power.
In Chapter 2, we therefore define a probabilistic version of the Dolev-Yao
adversary. We then consider two common security properties: the secrecy
of a given message and non-injective authentication. Using these properties,
we compare the enhanced Dolev-Yao adversary to the standard one.

In the subsequent chapters, we discuss another assumption that is also
very common in formal models and tools for security. As we anticipated,
during the design of the model one chooses the set of operations to consider,
by which both the participants and the adversary can construct messages.
Obviously, it is convenient to choose the cryptographic primitives that are
the most widely used in the protocols presented in the literature. Indeed,
it turns out that a very broad class of protocols only use the following
primitives:

• encryptions (symmetric or asymmetric)

• digital signatures

• hashes

• pairs (lists)
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These primitives are directly modeled with the terms below.

enc(m,k) or enc(m, pub(k))

sig(m, pri(k))

hash(m)

cons(m1,m2)

Above, m denotes a message, while k is a key. Terms pri(k) and pub(k)
denote the private and public parts of the same asymmetric key k.

In formal models, the algebra given by the above primitives is usually
assumed to be free. In other words, considering only symmetric encryption,
we have that enc(m1, k1) = enc(m2, k2) if and only if m1 = m2 and k1 =
k2. This freeness property ensures that intended values and their term
representation have a direct one-to-one correspondence.

Freeness enormously simplifies the definition of security properties. For
instance, the secrecy of a message m can be defined in terms of m alone, in-
stead of a class of equivalent forms. Automatic reasoning benefits from this
simplification too: e.g. whenever we see two values with a different top-level
constructor, we know these values are different, without needing to inspect
them further. However, special care must be taken to avoid breaking this
freeness property through other features in the model. Continuing the ex-
ample above, one might be tempted to add a decryption operation dec(m,k)
to the algebra, introducing the equality

dec(enc(m,k), k) = m

and thus making the algebra non-free. A common way to circumvent this
problem is to provide decryption not as an operation on terms, but as a fea-
ture of the calculus that models the protocol participants. Most commonly,
decryption is performed through pattern matching:

decrypt m as enc(x, k) in . . . (use of x and k)

This technique can be used to provide destruction in the model (for pairs,
etc.) and still keep terms free. However, the model obtained in this way is
not completely equivalent to a model with real destructors. This is because
using pattern matching instead of a proper decryption operation implicitly
restricts the adversary to successfully run decryption on actual encrypted
terms, only. If running decryption on other terms could be used to construct
some kind of attacks, the formal model is not able to reason about these
attacks. For this reason, a protocol might be regarded as safe in the model
while, in practice, it is not.

Further, it is not always possible to simulate a non-free algebra using
pattern matching as done above. Sometimes a cryptosystem is used which
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might satisfy additional laws such as

enc(dec(m,k), k) = m surjective encryption
enc(enc(m,k1), k2) = enc(enc(m,k2), k1) commutative encryption

Note that a protocol might actually exploit these laws, and fail to work if they
do not hold. So, changing to a cryptosystem ensuring freeness might not be
an option. Similarly, the protocol might use other cryptographic primitives
that are intrinsically non-free such as XOR, or finite-field multiplication and
exponentiation. In this case, we must cope with the many different term
representations for the same value. Because of this, both the model and
related verification tools must always consider the whole equivalence class
of a term, and therefore work “up to” the laws that define the primitives.

In Chapter 3, we deal with the problem of constructing over-approxima-
tions for set of terms, when we consider them up to an equivalence relation.
This equivalence is not fixed, but can be expressed through any term rewrit-
ing system. We stress that any rewriting system can be used to this purpose:
for instance, we do not assume the existence of normal forms, confluence,
or termination. Through rewriting rules, we can express the laws for many
cryptographic primitives, without having to choose a particular fixed set of
those. So, with this approach, we relax both the free algebra assumption, as
well as the reliance on having a limited set of operations.

Here, we approximate terms up to rewriting through non deterministic
finite tree automata. We define a sequence of algorithms to compute sound
approximations, and compare them. Also, we implemented these algorithms,
so to validate their capability to deal with usual non-free cryptographic
primitives. We also discuss here some details of our implementation that
turned out to be relevant for the precision of the computed approximation.

Exploiting the above techniques for dealing with terms up to equivalence,
we finally face the problem of protocol verification in Chapter 4. Here, we
define a process calculus for the specification of protocols. We keep the
issues of defining the semantics of the calculus separated from those related
to the primitives used. We still allow these primitives to be defined through
any rewriting system, without losing generality from our previous results.
Then, we consider the static analysis of protocols.

The first static analysis we present borrows from the control flow analysis
[57] approach. Roughly, this analysis statically computes a finite represen-
tation for a superset of the messages exchanged through the network at
run-time. So, terms not within this superset are known not to be used in
communications. For instance, this can be used to prove the secrecy of a
selected piece of data.

With small changes, we adapt this analysis to our calculus. Further,
by leveraging the approximation of Chapter 3, our adaptation is able to
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cope with terms up to rewriting. This enables us to statically reason about
security properties of protocols, given

• the specification of the protocol, written as a process in our calculus,
and

• the specification of the employed primitives, defined through a rewrit-
ing system.

In the same chapter we also enhance the analysis to better exploit the
approximation techniques of Chapter 3. Moreover, we refine the analysis so
that it produces a more precise results for some constructs of the calculus.
We compare this refined analysis with the previous one through examples.

We developed a tool implementing the analyses, so we can test the ef-
fectiveness of our techniques on concrete test cases. To this purpose, we
consider some real-world security protocols. One of the most relevant cases
we consider is a protocol based on the Diffie-Hellman key exchange. The
protocol involves exponentials over a finite field. We model multiplication,
inversion and exponentiation using rewriting rules, together with other com-
mon cryptographic operations, and allow the adversary to use those. Here,
we are using a number of non-free primitives, satisfying many equations and,
for that reason, usually difficult to handle. Yet, we use our tool to prove the
forward secrecy of a message M , ensuring that

• the adversary is not able to learn M by interacting with the protocol
participants, and

• if, after the protocol has been run, certain secret keys are disclosed,
this still does not enable the adversary to obtain M .

This forward secrecy property is particularly interesting to us, since it in-
cludes some notion of temporal dependency, or causality, albeit in a limited
form. This is because the second point above considers what happens after
the keys are revealed.

Another interesting protocol we consider involving time is a variant of
Kerberos. Here, the protocol explicitly uses timestamps. The security prop-
erty we focus on ensures that the disclosure of older secrets, i.e. those with
old timestamps, does not compromise the newer sessions of the protocol.
We are actually able to prove this result exploiting our tool.

In the conclusions of this thesis, we summarize the most significative ac-
complished goals. Further, we discuss about the nice interactions between
the results of different chapters, linking them. Finally, we express our opin-
ions and hopes about future research.



12 CHAPTER 1. INTRODUCTION

Our Recent Works

Our first work on the perfect encryption assumption appeared in [73]. There,
we weaken this assumption in a model considering a simple secrecy prop-
erty. That work was further extended in [74], where we also dealt with
authentication and more adversary rules.

We wrote in [71] about our first ideas about analyzing security protocols
without assuming a fixed set of cryptographic primitives. There, however,
we relied on the freeness of the algebra of terms, limiting the choice of
the primitives. Our efforts to relax this hypothesis lead us to write [72]
and explore the opportunities offered by tree automata. Exploiting those
foundations, we derived a static analysis for security protocols involving
non-free operations [75]. We provided an implementation of this analysis
[61].
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Abstract

We consider secrecy and authentication in a simple process calculus with
cryptographic primitives. The standard Dolev–Yao adversary is enhanced
so that it can guess the key required to decrypt an intercepted message. We
borrow from the computational complexity approach the assumptions that
guessing succeeds with a given negligible probability and that the resources
available to adversaries are polynomially bounded. Under these hypothe-
ses we prove that the standard Dolev–Yao adversary is as powerful as the
enhanced one.

2.1 Introduction

A lot of recent work concerns the analysis of security protocols. While the
problem has been approached in many different ways, the techniques used
can be roughly classified into two main classes. On the one side, we have
results coming from computational complexity theory which offers a detailed,
in–depth view of cryptosystems and protocols and deals with probability and
algorithms. On the other side, formal methods provide abstractions that
allow for mechanical proofs of cryptographic protocol properties, but often
require stronger assumptions, among which is the perfect or unbreakable
encryption assumption.

Often, formal methods work on protocols specified in some process calculi
and assume the existence of the so–called Dolev–Yao adversary (DY for
short). Besides fully controlling the network, it manipulates messages but
it cannot break encryptions. We study here ways to weaken the perfect
encryption property, taking care of some computational aspects.

We use a process calculus to model key–exchange protocols and we en-
hance the standard DY adversary by explicitly allowing it to break encryp-
tions through a guessing operation. We call the enhanced adversary DYP.
Roughly speaking, once intercepted a message, the adversary can deduce
the key to decrypt it with a given probability.

Computational reasoning predicts that guessing is hard, provided that

• the cryptosystem is robust,

• the adversary has only a reasonably bounded computational power
(e.g. the adversary is in probabilistic polynomial time, PP–Time),
and

• the keys are long enough.

Many other factors affect the probability of guessing, but for the sake of
simplicity, often one considers only those above. Also, the computational
approach leaves the actual probability distribution implicit. So the proof
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that a protocol is secure considers a suitable class of probability distribu-
tions, rather than a specific one. Here, we shall make the same assumptions.

We compare the traditional Dolev–Yao model in which guessing is not
permitted against our enhanced one. The comparison is made easy by the
fact that, if we forbid the use of the guessing operation, the DYP model
collapses onto DY. Moreover, since we only deal with discrete probability
distributions, removing the guessing operation is equivalent to assuming the
guessing probability to be null everywhere.

Our study is carried on two security notions: secrecy and authentica-
tion. We give two definitions of secrecy for a protocol. Both are given in
Sect. 2.4 and consider only the secrecy of a selected piece of data. One
definition is the traditional one and it can be summarized as follows: the
adversary cannot learn a given secret by interacting with the protocol and
by constructing/destructing the intercepted data with the only limitation
that encryptions are unbreakable. The other definition, instead, is adapted
from the computational complexity approach. Roughly, the probability of
learning a certain secret is a function of the key length, assuming the ad-
versary is in PP–Time and breaking the cryptosystem is a problem not in
PP–Time. Then, one studies the asymptotic behaviour of this function.
Obviously, our first secrecy definition is based on the DY model, and our
second one is designed for the DYP model.

Similarly, we give two definitions of authentication for a protocol in Sect.
2.5. The first one is a formal definition adapted from [62]. This property
requires that a responder successfully completes a run only if an initiator
started it. The other notion is its DYP counterpart: the probability the
adversary has to disrupt authentication is represented as a function of the
key length. Again, we then study its asymptotic behaviour.

Our main result shows that, for both secrecy (Sect. 2.4) and authenti-
cation (Sect. 2.5), the two security models DY and DYP are equivalent. On
the one hand, this result is not surprising: increasing the length of the keys
and still keeping the adversary polynomially bounded (with respect to the
key length) results in a virtually perfect encryption. On the other hand,
the traditional DY model is considerably simpler and has an accuracy com-
parable with that of the DYP model, under the standard hypothesis that
guessing is hard.

For the sake of presentation, here we consider a core calculus, with the
essential features, only. Sometimes, we make some assumptions to keep our
model as simple as possible, even if they are not strictly needed and could be
relaxed (see e.g. Sect. 2.6). More advanced primitives can be easily added
along the lines discussed in Sect. 2.7. In the same section, we also sketch
some further possible extensions to our DYP model.

Related Work. Several authors recently started to fill the abstraction gap
between the computational approach and the formal methods approach to
the analysis of cryptographic protocols. Abadi and Rogaway [6] propose an
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equivalence on terms of a formal language that reflects the computational no-
tion of indistinguishability of the bit–strings representing the terms. A finer
equivalence is proposed by Troina, Aldini and Gorrieri in [68]. Abadi and
Jürjens [5] extend the equivalence of [6] to a process calculus and study indis-
tinguishability in presence of a passive adversary. Micciancio and Warinschi
further extend the equivalences of [6] and [5] by considering a broader class
of cryptosystems; their logic is complete: two terms are equivalent if and
only if their corresponding bit–strings are indistinguishable.

Our proposal differs from the above in that we assume a full active DY

adversary. Also, we extend the adversary model with a computationally–
oriented feature, instead of giving (to parts of) it a computational account.

Our approach is similar to that of Mitchell, Ramanathan, Scedrov and
Teague [60] who use a probabilistic calculus and an equivalence based on
probabilistic bisimulation. This equivalence is then used to establish indis-
tinguishability of process behaviour, under common cryptographic assump-
tions.

Herzog in [43] shows that sufficiently strong cryptography can limit a
computational adversary, to make it as powerful as the DY formal adversary.

Pfitzmann, Backes and Waidner [9, 8] compare the computational adver-
sary and the formal one exploiting the notion of simulatability. The protocol
principals are modeled as Turing machines and all the cryptographic oper-
ations are performed by an oracle which is used as a cryptographic library.
The oracle implements the library operations by manipulating either terms
or bit–strings, offering the same interface to principals. Therefore, the oracle
can interact with a computational or with a formal adversary. Simulatabil-
ity ensures that every computational attack can be simulated formally, thus
proving the connection between the two adversary models.

Coming from a formal side, we use a process algebra to specify protocols
and existing techniques to analyze them, while [9, 8] pay more attention to
computationally–based descriptions of the principals and of the cryptosys-
tem.

Process algebras are also used by Laud [47]. There, the formal semantics
of processes is connected to the computational models of Pfitzmann, Backes
and Waidner. A type system is then used to prove protocols secure in the
computational setting. So, this work provides formal tools (types) to reason
in a computational model.

Moreover, in [10, 11] Baudet considers a probabilistic extension to DY,
with an approach rather similar to ours. Also here, time complexity is
taken into account, so that adversary need to run in PP-time. Further, the
extended adversary is shown to be as powerful as the DY one.

Finally, we mention a paper by Lowe [48] that studies intruders who can
guess secrets. The focus of his paper, quite different from ours, is on the
feasibility of verifying whether the guess succeeded.
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2.2 A Simple Process Calculus: Syntax

We introduce a simple process calculus that we use to model key–exchange
protocols. This calculus is basically a variant of the π–calculus [52] enriched
with cryptographic primitives, much like the Spi–calculus [4]. Since we want
to keep our calculus as simple as possible, we only use symmetric encryption.
A brief account of asymmetric encryption is in Sect. 2.7.

Let N be a denumerable set of names and let V be a denumerable set of
variables. We use the letters n,m, o to range over N and the letters x, y, z
to range over V. Under these assumptions, we define terms in the following
way. Terms represent the messages that are sent over the network when the
protocol is run. Their meaning is standard.

L,M,N ::= 0 | 1 bit
| x variable
| n name
| (M,N) pair
| {M}N symmetric encryption

We now define processes in the following way:

P,Q,R ::= nil null process
| (x).P input
| 〈M〉.P output
| (P | Q) composition
| ! P replication
| (new n)P declaration
| if M = N then P else Q conditional
| split M as (x, y) in P split
| decrypt M as {x}N in P symmetric decryption

The above syntax is quite standard, and readers familiar with other process
calculi will find it straightforward. A simple intuitive description follows.

The nil process does not perform any operation. The input process (x).P
reads a value from the network, assigns it to the variable x and then behaves
as P . The output process 〈M〉.P sends a value over the network and then
behaves as P . The parallel composition of two processes is denoted by
(P | Q); P and Q can evolve independently. The replication ! P behaves as
the parallel composition of an unlimited number of P processes. We write
(new n)P for the creation of new names (i.e., new keys, fresh nonces, etc.).
The conditional tests whether two terms are equal. Split and decryption
are used to destruct pair and encryption terms. Note that the decryption
requires the (secret) key to succeed.

The most important features of this calculus are the following:
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• All the input and output operations use the same global public channel,
unlike some other calculi such as the π–calculus or the Spi–calculus,
where input and output occur on given channels.

While this makes it impossible, for instance, to specify the destination
for a message (which is very inconvenient from a programmer’s point
of view), it models the standard Dolev–Yao assumption which states
that the adversary is able to reroute messages. In a sense, the global
channel acts as a black–board on/from which processes write/read
messages.

• There are no private channels in our calculus. Although private chan-
nels could be used to model secure links, we do not include them in
our calculus in order to keep it simple.

We stress that the above features do not have any significant impact on the
results we present in this chapter, while they allow for a simple presentation.
Indeed, we could instead use a richer calculus such as Spi and establish the
same results, at the expense of more cumbersome definitions and proofs.

A variable is said to be bound if it occurs under an input prefix, split,
or decryption; otherwise it is said to be free. Similarly, a name is bound
if it occurs under a declaration (new n), otherwise it is free. We write
fv(P ), bv(P ), fn(P ), bn(P ) respectively for (the sets of) the free variables,
the bound variables, the free names, and the bound names of the process P .

2.3 A Simple Process Calculus: Semantics

We define an adversary-aware semantics of our process calculus. This means
that our semantics explicitly assumes the presence of an adversary and mod-
els the interaction between it and the system which executes a certain pro-
tocol (i.e. a process P ).

We first make two assumptions about what the adversary can or cannot
do:

• Like the Dolev–Yao adversary, ours can intercept and learn messages
as they are sent over the network. The adversary can then send over
the network terms built from the known messages by using the follow-
ing operations: pairing, splitting of pairs, encryption, and decryption.
This also implies the adversary is able to reroute, discard, and replace
messages, possibly pretending that they are from someone else.

• Unlike the Dolev–Yao adversary, ours can also guess a key which has
been used to encrypt some message. This special operation, however,
only succeeds with a given probability.
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2.3.1 The Adversary

We introduce the following entailment rules, that define the operations of
the adversary. As usual, each rule can be read as: “the adversary can build
the term of the right hand side of the arrow provided it knows the terms on
the left hand side”.

DYCons M,N
1
7−→DY (M,N)

DYFst (M,N)
1
7−→DY M

DYSnd (M,N)
1
7−→DY N

DYEnc M,n
1
7−→DY {M}n

DYDec {M}n, n
1
7−→DY M

DYGuess {M}n
p
7−→DY n

Each arrow has a label, expressing the probability of the operation to suc-
ceed. The first five rules are the traditional Dolev–Yao rules and get prob-
ability 1 as they never fail. Rule DYCons allows the adversary to construct
a pair (M,N) from its components. Dually, the adversary can also destruct
a pair through rules DYFst and DYSnd, thus obtaining its constituents M
and N . Encryptions have similar rules. The construction of an encryption
{M}n is handled by rule DYEnc, which of course require that the adversary
knows both the message M to encrypt and the secret key n (we shall dis-
cuss afterwards why here keys are names, only). Decryption is done through
DYDec: given an encrypted message and its related key, the adversary can
recover the cleartext message M .

The last rule, DYGuess, extends the Dolev–Yao model of adversary. This
rule allows the adversary to guess the secret key n with probability p. As
anticipated in the Introduction of Sect. 2.1, we shall not assign specific
values to the success probability p for DYGuess, just as it happens within
the computational complexity approach. Indeed, the guessing probability
depends on many factors, such as which cryptosystem was used for the
encryption, the length of the key used, whether the adversary knows other
messages encrypted with the same key, whether the adversary knows the
plaintext, the amount of computational resources (e.g. time) spent by the
adversary, and so on. Even if all these factors are taken into account, there
is no handy formula for the guessing probability. In order to keep our system
simple, we make some further assumptions:

• We constrain encryptions to use only names as keys: all the encryp-
tions thus must have the form {M}n. This can be enforced by a simple
type system. Furthermore, we assume that all names are encoded as
bit strings of the same length η.1

1In the computational complexity approach η is the security parameter that affects the
length of keys. For the sake of simplicity, here we simply identify it with the key length.
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• We assume that the guessing probability depends only on η and on
the number of operations T previously performed by the adversary:
we write it as Pguess(η,T ). In particular, it does not depend on the
result (success or failure) of previous DYGuess operations. Most im-
portantly, here we stipulate that the adversary consumes one unit of
computational resources in order to perform the guess. (This last as-
sumption is not crucial: see Sect. 2.7)

Intuitively, the probability Pguess(η,T ) decreases as soon as longer keys are
used, i.e. as η increases. Similarly, when the adversary performs some
operation, it might learn some information that can help it to guess a key
afterwards. This means that the probability Pguess(η,T ) increases as soon
as T increases. The way Pguess depends on η and T is related to the strength
of the cryptosystem.

As discussed in the related work, in the computational complexity ap-
proach there are different ways to regard a cryptosystem as robust. In all
of them, it turns out that the function Pguess “quickly” approaches zero as
soon as η increases, provided that T is reasonably bounded (see Def. 3).
Somehow arbitrarily, we shall only require this kind of asymptotic assump-
tion on Pguess in Sects. 2.4 and 2.5, stipulating that the longer the keys,
the stronger the encryptions. As a matter of fact, our assumption on Pguess

is not sufficient to imply robustness in a computational sense, yet natural
and convenient in our formal framework. We shall come back on this issue
in Sect. 2.7, where we shall also consider an alternative view: guessing the
contents of encryptions without breaking keys.

We do not put further assumptions on Pguess(η,T ). In particular, we
take in no account the properties a cryptosystem must have to ensure that
Pguess satisfies the requirement above. Instead, we shall consider Pguess a free
parameter, and we shall prove our results for a suitable class of probability
functions.

2.3.2 The Transition System

In order to define the semantics of our calculus, we use a labeled transition
system (LTS). Its states are composed of:

• the adversary’s knowledge K, which represents the set of terms that
the adversary has learnt or built so far;

• the number of operations T the adversary performed during the pre-
vious steps of the computation;

• a process P , which represents the current state of the execution of the
protocol;

• an optional pair (p,N), used to model the fact that the adversary is
about to learn the term N with probability p.
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We write (K,T , P ) (or, if the optional part is present, (K,T , P )p,N ) to
represent a generic state of the LTS.

We now give the intuition underlying our transitions. A first kind of
transition models a “standard” action of a process P :

(K,T , P )
µ
−−→ (K′,T , P ′)

Initially, the adversary has knowledge K. Then, P performs an action and
becomes P ′. If the action is the output of a message M , the new knowledge
is K′ = K ∪ {M}, otherwise K′ = K.

Another kind of transition models an action of the adversary:

(K,T , P )
♠
−−−→ (K,T , P )p,N

This transition represents the choice of some operation op the adversary is
going to apply to the terms it knows. The superscript p is the probability to
get the result N (p 6= 1 only when the operation is a guess). From the target

state of a
♠
−−→ transition, two transitions exit. One transition represents the

success of operation op and has the form

(K,T , P )p,N ♠s−−−−→
p

(K ∪ {N},T + 1, P )

The other transition instead represents the failure of op:

(K,T , P )p,N ♠f−−−−→
1−p

(K,T + 1, P )

Both these transitions are labeled with the corresponding probability and
increase the number T of operations performed by the adversary.

Before giving the definitions of the transitions
µ
−−→,

♠
−−→ and

♠s/f
−−−−→, we

make some assumptions in order to simplify the definition of our system. To
this purpose, we consider processes up to the structural congruence relation
≡, defined as the minimum congruence on the set of processes P including
α–conversion (renaming of bound names), and such that (P/≡, |, nil) is an
abelian monoid.

While on the one hand this allows for a simpler semantics, on the other
hand this makes it harder to express properties on processes. For example,
consider the following processes

R1 = (new n )P | (new m)Q
R2 = (new m)P{m/n} | (new n )Q{n/m}

where, as usual, {m/n} denotes substitution. The above processes are equiv-
alent according to ≡. Suppose that we want to state “R1 never performs
the output of n”, meaning that (some instance of) the name n that occurs
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in (new n)P is never sent through the network. In order to formalize this
property, we need to cope with the fact that α–conversion can perform any
arbitrary renaming, e.g. transforming R1 into R2, thus causing confusion
among names. This may lead to quite a complex formalization.

We want to avoid this kind of confusion. To this aim, we partition the set
of names N into equivalence classes, and we assume that the α–conversion
of a name is only performed within its equivalence class. We write n ∼α

m when n and m belong to the same equivalence class. We also extend
homomorphically the relation ∼α to terms.

We still assume processes up to ≡, where we use the just introduced
α-conversion, rather than the usual one, to avoid confusion. E.g., provided
that n 6∼α m in the example above, R1 can not be renamed into R2 and
thus R1 6≡ R2. In general, we shall require 6∼α to hold for all the names in
a process that we want to keep distinct. This requirement can be formally
stated as follows.

Definition 1 A process P is canonical iff

• ∀n,m. n and m occur in different declarations in P =⇒ n 6∼α m

• ∀n,m ∈ fn(P ) ∪ bn(P ). n 6= m =⇒ n 6∼α m

If a process P is canonical, we can simply state properties referring to
names that occur in P (up to ∼α). In the above example, assuming R1 is
canonical, we can state “R1 never performs the output of n” as “whenever
R1 outputs a term M , then M 6∼α n”. Note that this statement precisely
reflects the intended meaning of the property.

Further, note that we only consider bound names in the definition above,
disregarding bound variables. This is because bound names correspond to
the generation of new values, and it is natural to express properties that
involve such generated values. In contrast, bound variables are used for in-
puts, splits, and decryptions. So, variables are bound to pre-existing terms,
only, and we never need to refer to them for the properties we consider. For
this reasons, we allow arbitrary α-conversion between variables.

We will study secrecy (Sect. 2.4) and authentication (Sect. 2.5) only for
canonical processes, as this simplifies the formalization of those properties.

Process Actions (
µ
−−→).

We now give the rules for
µ
−−→, representing one action performed by P . The

transition label µ can be either a name or the special symbol τ . We write
P{M/x} for the substitution of the term M at every free occurrence of x in
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P , possibly α–converting bound names if necessary.

µIn
M ∈ K

(K,T , (x).P )
τ
−−→ (K,T , P{M/x})

µOut
(K,T , 〈M〉.P )

τ
−−→ (K ∪ {M},T , P )

µDecl
n does not occur in any term of K

(K,T , (new n)P )
n
−−→ (K,T , P )

µRep
(K,T , ! P )

τ
−−→ (K,T , P | ! P )

µPar
(K,T , P )

µ
−−→ (K′,T , P ′) µ = τ ∨ µ 6∈ fn(Q)

(K,T , P |Q)
µ
−−→ (K′,T , P ′|Q)

µThen
(K,T , if M = M then P else Q)

τ
−−→ (K,T , P )

µElse
M 6= N

(K,T , if M = N then P else Q)
τ
−−→ (K,T , Q)

µDec
(K,T , decrypt {M}n as {x}n in P )

τ
−−→ (K,T , P{M/x})

µSplit
(K,T , split (M,N) as (x, y) in P )

τ
−−→ (K,T , P{M/x}{N/y})

These rules are rather standard. The µIn rule requires M ∈ K, thus modeling
the adversary sending a known term to the process. Rule µOut instead makes
the adversary learn the term M . Rule µDecl and µPar ensure fresh names
are generated each time a (new n) is executed.

Moreover, we note that if (K,T , P ) is closed (i.e., K only contains ground
terms and P has no free variables) all the states reachable from it are also
closed. Additionally, in the rules above the terms M and N are ground,
provided that the source state is closed. Finally, a canonical process may
evolve to a non-canonical one through µRep:

(K,T , ! (new n)P )
τ
−−→ (K,T , (new n′)P | ! (new n)P )

This is indeed a wanted effect: if n has to be kept secret, all all its instances
n′ must be too (with n ∼α n′); similarly when we study authentication.

Adversary Actions.

We can now define the
♠
−−−→ and

♠s/f
−−−−−→ transitions as follows.

♠Decision1
M ∈ K M

p
7−→DY N

(K,T , P )
♠
−−−→ (K,T , P )p,N
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♠Decision2
L,M ∈ K L,M

p
7−→DY N

(K,T , P )
♠
−−−→ (K,T , P )p,N

♠Success
(K,T , P )p,N ♠s−−−−→

p
(K ∪ {N},T + 1, P )

♠Failure
(K,T , P )p,N ♠f−−−−→

1−p
(K,T + 1, P )

The
♠
−−−→ transitions model the choice of:

• which entailment rule the adversary is going to apply, and

• which arguments it is applied to.

The target state records the term N the adversary is trying to obtain and
the probability p the adversary has to actually get it. When the adversary
chooses a DYGuess operation, the probability p is Pguess(η,T ) where T is

taken from the source state of the
♠
−−−→ transition. Once the choice is

performed, the ♠Success and ♠Failure rules model the actual application of
the entailment rule. In case of success, the term N is added to the adver-

sary’s knowledge. Note that the transition
♠s−−−−→
p

(resp.
♠f−−−−→
1−p

) records the

success (resp. failure) probability, inherited by the entailment rule applied.
Finally, note that T is incremented by either transitions of this kind.

2.4 Secrecy

Having established our adversary–aware semantics, we can evaluate the
strength of a given protocol. We first focus on checking whether a proto-
col guarantees secrecy. This property can be easily expressed in our model
because the states of our LTS explicitly expose the knowledge K of the ad-
versary. This allows us to check whether the adversary knows a term M
by simply looking whether M belongs in K. Since names in M can be α–
converted, we actually check whether M ∼α N ∈ K for some N (written
M@−K for short).

We define the probability that, given an initial knowledge K, the adver-
sary will learn a given term M by interacting with a process P for a limited
period. In order to accomplish this, we put a bound t on the number of
transitions of the computation at hand. This bound limits the sum of

• the number of interactions between the adversary and the process P
(i.e., of

µ
−−→ transitions), and

• the number of operations the adversary can perform (i.e., of
♠
−−→

♠s/f
−−−−→

pairs of transitions).
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We could instead use two different bounds for each kind of transition; how-
ever, this would not affect the results we are going to present. To keep our
presentation as concise as possible, we use thus the single parameter t.

We write σ for the generic state (K,T , P ), and σp,N for (K,T , P )p,N ;
also, we write the probability the adversary has to learn the term M as

S
t
M,η,Pguess

(σ)

For brevity, we often omit the parameters η and Pguess, insisting that they
are free. In order to define S

t
M(σ), we make the following assumptions. The

first is technical, while the second one is typical of a “worst case” analysis.

• σ is closed and K is nonempty (typically, K contains the bits 0, 1);

• among the transitions outgoing from a state and labeled by µ or ♠, we
consider only the one leading to the best state for the adversary. This
is fairly standard in formal models: a protocol is regarded as unsafe if
some execution trace leads to the disclosure of a secret.

Definition 2 The probability S
t
M,η,Pguess

(σ) is defined by induction on t by

the following equations. 2

S
t
M (σ) = 1 if M@−K (2.1)

S
0
M (σ) = 0 (2.2)

S
t
M (σ) = max

({
S

t−1
M (σ′)

∣∣∣ σ
µ
−−→ σ′

}
∪

{
S

t
M (σp,N )

∣∣∣ σ
♠
−→ σp,N

})
(2.3)

S
t
M(σp,N ) =

∑ {∣∣∣q ∗ S
t−1
M (σ′)

∣∣∣ σp,N
♠s/f
−−−−→

q
σ′

∣∣∣
}

(2.4)

Equation (2.1) checks whether M was disclosed in a given σ = (K,T , P ).
Equation (2.2) instead checks whether M was not disclosed and time ran
out (i.e., t = 0). Equation (2.3) chooses the transition which is the best

for the adversary; the chosen transition may be a process action
µ
−−→ or an

adversary action
♠
−−→ corresponding to some operation op. Equation (2.4)

considers both the cases when the operation op succeeds
(
σp,N ♠s−−−→

p
σ′

)

and fails
(
σp,N ♠f−−−→

1−p
σ′′

)
. Then, the probability of discovering M from

σp,N is the sum of the probability of discovering M from σ′ weighted by p,
and from σ′′, weighted by 1− p. Equation (2.4) could also be written as

S
t
M (K,T , P )p,N = p · S t−1

M (K ∪ {N},T + 1, P ) +

(1− p) · S t−1
M (K,T + 1, P )

2We assume that, whenever two equations overlap, the topmost one applies.
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The right hand sides of the equations in Definition 2 do not depend on the
choice of names, i.e. they are not affected by our constrained version of
α–conversion. Indeed, we use in (2.1) the relation @− that gets rid of α–
renaming; the other cases are trivial (case (2.2)) or follow immediately by

induction. Also, from any state σ, only finitely many transitions
µ
−−→ and

♠
−−−→ exit (up to α–conversion). Therefore, in (2.3), max is applied to a
finite set. Moreover that set is nonempty because there is always at least

the
♠
−−−→ transition corresponding to the DYCons of some term belonging to

the nonempty knowledge K. Thus S
t
M(σ) is well–defined.

2.4.1 A Probabilistic Secrecy Notion.

The probability S
t
M,η,Pguess

(σ) measures the strength of a protocol P as a
function of the parameters t,K,T , η and Pguess. We now aim for a definition
of safe protocol which abstracts from those parameters. We recall that
a function is said negligible if it approaches zero faster than any rational
function. Formally:

Definition 3 We say that a function f : N→ R is negligible iff

∀k ∈ N ∃η0 ∈ N ∀η ∈ N. η > η0 =⇒ |f(η)| < η−k

For example, 2−η is negligible, while η−2 is not.
We regard a protocol as safe if, for any adversary with polynomially

bounded resources (with respect to the security parameter η), the probability
of disclosing a secret (as a function of η) is negligible, provided that the
cryptosystem is strong, i.e. it can be broken only with a negligible probability
by such an adversary. This abstracts from the various notions of protocol
security found in the computational approach, e.g. [12, 63, 23], and does
not imply any of them. Our notion introduces only a few computational
aspects, but it refines the standard notions of security used in the formal
method approach.

The probability functions that we use have two arguments and so we
constrain them to be negligible as follows.

Definition 4 We call a function Pguess(η,T ) : N × N → [0, 1] η–negligible
iff

1. ∀T ,T ′, η. T ≤ T ′ =⇒ Pguess(η,T ) ≤ Pguess(η,T ′)

2. ∀c ∈ N. Pguess(η, ηc) is negligible

Requirement 1 simply says that Pguess is monotonic in its second argument.
Requirement 2 imposes that the guessing probability is negligible when T
is a polynomial in η. This condition expresses the robustness of the cryp-
tosystem in presence of an adversary that performed a polynomial number
of operations in the previous steps of the computation in hand.
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We map the definition of safe protocol into our model. Again, we (poly-
nomially) bound the resources of the adversary, letting t = ηk. Finally,
we assume that the adversary initially knows only the terms 0 and 1. Ac-
cordingly to these assumptions, and recalling that P , the specification of
the protocol, is canonical (see Def. 1), we write σ0 for the initial state
({0, 1}, 0, P ). We can now define secrecy in the following way:

Definition 5 We say that a protocol P guarantees the DYP–secrecy of a
given term M iff, for any Pguess : N× N→ [0, 1],

Pguess is η–negligible =⇒ ∀k ∈ N. S
ηk

M,η,Pguess
(σ0) is negligible

The above definition can be read as: P guarantees secrecy if, provided we
are using a strong cryptosystem, any adversary with polynomially bounded
resources has only negligible probability of discovering M . Note that, when
Pguess is not null, bounding the resources of the adversary (t = ηk) is crucial:
for any protocol P which outputs a term where M occurs, we have

lim
t→∞

S
t
M,η,Pguess

(σ0) = 1

Indeed, an unbounded adversary can repeatedly apply the DYGuess rule on
any encryption until it eventually succeeds.

Towards a Comparison with Standard Secrecy.

We compare the above definition of DYP–secrecy with the standard notion
of secrecy used in formal models (DYstd–secrecy), which assumes a deter-
ministic Dolev–Yao adversary.

Definition 6 We say that a protocol P guarantees the DYstd–secrecy of a
term M iff

∀σ. σ0 −−→
∗ σ = (K,T , P ′) =⇒ M 6@−K

where the arrow −−→ stands for either a
µ
−−→ transition or a pair

♠
−−→

♠s−−−→
derived from a deterministic Dolev–Yao rule (i.e. not using a DYGuess).

Note that this definition does not bound the number of transitions and
therefore, unlike Definition 5, it is not resource–conscious.

It is convenient to rephrase the DYstd–secrecy property using S
t
M,η,Pguess

(σ)
in order to simplify the comparison between Definitions 5 and 6. An obvi-
ous way of making the DYGuess rule harmless is assuming a null guessing
probability: this makes our model deterministic.

Definition 7 Let P0 be the constant null function. We say that a protocol
P guarantees the DY–secrecy of a term M iff

∀t, η ∈ N. S
t
M,η,P0

(σ0) = 0
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Proposition 1 For any σ, the probability S
t
M,η,P0

(σ) is either 0 or 1.

Proof. Trivial induction on t. �

Moreover, it is easy to show by induction that Definitions 6 and 7 are indeed
equivalent, as the following proposition states:

Proposition 2 P guarantees DYstd–secrecy (of M) iff P guarantees DY–
secrecy (of M).

Proof. Easy induction on t and the number of −−→ transitions (see Defini-
tion 6). �

Proposition 2 enables us to compare DYP–secrecy against DYstd–secrecy
by comparing DYP–secrecy against DY–secrecy, as shown in the next section.

2.4.2 Comparing DY and DYP Adversaries

The following lemma says that the probability an adversary has to break a
protocol increases with the power of the adversary, as expected.

Lemma 1 (Monotonicity) If ∀η,T ∈ N. Pg1(η,T ) ≤ Pg2(η,T ) and t1 ≤
t2, then

∀η ∈ N ∀σ. S
t1
M,η,Pg1

(σ) ≤ S
t2
M,η,Pg2

(σ)

Proof. Easy induction on t. �

We introduce two preliminary lemmata that state simple analytic prop-
erties. Their proofs are straightforward calculus arguments.

Lemma 2 ∃x̄ > 0 ∀x. 0 ≤ x < x̄ =⇒ 3−x ≤ 1− x

Proof. The function

f(x) = 3−x − 1 + x

is a C∞(R) function with derivative

f ′(x) = − ln 3 · 3−x + 1

Since f(0) = 0 and f ′(0) = − ln 3 + 1 < 0 there is some x̄ > 0 such that

∀x.0 ≤ x < x̄. f(x) ≤ 0

This completes the proof. �
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Lemma 3 For any c ∈ N,

lim
x→∞

1− 3−x−c−1

x−c
= 0

Proof. If c = 0, we have limx→∞(1 − 3−x−1

)/1 = 0. Otherwise, for c ≥ 1,
the above is an indeterminate form 0/0. By l’Hôpital’s rule, we get

lim
x→∞

1− 3−x−c−1

x−c
= lim

x→∞

− ln 3 · 3−x−c−1

· (−(−c− 1)x−c−2)

−c · x−c−1
=

= −
ln 3 · (c + 1)

c
· lim

x→∞

3−x−c−1

x
= 0

�

Our main result states the equivalence of DYP–secrecy and DY–secrecy.

Theorem 1 P guarantees the DYP–secrecy of M if and only if P guarantees
the DY–secrecy of M .

Proof. We rewrite the statement in the following way:

P does not guarantee DYP–secrecy ⇐⇒ P does not guarantee DY–secrecy

(⇐) We have that, for some ε > 0, ∃t ∈ N. S
t
M,η,P0

(σ0) = ε. Therefore
we can apply the monotonicity lemma and state that, for every η > t,
S

η
M,η,P0

(σ0) ≥ ε. This implies that S
η
M,η,P0

(σ0) is not negligible (as a function
of η). Since P0 is η–negligible, we conclude that P does not guarantee the
DYP–secrecy of M .

(⇒) Intuitively, we examine the tree whose branches represent each possible
execution of P , considering that the operations of the adversary may or may
not succeed. By hypothesis, the probability the adversary has to discover
M is non–negligible. This probability can be expressed by a sum over all
branches of the tree; however, we show that it is negligible the probability of
discovering M summed over all branches that require at least one successful
guess. Therefore, the probability of the branch where every guessing attempt
fails must be non–negligible, and thus positive. This branch shows that a DY

attack for P exists, so we conclude that P does not guarantee DY–secrecy.

We now proceed with the proof. By hypothesis, for some k and some

η–negligible Pguess, S
ηk

M,η,Pguess
(σ0) is not negligible.

We now examine the definition of S
t
M,η,Pguess

(K,T , P ). Given t, M , η,
Pguess, K, T , and P , we can fully expand the definition to form a tree like
the following one:
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1

0

1

0

0

max

max

max

pT = Pguess(η, T )

µ ♠ ♠s/f ♠ ♠s/f

M@−K

M 6@−K

M 6@−K

M 6@−K

M@−K

+
p1

1 − p1

+

p0

1 − p0

We name this tree T̄ . The tree T̄ is formed by internal nodes, which can
be either max nodes or weighted sum nodes, and leaf nodes, which can be
either a constant 0 or a constant 1. The max nodes can have an arbitrary

number of children (one for each
µ
−−→ and

♠
−−−→ transition). The weighted

sum nodes have exactly two children, each with its weight (the probability
of succeeding or failing to apply a Dolev–Yao rule) as a label on the edge.

We denote the set of all root-to-leaf simple paths of T̄ with Π̄. For every
π̄ ∈ Π̄ we define a weight, by letting weight(π̄) be the product of all the edge
labels in the path; we also define length(π̄) as the length of the path and
result(π̄) as the value of the leaf at the end of the path.

A simple inductive reasoning shows that the following properties hold:

∀π̄ ∈ Π̄. length(π̄) ≤ 2t (2.5)

∀π̄ ∈ Π̄. S
t
M,η,Pguess

(K,T , P ) ≥ weight(π̄) · result(π̄) (2.6)

We now simplify the tree T̄ by removing every max node from it and
simply replacing it with one of its children which evaluate to the maximum.
This new tree is made only of weighted sum nodes and leaf nodes. Simplify
further the tree as follows: remove all the sums with (outgoing edges with)
weights 0 and 1 derived from Dolev–Yao rules other than the DYGuess rule;
replace them with the success subtree (the one reachable through the edge
with weight 1). The resulting tree is thus formed only by weighted sums
with weights Pguess(η,Ti) and 1−Pguess(η,Ti) and leaves. It has the following
form.

1

1

0

1

pT = Pguess(η, T ) +
1 − p0

p0

+
1 − p1

p1

+
1 − p4

p4

We name this tree T and call it the simplified tree of T̄ . Note that, given t,
M , η, Pguess, K, T , and P , the tree T is still equivalent to the old tree, in
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that it still evaluates to S
t
M,η,Pguess

(K,T , P ). In a similar way to Π̄, we write
Π for the set of every root-to-leaf simple path of T . Moreover, we extend
weight(−), length(−) and result(−) to every π ∈ Π.
Again, a simple inductive reasoning shows that the following properties hold:

∀π ∈ Π. length(π) ≤ t (2.7)
∑

π∈Π

weight(π) = 1 (2.8)

S
t
M,η,Pguess

(K,T , P ) =
∑

π ∈ Π
result(π) = 1

weight(π) (2.9)

In order to prove the theorem, we now study how the tree T̄ corre-

sponding to S
ηk

M,η,Pguess
(σ0) changes as η increases. For every η, we write

T̄ η and Π̄η ( T η and Πη) respectively for the corresponding tree (simpli-
fied tree) and the set of its paths. Also, we write πη

fail for the path of Πη

that represents the event in which the DYGuess rule always fails. We de-
note the labels of the edges of πη

fail by Pguess(η,T η
i ), therefore weight(πη

fail) =
∏length(πη

fail
)

i=0 (1− Pguess(η,T η
i )).

We now claim that the hypothesis implies that, for some η, result(πη
fail)

is 1. The proof is by contradiction. Assume result(πη
fail) = 0 for every η: we

obtain

S
ηk

M,η,Pguess
(σ0) =

∑

π ∈ Πη

result(π) = 1

weight(π) =

=
∑

π ∈ Πη \ {πη
fail}

result(π) = 1

weight(π) ≤
∑

π ∈ Πη \ {πη
fail}

weight(π)

which by (2.8), yields

S
ηk

M,η,Pguess
(σ0) ≤ 1− weight(πη

fail) =

= 1−

length(πη
fail

)∏

i=0

(
1− Pguess(η,T η

i )
)
≤

≤ 1−
(
1− Pguess(η, ηk)

)length(πη
fail

)
(2.10)

The last inequality derives from Pguess being η–negligible and T η
i ≤ ηk.

Applying (2.7) to T η yields length(πη
fail) ≤ ηk. Therefore, from (2.10) we

obtain the following asymptotic bound

S
ηk

M,η,Pguess
(σ0) ≤ 1−

(
1− Pguess(η, ηk)

)ηk



32 CHAPTER 2. PERFECT ENCRYPTION

that, by Lemma (2), implies (asymptotically)

S
ηk

M,η,Pguess
(σ0) ≤ 1− 3−Pguess(η,ηk)·ηk

(2.11)

We now find a contradiction by showing that S
ηk

M,η,Pguess
(σ0) is negligible. For

any c ∈ N, we show that S
ηk

M,η,Pguess
(σ0) ≤ η−c if η is sufficiently large. Since

by hypothesis Pguess is η–negligible, we can assume η to be large enough
such that Pguess(η, ηk) · ηk ≤ η−c−1. From this and (2.11) we obtain

S
ηk

M,η,Pguess
(σ0) ≤ 1− 3−η−c−1

Therefore, by Lemma (3), S
ηk

M,η,Pguess
(σ0) is negligible.

Now, having established that result(πη
fail) = 1 for some η, we show that

P does not guarantee DY–secrecy, i.e. that for some t, S
t
M,η,P0

(σ0) > 0. We

start by lifting the path πη
fail from the simplified tree T η to the non simplified

tree T̄ η, by choosing the path in Π̄η leading to the same leaf which πη
fail leads

to. We name the path thus obtained π̄η
fail.

We now study the tree T̄ which corresponds to S
ηk

M,η,P0
(σ0), comparing

it to the tree T̄ η which instead corresponds to S
ηk

M,η,Pguess
(σ0). A simple

inductive reasoning shows that the two trees are identical except for the
labels of the edges. Therefore there is some path π̄ ∈ Π̄ which corresponds
to π̄η

fail. As π̄η
fail, the path π̄ represents the event in which the DYGuess rule

always fails and the other rules always succeed. In T̄ , the weight associated
to the failure of a DYGuess rule is 1− P0(η,T η

i ) = 1− 0 = 1 and the weight
associated to the success of other rules is 1 as well. Therefore, all the labels
on the edges of π̄ are equal to 1 and we have weight(π̄) = 1. Moreover,
we also have result(π̄) = 1 since the path π̄, as π̄η

fail, leads to a leaf with a
constant 1.

Applying (2.6) yields

S
ηk

M,η,P0
(σ0) ≥ weight(π̄) · result(π̄) = 1

thus proving that P does not guarantee the DY–secrecy of M . �

Theorem 1 and Proposition 2 state that the definitions of DYstd–secrecy,
DY–secrecy, and DYP–secrecy are all equivalent. Intuitively, an adversary
with unbounded resources, but no hope of guessing a key, is as powerful as
an adversary that might guess a key (with a small probability) but can only
act for a bounded amount of time. This equivalence, however, only holds
asymptotically (with respect to the key length).
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2.5 Authentication

We extend our model to deal with authentication protocols between an ini-
tiator and a responder. To this purpose, we use a non-injective authentica-
tion property [62, 35]. Informally, non injective authentication requires that,
whenever the responder completes its protocol, it must have interacted with
the initiator and must agree with the initiator on some set of values.

Mimicking the Woo–Lam approach [70], we introduce two annotations
for when the initiator starts an authentication run (begin M) and for when
the responder completes it (end M). These take the form of prefixes. The
syntax of processes becomes the following.

P ::= . . .
| begin M.P authentication start
| end M.P authentication end

Intuitively, the initiator and the responder should agree on the value M .
We also augment the states σ of our LTS to include a set of authentica-

tion events E . The generic state σ now is (K,T , P, E). The set E records all
the actions begin M and end M the process performs during its execution.
Formally, we add the following rules to our operational semantics:

µBegin
(K,T , begin M.P, E)

τ
−−→ (K,T , P, E ∪ {begin M})

µEnd
(K,T , end M.P, E)

τ
−−→ (K,T , P, E ∪ {end M})

The rules µDecl and µPar change as follows, because they use they set E .
In all the other rules, the set E is added in the source and target states of
transitions, with no change.

µDecl
n does not occur in any term of K and of E

(K,T , (new n)P, E)
n
−−→ (K,T , P, E)

µPar
(K,T , P, E)

µ
−−→ (K′,T , P ′, E ′) µ = τ ∨ µ 6∈ fn(Q)

(K,T , P |Q, E)
µ
−−→ (K′,T , P ′|Q, E ′)

As done in the previous section, we write A
t
η,Pguess

(K,T , P, E) for the
probability the adversary has to disrupt authentication at a certain step of
the computation of P , assuming that

• the adversary’s initial knowledge is K,

• the adversary has performed T operations in the previous steps,

• the adversary can guess keys with probability Pguess(η),

• the number of transitions is limited by t, and
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• the authentication actions performed in the previous steps were recorded
in E .

Under the same assumptions we made in Sect. 2.4, we define A
t
η,Pguess

(K,

T , P, E) as follows. The definition is essentially the same as Definition 2,
except for the first item below. It specifies when the adversary succeeds:
there is an end M action which is not preceded by a matching begin M .

Definition 8 A
t
η,Pguess

(σ) is defined by induction on t by the following equa-
tions.

A
t(σ) = 1 if ∃M. end M ∈ E ∧ begin M 6∈ E (2.12)

A
0(σ) = 0 (2.13)

A
t(σ) = max

({
A

t−1(σ′)
∣∣∣ σ

µ
−−→ σ′

}
∪

{
A

t(σp,N )
∣∣∣ σ

♠
−→ σp,N

})
(2.14)

A
t(σp,N ) =

∑ {∣∣∣q ∗A
t−1(σ′)

∣∣∣ σp,N
♠s/f
−−−−→

q
σ′

∣∣∣
}

(2.15)

As in Definition 2, the topmost applicable equation is taken. Also, note that
α–conversion does not affect the result of the equations above. Indeed, the
new name replaces the old one in all the components of a state, notably in E .
Finally, in equation (2.14) the operator max is applied to a finite nonempty
set. Thus the probability A

t
η,Pguess

(K,T , P, E) is well-defined.

2.5.1 A Probabilistic Authentication Notion

As for secrecy, we can abstract from the parameters t, Pguess,K,T and E .
We say that a protocol P guarantees authentication if any probabilistic
polynomially bounded adversary with negligible guessing probability can
disrupt authentication only with a negligible probability. We write σ0 for
the initial state ({0, 1}, 0, P, ∅).

Definition 9 We say that a protocol P guarantees DYP–authentication iff,
for any function Pguess : N× N→ [0, 1],

Pguess is η–negligible =⇒ ∀k ∈ N. A
ηk

η,Pguess
(σ0) is negligible

Below, we give the standard definition of authentication.

Definition 10 We say that a protocol P guarantees DYstd–authentication
iff

∀σ. (σ0) −−→
∗ σ = (K,T , P ′, E) =⇒ 6∃M. end M ∈ E ∧ begin M 6∈ E

where the arrow −−→ stands for either a
µ
−−→ transition or a pair

♠
−−→

♠s−−−→
derived from a deterministic Dolev–Yao rule (i.e. not using a DYGuess).
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We can also rephrase the above using A
t
η,Pguess

(σ) as follows.

Definition 11 Let P0 be the constant null function. We say that a protocol
P guarantees DY–authentication iff

∀t, η ∈ N. A
t
η,P0

(σ0) = 0

Of course, the two definitions above are equivalent.

Proposition 3 P guarantees DYstd–authentication if and only if P guar-
antees DY–authentication.

Proof. Easy induction on t and the number of −−→ transitions (see Defini-
tion 10). �

We now compare DYstd–authentication and DY–authentication. As for
secrecy, also for authentication the DY adversary is as powerful as the DYP

one.

Theorem 2 P guarantees DYP–authentication if and only if P guarantees
DY–authentication.

The proof is similar to the proof of Theorem 1, and therefore we omit it.

We finally observe that Theorem 2 and Proposition 3 show the equiva-
lence between DYstd–authentication, DY–authentication, and DYP–authen-
tication.

2.6 Non Constant–Cost Operations

In the definition of S
t
M,η,Pguess

(K,T , P ) the bound t put on the adversary is
decreased by one unit for each application of an entailment rule. So, every
operation of the adversary has a constant cost.

This is an oversimplification; a more adequate modeling can be obtained
by relating the amount of resources consumed to the probability of success of
the operation involved. For instance, we could have the following DYGuess

rule.

DYGuess {M}n
Pguess(η,T ,r)

7−→DYr
n (r ≥ 1)

The quantity r represents the amount of resources the adversary may decide
to spend in guessing. Depending also on the parameter r, Pguess(η,T , r) com-
putes a value that expresses the probability of success. The more resources
are consumed, the more likely guessing is; thus we require Pguess(η,T , r) to
be monotonic on r.
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We slightly change the meaning of T , by letting it count the number of
resources units spent by the adversary in the previous steps of the computa-
tion, instead of the number of the operations performed. Note that, if only
constant cost operations are considered, the two notions collapse.

Of course, we consider strong cryptosystems, so we still need to assume
that Pguess is η–negligible. The definition of η–negligible function is adapted
as follows:

1. ∀T ,T ′, r, r′, η. T ≤ T ′ ∧ r ≤ r′ =⇒ Pguess(η,T , r) ≤ Pguess(η,T ′, r′)

2. ∀c ∈ N. Pguess(η, ηc, ηc) is negligible

The second point requires that the guessing probability is negligible provided
T and r are polynomials. Intuitively, if the adversary spent a polynomially
bounded amount of resources in the past (T is a polynomial) and tries to
guess spending only a polynomial amount of resources (r is a polynomial),
the probability that guessing succeeds should be negligible.

We also need to adapt the semantics of the adversary actions. We assign
r = 1 to operations other than a DYGuess, and we use the following rules.
Note that the parameter r is not a constant: it may be chosen at run–time
by the adversary.

♠Decision1

M ∈ K M
p
7−→DY

r
N

(K,T , P )
♠
−−−→ (K,T , P )r,p,N

♠Decision2

L,M ∈ K L,M
p
7−→DY

r
N

(K,T , P )
♠
−−−→ (K,T , P )r,p,N

♠Success
(K,T , P )r,p,N ♠s−−−−→

p
(K ∪ {N},T + r, P )

♠Failure
(K,T , P )r,p,N ♠f−−−−→

1−p
(K,T + r, P )

Note that now T is incremented by r, instead of 1, to count the number of
resource units spent by the adversary in the running computation.

Finally, we change the definition of S
t
M,η,Pguess

(K, P, E) so that, whenever
an entailment rule requiring r resources is applied, the number t is decreased
by r units. Formally, we have

S
t
M(σ) = 1 if M@−K (2.16)

S
0
M(σ) = 0 (2.17)
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S
t
M (σ) = max

({
S

t−1
M (σ′)

∣∣∣ σ
µ
−−→ σ′

}
∪

{
S

t
M (σr,p,N)

∣∣∣ σ
♠
−→ σr,p,N ∧ r ≤ t

})
(2.18)

S
t
M (σr,p,N) =

∑ {∣∣∣q ∗ S
t−r
M (σ′)

∣∣∣ σr,p,N
♠s/f
−−−−→

q
σ′

∣∣∣
}

(2.19)

Note that equation (2.18) only considers the adversary actions that can be
actually performed, i.e. those with 1 ≤ r ≤ t. This implies that only a
finitely branching fragment of the transition system is considered. Thus,
the max in equation (2.18) is applied to a finite non empty set and therefore
S

t
M,η,Pguess

(σ) is well–defined.

The definition of DYP–secrecy needs no changes: it simply uses the new
definition of η–negligible function and the above equations for S

t
M,η,Pguess

(σ).

Of course, it is straightforward to change our authentication–related def-
initions in a similar way, thus using this more precise resource accounting
also for DYP–authentication.

Our results, notably Theorems 1 and 2, still hold when non constant cost
operations are added to our model. The proofs change only in a marginal
way. Similarly, following the line of this section, we could add more param-
eters to the function Pguess to get an even more detailed, concrete view of
the robustness of the cryptosystem. For instance, we could made Pguess to
increase as the adversary knowledge K becomes larger, i.e. when the ad-
versary intercepts more messages. We foresee that our results still remain
valid, provided the definition of η–negligible function is suitably changed.

2.7 Extensions

Our model can easily be further extended to include other adversary actions
and cryptographic primitives. First, we present those extensions that do not
significatively affect our results; in particular, it is easy to prove Theorems 1
and 2 also in the model enriched with all the four extensions below, provided
that the probability to break the cryptosystem is kept negligible.

Private Channels

A typical way of specifying secure links is using private channels, as done
in the Spi and the π–calculus. Adding private channels to our calculus is
straightforward. Extending our adversary–aware semantics is easy, because
terms sent through the private channels do not affect the knowledge of the
adversary K.



38 CHAPTER 2. PERFECT ENCRYPTION

Breaking without Guessing

In our model we allowed the adversary to guess, i.e. to deduce the key
from a given encryption. We can also give the adversary the ability to break
encryptions and get the plaintext without guessing the key. We can do this
by adding the rule

DYBreak {M}n
p
7−→DY M

As for guessing, we assume of course that p is expressed as some negligible
function Pbreak(η). Note that this operation is less powerful than guess-
ing: only the message M is disclosed with breaking, while guessing reveals
both the key and M . Note however that assuming Pbreak negligible is still
insufficient to fully guarantee robustness in a computational sense.

Blind Guessing

We could also allow blind guessing, i.e. guessing without using any previous
knowledge.

DYBlindGuess
p
7−→DY n

This rule differs from DYGuess in that it allows the adversary to guess, e.g.,
a key that has not yet been used by the protocol, or a nonce. Therefore, it is
strictly more powerful than the DYGuess rule. Pragmatically, this random
guessing operation requires the probability function to be 2−η.

Other Cryptographic Primitives

So far, we only considered symmetric encryption. Modeling asymmetric
encryption and digital signatures requires additional rules that explicitly
break the cryptosystem beyond the standard Dolev–Yao rules for asymmet-
ric cryptography. Many different rules can be used: we just give an example.

We write n+ and n− for public and private keys, respectively. The
DYInvert rule below allows the adversary to compute the private key from the
corresponding public key. The DYFakeSign rule instead allows the adversary
to sign a message using only the public key.

DYInvert n+ p
7−→DY n− DYFakeSign M,n+ q

7−→DY [M ]n−

As above, p and q should be negligible.

We now discuss some other extensions that require substantial and deeper
modifications to our model, that we do not further investigate here.
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Generalizing the Security Property

Currently, we considered only secrecy and authentication properties. How-
ever, we could extend our results to other security properties as well. In
particular, it could be useful to develop some kind of probabilistic temporal
logic in order to do that (see e.g. [45]). Besides specifying security prop-
erties, the logic might help us to better understand the difference between
the DY and the DYP models. For example, we can consider any property
ϕ expressed in the logic, and test whether these models are equivalent with
respect to that property, i.e.

∀P process. ϕ(P ) in DY ⇐⇒ ϕ(P ) in DYP

Actually, Sects. 2.4 and 2.5 establish the above proposition for secrecy and
authentication respectively.

Random Choice

Sometimes protocols are specified using a toss–a–coin operation. In the
computational approach this is easy to model, while the usual non–determin-
istic operator + of process calculi is not adequate. A probabilistic choice
operator +p (see e.g. Larsen and Skou [46]) accommodates well in our

framework, originating transitions on the form
µ
−−→

p
. The operator +p could

help formalizing security properties that have been faced so far only within
the computational approach, e.g. the correctness of zero-knowledge protocols
[40].

Behavioural Equivalence

Some authors advocate the use of behavioural equivalence for security prop-
erties. Besides the work mentioned in the Introduction, there are proposals
for studying non–interference. A classical deterministic approach is pre-
sented in [35], while a probabilistic version of non–interference is studied
in [58]. All these proposals and those cited in the Introduction assume a
standard Dolev–Yao adversary. It would be interesting to study if and how
these notions change when a DYP adversary is assumed, instead.

Partial Information

In the real world, the adversary may not be able to guess keys but still be
able to perform statistical attacks and gather some partial information from
intercepted messages. Unlike the computational complexity model, ours is
not apt to study this kind of attacks. This is because we use a set to represent
the knowledge of the adversary, thus implicitly assuming that the adversary
either has complete knowledge of a term or no knowledge at all. In [27],
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Clark, Hunt, and Malacaria deal with information leakage using Shannon’s
entropy. Further investigation is needed to see whether this approach can
also be applied to process calculi and formal methods.

Average–case vs. Worst–case Analysis

For studying secrecy, in the definition of S
t
M,η,Pguess

(K,T , P ), we only consider

the transition which is the best one for the adversary (i.e., the worst case for
P ). The same holds for authentication in the definition of A

t
η,Pguess

(K,T , P, E).
Thus, we perform a worst–case analysis. An alternative would be an average–
case analysis: we could consider all the transitions and weight each of them
according to a given distribution. The hard point is to define a distribution
that faithfully reflects both the scheduling of the concurrent actions by the
protocol and the choices the adversary makes among its operations.

2.8 Conclusions

In this chapter we presented a simple process calculus that can be used
to specify cryptographic protocols. We introduced two distinct notions of
secrecy, one borrowed from formal methods (DY–secrecy) and one adapted
from the computational complexity theory (DYP–secrecy). Under suitable
assumptions, we proved the equivalence of these two secrecy definitions. A
similar result holds for authentication.

Consequently, the perfect encryption assumption of the formal method
approach can be weakened, as we propose. Thus, one can use standard
techniques for protocol analysis (e.g. type systems [1], control flow analysis
[16, 14], model checkers [50, 53], etc.) to formally verify whether a given
protocol is DYP–safe. Indeed, in Chapters 3 and 4 we shall define a technique
for protocol verification that can be used to this purpose.

As the reader may have noticed, our proofs only depend on the tran-
sition system and are independent of the calculus and of the definition of
its semantics. Therefore our result can be easily extended to other calculi,
with non–standard operations, and to other properties, involving different
measures of transitions than probability. Indeed, we showed that protocol
analysis does not require a full inspection of transition systems: only those
paths do suffice, that can be taken by a Dolev–Yao adversary.
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Abstract

A technique is presented for computing a finite over-approximation of a
language of terms, modulo rewriting. The language is represented by an
arbitrary term automata. The approximation is a term automata as well,
and it already embodies rewriting, i.e. its language includes all the original
terms and all their possible rewritings. In Chapter 4, we shall use this
technique to statically verify cryptographic protocols, expressed in process
calculi involving non-free algebras of terms.

3.1 Introduction

In the last years, various process calculi have been used to specify crypto-
graphic protocols [52, 4, 14], making it possible to build automatic tools for
reasoning on them. Among these, we mention dynamic analyzers [53, 50]
and static analyzers [15, 16, 17, 18, 14, 24, 1, 59].

Each of the above calculi fixes once and for all a specific set of cryp-
tographic primitives, and relies on having a single representation for each
value. Further, destructing composed terms is only possible through pattern
matching, which is a feature of these calculi, and not of their term algebras
which are free.

For instance, the simple process calculus of Chapter 2 considers pairs
and encryptions, only. There, terms are built using constructors, and de-
struction is performed only through processes split M as (x, y) in P and
decrypt M as {x}N in P . So, there we indeed use pattern matching for
destruction, and terms form a free algebra.

Process analysis can often exploit the freeness of the term algebra. For
instance, the control flow analysis (CFA) of calculi for cryptographic proto-
cols [57] succeeds in computing a finite representation for (an approximation
of) the set of terms that can be dynamically bound to variables occurring
in the protocol specification. Briefly, this is done for the Spi–calculus [4]
and related calculi by generating constraints over set of terms, and then
solve them using the Succinct Solver [65]. We shall give more details about
this process in Chapter 4. Here, we simply note that the constraint solving
procedure is simplified when the terms are free. Indeed, under the freeness
assumption the solver can assume that syntactically different terms have
distinct meaning. Basically, each term is always in normal form.

Unfortunately, as we argued in Sect. 1.1, not all cryptographic primitives
admit a single representation, e.g. XOR. In this case, if we want to follow
the CFA approach for protocol analysis, we need a technique for solving
constraints over sets of terms that does not rely on term freeness. For
instance, we could choose a set of the most common primitives, including
non-free ones, and try to adapt the solving process to this case. Rather, we
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shall follow a more general approach, and not use a fixed set of primitives.
Instead, we allow the primitives to be specified along the protocol, through a
term rewriting systemR. Further, we put no restrictions onR. In particular,
we do not require R to be confluent or terminating.

In this chapter, we present a static analysis technique for approximating
term sets modulo rewriting. This approximation technique is the foundation
of the static analysis of protocols we shall define in Chapter 4. Here, we
focus on how to finitely represent term sets, and how to compute an over-
approximation of all their R-equivalent forms.

The representation we use for sets of terms exploits non-deterministic
finite tree automata (NTFA) [28]. In fact, an NTFA A has an associated
language of terms, which are the terms reachable trough the derivation re-
lation →A defined by A. Note that the language can be an infinite set of
terms, while A finitely represents it. Also, NTFA are a convenient represen-
tation, since they allow a number of common operations on languages, e.g.
union, to be easily performed. Because of this, when a term set T is not the
language of a NTFA, one might still be able to define an automaton such
that its language is a superset of T , as an over-approximation of it.

Our goal is over-approximating the language of A up to rewritings in R.
In other words, we approximate the relation defined by →∗

A→
∗
R, where →R

denotes the term rewriting relation defined by R. For this, it is convenient
to approximate instead the larger relation (→∗

A→
∗
R)∗ which allows for in-

terleaving derivations with rewritings. To do that, we look for a new tree
automaton A′ such that

→∗
A′= (→∗

A′→∗
R)∗ ⊇ (→∗

A→
∗
R)∗ ⊇→∗

A→
∗
R

We call such an A′ fully-exposing because its language is already closed un-
der rewritings in R, so each term in the language is exposed in A′ under all
its possible rewritings. We shall define a (polynomial-time) completion algo-
rithm to compute such an A′ given A and R. Further, we also implemented
a tool for computing such an approximation.

The idea of approximating reachability in rewriting systems appeared
in a work by Jacquemard [44]. The completion algorithm was discussed in
several works by Genet et al. [38, 37, 33, 66]. These works anticipated ours
in [72], where we essentially re-developed the ideas behind the completion
algorithm and NTFA, without being aware such techniques were already
known. Unfortunately, a part of our research efforts resulted in duplicating
previous work. Our use of a different terminology surely contributed in
preventing us to find these works.

Here, while we do adopt the standard terminology, we follow the presen-
tation of [72], extending its results in order to simplify the static analysis of
protocols of Chapter 4. Also, we discuss some implementation details, such
as the actual heuristics we adopted, that improved both the performance
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and the precision of the results of our tool. We also provide examples, and
report on the successes and failures. We anticipate that in Chapter 4 we
shall establish forward secrecy for a Diffie-Hellman–based protocol that in-
volves exponentials, which are difficult to approximate since they are subject
to many rewritings.

Another tool that exploits the completion algorithm is Timbuk [67]. No-
tably, when some forms of rewriting systems are used, this tool is able to
compute exact representations for languages up to rewriting. Our tool lacks
this feature. Another difference is that Timbuk, at least in the current ver-
sion 2.2, sometimes relies on user interaction, while our tool always uses
heuristics in order to compute the approximation in a completely automatic
way. Further, our tool ensures termination for any rewriting system, while
this is not the case for Timbuk. We however believe that techniques similar
to ours could be used within Timbuk, so to merge the features of the two
tools. Indeed, always terminating variants of Timbuk started to appear [19].

Summary Background and notation are in Section 3.2. Section 3.3 es-
tablishes the semantic properties we exploit throughout this chapter. An
algorithm for left-linear rewritings is defined and discussed in Section 3.4,
while in Section 3.5 we relax the left-linearity assumption, adapting our
algorithm to any rewriting system. Finally, Section 3.9 reports on our ex-
periments with our tool.

3.2 Preliminaries

We shall use the following denumerable sets: the set Q of states (@q, @a,
@b, . . . ), the set X of variables (X, Y ,. . . ), the set F of function symbols (f,
g, +, 1, . . . ).

Definition 12 The set of terms T is inductively defined by

T ::= X variable
@q state
f(· · · , T, · · · ) application

By definition, we have Q∪X ⊆ T . Moreover, we assume that each function
symbol f has a fixed associated arity. When the arity is zero (as for the
function symbol 1), we simply write f instead of f().

The size of a term is the number of the applications occurring in it. The
depth of a term is the maximum number of nested applications. For instance,
g, f(X), and f(@q) have depth and size 1, while f(g, h) has depth 2 and size
3, and X and @q have depth and size zero. The variables occurring in a
term T are denoted by vars(T ).

Also, we adopt the following conventions:
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• a ground term (∈ Tgr) is a term with no occurring variables;

• a simple term (∈ Tsm) is a term with no occurring states;

• a pure term (∈ Tpr) is a term which is both ground and simple;

• a plain term (∈ Tpl) is a ground term of depth at most one.

Similarly, we shall use the sets Cgr, Csm, Cpr to denote the sets of ground,
simple, and pure contexts C[•], respectively. That is, C[•] ∈ Ctype iff C[T ] ∈
Ttype, where T is an arbitrary pure term, and type ranges over gr, sm, pr.
C is the set of all contexts. Sometimes, we also use contexts with many
placeholders C[•, . . . , •].

A substitution is a function σ : X → Tgr. We adopt the usual notation
σx for the application σ(x). When σx = T , we say that σ replaces x with
T . Substitutions are homomorphically extended to terms. So, we write
σT as the application of the extension of σ to term T . We shall refer to
substitutions resulting from pattern matching as bindings.

Below, we give the definitions for rewriting systems and automata.

Definition 13 A term rewriting system R is a finite set of rewriting rules
R having the form L⇒ R, where L,R ∈ Tsm and vars(R) ⊆ vars(L).

Example The following rules model the usual rules for pairs.

R = {fst(cons(X,Y ))⇒ X, snd(cons(X,Y ))⇒ Y }

Definition 14 Given a term rewriting system R, we define the relation
→R⊆ Tgr × Tgr to be the minimum relation closed under ground contexts
such that for each (L⇒ R) ∈ R, and for each substitution σ : X → Tgr, we
have σL→R σR.

Example Using the above R, we have, for any Ti ∈ Tgr

fst(fst(cons(cons(T1, T2), T3)))→R fst(cons(T1, T2))→R T1

Definition 15 A non deterministic finite tree automaton (NTFA) A is a
pair (QA,TA), where QA = {@a,@b, . . .} is a finite set of states and TA is
the finite set of transitions. Transitions have the form @q → T , where T ∈
Tpl. To simplify notation, we identify TA with A, and simply write (@q →
T ) ∈ A instead of (@q → T ) ∈ TA. We sometimes write several transitions
in the compact form @q → T1, . . . , Tn, meaning @q → T1, . . . ,@q → Tn.

All automata we shall use here are NTFA, so we will refer to them
as “automata”, simply. Each state of the automaton has an associated
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language, which intuitively is the set of terms reachable through transitions.
For example, consider the following automaton:

@a → 0, s(@a) @b → cons(@a,@b)

The transitions for @a define the language of naturals, with the usual Peano
encoding. The language of @b is instead the language of the infinite lists
(streams) of such naturals, encoded through cons. We now formalize this
fact.

Definition 16 Given A we define the relation →A⊆ Tgr × Tgr as the mini-
mum relation closed under ground contexts such that, for each @q → T ∈ A,
we have @q →A T .

Definition 17 Let →R,A be →R ∪ →A. We write [[T ]]A (resp. [[T ]]R or
[[T ]]R,A) for the set of pure terms reachable through →A (resp. →R or
→R,A) from the term T ∈ Tgr:

[[T ]]A = {T ′ | T →∗
A T ′ ∈ Tpr}

[[T ]]R = {T ′ | T →∗
R T ′ ∈ Tpr}

[[T ]]R,A = {T ′ | T →∗
R,A T ′ ∈ Tpr}

Further, we let

[[T ]]A/R =
⋃
{[[T ′]]R | T

′ ∈ [[T ]]A}

Of course, [[@q]]A is the language related to the state @q, while [[@q]]A/R
is the same language up to rewriting. Instead, [[@q]]R,A is the set of terms
reachable through automaton transitions and rewriting, allowing arbitrary
interleaving between them. Obviously, the inclusion [[T ]]A ⊆ [[T ]]R,A holds.
We also have the inclusion [[T ]]A/R ⊆ [[T ]]R,A. This last inclusion, in general,
is strict: in fact it might be interesting to note that it is possible for relations
→∗

A and →∗
R not to commute, even if the target term is restricted to be in

Tpr. Formally:

∃R,A . →∗
R→

∗
A ∩(Tgr × Tpr) 6⊆→

∗
A→

∗
R

∃R,A . →∗
A→

∗
R ∩(Tgr × Tpr) 6⊆→

∗
R→

∗
A

A counterexample to the first statement is

R = {f(X)⇒ g(X,X)} A = {@q → a, b}
Tb = f(@q)→R g(@q,@q)→A g(a,@q)→A g(a, b) = Te

Indeed, we do not have Tb →
∗
A→

∗
R Te. For the second statement, take

R = {f(X)⇒ a} A = {@q → f(@m) ; @m→ b}
Tb = @q →A f(@m)→R a = Te
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and note that we do not have Tb →
∗
R→

∗
A Te. Therefore, the language up to

rewriting [[@a]]A/R may be smaller than the set [[@a]]R,A we focus on. We
will return to this point in Sect. 3.6.

Now, we characterize those automata the languages of which include also
the terms up to rewriting. We name these automata “fully-exposing”, since
they make explicit every possible rewriting. The goal of our approximation
technique will be to compute such an automaton.

Definition 18 An automaton A is said to be fully-exposing (w.r.t R) iff
for every @q ∈ QA, we have [[@q]]A = [[@q]]R,A.

The reader might have expected the above equation to read [[@q]]A =
[[@q]]A/R, which would precisely state that the languages are closed under
rewriting. The definition of “fully-exposing” we give uses instead the set
[[@q]]R,A, which is in general larger than [[@q]]A/R. So, the above require-
ment [[@q]]A = [[@q]]R,A is actually stronger than the one [[@q]]A = [[@q]]A/R.
Our choice for this definition of “fully-exposing” is mainly driven by the fact
that the first approximations we shall construct will satisfy this stronger re-
quirement, and therefore this simplifies our presentation. However, in Sect.
3.6 we will return to this point, and consider alternative definitions, closer
to the one [[@q]]A = [[@q]]A/R. There, we shall also define approximations
agreeing with these new definitions of “fully-exposing”.

Having a fully-exposing automaton A makes it easy to test whether a
term belongs to [[@q]]R,A, since we can look into [[@q]]A instead. This can be
done through a bounded exhaustive search, as we shall see in Sect. 3.2.1.

Normalization In Definition 15, for each transition @q → T we require
T ∈ Tpl. One might instead allow for a broader class of automata using
the weaker requirement T ∈ Tgr. It turns out that the expressive power of
these two kinds of automata is the same. In fact every automaton having
transitions where T ∈ Tgr can be normalized into an equivalent automaton
that only uses plain terms, as the following example shows.

Example The automaton

@a → f(@a), 1 @q → cons(cons(@a,@a),@a)

has the following normal form, where @q1 is a fresh state:

@a → f(@a), 1 @q → cons(@q1,@a) @q1 → cons(@a,@a)

In the above normal form, only plain terms are used. We shall make use of
this translation later on.
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Notation The notation introduced here slightly deviates from more stan-
dard ones, e.g. the one in [28]. For instance, we write transitions backwards
with respect to the more standard notation @q ← T , since we think this
makes the overall notation of →,→A, and →R more consistent.

Also, it is also common to include in the definition of automaton a set of
final states QF, and consider the automaton as a way to define the language

{T | ∃@q ∈ QF. @q →∗
A T ∈ Tpr}

Instead, we simply use automata for defining a class of languages, one for
each state. So, we consider the languages [[@q]]A for any @q ∈ QA.

3.2.1 Matching

Beneficial to studying →R,A is understanding which terms T , with @q →∗
A

T , can be rewritten by a rule L⇒ R, i.e. which such terms T match L. To
this aim, we define the result of a match of the state @q with the pattern L
as the set of the bindings σ : X → Tgr for which @q →∗

A σL. Note that the
number of such bindings may be infinite, in general.

A very interesting subset of the bindings resulting from a match is the
one formed by state bindings, i.e. those σ : X → Q. Indeed, there are only a
finite number of state bindings, since the variables occurring in L are finite,
and so are the states of A. The set of the state bindings that match against
L can be computed in a natural way under the following assumption.

Left Linearity We assume each rule L⇒ R ∈ R be left–linear, i.e. each
variable occurs at most once in L.

Intuitively, the above assumption means that each variable in L can
be matched independently. To compute state bindings, just expand @q
by applying all the transitions in a non deterministic fashion, and discard-
ing the mismatching branches. Below, @q is matched against the pattern
f(g(X), h(Y )).

@q →A f(@a,@b)→A f(g(@c),@b) →A f(g(@c), h(@d)) = σf(g(X), h(Y ))

Note that we need to search roughly as deep as the size of the pattern L.
That is, not counting the transitions of the form @a → @b (thus counting
only those that generate a new term head), we can limit the exploration
of the →A tree to depth equal to the size of L. For the most common
rewriting rule sets this depth is 2 or 3. Therefore, even though we adopt an
exponential-time exhaustive search for this, the impact on the performance
of our tool will still be acceptable. The number of state bindings is at most
|QA|

k where k is the number of variables in L. Note that this is polynomial
in the number of states.
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Example Given the automaton A

@a→ 1, 2, 3 @b→ +(@a,@a)
@q → cons(@a,@q), fst(@m) @m→ cons(@q,@b),@q

the match of @q with the pattern L = fst(cons(X,Y )) produces the state
bindings σ1 = {X 7→ @q, Y 7→ @b}, σ2 = {X 7→ @a, Y 7→ @q}.

The importance of state bindings lies in that they are a good approxi-
mation for the set of all the bindings σ : X → Tgr, as we shall show in the
next section.

Moreover, the same exhaustive search used for matching can also be used
for testing whether some given pure term T belongs to [[@q]]A. In fact, T
can be seen as a pattern with no variables. Again, the cost of the test is
exponential on the size of T , but polynomial on the number of states.

Finally, we note that left linearity makes matching rather convenient,
but it prevents us from using many well-known rewriting rules, such as
xor(X,X)⇒ 0. We will return to this hypothesis, and relax it, in Sect. 3.5.

3.3 Semantics

A nice direct consequence of having A in normal form is that each sub-term
occurring in [[@q]]A also belongs to the language [[@m]]A for some @m ∈ QA,
as established by the lemma below.

Lemma 4 (State-in-the-middle) If @q →∗
A C[T ] for some @q ∈ QA,

C[•] ∈ Cgr and T ∈ Tgr, then for some state @m ∈ QA we have @q →∗
A

C[@m] and @m→∗
A T .

@q @m T
C

Proof. By induction on the number of →A steps.
For the base case, we have zero steps and C[T ] = @q, so T = @q and

the lemma holds for @m = @q.
For the inductive case, assume that the last step was due to @s →A Ts

within a context C ′, and therefore @q →∗
A C ′[@s] →A C ′[Ts] = C[T ]. If

C ′ = C, we have Ts = T , and @m = @s satisfies the lemma. Otherwise, we
have C ′[•] = C ′′[•, T ] and @q →∗

A C ′′[@s, T ]→A C ′′[Ts, T ]. By inductive hy-
pothesis applied to the context C ′′[@s, •], we have @q →∗

A C ′′[@s,@m]→∗
A

C ′′[@s, T ]→A C ′′[T2, T ], completing the proof. �

Intuitively, the “state-in-the-middle” lemma implies that A provides us
with a convenient abstraction (namely, the state @m) for many terms that
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are affected by rewriting. Indeed, whenever a rewriting σL →R σR occurs
and σL ∈ [[@q]]A, we know that there is some state @mi in A that generates
σXi, for each variable Xi of L. This suggests us a way for proving some
properties involving the whole, potentially infinite, set of bindings σ : X →
Tgr. Proving a property Φ for all σ might reduce to checking Φ on the set
B of state bindings σ : X → Q. This turns out to be convenient when only
variables in R and states in A are used, because B is finite.

Quite interestingly, this is the case when proving that an automaton
is fully-exposing. The next lemma gives a convenient criterion for this,
thus paving the way towards an algorithmic treatment of automata and
rewritings.

Lemma 5 (State Bindings Criterion) If A satisfies

∀(L⇒ R) ∈ R. ∀σ : X → Q . ∀@q ∈ QA. @q →∗
A σL =⇒ @q →∗

A σR

(3.1)

then A is fully-exposing.

Proof. First, property (3.1) suffices to ensure the following apparently
stronger property, which involves any binding σ:

∀(L⇒ R) ∈ R. ∀σ : X → Tgr . ∀@q ∈ QA. @q →∗
A σL =⇒ @q →∗

A σR

(3.2)

This is because, whenever σX 6∈ Q, we can apply the “state-in-the-middle”
lemma, and find a state which is responsible for σX, i.e. a state @m ∈ QA

such that @q →∗
A C[@m] →∗

A C[σX] = σL. Exploiting the left–linearity of
R, we can then update the binding to σ′ = σ[X 7→ @m] and still have @q →∗

A

σ′L. We repeat this process for any variable X1, . . . ,Xn occurring in L. In
this way we obtain σ′′ ∈ X → Q such that @q →∗

A C[@m1, . . . ,@mn] = σ′′L
and, for each i, @mi →

∗
A σXi. By hypothesis (3.1), this implies

@q →∗
A σ′′R = C ′[. . . ,@mik , . . .]→∗

A C ′[. . . , σXik , . . .] = σR.

and therefore @q →∗
A σR, completing the proof for (3.2).

We now proceed and show [[@q]]R,A = [[@q]]A, for each @q ∈ QA. Since
[[T ]]A ⊆ [[T ]]R,A for any T ∈ Tgr, we only need to show [[@q]]R,A ⊆ [[@q]]A.

This proof is by contradiction: assume that some T exists such that
@q →∗

A→R T but for which @q 6→∗
A T . This means that, for some rule

(L⇒ R) ∈ R, we have

@q →∗
A C[σL]→R C[σR] = T
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By the “state-in-the-middle” lemma, for some state @m ∈ QA, @q →∗
A

C[@m] and @m →∗
A σL, which by (3.2) implies @m →∗

A σR. This shows
that

@q →∗
A C[@m]→∗

A C[σR] = T

which contradicts @q 6→∗
A T . �

3.3.1 Automaton Transformations

We now define a way to modify A preserving its semantics, in the sense
made precise by the following preorder.

Definition 19 Given R and Q′ ⊆ Q, we define a preorder vQ′

over the set
of automata as follows:

A vQ′

A′ ⇐⇒ ∀@q ∈ Q′ . [[@q]]A ⊆ [[@q]]A′

We also write A ≡Q′

A′ when A vQ′

A′ ∧A′ vQ′

A.

Intuitively, the states in Q′ represent the languages we are interested
in. The other states are auxiliary, and, while they contribute to the overall
definition of the automaton, they have no particular meaning. The above
preorder ensures that A′ over-approximates A for the “important” languages
of Q′, disregarding the languages of other states.

To modify A into an automaton A′ such that A ≡Q′

A′, each state in
QA ∩ Q

′ needs to be in A′, as well. Also, we may rename or remove states
in QA \ Q

′, as long as, in A′, the languages of the states in QA ∩ Q
′ are

larger than (or equal to) the corresponding ones in A. Below, we define
three transformations that preserve our preorder.

Augment
A vQ′

A ∪ (@q → T )

Transitivity
(@q1 → @q2) ∈ A (@q2 → T ) ∈ A

A ≡Q′

A ∪ (@q1 → T )

Join
∀T . (@q1 → T ) ∈ A ⇐⇒ (@q2 → T ) ∈ A

A ≡Q′

A{@q2/@q1}
@q1 6∈ Q

′

Rule Augment simply adds a transition to A, clearly preserving our pre-
order. Rule Transitivity short-cuts two transitions, yielding a completely
equivalent automaton. Note that both rules Augment and Transitivity in-
crease the size of A.

Rule Join is the most peculiar. It replaces one state @q1 with another
state @q2, under the assumption they have the same transitions (and there-
fore define the same language). This rule may decrease the size of A, both
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because all the transitions having the form @q1 → T are removed, and be-
cause pairs of transitions such as @m → f(@q1), f(@q2) collapse into the
single transition @m → f(@q2). The languages generated by the states are
unaffected, except for [[@q1]]R,A that is not of interest, as @q1 6∈ Q

′.
The following lemma states that if we approximate (w.r.t. vQ′

) an
automaton A with a fully-exposing automaton A′, then A′ actually encom-
passes the languages of A up to rewriting.

Lemma 6 If A vQ′

A′ and A′ is fully-exposing, then

∀@q ∈ Q′. [[@q]]A/R ⊆ [[@q]]A′

Proof. Assume T ∈ [[@q]]A/R. We have @q →∗
A Tp →

∗
R T for a pure Tp.

Since @q ∈ Q′, we also have @q →∗
A′ Tp →

∗
R T . Therefore, since A′ is

fully-exposing, T ∈ [[@q]]R,A′ = [[@q]]A′ . �

3.4 Algorithm

In Fig. 3.1 we give an algorithm that approximates a pair A,R with a
fully-exposing automaton A′. In other words, it computes a A′ such that
A vQA A′.

At the beginning, we choose an arbitrary bound maxStates on the number
of distinct states that can be used in constructing A′. During the execution
of our algorithm this bound can be reached, and still a transition for a ground
term T has to be added to A. If the term T is not plain, a normalization
is in order, that requires a fresh, unavailable state. Rule Augment comes
to our rescue: we can safely reuse any of the states already employed. Of
course, this causes a loss of precision in the language of the selected state,
yet the result is sound w.r.t. vQA . This is done in step 5 of the subroutine
place of the algorithm.

We stress that the result is sound for any maxStates bound. In fact,
having just one state is enough to produce a sound approximation: the
language consisting of all pure terms is generated by all the transitions
@o : f(. . . ,@o, . . .) which only involve one state. Of course, one wants a
more precise result than this, and therefore runs the algorithm with more
resources.

We also put a bound maxJoin on the number of Join operations we al-
low during the algorithm run. The bounds maxJoin and maxStates help in
ensuring termination of the algorithm; its correctness is established below.

Theorem 3 Algorithm 1 is correct, i.e. given R,A, it always computes a
fully-exposing A′ such that A vQA A′. Also, A′ is closed by Transitivity.

Proof. We start by showing the termination of the algorithm. First, we
show that the size of A is bounded because:
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algorithm 1. Inputs: A,R,maxStates,maxJoin

1. Start with A = {@qi → Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextState← s, numJoin← 0
3. Close A under Transitivity.
4. If numJoin < maxJoin:

Close A under Join. Increment numJoin for each joined state.
5. For each state @q ∈ QA:

For each rule (L⇒ R) ∈ R:
For each binding σ ∈ X → Q such that @q →∗

A σL:
augment(@q, σR).

6. Repeat from step 3, until A reaches a fixed point.

subroutine augment(@q, T )

1. If T ∈ Tpl, then A ← A∪ (@q → T ) and return.
2. We have T = f(T1, . . . , Tn).

For each i ∈ {1 . . . n}:
@resi ← place(Ti).

3. A ← A∪ (@q → f(@res1, . . . ,@resn)).

subroutine place(T ) Returns a state.

1. If T ∈ Q, then return T .
2. We have T = f(T1, . . . , Tn).

For each i ∈ {1 . . . n}:
@resi ← place(Ti).

3. Let T ← f(@res1, . . . ,@resn).
4. If (@q → T ) ∈ A for some @q, choose one such @q in any arbitrary

way. Then return @q.
5. If #QA < maxStates, then @q ← @qnextState, and increment

nextState. Otherwise, choose arbitrarily any @q ∈ QA.
6. Let A ← A∪ (@q → T ), and return @q.

Figure 3.1: The completion algorithm

• the transitions in A only carry plain terms, which have bounded depth;

• no new function symbols are introduced;

• the function symbols have fixed arity;

• the number of states in A is bounded by maxStates.

Termination is proved by contradiction, assuming our algorithm loops
indefinitely in steps 3 . . . 6. Since we never exit the loop, and the number of
Join operations is bounded by maxJoin, eventually only rules Augment and
Transitivity have to be applied. These rules make the size of A to indefinitely
grow, so contradicting the first fact proved above.
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Having established termination, by Lemma 5 the resulting automaton A′

is fully-exposing. Moreover, since the algorithm only applies the automaton
transformations of Sect. 3.3.1, we have A vQA A′. �

3.5 Relaxing the Left Linearity Assumption

Unfortunately, many useful rewriting rules are not left–linear, e.g.

R =
{

xor(X,X) ⇒ 0 dec(enc(M,K),K) ⇒ M
}

In order to apply our technique to the above rules, we could start by
approximating the rule set R with another left–linear rule set Rl for which
→R⊆→Rl

. Such a Rl could be

Rl =
{

xor(X1,X2) ⇒ 0 dec(enc(M,K1),K2) ⇒ M
}

While this would lead to a correct approximation of→∗
R,A, the result would

be very imprecise. In the example above Rl allows us to decrypt any mes-
sage, even if garbage is used instead of the proper key. Such an approxima-
tion of R will unlikely lead to the proof of any interesting security property.

Instead, we extend rewriting rules to have a set of equalities (which we
write as X̃ = Ỹ ) between variables as a side condition. We thus rewrite R
as

R′ =

{
xor(X1,X2) X1=X2

⇒ 0
dec(enc(M,K1),K2) K1=K2

⇒ M

}

Now the→R′ rewritings are only allowed when the side condition is met;
for instance, in R′, X1 and X2 must actually match the same ground terms,
as well as K1 and K2. This precisely reflects the intended meaning of the
rules in R.

In the general case, if we have n occurrences (n > 1) of the same variable
X in a left hand side of a rule, we replace each of them with Xi and add n−1
equations as a side condition, that is X1 = X2,X2 = X3, . . . Xn−1 = Xn.
Having renamed X in the left hand side, we must also rename it in the right
hand side. When rewriting happens, all the variables Xi are bound to the
same term, so we can replace X in the right hand side with any of them.
By convention, we choose X1 for this.

We update the definition of →R, so to take into account the side condi-
tion.

Definition 20 Given an automaton A and a term rewriting system R, we
define the relation →R⊆ Tgr × Tgr to be the minimum relation closed un-
der ground contexts such that for each (L eX=eY

⇒ R) ∈ R, and for each

substitution σ : X → Tgr, when we have σX̃ = σỸ we also have σL→R σR.
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Accordingly, we also update the definitions of →R,A, [[−]]R,A, and the
notion of “fully-exposing” to use the rewriting above.

Now we can reuse our technique with minor changes, only: indeed, a
revised version of Lemma 5 still holds. Here, we use the relation ', defined
below, to check whether two states may lead to the same ground term.

Lemma 7 (State Bindings Criterion) Given A,R, let

' = {〈@q1,@q2〉 | ∃T ∈ Tgr. @q1 →
∗
A T ∧@q2 →

∗
A T} (3.3)

If A satisfies

∀(L eX=eY
⇒ R) ∈ R
∀σ : X → Q
∀@q ∈ QA



 @q →∗

A σL∧∀i. σX̃i ' σỸi =⇒ @q →∗
A σR (3.4)

then A is fully-exposing.

Proof. As for Lemma 5, we establish property (3.4) for any binding
σ : X → Tgr and replacing ' with identity.

∀(L eX=eY
⇒ R) ∈ R

∀σ : X → Tgr
∀@q ∈ QA



 @q →∗

A σL∧∀i. σX̃i = σỸi =⇒ @q →∗
A σR (3.5)

For this, assume @q →∗
A σL and ∀i. σX̃i = σỸi. By the “state-in-the-

middle” lemma, we can state @q →∗
A C[@m1, . . . ,@mn] = σ′L →∗

A σL for

some @mi and their related state binding σ′. Since σX̃i = σỸi, we have
that the @mi corresponding to those variables have a common descendant,
i.e. @mxi →

∗
A σX̃i = Ti @myi →

∗
A σỸi = Ti. This implies that ∀i.@mxi '

@myi . Applying (3.4) we get @q →∗
A σ′R→∗

A σR. This completes the proof
for (3.5).

Finally we need to show that (3.5) implies that A is fully-exposing. This
is done exactly as in the last part of the proof of Lemma 5, using (3.5) in
lieu of (3.2). �

Note that properties (3.3) and (3.4) depend on both A and '. Thus, we
must adapt our algorithm to compute both an automata A and a relation '
that simultaneously satisfy these two properties: this is similar to a double
fixed point computation.

To give an intuition of the new algorithm, consider the above R′, and
in particular L = xor(X1,X2). During the execution of step 5 of the (old)
algorithm, assume to have a ' satisfying (3.3) for the current A. We look
for some state binding σ such that @q →∗

A σL. Now, before calling the
subroutine augment(@q, σR = 0) that would add the rewritten term to A,
we check σX1 ' σX2, i.e. the side condition. If the check succeeds, then we
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call augment(@q, 0); otherwise, we do nothing. When A changes, we must
ensure that the relation ' still satisfies (3.3). This forces us to update the
relation ' at each main loop iteration.

Note that our side condition check is a safe approximation. Intuitively,
we should check two terms T1, T2 for equality. However, we do not know the
actual terms to compare, but merely their approximations: we know that
the states σX1 and σX2 are such that σX1 →

∗
R,A T1 and σX2 →

∗
R,A T2.

Conservatively, we check whether these approximations overlap, i.e. if the
states might represent the same ground term: for this, we use '.

The new algorithm is in Fig. 3.2. Note that when A reaches its fixed
point in the main loop, so has ' since it only depends on A as per step 5.

algorithm 2. Inputs: A,R,maxStates,maxJoin

1. Start with A = {@qi → Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextState← s, numJoin← 0
3. Close A under Transitivity.
4. If numJoin < maxJoin:

Close A under Join. Increment numJoin for each joined state.
5. ' ← approxIntersection(A).
6. For each state @q ∈ QA:

For each rule (L eX=eY
⇒ R) ∈ R:

For each binding σ ∈ X → Q such that @q →∗
A σL:

If ∀i. σX̃i ' σỸi:
augment(@q, σR).

7. Repeat from step 3, until A reaches a fixed point.
subroutine approxIntersection(A) Returns '.
1. ' ← {〈@q,@q〉|@q ∈ QA}
2. If (@a→ f(@a1, . . . ,@an)), (@b→ f(@b1, . . . ,@bn)) ∈ A,

and ∀i. @ai ' @bi:
' ← ' ∪{〈@a,@b〉}

3. If (@a→ @b) ∈ A and @b ' @c:
' ← ' ∪{〈@a,@c〉}

4. Repeat from step 2 until ' reaches a fixed point.
5. return '.

Figure 3.2: Revised completion algorithm

Lemma 8 In algorithm 2, after each call to approxIntersection, ' satisfies
(3.3).

Proof. The termination of approxIntersection is ensured by '⊆ QA × QA,
and the fact that the size of ' increases in the subroutine loop.

Assuming that @a→∗
A T in n steps, and that @b→∗

A T in m steps, we
proceed by induction on the pair (n,m), under pointwise ordering. The base
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case, i.e. n = m = 0, is handled by initializing ' to the identity relation in
step 1 of the subroutine.

For the inductive case, assume that the ground term T = f(T1, . . . , Tn),
is reachable from @a and @b. Without loss of generality, we can assume
that @a reaches T in more than zero steps (otherwise, swap @a with @b).
So, we have @a →A Ta →

∗
A T . If Ta = @ta, by inductive hypothesis

@ta ' @b, and after step 3, we also have @a ' @b. Otherwise, we have
Ta = f(@a1, . . . ,@an) and therefore @b also reaches T in more than zero
steps, i.e. @b →A Tb →

∗
A T . If Tb = @tb, we proceed as in the @ta case.

Otherwise, we have Tb = f(@b1, . . . ,@bn) (note that the function symbol
must be the same of Ta, since T is a common descendant). By inductive
hypothesis, we have @ai ' @bi for all i. When this is found in step 2, we
update ' so that @a ' @b. �

The correctness of Algorithm 2 is established below.

Theorem 4 Given A,R, Algorithm 2 always outputs a fully-exposing A′

such that A vQA A′. Also, A′ is closed under Transitivity.

Proof. Termination is established as for Theorem 3. Therefore, by Lemma 8
and Lemma 7, A′ is fully-exposing. Finally, we have thatA vQA A′ since the
algorithm only applies the vQA–preserving transformations of Sect. 3.3.1.
�

A Remark When translating non left-linear rules to left-linear ones, we
rename variables. For the right hand sides, we simply rename a variable X
with any one of the linear variables Xi generated, since at match time all of
them are matched to the same ground term.

We note, however, that our approximation algorithm is affected by this
choice. This is because for the approximation we only consider state bind-
ings, and use' rather than equality. For example, consider the rule f(X,X) ⇒
g(X). We can translate this rule to one of the following

f(X1,X2)X1=X2
⇒ g(X1)

f(X1,X2)X1=X2
⇒ g(X2)

Now, assume that we are approximating f(@a,@b) in step 6 of the algorithm,
and that @a ' @b. Under the first rule above, we will call augment with
g(@a); under the second rule, we use g(@b) instead. So, if [[g(@a)]]A 6=
[[g(@b)]]A, our approximation computes different (but sound) results in these
cases.

In Sect. 3.8 we shall consider handling the rewriting above by computing
the intersection of the languages of @a and @b, and then using this for the
augment call.
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3.6 Improving Precision

In Sect. 3.2, we hinted at the differences between considering languages up
to rewriting (i.e. [[@q]]A/R) and reachability through →∗

R,A (i.e. [[@q]]R,A).
We now return to this point, and examine how our approximation technique
uses these sets.

So far, in order to compute a sound approximation of the language
[[@a]]A/R, we used algorithms for approximating instead the set [[@a]]R,A.
The latter is a correct over-approximation for the former, as Lemma 6 states,
so the computed approximation is indeed sound. However, by approximat-
ing the set [[@a]]R,A, which is in general larger than the language up to
rewriting, we could compute approximations larger than necessary.

In fact, by definition, T ∈ [[@q]]A/R means that @q →∗
A Tp →

∗
R T

(with Tp pure), so here →A and →R are applied sequentially, one after the
other. In contrast, T ∈ [[@q]]R,A means that @q(→A ∪ →R)∗T , allowing for
arbitrary interleaving of →A and →R.

To consider a concrete example, take R = {f(X)⇒ 1} and A = {@q →
f(@q)}. Here @q generates an empty language, thus the language up to
rewriting [[@q]]A/R is empty as well. However, 1 ∈ [[@q]]R,A since we have
@q →A f(@q) →R 1. By computing a correct w.r.t. vQA , fully-exposing
approximation A′ we actually require @q →∗

A′ 1, losing precision.
If we want to achieve a more precise result, we have to replacement

[[@q]]R,A with a closer approximation of [[@q]]A/R. A way to achieve this
is to restrict rewriting so that it is applicable to inhabited terms T only,
i.e. to terms such that [[T ]]A 6= ∅. In this way, term f(@q) in the example
above can not be rewritten, and therefore we are not forced to include 1
in the approximation. So, from now on, we shall always use the following
restricted rewriting.

Definition 21 Given an automaton A and a term rewriting system R, let
→R′ be the rewriting relation as defined in Definition 20. We define →R as
→R′ ∩(H× Tgr), where H = {T ∈ Tgr|[[T ]]A 6= ∅}.

We also update the definitions of→R,A, [[−]]R,A, and the notion of “fully-
exposing” to use the restricted rewriting, using the automaton at hand as
the automaton A in the definition above.

Lemma 6 is restated as follows, ensuring that fully-exposing approxima-
tions indeed include terms up to rewriting.

Lemma 9 If A vQ′

A′ and A′ is fully-exposing, then

∀@q ∈ Q′. [[@q]]A/R ⊆ [[@q]]A′

Proof. Assume T ∈ [[@q]]A/R. We have @q →∗
A Tp →

∗
R T for a pure Tp.

Since @q ∈ Q′, we also have @q →′
A′ Tp. Of course, a pure term is always
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algorithm 3. Inputs: A,R,maxStates,maxJoin

1. Start with A = {@qi → Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextState← s, numJoin← 0
3. Close A under Transitivity.
4. If numJoin < maxJoin:

Close A under Join. Increment numJoin for each joined state.
5. ' ← approxIntersection(A).
6. For each state @q ∈ QA:

For each rule (L eX=eY
⇒ R) ∈ R:

For each binding σ ∈ X → Q such that @q →∗
A σL:

If ∀i. σX̃i ' σỸi and ∀Z ∈ vars(L). σZ ' σZ:
augment(@q, σR).

7. Repeat from step 3, until A reaches a fixed point.
subroutine approxIntersection(A) Returns '.
1. ' ← ∅
2. If (@a→ f(@a1, . . . ,@an)), (@b→ f(@b1, . . . ,@bn)) ∈ A,

and ∀i. @ai ' @bi:
' ← ' ∪{〈@a,@b〉}

3. Repeat from step 2 until ' reaches a fixed point.
4. return '

Figure 3.3: Improved algorithm

inhabited, that is [[Tp]]A′ 6= ∅. So, we have @q →′
A′ Tp →

∗
R T . Therefore,

since A′ is fully-exposing, T ∈ [[@q]]R,A′ = [[@q]]A′ . �

We now study how we can exploit these new definitions in our algo-
rithm. Before describing the actual changes we consider another example,
the rewriting of T1 = g(@a,@b,@c) by the rule g(X,Y,Z)Y =Z ⇒ 1. Under
the new definition, rewriting only happens if T1 →

∗
A T2 = g(@a, T ′, T ′)→R 1

for some ground T ′, and T2 is inhabited. However, if T2 is inhabited, so are
@a and T ′. This means that the languages of @a,@b and @c satisfy

(i) [[@a]]A 6= ∅.

(ii) [[@b]]A ∩ [[@c]]A 6= ∅ and

We can generalize the above example to arbitrary rewriting rules L eX=eY
⇒

R. Assume we are considering whether this rule applies to some term σL,
where σ is a state binding. Rewriting is only possible if

(i) for each Z ∈ vars(L) we have [[σZ]]F 6= ∅, and

(ii) for each side condition X = Y we have [[σX ]]A ∩ [[σY ]]A 6= ∅

In Fig. 3.3, we show our changes to the algorithm for checking (i) and
(ii). First, we modify the subroutine approxIntersection so that the ' relation
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tests whether the languages of two states intersect, as established by the
following lemma.

Lemma 10 In Algorithm 3, after each call to approxIntersection, ' satisfies

' = {〈@q1,@q2〉 | ∃T ∈ Tpr. @q1 →
∗
A T ∧@q2 →

∗
A T} (3.6)

Proof. Analogous to Lemma 8. Here we also exploit the closure under
Transitivity to avoid the case @a→A @b. �

Exploiting Lemma 10, we check for (i) and (ii) in step 6 of Algorithm 3.
There, we express [[σZ]]F 6= ∅ in the equivalent form σZ ' σZ, so to be able
to reuse '.

A revised form of Lemma 7 also holds:

Lemma 11 (State Bindings Criterion) Given A,R,', such that ' sat-
isfies (3.6), and A satisfies

∀(L eX=eY
⇒ R) ∈ R ∀σ : X → Q ∀@q ∈ QA .

@q →∗
A σL

∀i. σX̃i ' σỸi

∀Z ∈ vars(L). σZ ' σZ



 =⇒ @q →∗

A σR
(3.7)

then A is fully-exposing.

Proof. Mostly analogous to Lemma 7. We can show that (3.7) implies
the following property, involving any inhabited (w.r.t. A) term bindings,
and equality instead of '. We let H = {T ∈ Tgr|[[T ]]A 6= ∅}.

∀(L eX=eY
⇒ R) ∈ R
∀σ : X → H
∀@q ∈ QA



 @q →∗

A σL∧∀i. σX̃i = σỸi =⇒ @q →∗
A σR (3.8)

Assume the hypothesis of the above. As done for Lemma 7, we apply
the “state-in-the-middle” lemma and derive @q →∗

A C[@m1, . . . ,@mn] =
σ′L→∗

A σL, for some @mi and their related state binding σ′. Here, we have
@mi ∈ H, so @mi ' @mi. Also, since σL satisfies the equations in the side
condition, we have @mxi ' @myi for the corresponding states. Therefore,
the hypotheses of (3.7) hold, and we can infer @q →∗

A σ′R→∗
A σ′L→∗

A σL.
This proves (3.8).

The last part of the proof is identical to that of Lemmata 5 and 7. �

Theorem 5 Given A,R, Algorithm 3 always outputs a fully-exposing au-
tomaton A′ such that A vQA A′. Also, A′ is closed under Transitivity.

Proof. Analogous to Theorem 4. �
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3.7 Intersecting Languages

Our algorithm can be adapted to compute an over-approximation for the
intersection of the languages of a given pair of states, e.g. [[@a]]A ∩ [[@b]]A.
This is done by using a third state, e.g. @c, to represent the result of the
over-approximation.

In more detail, we provide a set I of intersection constraints as a further
input to the algorithm. We write such constraints as @a∩@b ⊆ @c, meaning
that [[@a]]A ∩ [[@b]]A ⊆ [[@c]]A, where @a,@b,@c are states of A. The new
algorithm is in Fig. 3.4. At each main loop iteration, we call the subroutine
handleConstraint for each constraint in I. The subroutine searches for (a
superset of) the terms in the intersection of [[@a]]A and [[@b]]A exactly as the
subroutine approxIntersection: we look for transitions @a→ f(@a1, . . . ,@an)
and @b→ f(@b1, . . . ,@bn) such @ai ' @bi for all i. We then add the tran-
sition @c→ f(@a1, . . . ,@an) to A to ensure [[@c]]A satisfies the constraint.

algorithm 4. Inputs: A,I,R,maxStates,maxJoin

1. Start with A = {@qi → Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextState← s, numJoin← 0
3. Close A under Transitivity.
4. If numJoin < maxJoin:

Close A under Join. Increment numJoin for each joined state.
5. ' ← approxIntersection(A).
6. For each c ∈ I call handleConstraint(c).
7. For each state @q ∈ QA:

For each rule (L eX=eY
⇒ R) ∈ R:

For each binding σ ∈ X → Q such that @q →∗
A σL:

If ∀i. σX̃i ' σỸi and ∀Z ∈ vars(L). σZ ' σZ:
augment(@q, σR).

8. Repeat from step 3, until A reaches a fixed point.
subroutine handleConstraint(@a ∩@b ⊆ @c)
1. For each (@a→ f(@a1, . . . ,@an)), (@b→ f(@b1, . . . ,@bn)) ∈ A:

If ∀i.@ai ' @bi :
A ← A∪ (@c→ f(@a1, . . . ,@an))

Figure 3.4: Handling intersection constraints

Theorem 6 Given A,I,R, Algorithm 4 always outputs an automaton A′

such that

• A vQA A′

• A′ is fully-exposing
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• A′ is closed under Transitivity

• A′ satisfies the constraints in I.

Proof. Termination of the algorithm follows as for Theorem 5, since the
subroutine handleConstraint only adds transitions to A′. Correctness is also
shown by the same arguments, except for the constraints satisfaction, which
we prove below.

Assume that f(T1, . . . , Tn) is a (pure) term in [[@a]]A′ ∩ [[@b]]A′ . Since A′

is closed under Transitivity, there are transitions @a→ f(@a1, . . . ,@an) and
@b → f(@b1, . . . ,@bn), where @ai →

∗
A′ Ti and @bi →

∗
A′ Ti. By Lemma

10, at the last main loop iteration, we have @ai ' @bi, and therefore
f(T1, . . . , Tn) ∈ [[@c]]A′ . �

Time Complexity From the complexity point of view, our algorithms are
quite näıve, and would benefit from the use of more adequate data structures
and more efficient subroutines. Yet, the following theorem establishes a
polynomial (on the number of the states of A) time complexity bound for
Algorithm 4.

However, we believe there is still room for improvement. Indeed, in
the theorem we consider the most straightforward implementation of the
algorithm, only, often with sub-optimal complexity. For instance, we do not
consider the Floyd-Warshall algorithm [34, 69] for computing the transitive
closure of a graph, which would help in closingA under Transitivity, obtaining
a lower complexity bound. Also, we do not claim the bound shown below is
the best one that can be achieved for Algorithm 4: for the proof we often
use the most straightforward bounds, rather than seeking better ones.

Theorem 7 Assume that

• n = maxStates + maxJoin,

• s is the number of function symbols that occur in R,A,

• maxArity is the maximum arity of such function symbols,

• maxLSize = max{size(L)|(LX=Y ⇒ R) ∈ R},

• maxRSize = max{size(R)|(LX=Y ⇒ R) ∈ R},

• |I| is the number of intersection constraints in I,

• |R| is the number of rewriting rules in R.

Algorithm 4 runs in worst–case time complexity

O(nk · (log s + maxArity log n) · sl · c · (|I|+ |R|))

where
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• k = max(5 + 4 ·maxArity, 2 + maxArity · (1 + maxLSize)),

• l = max(1 + maxLSize, 4),

• c = maxArity + maxLSize + maxRSize.

Proof. During the whole run, we use at most n states forA: @q0, . . . ,@qn−1.
Using only these states, we can build at most t = s · nmaxArity plain terms.
So, in the whole run we consider at most m = nt = s ·nmaxArity+1 transitions.
Note that this also takes into account the transitions for states that at some
point are merged with some other state through Join.

At each iteration, if we have not yet reached the fixed point, we modify
A. This means, we either perform a Join or add a new transition through
augment. The number of Join is bound by maxJoin. The number of tran-
sitions added is bound by m. Since maxJoin ∈ O(m), we conclude that we
have O(m) main loop iterations.

We now study the complexity of each iteration. While examining each
step, we enclose the factors that contribute to the complexity inside paren-
theses. We use balanced trees to represent the transitions of A so we can per-
form queries and insertions in logarithmic timeO(log m) = O(maxArity log n+
log s). We also use balanced trees for ', performing queries and insertions
in time O(log(n2)) = O(log n). Further, with these representations a scan
of all the transitions of A takes linear time.

Step 3 closes A under Transitivity. For each transition @q → T (O(m)),
we check whether T = @r and in that case we add all the transitions of
@r to @q (O(t log m)). We repeat this process until A is closed, with O(m)
iterations. So, step 3 takes O(m2t log m) = O(s3n3maxArity+2 log m).

Step 4 closes A under Join. We consider all the pairs @q,@r (O(n2))
having the same transitions (O(t) check). When we found such a pair,
we substitute a state for the joined one at every occurrence in A (O(m)).
When substituting, we delete the old transition and insert the new one
(O(log m)). To reach the closure, we repeat this process at most maxJoin

(O(n)) times. Therefore, step 4 takes O(n2(t + m log m)n) = O(n3m log m)
= O(sn4+maxArity log m).

For step 5, we run approxIntersection. In step 2 of the subroutine we scan
for transition pairs (O(m2), and check if the states involved by them intersect
(O(maxArity log n)). If this is the case, we insert the state pair into the '
relation (O(log n)). To reach the fixed point, we run this process at most n2

times. We conclude that step 5 takes time O(m2(maxArity log n+log n)n2) =
O(s2n2maxArity+4 log n ·maxArity).

In step 6, for each intersection constraint (|I|), we call handleConstraint.
We consider transition pairs from two selected states (O(t2)), check for '
(O(maxArity log n)), and optionally insert a transition (O(log m)). So, the
whole step 6 takes O(t2(maxArity log n+log m) · |I|) ≤ O(s2n2maxArity log m ·
maxArity · |I|).
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In step 7, we consider each state @q (O(n)) and each rule (in |R|). We
match @q with the left hand side of the rule, possibly expanding states into
terms maxLSize times (O(tmaxLSize)). In each case, we check equations for
the rule (O(maxLSize log n)). If everything succeeds we call augment(σR).
Depending of the size of R (maxRSize), we insert a number of transitions in
A (each O(log m)). Hence, the overall complexity of step 7 is

O(n · |R| · tmaxLSize(maxLSize log n + maxRSize log m)) ≤

≤ O(smaxLSizenmaxArity·maxLSize+1 log m · |R| · (maxLSize + maxRSize))

Summing up the complexity of steps 3 . . . 7, we obtain the complexity of
one main loop iteration:

O(smax(maxLSize,3) ·nmax(maxArity·maxLSize+1,3maxArity+4) · log m ·c · (|I|+ |R|))

where c = maxArity + maxLSize + maxRSize.
Multiplying the above by the number of iterations O(m), we get

O(sl · nk · log m · c · (|I|+ |R|)

where l = max(maxLSize + 1, 4) and k = max(maxArity · (1 + maxLSize) +
2, 4maxArity + 5).

Since O(log m) = O(log(snmaxArity+1)) = O(log s + maxArity log n), we
get the bound

O(sl · nk · (log s + maxArity log n) · c · (|I|+ |R|))

�

3.8 Further Improvements

Of course, our handling of intersection constraints is approximate: it only
looks at terms reachable through→A in a single step. When we discover that
@a→A Ta and @b→A Tb witness an intersection, we simply add a transition
@c→ Ta rather than approximating the intersection in a more precise way,
possibly through several transitions @c → Tci, where the Tci may involve
fresh states. This would require a careful exploration of the descendants
of @a and @b, trying to find a good trade-off between the precision of the
result and the cost of that search. Particular care should also be used if,
in order to express the result of the intersection, fresh states are needed.
Generating new states eventually leads to reusing previous states, much as
it happens for the subroutine place, which causes a loss of precision. So, it is
possible for “smarter” approximations to be worse both in complexity and
in precision.
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This is somehow related to our handling of rewriting rules such as f(X,X)
⇒ g(X), by using instead f(X1,X2)X1=X2

⇒ g(X1). Also here, when
running our algorithm, we rewrite Tl = f(@a,@b) with Tr = g(@a) as an
approximation of the intersection @a ∩@b. This approximation is actually
less precise than the one used for intersection constraints: here we do not
search at all for the descendants of the states. As before, this is so to avoid
generating fresh states, as it would be needed when Tr is not a plain term
and we would need to normalize transitions. However, for the special case of
rewriting rules having right hand sides of depth zero, e.g. f(X,X) ⇒ X, it
is possible to use the same approximation used for intersection constraints,
since it produces only plain terms.

3.9 Implementation

We implemented the proposed algorithm, with the changes discussed in sec-
tions 3.6 and 3.7. Our implementation is rather faithful to the algorithm as
we have presented it. As such, the most important aspects of the implemen-
tation have already been covered in this chapter. However, we discuss here
some implementation details we still find noteworthy.

3.9.1 Representing Transitions and '

In our implementation, we store the transitions of A as a map from states
to plain term sets. That is, if we have @a → f(@b) and @a → g(@c,@a),
we simply map the state @a to the set {f(@b), g(@c,@a)}.

Similarly, we treat ' as a set of pairs of states. Note that in the last
version of our algorithm we never need to perform complex queries on ',
but we only check whether ' holds between given pairs of states. Our imple-
mentation actually stores the ' set along the transitions of the automaton
A, employing a dummy state @!Inters and the following transitions:

@!Inters→ cons(@a,@a), cons(@a,@b), . . .

This representation simplifies joining states, since substituting {@b/@a} ev-
erywhere in the automaton updates ' accordingly. Moreover, this represen-
tation allows for the specification of some advanced rules, which we discuss
below.

3.9.2 More Expressive Rules

In the implementation, we translate rewriting rules such as

f(g(X), Y ) ⇒ h(l(X))



66 CHAPTER 3. TREE AUTOMATA

in a representation that makes pattern matching on the left hand side ex-
plicit, using a conjunction of clauses S : T , as follows:

S : f(S′, Y ) ∧ S′ : g(X) ⇒ S : h(l(X))

These rules only match a single constructor at a time. In the example above,
we first search for f, and then for g. The newly introduced variables, S and
S′, are fresh and, as the other variables, are only matched against states.
Also, in the left hand side, only terms of depth one are used. In the right
hand side, however, any (simple) term is allowed. In each clause S : T the
same variable may occur only once, unless it also occurs in a previous clause.

Note that this kind of rule is strictly more expressive than rewriting
rules: for instance

S : 1 ∧ S : 2 ⇒ S : 3

@a : 1 ⇒ @b : 1

S : f(S′) ⇒ S′ : 1

S : 1 ∧@a : g(S, S) ⇒ S : 1

cannot be simulated through usual rewriting rules. The effect of the first rule
above is to add the term 3 to a language, provided that language includes
terms 1 and 2. The second rule instead performs a check on the language
[[@a]]A to update another language [[@b]]A. The third rule is a generalization
of the second, in which the state to be updated is only known at match
time. The fourth rule checks [[@a]]A for terms of the form g(@b,@b) where
1 ∈ [[@b]]A; note that transitions such as g(@b,@c) do not pass the test, even
if the languages of @b and @c are the same.

While this kind of rule is more expressive, these rules still operate mono-
tonically on A, only adding transitions. Therefore, termination is still guar-
anteed, as it is the closure under the rules on termination.

Rewriting rules with equations on variables such as

f(X,Y )X=Y ⇒ h(X)

are translated exploiting the special @!Inters state:

S : f(X,Y ) ∧@!Inters : cons(X,Y ) ⇒ S : h(X)

Having ' directly available in rules is sometimes convenient, making it pos-
sible to specify “witness” tests such as

@!Inters : cons(@analysisResult,@badV alues) ⇒ @witness : analysisFailed

so that we can easily check if the tool was able to prove [[@analysisResult]]A
and [[@badV alues]]A disjoint by simply observing @witness. Indeed, our
implementation provides a special witness state @zzResult: if a transition
@zzResult→ !FAIL! is ever found, the tool aborts immediately reporting the
failure. Our tests always include some rule such as . . . ⇒ @zzResult : !FAIL!
to check whether the approximation meets our expectations.
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3.9.3 Heuristics

In Algorithm 4, after a successful match of a rule, we call the subroutine
augment to add the transition @q → σR to the automata A. However, if σR
is not a plain term, the transition must be normalized: this is done by the
subroutine place (see Fig. 3.1). In the presented algorithm, place sometimes
has to choose a state @q among some given set. While the soundness of the
algorithm is not affected by these choices, the precision of the result might
be. For instance, consider the following A

@a→ 1, 2 @b→ 1, 3 @c→ 0

and let R = {0 ⇒ f(1)}. Running the algorithm, we have to normalize
@c→ f(1). If we already reached the maxStates bound, we have to reuse a
state @q ∈ {@a,@b,@c} and add the transitions @c → f(@q) and @q → 1.
If we choose @q = @a, we will have f(1), f(2) ∈ [[@c]]A. If we instead
choose @q = @b, we will have f(1), f(3) ∈ [[@c]]A. Finally, we can choose
@q = @c, and have 1, f(0), f(1), f(f(1)), . . . ∈ [[@c]]A. No alternative yields a
more precise result than the others. Which is the best one actually depends
on what these terms represent for the user who is running the algorithm:
if, for instance, all the user wants is to prove f(2) 6∈ [[@c]]A, then any choice
but @q = @a will yield an approximation precise enough.

In general, however, we have to resort to some heuristics for choosing
which state to reuse. In our implementation we used the ones below. Some
of these are already included in our definition of place. Assume below we
are normalizing to @r→ f(. . . ,@q, . . .) and @q → T .

• If we already have some transition @s→ T in the current A, we reuse
one of those @s. This somehow simple heuristic turned out to be quite
significant, since it avoids a subtle resource wasting problem caused
by following phenomenon.

At each main loop iteration we call augment for each match of R
against A, including those matches that were already discovered in
previous iterations. Therefore, we perform the same normalizations
many times. If we kept generating new states for this, many states
would be generated for the same normalization, and therefore for the
same language. Then, we would compute the same rewritings for
all these languages, and keep distinct the states @a,@b,@c, . . . for
different instances of the same language.

@c→ 0 @b→ 0, 1 @a→ 0, 1, 2

Above, a new state @q for @q → 0 is being generated at each itera-
tion, and then its language is rewritten under rules R = {0 ⇒ 1, 1 ⇒
2, 2 ⇒ 3}. These languages will eventually converge to the same rep-
resentation and then merged with a Join operation into the same state.
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However, the languages may require several steps to converge and trig-
ger Join, and we are likely to hit the maxStates bound before states
are freed. This causes the reuse of states, possibly even those that are
going to converge: if this happens, the languages may get perturbed
so that Join does not happen.

Using the heuristic, we generate a state only the first time we nor-
malize a transition (if at all). The next times we attempt the same
normalization, we will find at least the state we generate before (mod-
ulo Join) and reuse that state.

An alternative to this heuristic would be recording the results of the
normalizations in some data structure, and checking whether we can
reuse them later. In our tests, this often increased the memory foot-
print and the overall complexity without significantly improving the
results.

• If there are many states @s such that @s→ T exists, prefer those that
were not automatically generated, i.e. those that were in the input A.
The rationale behind this heuristic is that user-defined states might
carry more semantically significant languages, and therefore their use
might produce better approximations. This is somehow in contrast to
the fact that generated states, at least before they are reused, start
with only one term and so have usually smaller languages with respect
to user-defined ones. Our implementation has a switch for enabling or
disabling this heuristic.

• If we have not yet reached the maxStates bound, and no transition
@s→ T is in A, we generate a fresh state @q.

• If everything else fails, fallback to reusing the last generated state.

Further, we use these heuristics, that are not related to the normalization
of transitions:

• We fix an order on the states. In our implementation, we simply
use the lexicographic ordering over the names of the states. Also,
generated states are greater than user-defined ones, and are ordered
so that newer states are greater. When scanning a sets of states, we
scan them in increasing order. When choosing, we prefer the smallest.

Note that our algorithm may produce different (sound) approximations
depending on the actual order of matches and normalizations. The
choice of a fixed ordering for these guarantees reproducible results,
essentially making our implementation resilient to some changes to
the low-level routines, e.g. the routine that serializes a set into a list
of elements.
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As a side effect, using a fixed ordering also allows the user to specify
“high priority” states (@aa) and “low-priority” ones (@zz). In this
way, while providing the input A, the user specifies a hint about which
normalizations should be considered first.

• We apply Join aggressively. Since Join can avoid duplicating work, the
sooner it is applied, the better. Moreover, when using rewriting rules
such as associativity or commutativity, many equivalent languages are
generated, so early joining is crucial.

• When possible, we also apply Join to states in QA.

In our previous sections, we showed how to compute approximations of
A respecting the ordering given by vQA . We do this by applying only
automaton transformations preserving that preorder. In particular, we
never join states in QA, as the side condition of rule Join requires. This
ensures that we compute a sound approximation for the languages of
all the states of A.

However, in practice, most of the states of A are auxiliary: we are
interested only in the languages of a few states, disregarding the rest.
So, we do not need to compute approximations for all the states. We
rather can require the computed approximation to preserve the pre-
order vQ′

, where Q′ is a subset of QA selecting only those states we
care about. In this way, we allow joining for all the states not in Q′,
usually including most of the states of A.

In our implementation, we chose Q′ as the set of the states that occur
in the (extended) rules and in intersection constraints. This follows
the common practice of encoding a “witness” test in the rules. In this
case, we ensure that the languages involved in the test are soundly
approximated, while the others can be arbitrarily joined.

• We perform normalizations that do not generate new states before the
others. This is to reuse existing states as much as possible.

3.9.4 Other Optimizations

We briefly comment on some minor optimizations we found in the develop-
ment of our tool.

• We do not recompute ' from scratch at every main loop iteration.
Rather, we exploit the fact that if @a ' @b for the A in the previous
loop iteration, we still have @a ' @b for the current A, provided
no Join merged @a or @b with some other state. So, we consider
for addition to ' only the pairs (@a,@b) such that @a 6' @b in the
previous iteration.
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• When translating non left-linear rules into left-linear ones, we add
as many equations as possible in side conditions. For instance, we
translate f(X,X,X) ⇒ 0 to

f(X1,X2,X3)X1=X2,X2=X3,X1=X3
⇒ 0

Above, the third equation is redundant, since it is implied by the
other two. That is, removing the third equation yields the same →R

relation. However, our approximation algorithm may produce a more
precise result if we keep all the equations above. This is because, when
we have to determine whether the rewriting rule applies to a term as
f(@a,@b,@c) we check for @a ' @b, @b ' @c, and @a ' @c. If any
of these checks fails, we deduce that rewriting does not apply, and
therefore we do not add 0 through augment to the language at hand.
Note that it is possible to have @a ' @b, @b ' @c, but @a 6' @c.
Removing the third equation, and consequently not performing the
third check, would cause adding 0, with a loss of precision. Therefore,
the last check can indeed help in achieving a better result.

However, in practice, most non left-linear rewriting rules do not use
more than two occurrences for each variable in their left hand sides. So,
in many cases this optimization has no effect. Yet, its implementation
is simple, so we included it in our tool.

3.9.5 Test Cases

We applied our tool to several rewriting systems, including those for pairs
(cons, fst, snd), encryptions (enc, dec), and also those for xor and exponentials
(exp, ∗, inv, 1) that do not admit simple normal forms. These experiments
often produced approximations precise enough to show the security proper-
ties we were looking for. For instance, we successfully checked a one-time
pad example, and other examples for xor. Also, a flawed version of the
WEP protocol [21] did not pass the test, as expected. We also successfully
checked the Common Crypto API (CCA) [25], that involves hashes, xor, and
a number of black-box operations to be executed by trusted hardware. The
tool showed its limitations when applied to an exotic definition of even and
odd naturals: in that case the tool over-approximated the sets yielding the
whole N. In this section, we report on the results of these experiments.

Finally, we shall use our completion tool in Chapter 4 to define a protocol
verification technique. We shall be able to statically check protocols specified
in a process calculus. Therefore, the examples of Chapter 4 also contribute
to confirm the validity of the approximation techniques presented in this
chapter. Notably, there we shall analyze a protocol based on the Diffie-
Hellman key exchange [31], dealing with exp, ∗, inv, 1.
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One-time Pad

Here, a single message msg, xored with a secret key key, is sent through the
network. The key is used only for this purpose and only once. A recipient
knowing the secret key can recover the original message by applying xor once
more so that

xor(xor(msg, key), key) = msg

We represent the network as the language of the state @net. We assume
the presence of an adversary, able to manipulate messages through xor op-
erations. Further, the adversary is also allowed to use 0. We model this
adversary by making @net closed under the operations available to the ad-
versary.

We expect the adversary not to be able to derive the plaintext message
msg. In other words, we expect msg 6∈ [[@net]]A/R. Our tool succeeds in
proving this.

While the security of this simple protocol has already been established,
even for low-level models, it is comforting to know that our tool is able to
achieve the corresponding result in a formal, high-level model. Note that,
despite the simplicity of the protocol, the rewriting rules include associativ-
ity and commutativity rules.

Below, we provide the actual input for our tool.

# xor rules

^(X,Y) => ^(Y,X) .

^(^(X,Y),Z) => ^(X,^(Y,Z)) .

^(X,X) => 0 .

^(0,X) => X .

# Expected Result

| @net : msg => @zzResult : !FAIL! .

%%

@msg : msg .

@key : key .

@net : ^(@msg,@key) .

# adversary rules

@net : 0 , ^(@net,@net) .

@zzResult : soFarSoGood .
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Another xor Example

We experiment with xor again. We define two languages using mutual re-
cursion, with the following transitions.

@res1→ xor(a,@res2)

@res2→ xor(d,@res1), e

Under these definitions, we expect [[@res1]]A/R = {xor(a, e), xor(d, e)} and
[[@res2]]A/R = {e, xor(d, xor(a, e))}, both to be closed under rewriting. Be-
low, we check that a number of other terms are not included in the language
@res1, so that the computed approximation is reasonably tight. Our tool
succeeds in this test.

# Rules for xor.

^(0,Y) => Y .

^(X,Y) => ^(Y,X) .

^(^(X,Y),Z) => ^(X,^(Y,Z)) .

^(X,X) => 0 .

# @zz summarizes @res1

| @res1 : ^(X,Y) , X : a , Y : b => @zz : ab .

| @res1 : ^(X,Y) , X : a , Y : c => @zz : ac .

| @res1 : ^(X,Y) , X : a , Y : d => @zz : ad .

| @res1 : ^(X,Y) , X : a , Y : e => @zz : ae .

| @res1 : ^(X,Y) , X : b , Y : c => @zz : bc .

| @res1 : ^(X,Y) , X : b , Y : d => @zz : bd .

| @res1 : ^(X,Y) , X : b , Y : e => @zz : be .

| @res1 : ^(X,Y) , X : c , Y : d => @zz : cd .

| @res1 : ^(X,Y) , X : c , Y : e => @zz : ce .

| @res1 : ^(X,Y) , X : d , Y : e => @zz : de .

# If @zz contains unwanted terms, the analysis fails.

| @zz : ab => @zzResult : !FAIL! .

| @zz : ac => @zzResult : !FAIL! .

| @zz : ad => @zzResult : !FAIL! .

| @zz : bc => @zzResult : !FAIL! .

| @zz : bd => @zzResult : !FAIL! .
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| @zz : be => @zzResult : !FAIL! .

| @zz : cd => @zzResult : !FAIL! .

| @zz : ce => @zzResult : !FAIL! .

%%

# Constants

@0 : 0 .

@a : a .

@b : b .

@c : c .

@d : d .

@e : e .

@res1 : ^(@a,@res2) . # @res1 = ae, de .

@res2 : ^(@d,@res1) , @e . # @res2 = e, dae .

@zzResult : soFarSoGood.

WEP

We now consider a flawed version of the WEP protocol [21]. Here, the
protocol sends over the network the messages

n1, n2, v

cons(v, xor(cons(n1, c(n1)), rc4(v, k)))

For the actual intended meaning, we refer the reader to [21]. For our pur-
poses, it is sufficient to know that the protocol, after having sent the above
messages, relies on the adversary not to be able to derive

xor(cons(n2, c(n2)), rc4(v, k))

However, an adversary able to manipulate messages using pair construc-
tion and destruction (cons, fst, snd), operation c, and xor is actually able to
construct the above, disrupting the protocol.

We run the tool, asking it to prove the secrecy of the above message.
The tool fails, as it should, because of the flaw.

# Rules for xor.

^(0,Y) => Y .

^(X,Y) => ^(Y,X) .
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^(X,^(Y,Z)) => ^(^(X,Y),Z) .

^(X,X) => 0 .

# Pairs: fst/snd/cons

fst(cons(X,Y)) => X .

snd(cons(X,Y)) => Y .

# Expected result:

# The value ^(cons(n2,c(c2)) , rc4(v,k)) should be kept secret,

# but it is not, since the protocol is flawed. We fail the test.

| @net : ^(P,RC4) , P : cons(N2, CN2) ,

N2 : n2 , CN2 : c(N2b) , N2b : n2 ,

RC4 : rc4(V,K) , V : v , K : k

=> @zzResult : !FAIL! .

%%

# Constants.

@0 : 0 .

@n1 : n1 .

@cn1 : c(@n1) .

@p : cons(@n1,@cn1) .

@v : v .

@k : k .

@rc4 : rc4(@v,@k) .

@c : ^(@p,@rc4) .

@net : n1 , n2 .

@net : v .

@net : cons(@v,@c) .

# Adversary rules

@net : cons(@net,@net) , fst(@net) , snd(@net) ,

^(@net,@net), c(@net) .

@zzResult : soFarSoGood .

Common Crypto API

The Common Crypto API (CCA) [25] defines a set of primitives used in
every Automated Teller Machine (ATM) over the world. In the ATMs there
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is a trusted hardware cryptographic component that stores a number of
secret keys used for the ATM operations. This component can only be
accessed through the CCA primitives, and so it forms a black-box device only
allowing some interactions with the secrets it holds. Of course, this trusted
component should never disclose its secrets, even when the operations of the
API are run in an unusual, malicious order.

In [30], Courant and Monin provide a formal proof of the correctness of
the CCA. For the sake of brevity, we do not describe here the ideas behind
the complex CCA primitives, and its exact secrecy property that was shown
in [30]. We refer the reader to [30] for a more adequate description. For our
purposes, we simply note that the property shown in [30] states that, using
the six primitives of CCA, plus public operations (e.g. hashes, xor), one can
not derive any of the secrets stored in the trusted component.

The proof in [30] was written and verified with the help of the Coq proof
assistant [29] to ensure its soundness. The files containing the proof contain
2100 lines of hand-made definitions, lemmata, and theorems.

We ran our approximation tool on the CCA specification. We define
the CCA primitives f1, . . . , f6 using suitable rewriting rules, as we do for
hashes, encryptions and xor. Then, we define the language of @k so to
include public information and to be closed under the primitives. Finally,
we check that the language of @k does not contain any secret, by testing its
intersection with @secret. Below, we give the complete specification.

Our tool succeeded in proving the same secrecy property of [30] with no
manual intervention.

# Encryption

dec(enc(M,K),K) => M .

# Rules for XOR

+(X,Y) => +(Y,X) .

+(+(X,Y),Z) => +(X,+(Y,Z)) .

+(0,X) => X .

+(X,X) => 0 .

# Hash (no rules required)

###

# The six CCA operations

# K_key_part_import_notcompleting

f1(X,Y,enc(Z,h(h(X,kp),km))) => enc(+(Z,Y),h(h(X,kp),km)) .
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# K_key_part_import_notcompleting

f2(X,Y,enc(Z,h(h(X,kp),km))) => enc(+(Z,Y),h(X,km)) .

# K_key_import

f3(T,enc(K,h(imp,km)),enc(X,h(T,K))) => enc(X,h(T,km)) .

# K_key_export

f4(T,enc(K,h(exp,km)),enc(X,h(T,km))) => enc(X,h(T,K)) .

# K_key_encrypt_using_data_key

f5(X,enc(K,h(data,km))) => enc(X,K) .

# K_key_decrypt_using_data_key

f6(enc(X,K),enc(K,h(data,km))) => X .

| @!Inters : cons(@k, @forbidden) => @zzResult : !FAIL! .

%%

@public : data,pin,imp,k3,acc,kp.

@secret : km,kek,p,kek2,exp1 .

@forbidden : kek,km,p,enc(acc,p).

@k : 0 ,

@public,

enc(p,h(pin,kek)) ,

enc(+(kek,k3),h(h(imp,kp),km)) ,

enc(kek2, h(h(imp,kp),km)) ,

enc(kek2, h(h(exp,kp),km)) ,

enc(exp1, h(exp,km)) .

@k : +(@k,@k) , h(@k,@k) ,

enc(@k,@k) , dec(@k,@k) ,

f1(@k,@k,@k) , f2(@k,@k,@k) ,

f3(@k,@k,@k) , f4(@k,@k,@k) ,

f5(@k,@k) , f6(@k,@k) .

Even and Odd

Here, we construct the sets of even and odd naturals, with the usual Peano
encoding. We use sum (+) and successor (s) operations. We check that in
the approximation some even numbers do not appear between the odd ones,
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and vice versa. Our tool succeeds in providing a good enough approximation.

# Peano’s axioms for naturals

+(0,X) => X .

+(s(X),Y) => s(+(X,Y)) .

# @resA summarizes @a , @resB summarizes @b

| @a : 0 => @resA : 0 .

| @a : s(X) , X : 0 => @resA : 1 .

| @a : s(Y) , Y : s(X) , X : 0 => @resA : 2 .

| @a : s(Z) , Z : s(Y) , Y : s(X) , X : 0 => @resA : 3 .

| @b : 0 => @resB : 0 .

| @b : s(X) , X : 0 => @resB : 1 .

| @b : s(Y) , Y : s(X) , X : 0 => @resB : 2 .

| @b : s(Z) , Z : s(Y) , Y : s(X) , X : 0 => @resB : 3 .

# Expected result: no odds in @a, no evens in @b

| @resA : 1 => @zzResult : !FAIL! .

| @resA : 3 => @zzResult : !FAIL! .

| @resB : 0 => @zzResult : !FAIL! .

| @resB : 2 => @zzResult : !FAIL! .

%%

# @a has only even numbers

@a : 0 , @a , s(@b) , +(@a,@a) .

# @b has only odd numbers

@b : s(@a) .

@zzResult : soFarSoGood .

Even and Odd, Revisited

We again define even and odd naturals. However, here we also use a “−2(x)”
operation, meaning the subtraction of 2 from x. The purpose of using such
a operation is to try to confuse the tool into mixing even with odds.

Our tool was indeed confused. The provided approximation used the
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whole set of naturals, for both even and odd numbers. So, in this case, our
tool failed the test. We stress that the result is sound, but not as precise as
we hoped it to be.

# Peano’s axioms for naturals 0,s(),+(,)

# We also use -2() as "subtract 2"

+(0,Y) => Y .

+(s(X),Y) => s(+(X,Y)) .

-2(s(s(X))) => X .

# @res summarizes @a

| @a : 0 => @res : 0 .

| @a : s(X0) , X0 : 0 => @res : 1 .

| @a : s(X1) , X1 : s(X0) , X0 : 0 => @res : 2 .

| @a : s(X2) ,

X2 : s(X1) , X1 : s(X0) , X0 : 0 => @res : 3 .

| @a : s(X3) , X3 : s(X2) ,

X2 : s(X1) , X1 : s(X0) , X0 : 0 => @res : 4 .

| @a : s(X4) ,

X4 : s(X3) , X3 : s(X2) ,

X2 : s(X1) , X1 : s(X0) , X0 : 0 => @res : 5 .

| @a : s(X5) , X5 : s(X4) , X4 : s(X3) , X3 : s(X2) ,

X2 : s(X1) , X1 : s(X0) , X0 : 0 => @res : 6 .

# Expected result: @res should contain only even numbers

| @res : 1 => @zzResult : !FAIL! .

| @res : 3 => @zzResult : !FAIL! .

| @res : 5 => @zzResult : !FAIL! .

%%

@zzResult : soFarSoGood .

# constants

@n0 : 0 .

@n1 : s(@n0) .

@n2 : s(@n1) .

@n3 : s(@n2) .

@n4 : s(@n3) .

# @a has only even numbers
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@a : @n4 , +(@a,@a) , -2(@a) .

# Even and odd numbers

@even : @n0 , s(@odd) .

@odd : s(@even) .

Pathological Cases

Our algorithm uses the maxJoin bound to ensure that only a finite number
of Join operations are performed. This is to ensure that eventually only
monotonic operations are applied to A, making it converge. However, one
might ask whether maxJoin is actually needed, i.e. if there is such an A that
can trigger an unbounded number of Join under some R. We call such an
A wild (w.r.t. R). If no wild A exists, we could avoid requiring the user
to specify maxJoin, and avoid using such an arbitrary restriction on Join

applications.
A wild A automaton has to achieve two contrasting goals: making states

joinable by equating their languages, and keep generating new states during
normalization. The latter turns quite difficult if we use some heuristic to
reuse states, since A has to force the generation of an unlimited number of
states.

Quite interestingly, the existence of a wild A depends on the actual
heuristics we are using. For instance, consider a dumb heuristic that uses a
single fixed state for every normalization. In this case, we ignore maxStates,
no state is ever generated, so there is no wild A. On the other hand, consider
the opposite heuristic: we never reuse states unless we exceeded maxStates.
Now, take A = {@a→ k} and R = {k ⇒ f(k)}. At each main loop iteration
i we perform the normalization, creating a new state @qi with a @qi → k

transition. So, the state @qi is joined with @q0 in the next loop, provided
maxStates ≥ 3. Therefore, such an A is wild.

If more adequate heuristics are used, tackling the existence of a wild
A is quite challenging. For the heuristics we used in our implementation
presented in Sect. 3.9.3 we were nevertheless able to construct a wild A.
Below, we discuss how we constructed such an A. Further, we only use
left-linear rewriting rules for R: no extended rules are used.

We consider the normalization of the following rule. We read c as “child”
and p as “parent”.

c(X) ⇒ p(c(c(X)))

Our heuristic will try to reuse the state carrying c(X), thus implementing
the rule above as if it were

S : c(X) ⇒ S : p(c(S))
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So, we can rewrite

@b0 → p(@b1), root

@b1 → c(@b0)

as follows

@b0 → p(@b1), root

@b1 → c(@b0), p(@b2)

@b2 → c(@b1)

This will generate an unbounded number of @bi. These states form a doubly-
linked list, rooted at @b0, with c and p providing the child and parent link,
respectively, as shown below. The root constant term is used to make the
languages non-empty, so that rewritings actually happen.

@b0 → p(@b1), root

@b1 → c(@b0), p(@b2)

@b2 → c(@b1), p(@b3)

· · ·

@bn → c(@bn−1), p(@bn+1)

@bn+1 → c(@bn)

Now, we construct a superset @everything of all the languages of the @bi.
Below, we use d = p−1.

d(p(X)) ⇒ X

@everything → @b0, d(@everything), extra

This will trigger adding @b1 to @everything, followed by @b2 and so on.
We now force all the @bn to join with @everything. However, we should
be careful here, since if all the @bn are joined at the same time, the state
generation stops. In other words, we need to join a @bn only if it already
spawned its child. This is accomplished through the following rewriting
rules.

id(X) ⇒ X

p(X) ⇒ id(extra)

Of course, id is the identity function. The second rule adds the term id(extra)
only to states that have a child. This will trigger a normalization, and
heuristics will reuse for extra the only state that holds it: @everything. So,
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we get

· · ·

@bn → c(@bn−1), p(@bn+1), id(@everything)

· · ·

@everything → extra, . . . ,@bn, . . .

After one more rewriting, we have both the transitions @bn → @everything
and @everything → @bn. We then close under Transitivity, and then Join the
states. Therefore, this automaton keeps on triggering new state generations
as well as new joins, and so it is wild.

Above, we rely on the fact that the term extra occurs only in the tran-
sitions of @everything. Actually, when a @bn is about to be joined with
@everything, it shares the same transitions, so the term extra occurs also
in the transitions of @bn. Because of this it is possible for another state
@bm to be joined with @bn instead of @everything, if the normalization
chooses @bn as the state approximating extra. However, note that, even if
this happens, at this time there is nothing that can prevent @bn to be joined
with @everything. So, the overall effect will be the same as joining both
@bn and @bm with @everything. A similar argument can also be made for
longer chains of states: it is possible that @bi is joined with @bj which is
in turn joined with @bk, and so on. However, all of them will eventually be
merged with @everything.

Here is the wild A we defined above.

c(X) => p(c(c(X))) .

p(X) => id(extra) .

d(p(X)) => X .

id(X) => X .

%%

@b0 : p(@b1) , root .

@b1 : c(@b0) .

@everything : @b0 , d(@everything) , extra.

In practice, however, the maxJoin bound seems to be mostly irrelevant.
Usually, when a newly generated state is joined with a previous state, the
language of previous state is augmented, leading to convergence. In fact, all
our other tests converge even if we choose maxJoin = +∞.

3.9.6 Further Information

Our tool was implemented in Haskell [42], using the Glasgow Haskell Com-
piler (GHC) [39]. At the time of this writing, the development tree contains
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2998 lines of source code. This figure includes the parser, the pretty print-
ing routines, some sanity checks, and, for certain subroutines, an alternative
version. The actual core of the tool is about 1500 lines of code. Our tool
was released [61] under the terms of the GNU General Public License.

Just for a rough comparison, the Succinct Solver [65] version 2 is 8887
lines of Standard ML source code. The Timbuk tool for tree automata [67],
version 2.2, is 16319 lines of OCaml code.
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Abstract

We present a static analysis technique for the verification of cryptographic
protocols, specified in a process calculus. Rather than assuming a specific,
fixed set of cryptographic primitives, we only require them to be specified
through a term rewriting system, with no restrictions, as discussed in Chap-
ter 3. Examples are provided to support our analysis. First, we tackle
forward secrecy for a Diffie-Hellman-based protocol involving exponentia-
tion, multiplication and inversion. Then, a simplified version of Kerberos is
analyzed, showing that its use of timestamps succeeds in preventing replay
attacks.

4.1 Introduction

Process calculi [52] have been extensively used for cryptographic protocol
specification and verification, exploiting formal methods. In the introduc-
tion of this work, Sect. 1.1, we discussed how several of these calculi (e.g.
Spi [4]) use a specific set of cryptographic primitives, which is often entwined
with the definition of the process syntax and semantics, e.g. by introducing
pattern matching on encrypted messages. We also addressed the main ad-
vantages this approach has. For instance, the presentation of the calculus
is simplified; also, the verification tools only need to consider the given set
of primitives. Instead, the main disadvantage lies in that protocols using
different primitives cannot be specified in the calculus as it is: one has to
suitably extend it and to adapt existing tools to cope with the extensions.
Of course, the new tools also need new, adapted soundness proofs.

In Chapter 3 we saw how we can compute static over-approximations
of set of terms modulo rewriting. Now, we can leverage these techniques
in order to apply them to the verification of cryptographic protocols. Here,
we shall not use a fixed set of cryptographic primitives. Rather, we shall
assume that such primitives are specified through an an arbitrary rewriting
system R. Indeed, we do not put any restrictions on R: it needs neither
to be confluent nor terminating, since our algorithms of Chapter 3 do not
require it to be so. This will allow us to add new cryptographic primitives
just by adding the relevant rewriting rules to R.

For the specification of protocols, we shall use a process calculus that
allows processes to exchange arbitrary terms. To this purpose, the applied pi

calculus [3] provides a solid ground. In the applied pi, terms are handled up
to some equivalence relation, entirely defined by the user. In our case, this
equivalence is simply the one given by the rewriting rules. Exploiting this
equivalence, the definition of the calculus provide the semantics of processes
exchanging terms. In this way, the semantics of the processes, which is fixed,
is clearly separated from the semantics of the terms, which is user-defined.
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For instance, adding new operations over terms does not affect the syntax of
the processes. In Sect. 1.1 we discussed how this instead happens for those
calculi that rely on pattern matching to manipulate terms.

In this chapter, we shall present a (slight) variant of the applied pi. Then,
we shall address the problem of statically proving properties about processes.
For this, we adapt the control flow analysis (CFA) approach [57, 16] to our
calculus. Following this approach, we extract a number of constraints from
a protocol specification, expressed as a process. Then, we solve the con-
straints using the algorithms on automata of Chapter 3, computing a sound
approximation up to rewriting. The result is a tree automata F describing
a language which is an over-approximation of the set of terms exchanged by
the protocol, in all their possible equivalent forms according to R. Finally,
the automaton F can be inspected to check a number of security properties
of the protocol. Essentially, this technique is a reachability analysis.

We then study an enhancement of the CFA, which we name CFAio,
to better exploit the features of the automata tools. In doing this, we
revisit some choices made for the CFA, and derive a way to generate an
alternative set of constraints. These constraints allow for a precise handling
of the parallel composition of processes, replication and matching, which
are features heavily exploited in the protocols specifications we consider.
We compare the CFA to the CFAio, considering the result of the analysis of
some given processes by both analyses.

Exploiting the CFAio technique, we analyzed protocols using both stan-
dard cryptographic primitives, such as encryptions and signatures, as well as
more “problematic” primitives such as exponentials. Exponentials are hard
to deal with because their equational theory has many equations, and there-
fore equivalent terms may assume very different shapes. As a consequence,
it is difficult to find an accurate over-approximation for them. The litera-
ture often reports on studies carried out assuming only a few equations. For
instance, from the web page of the AVISPA project [7] one sees examples
with three equations for exp and inversion (•)−1 over finite-fields, analyzed
through the TA4SP tool in [19]. In the example of Sect. 4.3.1, we consider
exp, ×, 1, and (•)−1, axiomatizing their interactions with twelve equations.
Yet, our implementation [61] of the presented analysis was able to prove
the forward secrecy property for a protocol based on the Diffie-Hellman key
exchange [31].

We also study the Wide-Mouthed Frog protocol [22], establishing a sim-
ple secrecy property. This protocol performs a key exchange using symmetric
encryption, only. Because of this, the verification of this protocol is rather
simple. Yet, it is comforting that our technique can handle this as well.

Our technique also offers a limited treatment of time. Here we report
on the success of our tool for the verification of a simplified version of the
Kerberos protocol [64, 56], involving timestamps. In our specification, we
allow the disclosure of an old session key, mimicking a secret leak. The
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tool was able to prove the secrecy of messages exchanged in newer sessions,
confirming the protocol is resilient to replay attacks with the compromised
old key.

Finally, our technique allows for some composition of results. Albeit
with some limitations, it is possible to analyze the components of a system
independently, and then merge the results later to derive a sound analysis
for the whole system.

A related approach to ours is by Blanchet, Abadi and Fournet in [13].
However, they only consider certain equational theories, e.g. without asso-
ciativity, and define a semi-algorithm to obtain rewriting rules with “partial
normal forms.” They then use ProVerif to check processes equivalent, thus
establishing security properties.

We also mention the work in [2], also by Abadi and Blanchet. Here typing
and logic programming is used to derive security properties. The results are
mostly about theories of constructors and destructors. The authors hint
at handling more general equational theories such as XOR or exponentials,
leaving this for future work.

Also, some decidability results for (a significant fragment of) the ex-
ponential theory are discussed by Millen and Shmatikov in [51]. Another
application of tree automata to security by Genet et al. can be found in [37].
There, protocols are specified through rewriting, rather than process calculi.
A similar approach is in [36], by Genet and Klay. Another interesting work
is by Goubault [41], dealing with exponentials through rewriting. There,
however, only exponentials with a fixed base are considered. Monniaux in
[55] also uses tree automata for verifying protocols, when crypto primitives
can be expressed through left-linear rewritings.

Finally, there is an earlier analysis for the applied pi calculus in [71],
developed by us. However, it only applies to free terms, subject to no
rewriting.

Summary We present our calculus in Sect. 4.2, defining its dynamic
semantics in Sect. 4.3. The same section has the Diffie-Hellman example.
Sect. 4.4 describes the static analysis and its application to Diffie-Hellman,
Wide-Mouthed Frog and Kerberos. In Sect. 4.6 we discuss compositionality.

4.2 Syntax

Our process calculus is a simplified version of the applied pi calculus [3],
in that processes exchange values using a global public network channel.
Reusing the definitions given in Chapter 3, values are simply represented as
terms, up to the equivalence specified by a rewriting system R. We write
Tpr for the set of pure terms.
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We also use V = {x, y, . . .} as the set of variables used by our processes.
The syntax of our calculus is rather standard. Below, M ∈ Tpr.

π ::= in x | out M | [x = y] | let x = M | new x | repl | chk

P ::= nil | π . P | (P |P )

We now briefly describe our calculus: its semantics will be given in Sect.
4.3. Intuitively, nil is a process that performs no actions; π.P executes the
prefix π and then behaves as P ; P1|P2 runs concurrently the processes P1

and P2. Prefixes perform the following actions: in x reads a term from
the network and binds x to it; out M sends a term to the network; [x = y]
compares the terms bound to x and y and stops the process if they differ;
let x = M simply locally binds x to the value of M ; new x generates a fresh
value and binds x to it; repl spawns an unlimited number of copies of the
running process, which will run independently; chk is a special action that
we use to model certain kinds of attacks, which we shall address in Sect.
4.3.

Note that match [x = y] is only allowed between variables. This is
actually not a restriction, since matching between arbitrary terms, e.g.
[M = N ].P can be expressed by let x = M .let y = N .[x = y].P .

Unlike the applied pi calculus, our calculus uses a single global public
channel for sending and receiving data. Our previous calculus of Sect. 2.2
also used a single channel. Indeed, the motivations underlying this choice
are the same. First, this keeps our static and dynamic semantics simple.
Further, it models the fact that the adversary is able to reroute messages
between different public channels, so these channels actually behave like a
single one.

As usual, the bound variables in a process are those under a let,new, or
in prefix; the others are free. A process with no free variables is closed.

Given a process, we use addresses θ ∈ {n, l, r}∗ to point to its subpro-
cesses. Intuitively, n chooses the continuation P for a process π.P , while l

and r choose the left and right branch of a parallel P1|P2, respectively. An
address θ is a concatenation of these selectors, singling out the subprocess
P@θ as defined below. We write ε for the empty string, that is the address
pointing at the top-level process.

P@ε = P (P1|P2)@θl = P1@θ
π.P@θn = P@θ (P1|P2)@θr = P2@θ

The size of a process P is the number of prefixes and parallel operators that
occur in P .

4.3 Dynamic Semantics

Given a closed process P , we define its semantics through a multiset rewrit-
ing system [49, 26]. A state is a multiset σ of parallel threads. Each thread
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is formed by an environment ρ ∈ V → Tpr and a continuation address θ
singling out a subprocess of P . We write such a thread as 〈ρ, θ〉. Intuitively,
〈ρ, θ〉 runs the process P@θ under the bindings in ρ. The initial state is
〈∅, ε〉.

We extend ρ homomorphically to terms: ρ(M) replaces variables in M
with the value they are bound to in ρ. We denote updates to the environment
with ρ[x 7→ M ]: the updated environment binds x to M , and binds any
other variable y to ρ(y). Also, as a handy convention, if P@θ = P1|P2, we
write 〈ρ, θ〉 for the multiset {〈ρ, lθ〉, 〈ρ, rθ〉}, or its further expansion, so that
threads in the state never have continuation addresses θ′ such that P@θ′

has the form P1|P2.
Our semantics is given by the rules in Fig. 4.1. Local rules only care

about one or two elements of the current state: these elements are rewritten
independently of the rest of the state, which does not change. All the rules
fire a prefix, advancing the current continuation address θ to nθ, except for
rule Rew.

Local Rules

Comm
P@θ1 = in x .P ′ P@θ2 = out M .P ′′ ρ′1 = ρ1[x 7→ ρ2(M)]

〈ρ1, θ1〉, 〈ρ2, θ2〉
comm θ1,θ2,ρ2(M)
−−−−−−−−−−−→〈ρ′1, nθ1〉, 〈ρ2, nθ2〉

Out
P@θ = out M .P ′

〈ρ, θ〉
out θ,ρ(M)
−−−−−−−→〈ρ, nθ〉

Match
P@θ = [x = y].P ′ ρ(x) = ρ(y)

〈ρ, θ〉
τ
−→〈ρ, nθ〉

Let
P@θ = let x = M .P ′

〈ρ, θ〉
τ
−→〈ρ[x 7→ ρ(M)], nθ〉

Repl
P@θ = repl.P ′

〈ρ, θ〉
τ
−→〈ρ, θ〉, 〈ρ, nθ〉

Rew
ρ(x)→R M

〈ρ, θ〉
τ
−→〈ρ[x 7→M ], θ〉

Global Rules

New
P@θ = new x .P ′ x̂ = genFresh()

σ, 〈ρ, θ〉
τ
−→σ, 〈ρ[x 7→ x̂], nθ〉

Chk
P@θ = chk.P ′

σ, 〈ρ, θ〉
chk
−−→〈ρ, nθ〉

Figure 4.1: Multiset Rewriting Rules

Rule Comm performs communication between threads. Rule Out outputs
a term to the external environment. Since out M may be handled by either
Comm or Out, there is no guarantee that outputs have a corresponding input;
instead, they may simply cause a barb, i.e. an action observed only by the
external environment. Note that there is no rule for input, and therefore
processes can never receive a value from the environment – for studying
security issues our processes will explicitly contain an adversary.
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Rule Match, allows a process to continue only if x and y are bound to
the same term. Rule Let simply updates ρ with the new binding. Rule Repl

allows for spawning a new copy of P ′. In Rew, the thread rewrites the term
bound by x, thus performing an internal computation step; note that these
internal steps may lead a matching to succeed.

Global rules instead look at the whole state. Rule New is not com-
pletely standard, and it generates a fresh value x̂ for the variable x. Here
we postulate that 1) a constant (nullary function) symbol x̄ exists for each
variable bound by new in P , and 2) two distinguished function symbols
val, next exist, subject to no rewriting in R. Note that we only need a finite
number of such x̄, since there are only finitely many variables in P and we
have no α-conversion. When rule New is applied, the x̂ is generated by a
genFresh() primitive, which we assume to choose among val(x̄), val(next(x̄)),
val(next(next(x̄))), . . .. To make it possible to track new-generated values to
their new prefix in P , we require that all new-bound variables are distinct,
and therefore so are their related constants x̄. Note that this representation
prevents an adversary Adv to deduce any instance of x̂ from other instances
he knows, even if Adv can use val and next.

Rule Chk is peculiar: when a chk prefix is fired all the other threads are
aborted, and the thread continues its execution alone. For simplicity, we
admit only one firing of chk. We use this special prefix to model some kinds
of attacks. For instance, suppose we want to study the case in which the
adversary learns some secret term S, maybe by corrupting some participant
to the protocol. A straightforward way to model this attack would be simply
adding out S to the protocol, disclosing S. While this would work, in
many cases giving this kind of power to the adversary might allow for trivial
attacks. Instead, to keep the game fair, we could restrict the interaction
between the adversary and the participants after the disclosure of S. For
example, we could imagine that it would take a long time for the adversary
to obtain S, and meanwhile the participants have terminated the protocol
run, either normally or because of a time-out.

A possible usage of chk is the following. The adversary, after having
learnt S, is only allowed to run alone, and possibly use this new knowledge
to decrypt messages it learnt in the past. In our calculus, we model this
scenario as

(Proto|Adv)|in know .chk.(out know .out S .nil|Adv)

Note that we include the adversary process twice. First, the adversary can
interact with the protocol. Later, when chk is fired, the adversary can learn
S and go on with its computation, without being able to communicate with
the protocol participants. Since we want to allow the adversary to keep
its knowledge across the chk firing, we simply save this knowledge in the
variable know before the chk, and make it again available to the adversary
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later on. Note that, while know is only a single term, it can be a cons-list
of all the terms known by the adversary. Therefore know actually can bring
all the old adversary knowledge into the new world, provided we have a
primitive for pairing. In the next section, we show such a use of chk.

Another interesting use of chk we found is for modeling timestamps, as
we shall show in Sect. 4.5.4. Finally, in Sect. 4.7 we discuss an alternative
semantics for chk.

A Brief Comparison to the Calculus of Chapter 2

The calculus we use in this chapter is different from the one used in Chapter
2. The main differences can be summarized as follows.

• In the calculus of Chapter 2, the adversary is fixed and it is defined in
the semantics. Here, the adversary is a process, a part of the system
P at hand.

• In Chapter 2, the knowledge of the adversary was made explicit in the
process state (K,T , P ). Instead, here this knowledge is not directly
represented.

• In Chapter 2, processes used pattern matching for destructing pairs
and encryptions. Here, we use rewriting rules.

• In Chapter 2 we considered guessing keys via the DYGuess operation.

Despite these differences, it is possible to define in the new calculus the
same Dolev-Yao adversary of Chapter 2. recall that, by Theorem 1, we can
neglect the DYGuess operation. First, we adopt the usual rewriting rules for
pairs and encryptions.

R =





dec(enc(X,K),K) ⇒ X
fst(cons(X,Y )) ⇒ X
snd(cons(X,Y )) ⇒ Y





Then we define the adversary as follows.

DY = repl.in x .in y .(
repl.out 0 .nil | repl.out 1 .nil |
repl.out x .nil | repl.out y .nil |
repl.out cons(x, y) .nil | repl.out fst(x) .nil | repl.out snd(x) .nil |
repl.out enc(x, y) .nil | repl.out dec(x, y) .nil)

This process simply runs every operation non-deterministically in all the
possible ways. We can now define the knowledge K of this DY adversary.
Take P = Proto|DY , and any state σ reachable from P , i.e. such that
〈∅, ε〉−→∗σ. The knowledge of the adversary at σ is

K = {ρ(M) | 〈ρ, θ〉 ∈ σ ∧ P@θ = repl.out M .nil}
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Above, we inspect σ for all active outputs under a replication, and we define
the knowledge as the set of terms appearing in these outputs. Clearly, these
are the terms constructed by the DY process above, or by Proto. In both
cases they are available to the adversary, so they form its knowledge K.

This formulation of K is strictly related to the one given in Chapter 2.
Indeed, it is possible to see that the two adversaries can simulate each other,
so that if one is able learn a term, so does the other. This holds for any term
that the calculus of Chapter 2 is able to represent. The new calculus can also
have unevaluated terms, e.g. fst(cons(0, 1)), that have no correspondent in
the other calculus (this also includes non-well-formed terms such as fst(0)).
Neglecting these terms, the two calculi define the same adversary knowledge
K, and therefore share the security properties that only depend on K, such
as secrecy.

4.3.1 Diffie-Hellman Example

We consider the following key-exchange protocol, based on Diffie-Hellman’s
[31].

1. A→ all : g

2. A→ B : {ga}k1
3. B → A : {gb}k2
4. A→ B : {m}gab

5. . . . (time passes)
6. A→ all : k1, k2

Initially, the principals A and B share two long term secret keys k1, k2, and
agree on a public finite field GF[p] (where p is a large prime), and public
generator g of GF[p]∗. In the second step, principal A generates a nonce a

and sends B the result of ga(mod p), encrypted with the key k1. In the third
step, B does the same, with its own nonce b and key k2. Since both principals
know the long term keys, they can compute (gb)a = gab = (ga)b (mod p)
and use this value as a session key to exchange the message m in the fourth
step.

We study the robustness of this protocol against the active Dolev–Yao
[32] adversary. We discussed this kind of adversary in Chapter 2. Here,
we briefly remind that such an adversary has full control over the public
network, can reroute, discard or forge messages; further, he can apply any
algebraic operation to terms learnt before. In particular, we are interested in
the forward secrecy of the message m. That is, we want m to be kept secret
even though later on the long term keys k1, k2 are disclosed (last step).

We define the algebra by adapting the rewriting rules for encryption,
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multiplication, exponentiation, and inversion from [51]:

R =





dec(enc(X,K),K) ⇒ X
fst(cons(X,Y )) ⇒ X
snd(cons(X,Y )) ⇒ Y
∗(1,X) ⇒ X
∗(X,Y ) ⇒ ∗(Y,X)
∗(X, ∗(Y,Z)) ⇒ ∗(∗(X,Y ), Z)
exp(X, 1) ⇒ X
exp(1,X) ⇒ 1
exp(exp(X,Y ), Z) ⇒ exp(X, ∗(Y,Z))
exp(∗(Y,Z),X) ⇒ ∗(exp(Y,X), exp(Z,X))
inv(1) ⇒ 1
inv(inv(X)) ⇒ X
∗(X, inv(X)) ⇒ 1
inv(∗(X,Y )) ⇒ ∗(inv(X), inv(Y ))
exp(inv(X), Y ) ⇒ inv(exp(X,Y ))





Note that the algebra A defined by the above rewriting rules is not the
same algebra of GF[p]∗. In fact, A satisfies more equations than the ones
that hold in GF[p]∗. For instance, operations in A do not specify which
modulus is being used; e.g., inversion modulo n is simply written as inv(X)
rather than inv(X,n). Therefore, we have (a) ∗(X, inv(X)) = 1 and (b)
exp(Y, ∗(X, inv(X))) = Y . However, (a) holds in GF[p]∗ only if inv(X) is
performed modulo p, while (b) holds only if inv(X) is performed modulo
ϕ(p) = p − 1 (where ϕ is the Euler function). In spite of A being not
equal to the GF[p]∗ algebra, we believe it is a rather faithful approximation,
satisfying most of the the equations that hold in GF[p]∗.

We use the following process:

P =new g .(DY |new k1 .new k2 .(Proto|Chk))

Chk =in know .chk.(out know .out k1 .out k2 .nil|DY ))

Proto =A|B

A =repl.new a .out enc(exp(g, a), k1) .in x .

let k = exp(dec(x, k2), a) .out enc(m, k) .nil

B =repl.new b .in x .out enc(exp(g, b), k2) .

let k = exp(dec(x, k1), b) .in n .out hash(dec(n, k)) .nil

DY =repl.((new nonce .out nonce .nil|out g .out 1 .nil)|

in x .in y .out x .out y .out enc(x, y) .out dec(x, y) .

out exp(x, y) .out ∗(x, y) .out inv(x) .

out cons(x, y) .out fst(x) .out snd(x) .

out hash(x) .out val(x) .out next(x) .nil)
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The specification P combines the protocol participants with the DY adver-
sary. The principal B outputs the hash of the exchanged message, just as a
witness. We also add a Chk process for the explicit disclosure of the secret
keys: of course, this only happens after the chk prefix is fired.

We expect P to ensure the secrecy of the message m. Further, we expect
this secrecy property to still hold even after the chk fires and thus the long
term keys k1, k2 are disclosed. This is the forward secrecy property we want
to prove through static analysis.

4.4 Static Semantics

We now present two techniques for the static analysis of processes. The first
one is the control flow analysis (CFA) [57], which we adapted to our calculus.
The second one, CFAio, is a refinement of the first one, and exploits our
completion algorithm to often provide a better approximation for parallel
composition and matching.

4.4.1 Control Flow Analysis

In this section, we adapt the control flow analysis (CFA) [57] to our language.
The adaptation we use is however mild, in that it is still very faithful to the
original CFA. Because of this, we do not introduce another process calculus
just to present the CFA of [57] over it, but rather we directly present its
(slight) adaptation to the calculus we have used throughout this chapter.
Doing this, we shall not require the reader to be familiar with the original
CFA. Rather, we shall assume no previous knowledge on the subject, and
present the analysis from scratch. At the end of this section we will comment
on some minor differences due to our adaptation. From now on, we will refer
to the analysis defined below in this section simply by “CFA”.

The goal of the CFA is to over-approximate the values that processes
exchange at run-time. In other words, we want to compute (a finite repre-
sentation for) a superset of all the terms that flow through the network. In
order to compute this approximation, the CFA first generates from a given
process P a set of constraints over sets of values. Then, these constraints
are solved. We represent these sets of values as the languages associated
with the states of a finite tree automaton. In this way, the approximation
of the network flow will simply be the language of a single state @net. Some
of the constraints extracted from P are expressed as transitions forming an
automaton A. For instance, generating the (to be normalized) transition
@z → f(g(@x), @y) put a constraint on the languages of the automata, in
that we have {f(g(x), y)|x ∈ [[@x]]A ∧ y ∈ [[@y]]A} ⊆ [[@z]]A. The other con-
straints have the form @x ' @y ⇒ @a→ @b, and exploit the extended rules
of Sect. 3.9.2. Of course, we also require our sets of values be closed under
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Figure 4.2: Schematic CFA Data Flow

rewritings in a rule set R, defining the behaviour of the protocol primitives.
For the CFA we use no intersection constraint, so I = ∅.

After we generate these constraints, obtaining A and R, we run the com-
pletion tool and compute an automaton F such that its languages include
those of A and are closed under rewritings in R. Once done that, we can
check a number of properties about P by simply inspecting F .

We first give some intuition behind the construction ofA andR. Roughly,
we follow the data-flow between processes depicted in Fig. 4.2. In the figure,
the double arrows towards/from processes represent communication, while
bullets represent the data-flow points which we focus on in our analysis. For
each bullet, we compute an approximation for the set of values that flow
through it.

More in detail, we generate a dedicated state of A for each bullet, and
add transitions between states following the arrows in the figure. Formally,
the states of A are:

• @net, @chk-net;

• @net-θ, for each θ such that P@θ = [x = y].P ′;

• @x and @x-val, for each new x occurring in P ;

• @x, for each let x = M and in x occurring in P .

We write ζ : Tgr → Q for the homomorphic extension of ζ(x) = @x.
Given this ζ, the generation of constraints is done through the function
gen as defined in Fig. 4.3. The expression gen(θ, P ′, net) generates the
constraints for P ′ = P@θ, a subprocess of P 1. The net parameter defines
the state for the approximation of the values that can be received and sent
by P ′. Initially, gen is called as gen(ε, P, @net).

No transitions are generated for nil. For in x .P ′, we generate a tran-
sition from @x to net to include inputs in its language. Then, we proceed

1The parameter P ′ of gen is actually redundant since it is determined by θ, but its
presence allows for a simple definition.
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gen(θ, nil, net) = ∅

gen(θ, in x .P, net) = (@x→ net), gen(nθ, P, net)

gen(θ, out M .P, net) = (net→ ζ(M)), gen(nθ, P, net)

gen(θ, (P |Q), net) = gen(lθ, P, net), gen(rθ,Q, net)

gen(θ, repl.P, net) = gen(nθ, P, net)

gen(θ, let x = M .P, net) = (@x→ ζ(M)), gen(nθ, P, net)

gen(θ, new x .P, net) = (@x→ val(@x-val)),

(@x-val→ x̄), (@x-val→ next(@x-val)), gen(nθ, P, net)

gen(θ, [x = y].P, net) = (@x ' @y ⇒ net→ @net-θ), (@net-θ → net),

gen(nθ, P, @net-θ)

gen(θ, chk.P, net) = gen(nθ, P, @chk-net)

Figure 4.3: Extraction of CFA constraints from a process.

recursively with the continuation P ′. Outputs as out M .P ′ generate a tran-
sition from the net state to ζ(M); we then proceed recursively for P ′. For
example, the generated transitions for P = in x .out f(x) .out g(x) .nil are
@x→ @net, @net→ f(@x), @net→ g(@x).

Parallel processes such as P |Q are handled independently: both have
access to net. Note that processes such as P |P generate twice the constraints
for P . For this reason, the result of our CFA for P |P is equal to the one for
P alone: our CFA does not take into account multiple copies of the same
process. This concept is reinforced by the replication case: the constraints
for repl.P are, by definition, those for P .

For let bindings, we simply create a new state for the approximation of
the bound value. A new x .P ′ causes the generation of transitions for the
language val(x̄), val(next(x̄)), val(next(next(x̄))), . . . using the two states @x

and @x-val.

A match [x = y].P ′ generates the constraints for P ′ using an alternative
state for net, i.e. @net-θ. Then, we put a simple constraint: if there is some
common term to @x and @y, we join @net-θ with the previous net through
a transition. This transition is shown as a dashed line in Fig. 4.3. If instead
the states @x and @y have disjoint languages, that means that the match will
be never satisfied at run-time, so we do not join the two nets. Note that this
is quite a drastic approach: [x = y].P ′ is handled as nil or as P ′ depending
on whether we can statically decide that the match will be never passed
through, i.e. it is dead code. In other words, when we meet non-dead code,
we simply ignore the match. A better alternative would be to approximate
the intersection between the languages of @x and @y: we shall return to this
point in Sect. 4.4.3.
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When a chk is fired, the continuation runs in an isolated world, therefore
in the analysis we simply reset net to a new independent state @chk-net

and proceed recursively.

Example Consider the following process.

P = out 0 .nil | in x .out f(x) .out 1 .nil

Following the definition of gen(), we generate the following constraints, form-
ing an automata:

@net→ 0

@x→ @net

@net→ f(@x)

@net→ 1

Therefore, the language of @net includes 0, 1 and is closed under f. Note
that this is a proper over-approximation of the behaviour of P . In fact,
according to the dynamic semantics, P can only output 0, f(0) and 1, while
our static semantics also includes f(1), f(f(0)), . . ..

We will provide further examples in Sect. 4.4.5.

Time Complexity We now study the performance of the CFA analysis
of a process P , with respect to the size of P .

Running gen() for P takes linear time: the definition of gen() closely
follows the syntax of P so that it never consider the same subprocess twice.
This also implies that the generated automaton A has a linear number of
transitions. Further, the rules added to R through gen() are also bounded
linearly.

So, the overall worst-case complexity bound is that of Theorem 7 in
Chapter 3.

O(nk · (log s + maxArity log n) · sl · c · (|I|+ |R|))

Here, variable n represents 1) the number of states of A, plus 2) any ad-
ditional states that can be generated by normalization, plus 3) the number
of joined states. We saw that term 1) grows linearly with (the size of) P .
Terms 2) and 3) are chosen by the user, depending on how much resources
the user wants to provide for the analysis.

The size of R, written above as |R|, accounts both for the rewriting rules
given in the specification of the protocol and the generated rules, the latter
being linear in P . Note, however, that the bound above was established
considering only regular rewriting rules, and our analysis generates some
extended rules, discussed in Sect. 3.9.2. In spite of this, the above bound
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still holds. In fact, our rules use only left hand sides of the form @x ' @y, and
that is checked through a simple query to ', the cost of which (O(log n)) is
less than the cost of matching the left hand side of a regular rewriting rule
(greater than n).

The size of I is zero, as we use no intersection constraints.
The other variables occurring in the bound above depend on the user-

specified R, i.e. on the actual primitives that the protocol employs. For a
detailed discussion we refer to Theorem 7. Here, we simply stress that CFA
runs in polynomial time w.r.t. the size of the process. Further, the degree
of this polynomial depends only on the algebra of terms modulo rewriting.

A Note on Our Adaptation We briefly summarize here the differences
between our adaptation of the CFA and the original CFA in [57].

First, we consider terms up to rewriting, while the original CFA assumed
a fixed set of operations, and relied on a free algebra. For destruction of
terms, pattern matching is used in the calculus of the original CFA. Both
analyses use a representation based on tree languages for their static ap-
proximations. The actual constraint solver used for the original CFA is the
Succinct Solver [65], allowing constraints to be expressed in a fragment of
first order logic. Instead, we use the approximation algorithms of Chapter
3, and write most constraints as transitions of an automaton.

The process calculus used for the original CFA allows the use of multiple
(private) channels, as the π-calculus. Our calculus, as explained in Sect. 4.2
only uses one public channel. Of course, we could adapt our CFA for multiple
channels, e.g. by encoding the multiple-channels calculus into our single-
channel one. However, recent works [18, 14], using an enhanced version the
original CFA, seem to confirm that even using only one single channel one
can still study many real-world protocols.

The original CFA has some further dead code detection mechanism,
which is not to be found in our CFA. The main reason behind this is that
it does not seem to be very useful in practice, since protocol specifications
rarely contain dead code. We shall return to this point in Sect. 4.4.5.

4.4.2 Subject Reduction for CFA

We now establish the soundness for our CFA. The following theorem ensures
that the result of the static analysis actually encompasses the dynamic be-
haviour. More precisely, all the outputs fired before chk have been statically
foreseen in the language [[@net]]F . Similarly, all the outputs after the chk

have been predicted by [[@chk-net]]F .

Theorem 8 (Subject Reduction) Given P , let F be the automata re-
sulting from the control flow analysis. Assume 〈∅, ε〉−→∗ α

−→σ, 〈ρ, θ〉.

1. ∀x ∈ dom(ρ). ρ(x) ∈ [@x]F
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2. if α = (out θ ,M) and chk was not fired before α, then M ∈ [@net]F

3. if α = (out θ ,M) and chk was fired before α, then M ∈ [@chk-net]F

Proof. By induction on the number of computation steps, and by case
analysis on the last step. First, we consider property (1): for this, we only
need to check the rules that update the environment ρ.

Assume the Comm rule is applied to threads 〈θ1, ρ1〉 and 〈θ2, ρ2〉, yielding
to comm θ1, θ2, ρ2(M). We look for the transitions driven by in x and
out M , as generated by gen(). These transitions have the form @x→ net1
and net2 → ζ(M). By inductive hypothesis and structural induction on M ,
we have ρ2(M) ∈ [[ζ(M)]]F ⊆ [[net2]]F .

Now, consider all the matches [w = z] we went through to reach P@θ1

and P@θ2, i.e. the matches between addresses ε and θi, for i ∈ {1, 2}.
When these matches had been crossed, we had ρ′(w) = ρ′(z), where ρ′ is
the environment at the time of the match. By inductive hypothesis, we
have ρ′(w) ∈ [[@w]]F and ρ′(z) ∈ [[@z]]F , and therefore [[@w]]F ∩ [[@z]]F 6= ∅.
Since we generated the constraints @w ' @z ⇒ net→ neti and neti → net,
we can state [[neti]]F = [[net]]F . If chk has not been fired, we can apply this
argument to every match, obtaining [[neti]]F = [[@net]]F . If chk was fired, the
induction above stops at the chk prefix, i.e. it holds for processes between
addresses θchk and θi. In that case, we have instead [[neti]]F = [[@chk-net]]F .
However, regardless of the firing of chk, we get [[net1]]F = [[net2]]F . This
shows that ρ2(M) ∈ [[net2]]F = [[net1]]F ⊆ [[@x]]F , and so property (1) is
preserved by Comm.

We now tackle property (1) for the other rules. The Let case is straight-
forward: we generated the transition @x→ ζ(M), so, by structural induction
on M , we have ρ(M) ∈ [[@x]]F . Rule New also poses no problem, because
the fresh term returned by genFresh() is chosen among the terms in the lan-
guage of @x. Finally, environment updates by rule Rew are harmless, being
the languages of F closed under rewritings.

For properties (2,3), only rule Out may cause out θ, ρ(M). For the output
process, we generated the constraint net → ζ(M). As we did for property
(1), we consider all the matches [w = z] the process went through. As be-
fore, we can infer that the premises of constraints @w ' @z ⇒ net′ → net′′

are satisfied. Therefore, we can track net back to @net (or to @chk-net, if
chk was fired), and have [[net]]F = [[@net]]F (resp. [[net]]F = [[@chk-net]]F ).
By structural induction on M , we also have that ρ(M) ∈ [[ζ(M)]]F . There-
fore, we can conclude ρ(M) ∈ [[ζ(M)]]F ⊆ [[net]]F = [[@net]]F (resp ρ(M) ∈
[[@chk-net]]F ). �
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Figure 4.4: Schematic CFAio Data Flow

4.4.3 A Refined CFA Analysis: CFAio

We now refine the CFA analysis to better exploit the features of our com-
pletion algorithm. As for the CFA, we generate constraints from a given
process P , and solve them to over-approximate the values that processes
exchange at run-time. We name this analysis CFAio, since we shall separate
the analysis of inputs from that of outputs. We shall also provide a more
careful handling of parallel composition and matching.

During the constraints generation, we produce the transitions of an au-
tomata A, together with a set of intersection constraints I, with typical
element @a ∩ @b ⊆ @c. Of course, we shall also require our sets of values be
closed under rewritings in R. Note that, unlike for CFA, we shall not gener-
ate any additional rewriting rule: R will completely defined by the protocol
specification. We shall then run the completion algorithm on A,I,R, com-
puting an automaton F such that its languages include those of A, satisfy
I, and are closed under R. Once done that, we can check a number of
properties about P by inspecting the result F .

Fig. 4.4. show the data flow we use. The main difference from the CFA
of Sect. 4.4.1 is that we do not use net, but two distinct states, in and
out, for the inputs and outputs of the processes, respectively. As before,
bullets in the figure represent the languages we approximate in our CFAio.
Formally, the states of A are:

• @in, @out, @chk-in, @chk-out;

• @in-bθ and @out-bθ, for each θ such that P@θ = P1|P2, and b ∈ {l, r};

• @in-nθ and @out-nθ, for each θ such that P@θ = repl.P ′;

• @inters-θ, for each θ such that P@θ = [x = y].P ′;

• @x and @x-val, for each new x occurring in P ;
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• @x, for each let x = M and in x occurring in P .

We generate the transitions of the automaton A and the intersection
constraints I using the function gen(θ, P ′, ζ, in, out), recursively defined in
Fig. 4.5. As for the CFA, we pass θ and P ′ to select a subprocess of P . Here
however, we do not always use the state @x for the language of the variable
x, so we pass the static environment ζ ∈ V → Q to specify which state
corresponds to each variable. As before, we use ζ(M) for its homomorphic
extension to ground terms. The in and out parameters define the states
for the approximation of the values that can be received and sent by P ′,
respectively. Initially, gen is called as gen(ε, P, ∅, @in, @out) to generate
A,I for the whole process P .

gen(θ, nil, ζ, in, out) = ∅

gen(θ, in x .P, ζ, in, out) = (@x→ in), gen(nθ, P, ζ[x 7→ @x], in, out)

gen(θ, out M .P, ζ, in, out) = (out→ ζ(M)), gen(nθ, P, ζ, in, out)

gen(θ, (P |Q), ζ, in, out) = (out→ @out-lθ), (out→ @out-rθ),

(@in-lθ → in), (@in-lθ → @out-rθ), (@in-rθ → in), (@in-rθ → @out-lθ),

gen(lθ, P, ζ, @in-lθ, @out-lθ), gen(rθ,Q, ζ, @in-rθ, @out-rθ)

gen(θ, repl.P, ζ, in, out) = (out→ @out-nθ), (@in-nθ → in),

(@in-nθ → @out-nθ), gen(nθ, P, ζ, @in-nθ, @out-nθ)

gen(θ, let x = M .P, ζ, in, out) = (@x→ ζ(M)), gen(nθ, P, ζ[x 7→ @x], in, out)

gen(θ, new x .P, ζ, in, out) = (@x→ val(@x-val)),

(@x-val→ x̄), (@x-val→ next(@x-val)), gen(nθ, P, ζ[x 7→ @x], in, out)

gen(θ, [x = y].P, ζ, in, out) = (ζ(x) ∩ ζ(y) ⊆ @inters-θ),

gen(nθ, P, ζ[x, y 7→ @inters-θ], in, out)

gen(θ, chk.P, ζ, in, out) = gen(nθ, P, ζ, @chk-in, @chk-out)

Figure 4.5: Extraction of CFAio constraints from a process.

No transitions are generated for nil. For the input in x .P ′, we gen-
erate a new state @x, and a transition from it to in to include inputs in
its language. Then, we update ζ (the dotted line in Fig. 4.4) by bind-
ing x to @x, and proceed recursively with the continuation P ′. Outputs as
out M .P ′ generate a transition from the out state to ζ(M), the term ob-
tained by replacing all the variables in M with their corresponding states; we
then proceed recursively for P ′. For example, the generated transitions for
P = in x .out f(x) .out g(x) .nil are @x→ @in, @out→ f(@x), @out→ g(@x).
Note that each output contributes to the language of @out by adding tran-
sitions to those already generated. This is depicted in Fig. 4.4 by the out
arrow going straight from left to the right and collecting possible outputs
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from below. As seen in the figure, this happens for all processes, except for
chk.

Parallel processes such as P |Q are handled by creating four dedicated
states for input and output of the left and right branch, then adding transi-
tions to cross-connect inputs and outputs as in Fig. 4.4. Replication repl.P
is done in a similar fashion, with a loopback transition.

For let bindings, we simply create a new state for the approximation of
the bound value, and update ζ accordingly. A new x .P ′ causes the genera-
tion of transitions for the language val(x̄), val(next(x̄)), val(next(next(x̄))), . . .
using the two states @x and @x-val; then, we update ζ to bind x to this
language.

A match [x = y].P ′ creates a new state @inters-θ for the (approximation
of the) intersection of values hold by x and y, together with the associated
intersection constraint; in the analysis of P ′ we use this new state for both
ζ(x) and ζ(y).

When a chk is fired, the continuation runs in an isolated world, therefore
in the analysis we simply reset in, out to new independent states and proceed
recursively. Note that ζ is not changed, and that bound variables bring their
values into the new world (e.g. in x .chk.out x .nil).

Note that our CFAio generates no transitions for states @in and @chk-in:
their language is therefore empty. In fact, top-level processes receive no
value from their environment; this reflects the absence of an input rule in
our dynamic semantics.

Example We consider again the example given in Sect. 4.4.1.

P =out 0 .nil | in x .out f(x) .out 1 .nil

Applying gen(), we generate the following constraints:

@out→ @out-l, @out-r

@in-l→ @in, @out-r

@in-r→ @in, @out-l

@out-l→ 0

@x→ @in-r

@out-r→ f(@x)

@out-r→ 1

Here, variable x is approximated with the inputs of the right branch of the
parallel @in-r. In turn, these inputs include the outputs of the left branch
@out-l. Finally, the outputs include 0, that therefore is propagated to the
language of @x.

The language of @out defined by the above automaton includes the terms
0, 1 and f(0) only. These are exactly the terms that can be output dynami-
cally. So, in this case the static semantics coincides with the dynamic one.
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Time Complexity We now study how the overall complexity of the CFAio

depends on the size of the process P .
As for the CFA, here the function gen() is defined recursively by sim-

ple induction on the syntax of P . Since we never consider twice the same
subprocess P , the constraint generation takes linear time. Also, the num-
ber of generated transitions forming A is linear. The number of generated
intersection constraints, forming I, is linear as well.

So, once again we get the worst-case complexity bound from Theorem 7
in Chapter 3.

O(nk · (log s + maxArity log n) · sl · c · (|I|+ |R|))

Here variable n is the number of generated states, which is linear on (the size
of P ), plus any further states the user want to use for the approximation.
Variable |R| is just the number of rewriting rules used in the specification
of the protocol, since our CFAio does not add any further rule. Variable |I|
is the number of generated constraints, so is linear on P .

The other variables depend only on the particular algebra of terms mod-
ulo rewriting used by the protocol, and not on the protocol itself. For the
precise meaning of those, we refer to Theorem 7. Here, we merely note that
the overall complexity is polynomial.

4.4.4 Subject Reduction for CFAio

Here, we establish the soundness for the CFAio.
First, we define a compatibility relation ∼ over addresses. Roughly

speaking, θ1 ∼ θ2 means that at run-time a thread running P@θ1 could
communicate with a thread running P@θ2. The actual ∼ over-approximates
run-time communication, and simply checks if the two addresses point to
processes either at different branches of the same parallel, or under the same
replication. We also take into account the presence of the chk prefix, since
its continuation cannot interact with previously spawned threads.

Definition 22 Given a process P , the address compatibility relation ∼ is
the minimum symmetric relation over the addresses of P such that

• lθ ∼ rθ

• P@θ = repl.P ′ =⇒ θ ∼ θ

• θ1 ∼ θ2 ∧ P@θ1 6= chk.P ′ =⇒ nθ1 ∼ θ2 ∧ lθ1 ∼ θ2 ∧ rθ1 ∼ θ2

provided that the above are valid addresses for P .

Fig. 4.6 shows the syntax tree for three processes; the bifurcations cor-
respond to the occurrence of parallel operators. In each case, we represent
by bullets the addresses compatible with a selected address θ.
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Figure 4.6: Address compatibility

The following lemmata ensure that the relation ∼ actually encompasses
all run-time communications.

Lemma 12 If 〈∅, ε〉−→∗σ, 〈ρ1, θ1〉, 〈ρ2, θ2〉, then θ1 ∼ θ2.

Proof. We proceed by induction on the number of computation steps, and
then by case analysis on the last step.

If the last step was a chk, the lemma trivially holds because we have only
one thread in the final state. The Rew rule only affects ρ.

All other rules change θ to nθ: by the definition of ', an address nθ is
compatible with all addresses θ is compatible with, so inductive hypothesis
suffices.

Finally, we need to consider the split of a parallel P@θ into P@lθ and
P@rθ. The new addresses are compatible with each other, and they are
compatible with all the addresses θ is compatible with. So, we conclude by
inductive hypothesis. �

It is convenient to study the values of in and out used during the con-
straints generation, when gen() considered a subprocess P@θ. The following
functions capture the actual states used there.

Definition 23 We inductively define the function out(θ) as follows.

out(ε) = @out

out(lθ) = @out-lθ
out(rθ) = @out-rθ
out(nθ) = @out-nθ if P@θ = repl.P ′

out(nθ) = @chk-out if P@θ = chk.P ′

out(nθ) = out(θ) otherwise

Similarly, the function in(θ) is defined as follows.

in(ε) = @in

in(lθ) = @in-lθ
in(rθ) = @in-rθ
in(nθ) = @in-nθ if P@θ = repl.P ′

in(nθ) = @chk-in if P@θ = chk.P ′

in(nθ) = in(θ) otherwise
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Indeed, these are the values used by gen(), as the following lemma states.

Lemma 13 When unfolding gen(ε, P, ∅, @in, @out), the values of in and out
used for P@θ are in(θ) and out(θ), respectively.

Proof. By structural induction on θ. Following the definition of gen(), the
values of in and out change exactly following the functions in Definition 23.
�

Now we can relate the address compatibility relation with functions in()
and out(). In fact, the input and output states of compatible addresses
satisfy the following inclusion property.

Lemma 14 Given P , let F be the automata resulting from the CFAio. If
θ1 ∼ θ2, then we have [out(θ1)]F ⊆ [in(θ2)]F .

Proof. By induction on the rules defining ∼, as for Definition 22. We also
analyze the cases of Definition 23. In each step, we prove the above property
both for θ1 ∼ θ2 and its symmetric version θ2 ∼ θ1.

If θ1 and θ2 point to different branches of the same parallel, i.e. θ1 = lθ
and θ2 = rθ, where P@θ is a parallel, then gen() generated the transition
@in-θ1 → @out-θ2. This proves the wanted property. The symmetric case
is analogous.

If θ1 = θ2 = θ and P@θ is a replication, we generated through gen() the
transition @in-θ → @out-θ. So, the property holds. Here the symmetric
case is identical.

For the inductive case, assume the lemma holds for θ1 ∼ θ2, and that
P@θ1 is not a chk, as in the third case of Definition 22. By inductive hy-
pothesis, [out(θ1)]F ⊆ [in(θ2)]F (exchange “in” and “out” for the symmetric
case). We now prove the lemma for θ′θ1 ∼ θ2 , with θ′ ∈ {n, l, r}. Let
out = out(θ′θ1) and in = in(θ′θ1)

For θ′ 6= n, the subprocess P@θ is a parallel. By Lemma 13, we generated
the constraint out(θ1) → out when we ran gen() over P@θ. This, and
inductive hypothesis prove the lemma for this case. For the symmetric case,
we note that gen() also generated the transition in → in(θ1), and proceed
similarly.

When θ′ = n and P@θ1 is a replication, we proceed as for the parallel
case. In fact, also here we generated the transition out(θ1) → out when we
ran gen() over P@θ. The symmetric case is analogous, considering in →
in(θ1).

In all the other cases, θ′ = n and P@θ 6= chk.P ′. We have out = out(θ1)
and in = in(θ1), since we fall in the last case of Definition 23. So, here
inductive hypothesis suffices. �

The following theorem ensures that our CFAio is sound, relating the
dynamic semantics to the static one.
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Theorem 9 (Subject Reduction) Given P , let F be the automata re-
sulting from the CFAio. Assume 〈∅, ε〉−→∗ α

−→σ, 〈ρ, θ〉.

1. ∀x ∈ dom(ρ). ρ(x) ∈ [@x]F

2. if α = (out θ ,M) and chk was not fired before α, then M ∈ [@out]F

3. if α = (out θ ,M) and chk was fired before α, then M ∈ [@chk-out]F

Proof. By induction on the number of computation steps, and by case
analysis on the last step. First, we consider property (1): for this, we only
need to check the rules that update the environment ρ.

When the Comm rule is applied, yielding to comm θ1, θ2, ρ2(M), by
Lemma 12 we have θ1 ∼ θ2. We look for the transitions for in x and
out M generated by gen(). By Lemma 13, these transitions have the form
@x→ in and out→ ζ(M), where in = in(θ1) and out = out(θ2). By Lemma
14, ρ′1(x) = ρ2(M) ∈ [out]F ⊆ [in]F ⊆ [@x]F , provided that ζ(M) is a correct
approximation of ρ2(M), i.e. ρ2(M) ∈ [[ζ(M)]]F .

For this last proof obligation, we only need to show that ρ2(x) ∈ [[ζ(x)]]F
for all variables in x occurring in M , and apply structural induction on M .
Take any such x. If there is no match involving x, we have ζ(x) = @x, so
inductive hypothesis suffices. Otherwise, there are matches. Roughly, the
process P has this form:

P = · · · .[x = y]. · · · .out Mx . · · ·

Here, we have ζ(x) = @inters-θm, where θm is the address of the match.

First, assume the above match is the earliest match involving x, i.e.
the one nearest to address ε. In this case, gen() generated the constraints
@x ∩ @some-y ⊆ @inters-θm, for some state @some-y. This implies that
[[@x]]F ⊆ [[@inters-θm]]F . By inductive hypothesis, we have ρ2(x) ∈ [[@x]]F ,
completing the proof for this case.

If there are more matches, we proceed by induction on the number n of
the matches. Assume that the (n−1)-th match, counting from the nearest to
ε towards θ2, is at address θl. By inductive hypothesis (on n) we have ρ2(x) ∈
[[@inters-θl]]F . Further, running gen() on P@θm generated the constraint
@inters-θl ∩ @some-z ⊆ @inters-θm, for some state @some-z. This means
that [[@inters-θl]]F ⊆ [[@inters-θm]]F . So, ρ2(x) ∈ [[@inters-θm]]F . This
completes the proof that property (1) is preserved by Comm.

We now tackle property (1) for the other rules. The Let case is straight-
forward: we generated the transition @x → ζ(M), so we have ρ(M) ∈
[@x]F . Rule New also poses no problem, because the fresh term returned
by genFresh() is chosen among the terms in the language of @x. Finally,
environment updates by rule Rew are harmless, the languages of F being
closed under rewritings.
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For properties (2,3), only rule Out may cause out θ, ρ(M). Here we apply
the same argument used for property (1) to derive that ρ(M) ∈ [[ζ(M)]]F .
Moreover, gen() generated the constraint out′ → ζ(M), where out′ = out(θ).
Therefore, we have ρ(M) ∈ [[out]]F .

From here, we just examine how the variable out changes in the definition
of gen() when we recurse on subprocesses. Every time it is changed from
out1 to out2, we also generate the transition out1 → out2, except when
crossing a chk. This ensures that [[out2]]F ⊆ [[out1]]F . By induction on
these changes, we can see that [[out′]]F ⊆ [[outtop]]F , where the state outtop is
@chk-out or @out, depending on whether the output P@θ is under a chk or
not, respectively. Of course, the output is under a chk if and only if it was
fired in the process run. This completes the proof for properties (2) and (3).
�

4.4.5 Examples and Comparison

We now present the result of the analysis for several processes. For each of
these, we compare the result of the CFA of Sect. 4.4.1 with the one obtained
through the CFAio of Sect. 4.4.3.

Parallel Example In Sect. 4.4.1 and 4.4.3, we considered the following
process:

P =out 0 .nil | in x .out f(x) .out 1 .nil

We noted that P , according to our dynamic semantics, can only output
0, f(0) and 1. We already showed that our CFAio is able to compute exactly
that set of terms as its static approximation. We also showed that CFA
instead produced a less precise result, e.g. including also f(1). Therefore, in
this case, the CFAio produced a better approximation.

There is an easy way to visualize why the CFA of Sect. 4.4.1 is not very
precise for this example. Recall that our CFA does not distinguish between
P and repl.P , i.e. processes are analyzed by the CFA just as they were under
a replication. Therefore, the process considered above is handled as

P =out 0 .nil | repl.in x .out f(x) .out 1 .nil

which indeed can output f(1). So, since the CFA is sound, it has to include
f(1) in its computed approximation.

Matching Example 1 Consider the following process:

P =out 0 .out 1 .nil | in x .let z = 0 .[x = z].out f(x) .nil
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At run-time, the last out f(x) can output f(0), only. Running the CFA will
generate the following constraints:

@net→ 0, 1

@x→ @net

@z→ 0

@x ' @z ⇒ @net→ @net1

@net1→ @net

@net1→ f(@x)

Solving these constraints, we discover that @x ' @z and therefore we merge
@net1 with @net. So, we obtain @net→∗

A f(@x). Since 0, 1 ∈ [[@x]]F , we get
f(0), f(1) ∈ [[@net]]F . In this case the CFA was not able to deduce that f(1)
can not be output.

The CFAio provides a better approximation: we start from the con-
straints

@out→ @out-l, @out-r

@in-l→ @in, @out-r

@in-r→ @in, @out-l

@out-l→ 0, 1

@x→ @in-r

@z→ 0

@x ∩ @z ⊆ @inters-nnr

@out-r→ f(@inters-nnr)

Here, the intersection constraint computes @x∩@z, resulting in @inters-nnr,
and uses it in the last constraint for the output. So, we only have 0 ∈
[[@inters-nnr]]F , and therefore we only get f(0) ∈ [[@out]]F , as we expected.

Matching Example 2 Consider the following process:

P1 =out cons(0, 0) .out cons(1, 1) .nil |

in x .let f = fst(x) .let z = 0 .[f = z].out snd(x) .nil
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At run-time, the last out snd(x) can output 0, only. Running the CFA will
generate the following constraints:

@net→ cons(0, 0), cons(1, 1)

@x→ @net

@f→ fst(@x)

@z→ 0

@f ' @z ⇒ @net→ @net1

@net1→ @net

@net1→ snd(@x)

Solving these constraints, we discover that @f ' @z and therefore we merge
@net1 with @net. So, we obtain 0, 1 ∈ [[@net]]F .

We now try the CFAio. The generated constraints are

@out→ @out-l, @out-r

@in-l→ @in, @out-r

@in-r→ @in, @out-l

@out-l→ cons(0, 0), cons(1, 1)

@x→ @in-r

@f→ fst(@x)

@z→ 0

@f ∩ @z ⊆ @inters-nnnr

@out-r→ snd(@x)

Note the presence of the intersection constraint. The CFAio computes the
intersection @f ∩ @z and uses the result @inters-nnnr later on for f and
z after the match. Unfortunately there actually are no such uses, so the
intersection computation is wasted. Moreover, while the analysis refines the
approximation of f and z, it does not refine the one of x. In fact, a single
state is used for the values of x before and after the match. So, the result
is that the last out may output either 0 or 1, i.e. 0, 1 ∈ [[@out]]F .

We can however rewrite our process into a semantically equivalent form
that yields to a more precise approximation.

P2 =out cons(0, 0) .out cons(1, 1) .nil |

in x .let y = cons(0, snd(x)) .[x = y].out snd(x) .nil

Here, we match x itself rather than its first component. We do this by com-
puting another term, y, which is equal to x except that its first component
is set to 0. Of course, matching x = y is equivalent to matching fst(x) = 0.
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The CFA constraints are similar to the previous ones:

@net→ cons(0, 0), cons(1, 1)

@x→ @net

@y→ cons(0, snd(@x))

@x ' @y ⇒ @net→ @net1

@net1→ @net

@net1→ snd(@x)

Once again, we get @x ' @y, and therefore @net1 is merged with @net. The
CFA result does not improve, since we still have 0, 1 ∈ [[@out]]F .

For the CFAio, we get

@out→ @out-l, @out-r

@in-l→ @in, @out-r

@in-r→ @in, @out-l

@out-l→ cons(0, 0), cons(1, 1)

@x→ @in-r

@y→ cons(0, snd(@x))

@x ∩ @y ⊆ @inters-nnr

@out-r→ snd(@inters-nnr)

Here, the result of the intersection, @inters-nnr, is indeed used in the last
constraint. This is because we use the same variable x both in the match
and in the output. We now have a better approximation, as 1 6∈ [[@out]]F .

When possible, we shall always adopt the style of matching used in P2.
Roughly, this is possible when we can deconstruct x into its components,
change some of them into fixed values, and then build with them a term
y to be matched with x. This is easy to do when the term rewriting rules
deal with constructors and destructors. For instance, we used pairs in the
example above. Also encryptions work similarly.

Sometimes, even more careful matching might help. For instance, take
let f = fst(x) .let s = snd(x) .[f = s].P . We can translate it into one of the
following

let y = cons(fst(x), fst(x)) . [x = y]. P

let y = cons(snd(x), snd(x)) . [x = y]. P

let y = cons(snd(x), fst(x)) . [x = y]. P

The last one will likely lead to a better result, since we will use non-trivial
intersections to approximate both the first and the second component of x.

Further, consider let f = f(x) .let g = g(y) .[f = g].P . If there are no
rewriting rules involving f or g, we can not translate the match as we did
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for previous examples. However, we can add some rules to make it possible,
such as

fi(f(X)) ⇒ X

gi(g(X)) ⇒ X

The above provide “destructors” for f and g, allowing us to rewrite the match
as let w = gi(f(x)) .let z = fi(g(y)) .[y = w].[x = z].P . This form directly
matches variables x and y, so we can expect precise results. Note that, if
the destructors fi and gi are not used elsewhere in the process, the semantics
of the process is unchanged.

A Case for the CFA We consider

P = let x = 0 .let y = 1 .[x = y].out 2 .nil

Clearly P contains dead code. In fact, after two steps, P reaches the match
0 = 1, which is not satisfied, and it stops. So, the output of 2 never happens.
The CFA is able to detect this dead code. Here are the generated constraints:

@x→ 0

@y→ 1

@net-nn→ @net

@x ' @y ⇒ @net→ @net-nn

@net-nn→ 2

The condition @x ' @y is not satisfied, and so we never merge @net-nn with
@net. Therefore, the CFA is able to prove 2 6∈ [[@net]]F .

The CFAio is not as precise as the CFA for this case. We generate

@x→ 0

@y→ 1

@x ∩ @y ⊆ @inters-nn

@out→ 2

Note that we have 2 ∈ [[@out]]F .
We could include the same dead code detection found in the CFA in the

CFAio. However, we found this particular feature to be of little importance
in our applications. This is mostly because protocol specifications never
include dead code. Also, our handling of match is often equivalent to dead
code detection, in practice. For instance, consider

[x = y].out f(x) .nil

If @x 6' @y, the above generates the transition out→ f(@inters-θ). The last
term, however, is empty, so it never gets rewritten and does not contribute
to the language of out. In this case, our CFAio encompasses dead code
detection.
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4.5 Implementation and Test Cases

We implemented the analyses of Sect. 4.4.1 and 4.4.3. Our tool takes a
rewriting system R (including the extended rules of Sect. 3.9.2), a set of
intersection constraints I (usually empty) and a process P . The tool then
runs the function gen() and generates the constraints to form an automaton
A. This also generates some intersection constraints, which are added to
I. Finally, A,I, and R are passed to the automata approximation tool of
Chapter 3.

Our implementation is rather simple. Ignoring the parsing and pretty
printing routines, the actual tool core is about 170 lines of Haskell code.
This conciseness mostly derives from the simple definition of gen(). The
tool is available [61] under the terms of the GNU General Public License.

Below, we report on our experiments with this tool.

4.5.1 Diffie-Hellman Example (continued)

We ran the CFAio of Sect. 4.4.3 on the protocol specified in Sect. 4.3.1.
We provide the actual specification below. computing the result F . Our
tool generated an F having 47 states and 865 transitions. Our development
machine2 took about one minute for computing the approximation. Our
analysis was able to establish forward secrecy, as m 6∈ [[@chk-out]]F .

### Inverse

!(1) => 1 .

!(!(X)) => X .

!(*(X,Y)) => *(!(X),!(Y)) .

### Times

*(1,X) => X .

*(X,*(Y,Z)) => *(*(X,Y),Z) .

*(X,Y) => *(Y,X) .

*(X,!(X)) => 1 .

### Exp

^(1,X) => 1 .

^(X,1) => X .

^(^(X,Y),Z) => ^(X,*(Y,Z)) .

^(*(Y,Z),X) => *(^(Y,X),^(Z,X)) .

^(!(X),Y) => !(^(X,Y)) .

2Ref.: PowerPC G4 1.25GHz, 768MB RAM, maxStates = #QA + 6, maxJoin = +∞
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### Enc/Dec

dec(enc(M,K),K) => M .

## Pairs

fst(cons(X,Y)) => X .

snd(cons(X,Y)) => Y .

## Expected Result

| => @zzResult : soFarSoGood .

# We check for val(m), both before and after the chk.

| @out : val(X) , X : kM => @zzResult : !FAIL! .

| @chk-out : val(X) , X : kM => @zzResult : !FAIL! .

%%

new G .

( # Dolev-Yao adversary.

! . new Nonce . out Nonce . ()

| out G . out 1 . ()

| ! . in X . in Y . out X . out Y .

out enc(X,Y) . out dec(X,Y) .

out ^(X,Y) . out *(X,Y) . out !(X) .

out cons(X,Y) . out fst(X) . out snd(X) . out f(X) .

out val(X) . out next(X) . ()

# Process.

| new K1 . new K2 .

( # Participant A .

! . new A . out enc(^(G,A),K1) . in X .

let K = ^(dec(X,K2),A) .

new M . out enc(M,K) . ()

| # Participant B .

! . new B . in X . out enc(^(G,B),K2) .

let K = ^(dec(X,K1),B) .

in N . out f(dec(N,K)) . ()

| in Know . chk .

( # Keys are revealed here.

out Know . out K1 . out K2 . ()

| # Dolev-Yao adversary (again)
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! . new Nonce2 . out Nonce2 . ()

| out G . out 1 . ()

| ! . in X . in Y . out X . out Y .

out enc(X,Y) . out dec(X,Y) .

out ^(X,Y) . out *(X,Y) . out !(X) .

out cons(X,Y) . out fst(X) . out snd(X) .

out f(X) . out val(X) . out next(X) . ()

)

)

)

4.5.2 Wide-Mouthed Frog

We studied a simplified version of the Wide-Mouthed Frog protocol [22].

1. A→ S : {k}kAS

2. S → B : {k}kBS

3. A→ B : {msg}k
4. B → all : f(msg)

Participants A and B interact with a server S. Both participants share a
private symmetric key with the server: kAS and kBS. Then, A generates a
session key k and sends it to the server in step one, encrypted with their
shared key. The server decrypts the key, and re-encrypts it using the key it
shares with B. Then, the encrypted key is sent to B in step 2. In step 3 A
send a message msg to B encrypting it with the session key. Finally, B uses
the message. In step 4, B publishes the hash of the message.

The goal of this protocol is to exchange the message msg preserving its
secrecy. To this purpose, we approximate the protocol behaviour in presence
of a Dolev-Yao adversary.

We specify the protocol in our model. The rewriting system R contains
the standard rewriting rule for symmetric encryption.

dec(enc(M,K),K) ⇒M

We also add the following “surjective encryption” rule to R.

enc(dec(M,K),K) ⇒M

Note that the protocol does not actually rely on this rule, and we could avoid
including it in R. However, this rule might get exploited by the adversary.
So, its presence helps the adversary to disrupt the protocol. Moreover, using
both rules makes the algebra not definable through constructors (e.g. enc)
and destructors (e.g. dec). This fact makes the algebra hard to use for tools
that need such requirements. So, we can test our technique on a slightly
more complex scenario than the ones used for these tools.
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We specify the protocol as follows, including the Dolev-Yao adversary,
which is able to perform encryption and decryption on known terms.

P =DY |repl.new kAS .new kBS .(A|(B|S))

A =new k .out enc(k, kAS) .out enc(msg, k) .nil

B =in key .in msgE .let k2 = dec(key, kBS) .

let m2 = dec(msgE, k2) .out f(m2) .nil

S =in x .out enc(dec(x, kAS), kBS) .nil

DY =repl.(in w .in z .out w .out z .out enc(x, y) .out dec(x, y) .nil|

new nonce .out nonce .nil)

We run the analysis of this specification. On our development machine,
the tool computed the over-approximation F in under one minute, having
23 states and 170 productions. The tool was able to prove the secrecy of
the message, as msg 6∈ [[@out]]F .

Below, we provide the actual specification of the protocol.

# Wide Mouthed Frog

# Encryption rules .

enc(dec(M,K),K) => M .

dec(enc(M,K),K) => M .

# Expected result.

| @out : f(X) , X : msg => @zzResult : expected .

| @out : msg => @zzResult : !FAIL! .

%%

( # Dolev-Yao adversary.

! . ( in W . in Z . out W . out Z .

out enc(W, Z) . out dec(W, Z) .

out val(W) . out next(W) . ()

| new Nonce . out Nonce . ()

)

| # Process.

! . new AS . new BS .

( in X . out enc(dec(X,AS),BS) . ()

| new Key . out enc(Key,AS) . out enc(msg,Key) . ()

| in Key1 . in N .

let Key2 = dec(Key1,BS) .
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let Msg = dec(N,Key2) .

out f(Msg) . ()

)

)

4.5.3 Session Keys via Asymmetric Key Pairs

The following protocol establishes a session key, much like the Diffie-Hellman
protocol of Sect. 4.3.1.

1. A→ B : {pub(t)}k
2. B → A : {s}pub(t)

3. B → A : {m}s
4. . . . (time passes)
5. A→ all : k

Participants A and B share a long term symmetric key k. In step 1,
participant A generates a fresh public key pair pub(t), pri(t) and sends the
public part to B, encrypted with k. Participant B therefore obtains pub(t).
In step 2, B generates the session symmetric key s, encrypt it with pub(t),
and sends it to A. In the next step, A and B can exchange messages using
the established session key.

We study the forward secrecy of the message m. To this purpose, we
explicitly disclose the long term key k in the last step. This should not
affect completed sessions: to learn s, the adversary would need to decrypt
{s}pub(t) using only pub(t), which is unfeasible. So the protocol should indeed
ensure the forward secrecy of m.

We model this protocol using our technique. We use only the standard
rewriting rules for symmetric and asymmetric encryption.

R =





dec(enc(X,K),K) ⇒ X
adec(aenc(X, pub(K)), pri(K)) ⇒ X
fst(cons(X,Y )) ⇒ X
snd(cons(X,Y )) ⇒ Y





We specify the protocol as in Fig. 4.7. We ran our tool on that specifi-
cation: the actual input of our tool is shown below. Our tool computed the
result of the analysis in a few seconds, generating an automaton F with 35
states and 582 transitions. Our analysis showed the wanted forward secrecy
property: m 6∈ [[@chk-out]]F .

# Asymmetric encryption
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P =(DY |new k .(Proto|Chk))

Chk =in know .chk.(out know .out k .nil|DY ))

Proto =A|B

A =repl.new t .out enc(pub(t), k) .in kSessEnc .

let s = adec(kSessEnc, pri(t)) .in msgEnc .

let msg = dec(msgEnc, s) .out hash(msg) .nil

B =repl.in pubKenc .let pubK = dec(pubKenc, k) .

new s .out aenc(s, pubK) .out enc(m, s) .nil

DY =repl.(new nonce .out nonce .nil|

in x .in y .out x .out y .out enc(x, y) .out dec(x, y) .

out aenc(x, y) .out adec(x, y) .out pri(x) .out pub(x) .

out cons(x, y) .out fst(x) .out snd(x) .

out hash(x) .out val(x) .out next(x) .nil)

Figure 4.7: Forward secrecy via public keys

adec(aenc(M,pub(K)),pri(K)) => M .

# Symmetryc ecryption

dec(enc(M,K),K) => M .

# Pairs

fst(cons(X,Y)) => X .

snd(cons(X,Y)) => Y .

# Expected Result

| @out : message => @zzResult : !FAIL! .

| @chk-out : message => @zzResult : !FAIL! .

%%

new LongTerm .

( # Participant A

! . new K .

out enc(pub(K), LongTerm) .

in KsessEnc . let Ksess = adec(KsessEnc,pri(K)) .
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in Message . let Message = dec(Message, Ksess) .

out hash(Message) . ()

| # Participant B

! .

in PubKEnc . let PubK = dec(PubKEnc, LongTerm) .

new Ksess .

out aenc(Ksess, PubK) .

out enc(message, Ksess) . ()

| # Adversary

( ! . new Nonce . out Nonce . ()

| ! . in X . in Y . out X . out Y .

out aenc(X,Y) . out adec(X,Y) .

out enc(X,Y) . out dec(X,Y) .

out cons(X,Y) . out fst(X) . out snd(X) .

out val(X) . out next(X) . ()

)

| # Corruption

in Know . chk .

( # Reveal secret

out LongTerm . out Know . ()

| # Adversary

( ! . new Nonce . out Nonce . ()

| ! . in X . in Y . out X . out Y .

out aenc(X,Y) . out adec(X,Y) .

out pri(X) . out pub(X) .

out enc(X,Y) . out dec(X,Y) .

out cons(X,Y) . out fst(X) . out snd(X) .

out val(X) . out next(X) . ()

)

)

)

4.5.4 Kerberos

We now study a protocol involving timestamps. We chose a simplified ver-
sion of Kerberos [64, 56].

In this protocol, a key exchange is performed by an authentication server
AS, a client C and a server S. Initially, the authentication server shares long
term keys with the client (kc) and with the server (ks). Upon request from
the client, AS generates a fresh key kcs and sends it to the client encrypted
with kc. Further, AS also provides a certificate for the freshness of kcs,
made of the kcs key itself and the current time, both encrypted by ks. The
server S can decrypt the certificate and ensure that kcs is indeed fresh by
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checking the timestamp. After that, C and S use kcs to exchange a session
key ksess, and then proceed exchanging messages encrypted with ksess.

We study the rôle of timestamps in the protocol. To that purpose, we
introduce a vulnerability in the server S. In our implementation, we let
the server to disclose kcs, potentially mining the security of the protocol.
However, to keep the game fair, disclosure may only happen after a long time
since the timestamp for kcs has been generated. We model this through
the occurrence of a chk. Hopefully, if timestamps are properly checked,
disclosing a old kcs will not disrupt new sessions of the protocol.

In our specification, we abstractly represent the actual timestamps values
as two constants before and after. Initially, the protocol uses only before:
any other timestamp value is considered not valid, being in the far past or
far future. After chk, the before timestamp has expired, and the protocol has
moved to newer timestamps, represented by after. Similarly, we use msg1

and msg2 for the messages exchanged by C and S before and after the chk,
respectively.

We expect this faulty protocol implementation not to disclose msg1 until
a chk occurs. After chk, we do expect msg1 to be disclosed, but we hope
any new msg2 messages to be kept secret.

We specify the above as follows: (we omit parentheses in P1| · · · |Pn for
readability)

P =DY |new kc .new ks .(AS|C|S)

AS =repl.new kcs .in nonce .

out enc(cons(nonce, kcs), kc) .

out enc(cons(kcs, before), ks) .nil

C =repl.new nonce .out nonce .in ticket .in cert .

let ticketCorrect = enc(cons(nonce, snd(dec(ticket, kc))), kc) .

[ticket = ticketCorrect].let kcs = snd(dec(ticket, kc)) .

new ksess .out enc(ksess, kcs) .out cert .out enc(msg1, ksess) .

nil

S =repl.in tsess .in cert .let sess = dec(cert, ks) .

let sessCorrect = cons(fst(sess), before) .[sess = sessCorrect].

let ksess = dec(tsess, fst(sess)) .in m .out hash(dec(m,ksess)) .

Chk

Chk =in know .chk.(out know .out sess .nil|AS′|C ′|S′|DY )

DY =repl.out before .out after .new nonceDY .out nonceDY .nil|

repl.in x .in y .out x .out y .out cons(x, y) .out fst(x) .out snd(x) .

out dec(x, y) .out enc(x, y) .out hash(x) .out val(x) .out next(x) .

nil
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where AS′, C ′, S′ are the same as AS,C, S except that before is replaced
with after, msg1 is replaced with msg2, and Chk is replaced with nil. As
in the Diffie-Hellman example, our specification, once exchanged a message
msg1 or msg2, output its hash.

Using our tool, we generated F (77 states, 1424 transitions) and verified
that msg1 6∈ [@out]F and msg2 6∈ [@chk-out], thus establishing the wanted
properties. On a side note, we also have msg1 ∈ [@chk-out], as it should be,
since msg1 is actually disclosed and our analysis is sound. Our development
machine computed the approximation in under one minute.

Below, we give the actual specification passed to our tool.

# Encryptions

dec(enc(M,K),K) => M .

# Pairs

fst(cons(X,Y)) => X .

snd(cons(X,Y)) => Y .

# Expected Result

# msg1 should not be disclosed before chk.

| @out : msg1 => @zzResult : !FAIL! .

# msg1 is *expected* to be disclosed after chk.

| @chk-out : msg1 => @zzResult : expected .

# However, msg2 should be kept secret, even after chk.

| @chk-out : msg2 => @zzResult : !FAIL! .

%%

# Paricipants:

# AS Authentication Server

# C Client

# S Server

#

# Long Term Keys:

# Kc shared between AS and C

# Ks shared between AS and S

#

# Short Term Keys:

# Kcs generated by AS, for C and S; timestamped by AS
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# Ksess generated by C, for C and S (protected by Kcs)

new Kc . new Ks .

( # Authentication server

! . new Kcs . in Nonce .

# Ticket

out enc(cons(Nonce,Kcs), Kc) .

# Auth

out enc(cons(Kcs,before), Ks) . ()

| # Client

! . new Nonce . out Nonce . in Ticket . in Auth .

let TicketCorrect =

enc(cons(Nonce,snd(dec(Ticket,Kc))),Kc) .

[ Ticket = TicketCorrect ] .

let Kcs = snd(dec(Ticket, Kc)) .

new Ksess .

out enc(Ksess, Kcs) . out Auth . out enc(msg1, Ksess) . ()

| # Server

! . in T . in Auth . let Sess = dec(Auth,Ks) .

let SessCorrect = cons(fst(Sess), before) .

[ Sess = SessCorrect ] .

let Ksess = dec(T,fst(Sess)) .

in M . out f(dec(M,Ksess)) .

#####

# Corruption

in X . chk .

( # Corruption data

out X . out Sess . () # Reveals Kcs, Ksess, msg1

| # Authentication Sever

! . new Kcs2 . in Nonce2 .

out enc(cons(Nonce2,Kcs2), Kc) .

out enc(cons(Kcs2,after), Ks) . ()

| # Client

! . new Nonce2 . out Nonce2 . in Ticket2 . in Auth2 .

let TicketCorrect2 =

enc(cons(Nonce2,snd(dec(Ticket2,Kc))),Kc) .

[ Ticket2 = TicketCorrect2 ] .

let Kcs2 = snd(dec(Ticket2, Kc)) .

new Ksess2 . out enc(Ksess2, Kcs2) . out Auth2 .

out enc(msg2, Ksess2) . ()

| # Server

! . in T2 . in Auth2 . let Sess2 = dec(Auth2,Ks) .

let SessCorrect2 = cons(fst(Sess2), after) .

[ Sess2 = SessCorrect2 ] .
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let Ksess2 = dec(T2,fst(Sess2)) .

in M2 . out f(dec(M2,Ksess2)) . ()

| # Dolev-Yao Adversary

! . out before . out after .

new NonceDY2 . out NonceDY2 . ()

| ! . in X . in Y . out X . out Y .

out cons(X,Y) . out fst(X) . out snd(X) .

out dec(X,Y) . out enc(X,Y) . out f(X) .

out val(X) . out next(X) . ()

)

| # Dolev-Yao Adversary

! . out before . out after . new NonceDY . out NonceDY . ()

| ! . in X . in Y . out X . out Y .

out cons(X,Y) . out fst(X) . out snd(X) .

out dec(X,Y) . out enc(X,Y) . out f(X) .

out val(X) . out next(X) . ()

)

4.6 A Bit of Compositionality

Real-world systems often run many different protocols in a concurrent fash-
ion. However, one usually studies the security properties of each protocol
independently. This may not be enough to ensure the integrity of a system,
since two otherwise safe protocols may have unwanted interactions, espe-
cially if the protocols share secrets. One would rather be able to derive
properties about P1|P2 from the studies of P1 and P2.

Our CFAio offers some opportunities for composing security results. As-
sume P1 and P2 were analyzed beforehand, yielding the automata F1 and
F2. We can build an F for P1|P2 by merging the transitions of F1 and F2

and adding

@in1 → @in

@in1 → @out2

@in2 → @in

@in2 → @out1

@out→ @out1

@out→ @out2

just as it happens for the analysis of the parallel operator. Such an F is
sound, provided that [@out1]F1

⊆ [@in2]F2
and [@out2]F2

⊆ [@in1]F1
. This

last proof obligation might be checked by static analysis. If the obligations
do not hold (or cannot be proved), the completion algorithm can be restarted
from the above F to compute a sound approximation. This could be less
expensive than rebuilding the approximation from scratch, since parts of the
work have been already done when computing F1 and F2.
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4.7 Future Work

The handling of chk in our static semantics is quite simple: for CFAio, we
simply proceed using the states @chk-in and @chk-out for in and out. Yet,
this is enough to ensure soundness. The fact that handling chk is so simple
is mainly due to the corresponding simplicity of rule Chk in the dynamic
semantics. In fact, when a chk prefix is fired, all running threads are aborted,
and the system restarts from a fixed, statically-known configuration.

While this allows for the study of some limited causal dependencies, one
might wish to use a less drastic semantic rule for chk. Ideally, chk would
just cause the current point in time to be marked, and have no visible effect
on running concurrent threads. In this scenario, one would use the rule

Chk′
P@θ = chk.P ′

σ, 〈ρ, θ〉
chk
−−→σ, 〈ρ, nθ〉

However, our CFAio of Sect. 4.4 is not sound w.r.t. this rule: we need a
more complex static semantics. We attempted to define such an analysis.
Our current best attempt, which we do not present here, generates a number
of states which is quadratic in the size of the process. In comparison, the
CFAio generates a linear number of states. Further, during our tests, the
analysis often reused some inappropriate state, causing a loss of precision,
and leading to the failure of the analysis goal. This problem was amplified
by the large number of states.

In order to proceed in this direction, we need more precise heuristics.
Currently, no information about the processes is given to the completion
tool other than A,I,R. For instance, the tool can not try to separate the
“before chk” states from the “after chk” ones, so that we reuse a state of a
kind only if we are dealing with states of the same kind. More information
about the high-level meaning of the states might provide better hints to the
state reuse heuristics. Also, we could consider a more careful allocation of
new states, so that we do not waste all the resources to precisely approximate
non significant languages. We could also try to separate our constraints into
“mostly independent” parts and solve them individually, as described in
Sect. 4.6, and merge them later: this would allow to specify how much
resources we assign to each part, as well as effectively hinder state reuse
from different parts.

4.8 Related Techniques and Tools

Our technique exploits concepts from the CFA [57, 16] and from the tree
automaton approximation techniques [28] presented in Chapter 3. In Sect.
3.1 and 3.9.6, we briefly compared our approximation tool to other related
tools, namely to the Succinct Solver [65] and Timbuk [67]. Here, we discuss
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the differences of our approach w.r.t. related ones, focusing more on the
aspects relevant to security protocol analysis.

Succinct Solver The Succinct Solver [65] does not use term rewriting.
For representing sets of terms, it uses a abstract domain based on tree au-
tomata, but the term algebra is assumed to be free. Constraints on these
sets of terms are not expressed through automata transitions, rather with
Alternation-free Least FixPoint (ALFP) clauses, a fragment of first-order
logic. This allows one to express constraints in a familiar way, using the
usual logic quantifiers and connectives, as long as the resulting clauses are
within the ALFP fragment. Of course, one could use these constraints to
require the sets of terms to be closed under some rewriting. This is possible
for some rewriting rule sets, e.g. for algebras of constructors and destruc-
tors. However, some rules, e.g. associativity, can not be expressed without
making the tool diverge, hindering the verification of protocols involving
exponentials. The cause of this limitation is to be found in the fact that the
Succinct Solver performs no normalization of transitions, so terms are not
always kept plain but can have arbitrary depth, possibly leading to an infi-
nite domain and hence to non termination. Related to this, the tool never
generates fresh automaton states, which are necessary for normalization.

Timbuk The Timbuk tool [67] performs many interesting operations on
tree automata, including the completion for closing a tree language under
rewriting. A large amount of work has been done to ensure that, for cer-
tain classes of rewritings, the result of the completion not only is sound –
including all possible rewritten terms – but also complete – including no
other terms. However, in the general case completeness can not be achieved
due undecidability issues. Here, Timbuk requires the user to specify its own
normalizations, either through a specification file, or through manual user
interaction, when the file does not handle all the cases. This might be a
problem for constructing tools for unattended, fully automatic verification.
Indeed, TA4SP [19] provides a modified version of Timbuk that does not
require user interaction.

TA4SP Tree Automata for Security Protocols (TA4SP) [19] is a tool for
protocol verification based on Timbuk. TA4SP is part of the tool suite
AVISPA [7]. A main difference between our technique and that of TA4SP is
the choice of the protocol specification language. TA4SP, as the other tools
in AVISPA, use the High Level Protocol Specification Language (HLPSL),
a very rich language: protocols are specified by describing the states of the
participants, and the transitions between states. Instead, we use a fairly
simple process algebra, based on the applied pi calculus. We feel our specifi-
cations simpler, and more intuitive, than similar ones in HLPSL. We invite
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the reader to compare the specifications we included in this chapter with
the ones in [7].

Moreover, our technique extracts from the protocol a set of constraints
forming an automaton A, while the rewriting system R is independent of
the protocol, but only contains the rules for the cryptographic primitives.
Instead, in TA4SP, protocol logic affects both A and R.

Another difference between our tool and TA4SP is that, at the time of
this writing, TA4SP does not handle general rewriting rules. Currently, the
user can not specify its own rules: the term algebra is fixed, and only allows
for some cryptographic primitives, e.g. encryption. In particular, the exp

operator is not supported. This prevents us to make a detailed comparison
on the handling of the exponentials by TA4SP/Timbuk and our tool. For
future research, we could try to use the amended Timbuk as our back-end.
Finally, some support for handling more general rewriting rules in TA4SP
is starting to appear: in [20] an example involving xor is presented.

Dynamic analyzers While our technique, as most static analyses, aim
to prove protocol secure, dynamic analyzers usually try to find attacks, i.e.
to prove protocols insecure. The two goals being complementary, it is not
possible to make a direct comparison of these kinds of results3. However, we
mention here the On-the-Fly Model-Checker (OFMC) [54]. OFMC takes al-
gebraic properties into account, and is therefore able to handle exponentials
in finding attack traces.

4.9 Conclusions

We presented a simple model for the specification of cryptographic protocols,
based on process calculi and term rewriting. We stress that we allow any
rewriting system for defining the cryptographic primitives. This is a nice
consequence of adopting our algorithms on tree automata of Chapter 3.
Further, the model deals with some basic temporal aspects, and therefore
it is suitable to express certain security properties involving time, such as
forward secrecy.

We addressed the problem of statically verifying protocols. To this pur-
pose we studied two techniques, CFA and CFAio, for such static analysis. In
both cases, we compute a static approximation of the dynamic behaviour so
that it is closed under rewritings. We also focused on foreseeing the protocol
behaviour before and after a selected point in time, represented by the firing
of chk. Also, we explored some opportunities for composing results of our
CFAio.

3Of course, producing a contradiction through two tools, e.g. “proving” a protocol as
secure and insecure at the same time, would point out a flaw in one of the tools.
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We implemented these analyses [61], and used our tool to check some sig-
nificant protocols. The tool confirmed that we can handle complex rewriting
rules, such as those of exponentials, and protocols involving timestamps.
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Chapter 5

Conclusions

In this work, we studied techniques for reasoning about the security of dis-
tributed systems. Mainly, we focused on methods for actually proving sys-
tems secure. For this, we considered models for both the specification and
the verification of cryptographic protocols. We argued that formal methods
offer tools for simplifying both these tasks, so the designer of a protocol can

• write a reasonably short and clear specification, and

• prove security properties in a convenient way.

We also discussed some common assumptions of formal models, and relaxed
them. First, in Chapter 2 we weakened the perfect encryption assumption.
We allowed the formal Dolev-Yao adversary to break encryptions with low
probability, as it happens in computational models. We then showed that the
classes of secure protocols w.r.t. the standard adversary and the enhanced
one are actually the same class.

In the next chapters we relaxed the free algebra assumption. We first
defined in Chapter 3 some techniques for approximating sets of terms up to
rewriting. Then, in Chapter 4, we applied these techniques and derived a
static analysis for protocols, including those involving non-free primitives.
Finally, we implemented the analysis and built a tool for verifying protocols.
Our experiments with the tool confirmed the effectiveness of our analysis.

It is worth noting that the results of Chapters 2, 3, and 4 can be applied
together to the same protocol. Assume that we run our static analysis tool,
compute the result of the analysis for a protocol using encryptions, and
derive the secrecy of a message. This secrecy result still holds when we
consider non-perfect encryptions, as we did in Chapter 2. Indeed, we can
relax at the same time both the free algebra assumption and the perfect
encryption one.

Of course, the gap between formal models, including ours, and compu-
tational models is still open, but is slowly narrowing. In the next years, we

127
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hope to see other contributions in this line, establishing more connections
between the two worlds, helping to bridging this gap.
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