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Introduction

1. Background of Mathematical Physics

1.1. General Setting. Our main purpose is to represent in the following some new ideas for
the study of semilinear dispersive equations, with particular attention on partial differential equa-
tions of hyperbolic type. Among the most important dispersive equations of mathematical physics
we shall focus our attention to the Schrodinger equation

we(t,x) + Au(t,z) = F(t,z), t>0, x € R" (0.1.1a)
u(0,2) = up(x) , (0.1.1b)
and the Wave equation
Ou(t,xz) = F(t,z), t>0, z € R" (0.1.2a)
u(0,2) =up(z), Ou(0,x) =uyi(x) . (0.1.2b)

Both the equations (0.1.1a) and (0.1.2a) play a crucial role in Quantum Mechanics (we refer to the
books of Reed and Simon [160], [157], [159], [158], and also to [56], [139] for further information).
Indeed, let Hy denote an Hamiltonian, defined by

Hy(x,p) = £ (0.1.3)

om
where p is the momentum and m is the mass of the particle. Up to replacing the physical observ-
ables with operators, we can consider Hj as a self-adjoint operator acting on some suitable Hilbert
space, usually L2 (R") or L? (R") x H! (R"). Namely, p = (p1,...,p,) where each p; corresponds to

the operator ’%%, where 7 is the Plank constant, in such a way that Hy = —%A. Therefore, the

homogeneous versions of (0.1.1a) and (0.1.2a) (¥ = 0) are nothing but the rescaled versions of
hgre(t, @) = Hop(t, @) , W5 (t,x) = —Hop(t, @) .

Therefore, from Stone’s Theorem we get

Hot
o(t,x) = eV h wo(z) , O(t,x) = eZM"t(I)o(x) ,

where ®¢ = (o, p1) and My is the matrix defined by

0 —d
MO_<’L% 0> )

in such a way that we reduce the wave equation to a first order evolution problem.
Another important hyperbolic problem is the Dirac equation

i%ﬁ;ﬂﬁ =0. (014)
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Here (¢, z) is a function defined in the Minkowski space R'™® with values in C*. Usually, ¢ is
called a spinor. Moreover, 7,, are the Dirac matrices defined as follows

1 O O O
o ( 0 —1 ) y Tk ( —oy, 0 > ) ) 53

The Pauli matrices o}, are determined by

/001 (0 = /10
o1 = 1 0 , 02 = i 0 , 03 = 0 —1 )

The initial data are determined by

The Dirac matrices satisfy the relations
V? + 7yt = =27 (0.1.5)

A simple reduction of the Dirac equation to the wave equation can be done by applying the operator
7,0, to the Dirac equation in (0.1.4). We use the relations (0.1.5) and find

9,0") = 0.

Several either physical and mathematical problems arise quite naturally in the study of such
partial differential equations. One of the most developed topic is the investigation of the effects of
perturbations of the original operators. Namely we shall consider perturbed operators, denoted
by Hy, defined as

Hy =Ho+V, (0.1.6)
where V is a suitable potential operator (see [113], [127], [150]).

1.2. Problem Setting. Many questions may arise, some of which we itemize below.

e Local or global well-posedness of the associated problems. It is of interest to find suitable
spaces for the initial data in such a way to have either local or global existence and con-
tinuous dependence of the evolution operator on the initial data. The main argument here
is the use of the contraction principle, together with some a-priori estimates, which are
usually given either by some conserved quantities (for instance the mass or the energy), or
by some space embedding (for instance among Sobolev spaces).

e Smoothing effect for a class of hyperbolic equation. It is possible for time evolution partial
differential equations which are reversible and conservative to smooth locally the initial
data? For the linear wave equation, for instance, the answer is no. The study of partial
differential equation in order to describe general smoothing property for dispersive equa-
tion: the solution of the initial data value problem is, locally, smoother (higher regularity)
than the initial datum (see [42] ).

e Blow-up and the control of life-span. In the case of local existence results we may investi-
gate whether the solution may blow up in some finite time, as well as study the behavior of
such life-span with respect to the parameters involved (smallness of the initial data, regu-
larity of the initial data, ...). The main technique in this case is the reduction to ordinary
differential equations of special form (see [105] and [174]).
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e Asymptotic behavior of the solutions. A special interest is devoted to the study of the
decay properties of the solutions, and more generally its regularity. The main arguments
here can be either the use of some explicit representation of the solution (for instance via
spectral theory), or the use of some special properties such as symmetries and invariance.

e Scattering theory. We want to compare the behavior of the perturbed problem checking
the existence of the following two limits, called wave operators

: wHy —1tH

Wif= lim e™ Ve ™70f,
for any initial data f (up to some projection operator). We refer to [127] and [150] for a
deeper analysis. Indeed the compositions of these two operators (their inverse or their
adjoint), as the scattering operator S = W;W_, as well as the completeness play a
crucial role in this field (see [92]). An important tool in this field is represented by the
decay of the local energy.

e Associated nonlinear problems. It is very important the case of a nonlinear source term
F = F(u) (for instance F,(u) = u|u|*"" with s > 1). All the questions raised in the linear
case may be extended to the nonlinear one. The main argument here is again the use of
contraction principle. More precisely for a more general hyperbolic equation, if we are able
to find suitable Banach spaces X, Yr, Zy such that the solution to the problem u satisfies

lullx, < CUT) (IFlly,, + lluollz,) -

for some time T' € (0, o] and the nonlinear term F satisfies
17 (u) = F(@)lly, < Ca(T)Cs (|luollx,.) llu—vlx,

with lim, o Co(T) = 0, and Cs (|||l x, ) increasing monotone function with respect to the
time 7', then a contraction argument guarantees the local well-posedness in Z;.

The items just listed show the essential importance of the a-priori estimates for the operators

Hy and Hy in this field. Next Section will deal with the specific a-priori estimates we are going to
face in the sequel.

2. A-Priori Estimates

We shall deal with three different types of a-priori estimates.

2.1. Resolvent Estimates. The first a-priori estimates we are interested in are the so-called
resolvent estimates, which deal with the resolvent operators, Ro(z) = (z — Hy) ' in the free
case, or Ry (z) = (2 — Hy) ™' in the perturbed case (we refer to Chapter 2). If o (Hy) denotes the
spectrum of the self-adjoint operator Hj, the mapping

Ry : C\ o (Ho) — B(L* (R"),H* (R")) ,

where B (L? (R™), H? (R")) is the set of all bounded operators from L? (R") to H? (R") is analytic
with respect to the complex variable z.

We first need to extend this regularity properties in serval directions. On one side we need to
approach the spectrum (which lies on the real axis), taking into account z = A + ¢ (for ¢ > 0), and
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looking for the existence of the upper and lower limit operators

RE =lim Ry(\ £ 1¢) ,
|0

in some suitable weighted Sobolev space. This technique is called limiting absorption principle,
and it is very well studied (see [5], [94], [166], [167] and [198]). It turns out that this can be done
introducing the following weighted Hilbert space H!" (R") defined by

2 S @ 2
lullfm = D> I(@)*Dull7. , ¥meN, seR,

laf<m

where the weight (z) is given by the smoothed norm (z) = /1 + |z|*. Under suitable condition on
the exponent s it can be shown the existence of R(jf as operators
R(:)t :C \ Op (HO) — B (Lg (Rn) ’HES (Rn)) 3

where L? (R") = H°  (R"), and o, (Ho) denotes the point spectrum associated to the operator Hy
(see [113] for further details of the decomposition of the spectrum into point and continuous part).
Next we shall look for some classes of real valued operators V = V(z,D) = Z\j\ <2 aj(x)DI, for
which the Schrodinger operator Hy admits a similar construction. Namely, the existence of the
operators

R{ :C\ o, (Hy) — B(L2(R"),H?, (R"))
may be done under the same condition on s for any operator with coefficients a; such that
a; =0 (jal %) . as [a = +oo,

for some ¢ > 0. Such operator are called Short Range potentials (see the works [17], [91], [96],
[119], [123, 124, 125] [145] for a deeper analysis).

2.2. Dispersive Estimates. The second type of a-priori estimates we are interested involving
hyperbolic equations are the so-called dispersive estimates (we refer to Chapter 5). They are
meant to denote estimates of the form

lellg, S 17 lvollg,» t>0 0.2.7)

for some o > 0, and suitable Banach spaces By and B, for ¢ solution to some hyperbolic equation
with initial data ¢,. These kind of behavior do actually hold for the equation we are dealing with,
for instance we have

.1
o= By =L>®(R"), B;=W2"(R") (Wave Equation in odd dim. n) ,
1
o=11 By =L*(R") , By =BZ (R") (Wave Equation in even dim. n > 3) ,
c=12, By=L>*(R"), B,=L"(R") (Schrodinger Equation in any dim.) ,

.1 1
where W2'! and Bﬁ 1 (R™) denote the homogeneous Sobolev spaces and the Besov spaces, respec-

tively (see [174], [193, 195]).

The main tools in the proof of such estimates is the use of the Stationary Phase Method,
which allow the control of oscillating integrals. Indeed, such type of integrals appears in the rep-
resentation of the solutions via the Fourier analysis. The important remark of that method is to
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underline the influence of the geometric structure of the equation. Namely, the decay rate o depends
on the rank of Hessian matrix on stationary points of the phase function.

The dispersive estimates are the heart of the Strichartz Type Estimates (see [192, 194],
[74, 75], [115]). Indeed, interpolating the dispersive estimates with the energy estimates, and using
some harmonic analysis results (such as Paley-Littlewood theory and 7'T* method) it is possible to
obtain mixed norm estimates, which distinguish space and time variables. We restrict our attention
to a linear wave Ou = F in dimension n > 2, with initial data (ug, u;) (a similar result holds for the
Schrodinger equation). In this case we have

lull Laqo, 792 ®ny) S 1Uoll gy + Nuall g1 @ny + 1F agio, )7 @y > (0.2.8)

under the dimensional condition

Q=
_l’_
=3
Il
0|3
|
2
Il
SHE
+
3
|
[\

Licce lyloe (pg#@2oo), () #(20), o=n5 0.2.9)

The Strichartz estimates are one of the main tools in the study of local and global existence,
both for linear and nonlinear equation, because they fit the assumptions required by the contraction
argument (see for instance [109, 110, 111], [131, 132], [133], [115], [199]). The relation between
the regularity of the initial data, and the power of the nonlinear term turns out to be crucial in this
field, and many problems may arise (minimal regularity, smallness of the initial data, ...).

2.3. Smoothing Estimates. Finally, the third a-priori estimates we are interested involving
dispersive equations are the so-called smoothing estimates (we refer to Chapter 4). Smoothing
properties were given, for Schrodinger equations for example, by estimates of the form

[ Aull L2 @12 ®ny) < C lluollp2 gy (0.2.10)
where A is the form
(1) A=(x)*DI'"?, s>1/2,
(2) A= (x)~*|D|"*, s>1/2, (s>1/2 ifn=2),
(3) A=|z|* "D, l-n/2<a<1/2

In order to treat more general equation, the following dispersive equation were considered

wy(t,z) + P(D)u(t,x) =F, t>0, z € R"

(0.2.11)

u(0, ) = uo(x) ,
to obtain smoothing properties requiring some regularity in the symbol P(¢).
Roughly speaking smoothing effect is a gain of regularity of the solution with respect homogeneous
equation and non-homogeneous one. There is a vast literature on such kind of problem. We refer
principally to the work of Kenig, Ponce, Vega [207, 116, 117] for the Schriodinger equation and [118]

for problem (0.2.10). The type (1) was given by Ben-Arzi and Klainerman [18], (n > 3), Chihara
[40] » > 2. The type (2) (n > 3) and the type (3) (n > 3,0 < a < 1/2)or (n =2,0 < a < 1/2,) was
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given by Kato and Yajima [114], just to name a few. Usually, the proof of such estimates carried out
by proving one of the following estimates (or their variants):

|4 71

where, pS"~! = {|¢| = p},p > 0
sup [(Ra(2)A", A" )| < C|fll 2 (Resolvent Estimate), (0.2.13)

Im z2>0

L2(pSn—1) <CVpllfllpe (Restriction Theorem), (0.2.12)

The smoothing estimates are one of the tools in the study the stability, both for the linear and the
nonlinear equation.

3. Plan of the Thesis

The plan of the Thesis is organized as follows.

In Chapter 1 we present some useful basic tools about Spectral Theory, Interpolation Theory
and Harmonic Analysis which will play an important role in the following development.

Chapter 2 is devoted to the study of resolvent estimates. Some literature is presented, about the
estimates for the resolvent operators in the free case, as well as the perturbed one. A selfcontained
proof for the estimate of the "gradient of the resolvent operator"” is given.

In Chapter 3 we present resolvent estimates both in free and perturbed case in dimension
n = 3. Applications to to the wave equation, Dirac equation and Schriédinger equation will be done.
New space-time estimates for such kind of equations are presented. The whole Chapter is based on
our results found in the work [200].

In Chapter 4 our purpose is to derive new generalized scale invariant smoothing estimates
for the case of magnetic potential imposing scale invariant smallness assumptions on the magnetic
potential using suitable resolvent estimates and a new equivalence norm result. We follow the work
of the author (joint with V. Georgiev) [69].

Chapter 5 is focused on the dispersive estimates. A general setting of Strichartz type estimates
for the free and the perturbed case is presented following the work of [115].

We end up with Chapter 6, where we present new Strichartz-smoothing estimate necessary to
show the stability for the nonlinear Schrodinger equation perturbed by a small magnetic potential.
We state also a result concerning the spectrum of Schrodinger operators perturbed by a class of
differential operator of order one. These mixed estimates are obtained jointly with V. Georgiev and
A. Stefanov in the work [67].

Clearly, the matter of this subject cannot be contained in the preliminary chapters, so we re-
call, as we need, the tool of advanced functional analysis, harmonic analysis and theory of partial
differential equation. So, in the each Chapter where we present new result, we will give a brief
introduction to facility the reader to well understand the core of the arguments.

4. Acknowledgements

The author has been supported by the Ph. D. Programme of the Department of Mathematics of
the University of Pisa.



Introduction 4. ACKNOWLEDGEMENTS

The author is also grateful to the Department of Mathematics L. Tonelli of the University of
Pisa, because of the hospitality shown all over his activities. He found in both interesting and
stimulating groups of research. Namely, the group leaded by prof. Vladimir Georgiev in Pisa,
where a particular mention is due to Nicola Visciglia for suggestion and improvement in the work
done and Stefano Zappacosta for the deep technical collaboration with the author.

The author is also very and sincerely grateful to his advisor, prof. Vladimir Georgiev, for his guide
and introduction to the heart of most recent techniques and studies. During this years passed in
Pisa i learned fruitful tools and wonderful many ideas to deeply understand advanced analysis.
The author is deeply grateful to prof. Atanas Stefanov of the University of Kansas and to prof.
Michael Reissig, of the TU Bergakademie Freiberg.






CHAPTER 1

Functional Analysis Background

1. Operator and Spectral Theory

In this chapter we shall make a review of some basic facts from functional analysis and we shall
focus our attention to two main points.

On one hand, we shall give suitable sufficient conditions that assure that a symmetric strictly
monotone operator in a Hilbert space is self-adjoint. More precisely, we consider Friedrich’s exten-
tion of a symmetric strictly monotone operator. The criterion to assure that its closure is self-adjoint
operator is of the type: weak solution = strong solution. We shall apply this criterion in the next
chapters.

On the other hand, we represent some of the basic interpolation theorems for the Lebesgue
spaces LP.

To get a complete information on the subject one can use [63], [160], [157] , [225].

2. Linear operators in Banach spaces

Given any couple A, B of Banach spaces we denote their corresponding norms by

lalla > llollB

for a € A,b € B. A linear operator
F:A—B
is called bounded (or continuous) if there is a constant C' > 0 such that
|Fallp < Cllal 5.
The space B(A4, B) is the set of bounded linear operators
F:A—B

with norm
[F|| = sup |[[Falp.
alla=1

In case A = B we shall denote by B(A) the corresponding linear space of bounded linear operators
from A in A. It is easy to see that B(A, B) equiped with the above norm is a Banach space.

If B is the field C of complex numbers, then the elements in B(A, C) are called functionals and
B(A,C) itself is called dual space of A.

The dual space can be defined in a more general situation of a topological vector space. Recall
that a linear vector space V is topological vector space if the topology on V' is such that the addition
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of vectors and multiplication by constants are continuous operations. For any v' € V' we denote by
<v,v>

the action of the linear functional v’ on v.
For the typical case of Hilbert space H with inner product (-, )y for any element 4’ € H’ there
exists an element hg € H so that
< hl, h >= (ho, h)H
for any h € H. This is the classical Riesz representation theorem. On the basis of this theorem there
is an isometry
W eH —hyeH.
We shall denote this isometry by
H' ~), H.
It is clear that the isometry depends on the choice of the product (-, ).
Sometimes it is possible to define the linear operator only on a dense domain D C A so that

F:D— B.
Then D = D(F) is called the domain for F. The range of the operator F' is
R(F)={b:b=F(a),a € D(F)}.

D H

A linear operator

F:D(F)— B
is an extention of the operator

G:D(G)— B
if D(G) € D(F) and Ga = Fa for a € D(G). The operator G : D(G) — B is called closed if the
conditions

anp — a, a, € D(G), G(a,) — b

imply a € D(G) and b = Ga.

Let
F:D(F)— B
be a linear operator with dense domain D(F'). On the product
Ax B
one can define a norm by
lalla+ lIbll5

for a € A,b € B. Then F is a closed operator if and only if its graph
L(F) ={(a,F(a));a € D(F)}
is a closed subset in A x B.

THEOREM 1.1. (Closed graph theorem) If F : D(F) — B is a closed operator and D(F) is a
closed subspace of A, then there exists a constant C' > 0 such that

[Falls < Cllal|a
for a € D(F).

10
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If F has a dense domain D(F) C A
F:D(F)— B,

then the dual operator F” is an operator between B’ and A’ and this operator has the domain D(F”)
defined as follows: &’ € D(F”) if and only if there exists an element a’ € A" so that

<V, Fa>=<dad,a> (1.2.1)

for any a € D(F). We put F'(V/) = d'.

Let b’ € D(F’). Then there is a unique o’ € A’, satisfying (1.2.1).

Given any Banach space A we call

T:A—C
a conjugate linear functional if
T(alal + Oégag) = a_lT(al) + a_gT(ag)
and if 7" is bounded, i.e. there exists a constant C' > 0 such that
IT(a)| < Cllalla

for any a € D(F).
We denote by A* the vector space of linear conjugate functionals on A.
Then A* is a Banach space.
For any v* € V* we denote by
<v* v >
the action of the linear functional v* on v.
Let F be an operator with a dense domain D(F') C A and

F:D(F)— B.

The conjugate operator F™* is an operator between B* and A* and has a domain D(F*) defined as
follows: b* € D(F*) if and only if there exists an element a* € A* so that

<b",Fa>=<a",a> (1.2.2)

for any a € D(F).
Let b* € D(F*). Then there is a unique a* € A*, satisfying (1.2.2).
By definition F*(b*) = a*, where the element a* is defined according to the previous problem.
The operator F* with dense domain D(F*) is a closed operator.
Further, we turn again to the situation of a Hilbert space H. An operator I’ with dense domain
D(F) C H is called symmetric if

(Fh,g)un = (h, Fg)u
for any h,g € D(F). Using the definition of the adjoint operator F* we see that F'* is an extention
of the operator F, when F' is symmetric.
We shall say that F is self-adjoint if
F=F".

The following criterion for self-adjointness plays an important role.

11
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THEOREM 1.2. (see [157], [162]) Suppose that F is symmetric operator on a Hilbert space H
with dense domain D(F') and

R(F-))=R(F-\=H (1.2.3)
for some number \ € C. Then F is self-adjoint.
The condition (1.2.3) with A = i is equivalent to
Ker(F* — 1) = Ker(F* +1) = 0.

Let F be a symmetric operator with a dense domain D(F') C H.
A natural way to extend this operator to a closed operator is to take the closure I'(F') of the
graph
L(F) = {(h, Fh);h € D(F)}
in H x H.

If F is a symmetric operator with a dense domain D(F) in H, then there exists an operator F'
such that

T(F) = [(F).

We call F a closure of F.
The importance of self-adjoint operators is connected with the possibility to use the spectral
theorem. (see [160])

THEOREM 1.3. (Spectral theorem - functional calculus) Let I be a self-adjoint operator in a
Hilbert space H. Then there is a unique map ¢ from the bounded Borel functions on R into L(H) so
that

a) ¢ is an algebraic x— homomorphism, i.e.

0(f9) = 6())d(g) ,6N) = Ao(f)  d(1) =T, &(f) = (&(f))".
D) 1) oemy < [1f 1l

c) let h,(x) be a sequence of bounded Borel functions with

lim h,(x) ==

for each x and |h,,(z)| < |z| for all z and n, then for any ¢ € D(F) we have
i ¢(hn)y) = Fy;
d) if h,(x) — h(z) pointwise and if the sequence || h,| L~ is bounded, then
$(hn) — o(h)

strongly;

e) if Iy = \, then

()Y = h(N)¥;
Pif h > 0, then $(h) > 0.

12
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This spectral theorem gives us a possibility to define the function of the operator F' by means of
the identity
) =9o(f)
for any measurable function f on R.
The above spectral theorem can be rewritten in projection valued measure form (see [160]).
Given any Borel set 2 C R, we denote by xq, the corresponding characteristic function for the
set 2. Then the functional calculus for the self-adjoint operator I’ enables one to consider the
projection:
Po = xa(F).
The family { P} satisfies the properties:
a) Py is an orthogonal projection,
b) Py =0, P00y =1,
¢) If Q is a countable disjoint union of Borel sets Q2,,,,m» = 1,2, ..., then for any h € H we have
N

Poh = lim_ > Po,h,

m=1
d) Po, Po, = Po,nq,-
Given any h € H, we see that
() = (b, Pah)n
is a measure. By d(h, P\h) we shall denote the corresponding volume element needed for integration
with respect to this measure so we have
/ XQ(/\)d(h,P)\h) = (h,PQh)H.

Now for any (eventually unbounded) Borel function g on (—c0, 00) we consider the domain
Dy = (e Hs [ lo()Pd(h, Pob) < oc)
and then we define the operator (eventually unbounded) » € D, — g(F')h by means of the identity
(hg(E ) = [ g)d(h. PrR).

R
Then we have the following assertion.

THEOREM 1.4. For any Borel function g(\) defined on (—oco,0) the operator g(F) with dense
domain D, is self-adjoint.

The functional calculus enables one to define the exponential U(t) = ¥

THEOREM 1.5. (see [160)) If F is a self-adjoint operator in the Hilbert space H, then U(t) = e'F’
satisfies the properties:

a) U(t) is a bounded unitary operator for any t € R,
b) U)U(s) =U(t + s) for any real numbers t, s,
¢) lim;_,oU(t)h = h for any h € H,
d) h € D(F) if and only if

. Ul)h—h

lim

t—0 t

13
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existsin H.

Remark A. The property a) in the above theorem means that
TR = hlla-

Remark B. An operator-valued function U(t) satisfying the above properties a),b) and c) is
called a strongly continuous one-parameter unitary group.

THEOREM 1.6. (Stone’s theorem, see [157]) If U(t) is a strongly continuous one-parameter uni-
tary group, then we can define its generator G so that h € D(G) if and only if the limit
o U= h
t—0 t
exists. The above limit shall be denoted Gh for h € D(G). One has

G =iF,
where F is a self-adjoint operator in H.

3. Symmetric strictly monotone operators on Hilbert space

In this section we shall consider the special case when a symmetric operator B is defined on a
dense domain D(B) C H, where H is a real Hilbert space. For simplicity we take Hilbert space over
R, but the results are valid also for Hilbert spaces over C. We shall denote by

the inner product and the norm in H respectively.
Our main assumption is that B is strictly monotone, i.e. there exists a constant C' > 0, so that

(Bu,u) > C|lu||% (1.3.1)

for uw € D(B).
First we consider the case, when the range R(B) is dense in H.

LEMMA 1.1. If B is a symmetric strictly monotone operator with dense range R(B), then the
closure B is a self-adjoint operator.

Proof. The operator B is also symmetric and strictly monotone. Then the inequality
[Bull = Cllull

shows that R(B) is closed. Since R(B) C R(B) and R(B) is dense in H, we see that R(B) = H.
Applying Theorem 1.2, we see that B is self-adjoint. |

The next step is to introduce the corresponding "energetic" space (see [225]).
For this purpose for any u,v € D(B) we define the corresponding energy inner product

(u,v)g = (Bu,v)q. (1.3.2)

The corresponding norm is
[ulle = v/ (u,v)E.

14
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DEFINITION 1.1. The space Hg consists of all uw € H such that there exists a sequence {u,}5
with the properties:
a) u, € D(B),
b) u, —uin H,
¢) u, is a Cauchy sequence for the norm || - || g, i.e. for any € > 0 there exists an integer N > 1,
such that
lun —umlle <e

for n,m > N.

We shall call the sequence {u,}, satisfying the above properties, admissible for u. Given any
u € Hg, we can define its norm by
lulle = Tim_[jun | 2. (1.3.3)

Our first step is to show that this definition is independent of the concrete choice of admissible
sequences {u,}.
LEMMA 1.2. Suppose {u,} is an admissible zero sequence. Then
lim |u,||g = 0.

n—oo

Proof. Assume that the assertion of lemma is not true. Choosing a subsequences we can reduce
the proof of a contradiction to the case

a < |Jupllp <a™t (1.3.4)

with some a > 0. Given any ¢ > 0, we can choose N depending on ¢ > 0 according to property c) of
Definition 1.1. Then for any n > N we have the inequalities

unllE < [(un, un) Bl + [(Un, un = un) Bl < |(un, un) sl +a" e
On the other hand, we have the identity
(tn,un)E = (Un, Bun)m,

according to our definition of the inner product (-,-)g on D(B). Since {u,} is admissible zero se-
quence, we have lim,,_, ||u,| z = 0. Therefore, we can find n > N so large that

|(un, un)el <e.
Thus, for any ¢ > 0 we can find n so that
lunlf < (1 +a™h)

It is clear that this inequality is in contradiction with the left inequality in (1.3.4), when ¢ > 0 is
sufficiently small.
Therefore we have a contradiction and this completes the proof of the lemma. ]

The above lemma enables one to introduce a norm in Hg as follows:

lulle = lim[jun e, (1.3.5)

15
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where {u, } is an admissible sequence for u € H.
Also it is easy to define the inner product in Hg. For u,,v, € D(B) such that {u,}, {v,} are
admissible sequences for u,v € Hp we have the polarization identity
1 1
(s vn) i = 7 (l[un +vnllE) = 7 (lun = vall)-
Then from (1.3.5) we see that the limit
lHm (up,vn)E

exists and it is independent of the concrete choice of admissible sequences. For this we can introduce
the inner product in Hg, as follows

(u,v)p = nlLII;O(un,vn)E.
The next step is of special importance to verify the fact that the space Hg is a Hilbert space.
LEMMA 1.3. If {u,} is an admissible sequence for v € Hg, then
nhﬁn;o lttr, — ullg = 0. (1.3.6)

Proof. For any integer m > 1 the sequence
Uy, — U,

is admissible for v — u,,. The fact that {u, } is a Cauchy sequence in Hr means that for any positive
number ¢ there exists an integer N > 1, so that

Hun - umHE <e
for n,m > N. Then definition (1.3.5) shows that
|u—um|p <e

for m > N. This completes the proof. a

It is clear that the definition (1.3.5) guarantees that
ullz > Clul|%. (1.3.7)

This estimate shows that (u,u)r = 0 implies u = 0, so Hg, is a pre - Hilbert space. Also it is a trivial
fact that D(B) is a dense subset in Hg, since any element « in Hg by the definition of Hf is such
that there exists an admissible sequence {u,,} with u,, € D(B).

Our next step is to study the space Hg.

THEOREM 1.7. The space Hg, is a Hilbert space.

Proof. Let {u,} be a Cauchy sequence in Hg. Since D(B) is dense in H, for any integer n > 1 one

can find v,, € D(B), so that

1
lvn —unlle < —. (1.3.8)

n

16
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Then the estimate ||v,[|% > C|v,|% shows that {v,} is a Cauchy sequence in H so there exists
u € H, so that

vy — win H.
Applying Lemma 1.3, we conclude that
lim ||ju—v,||g =0,

and from (1.3.8) we get

lim ||u— u,||g = 0.
n—oo

This completes the proof. ]

Further, we turn to the dual space H},. As usual for any linear continuous functional f € H},
and any g € Hg we denote by

<fg>
the action of the functional f on g. The inclusion H C Hj; is such that
< fag >= (f?g)H
for f € H,g € Hg. The norm in H}; is

||f||H* - sup <f79>~
E
g€HE,||gll=1

Then Hj, is clearly a Banach space. Later on we shall introduce on H}, a structure of a Hilbert
space. The main preparation for this is the following

LEMMA 1.4. The symmetric strictly monotone operator B : D(B) — H can be extended to an
invertible isometry

BE:HE%HE,

i.e. we have the properties
a) Bgu = Bu for u € D(B),
b) B maps Hg onto Hj;,
o) | Beullmz, = l|lull #p-

Proof. For any u € Hr we take an admissible sequence {u,}, such that
Jim_ [ =l = 0.
On the other hand, we have the relation
| Bull s, = |lulle (1.3.9)
for uw € D(B). Indeed, for v € D(B),v € Hg we have
| < Bu,v > | = |(Bu,v)u| = |(u, )| < [lule|v] 5. (1.3.10)

Hence,

[ Bull;, < |lulle-

17
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To establish the inequality in the opposite direction we choose v = u in (1.3.10) and get
Jullz < (| Bull s [|ull 2

Once, the relation (1.3.9) is established, we can conclude that { Bu,, } is a Cauchy sequence in H}, so
it is convergent in H}, to an element v € H},, so by definition

Bru=w

It is clear that the element v is independent of the concrete choice of the admissible sequence {u,,}
for u. Also (1.3.9) can be extended to v € H.

Therefore, it remains to show that By maps the energetic space Hy onto its dual H},. To do this
take v € Hy; and consider the linear continuos functional

he Hg —-<wv,h >€ R.
According to Riesz representation theorem, there exists v € Hp so that
<v,h>= (u,h)E.
Taking an admissible sequence for © we can see that
(un,h)g = (Bun, h)g —< Bgu,h >

Hence, < Bgu,h >=< v, h >, so Bgu = v. This completes the proof. O

Using the fact that Bg : Hg — Hj; is an invertible isometry, we can define via the polarization
identity an inner product on H}, and conclude that this is a Hilbert space.
In fact starting with the relations

1BullZr, = lullf = (Bu,u)n

for u € D(B) and using the previous lemma, we see that we can introduce the inner product in H,
by means of
(Beu, Bpv)ns = (u,v)p = (Bgu,v) .

The above relations show that By is a symmetric operator. It is easy to see that By is a strictly
monotone operator on H; with dense domain Hg. Applying the first lemma of this section, we
conclude that

LEMMA 1.5. The operator Bg is self-adjoint.
Our main result in this section is the following.

THEOREM 1.8. (see [225]) If B is a symmetric strictly monotone operator, then the operator A
with dense domain

D(A) = {u € Hg,Bgu € H}
defined by Au = Bgu for u € D(A) is a self-adjoint extention of B.

18
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Proof.
Given any f € H, we can find v € Hg so that f = Bgu.
It is not difficult to see that the operator

F:feH—-u=F(f)€ Hg
is well - defined bounded, symmetric and
F(Bh) = h,h € D(B).
In fact F is a restriction of the isometry
By':Hj — Hp
to H. Moreover, F' is a symmetric bounded operator from H into H. Then the symmetric bounded
operator F' is self-adjoint. Applying the spectral theorem in the norm of Theorem 1.4 with g(\) =
1/, we see that the operator A = F~! with dense domain D(A) is selfadjoint.

It is an open problem if the closure of the graph of B is the graph of A. For this we introduce
the following.

DEFINITION 1.2. Given any f € H, we shall say that u € D(B) is a weak solution of the equation
Bu = f,if
(Bu7 U)H = (fa v)H
forany v € Hg.

On the other hand, we have

DEFINITION 1.3. Given any f € H, we shall say that v € D(B) is a strong solution of Au = f, if
there exists a sequence {uy} such that

a) u, € D(B),

b) up, — uin Hg,

¢) Buy tends to f in H.

For the applications of special importance is the following result.

THEOREM 1.9. Suppose in addition to assumptions of Theorem 1.8 that any weak solution of
Bu = f for f € H is also a strong solution. Then the closure of the operator B is self-adjoint.

Proof. The result follows from Theorem 1.8. a

4. Spectral Families
We consider a family of functions {£(t)},. defined by
E:R— B(H),

where H is a Hilbert space. We shall follow the approach given by Section 7.2 of [221] (see also
Section VI.5 of [113] for a deeper analysis), and present the following definition.

DEFINITION 1.4. We say that {E(t)},.p defined above is a spectral family (see also theorem
1.3) if it satisfies the following properties:

19
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(i) E(t)is a projection operator on H for every t € R;
(ii) for any f € H and for any s,t € R, such that s < t, we have:

(E(s)f, ) < (B, f);

(iit) for any f € H and for any t € R the following identity holds:
liﬁ)lE(t +e)f =EQ{)f;

(iv) for any f € H we have:

tlim EWf=1r, lim E(t)f =0.

t——o0

We observe that the right continuity in (iii) is guaranteed by the monotonicity property (ii). It
is also possible to show using the monotonicity that if E(t) is a spectral family, then the following
limits exist and are projection operators

E(O\F) = 1%1 E(\+¢),
for any )\ € R; clearly we have that E(A\T) = E()).

We give below an important example of a spectral family in the case of H represented by the
Lebesgue space L?(R™).

EXAMPLE 1.1. Let M : R® — R be a measurable function. We associate to M the following
subsets of R™:

M, ={z e R"|M(z) < t} ,

for any t € R, and let x, denote the characteristic function of the set M,.
It turns out that the family of linear operators

EM(t) : L*(R") — L*(R"),
defined by
EM()f(x) = xa, (@)f(x) , Vf € LR") ,VLER,

for almost every x € R" is a spectral family on L?(R").
Indeed properties (i) and (ii) are satisfied. If we fix t € R, f € L?>(R") and a sequence ¢}, | 0, then

1B ¢+ ) — B0 120 gy = / Xt @) = xan @] 17 @) e

Since 0 < Xy, (%) — X (@) < 1and xum,,., (¥) — Xnm(x) | 0as k — oo the property (iil) follows
by Lebesgue’s Theorem. Similarly we obtain the property (iv) observing that

lim E(t) =1, lim E(t)=0.

t—o0 t——o0
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The importance of the Example 1.1 relies on the strict connection between M seen as a multi-
plicative operator on L?(R") and its associated spectral family £/ (¢). Namely the following opera-
tor identity holds:

_ M
M_/thE (t) .

Indeed it is of great interest to investigate the relations between all the possible spectral families
E4 associated to any operator A on H, and the operator associated to them via that functional
integral.

5. Integration with Respect to a Spectral Family

In this section we shall show how a given spectral family E(¢) may be used to introduce an
operator, denoted on an Hilbert space H via integration with respect to the ¢ variable. Namely we
have the following.

THEOREM 1.10. For any given spectral family E(t) on H it is well defined a map E associating
to any Borel function F : R — C an normal operator E(F) defined by

E(F):D(E(F))CH — H , (1.5.11)
such that

E(F) = /R F(t) dE(t) . (1.5.12)

Proof. Let I be a real interval. Let the numbers —oo < a < b < oo be given, then using the notation
given in (1.5.11) we define

/ X(ap)(t) dE(t) = E(b™) — E(a) , / X[ap) (1) dE(t) = E(b) — E(a™);

R R

/ e (t) dE(t) = E(b) — E(a) / Niaw (8) dE(t) = B — E(a™),
R R

where as usual y 4 denotes the characteristic function of the set A.
By a linearity argument we can define [, F'(t) dE(t) for step functions, that is, for functions
of the form

F(t) = ejxa,(t)
j=1

where c¢; € R and J; are disjoint intervals as

n

/F(t) dE(t) =Y ¢;E(J;). (1.5.13)
R

j=1

In order to let [, v(t) dE(t) make sense for a general Borel function v : R — R, we introduce the
following family of non-decreasing functions

ph (t) = (h. E(t)h) = | BRIl . (1.5.14)
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where h € H. We define the domain of the operator D (E(F)) as follows:
D (E(F)) —{heH|FeI?*R, dpf)} .

We observe that for the step function F = Z?:l cjxs; we have

‘ (/Riqu,]j dE(t)) h (é c;F )

by the definition and the orthogonality of the projection operators E(.J;). On the other hand

/‘%XJ, dpy, (t Z/ C dpy, (t ZC pr, (t

hence the following relation

sl - |(fro )],

holds for any h € D (E(F)) Relation (1.5.15) may be extended to any F' € L? (R, dpf’) where

2 2

n

Z Tihllg = o ()

H J=1

H

/ IF(6)? dpf(t (1.5.15)

he D ( (F )) by a density argument. O

If F : R — C is a bounded function (p¥-measurable for any h € H), and all f, g € H according
to the polarization identity, we can define

[roaweon=4| [ Foako- [ Foa o[ o0 - [ mo ko).

With this definition we obtain that for any couple F' and G as above

[ e roaweon=( [ e s [ Foasor)

The next proposition describes the most important properties of the map F associated to a
spectral family E(¢) build in the proof of Theorem 1.10.

PROPOSITION 1.1. Let E(t) be a spectral family on the Hilbert space H. Let F,G : R — C be
two Borel functions, and E (F), E(G) the corresponding operators defined by Theorem 1.10 and let

L ifIF@)] <k L iflG)| < k
Pe(t) {O otherwise Vild) {O otherwise

Then the following properties hold true.
(i) Forall f € D (E(F)) and g € D (E(G)) we have

k—o0

(B(G)g, E(F)f) = lim / Ut W(OF () d(g, E1)f) .
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(ii) For any h € D (E(F)) we have

|EEn / F()2 dof(t

where pf (t) is defined in (1.5.14).
(iii) If F : R — C is a bounded function, then E(F) € B(H) and

B0, <
| By < 1Py -

(iv) If F(t) = 1 for any t € R, then E(F) = 1;
(v) For every f € D (E(F)) and all g € H we have

- / F(t) d(g, E(1)) -

(h, E(F)h) > c|lh|ly

(vi) If F(t) > cfor all t € R we have

forall h € H.
(vii) Forall a,b € Rwe have aE(G)+bE(G) = B(aF+bG), and D (E(F) + E(G))) =D (E(|F| +1G] )).

(viii) E(FG) = E(F)E(G) and D (E(F)E(G)) =D (E(G)) nD (E(FG)).

Proof. (i) follows from density arguments, since the relation is true for 7' and G step functions and
observing that by definition

(B(G)g. B(F)) = Jim (E(hGlo. BloiF)) = Jim [ (G0 o0)F(0) dlg. 1)

(ii) follows from (1.5.15). If F : R — C is a bounded function, then F € L? (R, dpf) forall h € H,
consequently F (F) € B(H). From the property (iv) of the Definition (1.4) we have that

Tim pf () = k]l im_pf()=0.
Hence by the relation in (ii) we have

[ B[, = [ IPOF aof® < 11y 1015

since [; dpf(t) = HhHiI. Hence (iii) is proved. Property (iii) provides that D (E(l)) = H. If we
consider the sequence x[_j ;] = 1, therefore

E(F)h = Jim E(X[_kp) h = Jim (B(k)h — E(~k)h) = h |

for any h € H, which gives (iv). From (i) with G = 1, and taking (iv) into account, the following
relation

(0 E@)) = Jim [ ou(F (@) dlg. EO))
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holds true. That concludes the proof of (v). (vi) follows immediately from (v), whereas (vii) follows
from the definition and the properties of the integrals. By (i) and (iv) we have that for all pairs of
bounded functions F, G and for all f,g € H we have that

(9. E(F)f) = (EQ)g, E(F)f) = (E(F")g, EQ)f) = (E(F")g, ) ,

consequently,
(0BG = (B(F)0. B@)) = [ FOGW) d(9.E0)S) = (3. BFG)S)

Let h € D (E(F)E(G)) As ¢, F is bounded for fixed k£ € N, it follows that ¢, Fi,G — ¢, FG in
L% (R, pf) as | — oc. Thus

E(F)E(G)h = Jim E(piF) {hm E(le)h} = lim lim E(prF)E(hG)h =
= lim lim E(prFiG)h = hm E(orFG)h .

k—o00 l—00

The existence of the limit means that ¢, F'G is a Cauchy sequence in L? (R, p/’). Since, moreover,
ep(t)F(1)G(t) — F(t)G(t) for all t € R, it follows that FG belongs to L? (R, p;); consequently,

heD (E(FG)) and E(FG) = E(F)E(G). On the other hand if h € D (E(G)) uD (E(FG)), then

E(FG)h = hm hm E(ppFhG)h = hm hm E(pr F)E(WG)h =

k—o00 l—o0

hm hm E(orFipG)h = hm E(orF)E(g)h .

The existence of the limit means that ' € L? (R, p); consequently, £(F)h € D (E(F)), and thus
heD (E (F)E(G)). That concludes the proof of (viii). O

6. Some facts about holomorphic functions

Let C be the complex plane and let U C C be an open domain in this plane. Any point z € U can
be represented as

z=x+ 1y,
where z, y are real numbers. A function
f:U—=C
is C1(U) if the partial derivatives
On f (x +iy), 0y f (x + iy)
exist and are continuous functions. Of special interest are the vector fields

1 .
0, = 5(893 —1i0y)

and )
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If f € CY(U), then f is called holomorphic in U, if it satisfies the equation
agf(Z) = 0, zeU.
One can see that a function f : U — C is holomorphic in U if and only if
i LR~ f()
h—0 h
exists for any z € U.
The most important formula in the elementary theory of holomorphic functions is the Cauchy
theorem and the Cauchy formula.
Let T" be a closed path in U and let z € C be a point such that I" does not pass through z. Then
the index of z with respect to I' is
Indr(z) = 1 / de

2 Jp (-2
The Cauchy theorem states that if T is a closed path in U such that Indr(w) = 0 for any w outside
U, then

/f(é)dc =0 (1.6.16)
I

for any function holomorphic in C. The corresponding Cauchy formula is

_ 1 f(©)
flz)= 2wl ) o CdQ. (1.6.17)
The condition Indr(w) = 0 for w outside U is fulfilled for the case U is simply connected.
Also in the case of a simply connected domain U with smooth boundary 0U for any function

holomorphic in U and continuous on the closure of U we have the corresponding Cauchy formula

f(z)= L f<) dc. (1.6.18)

S 2mi Jou 2 —C
Applying for example the above formula for {z, |z — 29| < §} C U, we obtain the estimate

ME!
02 £ (20)] <~ (1.6.19)

where
M= sup |f(2)].

|z—z0|=6

This estimate guarantees that the formal Taylor series

Z 0% f(20)(2 — 20)* / k!

k=0
converges absolutely and uniformly for |z — z| sufficiently small and moreover the series coincides
with f(z) for z sufficiently close to z.
Our next step is the study of holomorphic functions in the strip
S ={z0<Rez < 1}.

More precisely, given any real number v we consider the class F(v) of all functions f € C'(9)
holomorphic in S and satisfying the estimate

f(2)] < CeYltm=l, (1.6.20)
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LEMMA 1.6. (Three lines Lemma.) If [ € F(v), then for any 0 € (0,1) we have

i V2 s — i )2 .
@) < 11e° " f G Iy 1 F A+ i) G -

Proof. If f € F(v), then we can consider the function

2 - —Zz
g(Z) = 66Z f(z)a’g 10“1 )
where
e _
aj = (|9 F( + i) oo mys =0, 1.

It is clear that we can assume that a; are positive numbers. Otherwise, if a; = 0, then we can
replace a1 by a1 + . Then it is easy to see that g € F(—d;) with 0 < ¢; < § so we have the estimate

l9(2)] < Ce™rtmel

for Rez € [0, 1]. Then this estimate enables us to extend the Cauchy formula (1.6.18) for the strip S.
From the Cauchy formula it follows the maximum principle, i.e.

sup|g(z)| < max(sup |g(it)|, sup [g(1 + it)]).
z€S teR teR

Since, |g(it)] < 1 and |g(1 + it)| < 1, we get
lg(0 +iy)| < 1.

Taking y = 0, we complete the proof of the lemma. |

REMARK 1.1. From the proof'it is clear that we have the estimate

|£(0 +iy)| <
R R ([ R (CR D] et
For the case of a function
[:U=V,
where U C C is an open domain and V is a topological vector space, we shall say that f is weakly

holomorphic if A f is a holomorphic function for any A € V’. Then f is also strongly holomorphic in
the sense that

lim
h—0

exists in V for any z € U. (see [162], Chapter 3)

fz+h) - f(2)
h
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7. Spectral Theorem for Self-Adjoint Operators

Given any operator A on a (complex) Hilbert space H there are many ways to associate a spec-
tral family E4(t). The corresponding operator E4 defined by Theorem 1.10 in general may not be
related to the initial operator A. Nevertheless the following proposition states that whenever A is
self-adjoint there is a very precise relation.

We shall need some results the resolvent operator Ra(z) = (A — z)~! associated to A. The first
we present shows that R4 (-) and other complex functions associated to it are holomorphic (on some
suitable domain of C).

PROPOSITION 1.2. Let A be a closed operator on H, and f,g € H. Then the functions
RA('):p(A)%B(H)v Z’_’RA(Z)a
Ra()f:p(A) — H,  z— Ra(2)f,
(gaRA()f)p(A)—>(C7 Z’_)(gaRA(Z)f) ’
are holomorphic functions on the resolvent set p(A).

Proof. Let 2y € p(T), and let r = ||RA(z0)H;{1. Then for any = € C such that |z — 29| < r» we have

o0

Ra(z) =Y (20— 2)"Ra(z0)"""

n=0

with respect to the operator norm of B(H),

Ra(2)f = (20— 2)"Ra(20)""'f ,

n=0

with respect to the operator norm of H and

o0

(ga RA(Z)f) = Z(ZO - Z)n (ga RA(ZO)n+1f) .
n=0
Therefore by definition the three functions above introduced are holomorphic. m|

Now we restrict our attention to Hermitian operators, A : H — H. The following result
describes the relation between the norm of R4 (z) and the distance of z from the real axis Re (z).

PROPOSITION 1.3. Let A be Hermitian operator on H. Then all the eigenvalues of A are real
and eigenvectors corresponding to different eigenvalues are orthogonal. Moreover for any z € C\ R
the operator A — z is invertible, its inverse is continuous, and the following estimate holds

[Ra() ey < IImlW :

27
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Proof. Let z = = + 1y be an eigenvalue of A. By assumption it turns out that z = z, that is z € R.
Orthogonality between eigenvectors of distinct eigenvalues is also straightforward. Now for any
f € D(A) we have
2 2 21 p112 21 p112
[(A=2)flg = (A=) f —wfllg = I(A=2)f g + 1yl 1z = [ To )7 ([ £l -

If 2 € C\ R then A — z is injective,and g = (= — A)f € D (Ra(z)). We have

IRl = 1l < rrieeyy 1 = A gy = 1y ol

which gives the statement. ]

We shall also need some general properties and representations of complex holomorphic func-
tions. We recall that a function w : R — C is said to be of bounded variation if and only if there
exists a constant C' > 0 such that ), |w(by) — w(ax)| < C for every sequence {(ax,bx]} of disjoint in-
tervals. The smallest C of this kind is called the variation of w. Whenever w is a right continuous
function of bounded variation the integral

IR

for z € C\ R can be considered as a Riemann-Stieltjes integral. The properties of such an integral
function will be described in the following two propositions.

PROPOSITION 1.4. Let w : R — R be a right continuous function of bounded variation, such
that lim;, o w(t) = 0. Then

f(z):/oo L dw(t), forzeCy.

(i) For all t € R the Stieltjes inversion formula

t+5

w(t) = — limlim & Im (f(s+1€)) ds. (1.7.21)

sloelo ™ J_

holds.
(i1) If f(z) =0 for all z € C4, then w(t) =0 forall t € R.

Proof. Since w is real valued we have
oo

Im (f(s+1¢)) = / Im [(s+1.—u)"'] dw(u) = —5/ [(s +u)® + €7 - dw(u) ,

— 00 — 00

o0

for every ¢ > 0. By Fubini’s Theorem it follows that

/T Im (f(s+ 1)) ds——/(:/:omds dw(u)_—/o; [arctan (3=2) + Z] duw(u).

— 0o
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Since |arctan (=%) + Z| < 7 for all » € R and

€

T perr > u,
lsiﬁ)l arctan (I=%) 4+ 7 = 5 perr=u,
0 perr <u,

recalling the definition of the integration with respect to a right continuous function on a single
point set in the sense of of the Riemann-Stieltjes, we have from Lebesgue’s Theorem

T

lgfg . Im (f(s+1¢)) ds = _/(oom)ﬂ-dw(U) —/{T} 5 dw(u) —/(T.’OO)Odw(u) =
= —mw(r-) = 5 [w(r) —w(r-)] = =5 [w(r) +w(r-)] .

If we set r =t + 0 with § > 0 and let § tend to zero, then the assertion follows. Property (ii) follows
from (i). ]

PROPOSITION 1.5. Let w : R — C be right continuous, and of bounded variation such that

lims—, oo w(t) = 0. If
/ L dw(t) =0,

forall z € C\ Rthen w(t) =0forallt e R.

Proof. For z € C, the hypothesis gives

Therefore
/ L d[Rew(t)] = / L d[Im (w(0))]
and the thesis follows from (ii) of Proposition 1.4. O

We are ready to present the main result, which states under which conditions the existence and
the uniqueness of such a function w is guaranteed, once the function f is given (see Theorem B3 in
[221]).

THEOREM 1.11 (Herglotz). Let f : C;. — C be an holomorphic function such that Im (f(z)) >0
and |f(2)Im (2)| < M for all z € C,. Then there exists a unique right continuous non-decreasing
function w : R — R, for which lim;—, _, w(t) = 0 and

6= [ Zauw,

— 00
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forall z € C.. For any t € R we have that w(t) < M and

t+4d

= —limlim I .
w(z) 1(;1{%11;{8# : m (f(s+:e)) ds

Proof. The last identity will follow from Propo-
sition 1.4 once we prove the existence of a func-
tion w having the remaining properties. For
0 < e < rletthe path I'. p = 0D, r be defined as
the Figure on the right,

IFer=TrUT: R, - TTTE
where
F'r={z€Cllz—w|=R, Im(z) >¢},
I.={z2€C|-R< Re(2) <R, Im(2)=¢} .

FIGURE 1.1 Path for the Cauchy integral.

For z = x +wy € D, r, then Z 4 2:¢ lies outside D, r. Therefore, by the Cauchy integral formula
we have

e =gk [ = [ [ - e r0 ac

&R

Zﬁ/r ﬁf@)dC:%/r Tt /(O d¢.

e, R e, R

For ¢ € Ty we have for fixed z that |f(¢)| < e 'M, and

_ f(<
f@—ﬁARéﬁc

thus the term over ¢ € I'; tends to 0 as » — oc. As far as the remainder term is concerned we have
that

f(Z)Z%/ Wszm)f@)M:%/_wmﬂf“g)“:

If we set v(z) = Im (f(z)), then it follows for Im (z) =y > e > 0 that
o(z) = %/_ vt +1e) dC

By the hypothesis |v(z)y| < |f(z) Im (z)| < M, hence for y — > 0 we have

Al

/ e —ru(t +12) dg‘ <|(y—e)v(z)| <M.
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By letting y — oo, we obtain by Fatou’s Lemma (since v < 0 by hypothesis) that v(- +1¢) € L' (R)
and

og—%/ v(t4+we)dt <M, Ve>0.
Since forall y > e >0

y—¢e _ Y
e CE L CE e

1 1
<¢ (y(yfs) + y_z) ’

it follows that

/ [(wft)g;(syfsﬁ - (mfty)JZer?} v(t +1e) dt — 0

as ¢ | 0. Therefore, for all z € C,,

oo

Givent € R and € > 0 we can define
t
Hs(t):—%/ v(s +1e) ds.
The functions 6. are all non-decreasing and bounded, 0 < 6.(¢) < M for all ¢t € R. Let us construct,

with the aid of the diagonal process, a positive null sequence ¢,, — 0 such that {0, (¢)} is convergent
for all t € Q. If we set

o(t) = lim 6. (t), VteQ,

then 6(s) < 6(¢) for any rational pair s < ¢. If we extend 0 on R defining
0(t) = H;f; {0(s)} , VteR,
sseQ

then 6 is non-decreasing as well, and lim;_., (8(t) — 0(—t)) < M. We show that in the sense of the
Riemann-Stieltjes integral

v(z) = _/ mv(t+l€) dé(t), VzeCy.

Since
) =lmg [ Gefpoltte)di=—lims | g 6e(t) dt =
= —lim 2 d6.(¢)

Y
dow | @O

the assertion is equivalent to the equality

n—oo |_

For the proof of this equality we notice that if we wish to approximate this Riemann-Stieltjes (with a
continuous one) by a Riemann sums, then it is enough to consider only partitions involving rational
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points. For every rational partition P and for fixed z = « + 1 let Up, Lp, Up,, and Lp,, be the upper
and lower sums of the integrals

J:[mmde(t), anlmmdegn(t),

that correspond to P. For every rational partition P we have that Up,, — Up and Lp,, — Lp. For
every 6 > 0 there exists a rational partition P for which Up — Lp < %. For such P there is an
no € N such that |Up, —Up| < § and [Lp,, — Lp| < § for all n > ny. Since Lp, < J, < Up,, and
Lp < J < Up, it follows that |J — J,,| < ¢ for n > ngy. Therefore J,, — J as n — oo. Consequently, we

have shown that for z € C

Im f(2) =v(z) = /700 (w_ﬂ%yz dé(t) = Im [m L do(t) .

Since f and z — [ (z —t)~! df(t) are holomorphic in C,, we have

fe)= [ T o,

— 00

with some C' € R. Because |f(z) Im (z)| < M and

’Im (z)/ + d9(t)‘ g/ do(t) <M, VzeCy,

we must have |C' Im (z)| < 2M, and thus C = 0. If we now define
é:%iﬁ}e(t—i-é), w(t)=60— lim 6(s),

for ¢ € R, then w satisfies the required properties. The passage from 6 to 6 does not prevent the
integral formula above from holding, since  has at most countably many points of discontinuity
and they can be avoided during the formation of the partitions. The passage from 6 to w does not
influence the integral formula as well. ]

Now we can state the main spectral theorem about a self-adjoint operator A on a Hilbert space
H. Tts importance relies on the explicit representation formula presented for £4(b)f — E4(a) (for
any a < breal), where E(t) is the unique spectral family associated to A such that A = [, t dEA(t).

THEOREM 1.12. For any self-adjoint operator A : D(A) C H — H, there exists one and only
one spectral family E4(t) such that

_ A
A_/thE (t) .

Namely the family E(t) is given by

b+o
(9. BA(0)f — E*(a)f) = 5= %1?01161%1 y Z (g, [A—(A+e)] " f) dA, (1.7.22)
a +

forall f, g€ Hand —o00 < a <b< oo
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Proof. We shall prove uniqueness first. If A = 1, then 4 — z = iz by Proposition 1.1(vii). Then
for all z € C such that Im (z) # 0 we have by Proposition 1.1(viii) that
(A=2)E((t—2)"Y)h=E(1-2)(t—2)"")Yh=h, Vhe H,

E(t-2)")(A-2h=E((t—2)""(1-2)h=h, Yhe D(A).

Consequently, £ ((t — 2)~') = Ra(z) for all such z. This implies via Proposition 1.1(v) that

(hy Ra(2)h) = / 1 df (0),

for all h € H. We can use Proposition 1.4, and obtain for all t € R

t+48
| EA(t) hHH (h, EA(t)h) :gfx&gﬁ}—%/ Im (f,Ra(s+1)h) ds =

— 00

t+5
— limlim L )
= %ﬁ)ﬂslﬁ)l — / (f,[Ra(s —1e) — Ra(s+1)]h) ds,

which gives (1.7.22) with the aid of the polarization formula. Since (1.7.22) holds for all f, g € H the
uniqueness has been proven.

Now we focus our attention to the existence. If there exists a spectral family £4(¢), such that
A = [t dEA(t), then (1.7.22) must hold. Therefore we study whether (1.7.22) defines a spectral
family with such a property. For every h € H the function F},(z) = (h, Ra(z)h) satisfies the assump-
tions of Theorem 1.11, since F}, is holomorphic for Im (z) > 0 by Proposition 1.2 and we have

m (Fp(z)) = Im (h,Ra(z)h) = Im ((A—2)Ra(2)h, Ra(2)h) = ||RA(z)hH§I Im (z) <0,
for Im (z) > 0, and by Proposition 1.3
| Im Fy(2) Im ()] < iy 12l | T (2)] = A1 -

Consequently

(h,Ra(z)h) :/ Zit dw(h;t) , (1.7.23)
R
where

t+48
w(h;t)—%l%lhfrolﬁ/_ (h,[Ra(s —1€) — Ra(s+1£)h) ds.

We notice that w(h;t) is a non-decreasing and right continuous function of ¢, and w(h;t) — 0 as
t — —oo, w(h;t) < HhHi, for all t € R. Equation (1.7.23) holds for all z € C\ R since (h, Ra(Z)h) <
(h, Ra(z)h). Furthermore, we define

t+5
w(g, h;t) = 1(;1{1(}11{8% Lm (9,[Ra(s —1€) — Ra(s +1€)]h) ds,

whose existence follows by means of the polarization identity for the sesquilinear forme

(g,h) — (g,[Ra(s —1€) — Ra(s +12)]h) .
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The mapping (g, h) — w(g, h;t) is a bounded non-negative sesquilinear form on H. The sesquilin-
earity is clear from the definition; moreover w(h,h;t) = w(h;t) > 0 for all t € R. The Schwarz
inequality and the inequality w(h;t) < || f ||§I imply for all g,h € H and ¢ € R that

2 2 1112
[w(g, h; )" < w(gst)yw(hst) < [|glly (Rl -

Therefore, by Riesz Representation Theorem there exists for every ¢ € R an operator E4(t) € B(H)

such that HEA(t)HB(H) <1land

(9, EA(t)h) = w(g,h;t) Vg,h e H .
EA(t) is self-adjoint, and E4(t) > 0.
Now we show that E4(t) is a spectral family. For this aim we first show that E4(s)E4(t) =

E4(min(s,t)) for any pair s,¢ € R. From polarization identity it follows that for all z € C\ R and for
allhe H

(9,Ra(2)h) = | £ dw(g, hst) :/ L d (g, EA(t)h) . (1.7.24)
R R

Consequently, the resolvent identity implies for all z, 2’ € C\ R with z # 2/
/R 5 d(Ra () 9, B()h) = (Ra(z)g, Ra(2)f) = (9, Ra (z') Ra(2)f) =

= 25 (9. Ra(2)h) — (9, Ra () )] = = 1/[ ] dlo B@m) =

:/m / / d (g, EA(s)h) .

From Proposition 1.4 it follows that

| 77 4. 0 A OB (08) = (9. Ra=) BA0)h) =

t

:4mw%£%m:/ 1 d(g.E(s)h) |

— 00

Hence we get that for all f,g € H and s,t € R again by Proposition 1.4

(9, EA(s)h) ifs<t

(9. BA(t)h) ifs>t

which shows that E4(s)E4(t) = E4(min(s,t)). In particular E4(t)> = E“(t). Therefore, the E4(t)’s
are orthogonal projections for all t € R, and E4(s) < E4(t) for s < t (where the inequality in meant

to be in the sense of self-adjoint operators). Thus 1.4 (i) and 1.4(ii) are satisfied. The right continuity
1.4(iii) follows from the formula

|EA(t+e)h — AW, = | EAE + )bl — [ EA@)A|, = wlhst +e) — w(h;t) — 0

(9, E(s)E(t)h) = {

as ¢ — 0 since w(h;-) i (t)h||H = w(h;t) — 0 as t — —oo, hence
EA(t) — 0ast — —oo. As E4(-) is monotone, it must converge to an orthogonal projection E4(c0)
as t — oo. We have

(h, E4(c0)h) = lim (h, E4(s)h) > (h, E*(t)h) .

§— — 00
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Consequently, E4(c0) > EA(t) for all t € R. Let F' =1 — E4(cc). Then
EA(t)F = E(t) (1 — E*c0)) = E4(t) — E4(t) = 0.
It follows from this for all g, € H, Im (z) # 0 that

(9. Ra(=)Fh) = /R L d(g, Ra(t)Fh) 0.

Hence Ra(z)Fh =0 for all h € H, and thus F = 0. That is £4(c0) = 1 and proves 1.4(iv).
We conclude our proof observing that R,(z) = E((t — z)~') by (1.7.24), and this implies that
E(1—z)=2z— Aand E(1) = A (Proposition 1.1(viii) and 1.1(vii) respectively). m

The Spectral Theorem 1.12 is the key tool in the introduction of the functional calculus on
an Hilbert space H. There exist several methods to introduce the functional calculus associated
to a given self-adjoint operator, but we keep on following [221] (see Chapter VII in [160] for an
alternative approach).

It is possible to show that the operators F(A) depend only on the values of F on the spectrum
of the operator A. For this reason in the sequel we will use the following equivalent notations:

F(A) = / F(t) dEA(t) = / F(t) dEA(t)
R o(A)
where 0(A) C R denotes the spectrum of the self-adjoint operator A.

8. Some Interpolation Results

We start this section by a theorem important in the complex interpolation consequence of Three
Lines Lemma 1.6. To formulate this theorem we shall denote by L£(A, B) the Banach space of
bounded operators from a Banach space A into the Banach space B.

Given any positive real numbers py,p; with 1 < pg < p1 < oo, we denote by L (R") 4+ LP*(R")
the linear space

{(f:f=fo+ fr,fo € LP(R"), f € L (R")}.

The norm in this space we define as follows

I £lrosim = inE lfolliro + I falios.
Here the infimum is taken over all representations f = fy + f1, where fy € LP°(R") and f; €

LPr(R™).
It is easy to see that LP° + LP* is a Banach space.

THEOREM 1.13. (Stein interpolation theorem, see [160])
Suppose 1 < po,p1,q0,q1 < 00,T(2) is a continuous function from the strip 0 < Rez < 1 into
L(LPo + LPv; L% 4 L) , holomorphic for 0 < Rez < 1 and satisfying the properties

T (2)|IL(Lro; a0y < Cexp(ClImz|) for Rez =0, (1.8.25)
1T (2)|lL(Lrr;Lay < Cexp(ClImz|) for Rez = 1. (1.8.26)
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Then for any 0 € (0,1) we have

1T lLcr;Lay < C,

where
L R R (R L (1.8.27)
p Po p1 q qo0 q1
The convolution of f and g, defined as
frgl@)= [ [flz—y)gly)dy, (1.8.28)

Rn

plays a crucial role in the study of partial differential equation, therefore it turns out to be very
important to investigate for some a-priori estimates for this kind of operation.

A standard tool at this aim are the interpolation theory for Lebesgue spaces, whose main result
is represented by the following theorems: (see [20, Theorem 1.1.1]).

THEOREM 1.14 (Riesz-Thorin). Assume p, #
p2 and q1 # qo, and that T is a bounded operator
acting on the following spaces: .

T:L" (R") — L (R™) +
T:LP? (R") — L% (R") .

with operator norm respectively M, and M re-
spectively. Then T is a bounded operator for the
spaces

T:LP(R") — L (RY) , (1.8.29)

with norm M = M{ M, =", provided that 0 < 6 < 0 T 2 z i I

1 [ 1-6 1 /) 1-0 & » i . 1
Landy =+ o a=at o FIGURE 1.2 Interpolation exponents.

Note that Riesz-Thorin interpolation theorem is a trivial corollary of this complex interpolation
theorem. Indeed an easy consequence of this result is the Hausdorff-Young estimate, that we
state as follows. If p, q,r € [1,00] are such that 1 + % = % + %, then

1f*gllr S Ao lglla s (1.8.30)

for any f € L? (R") and g € L? (R™). Using duality arguments, one can obtain a bilinear version of
the Hausdorff-Young estimate, namely for p, ¢ € [1, o]

[ (¢ 9 @hia) do| S 11 ol 10lsr (1.831)

for any f € L* (R™), h € L (R™) and g € L? (R"), where the exponent s is defined by n + F=4+

2|3
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8.1. Interpolation for sequences with values in Banach spaces. (see [20], [204] )

Of special interest for applications is the abstract interpolation for the space /,(A). Given any
Banach space A, we denote by [,(A) the linear space of all sequences (a;)?2,ar € A, such that the
norm

ll(@r)lliga) = le (ar)l|%)" (1.8.32)

is bounded. For ¢ = oo, the corresponding norm is

lakllicay = sup llak| - (1.8.33)

For 1 < ¢ < oo the space [,(A) is a Banach space.
The main result of this section is the following interpolation result for spaces of sequences.

THEOREM 1.15. (see Section 5.6 in [20]) Let Ay C Aqg be dense in Ag. Then for 1 < q,qg,q1 < o0,
satisfying
1/q=(1-0)/q0 +0/q
with some 0 € (0,1), we have

(lgo (A0)s lgy (A1))e = 14((Ao, A1)s), (1.8.34)

For the proof and more details we refer to [63].
Further, given any real number s, we denote by /;(A) the linear space of all sequences (ax )72, axr €
A, such that the norm

oo

1(ar) gy = O 25°larl|%) (1.8.35)
k=0

is bounded. For 1 < ¢ < oo the space /;(A) is a Banach space.
Then we have the following result for the complex interpolation (see Section 5.6 in [20] ).

(130 (Ao), I51 (A1))e = 15((Ao, A1)e), (1.8.36)

? g1
where
1/g=1-0)/q+0/q1 , s=(1—0)sg+0s1

and moreover 1 < ¢, 1 < 0.

9. Hardy-Littlewood-Sobolev Inequality

The convolutions we are interested in involve singular kernels as functions g of the form g(z) =
|z|”7, which do not belong to any Lebesgue space L? (R") for any ¢ € [1,0]. Nevertheless a gener-
alization of this kind of estimate can be achieved and it is given by the following result.

THEOREM 1.16 (Hardy-Littlewood-Sobolev Inequality). Let 0 < vy < nand 1 < p < ¢ < oo be
such that

n—y+2=12. (1.9.37)
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Then there exists a constant C = C(n,p, q,7) such that the following estimate
R el PP (19.38)

The Hardy-Littlewood-Sobolev inequality was proved in one-dimension in [80] and [81], and
then extended to any dimension in [180]. Sharp values for the constant C(n,p,q,v) have been
studied in [129]. In the literature there exist many different proofs of such estimate, and their
techniques apparently look quite different from each other (see [185], [82] and [130]).

It is possible to have a bilinear version of the Hardy-Littlewood-Sobolev inequality using stan-
dard dual arguments,

holds for any f € LP (R™).

/ / |f)Zf’) dy dz S| fllze gl L (1.9.39)

whenever n — vy + & = % and f € LP (R"), g € L7 (R").
To complete this sectlon we state also the following Hardy, Littlewood inequality involved the
Fourier transform (see [63]).

THEOREM 1.17. (Hardy , Littlewood inequality) Let m(&) = ¢||~7 and consider the operator

1)) = [ em(@)f(€)de.

Prove that for 1 < p <2 < g < ocoand 1/p—1/q = ~v/n this operator can be extended as a bounded
operator from LP to L1.

10. TT* Method

Suppose we have an operator 7' : D(T') C B — H, where H is an Hilbert space, B is a Banach
space, and D(T) the domain of T' densely contained in B. The adjoint operator 7* : H — D(T)* is
defined by

(T*h,F) = (h,TF) , Yhe H, VF € D(T) ,

where the (-, -) denotes the action of B* on B, and (-, -) the inner product of H. We observe here that
in this case it makes sense to consider the composition operator 7*7T : D(T) — B*. We shall also
introduce B : D(T) x D(T) — R, the bilinear operator associated to 7', defined by

B(F,G) = (TF,TG) , VF,G€B.

The so-called TT* method is indeed the equivalence of the boundedness of the operators 7', T,
and T*T, and B, defined above. The results is stated in the following theorem (see Lemma 2.1 in
[72] or see [75]).

THEOREM 1.18. Let T, T*, T*T and B the operators defined as above. Then the following condi-
tions are equivalent:

(1) there exists a constant M > 0 such that |TF||,; < M ||F||g, for all F € D(T),

(2) R(T*) C B* and there exists a constant M > 0 such that | T*h||z. < M ||h||, forall h € H,

(3) R(T*) C B* and there exists a constant M > 0 such that |T*TF|z. < M?|F|,, for all
FebB,
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(4) there exists a constant M > 0 such that |B (F,G)| < M?||F||z |G| g for all F,G € B.

If one of (all) those conditions is (are) satisfied, the operators T, T*T and B extend by continuity to
bounded operators from B and from B x B to H respectively.

Proof. (1) = (2). From the fact that D(T') is densely contained in 5, it follows that 5* is a subspace
of D(T)*. By Cauchy-Schwarz inequality and (1) we have for any F € D(T)

KTk, F)| = [(h, TF)| < [|h]| g [TF|[g < Al M ||[Fll5 -
(2) = (1). If F € D(T) by (2) we have
[(h,TF)| = [T*h, F)| < |T*h[g- | Fllg < MRz | Fllg » Yhe H.

(1) = (3). We have already showed that (1) implies (2). Then it is clear that the composition
operator 7*T has norm bounded by M2,
(3) = (1). Let F' € D(T"). Then (3) implies

ITF|3 = (TF,TF) = (F,T*TF) < M*||F||}; .
(8) = (4). Let F, G € B. Then by (3) we have
|B(F.G)| = [(TF,TG)| = (T"TF,G)| < ITT*F| 5. |Glls < M* | Fll5 |Gl 5 -
(4) = (3). Let F' € B By (3) we have that for any G € B
(T*TF,G)| = |(TF,TG)| = |B(F,G)| < M*||Fll5 |Gl .

that concludes the proof of the Theorem. ]

11. Paley-Littlewood Partition of Unity

A very important tool in harmonic analysis is represented by localizing functions in the phase
space in dyadic annuluses. Let n € C5° (R") be a function such that n(¢) = 1 whenever [{| < 1,
and 7(¢) = 0 when |¢| > 2. Thus we define ¢(§) = 7n(¢) — n(2¢), in such a way that supp (¢) C
{27! < |¢| < 2}. Then for any integer number j we set

66 =0 (%) - (1.11.40)

It turns out that the ¢;’s are C5°(R™) functions, supported in 2/-! < |£] < 2/%1] and moreover
> jez 9i(§) = 1 for any £ # 0. The resulting dyadic partition of unity {¢; }j ¢z, 1s called the Paley-
Littlewood partition of unity. We shall also call dyadic multiplicative operators S; the
multiplicative operators defined by

Sif(€) = 6;() (), (1.11.41)
in such a way that the following dyadic decomposition f = > ez Sif holds for any tempered distri-

bution f.
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We observe here that for any integer j, the operator S; is bounded from L? into itself for all
1 <p < o0, since §; is a convolution operator with kernel (Z;j, and from Haussdorff-Young inequality
(1.8.30) we have

155 e < CollfllLe

where the constant C, = ||¢;]|,, does not depend on j (since we have ||¢;||,, < ||¢||,, for any j € Z).
By Plancherel’s Theorem we have for any f € L? (R") the following identity:

1£172 =D 1S fl7- - (1.11.42)

JEZ

Therefore our main goal is to establish the analogous of (1.11.42) in any L? (R™) space. We shall see
that the key role is played by the function defined below.

DEFINITION 1.5. We shall call 2 norm function the (non-linear) operator

2

Sf@) =D ISif@)f ] .

JEL

The key result of this Section indeed states that Sf and f itself are equivalent with respect to
the L? norm for any p € (1, 00). The proof of such an equivalence relies on the so-called Calderon-
Zygmund operators, which turn out to map any L” (R") into itself. The precise definition of such
operators can be found in [185] (the original paper is due to [34]), nevertheless we shall only need
the following sufficient conditions

(1) K is a convolution operator K : L?(R"; H;) — L?(R"; H,) where H;, H; are Hilbert spaces,
in the form

Kf=kxf,VfeH,

where the kernel k is a measurable function % : R" — Ho;
(2) the kernel k of K is a Fourier multiplier of class C' (R™ \ 0), with [ > %, and it satisfies

Now we are ready to state the main theorem.

ok

| sl viel <t (1.11.43)

THEOREM 1.19. For any 1 < p < oo there exists a constant C, > 0 such that

Co ' I lle SNSFllpe S Collflle » Vf€LP(RY). (1.11.44)

Proof. We first show by duality arguments that the first inequality in (1.11.44) follows from the
second one. Indeed using Plancherel Theorem and Cauchy-Schwarz inequality, and observing that
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¢jor = 0 unless j ~ k we get

[ 1@ ae~ [ @i as= [ 3 S5 e

§,kEZ

: ;
%/ > Sif(@)Skg(w) dwﬁ/ (ZI%f(rc)F) <Z|Sk9(x)|2> da <
anzk R

JEZ kezZ
<SFlle 1S9l o < Co ISFllpo N9l or -

We claim that the operator K : L?(R";C) — L?(R";[?(C)) defined by

is a Calderon-Zygmund operator. Indeed the condition (1) is fulfilled choosing H; = C, Hy = [2(C),
and observing that Kf = k = f, where k : R" — [?(C) is defined by k; = ¢;. Condition (2) is
guaranteed by the smoothness of the localizing functions ¢,’s, and the following estimate. For any
£ # 0 actually only three dyadic components are not null, and we have

1 1
2 2 . 2 2
ogm]),, = (Z ¢ (%) ) = (Z (2771 ogo(e)]) ) <le 3 |oge) .
€7

JEZ jE€

that is exactly (1.11.43) with | = co (using |zi| ~ 27 in the support of ¢;). Hence, as we remarked
above, K is a bounded operator from L?(R";C) to L?(R";1?(C)), in other words

VB Tl ey S 1o -
Our thesis follows observing that || K f||,,gn2cy) = 1K fllizll o = 15F] 10 O

The following corollary shows how the norms of > ez Sif and f itself are related to L? (R™)
space. The importance of that kind of relations relies in the fact that it influences the embedding
of spaces built throughout the dyadic multiplicative operators (as the Besov, or the homogeneous
Sobolev spaces) in usual Lebesgue spaces, as we shall see in the sequel.

COROLLARY 1.1. Let 2 < p < co. Then we have

117, < Co > 1SifIl7, - (1.11.45)
JEZ
Let 1 < p < 2. Then we have
S USifll, < Collfll3s - (1.11.46)
JEZ

Proof. In the first case, if £ > 1, from Theorem 1.19 and Minkowski inequality we have

130 < Co||S2ISi Pl <D0 [1sifP|
JEZ

JEZ I

2
p= S USifllL, -
L2 ez

p
2
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On the other hand, if % < £ <1, Theorem 1.19 and the reversed Minkowski inequality give

>3 ||isifP|
JEZ

117, > 1S 1s P p = ISifl3, -
X L2 -
JEL JEL

p
L2

REMARK 1.2. The reversed Minkowski inequality involved in the last proof is meant as the
following inequality

Ssilll =D Mgl . Yo<g<1. (1.11.47)
€L T

Proof. In order to prove (1.11.47), we set p = % > 1and ¢; = |p;|". Then by Minkowski inequality
we get

1
p

S 51l . Z(/Rw.ﬂdw)p > [(Shor) ac- Z|¢>j|q

JEZ JEZ JEZ JEZ La

o=

The final proposition shows how we do control the norm of a function f in the homogeneous
Sobolev spaces H)) in terms of the sum of the L” norm of the dyadic components S; f.

PROPOSITION 1.6. Let p € [2,00) and v € R. Then there exists a constant C), ., such that

B =
N}

Coa | o2 1S5l | < Wiy < Comy | D222 1IS5 5115,

JEL =

Let p € (1,2] and v € R. Then there exists a constant C, - such that

N}
B =

— ; 2 ;
Com | Do2271S581150 | < Iflliy < Gy | D227 1155 11T

JEZ JEZ

If we are in the situation described in the proof of Corollary 5.1, once a homogeneous estimate
on the dyadic components of the form

277 ||Sua | 2

~

HSjuHLgL; S
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has been achieved, then by observing that 277 ||Sjus||,. = [|07Sju1l|,. = [|Sju1ll,, Corollary 1.1
and Proposition 1.6 give precisely
1
2 2
2 2
lulpor, S { Do USsullio, | S Do ISl | = lullgy o Vr € 2,00).
j€z jez

A similar argument can be used for the estimate with respect to the source term F'. Notice that the
failure of the Proposition 1.6 for ¢ = oo explains also the lack of r,7 = oo in the hypothesis of the
Corollary 5.1 and the remark pointed out in Footnote 1.
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CHAPTER 2

Resolvent Estimates

In this chapter we shall focus our attention to the free Laplace operator Hy = —A and some
suitable perturbation of H,, that we shall denote Hy = —A + V(z, D). It will be interesting to
investigate which kind of a-priori estimates these operators satisfy, and consequently their domains
and their ranges.

It will be also interesting to study how the resolvent estimates for H, may be derived from
those of Hy.

1. The Limiting Absorption Principle

1.1. The Free Case. We denote by Hy = —A the free Laplacian on the whole space R". We
observe here that H, is a self-adjoint operator on the domain D (Hy) = H? (R"); on the other hand,
as far as its (real) spectrum is concerned, we have that o (Hy) = 0. (Hy) = R, (see [118]). We shall
also denote by Ry(z) = (Ho — z)~ ' the resolvent operator associated to Hy, in such a way that we
can define the mapping

Ry :C\Ry — B(L*(R™),H*(R")) , (2.1.1)

where B (L? (R"), H? (R")) is the set of all bounded operators from L? (R") to H? (R™). The operator
(2.1.1) turns out to be analytic with respect to the complex variable z outside o (Hy). In order
to extend it on o (Hp) we have to weaken its definition, namely the spaces involved in the target
operator space.

At this aim we introduce the weighted Hilbert space H (R™) defined by

lullfm = Y @) Duli. , VmeN,reR, (2.1.2)

laf<m
where the weight (z) is given by the norm (z) = /1 + ||*. From the definition of the norms (2.1.2)
we get the following imbedding
HY(R") C Hi (R") , ifrp <y, (2.1.3)
therefore the map z — Ry (z) wich is defined above keeps on being analytic even if we re-define it in
the spaces
Ry:C\Ry — B(L2(R"),H2,(R"), s> 4. (2.1.1p)

Now it makes sense to investigate whether it may be possible to extend the resolvent mapping
(2.1.1g) on the real positive half-line, that is on values of the continuous spectrum of Hj in the limit
as z — A € R, through one of the two half-planes C. = {z € C : + Im (z) > 0}. We shall show that
the answer is positive, and such a procedure is called limiting absorption principle.
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The main tool is represented by L?-weighted a priori estimates for the H?, norm of a func-
tion u in terms of the L? norm of (—A — z) u provided z is in some compact set, and s > 1. The
following Theorem (see Appendix A in [5]) gives such a result for a general elliptic operator
P(D) = Z|a\ <m GaD” wich is of principal type (see, for example, [87] for the definition), and
we shall apply it to —A. We recall here that ) is said to be a critical value of P if for some &, € R",
P (&) = Aand VP (&) = 0 and that the set of the critical value of P, here denoted by A(P), is finite.

We also denote by P, = Z|a\:m aoD® be the principal part of P.

THEOREM 2.1. Let P(D) be an elliptic differential operator with constant coefficients of order m
and of principal type. Denote by A.(P) the set of critical values of P, and let K be a compact set in
C\ Ac(P). Then there exists a constant C such that the following estimate holds

[ull g < CN(PD) = 2)ull 2 (2.1.4)
forany z € K, and any v € H™, (R"), provided s > %

We shall also need the introduction of the trace operator of a function in some Sobolev space
H" (R™) over the sphere S*. The following result guaranties then existence of such an operator
under the assumption r > % for any sufficiently smooth n — 1 dimensional manifold embedded in
R" (see [185] or [135] p. 44 for the case r > 3).

THEOREM 2.2. Let I" be a compact n — 1 dimensional C* manifold imbedded in R". Let do be
the measure induced on T by the Lebesgue measure dx, and denote by L* (T') the class of L? functions
on I' with respect to the measure do. For any given r > %, there exists a bounded linear map

7 H" (R") — L?(T") (2.1.5)
such Tu = u|p for any uw € H" (R™) N C> (R™).

We now present the main result (we shall refer to [5], but a different proof can be found in [94]
and [17]), which states the existence of the lower and the upper limits of our resolvent operator
Roy(z) on the positive real half-line.

THEOREM 2.3. Let s > % be a real number. Then

(i) for any \? € R, the following limits
11%1 Ro(\? 4+1¢) = RE()\?) (2.1.6)
exist in the space B (Lﬁ (R™), H? (R”)) equipped with the uniform operator topology;
(ii) for any f € L2(R"), and N> € Ry, the function u = RI(\?)f satisfies the differential
equation
(_A — )\2) u = f ; (217)
(iii) the following formula
m (REOALD) =5 [ |(7F)©
[§]=A

holds for any function f € L? (R"), where T is the trace operator (given by Theorem 2.2) on
the sphere |£| = \.

2
] do . (2.1.8)
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Proof. Let s > 1, and f,g € L2 (R"). We shall show that the analytic function ¥ : C\Ry — C
defined by F(z) = (Ro(z)f, g) admits unique continuous (upper and lower) extensions on R;. From
Theorem 2.1 we have (for K > 1)

IRo(2)fllg> S Ifllpz » VFELIR) , % <|2| < K,
hence by Cauchy-Schwarz inequality and the natural imbedding of H2_ (R") in L? , (R") we get
(Ro(2)f.9)] < [ Ro(2) g2 Nlgllza < I1Ro(=) g2 Nz < 171 ze lglze -

for any couple f and g in L2 (R"), in the annulus + < |z| < K. By a density argument we can
restrict our attention to f and g € C§° (R"). By Parseval’s Theorem we have for z € C \ R

(Ro(2)f,9) = /R ) L 56 de = /0 i / F(tw)g(tw) dw dt

switching to polar coordinates £ = tw, where t = |{| > 0 and w = é—l es".

Residue calculus (see [9]) can now be used to con- N
sider the complex integral
IF :/ F(n) dn 2 N e—

—0o0 —_ 0 AN += Tm

where e
Fei(ﬁ == >\2i15)/ f 77“’ g(nw)

We can restrict our attention to the + case (z = FIGURE 2.1 Curves and poles.
A2 +1¢), and decompose I into five parts (see the
Figure 1).

If 21 (), ¢) denote the roots of \? + .c with positive and negative real part respectively, and if ¢
tend to zero, then we have

lim IF(R) =mlim » (£)Res (FF(n), z£(\,€)) + PV / F3E(t) dt
|0 £]l0 n oo

Observing that the residues of the meromorphic function F*(n) in the poles 2z (), ¢) are given by

Res (P2 (1), 22 (Me)) = 2 [ FOwine

we achieve the existence of the continuous (upper) boundary values, that is,

lim(Ro(\* + 1<), 9) = 3 /|£|—x F(©)3(€) dox+ PV / H25(0) de (2.1.9)
since z4 (A, ) — £ as e | 0. In other words, we can state that there exist the two weak limits
Ro(A? 1) f — REOND S, (2.1.10)

for any f € L2 (R"). We observe here that Ry(z)f is bounded near \? if it is considered as a function
with values in f € L2 (R"), hence from Banach-Alaoglu Theorem (see [162]) we can conclude that
(2.1.10) holds for any H2 _(R"). It turns out that Ry (\)f is in B (L? (R"), H?, (R")) for s > 3.
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We prove now that the limits exists in a stronger sense, as ~Well. We denote with C.. the domains
defined by C; = C4 UR,, and we keep on denoting with Ry : C. — B (L2 (R"), H?, (R")) the map
defined by

RE(2) = Ry(z) if +Imz>0
0T RE(ON if  z=XeR,
Using the norm equivalence [|ul| ;> ~ [|(1 = A)ull2 =~ [lul[ 2 +[Aul,2 and the relation ~ARE(\) =
1+ 2RF()\), we are able to restrict our attention to the space B (L2 (R"), L% (R")) without loss of
generality. N
Let f € L?(R") with s > 1, and z € C.. We first observe that (2.1.10) holds also in the strong
topology of B (L2 (R"), L2, (R")), using RellichDKondrachov Compactness Theorem (see Section 5.7
in [57]). Next we observe that if {z;} C C1 and {f;} C L? (R") are sequences such that z; — 2o and
f; — f e L%, (R"), then
RE(2)f; — RE(20)f in L%, (R") . (2.1.11)
Indeed, for any g € L% (R")
lim (R (29)f.9) = lim (£, BT (5))9) = (/. B Go)g) = (R (2)f.9)

hence RE(z;)f; — RE(z)f in L2, (R"). Tt follows that RZ(z) is continuous on C+ with respect
to the uniform operator topology in B (Li (R™), L%, (R")) by the following contradiction argument.
Suppose thus that this is not true. Then there exist two sequences {z;} C C. and { fi} € L2 (R™)
such that z; — z € Cx, 1fill 2 = 1 and

lim inf || (75 () = Bg (20)) fill 2 >0
Up to extracting a subsequence we can state that f; — f in L? (R™), and now (2.1.11) gives
lim R§ () f; = Rj (20)f = lim Ry (2)f
j—o0 z—20
since R (-)f in continuous on C... That yields a contradiction, and complete the proof of (i).

We shall prove now (ii) and (iii). Let u = RZ()\?), for f € L?(R"), and A> > 0. The equation
(2.1.7) follows noticing that for any test function ¢ € C>° (R"), and z ¢ R, we have

(Ro(N?* 1) f, (A = (N £12)) ¢) = ([, ) -
As ¢ | 0 in the left hand side we have
11{101<R0(A2 + ZE)f, (_A - ()\2 + 7’5)) (p> = <ua (_A - )\2) </7> )
thus ((—A — A?)u,¢) = (f,¢) by the symmetry of the operator —A — A\?. We conclude the proof

observing that (2.1.8) follows from (2.1.9) evaluated for f = g € C2° (R"), and using the continuity
properties of the trace operator 7. O

By Theorem 2.3 the following definition makes sense (see also [127] for an alternative defini-
tion).
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DEFINITION 2.1. Let u € HY, (R™). We say that u is a A\-outgoing function (resp. A-incoming
function) if for A > 0

u=R$ (N)f, (resp.u=Ry (k%) f). (2.1.12)

for some f € L2 (R") and s > .
1.2. The Perturbed Case. The next step is to take into account the Schrodinger operators
Hy, defined as perturbations of the free Laplace operator by an operator V = V(x, D), that is
Hy = Hy + V. We shall try to achieve for R(z) = (Hy — z)~1, the resolvent operator associated to

Hy, the same results obtained in the free case. We shall first need to specify the class of potential
we want to deal with.

DEFINITION 2.2. An operator V(z,D) =3, -, aj(x)D7 is said to belong to the class of short
range if, for some ¢ > 0 the multiplicative mapping

u s (2)°V (z, D)u
defines a compact operator from H? (R") into L? (R™).
REMARK 2.1. IfV is a short range operator, then for some ¢ > 0 and any real s, the multiplicative
operator V(z,D) : H2 (R") — L%, .. (R"), defined by V (z,D)(u) = V(z, D)u is compact.
EXAMPLE 2.1. If the coefficients of V (x, D) satisfiy the following decay at infinity:
a;(z) = O (|x|_1_5) . as |z] — +oo, (2.1.13)
then V(xz, D) is a short range potential (see [5] or [86, XIV, Scattering Theoryl)

We shall need some more information about the behavior of functions from Sobolev spaces
as traces on some sphere (see Theorem 3.2 in [5]) and about decay property for certain improper
eigenfunctions of Hy, which first are assumed to be not in the domain of Hy (see Theorem 3.3 in
[5]). The general results are the followings:

THEOREM 2.4. Let h € H" (R") for some r > 3. Suppose that h(¢) = 0 on a sphere |{| = X in the
trace sense, and let % < X\ < K for some positive constant K. For any multi-index 0 < |«o| < 2, set

va(€) = k- (2.1.14)

Then v, € H™1 (R") N L}

loc

(R™), and moreover, there exists a constant C = C(r, K) such that
[vallgrr-s < C Al g
is satisfied for any h € H".
THEOREM 2.5. Let V = V(x, D) a perturbation operator on R" such that (z)' T2V (x, D) belongs

to the class of short range operator for some § > 0. Let uw € H?, . (R™) be a solution of the differential
equation

—Au+Vu=>\u,

A is a positive number. Suppose that u € HZ, (R") for some so > —% — 6. Consider u as a tempered
distribution acting on S (R"), and let G be a distributional Fourier transform of u (4 € S' (R™)). If
@ € L' (R™), then u, € H2 (R"), for any real s.
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The last theorem will give the following lemma, that will play a key role in the generalization
of the limiting absorption principle to Hy .

LEMMA 2.1. Let u € H?

oo (R™), be a A-outgoing function (resp. A-incoming) satisfying a differen-
tial equation of the form

—Au+Vu=X\Nu,

where V is a short range potential. Then u € ﬂ HZ? (R™).
seR

Proof. We can suppose u to be outgoing (the case of u incoming can be handled with the same
procedure). We have that u = R (\?) f for some f € L2 (R"), where sy > 1, thatis f = (—A — \?) w.
It turns out that f = —Vu. Applying (2.1.8), using the fact that V is real, we obtain

/m_A (1) <€>\2 do =2 Im (RF(A)f, f)) = -2 Tm ((u,Vu)) =0,

that implies that f (&) = 0 on the sphere |¢| = A (in the sense of trace). From Theorem 2.4 with h = f
we get that

F© (162 - X)) € Lo (BY) .

. -1
Next we show that 4(&) = f(&) (|§ - /\2) in the sense of tempered distribution. Let g € S (R");
we have

— 1 2 — 1 FO) Ziey _lEP-2? — fo =
<uag> - lglﬁjl<R0(A —|—’LE)f, g> - 151{101 & ‘6‘2,)\29(5) |§|2,)\2,1‘€ dg - - ‘6‘27>\29(€) dga

from Parseval’s Theorem and Lebesgue Convergence Theorem. Therefore our claim on  is true,
and @ € L}, . (R"). Now from Theorem 2.5 it follows that u € H2 (R") for any s € R. ]

loc

Now we shall consider the Schrédinger operator Hy = —A + V, where V = V(z, D) is in the
class of short range operators. In this case Hy turns out to be a self-adjoint operator on the domain
D (Hy) = H? (R") (see [118]); on the other hand, as far as its (real) spectrum is concerned, we have
that o (Hy) = o.(Hy) U 0, (Hy) (continuous and point spectrum), where o.(Hy) = [0,+00), and
op (Hy) = {h;}, a discrete set of eigenvalues with finite multiplicity, having zero as its only limit
point.

We can now extend the limiting absorption principle to these operators, wich are self-adjoint
realizations of higher order elliptic operator (see [5], section 1 and Theorem 4.2). For simplicity we
use the notation V' = V(z, D) in the following.

THEOREM 2.6. Let s > 3, and let o (Hy) = 0, (Hy) NRy. Consider \*> € Ry \ o, (Hy). Then

Slim Ry (A2 £1e) = R (V) . (2.1.15)

Moreover, for any f € L? (R") the following identity holds:
RE (X)) f=RE (N f =R (\) VRS (\?) f . (2.1.16)
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In particular, ut = Ry, (\?) f is a \-outgoing solution, and u~ = Ry, (\?) f is a \-incoming solution
of the differential equation

(A+V - N)u=f, (2.1.17)
in R™.
Proof. We can restrict our attention to the case R, (\?), and s € (3, 4 + €], for € small enough, in
such a way that

V:iH?, (R") — Hi (R™)
-3¢ 5te
is a compact operator (as stressed out in Remark 2.1). Fr0m~such compactness, and Theorem 2.3 it
follows that the composition R (2)V is compact for any z € C, and
is continuous. We claim that the existence of the inverse operator (1 + R (2)V) s equivalent to
z€ Cy \ o} (Hy). Indeed two cases may occur.
Im (z) > 0 The resolvent identity Ry (z) + Ro(2)V Ry (z) = Ro(z) holds true, that is
(Id+ Ro(2)V)u= Ro(2)f,

for any f € L? (R") and u = Ry (z)f € H? (R"). This implies H? (R") C Im (Id + Ry(2)V),
hence

Im (1 + Ro(2)V) = H%, (R") .

The Fredholm-Riesz theory gives the existence of the inverse operator (1 + Ry (z)V)71 in
the operator space B (H2, (R"), H%, (R")).

z = A? Applying again Fredholm-Riesz theory we have that 1+ R (A\?) V is invertible if and only
if —1 is not an eigenvalue for Ry (A?) V. Suppose that

Roy(M)Vu+u=0, uweH? (R").

Observe that u = — R ()\2) Vu implies that u is a A\-outgoing solution for the differential
equation (—A +V)u = A\?u. From Lemma 2.1 we have that u € D (Hy), hence )\? is an
eigenvalue of Hy . Viceversa whenever \*> > 0 is an eigenvalue of Hy with eigenfunction
u € D (Hy), then passing through the limit as z — \? in

u+ Ro(2)Vu = ()\2 —2) Ro(2)u
(holding for z € C) we have u + Ry (A\?) Vu = 0, that is —1 is an eigenvalue for R (A\?) V.

We conclude observing that Ry (z) = (1 + R{ (2)V) " Ro(z) for Im (z) > 0. Using continuity of the
operators (1 + R{ (2)V) ~ and Ry(z) it follows that

lim Ry (A +1) = (1+ RY (V%) V)" Re (A?) .

That will also imply identity (2.1.16) in ((~3+. ]
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2. The Resonances

We consider a closed linear operator A in a given Banach space B. We assume that o (4) # C.
We denote by D a domain in C such that D N o (A) C o, (A). Thus the resolvent R(z) = (A —2)~!
is a well defined meromorphic operator function in D with values in £(B). Its poles in D (the
isolated eigenvalues of A) are of finite rank. Next we introduce a notion of a generalized resolvent.
To this end we assume that in addition to B there are given two Banach spaces By and B; with
By C B C Bj such that the injections:

Jo: By — B and J:B — By, (2.2.18)
are continuous. For z € D\ 0, (A), we set
Ru(2) = JRa(2)Jo. (2.2.19)
Clearly R4(z) is a meromorphic operator function in D with values in £(By, B;). We refer to R.4(z)
as the generalized resolvent of A. We shall assume that the following basic conditions holds:

HYPOTESIS 2.1. The operator function INBA(Z) admits a meromorphic continuation with finite
rank poles from D to a domain Dy D D, where

Dino(A) Do, (A)
, (The last restriction is of course the statement that EA(Z) does not admit such a meromorphic

continuation to D,.)

DEFINITION 2.3. A resonance of A is a pole zy of }NEA(z) , 20 € Dy \ D, which verifies one of the
following conditions. Either

20 ¢ op (A) or, (2.2.20)
z0 € 0p (A), (2.2.21)
in this case the relation (2.2.19) does not hold (identically) in any deleted neighborhood of z

Here we followed [6]. For other details and an analysis we refer also to [123, 124, 125]. In
this section we stated a abstract definition of resonaces. Namely, we find a mathematical quantity
to analyze, that is the (generalized) resolvent R4 (z)). The problem of resonances is a phenomenon
involved in many physical process (an example could be the analysis of a vibrating strings or of the
states of particles in the atom, just to name a few). For a more extended exposition we refer to [158,
Chapter XIIJ.

3. The Resolvent Estimates

First we shall restrict to estimates involving the resolvent itself.
Theorem 2.3 states the existence of the two continuous operators

RT :C— B(L2(R"),H?, (R")) ,

for s > 1. The following results (see [166] and [167]) describe a-priori estimates which are satisfied
by such operators RT . There are two key points in those results. The first one is the following
Interior Estimate. For any fixed 0 < ¢ < r there exists a constant C = C(¢,r) such that

IVull 2 < C 1Al iaa) + el aa,y » YO<E<r A0, (2.3.22)
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where B, is the ball of radius ¢ and u solves the equation (—A —\?)u = f. The latter is the
introduction of the so called radiation condition for the equation (—A — A?) u = f, defined by

/ ()% |Duf® dz < o0, (2.3.23)
[ >1

2 _ n . 2 Ty — . n—1 Tj X4
where |Du|” = ijl |Djul”, and Dju = dju + W\leu - m‘ju.

THEOREM 2.7. Let s > % Then for any \g € RY, there exists a constant C = C(\g) > 0 such that
185 (32) 71|, < S U1l (2.3.24)
for any A > \g and any f € L% (R").
Proof. Suppose that (2.3.24) is false. Then we can find sequences ¢, | 0 and {uy} such that
el =1, Al <t [—A = (2 £ )] uy = fi (2.3.25)

for any k > 0. From the interior estimate (2.3.22) we obtain the boundedness of the sequence {u;}
in H' (B;) for any t > 0. The compact imbedding properties of Sobolev spaces give the existence of
the limit

Jim s =

in H} _(R™). On the other side from the second equation in (2.3.25) we get
khjgo fr=0,
which, together with the previous limit implies that u is a weak solution of the equation (—A — )\2) u=

0. Hence we have that u is in H?, (R") and it is a strong solution as well (see [98]). In this case we
have the following estimate:

1
lullp2(p,) = O <PS_2)

uniformly with respect to k. Hence uy — u in L2 (R") and |ui||, = 1. On the other hand, since the
sequence || Dug|| 2, is bounded and wy — u in Hj,. (R"), we have u € L (B1). Therefore u is a
solution of the equation (—A — A?)u = 01in H}_ (R™). Thus u solves (—A — A\?) u = 0, whence u = 0
(see [94]) which is a contradiction since |u||, = 1. O

In order to achieve the point 0 we have to relax the condition on the parameter s to be s > 1.
Namely, that can be done using some Holder continuity property related to the resolvent operators
Rat, thus we shall need some definitions (see [17], and the notations thereby).

DEFINITION 2.4. Let U C R be open, a € (0,1), and X,Y C H two Banach spaces, both dense
and continuously embedded in H. If A is a self-adjoint operator on H, and E*(t) is the spectral
family associated to A (by the Spectral Theorem 1.12), we say that A is of type (X,Y,a,U) if the
operator-valued function EA(t) € B(X,Y*) is weakly differentiable in U with Holder continuous

derivative, that is there exists a function E{()\) such that
d

= (@0 BLf) = (9. B (Nf) V€ X, geY. AU, (2.3.26)
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for every compact interval K C U there exists a constant C'x > 0 such that

1B (A2) = BX )l gy yy < O A= A2|™ L VAL A2 € K (2.3.27)

If we consider the case of a constant real coefficient operator of order m of the form

P(D)= > anD"
laf<m
we have that P is a self-adjoint operator in L? (R"), unitarily equivalent to multiplication by P(¢),
¢ € R" by Fourier transform. Let EF()\) be the spectral family associated with P. It is well-known
(see [170]) that P is absolutely continuous and E¥()) is represented in the phase space by the
multiplication operator x,(¢), the characteristic function of the set {P(£) < A}.
Moreover, we have that if P is of principal type the following estimate holds

VP 2 (1+[eh™

for ¢ large enough. We shall need two result about such an operator P. The first result concerns
the Holder continuity of P in suitable interpolation spaces. Namely, let Xy C X, Yy C Y; be
Banach spaces, where the embeddings are dense and continuous, and for 6 € [0, 1] let Xy = [X,, X1],
Yy = [Yo, Y1].

LEMMA 2.2. Let U C R be open and let T(\), A € U, be an operator-valued continuous function,
T\ € B(Xo,Yo)NB(X1,Y1) , AeU,
so that, for some o > 0 and every compact K C U, there exists a constant My > 0 such that
1T (A2) = T(A)lp(xo,ve) < M [A2 = M|™ , A, A2 € K
1T, i) < M -
Then T(\) is uniformly locally Holder continuous in B (Xy,Yy) for 6 € (0,1).

The second result concerns the Holder continuity of P in the sense specified in the Definition
2.4.

THEOREM 2.8. Let P(D) be a self-adjoint constant coefficient differential operator of principal
type. Then for every s > 5 there is a constant o € (0,1) such that P(D) is of type (L2, L%, o, R \ A(P)).
Furthermore, if Rs = {\ € R|dist (A, A(P)) > ¢}, where § > 0, then with some constant Ms > 0,

m—1
SMs(I+[A) ™,

1S 5,3+

E{ (A2)—E5 (A1) - T -
H N (A2 a (A1 ||5(X,Y ) < M; |:(1_|_|)\1|) m —|—(1+|)\2|) m

[A2—Ag]

sup
A #N2€Rs

The proof of the previous theorem is based on the explicit representation of the derivative EY,
given by

p - T do
(05500 = [ 5O gy (2.3.28)

where do is the Lebesgue surface measure on P() = . That is also the reason why the condition
s> %, required by the Trace Theorem 2.2, is needed.

54



Chapter 2. Resolvent Estimates 3. THE RESOLVENT ESTIMATES

Specializing the last case to Laplacian a stronger result can be obtained.

THEOREM 2.9. Let Hy = —A bein L? (R"), for n > 2, let Ef0()\) be the associated spectral family,
and Ef\qo () its derivate with respect to \. Let s,s’ > % (s,s’ > 1forn =2). Then Ef”(/\) is uniformly
continuous in the operator norm of B (L% (R™), L%, (R")) for X € [0,00) and

| (32) HB( ) =00\, as A — o0 (2.3.29)

L2(R™),L? ,(R™))

In the case n > 3 we have also Ef“ (0) = 0, so that Ef“ is uniformly Holder continuous on R (being
null for A < 0).

Proof. We observer that E(u) = 0 for 4 < 0. The representation (2.3.28) gives on the positive
half-line (A > 0) the following formula

(9. B5° (02) ) = & (9, B () f) = 5% / §OF(©) do, (2.3.30)
[€1=A

for any f,g € L? (R") such that f.ge C5° (R™). All the statements made here, including (2.3.29),
follow from Theorem 2.8 for \ large. Therefore, we only need to discuss the neighborhood of 0. Let
1

¢ € H*(R"), for s > 5. If 7 denotes the trace operator defined in Theorem 2.2, then 7¢(r) is the

trace of ¢ on the sphere of radius r € (0, 4+00). Namely, we have
o(r) = r"1o(rw) € L? (Sn_l) .
Assume first that n > 3. From the Trace Theorem we get
7@l 2sn-1) S 1]l s (rmy
for any r € (0, +0o0), while the standard Sobolev Imbedding yelds Theorem
1) ety S 18057 oy -
Interpolating the last two inequalities we have, for arbitrarily small 6 > 0,

1_

Il < Cr* =2 1@l e gy (2.3.31)

for any ¢ € H* (R"), with s € (3, %] and C = C(n, s, 6). Returning now to (2.3.30) with f € L? (R"),

g € L? (R™) we get from (2.3.31)
(o3 0%) 1) | <27 [F )

since s+ s’ > 1. Observe that (2.3.31) is not always optimal. Thus, it is well known (see Proposition
1.1 in [168]) that for n > 3 we have

L2(sn-1) ”Tg(/\)”L%Sn*l) S HfHLg(Rn) ”gHLi,(Rn) 5

Lo, ~ n
Ire()l < Cr2 @l gy » ¥ € H (R)

Therefore, for large s, s’, the right-hand side of (2.3.30) is Hélder continuous up to 0, so that Holder
continuity is proved in view of the interpolation Lemma 2.2.
As for the last part, still with n > 3, take f,§ € C§° (R"). Then, from (2.3.30) we get

(9B )f) = 3 1w 47 [ 50w)F0w) o

By the density of C2° (R") in L? (R"), we get E1°(0).
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Let now n = 2 and s > 1, s’ > 1. By the Sobolev embedding both f, g are then continuous
function, and from (2.3.30) we have

(9. B (32) £) < 32 sup
£€R?

F©)| sup 1391270 S 172 19122, e -
£ER? :

The Holder continuity is now proved as before. Note, however, that since (g, ES(0) f ) = 75(0)£(0),
it follows that £1°(0) # 0. 0

A corollary of the previous result is the following extension of Theorem 2.7.
COROLLARY 2.1. Let s > 1. Then for all \* € R* we have

18RS (32) flle S o 16

forany f € L? (R™).

4. Resolvent estimate for VR (\?)

In this section we shall recall a basic estimate involving the derivative of order one of the
resolvent.

More precisely we shall give a selfcontained proof of the following theorem (see also Theorem
2.1)

THEOREM 2.10. Let n be fixed and ¢ > 0. Then there exists a constant C such that the following
estimate

HVUHL'iS < C”(_A_Z)“HLg ) (2.4.32)
holds for any z € C, and any u € H_; (R™), provided s > 1/2.

Proof.
We can consider the case of n = 1, since a similar argument works for n > 1. Let u € S(R), first
we have

Jullzr < Cllullgs - (2.4.33)
In fact from the Cauchy-Schwartz inequality we obtain \
Jullr < ((2)7°, (@)*u), (2.4.34)
and from the bound
1{z)~*[l> < C,

we arrive at (2.4.33).
Dualizing the estimate (2.4.33), we have

lull2 < Clluf|ze. (2.4.35)

Now we need the following two lemmas.
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LEMMA 2.1. There exists a constant C > 0 so that for all A € C and all v € S(R) we have

[v(@)][Le <C (i - A) v(x) (2.4.36)
dx o
Proof. Suppose that ReA < 0. Let w(z) = (d/dx — N)v(z) € S(R). Then
v(z) = / AV (y)dy. (2.4.37)
Thus
[v(@)[[Le < Cllw(@)] fr - (2.4.38)

The estimate (2.4.36) follows for ReXA < 0. A similar argument works for ReX > 0. In fact, we
have w(z) = (d/dx — M)v(x) so

v(z) = / A (y)dy. (2.4.39)

and we obtain, as in the previous case,
[v(@)l|zee < Cllw(@)] 11 - (2.4.40)
O

We are able to prove the following statement:

LEMMA 2.2. For n > 1 there exists a constant C > 0 so that for all A € C and all v € S(R™) we
have
10,2}z 22, < O (A= N o, @)y g (2.4.41)

where v = (z1,2') and 2’ = (22, ,z,) € R" L.

Proof. Consider first the case n = 1. Let be A = —u%. Then by Lemma 2.1,

i), = 2@+ H( )
()

Consider now the case n > 1. Given any v € S(R") we denote by
’U(,Tl, k ), k = (/Cg, ,kn)

its partial Fourier transform with respect to 2/, i.e.

o2y, k) = (2m)~ ("D / ey (2, 2 )da! (2.4.43)

IN

<
1,o°

< (2.4.42)

Using the one-dimensional result (2.4.42), for each fixed k’, we obtain
100 (21, K2 < c/ (=02 + ¥ [2)5]? das. (2.4.44)

Integrating with respect &’ and using the Plancherel identity, we derive

Halv(xlvx/)”ngLi, <C(=A =) v(a?hx’)HL;ng/ ) (2.4.45)
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This completes the proof. O

The L2-weighted bounds (2.4.33) and (2.4.35) give Lemma 2.2 and the fact that the norms used
in the proof are invariant under the action of the group of rotations SO(n) give the desired estimate
(2.4.32) .

O

REMARK 2.2. The limiting absorption principle from Theorem 2.6 introduced in the Section 1,
Chapter 2 allow us to obtain the following theorem:

THEOREM 2.11. We have, for all \> € R
VRS (A) £z S CIS s
with C > 0and s > 1/2.

REMARK 2.3. In this Chapter we used, in the definitions and proofs, spaces with smooth weights,
namely (x) raised to some power s. This is done for the aim of simplicity and because we want to
be close to the traditional formalism of the scattering theory (14, 51). However, in the follows we
introduce some perturbations belonging to the short range class (see Definition 2.2). Such kind of
perturbations may have some "slight” singularities (see [86, Chapter XIV, Scattering Theoryl), as in
the case when we consider some mathematical descriptions of physical phenomena (an example could
be the wave equation perturbed by an "electric" potential or by a "magnetic" potential).
So it is natural replaces the spaces with smooth weights by others with singularities in the weights
suggested by the nature of the perturbation operator. Roughly speaking, we will be able to show that
the estimates obtained in this chapter remain valid using Sobolev spaces with singular weights.
This extension will be presented in the Chapter 3.
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CHAPTER 3

Applications to a Class of Dispersive Equations

In this chapter we prove some estimates for the resolvent of the operator —A perturbed by the
differential operator

V(z,D) =ia(z)-V+V(z) inR3.

This differential operator is of short range type and a compact perturbation of the Laplacian on
R3. Also we find estimates in the space-time norm for the solution of the wave equation with such
perturbation. Here we will use the explicit representation of the resolvent Rgﬁ in the case when the
dimension of the space is n = 3 to obtain new resolvent estimates. As said in the introductory part
we follow the work [200].

1. The Setup

We study the following perturbation of the classical wave equation (0.1.2), classical Schrodinger
equation (0.1.1) and the classical Dirac equation (0.1.4). More precisely we consider the following
Cauchy problems:

DOu + ia(z) - Vu+ V(z)u = F, (3.1.1)
u(oa I) = 07 815’“’(0’ I) = O’
i0u — Au+ia(z) - Vu+V(z)u=F, teR, zecR (3.1.2)
u(0,z) =0,
and
i Opu+ia(z) - Vu+V(zju=F, teR, zeR? (3.1.3)
u(0,z) = 0.

The solution of (3.1.3) is called spinor and ~,, are the Dirac matrices definied as in (0.1.5).

If we introduce the corresponding 1-form a = ij:l ajdz’ for the magnetic potential, by the Poincaré
Lemma we know that if we have two magnetic potential @/, a with da = da’, then a = a/ + d¢, where
¢ € C*°. The operators (—A +ia’ -V + V) and (—A + ia- V + V) are related by

(=A+id - V+V)=eY(=A+ia-V+V)e?, (3.1.4)

where V = V;—i-Va'+(a’)? and V=W —i-Va—Ag¢+a®+¢?. So we will assume that a = (a1, az,a3) are
measurable functions, such that Va; exists (in distributional sense) and it is measurable, defined
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as a; = a; + 0;¢ for j = 1,2, 3, where the functions ¢, and 0;¢ satisfy the inequalities

0
! / R e. 3
)] + 121V} ()| < s, aez € RS>0,
Co ,
0,6(0)] + 2V 0,0(0)] < s, ae.x €R (3.1.5)

The potentials V (resp. Vi, Vi)is a non-negative measurable function satisfying the inequality

Cl 3
[V(z)] < ————, a.e. z € R”, (3.1.6)
> We, ()
where ¢y, Cy > 0,y > 0 are constants, and
We(|z]) := |z|° + |z]| ¢, Vo € R3. (3.1.7)

We see that the potential a;(z) is bounded from above by Cé|z|~17% if |z| > 1, while a;(z) <
< C§|z|~1*%0 if |z| < 1, and the potential V(z) is bounded from above by C|z|~2~% if |z| > 1,
while V(z) < |—C£—_,_— if |z| < 1. The last estimate shows that we admit singularities of a; and V,

x| ~2+=0
such that a; is in L? (R?), while V is not in L} (R?). In the papers [4, 5], Agmon showed how

loc
scattering theory could be developed for general elliptic operator with perturbations O(|z|~!17¢) at
infinity and Agmon-H6érmander generalized the techniques required to study the perturbation of
simply characteristic operators (see [86]). In [70] one can find a perturbation theory for potentials
decaying as |z| =2~ at infinity.

In [207] the free wave equation and Schrodinger equation (i.e. a = 0,V = 0) are studied and for
both the following estimate are obtained (in [207] some sharper estimates are proved):

el =4 Wy Ve, Ollzze < ClllalWsF (a0l 212 (3.18)

Similar estimates hold for other dispersive equations of mathematical physics. The equation (3.1.8)
is known as smoothing estimate for the Schrédinger equation.

In this work we shall establish the same estimate (3.1.8) for potential perturbation of the wave and
the Schrodinger equations. Namely, we have:

THEOREM 3.1. If u(x,t) is the solution of the Cauchy problem (3.1.1) with (—A +ia-V + V)
satisfying (3.1.5) and (3.1.6) then, for any 6,0’ > 0:

2|~ 2 Wy Vu(z, ) 22 < Cllla]> We F,1)] 212, (3.1.9)
el * Wy ue Ol 2z < ClIF (@, 0)ll L2, (3.1.10)
22 W5V (2, Dyu(x,t)[| 212 < C|l|2|> Wy F(a, 1) 122 (3.1.11)

For (3.1.2) we have:

THEOREM 3.2. If u(x,t) is the solution of the problem (3.1.2) or (3.1.3) with (—A +ia-V + V)
satisfying (3.1.5) and (3.1.6) then, for any 6,6’ > 0:

llal~ ¥ Wy Vu(a, )| 22 < Clllal* Wa F(e, )]l p212. (3.1.12)

2|2 Wy u(z, )| 202 < ClIF(2,1)] 211, (3.1.13)
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22 W5V (2, Dyu(x,t)[| 212 < C|l|2|> Wy F(a, 1) 122 (3.1.14)

For the corresponding homogeneous problem

{;a(tolfx_) iuf:F ia(x) - Vu+V(z)u=0, teR, zeR3 (3.1.15)
we have
THEOREM 3.3. If u(x,t) is the solution of (3.1.15) then, for any ¢ :
el 2 W5 Vulz, |2z < CllS |2, (3.1.16)

where H 5 (R3) is the perturbed homogeneous Sobolev space.

Recall that H‘S, (R?) is defined, for any p,q > 1 and for any s € R, as the completion of C5°(R?) with
respect to the following norm:

1713, =D _ 2% los (V=Av)SIIZ2, VS € C5°(R?), (3.1.17)

JEL

where —Ay is the operator defined by

~ Ay = A+ V(z,D), (3.1.18)
with
V(e D) = ia(x) -V + V(z) = 123: a;(2)0; + V(x) (3.1.19)
and B
> eV =1,
jez

with ¢;(\) = ¢(3), ¢ € C(R), suppy C [4,2].

REMARK 3.1. We can use the perturbed homogeneous Sobolev space in (3.1.17) because, the
assumptions (3.1.5) and (3.1.6) implies that oip,(—A+V(z, D)) = & so the wave operators exist and
are complete ( see [123], [124], [159] ).

The key point in this chapter is the use of appropriate estimates of the resolvent Ry (\? £i0) defined
as follows:

Ry(\N +£i0)f = lim, Ry (N +ie)f, (3.1.20)
where
Ry (A% +ie) = [(A2 +ig) + Ay)] L. (3.1.21)

The operator in (3.1.18) has to be understood in the sense of the classical Friedrich’s extension
defined by the quadratic form (see [128])
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avhs) = [ IVi@Pdet [ V)lf@P de+

R3

3
230 / ia,(2) f(2)35 F(@) da, f € C°(RY), (3.1.22)
j=1"R?

and the limit in (3.1.20) is taken in a suitable L? weighted sense.
More precisely, given any real ¢ and § > 0, we define the spaces Lz, s as the completion of C§°(R?)
with respect to the following norms:

122 o= [ 1fPlelew2elds, ifa > o
and
113, = [ 5Py 2 e, ifa <o,
a, R?

where the weights W;(|x|) are defined in (3.1.7).
The existence of the limit in (3.1.20) (known as limiting absorption principle, see Section 1, Chapter
2) can be established in the uniform operator norm

B(LY )55 L2 1 /95) ;Y0 > 0.
To verify the limiting absorption principle we use the following resolvent identities:
Ry(\?+ie) = Ro(\?+ig)+iRo(\ +ig)a- VRy(\? +ie) +
+Ro(N? £ ie)V Ry (N +ie),

Ry(AN2+ie) = Ro(\?+ic) +iRy (AN +ic)a- VRo(\? +ic) +
+Ry (N +ie)V Ry(\? £ ic).

The previous identities combined with the classical limiting absorption principle for the free resol-
vent imply the following ones:

RE(V) = RE (V) +iRs (\)a- VRE ()
+Ry (\) VRS (V) (3.1.23)
and
Ry (M) = Ry (X)) +iRy(\)a- VE; (X))
+RENHVRE(N?). (3.1.24)

REMARK 3.1. In the proof of the limiting absorption principle in Section 1 we used smooth
weights. Here, the presence of singularities in the perturbation operator suggests to substitute the
smooth weight by weights with singularities. The Limiting absorption principle remain valid, in
fact one can also allow sufficiently mild singularities, as suggested in the work [5] and [86, XIV,
Scattering Theoryl. To more details we refer also to [70].

62



Chapter 3. Applications to a Class of Dispersive Equations 2. FREE RESOLVENT ESTIMATES FOR N = 3.

Several papers have treated the potential type perturbation of the free wave operator. The case of
purely potential perturbation V' (x) is considered in [15] under the following decay assumption:

c
R

V()| < [ =1,

for some C,dy > 0. In [44] the previous assumption is weaken and the decay required at infinity
is the following one: |V (z)| < W,LMO The family of radial potentials V(x) = 15, where ¢ € RT,
are treated in the papers [152] and [32]. More precisely, the first paper treats the case of radial
initial data, while in the second one general initial data are considered. In these papers dispersive
estimates for the corresponding perturbed wave equations are established. In [70] the assumption
(3.1.6) means that at infinity the potential is bounded from above by C|z|~27%0, while its behavior
near r = 0 is dominated by constant times |x|~27°, In this paper Strichartz type estimates for the
corresponding perturbed wave equation are established. In this work we introduce a ”"short range”
perturbation with symbol of order one and (3.1.5) means that at infinity our potential is bounded
from above by C|z|~!~%°, while its behavior near x = 0 is dominated by constant times |z|~**%0. It
is clear that the assumption (3.1.5), (3.1.6) are quite general and allow one to consider non radially
symmetric potentials.

This chapter is organized as follows. In Section 2 we prove some estimates for the operators RSE (A?).
In Section 3 we give some estimates for the perturbed resolvent R‘jﬁ()?). In Section 4 we prove
theorem 3.1, 3.2, 3.3.

2. Free Resolvent Estimates for n = 3.

This section is devoted to prove some estimates satisfied by the free resolvent operator R(jf (A?).
First of all we will prove the representation formula for the operators RSE for n = 3.

PROPOSITION 3.1. Assume that n = 3, then the following representation formula

ESINIE
RE (V) fla) = & /R S gy (3.2.25)
holds forany A € R,z € R? | f € C5°(R?).

Proof. We shall prove the identity (3.1) only for Rj (A\?). The same procedure work for R; (\?).
Let A\, > 0 be fixed, and let 1 (¢) be defined by ;14 (¢) = A\? 1. The Fourier transform implies that

Ra_()\Q)f: 1§K5.,>\*f7
(2m)2

where the kernel K. ) is defined by

1 c—mg
o s /R e 9

Since the function (|§ 1> — puy (5)2) is radial, then also its Fourier transform must like that, i. e.

K. x(x) = K. » (Jz|). Switching to polar coordinates

(0,00) x (0,7) x (0,27) > (r,0,¢) — (rsingsin @, rcos ¢sin b, rcosd) € R? |
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the previous integral gets into the form

Kea(z) = \/%~/0 %/0 e tlelreostgin g 4o dr .

Integrating with respect to 6 we obtain

V2 ° sin|z|r o 1 e
Keale) = \/M/O ot A= /R e A

Applying residue theorem it implies

V2r
||
as we did for the proof of Theorem 2.3 (see [9] for more details).
By using the definition of 1 (¢) we deduce that if ¢ | 0, then p (¢) — |)|, that implies

K&)\(ac) =

Res (ze’lwlz (22 = py(e)?) woramt

' ,u+(6)) = yrel i © (3.2.26)

. _ Jretlial
I Kex =2 o
by (3.2.26). That completes the proof of the proposition. O

LEMMA 3.1. The family of operators RSE ()\2) satisfies the following estimates:
(i) for any 6,6" > 0 there exists a real constant C = C(8,8’) > 0 such that for any X > 0:

1o 1
=2 W5 'Ry (W) fllre < 3 =W £l s (3.2.27)
(ii) for any 0,0', ¢ > 0 that satisfy 0 < ¢ < 20/, there exists C = C(4,9’,€) > 0 such that for any X\ > 0:
1 — 3+e
2] "2 W5 Ry (A?) fllzz < Cll|=| ™= W £l 23 (3.2.28)
(iii) for any 6,0" > 0 there exists a real constant C' = C(6,0") > 0 such that for any X > 0:
1 _ C 3
llz]~2 W5 Ry (A?) fllre < N 2] W f1| L2 (3.2.29)
2+687

(iv) for any 6,6' > 0 and for s € [1/2,3/2], there exists a real constant C = C(6,0") > 0 such that for
any A € R:

2]~ W5 REON) fllz2 < Cllal*~* W £ 12 (3.2.30)
(v) for any 6,6" > 0 there exists a real constant C = C(8,6') > 0 such that for any A > 0:
HM%W?%%WHWSAﬁﬂmﬂWMm; (3.2.31)
(vi) for any 0 > 0 there exists a real constant C = C(6) > 0 such that for any X\ > 0:
Izl =2 W5 R (W) fllz2 < ClIfll; (3.2.32)

(vii) for any 6,0" > 0 and for s € [1/2,3/2], there exists a real constant C = C(6,¢") > 0 such that for
any A > 0:
2] =Wy 'V Ry (A) fll2 < C ll2* W fl| . (3.2.33)
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Proof.
Proof of (3.2.27). The proof can be found in [5] and [14] for example.
Now to prove the others estimates we follow [70].
Proof of (3.2.28): The identity (3.2.25) implies:
/ |f(y
|z —

RS (9) f3. <c [
that combined with the Cauchy—Schwartz inequality gives:
IRS (V) 7IEs <

e o]~ W5 (a)
<o ([uwrrmiomw) ([ [ ol <

< C”f”L%%,y’

|z~ Wy 2 (@)
dxd 0.
C = C(e,9) //|y|3+6 5/ |x—y|2 rdy <

Proof of (3.2.29): It is sufficient to to interpolate between (3.2.28) with € = ¢’ and (3.2.27).
Proof of (3.2.31): It is tsufficient to interpolate between (3.2.29) and its dual estimate.

2| Wy 2d,

where

The main tool that we will use to prove the following estimate is the following inequality,

/ K)dy| < / 1K () 5dy, (3.2.34)
B

where K (y) is a measurable function defined over R™ and valued in a Banach space (B, ||.||5).
Proof of (3.2.32). If we combine (3.2.34), where the function K and the space B are chosen as
follows:

ei)‘"_y‘ 9
K(y’): |_y|f()B L 161
with the identity (3.2.25), then we obtain,
9 eiAz— ul
IR i), = el | [
-39 | L2 )
1
<| [f(y)ldy < C|If|[ 12 (3.2.35)

L2
,%15

where we used a result from [70] (Appendix I) to obtain the following uniform bound,
eyl
C=C(0) :=sup, || —

< 0.

Proof of (3.2.33). The proofs can be found in Chapter 2, Section 4, where slightly different spaces
have been used (see also the Remark 2.3).We follow the proof of Theorem 2.10. In a crucial step, to

prove the bound (2.4.33), we used Cauchy-Schwartz inequality
lullpr < ((2)7%, (2)°u)

65
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and the fact that ||(x)~%||.2 < C, provided s > 1/2. Now we want to do the same using the singular
weight |z|* Ws instead of (z)*. We have

lull < (Jef = Wi lal Wou)

and in order to apply the Cauchy-Schwartz inequality we have to check for which values of a the
function |z|~“ W; ! is L?(R)—integrable. A simple calculation shows that we have || |z|™* W !| 12 <
C, whenever 1/2 > a, this completes the proof (in this case we restrict the range to 1/2 < a < 3/2
because in the following we need only this domain for the exponent). ]

LEMMA 3.2. Assume that the perturbation V (x, D) satisfies the assumption (3.1.5),(3.1.6). Then
the following estimates are satisfied:
for any 4,8’ > 0 there exists a real constant C := C(4,8’) > 0, such that for any A > 0

2]~ 2 W5 Ry (A%) V(@, D) fllz2 < Cll|2| =2 W5 £l 2 (3.2.36)
2|2 W5V (z, D)RE (\) fll 12 < C|l|x|2 Wi f]] 1. (3.2.37)

Proof.
Proof of (3.2.36). We split the proof into two step.
Step 1. Estimate of
iRy (\*)a-Vf. (3.2.38)
We have the following formula,
iRy (M) a-Vf = iRy (M) V(a-f)—
— iRy (A*) (Va) - f. (3.2.39)

From the functional calculus we have [V, B3 (\?)] = 0, so we rewrite (3.2.39) as

iRE(W)a-Vf = iVRE (\))a-f) -
— iR3 (\?) (Va) - f. (3.2.40)
We have

2|~ 2 W iRE (\2) a- Vf| L2 <
< C||z| Wy YiVRE (A) af |2 + (3.2.41)
+C|2| "2 Wy HiRE (W) (Va) £l e

Now we can estimate now the first term in the right hand side of the inequality (3.2.41), using
(3.2.33) and obtain

|2 W5 YiVRE (X2) af| 12> < O|||z|" 2 W5 taf] Lo (3.2.42)
By the assumption (3.1.5) and choosing 0 < §” < ¢, §, < ¢g — 8" we have
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2]~ Wy HiRE (A)a- Ve < OllelZWstaf] e
< Olllal 2w s fllre
< Clll=[ 72 Wy f e (3.2.43)

For the second term in the right side of (3.2.41) we use the estimates (3.2.30) and obtain

2|2 W5 HiRE (X)) (Va)fl 2 < C|l[]? Wsn Vaf]| 2.

(3.2.44)
By the (3.1.5), choosing 0 < ¢ < g, 0, < ¢g — 6" we have
2|2 W5 NiRE (A\2)a- V2 < Clllz|*Wen (Va)f| 2
< Ollal "2 Wey—s fll 12
< Ol 2 Wy fll e (3.2.45)
From the fact that 0, < ¢, we put ¢’ < ¢, and (3.2.41) becomes
2|72 Wy iRE (%) a- V£l 2 < Ol ~E Wy £l 2.
(3.2.46)
Step 2. Estimate of
RE (N VT (3.2.47)

From the assumption (3.1.5) we see that |[Va,(z)| < %, so we proceed as in Step 1 and obtain
€0

2| =2 W RE (W) V 2 < Clll2| =2 Wy £l .

(3.2.48)
Taking into account the estimates (3.2.46) and (3.2.48), we arrive at
el =2 Wy By (X°) V (@, D)f 2= < llle] "2 W5 iRy (W) a- V[ ]lz2+
+ 2l =2 W Ry (W) Vifllae < Clllal =2 Wy flle
and (3.2.36) is established.
Proof of (3.2.37). It is the dual to estimate (3.2.36).
O
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3. Perturbed Resolvent Estimates

In this section we prove some estimates for the perturbed resolvent R‘jﬁ ()\2).

THEOREM 3.4. Assume that the perturbation V (x, D) satisfies the assumptions (3.1.5) and (3.1.6).
Then for any 0 < 6 < €y/2 there exists a family of operators Af € B(L*, 5 L?, s) such that,
2 2

Af oI - RE(A\)V(2,D)] =1 =[I - Rf (\*) V(z,D)] o AT
Moreover, there exists a constant C' = C(6) > 0 such that,

14X fllze, < Clifllee

3

, VA eR.
S5

THEOREM 3.5. Assume that the perturbation V (x, D) satisfies the assumptions (3.1.5) and (3.1.6).
Then for any 0 < § < €/2 there exists a family of operators B/j\E € B(L% 5 L2 s) such that,
2 2

Bf o[l -V(x,D)RF (\*)]=1=[I - V(x,D)RF (\*)] o BY.
Moreover, there exists a constant C' = C(6) > 0 such that,

IBXfliz2 <Clifllr2 , VAER.
30 30
We have

Ry (\)V(xz,D) = iRy (\*)a-V + Ry (\) V. (3.3.49)
Now we need the following lemmas.

LEMMA 3.3. Assume that the potential V satisfies the assumptions (3.1.6) .
(1). The operators Ro()\*)V are compact in the space B(L* , ,,L? , ), provided that 6,5 are small.
2> 2>
Moreover the following estimate is satisfied:
RS (A) Ve, 22, y—0,

_ 1 s 1 5
2’5 2’5

as A\ — oo.

(2). The operators V Ry (A?) are compact in the space B(L3 ;, L3 ), provided that 6,0' are small.
2> 2>

Moreover the following estimate is satisfied:

|V Ry (/\2))||B(L2l 2T 0,
1,

5.6
as A — oo.
Proof. Proof of (1): The proof can be found in [70] (Theorem III.1 and Lemma III.1).
Proof of (2).1t is the dual of (1) where
VRE () = (BT () V).
LEMMA 3.4. Assume that the potential ia - V satisfies the assumptions (3.1.5).
(1). The operators iRy (\?)a - V are compact in the space B(L? , ., L?, ,,), provided that §,5' are

_%,57 _%’5/

small.

(2). The operators ia - VRy (A\?) are compact in the space B(L? s: L3 5), provided that 6, 6" are small.
2> 2>
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Proof.Proof of (1). We will follow the proofin [70]. Let {f,.} be a sequence bounded in L? , , and let
gn :=iR5 (\?) a -V f,. We split the proof in two cases:

Case 1. Compactness in Bs, \ B%, for 1 <r < oo.

The estimate (3.2.36) implies that if 0, ¢’ are small, then

iRy(\)a -V € B(L? s Li%yé,). (3.3.50)
In the proceeding of the proof we use the representation (3.2.40) for the operator (3.2.38) acting on

Lzéyé. The property (3.3.50) implies that ||gn||L2(Bg,\\B%) <C(r).
We have

HVQnHL2(Bz,\\B2_1T) < Ofi(A + )\Q)Rtj)[ (/\2) af”Lz(BzT\B%)"‘
+ O "2 Wy LRy (A%) af 2Bz )t
+Cllla| =Wy VR (V) (Va)flluzeavmy ) < Cllafllieo, ey )+
+ ON?|||2| "2 W5 tiRE (X%) af || 2(Bon\ 5, ot
+ Clla~EW5 VRS (X)) (Va)fllc2(ma iy -
(3.3.51)

With the aim of the estimates (3.2.27), (3.2.33) and the assumption (3.1.5) we obtain
IVgnllzasanm ) < COo M2l W5 fall2@ans )
and from the boundness of {f,}, ||Vgn||L2(B2T\B%) < C(r,\). So we have
Hv.gn”Hl(Bzr\B%) < C(r,A).

The compactness of the Sobolev embedding due to Rellich-Kondrachov theorem implies that {g¢,,} is
compact in L*(B, \ B1) for any 1 < r < cc.

Case 2. Compactness in (R*\ B,) U B,

To study the compactness in (R?\ B, )TU Bi we use the following inequality:

/ G2 ) W5 fele] o < (33.52)
(R3\B)UB 1

< (supygaon oy Wi (1ah) [ a2 ()W (e lal~do.

The definition of the weights W;(|z|) guarantees that for 6 > 0 there exist real constants c¢;(9), c2(9)
such that ¢ (6)Ws < W2 < ¢3(5)Ws. This property combined with (3.3.52),where we chose ' = g
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implies:

/ G ()W (el <
(R3\B,)UB 1

< O(Sup{(R3\BT)UBl}W51(|x|))/RS QZ(III)Wg*Q(le)III*ldI
< O/(Sup{(R?’\B,‘)UBl}W5_1(|I|))||f|L2 L
+ -1

Moreover, (supyrs\g, uB, }Ws Y(jz])) — 0if r — oo and it implies with an easy diagonal argument

2

the compactness of the sequence {g, } in the space L , .
3

Proof of (2) 1t is the dual to the part (1) of the theorem. We can also proceed independently
following [5], [86, Chapter XIV, Scattering Theory, Lemma 14.5.1] or [221].
O

Proof of Theorem 3.4. Lemmas 3.3, 3.4 and the choice of § (small perturbation) in the coefficients

of the pertubing term (3.1.5) imply that the operators [I — Ry (A\?) V(, D)] are injective in B (L2717 s)

and are compact perturbation of the invertible operator I. We can apply the Fredholm Alternatzive

Theorem to obtain the existence of the operators A3 To prove the uniform bound || A5 || B2, ) <C
iy

we consider two cases.

(1) \large.

As a consequence of Lemmas 3.3, 3.4 there exists A > 0 such thatif A > X then we have || R5 (\?) V(z,
D)z, ) < 3 and this implies that [[/d— Ry (\*) V (2, D)]|| (2 | P 1 provided that A > \. This

uniform bound from below for the operators implies an uniform bound from above for their corre-

sponding inverse operators Af\t.

(2) X small.

The boundedness for A\ < ) of the norms || A5 || B2, ) is a consequence of the continuity of the
iy

family of operators Af in the space B(L? , s) with respect to the parameter \ € [0,00) and of the
3

compactness of the interval [0, \,].
O

Proof of Theorem 3.5. It is analogous to the one of Theorem 3.4.

REMARK 3.2. The problem of resonances (for more details and definitions see Chapter 2, Section
2) arise in mathematical physics and in other field such as geometry. In our case this problem arises
when we have perturbation of operator acting in some Banach spaces. Several works have treated
the theory of resonances, we refer to [84], [155], [101] and [212] for example. The remark suggest that
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resonances may exist in the case of electromagnetic perturbation of type V(x, D) = ia(z) - V + V(x).
To assure that resonances cannot exist we impose a smallness assumption (3.1.5) on a.

THEOREM 3.6. Assume that the perturbation V(x, D) satisfies (3.1.5) and (3.1.6). For each 0 <
0 < €0/2 we have
(1) there exists a real constant C' = C(d) > 0 such that for any A > 0:

el =W R (%) fllze < Sl W e (33.59)
(ii) for any € > 0 that satisfy 0 < ¢ < 20, there exists C = C(d,¢) > 0 such that for any A € R:
e[ =2 W5 B (02) Fllze < Clllel ™= Wi |2 (3.3.54)
(iii) there exists a real constant C = C(8) > 0 such that for any A > 0:

=2 W5 ' RE (W) fllze < | Wt || 2 (3.3.55)

S5/
A2+67

(iv) for any 6,6' > 0 and for s € [1/2,3/2], there exists a real constant C = C(,0") > 0 such that for
any A € R:

2]~ *W5 Ry (A?) flle2 < Clll2l*™* W f]| 125 (3.3.56)
(v) there exists a real constant C' = C(6) > 0 such that for any \ > 0:

2| ~F W5 ' RE (W) fllze < 22 W £ 225 (3.3.57)

S5/
A2+67

(vi) for any 0 > 0 there exists a real constant C = C(5) > 0 such that for any A € R:
2]~ 2 W5 R (A2) fllz2 < C|lf|l e (3.3.58)

(vi) for any 6,8’ > 0 and for s € [1/2,3/2], there exists a real constant C = C(6,40") > 0 such that for
any A € R:

el =Wy VR (02) fllze < C |l "W f 22 (3.3.59)
Theorem 3.4 implies that the identity (3.1.23) can be written as:
[I — Ro(A\? £i0)V(z, D)|R;; (A\?) = Ry (\?),
and so the following identity,
R (V) = AT RT (V?). (3.3.60)
Theorem 3.5 implies that the identity (3.1.24) can be written now as:
R (N [I - V(z,D)Ry (A\?)] = Ry (A\?),
and so the following identity,
R{ (\) = Ry (\?) BY. (3.3.61)
Proof.

Proof of (3.3.53). The estimate can be proved combining the identity (3.3.60) with the theorem 3.4
and estimate (3.2.27) in the following way:
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2|2 W RE (A2) fllze < ||| 2W; PAERE (X?) fl12 <
1 C 1
Cllla|* Wy Ry (W) Flloe < Sl 2 Waf]|e.

Proof of (3.3.54). The estimate can be proved combining the identity (3.3.60) with the Theorem 3.4
and estimate (3.2.28) as before.
Proof of (3.3.55). The estimate can be proved combining the identity (3.3.60) with the Theorem 3.4
and estimate (3.2.29) as before.
Proof of (3.3.56). The estimate can be proved combining the identity (3.3.60) with the Theorem 3.4
and estimate (3.2.30) as before.
Proof of (3.3.57). The estimate can be proved combining the identity (3.3.60) with the Theorem 3.4
and estimate (3.2.31) as before.
Proof of (3.3.58). The estimate can be proved combining the identity (3.3.60) with the Theorem 3.4
and estimate (3.2.32) as before.
Proof of (3.3.59). The estimate can be proved combining the identity (3.3.61) with the Theorem 3.5
and estimate (3.2.33) .

O

THEOREM 3.7. Assume that the perturbation V(x, D) satisfies (3.1.5), (3.1.6). For each 0 < § <
€0/2 we have for any A\ € R

2|2 W5V (2, D)RE (V) fllz2 < Cll|2| W f]| - (3.3.62)
Proof. The resolvent identity implies the following one:
V(z,D)R{ (\?) = V(z,D)R5 (A\?) +
+V(z, D)Ry (N°) V(z, D)Ry; (3?),

and from this we have

[I —V(z,D)Ry (\?)]V(z, D)Ry (\* £i0) = V(z, D)Ry (A\?). (3.3.63)
Following the theorem 3.5 (2) we have
V(z, D)R{ (\?) = BV (z, D)Ry (\?)

and from combining this with estimate (3.2.37) obtain

IV(z, DYRE (32) flls | < CIBEV (@, D)RE (W) fllzs <

< CIV (@, D)RE (V) fllzz | < Iz
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4. Weighted Space-Time Estimates

In this section we will prove the main Theorems 3.1, 3.2, 3.3. We use the techniques of [117] and of
[207].

Proof of Theorem 3.1.

Case 1. Wave equation.

Proof of 3.1.9. Formally taking the Fourier Transform in time variable in (3.1.1), we get

A2+ Ay)a(h, z) = —F(\, z). (3.4.64)
Using (3.1.20) and the limit absorption principle, we get

a(\x) = —RE (V) F(\ 2), (3.4.65)

and, consequently,

Vi, z) = —VRE (\2) F(), z). (3.4.66)

Now we can use (3.3.59) and obtain

2| =2 W 'Va\, 2) |22 < C|l|a]2WsE(\, z)|2e. (3.4.67)

Integrating over X\ and using the Plancherel identity in time variable, we have

2|~ W; " Ve, Dllgz12 < ClllalE WsF (2, 8)] 12 2. (3.4.68)
Proof of (3.1.10). We use, after the Fourier transform, the identity (3.4.65), the Theorem 3.4 and
the perturbed resolvent estimate (3.3.58).
Proof of (3.1.11). The application of the Fourier transform yelds

V(x, D)a(\, ) = V(z, D)Ry (A F(\ z), (3.4.69)
and using the estimate (3.3.62) we have

122 W5V (z, DYa(A, @) g2 < Clllz[2Ws (A, 2)|| 2, (3.4.70)
and, consequently,
22 W5V (z, Dyu(z,t)|| 22 < C|l|2|> WsF (2, 1) 1212 (3.4.71)

REMARK 3.3. The constants in (3.1.9), (3.1.10), (3.1.11) are all independent of \.

Case 2. Dirac equation.
The Dirac equation can be treated as the wave equation. In fact we write the solution of (3.1.3) as
the following integral equation:

t
u= / Ut — s)F(u(s),V(z,D))ds, (3.4.72)
0
where F(u(s),V(z,D)) = —a-Vu+ F(t,z) and U(t) denote the propagator of the free Dirac equation

given by
sin(tv/—A)

U(t) = COS(t\/z) — 7 (/Yjaj) m

(3.4.73)
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A reduction to the wave equation can be done by applying the operator O to the solution (3.4.72)
and using the relation

0,0"u = 0. (3.4.74)
So the estimates (3.1.9), (3.1.10) and (3.1.11) remain valid.
Proof of Theorem 3.2.
The proof of non-homogeneous case (3.1.2) is the analogous to that one for the perturbed wave
equation (3.1.1). However one has to replace A2 by A > 0 in the definitions (3.1.20), (3.1.21), (3.2.25)
and in the estimates for free and perturbed resolvent in the Section 2 and 3 of this chapter.
Proof of Theorem 3.3.
For the homogeneous case the TT* argument, see [72, 75] and [115], combined with the estimates
(3.1.9) implies (3.1.16).

O

REMARK 3.4. By the definition of the perturbed Besov space we have H‘S/ = 337272, for any s € R,
so we can replace H‘l//2 by B‘I/QQ2 in the (3.1.16).

REMARK 3.5. One can also consider the following Cauchy problems for the perturbed wave equa-
tion and Dirac equation:

Ou + ia(x) - Vu+ V(z)u = 0, (3.4.75)
u(07 .I') = f7 6tu(07 ‘T) =9,
and
YpOuu +ia(z) - Vu+V(z)u=0, teR, zeR3, (3.4.76)
u(0,2) = f.

As in the case of Schodinger equation, the TT* argument combined with the estimates (3.1.9) implies
for the problem (3.4.75), for any ¢ > 0, the following estimate:

2]~ 2 Wy Vu(z, )l 202 < CIfll iz, + llallz2),
and for the problem (3.4.76), for any 0 > 0, the following estimate:
|2 Wy Vu(, 1)l 1202 < Cllfll s s

v

=T given by the

where, in the previous estimates, we used the L?> — L? boundness of the operator

Corollary 3.2 from the Appendix.

5. Appendix
In the following we prove a relevant equivalence result. Namely,

PROPOSITION 3.2. Under the assumptions (3.1.5) and (3.1.6) for the operator V.=V (z, D), there
are constants constants cy, co > 0 such that

c1 [[Vull7. < (~Avu,u) < e ||Vl 7z,

where (—Avyu,u) is the quadratic form (3.1.22).
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Proof. First of all we notice that by the assumptions (3.1.5) and (3.1.6) we immediately have
la;(x)| € L"(R"), j=1,...,n |[V(z)| € L2 (R"),
(we prove the statement without restriction on n because it remains valid for any dimension of the
space R"). The quadratic form (3.1.22) is well defined on H' (R"). In fact using the embedding
. 2n_
H' (R") C L"—2 and the Hélder inequality we have
(~Avuu) < llia- Vull e+ [V@ullze < [Vullze + lallp (Ve o) o + 1V (@)ullze <
(3.5.77)

C|IVullzz +C8 |Vl 2 ||ul o F IV (@)ullzz < C|Vul7e +C [V (2)ul 7

Ln—
and the quadratic form is that ¢(u,u) := |\Vu||i2 + ||V(az:)u|\i2 ~ ||Vu||2L2 by [70, Theorem 7.3, 7.4].
So we obtain

IN

(—Avu,u) < C|Vuljz + C [V (@)ull7- (3.5.78)

The form (3.5.77) is symmetric and to prove that (—Ayu,u) is associated to a (unique) self-
adjoint operator, it will be sufficient to show that it is closed, namely its domain is complete with
respect the norm (—Ayu,u), and semibounded, namely

(—Avu,u) > —C ||V},

with C > 0 (see [157, Theorem VIII.15]). Both properties follow from the definition of (3.1.22) (see
[128]), moreover by estimating as (3.1.22) and using again the result proved in [70] cited above we
obtain

(—Ayu,u) > C | Vul2, — C§ |Vul2s . (3.5.79)

In particular this implies that the norm (—Ayu,u) in equivalent to the norm in H' (R"). This
completes the proof. O

An important consequence of the above proposition is the following result:

COROLLARY 3.1. Let H® (R™) denote the scale of homogeneous Sobolev spaces based on the pow-
ers of the operator V.=V (x, D), i.e., the completion of C§° (R) with respect to the seminorm

lull gy = |[(=2v)"2)

If V = V(z, D) satisfies (3.1.5) and (3.1.6) then the spaces are equivalent to the standard Sobolev
spaces (based on the powers of —A) for |s| < 1.

Lz’

Proof. For s = 1 this follows immediately from the above Proposition, noting that (—Ayu,u) =
[[(=Ay)Y 2u||2L2. The case s = —1 then follows by duality, and by interpolation we get the statement
for s € [-1, 1] in between. O

We have also the following corollary

75



5. APPENDIX Chapter 3. Applications to a Class of Dispersive Equations

COROLLARY 3.2. The operator \/—LTV’ where V is the gradient on R" and —Ay is defined by

(3.1.18), satisfies the following estimate:

‘\/_LTVf | Clls, fe I (3.5.80)
Proof. One can rewrite the left side of the inequality (3.5.80) as
v v 1/2
( e f) | (3.5.81)
Setting the (3.5.81) g = \/%va, we obtain, using (3.5.79)
(Vg,Vg) < C(=Av/f. f).
So (3.5.80) is established. a

REMARK 3.2. The Corollary 3.1 shows also the fact that we can replace in the estimate (3.1.16)
of Theorem 3.3 and in the estimates in Remark 3.5 the homogeneous perturbed Sobolev space H v by
the equivalent space H®. So in the following chapter we will use only the H® norms.
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CHAPTER 4

Scale invariant energy smoothing estimates for the
Schrodinger Equation and applications

1. Introduction

In this chapter we study smoothing properties of the Schrodinger equation with magnetic po-
tential

A= (A(t,x), -, Apn(t,2)), = €R"

Here A;(t,z),j = 1,--- ,n, are real valued functions, n > 3 and the corresponding Cauchy problem
for the Schréodinger equation has the form

{3tu_ZAAu_F, teR, zeR (4.1.1)
u(0,z) = f(x),
where

A=Y, ~ i45)(0r, ~ i), e

j=1
The energy type estimates and the well — posedness of the Cauchy problem (4.1.1) in the energy
space are studied in the works [54] and [55] of Doi.
Since the smoothing properties of this evolution problem are closely connected with suitable
resolvent estimates for the solution U = U(z) of the elliptic problem

{SU—iAAU—iTU:H, e>0,7>0, zeR"H=H(x), 4.1.3)

we can use as a starting point the scale invariant smoothing estimate obtained in the works of
Kenig, Ponce, Vega [117] and Perthame, Vega [149]. This estimate extends earlier works of Agmon,
Hormander [8] and P. Constantin and J.-C. Saut [42].

The scale invariant estimate for (4.1.3) with A = 0 has the form

IV.Ull < CN(H), (4.1.4)
where C > 0 is independent of ¢ > 0,7 > 0,
1
IG]* = sup = G(y)[Pdy
R>0 lz|<R

is the Morrey - Campanato norm, while

N(H) =Y 2| H| p2r-1<o)<arn).-
keZ
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1. INTRODUCTION Chapter 4. Scale invariant energy smoothing estimates

From this estimate one can derive the estimate

sup 272Gl p22x-1 <z <2v1) < CIG
€

and the following smoothing scale invariant estimate for the solution (¢, x) to (4.1.1) with A = 0
and f = 0:

2
/(sup2—k/2llvmu(t,.)lLz(zk1<,x|<2k+1)) dt < (4.1.5)
R \k€eZ
2
SC/ <Z2k/2|F(t7)HL2(2k1S1S2k+1)> dt.
R \kez

Our purpose in this Chapter is to derive similar scale invariant smoothing estimates for the case
of magnetic potential imposing scale invariant smallness assumptions on the magnetic potential
A(z). As in the Chapter 3 we treat only small magnetic potential. This connected with the necessity
to avoid resonances phenomena (see Chapter 1, Section 2 and Chapter 3 for more details) ( for
magnetic perturbation see [45], [47], [146], [155], [179], [183], [200]). The absence of eigenvalues
of A, with magnetic potential decaying as (1 + |z|)~'7? is discussed in [23]. However, even the
remarkable result in [23] can not guarantee that 0 is not an eigenvalue of the Hamiltonian A 4.
The result in [84] shows that even nontrivial smooth compactly supported magnetic field can create
resonances. Here we follow our work [69].

To avoid possible eigenvalues or resonances of A 4 we impose the following assumption on the
potential A.

ASSUMPTION 1.1. There exists € > 0, such that we have

max Y Y 2FHEN | DIA; (8, )| Lo oo (g mar) < € (4.1.6)
SIS ez =

Our main smoothing estimate is the following one.

THEOREM 4.1. There exists ¢ > 0 so that for any potential A(x) satisfying (4.1.6) there exists
C > 0, so that for any f € S(R") and any F(t,xz) € C§°(R x (R™\ 0)) the solution u(t,z) to (4.1.1)
satisfies the estimate

2
—1/2
/(wmmu/uwwmm)dts CIfI2, +
R \k€EZ *

2
+ C/ (Z |||wli/2F(t,-)IH1/z> dt, 4.1.7)
R xT

kEZ

where HS = H*(R") is the classical homogeneous Sobolev space and |ac|,jfl/2 = |2[*/2Qy(x) and the
Paley - Littlewood partition of unity

1= Qilx), (4.1.8)

kEZ

) =o(5),

where ¢(s) € C3°((1/2,2)) is a non - negative function.

is defined as follows
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The key point to derive this estimate is a suitable scale and time invariant smoothing estimate
for the free Schrodinger equation

ou—iAu=F, t>0 R™
{tu 1AU s >0, x¢& R (4.1.9)

u(0,z) = f(x).
To be more precise, we introduce the following norms motivated by the statement of the main result
in Theorem 4.1. Take
Y = L2(LY2HY?) vy = L2 2 Y, (4.1.10)
where the spaces (2*B for any Banach space B is introduced in Section 2. Note that Y is not
reflexive ( (£5/%) = 0272 but (0577 1/2y £ (112,
Then the estimate of the previous theorem can be rewritten in the form

lulli- < ClFIZ +IF5 (4.1.11)

and we shall call Y’ smoothing space.
Then the main point in the proof of Theorem 4.1 is to establish first the following energy smooth-
ing estimate for the case A = 0.

THEOREM 4.2. There exists C' > 0, such that for any f € S(R") and any F(t,z) € C5°(Rx (R™\0))
the solution u(t, z) to (4.1.9) satisfies the estimate

lullzs + lully < CUflez +C (, amin,, 1Ry + 1Fallugss ) (4112)

On the basis of the estimate in Theorem 4.2 we shall derive a slightly stronger estimate for the
perturbed Schrédinger equation.

COROLLARY 4.1. There exists ¢ > 0 so that for any potential A(x) satisfying (4.1.6) there exists
C > 0, so that for any [ € S(R™) and any F(t,z) € C§°(R x (R™\ 0)) the solution u(t,z) to (4.1.1)
satisfies the estimate

lullzpz + b < Cllflaz +C (in, IRy + 1Fallzyss ). (4.1.13)

As an application we consider the following semilinear Schridinger equation:

{&u —iAqu=|V(t,z)ulP, teR, zeR" (4.1.14)
U(va) = f(‘r)’
where p > 1 and V (¢, z) is a measurable function satisfying the inequality
> 25 |V, )| L oo (a ey < C < 00, (4.1.15)
keZ

Then we have the following global existence result with initial data having small Z?— norm
only.

THEOREM 4.3. Suppose that the potential A(x) satisfies (4.1.6), V obeys (4.1.15) with a € [1,2)

and
n-+4

. 4.1.1
n+ 2a ( 6)

p:
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Then there exists 6 > 0, so that for any f € L*(R") with
[fllz> <0

the problem (4.1.14) has a unique global solution
u(t,z) € C(R,L*(R™))NY’.

The proof of Theorem 4.2 is based on the estimate (4.1.5) due to Kenig, Ponce, Vega [117], [118].
In order to have a self contained presentation we give an alternative proof of this result due to
Konig, Ponce, Vega in Section 8.

The key step to derive the estimate (4.1.12) from the estimate (4.1.5) is the following equivalence
norm result.

THEOREM 4.4. Forn > 3,1 < q¢ < o, for s € [-1,1] and a € R that satisfy
la| + |s| < g (4.1.17)

the following norms are equivalent

1/q
(Z 2qka|Qk|D|Sf|%z> ;

keZ

1/q
(Z 2aka | |D|5Qkf|qL2> : (4.1.18)

keZ

1/q
<Z [ IDISI:EIifIqu> :
keZ

where |z|§ = |z|*Qr(z) and the Paley - Littlewood partition of unity Qi(x) is defined in (4.1.8). For
q = oo the result is still valid with obvious modification in (4.1.18).

The main idea to establish the theorem is similar to the approach developed in [63], [48] and
[66] for the case of nonhomogeneous Sobolev spaces and non homogeneous weights. Therefore, we
shall make a localization in the coordinate space and we shall use the Paley Littlewood partition
(4.1.8). The key point in this approach is to evaluate the norm of the operator of type Qi |D|*Q..|D|*
with |k — m/| large enough.

The proof of Theorem 4.2 can be obtained from the estimate for the Cauchy problem with initial
data f = 0 and the following theorems (see section 7 for the definition of the spaces ¢},°B for any
Banach space B).

THEOREM 4.5. If q € [1,2] and a, s € R satisfy

<1
{ ol <1, (4.1.19)
lal +s| < 5,
then
1l oo re < Ol s e (4.1.20)
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THEOREM 4.6. If ¢ € [2,00] and a, s € R satisfy (4.1.19), then
1 llseire < Oz e (4.1.21)

The plan of this chapter is the following. The proof of the free smoothing estimate of Theorem
4.2 is given in Section 2. The proof of the main scale invariant smoothing estimate of Theorem
4.1 is done in Section 3. In Section 4 we treat the commutator estimates needed in the proof the
equivalence of the norms in Theorem 4.4. Some convolution type inequalities needed in the proofs
of Theorem 4.4 are included in Section 5. The concluding steps in the proof of Theorem 4.4 are
presented in Section 6. Finally the phase localization and the proofs of Theorems 4.5 and (4.6) are
given in the last Section 7. The proof of the estimate due to Kenig, Ponce, Vega is presented in
Section 8 for self contained completeness.

2. Weighted Sobolev space estimates for the free Schrodinger equation and proof of
Theorem 4.2

Given any Banach space B C D'(R") satisfying the property

for any Q(x) € Cg°(R"™), fe€ B=Q(x)f € B, (4.2.22)
we can define for any ¢ € [1, o] and for any « € R the space (2% B as follows
1/q
£l g = (Z |Qkf|qB2’“m) , (4.2.23)
keZ

with obvious modification for ¢ = co. Note that for any f € C§°(R™ \ {0}) we have

[fllezep < oo

So (2% B can be defined as the closure of C§°(R™ \ {0}) with respect to the norm (4.2.23). An alter-
native definition is based on the map

J:feCER"\{0}) C B— Jp(f)r = |QfllB € €, (4.2.24)

where (7¢ is the space of all sequences a = (a)rez such that

1/q
l[allese = <Z lak|q2’“q“> < o0, (4.2.25)

keZ

with obvious modification for ¢ = oo (see Chapter 1, Section 9 for more details). Then

[fllezop = 178 (f)lleae (4.2.26)
The space (2% B is independent of the concrete choice of Paley-Littlewood decomposition
> Qi) =1 (4.2.27)
JEL
satisfying
; >0
{ Qs(r) 20, | (4.2.28)
supp Q;(x) € {|z| ~ 27}.
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A typical example, wich is needed for the smoothing resolvent type estimates, is the case B = H;
where s € (=1,1), 1 < p < co. For s > —2% we have H(R") C D'(R") (see [48]) and the norm is
defined by
11l ize = D fllze- (4.2.29)
After this preparation we can turn to the proof of Theorem 4.2. Starting with the estimate
(4.1.5), we use Lemma 4.12 (see Section 6) and find
sup |||V 1212 ~ sup|||af; % Dlull 212
keZ keZ

so (4.1.5) can be rewritten as

—1/2 1/2
sup [[|z], 2Dl 202 < O [ S lllely* Fllpzrz |- (4.2.30)
kez kez

Using the fact that |D|°* commutes with A one can obtain the following consequence of this
estimate

—1/2| y|l—0 1/2) o
sup |||zl DI" "7 ul 22 SC(Z ]| D) FIIL3L3> (4.2.31)
ke keZ
for any o € [0, 1]. In particular for o = 1/2 we get

~1/2 1/2
sup [[l2];; *|D" 2 ull 2z < C (D Ml *IDI2Fll 1z | - (4.2.32)
keZ tez
To this end, we are in position to apply the result of Proposition 4.1 (see Section 6) and derive
that
211;)H|;C|,;1/2|D|1/2u||L?Li ~ Nll 2 goer-172 12, (4.2.33)
€z he @
)
—~1/2 —-1/2
sup [[2];; %1 DI 2ull 2z ~ sup |2l Zull 12
keZ ' keZ iie

In a similar way Proposition 4.1 implies

DMl 21D Fllgzre ~ 11l e e, (4.2.34)
keZ '
SO
1/2 - 1/2
Szl 2D 2 Fl paga ~ 3 Nl Fll o=
keZ keZ
The estimate (4.2.32) reads as
sup ||zl 2ull o e < O[S Ml *Fll 12 (4.2.35)
keZ tE ez tHz

or using the notations of this section (see (4.1.10) and the definition (4.2.26)) as

t
/ G5 p(s)ds|| < ClF|y- (4.2.36)
0 Y
It is easy to derive a similar estimate
’ / A R(s)ds|| < C||F|ly, (4.2.37)
t Y’
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by the aid of (4.2.36) and a duality argument for the quadratic form
ARG = [ [ (I3 F (), G0 o dit.
t>s
Further, we have to derive the estimate

t
/ AR5 ds

0

< C|IF|y- (4.2.38)
LeL2

For that purpose set u(t) = [ ¢/*~*AF(s)ds. Then u = u(t, z) is a solution to

ou—iAu=F, t>0 R™
i — 1Au s >0, x¢& ) (4.2.39)
u(0,2) =0
Multiplying by v and integrating over {0 < ¢ < T,z € R"} we get
T
Ty < [ P00 et < Iyl
Applying (4.2.36), we arrive at (4.2.38). In a similar way we get
t
/ AR (gds|| < C|[F|| e (4.2.40)
0 v t T x
Finally, it remains to prove
e flly, < Cllfllzz- (4.2.41)

Consider the operator L defined by
L:fel? = A,

Our goal is to show that L is bounded from L2 to L2¢5> /11’2, But the continuity of L from L2 to
Lfﬂ;o’fl/ 2111/? is follows from the continuity of its (formally) adjoint

L*f = /0 e_iTAf(T)dT,

from Y to L2, which in turns follows from (4.2.38) and the fact that ¢*2 is a unitary operator in L2.
From (4.2.35), (4.2.38), (4.2.40), (4.2.41) and standard energy estimate, we get (4.1.13) and the
proof of Theorem 4.2 is completed.

3. Proof of Theorem 4.1

In this section we will prove the Theorem 4.1, so we shall prove the estimate (4.1.7), where u is
the solution of the problem (4.1.1). First of all we have the identities

n

Agu =Y (On; —iA;)(0a, — iAj)u

Jj=1

= Au—2iV - (Au) + Wu, (4.3.42)

where
W(t,x) = |A(t,z)]* =iV - A
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satisfies
Z 22k ||Wt$C ||LooLoo <
{lz|~2k}
kEZ
due to (4.1.6).
So, after substitution in the equation of (4.1.1), we obtain

{i&tu —Au= -2V (Au)+ Wu+F teR, zecR" (4.5.43)
u(0,z) = f().

First of all, we observe that the term W u, thanks to the smallness assumption (1.1), can be absorbed
in the left hand side of the estimate (4.1.7). This fact suggests to localize our attention to the reduced

problem

{atu —iAu=-2iV-(Au)+ F, teR, z€R" (4.3.44)

u(0,z) = f(x).
So, using the norms in the spaces (2“B introduced in (4.2.23) we apply the estimate (4.1.7) and
obtain

|‘u|‘LfZ;°’7l/2Hi/2 < CHV (AU)||L2£1 125 1/2 + C||FHL221 125 1/2 + CHf”Lz (4.3.45)

From the equivalent norm estimates in Prop051t10n 4.1 (see Sectlon 6 and the equivalence norms
relations in (4.2.33), (4.2.34) also) we have

HV ( )”szl 1/2 1/2 ~ ”AUHLféi’l/zHi”' (4346)
From Proposition 4.2 we have
”AUHLfei’l”Hi” S ||A||L;>ogi,lH2l’{L2HuHLiZ;o,fl/2Lin/(nfl)+

+HAHL°%1’1L°0 ||u||L%E;c,f1/2H;/2.

1/2 2n/(n—1)

From the Sobolev embedding H,'* C L; , we obtain

||u||L?€;o,fl/2Lin/(nfl) ,S HUHL?é;o,—1/2H31:/2,
while the interpolation inequality of Proposition 4.3 (see Section 6) guarantees that
HAHLaoZl 1 1/2 ~ HVA”Loogl 3/212n HA”Loozl 1/212n
so applying the H6lder inequality

”gHe;'aLp 5 ”gHgi’a*"/PLoo?

we get

HAHLaole ?

due to assumption on A. The above observatlon implies

1/2 ~ HVA”Loogl 2LooHAHL°°£1 Apee S €

HA’UJHLyiJ/zH;/z ,S €||u||Lf€§°’7l/2Hi/2'
Using again the estimates (4.3.45), we obtain
—1/2
iup |||'r|k / u(tv ')”L?Hl/? S OHF”L?él,l/szl/z + OH.fHLﬁ (4347)

This concludes the proof of the theorem.
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4. Estimate of the Operator Q|D|~°Q,,|D|°.

Our goal is to compare the norms

1/q

I1DI7* fllegarr = <Z 2’“q“IIQk|D|_Sf|qu>
kEZ

and

1/q
gy = (Z 2kqa||D|SQkf|I%p>

keZ
(see Section 8.1 in the Chapter 1 or Section 2 of this chapter for the definition of the spaces (2% B,
where B is any Banach space such that B C D'(R") ). The key point in the proof that these norms
are equivalent is the following estimate for the operator

Qr|D|=*Qum|D|* for |k —m]| > 2. (4.4.48)

LEMMA 4.1. For any s € R,|s| < 1,any p,1 < p < nand any k,m € Z,|k — m| > 3 we have the
estimate
|QkIDI™* Q| DI fl Lo < C 2/F5P) || £l s, (4.4.49)

where C' = C(s,p) independent of k,m € Z, and

t(k,m,s,p) = k% + m}% —(n—(sV0)(kVm)—(sV0)(kAm), (4.4.50)

L =1-L kAm=min(k,m), kv m =maz(k,m).
P P

Proof: First we shall prove the lemma for s € C with Re s € [0, 1]. For that purpose consider
the family of operators
T? =€ Qi|D|*Qm|D|*. (4.4.51)
If Re z=0,then z =0, c € R and
T = =" Qu|D| 7" Q.| DI (4.4.52)

Applying stationary phase method (in this case simply integration by parts), we see that the oper-
ator Qx|D| =" Q,, has the kernel

Kk,m,a'(xa y)
satisfying
| Km0 (%,y)| < O%u + o)L, (4.4.53)
This estimate implies
Lo k59
1QkIDI™* Qugllr < C s l9ler. (4.4.54)

Further we apply this inequality with ¢ = |D|?° f and using the following one (see Theorem 1,
Section 2.2 in [185])
DI fllee < CllfllLe(L+ o)™, (4.4.55)

85



4. ESTIMATE OF THE OPERATOR Qg |D|~5Q|D|5. Chapter 4. Scale invariant energy smoothing estimates

we get
io 2k%2mﬁ —o? 2(n+1)
1T (Nller < Cogmmye ™™ (L+0) [fllzr <
k59"
< Clm”f”m (4.4.56)
Vo € R with ¢ independent of k,m and 0. If z = 1 + ic, then
. 2 . . . v
T = o QD QuI DI (4.4.57)
So it is sufficient to estimate the operator
S7 = Qx|D|7 7 Qm V. (4.4.58)
Note that
57 = Q(ID[7' 7 7V)Qm — Qx| DI~ Q)
where Q;,, = VQ,,. The operator Qx(|D|~'""7V)Q,, has kernel K}, satisfying
Kl < 0769’“2(:()32)(?’) (1+ o)™, (4.4.59)

This estimate is verified in the same way as (4.4.53). The operator Q|D|~17°Q’, has the kernel
K}, that satisfies the estimate

_Qn(@)CQm ()

9(n—1)(kvm)9gm

From (4.4.59) and (4.4.60) together with (4.4.55) we find
k5 9mer

St v gonm 1/ 112e-

Kyl <C (14 o)™ (4.4.60)

[T (f)||» < C (4.4.61)

Applying the complex interpolation argument of Stein (see [186]), we get (4.4.49) for 0 < s < 1. This
complete the proof for s € (0,1).
Next we take z = —1 + i0. Then
v

T1+ia _ 61_02_2iUQk|D|iUWVQm|D|_1+iU. (4462)
Then we use the relation
10 v — 10 10 V — 10
Qk|D| WVQm|D| b = Qk|D| WQmV|D| Iio 4
(4.4.63)
10 v —1+io
+Qr|D| m(va)|D| :
The kernel of Qx| D|" 75;(VQy) is Kj,, and satisfies
Qk xr Qm ) n
|K;] < CWQ + o)™t (4.4.64)
then we obtain L
10 v —1+i0 2k;2m7
[|Qk|D[* 7 (VQm)|D| 9llzr < CWHQ”LT- (4.4.65)

DI
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Taking g = |D|~!f, we get (Hardy-Sobolev)

_ 1 1 1
DI fller < I flleey ——==—.
p r n
Fromthefactthat%:%—%Wehavel— 1=-1 zl—%—i—%: %—i—%andwearriveat
i —14io 2k_2mp/
QUL T (VQuIPI Sl < 05 (44,66
provided p < n. Since
QuIDI Y QT DI < 222 gy (4.4.67
k D] m P onm) Lp, 4.
from (4.4.63) and (4.4.66) we get
Ltio(f 2k % 9™
1T ()l 2w <07ka £l zo- (4.4.68)

The application of the Stein interpolation argument for z; Re z € [—1,0] combined with the above
estimate and (4.4.56) guarantees that (4.4.49) is fulfilled for s € (—1, 0] and this complete the proof

of the lemma.
O

It is not difficult to extend the result of Lemma 4.1 for |k — m| < 3. Note that a formal calculus
of t(k,m, s,p) for |k — m| < 3 in (4.4.50) gives 2¢(F™5P) ~ 1, To verify

|QrID|~*Qm|DI* fllzr < C||f]|Le, (4.4.69)

for |s|] < 1,1 < p < n, it is sufficient to use a scale argument and to show (4.4.69) for k = m = 0 so
we shall verify the inequality

1Qo|DI™*QolDI* fllLr < CI|f]|Le- (4.4.70)
Here we can use an interpolation argument as in the proof of Lemma 4.1. Then we have to show
that L, = Qo|D|~'T"°Q,V is LP-bounded. But

Ly = Qo(|DI™""V)Qo + Qo| DI | D]~ (V Qo). (4.4.71)
Since |D|~'V is LP-bounded and |D|% is also L? -bounded as Riesz potential, we see that Qo(|D|~1TV)Qo
is L? -bounded. From the property

(4.4.72)

3

|D|™t: L" — LP, Lo
,

K=
S|

and

VQo:LP — L", (4.4.73)
we see that |D|~1(VQo) : LP — LP so L, is L? -bounded. This observation and a Stein interpolation
argument implies (4.4.69) for s € (0, 1). To cover the case s € (—1,0) we have to show that

L. = Qo|D|* |D|VQ0|D| I+ie " is LP-bounded (4.4.74)
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But

-V ) AV \V4 .
Ly, = Qo| D[ =:(VQo)|D||D["" + Qo| D" =V Qo—| D", (4.4.75)
D] |D| D]

and again we can show that (4.4.72) and (4.4.73) imply that the operator on the right hand side
of the (4.4.75) is LP-bounded ( with norm < C(1 + o)"*! ). Since the second operator is also L?
-bounded, we see that L/ is also L? -bounded and this argument implies

LEMMA 4.2. For any s € R, |s| < 1 any p,1 < p < n there exists a constant C = C(s,p,n) > 0 so
that for any k,m € Z, and for f € S(R™) we have

1Qk[DI™*Qun| DI fllLr < C 2/ ™52 | £ o, (4.4.76)
where t(k,m, s, p) is defined as (4.4.50).
Finally we use a duality argument and find :

LEMMA 4.3. For any s € R such that |s| < 1, and for any p, -5 < p < n, there exists a constant
C =C(s,p,n) > 0so that for f € S(R™) we have

QKD * Q| DI* fllze < C 21K P) | ]| s, (4.4.77)
where t(k,m, s, p) is defined as (4.4.50).
Proof: For any f,g € S(R") we have
(g, |DI™* Q| DI*Qun f)]

[(@m|D[™*Qk|D[%g, f)]

< Al DI @kl DI Qungll Lo - (4.4.78)
Applying for p’ the estimate of (4.2), we find
I1D]=* Q& DI*Quugll 1o < 2852 |Ig]| s, (4.4.79)
where
t(m,k,s,p') = k% + m% —(n—=(sVv0)(kVvm)—(sV0))(kAm)=tk,m,s,p).
This complete the proof. g

5. Discrete Estimate

Consider the operator

T:a= {ak}kez —Ta=0b,, = Z th,mark, (4.5.80)
ke{|k—m|>4}
where
thom = 2N 21K 2= BMVE) v k= maz(m, k), (4.5.81)
A>0,0>0, B=X+pu. (4.5.82)

LEMMA 4.4. If A, > 0,and 3 = A\ + u, then the operator
T:47— (9

is bounded for any q € [1, o]
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5. DISCRETE ESTIMATE

Proof: First we consider the cases ¢ = oo and ¢ = 1, then we apply the interpolation argument.

We represent T'a as
Ta="Tia+ Tsa,
where

(Tla)m: Z tk,makv

k=m-+1

(Tga)m = Z tkﬁmak.

— 00

From (4.5.81) we find for T} a

oo
HTIGHOO < Csupmer ( Z tkﬂ”) ”a”oo <

k=m+1

< Csupmerz, < Z 2m>\2ku2—6m> lallso,

k=m+1
1)

[Tialleo < Cllallo
From (4.5.81) we have for T5a the following estimate

| Taalloo < Cstpmez < 3 WWW’“) lafloc =

k=—o0

= Csupmez < Z 2“”2”“) llalloo = Clal]co-

k=—oc0
This estimate and (4.5.87) imply
[Talloc < Cllalo-

For ¢ = 1 we have

[Trally < Csuprez Z tem | llalli <
{meZ;m>k}
o0
< supkez (Z 2m2’€“2‘ﬁm> lally =
m=k
oo
= Csuppez2"™ <Z 2m“> lalli < 2Call.
m=k

(4.5.83)

(4.5.84)

(4.5.85)

(4.5.86)

(4.5.87)

(4.5.88)

(4.5.89)

(4.5.90)
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In a similar way we estimate Tsa,

k—1
I T2all, scSupkez< > 2"”2’““2‘5’“) lally =

(4.5.91)
k—1
= Csupper ( 3 ) 229~ lall; < Cllall.
Thus we get
ITally < Cllall, (4.5.92)
and this completes the proof of the lemma.
O

It easy to obtain a corresponding weighted version of Lemma 4.4 in terms of the weighted ¢4
spaces

09 = {a = (a)gez; Z 2ka% g, |9 < 00}, (4.5.93)
)

For that purpose consider the operator
JYa— b= J%,

defined as follows:
be = 2F%ay. (4.5.94)

We have the following two Lemmas:
LEMMA 4.5. The application J* : {1 — (%% is an isomorphism for any o € R and any q € [1, ).

LEMMA 4.6. If o,v, A\, u are real numbers such that

A 0
o= (4.5.95)
w—v >0,
then for 3 = \+ o + u — v we have
T: 097 — (v
where T is defined by (4.5.80) and (4.5.81).
Proof: Let
T:J,TJ; "
Then Lemma 4.5 guarantees that 7" : (%7 — (%" if and only if T: 04 — ¢9. Note that T is defined by
tin g = 2MOAF)gk(u=r)9=B(mVk) (4.5.96)

So applying Lemma 4.4 with A= A+oand i = p — v, we complete the proof.
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A slight generalization of Lemma 4.4 can be obtained for the case when \, 11, 3 are vectors in R?,
that is

A= (A1, A\2),
o= (M17M2)7
B = (B1,P2)

Then (4.5.80)

{ Ta=b, where by, =Y, ;> tmxar, m € Z* (4.5.97)
a = {ak}trezz,
where ,
A 22].:1 N tkgg =B85 (m; k) (4.5.98)
The assumption (4.5.81) can be replaced again by the following one
Aj >0, >0, j=1,2. (4.5.99)

LEMMA 4.7. If A\, i, B € R? satisfy B; = \j + pj,i = 1,2 and if t,,  is chosen as in (4.5.96) then
T (00— 00 2, (4.5.100)
is bounded for ¢ = (q1,¢2),1 < q; < .

REMARK 4.1. Given any sequence a = {ay, k, }k—(k, ks)cz? We can consider the norm

1/q1

a1/q2
lallg = | D2 (Z |ak1k2|q2> : (4.5.101)

k1€Z \ko€Z

(with obvious modifications if g1 = oo or gz = o), and the corresponding Banach space ézll 6222. Note
that

B0 £
but the assertion of Lemma 4.7 is still true if we replace ({ (}> by (;>(}". The corresponding general-
ization of Lemma 4.6 is the following,

LEMMA 4.8. If o,v, \, i € R? satisfy

Aj i >0,
i (4.5.102)
i — Vi > 0,
then for B; = \j + 0 + p; — vj,j = 1,2 the operator T defined by (4.5.97) and (4.5.98) is in

BE T o2 G ).
6. Space localization

Given any Banach space B C D'(R") satisfying the property

for any Q(x) € C5°(R"™), fe€ B=Q(x)f € B, (4.6.103)
we can define for any p € [1, o0] and for any « € R the space (2% B as follows
1/q
[ flleaep = <Z 2kae ||Qkf||%> : (4.6.104)
keZ

91



6. SPACE LOCALIZATION Chapter 4. Scale invariant energy smoothing estimates

with obvious modification for ¢ = co. Note that for any f € C§°(R™ \ {0}) we have

||f||eg’aB < 0.

So (2*B can be defined as the closure of C3°(R™ \ {0}) with respect to the norm (4.6.104). An
alternative definition is based on the map

J:f€CP®R\{0V) C B — Jp(f)r = |Quflls € 92, (4.6.105)

where (9“ is the space of all sequences a = (aj)recz such that

1/q
llallia. = <Z ||ak||q2’“‘°‘> , (4.6.106)

keZ

with obvious modification for p = co. Then

[ fllieon = [[TB(f)|liae (4.6.107)
The space [2*B is independent of the concrete choice of Paley-Littlewood decomposition
D Qi) =1 (4.6.108)
JEL
satisfying
; >0
{ Qi) 2 0, | (4.6.109)
supp Q;(x) € {|z| ~ 27}.

A typical example is the case B = H;, where s € (—1,1),1 < p < oco. For s > —2 we have H;(R") C
D' (see [48]) and the norm is defined by

1Lz, = 11D e (4.6.110)

Our next goal is to show the equivalence of the norms

1/q
1D fllegore = <Z 2kq“||Qk|D|Sf|qu>

keZ
and

1/q
1 gy = <Z2’“‘“H|D|5Qkfll‘ip>

keZ
The proof of the equivalence of the norm from Theorem 4.4 is a direct consequence (taking p = 2) of
the following estimates.

PROPOSITION 4.1. Forp € (n/(n—1),n),q € [1,x)], for s € [-1,1] and a € R that satisfy

la| + |s| < min (ﬁ, ﬁ) (4.6.111)
p !
one can find a constant C' = C(n, s, p,q,a) > 0 so that
CNDI™ flle e < 1 fllsge sy < CIDI Fllego o (4.6.112)

92



Chapter 4. Scale invariant energy smoothing estimates 6. SPACE LOCALIZATION

Proof: The left inequality in (4.6.112) is equivalent to

1/q 1/q
(ngwnmmwfn%p) gc<22’“m||D|SQkfll‘zp> -

kEZ kEZ

Indeed, given any integers k, m € Z with |k — m| > 2 we have the identity

Qu|DI*Qunf = Qi|D|*Qum|DI*|D|*Qun f,
where va = %(Qm_l + Qm + Qm+1) is another Paley-Littlewood partition of unity

Z@mzla

such that @m(s) = 1for s € supp Q,,. To verify (4.6.113) it is sufficient to show that

1/q B 1/q
(szqanmmwﬂ%p) sc(Z 2mq“||D|Sme||%p> -

keZ meZ

From the estimate of Lemma 4.1 we have
1QkIDI Q| DI fll o < C21E =) f]| 15,
where t(k,m, s,p) is defined in (4.4.50). Applying the above estimate with
9= |D|7S@mf
together with Lemma 4.6, we complete the proof of (4.6.115).
To verify the right inequality in (4.6.113) it is sufficient to show

1/q 1/q
<szqa|||p|sc2kf||%p> §O<Z2kq"lle|Dlsfll%p> -

kEZ keZ

To this end we use the relation

DI Qrf

IDI"*Qx|D*|D|™* f =
= 3 IDI*QuIDI*QuQumlDI .

MmeZL
From Lemma 4.3 we have

1Qk|DI™* Q| DI* f| » < C21Fm52) || || 1,

(4.6.113)

(4.6.114)

(4.6.115)

(4.6.116)

(4.6.117)

(4.6.118)

where t(k, m, s,p) is defined as in (4.4.50), so applying Lemma 4.6, we obtain (4.6.117) and complete

the proof of the Proposition.

O

PROPOSITION 4.2. For p € (n/(n—1),n),q € [1,00], for s € [0,1] and a > 0 that satisfy (4.6.111)

one can find a constant C' = C(n, s, p,q,a) > 0 so that

159l < C (IFllemos g Nglessioa on + 1Flessws oo Nl gzsns sy )

provided ay, az,as, a4 > Oand 1 < P1,P2,P3,P4,91,92, 43, 44 < o0 Satisfy

1 1 1 1 11 1 1 1 1
a)+ax =a3+aqg =a,— = + 4+ — = = +

PP p3 opid @ 2 @ @

(4.6.119)
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Proof: The proof uses the previous proposition and the standard multiplicative Sobolev in-
equality

e < : e
159l iy < € (17t Ngllzoa + 17N zos gl )

so we omit the details.

Using the interpolation property
s s 1 1-6 6
Hp2)g=Hy, s =(1—0)s1 +0sz, 52 p1 +p_27

(11;;

p1?
we arrive at

PROPOSITION 4.3. Forp € (n/(n—1),n),q € [1,00], for s € (0,1) and a > 0 that satisfy (4.6.111)
one can find a constant C = C(n, s,p, q,a) > 0 so that

1-60 0
1A legersy <€ (Wl ) (1S llgsoason)” (4.6.120)

provided a1,a2 > 0and 1 < p1,p2, q1, @2 < oo satisfy
1 1-6 0 1 1-06 0
a=a1(1—0)+axf,s=1-0,- = +—, - = + —.
p P1 P2 q q1 q2
REMARK 4.2. Note that, using the norms introduced in (4.6.104), the estimate (4.1.12) can be
written as

Hu"LfE;o‘*l/zHl/? < C”f”L?E + C||FHL351,1/2H;1/2' (4.6.121)

7. Phase localization

Given any Banach space B C D'(R") satisfying the property

for any P(¢) € C;°(R™), f € B= P(D)f € B, (4.7.122)
we can define for any r € [1, oo] and for any s € R the space ¢}’ B as follows
1/r
[f e = <Z ||Pk(D)f|%2k”> ; (4.7.123)
kEZ

with obvious modification for » = co. Here {P;(£)} is a Paley-Littlewood decomposition.
Our goal is to find some concrete examples of Banach spaces B satisfying the embedding

B (B. (4.7.124)
Therefore we look for estimate of the type
1/r
(Z IIPk(D)fIITB> <C|Iflls- (4.7.125)
keZ
A typical example for a Banach space B satisfying (4.7.125) is B = LP with 1 < p < 2, so
1/2
(Z IPk(D)fII%;) <C|fllee, 1<p<2. (4.7.126)
keZ
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Having in mind that the spaces éQ"HS are natural candidate for estimate of type (4.7.125), we shall
verify that the conditions

1<g<2, p=2
{ sd=ap (4.7.127)
laf +]s] < 3,
imply (4.7.125). More precisely we have
LEMMA 4.9. If g € [1,2] and a, s € R satisfy
<1
{ o<1 (4.7.128)
laf +[s] < 3,
then
Hf”é%oég'aHs S C”f”lg,ags. (47129)

Proof: For any f € S(R™) we have ( for any r,¢q € (1, 00))

2/q 1/2
T Z(Z 2’W||D|8Qk1Pk2<D>f||zz> ~ (47130
ko€Z \k1€Z

1/2

2/q
> (z 24144 Q. [DI* P,y (D) flquz> (1@ P (D)1 22 2.

ko €7 \ki1€Z

1%

where here and below we use the discrete norm in lg’l"lz’; introduced in (4.5.101). In the second
equivalence relation we have used Proposition 4.1. Further we have

Qi Pey(D)f = > " Qs Pro(D)Quny Pony (D) Py (D) Qi f- (4.7.131)
mi1EZL moEL

It is not difficult, using again an integration by parts argument, to see that for |k; — m;| > 3 we
have

2(k1+m1)n/2
@k P (D)Qrm, gl > < CWHQHL% (4.7.132)
% (k n/2
2 1+mi)n
1@k, Pry (D)@ Py (D) f 22 < Oy [l 22 (4.7.133)
In a similar way, using the same integration by parts argument, we find for |ky — m2| > 3
2(k2+m2)n/2
”sz(D)lesz(D)g”Lz < CWHQHLZ’ (4.7.134)
)
2(k2+m2)n/2
1@k, Pry (D)Qumy Py (D) fl 22 < Oy 1l 22 (4.7.135)
Interpolation between (4.7.133) and (4.7.135) gives
|Qrs P (D)Quns Pona (D) |12 < CH0) [l 2, (4.7.136)

where k = (k1, ko) € Z2,m = (m1,ma) € Z2, 6 € |0, 1] will be chosen later on and

) 2(k1+m1)9n/2 2(k2+m2)(179)n/2
t —

kom = To(kivmi)on  9(kaVmz)(1—0)n (4.7.137)
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If a, s € R satisfy

lal +1s] < 3. (4.7.138)
then we can choose 6 € [0, 1] so that
<Z(1-90
{ laf < j( ) (4.7.139)

Using the argument of the proof from Lemma 4.1, we see that (4.7.135) is fulfilled without the
restrictions |k; — mq| > 3, |ka — ma| > 3. Applying Lemma 4.8, we get

I1Qk, Pr, (D)f||L2||e§~;e;f <[P, (D)@mlfHL?Hei;gegg' (4.7.140)
For 1 < ¢ < 2, we have the inequality
1P (D) Pl g < 1 P (D)@ £l s
From relation
Py (D)gl 21l 2 = Nlgl -
we get
1Qw, Prs (D)f||L2||e§~;é§f =
< OBy (D)@, 12l s = (4.7.141)

C DI Quy fllz2 ez = 1f [l gze -
This inequalities and (4.7.130) imply

HfHegOzg‘*Hs S CHfHEg,QHS. (47142)

This completes the proof.

Further, we obtain in a similar way the following:

LEMMA 4.10. If g € [2,0¢0] and a, s € R satisfy

<1
{ sl <1, § (4.7.143)
lal + |s] < 5,
then
Hf”eg'“Hs < C||f||z%“eg’“f'l3' (4.7.144)

In a similar way we can verify the following statement:

LEMMA 4.11. Ifq € [1,2] and a, s € R satisfy

sl <1, (4.7.145)
lal +]s| < 5 o
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and R is a pseudo differential operator with convolution type symbol which is homogeneous of degree
0, then

IR g sre < Cllf g e (4.7.146)

By using a duality argument one can relax the assumptions on ¢ and obtain the following
statement:

LEMMA 4.12. If g € [2,00] and a, s € R satisfy

sl <1, (4.7.147)
lal +]s| < 5 o

and R is a pseudo differential operator with convolution type symbol which is homogeneous of degree
0, then
IR e < CU o (4.7.148)

8. Proof of the Smoothing Estimate (4.1.5)

In this section we shall recall the basic scale invariant smoothing estimate due to Kenig, Ponce,
Vega.

One possible selfcontained proof of the Konig, Ponce, Vega estimate (4.1.5) is based on the
following lemmas:

LEMMA 4.13. For any u € S(R™) we have

lu(@y, )1 12, <C<Z||w|”2 ||Lz> (4.8.149)

kEZ
where v = (z1,2') with r1 € Rand ' € R"™1

Proof. We can consider the case of n = 1, since a similar argument works for n > 1. Let u € S(R),
we have

lu(@) e < C{D° |2"? Qu(@)u(x) (4.8.150)

kEZ

L2
From the Cauchy-Schwartz inequality and the fact that for the functions Q(z) we have supp,Q(x) C
{2k=1 < |z| < 2F+1} we obtain

> 2l Qul@)u(x)

keZ

<C (Z IR ||L2> (4.8.151)
L2

keZ
SO

lu(@)l|z < C (Z ] |L2> (4.8.152)

kez
O

Similarly, we have
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LEMMA 4.14. For any u € S(R™) we have

sup [l *u(@) 1z < Cllu(en, @)l 2, (4.8.153)
e xT

where v = (v1,2') with z1 € R and 2’ € R L.
The key point in the proof of (4.1.5) is to establish the estimate

|01 u(t, x1, 96’)||Lg.i 2, < C||F(t, xl’xl)”LilLf,x ) (4.8.154)

’

Now we shall show now that this estimate completes the proof of (4.1.5).
From (4.8.154), (4.8.149) and (4.8.153) we get

sup [z, Y2orult,2)|| 22 < C (Z Il 2F<t,w>||Lng> : (4.8.155)

kEZ

Using the fact that the Schrédinger equation in (4.1.9) and the norm in the right hand side of
(4.8.155) are invariant under the action of the group of rotations SO(n), we obtain

sup Izl 2 05ult, z) 22 < C (Z |||x|,1/2F<t,x>||Lng> L Vi=1,---,n. (4.8.156)
keZ

The estimate (4.8.154) follows from the previous lemmas and the Lemmas 2.1, 2.2 of Chapter
2, Section 4

In fact the basic idea of the proof of (4.8.154) is to compute the Fourier transform with respect
the time variable of equation (4.1.9) and obtain

— AN z) — ida(\, x) = F(\, z). (4.8.157)

Now if we split z = (z1,2’) € R x R""! and indicate with vy (z1,2') = @()\, x), we can apply Lemma
2.2 and have

1010x (@1, 2) L5 22, < CI(=A =N oal@r,2') s g2 - (4.8.158)

This estimate with the equation (4.8.157) give the following other one:

IN

1ovan w2 12, < CH=A =N a w2y g <

(4.8.159)

IN

Hﬁ()\,xl,x')‘

172
LIILZ/

The application of Plancherel’s theorem with respect to time variable gives the estimate (4.8.154)
and this completes the proof of (4.1.5).
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9. Application to semilinear Schrodinger equations

The last section of this chapter is devoted to present an application of the previous results.
Turning to the semilinear Schrédinger equation

Opu — 1A qgu = |Vul?, (4.9.160)
we note that the class of potentials V' = V(¢, z), satisfying (4.1.15), obeys certain rescaling property,
thus one can compute the scaling critical regularity

. n 2-—ap

2 p—1
and one can expect a well posedness for initial data f € L? if
n+4
n+2a
To verify this we shall construct a sequence u (¢, x) of functions defined as follows: u_1(¢t,2) = 0,
then we define the recurrence relation

p:

up — upt (L, x)

so that

{atuk+l —iAqupgr = V(t, x)ugluplP™, teR, zeR” (4.9.161)

up+1(0,2) = f(x).

The estimate (4.1.13) suggests to show the convergence of the sequence u; in the Banach space
Z=L¥L:nY’.
The definition of the recurrence relation (4.9.161) shows that we have to show first the property:
the map
we€Z=LFLANY - V(t,z)uluf' € L}L2+Y
is a well defined continuous operator provided V satisfies (4.1.15). Our goal is to show
lurtilloserz + lluntilly: < Cllfllze + C (llurllorz + lluklly)”
or shortly
[ue+1llz < Cllfllpz + Clluglly- (4.9.162)

To apply a contraction argument we need also the inequality

ks — urllz < Clluw — uriallz (luxllz + lus—a]2)" ™" (4.9.163)

Combining (4.9.162) and (4.9.163), taking || f||;2 sufficiently small, we can show via contraction
argument that u; converges in Z to the unique solution of (4.9.160) with initial data «(0) = f. Since
the proofs of (4.9.162) and (4.9.163) are similar, we treat (4.9.162) only. We need actually to verify

IVul?ly < Cllully (4.9.164)
To verify this inequality, we start with the definition of the space Y
lally ~ 22721010 (57 ) allezez- (4.9.165)

m
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9. APPLICATION TO SCHRODINGER EQUATIONS Chapter 4. Scale invariant energy smoothing estimates

We apply this relation with ¢ = |Vu|?, combined with the Sobolev embedding H'/2(R") — L?(R",
with
1/qg—1/2=1/(2n), (4.9.166)
and get
[VulPlly < Zw”nw( )Vl (4.9.167)

We can apply now the interpolation 1nequahty

0 1-6
Il zeszn < € (Nologer ) (Nolloze) (4.9.169)
where 6 € (0, 1) satisfy the relations
1 _1-6 1_96,1-6 (4.9.169)

Hence p(1 —60) = 1.
From (4.9.167) and (4.9.168) we get

VulPlly < szﬂnvuumw‘ ||Vu|\§<;L,Z> N (4.9.170)
We choose r € (1,2] so that
Vel . <Clblze, . (4917
so taking into account the assumption on V we see that
2 % -2 (4.9.172)
while ro € (1, 2] is chosen so that
2/ DV < C2T WMLz, .
e I 1 a-1 1 1 a 3
m 3t T Tapa=e a3 te (4.9.173)

1 1 a 3
pa 2 n o
so this relation and (4.9.166) implies that
n+4
T + 2a

From (4.9.170), (4.9.171) and (4.9.172) we get
IValPlly < llullfepe el ull 2Lz
From the Hardy inequality we have
™ ull 2z < Cllully

SO
IValPlly < llullf . lully:
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and this completes the proof of (4.9.164).
This completes the proof of Theorem 4.3.
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CHAPTER 5

Dispersive Estimate

1. General Strichartz Estimates

Following the proof of the Strichartz estimates given in [115], we shall set the more abstract
environment of an evolution operator defined as follows.

¢ (X, dz) is a measurable space;
o H is an Hilbert space wich is dense in L?(X);
o U(t) : H— L*(X) a family of linear operators such that
o that family is equi-continuous, that is V f € H we have

IU@) 2 S Il V¢ (Energy estimate) | 5.11)
o 30 > 0suchthatVge LL(X)N L3(X) we have either
|U(s) (U(t)" gHL?’ Sle—s77 gl Vt#s (Untruncated decay) , (5.1.2a)
or
|U(s) (U(t)" gHL;O SA+[t=s)"" Mgl Vi s (Truncated decay) . (5.1.2b)

In the applications it is natural to regard the equi-continuous family U(t) : H — L*(X) as
the evolution operator associated to the Cauchy problem for a partial differential equation, and to
consider H as the space of initial data. Observe that (U(t))" : L?(X) — H and we can define the
operator T': L' (R; L*(X)) — H by

TF:/(U(S))*F(S,-) ds, VF e L' (R L*(X)) . (5.1.3)
As far as its adjoint is concerned we have that T* : H — L> (R; L*(X)) and
(T*h, F) = (h,TF) = (h,/R(U
= [ (w6 Fis. ) as = / (U(s)h. F(s. ) ds

= [wemFeas= [ | @6 eTFEmdas.

forany h € H and F € L' (R; L?(X)), thus T* is defined as
(T*h) (t,2) = (U(t)h) (x) , Vhe H | (5.1.4)

for any time ¢t € R, any x € X.
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1. GENERAL STRICHARTZ ESTIMATES Chapter 5. Dispersive Estimate

If that is the case, then the estimate (5.1.1) looks like an energy estimate, and it states the
boundedness of T*, and consequently, that one of T" because of the 77* method (see Section 10 in
Chapter 1). On the other hand the estimates (5.1.2) play the role of a dispersive estimate with
respect to the time variable, where the o has a meaning of a decay rate. The composition T*T :
L' (R; L*(X)) — L (R; L*(X)) is the operator

(T*T) F(t,-) = / Ut)(U(s))" F(s,-)ds, VF € L' (R; L*(X)) , (5.1.5)
R
which can be decomposed as a sum of its retarded and advanced parts
(T"T)p F(t,) = / Ut)(U(s))" F(s,-) ds, (5.1.5R)
s<t
(T°T) , F(t,) = / Ut) (U(s))" F(s,-) ds (5.15.4)
s>t

Observe that (T*T) , solves the corresponding inhomogeneous problem with zero initial data (Duhamel’s
principle).

1.1. Main Theorem. This section is devoted to investigate precisely the properties of the op-
erators U(t), U(t)*, T, T* and their compositions involved in the previous setting. We shall see that
actually more general LiL’ spaces will enter in the domain of 7*7T. In order to describe all such
possible pairs (7, ¢) (once the decay o is given) we shall need for the sequel the following definition.

DEFINITION 5.1. Let the decay rate, o > 0, be given. We say that the exponent pair (r,q) is
o-admissible if r,q > 2, (r,q,0) # (00,2,1) and
% <o(3-1). (5.1.6)
If equality holds in (5.1.6), then we say that (r,q) is sharp o-admissible, otherwise we say that (r, q)
is non-sharp o-admissible. When o > 1 the sharp o-admissible point

p— (z_a 2) (5.1.7)

o—17
is called endpoint.
We are able now to state the main result.
THEOREM 5.1 (Keel and Tao). If U(t) obeys (5.1.1) and (5.1.2a), then the following estimates
WU oy S Wl (5.1.8)
|| we re s
o<t

SIEN (5.1.9)

oy
T
LI

H

SIE
LiLg

‘ (5.1.10)
hold for all sharp-admissible exponent pairs (r,q), (q,T).

Furthermore, if the decay hypothesis is strengthened to (5.1.2b), then (5.1.8), (5.1.9) and (5.1.10)
hold for all o-admissible exponent pairs (r,q), (7, Q).

/ U(t) (U(s))" F(s) ds

s<t

g
qa rw
Ly L7
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Chapter 5. Dispersive Estimate 1. GENERAL STRICHARTZ ESTIMATES

The proof will be given in the following subsections, tough even the inhomogeneous case, and
the endpoint cases will be only sketched.

There are several advantages to formulating Theorem 5.1 in this level of generality. First, it
allows both wave equation and Schrodinger equation estimates to be treated in a unified manner.
Second, it eliminates certain distractions and unnecessary assumptions (e.g. group structure on the
U(t)). Finally, there is a natural scaling to these estimates which is only apparent in this setting.
More precisely, the sharp statement of the theorem is invariant under the scaling

Ut) = U(5), dx — Adz, (f:9) = A7(f,9) -

In other words, for scaling purposes time behaves like R, X behaves like R? , H behaves like
L?(Rr), and U(t) is dimensionless. In practice the scaling dimension differs from the Euclidean

dimension; for instance, in the wave equation o = "T_l, and in the Schrodinger equation o = 3.

1.2. The Non-Endpoint Homogeneous Case. First we shall prove the homogeneous esti-
mates (5.1.8) and (5.1.9) for (¢,r) # P. By duality (5.1.8) is equivalent to (5.1.9), who is in turn
equivalent to the bilinear estimate

| [ @@y P o) 6wy dsdt S IFy,, 16y, (5.111)

by the so-called 77* method, namely by the statement 4 from Theorem (1.18) with B = L% (R; L™ (R")).
By real interpolation between the bilinear version of (5.1.1)

(U ()" F(s), U1) GE)] S IF ()2 1G] 2

and the bilinear version of (5.1.2a)

(WU ()" Fs), (UE)" GEN| < [t = s~ IF ()] gy IGEO y

we obtain
2

(U ()" F(s), (U®)" G| S |t - s|‘”(1’;) 1E ) o 1GE (5.1.12)

by Theorem 1.14, interpolating the previous estimates, and considering % =1- %. Recalling that

in the sharp o-admissible case % = 3 — Z and integrating over R x R we have

[ [y me.wan e asars [ [ 1e=s 7 1l 160, s
R JR R JR

and the (5.1.11) follows from the Hardy-Littlewood-Sobolev inequality (see (1.9.39) with n = 1 and

p = q), provided that v = % < 1, that is ¢ > 2, equivalent to (¢,r) # P. If we are assuming the

truncated decay (5.1.2b), then the estimate (5.1.12) can be improved to
* * 76(17%)
((U(s)" Fs), (U®)" G(t)| S (1 +]t —s]) IE ) e NGO L
and now it suffices to apply Hausdorff-Young inequality (see (1.8.31)) with n = 1 and p = ¢), when-
2
—o|1-=
ever the function (1 + ||) ( T) is in the space L*® (R), with 1 + % =14 é, that is,

cl-2)t=o(-2)2>1,

S
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1. GENERAL STRICHARTZ ESTIMATES Chapter 5. Dispersive Estimate

or in other words whenever the pair (r, ¢) is non-sharp c-admissible condition. This concludes the
proof of the homogeneous estimates (5.1.8) and (5.1.9) in the non-endpoint case, (r,q) # P.

1.3. The Endpoint Homogeneous Case. We deal now with (r,q) = P = (%, 2), for o > 1,
therefore we can assume only the untruncated decay (5.1.2a).

By symmetry it suffices to restrict our attention to the retarded version of (5.1.11),

|BR(F.G)| = \ J_ () P o) 60) ds ] S 1Pl 16]5ars (5.1.13)

nevertheless it will be not sufficient in this case to obtain (by interpolation) a one-parameter family
of estimates, and a wider two-parameter family of estimates will be required. For this purpose we
consider a further dyadic decomposition of the retarded bilinear form Bg, defined in (5.1.13), as
Br(F,G) =3_; Br,;(F,G), where

Bry(r.6) = [ (U(s)" F(s), (U0)" G(t) ds dt). (1149
t—20 1 <s<t—27
so that (5.1.9) is reduced to the estimate
D Bri(FE G| SIFll 2 G p2pr (5.1.15)
JEZ

where £ = ZEL is the exponent conjugated to 1 in the endpoint P.

The first step is to obtain an estimate for
(5.1.14). This can be done in a whole neighbor-
hood of (1,1), denoted as D,, (see Figure 5.1),
and it takes the following form,

. 1 1

—jo 1757—
|Br;(F,G)| <2 ( b) IF N L2 par IGl 2y
(5.1.16)

forall j € Z, and all (1,1) € D,. FIGURE 5.1 Neighborhood D, of (1,1).

a’

This result can be achieved interpolating the following three cases:
1) a=b=ox;
(ii) a € [2,00), and b = 2;
(iii) b € [2,00) and a = 2.
We shall also remark that this argument breaks down, when ¢ = 1, then » = oco. Once we have
(5.1.16), the second step is to apply it to some special F' and G in the form

B

k
E(t) =277 f(t)xe) - G(s) =277 g(5)X fa(s) » (5.1.17)

106



Chapter 5. Dispersive Estimate 2. STRICHARTZ ESTIMATES

where f and g are scalar functions, k, k € Z and E(t), E(s) are sets of measure 2" and 2 respectively
for each ¢t and s. For such a case we may choose ¢ and b in such a way that

|Brj(F,G)| < 27Uk=del (=D ) 7)o gl (5.1.18)
holds for any € > 0, and this will imply (5.1.15). For the case of general F' and GG, we can make profit

of the so-called atomic decomposition of L?, stated in the following result.

LEMMA 5.1. Let 0 < p < co. Then any f € L? (R™) can be written as
fla)=>" (),
JEZ

k
where each xy, is a function bounded by O | 2 P | and supported on a set of measure O (2’“), and the

ci’s are non-negative constants such that |[{ci}|,, < || f]l 10

Applying Lemma 5.1 with p =/ to F(¢) and G(s) we have the atomic decompositions
F(t) =) frlt)xu(t) G(s) = gi(9)X;: » (5.1.19)
kEZ kez

and (5.1.15) follows from the following argument. Using the arguments for the estimate (5.1.18),
and Young’s inequality we get

> 1By (PG £33 > 2 oD s g

jEZ JEL KEL jiey,
SN (1o E|) 2 Ml Nl <
keZ ez, t
1 3
5<Z|fkllig> Sl |
kEZ keZ

and the statement (5.1.15) follows after interchanging L? and 2, and including "’ in /2.
Now we focalize our attention on the retarded estimate (5.1.10),
As for the (5.1.13), the retarded estimate (5.1.10) is equivalent to

|Br(F,G)| S Il 1G]] (5.1.20)

Ld'rr Ly o
and one can follow the same procedure used in the previous subsection, modifying the estimate
5.1.16 for the dyadic component of Bgr in a suitable way. This concludes the proof of the main

theorem. O

2. Strichartz Estimates for Free Wave and Schroédinger Equations

As a consequence of Theorem 5.1 we can prove the endpoint Strichartz estimates for the free
wave and Schrodinger Equation in higher dimension. This completely settles the problem of deter-
mining the possible homogeneous Strichartz estimates for those problems (as far as the retarded
ones are concerned it is still open). We shall need the following definition for the parameter o.
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DEFINITION 5.2. For a given dimension n, we say that a pair (r,q) is wave admissible if n > 2,
and (r,q)is "T_l-admissible, and Schrédinger admissible if n > 1 and (, q) is sharp 5-admissible.
In particular,

P = (2(711:31) , 2) is wave admissible for n > 3, (5.2.21a)
and
P = (%, 2) is Schrodinger admissible for n > 2 | (5.2.21b)

as it is sketched in the Figures 5.1 and 5.2 below.

1 1

q q

1 1

1 P 1 P

2 2

0 By 3 1 : 0 ”2‘;2 3 1 H
FIGURE 5.1. Wave-admissible FIGURE 5.2. Schrodinger ad-
pairs (for n > 3) missible pairs (for n > 2)

2.1. The Linear Case. In this subsection we shall focus at first our attention to the free linear
wave equation first. The following Corollary can be achieved from Theorem 5.1, and it extends a
long line of investigation going back to a specific space-time estimate for the linear Klein-Gordon
equation in [173] and the fundamental paper of Strichartz [194] drawing the connection to the
restriction theorem of Tomas and Stein.

COROLLARY 5.1. Suppose n > 2 and (q,r) and (q,7) are wave admissible pairs with r,7 < oo L
If uwis a (weak) solution to the problem
Ou(t,x) = F(t,z), (t,z) €]0,T] x R", (5.2.22a)
u(0,2) =uo(z) , Opu(0,2) =wuy(z), (5.2.22b)

I1When r = co the estimate (5.2.23) is still true, provided replacing the Lebesgue space L" (R™) with the Besov space
Bg 5 (R™), and similarly for 7 = oo (see [73])
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for some data ug, u; and F and some time T > 0, then
”uHLQ([O,T];L;) + ||“||c([o,T];Hv) + Hut”c([o,T];Hvﬂ) S lwoll g + luall s + HF||L‘7’([O,T];L;"’) , (5.2.23)
provided the gap condition
1 no_ _ n_ 1, n
E—i_?_ ’7+2_q~/+5/ 21 (5'2'24)

holds. Conversely, if (5.2.23) holds for all uo, wi, F and T, then (q,r) and (§,7) must be wave
admissible and the gap condition must hold.

Proof. We start with showing the necessity of the various conditions on the parameters involved.
The gap condition follows from dimensional analysis (scaling considerations), whereas the admissi-
bility conditions follow from the Knapp counterexample for the cone and its adjoint . The inadmis-
sibility of (¢,7) = (2,00), or (¢,7) = (2, 00) in the three-dimensional case was shown in [120]. At last
the remaining conditions ¢ > ¢/, and ¢ > ¢’ follow from a translation invariant argument, since in
the limiting case T' = oo the homogeneous part of the estimate can be viewed as a time-translation
invariant operator from Lfl ([O, oo); L (R")) to L ([0,00); L7 (R™)).

Now we suppose that ¢ and r satisfy the assumptions of the corollary, and that u is a solution of
(5.2.22). We use Duhamel’s principle to write u as

w(t, ) =U®#)(ur) + U'(t)(uo) + (GF)(t,-) , (5.2.25)
where the operators U, and G are defined by functional calculus as

U = 2028 (5.2.26a)

t .
GF:/ M (0DVED) ps, ) ds (5.2.26b)
0

Paley-Littlewood theory (see Section 11 of Chapter 1, in particular Proposition 1.6 and the following
discussion) allows us to restrict our attention to the case of spatial Fourier transform of ug, u; and
F (and consequently u) localized in the annulus {|¢| ~ 27}. By the gap condition the estimate is
scale invariant, and so we may assume that j = 0. Combining these two reductions with (5.2.25)
and (5.2.26) we see that (5.2.23) is equivalent to

”Ui(t)ulHC(Li) Sl HGiFHc(Lg) < HFHLg/L;/ ’
1U£@wllpapy S lluallze IG£Fllpary SUFN Lo, s
t L t x

where the localized wave evolution operator U, and the operator G+ are defined as

U+ (t) = xjo,1¢0(&)eF ! GiF = Ux(t) (Ux(s))” F(s,-) ds,

t>s

where ¢y is the partition function of the phase space localized in || ~ 1.

Our firs step is to consider the L{°L2 norms. All above estimates will follow from Theorem 5.1
with H = L? (R") and X = R",and o = ”51 , once we show that U obeys the energy estimate (5.1.1)
and the truncated decay estimate (5.1.2b). The former is immediate from Plancherel’s Theorem, and
the latter can be achieved using the stationary phase method on the kernel of UL (t) (Ux(s))" (see

either [181], or [87] or [186]).
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Continuity of U, u; will follow from Plancherel’s Theorem, while for G. F’ we can use the identity
(G+F) (t+e,) =V 2 (GLF) (t,7) + (Gixpara F) (1,1

the continuity of the operator ¢'*V~2 on L?, and the fact that || x4 F||, ., — 0ase — 0. ]

Now we shall turn our attention to the free linear Schrodinger equation. In this case Theorem
5.1 gives the following corollary.

COROLLARY 5.2. Suppose n > 1 and (q,r) and (q,7) are Schrodinger admissible pairs. If uis a
(weak) solution to the problem
w(t,x) — Au(t,z) = F(t,x), (t,z) €[0,T] x R" (5.2.27a)
u(0,2) = up(z) , (5.2.27b)
for some data vy, and F and some time 0 < T < oo, then
lull oo, r52m) + 1l qo, g2y S llwoll g2 + HFHLq’([o_,T];Lg’) : (5.2.28)
Conversely, if (5.2.28) holds for all ug, F and T, then (q,r) and (q,7) must be Schrodinger admissible.

Proof. The proof is similar to the one of Corollary 5.1, but it is simpler, since no localization is
involved. Conditions on ¢ and r are necessary because of scaling invariance, whereas the negative
result for (7, ¢) = (00, 2) in the two-dimensional case is proved in [140]. For sufficiency as in (5.2.25),
we decompose u as

u(t,) = U(t)(uo) + (GF)(t,-) , (5.2.29)
where the operators U, and G are defined by functional calculus as
U(t) = X1 (t)e™ ™2, (5.2.30a)
GF = U(t) (U(s))" F(s,-) ds, (5.2.30b)
t>s

and we apply Theorem 5.1 with # = L? (R") and X = R", and 0 = %. The energy estimate follows
from Plancherel’s Theorem, while the untruncated decay estimate can be obtained directly from the
explicit representation of the solution

lz—y|?
u(t, x) = etV _Auo(ac) =1 o / e 2t wug(y)dy.
(2m)2 Jre
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CHAPTER 6

Strong endpoint Strichartz Estimates for the Schrodinger
Equation with small Magnetic Potential

In this chapter we present some new results regarding the Schrédinger equation perturbed by a
potential assumed to be small with respect some suitable norms. We present also a result involving
the spectrum of A,. The author follows, as said before, his work (joint with V. Georgiev and A.
Stefanov) [67].

1. Introduction and statement of results

Let A = (Ai(t,2), - ,An(t,z)),z € R",n > 3 be a magnetic potential, such that A;(¢,z),j =
1,---,n, are real valued functions, and let the magnetic Laplacian operator be
Aa =) (0;+iA))* = A+ 2iAV +idiv(A) — (D A3).
J J
Our goal is to study the dispersive properties of the corresponding Schrodinger equation
{Btu—iAAu:F(tw), teR, zeR” 6.1.1)
u(0,2) = f(2).
In this chapter, we will be concerned with the Strichartz and smoothing estimates for (4.1.1), when
the vector potential A is small in a certain sense. In fact, we aim at obtaining global scale invariant
Strichartz and smoothing estimates, under appropriate scale invariant smallness assumptions on
A.
In the “free” case A = 0, there exists vast literature on this subject. Let us introduce the mixed

space-time norms
q/r
fullzn: = ( [ ([ wora)
R n

We say that a pair of exponents (¢, r) is Strichartz admissible, if 2 < ¢,r < o0, 2/¢+ n/r = n/2 and
(g,7,n) # (2,00,2). Then, by result of Strichartz, Ginibre-Velo, and Keel-Tao,

1/q

e fllzgey < CIS e 612
t
/eiSAF(s, -)ds SC|F| oy (6.1.3)
0 L2 ’
t
/ =92 (s Ndsl| < CYIF|l, . (6.1.4)
0 LILr

111



1. INTRODUCTION AND STATEMENT OF RESULTS Chapter 6. Smoothing - Strichartz Estimates

where (¢, 7) is another Strichartz admissible pair and ¢’ = ¢/(¢ — 1). Note that for n > 3 the set of
admissible pairs (¢, 7) can be represented equivalently as (1/¢,1/r) € AB, where AB is the segment
with end points A(0,1/2), B(1/2,2n/(n — 2)) and we can rewrite the estimate (6.1.3) as

t

/ ¢*AF(s,)ds| <O (F_gng 1Pl e + ||F2||L5LG/<n+2)> - 6.15)
L2
On the other hand, the smoothing estimates were established by Kenig-Ponce-Vega in the semi-
nal paper, [117], see also Ruiz-Vega [164] . These were later extended to more general second order
Schrodinger equations in [118]. Some possible scale and rotation invariant smoothing estimates
similar to (6.1.2), (6.1.3) and (6.1.4) can be written as (see Corollary 6.1 below)

iue% (2—m/22k/2 HeitAkapr(\z\wm)) <C|fll 2 (6.1.6)
t
/ B (s <C <Z gm/29=k/2 |Fk|LEL2(|w|N2m)> : (6.1.7)
5 12 mez
t
sup | 27™/29k/2 /ei(t_s)AFk(s,-)dS < (6.1.8)
mer 0 L2L2(|z|~2m)

<C <Z 222782 || Pl 2 21 Ngm)>

meZ

where k is any integer, ¢, := P, ¢ is the k" Littlewood-Paley piece of ¢ ( see Section 2.1 below).

Motivated by these estimates, given any integer k € Z introduce the spaces Y}, defined by the

I‘IOI'IIIS1

Illy, =27F/2) " am/2 6%l L2 L2 (| mmy -

Now we can define the Banach spaces Y as a closure of the functions
¢(t,x) € Cg°(R x (R™\ 0))

with respect to the norm

1/2
18]y = (Z |¢|2yk> - (6.1.9)
k

Its dual space Y’ consists of tempered distributions S’(R x R™), having finite norm

1/2
6l = (Z |¢|§,5) ,
k

where
Iolly, = 252 sup 2~/ 91l 2 L2 (| mamy -

IThe expressions ¢ — ||¢||Yk are not faithfull norms, in the sense that may be zero, even for some ¢ # 0. On the other
hand, they satisfy all the other norm requirements and ¢ — (3, ||¢x ||§,k )1/2 is a norm!
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Then the smoothing estimates (6.1.6), (6.1.7) and (6.1.8) imply

t
€20y, < CUFle | [ 2 F(s,0as| <Pl (6.1.10)
0 L2
t
/ei(t’S)AF(s,-)ds <C|F|y - (6.1.11)

0 Y/
Motivated by the Strichartz estimates and Besov versions of "local smoothing” norms, we intro-
duce the spaces
X =LiL2+ L7202 1y
with norm

|F||x = inf
F=FO)4F®@) 4 FG) Lirz

The dual space to X space is X’ and the norm in this space is defined in a similar way:

1/2
l6llx = <Z |¢II§<2> : (6.1.12)
k

=]

+ e

(3)
22/ * HF y '

where

6l = WS, 5l L, + 2%/ sup 272 |6kl 12 12 ()
q,r)—Str.

The main result of this chapter is the following:

THEOREM 6.1. If n > 3, then one can find a positive number ¢ > 0 so that for any (vector)
potential A = A(t, x) satisfying

[AlloeLn + VAl oo pn/z + S%P(Z 2™ | A<kl oo oo o mamy) S 6 (6.1.13)

m

there exists C' > 0, such that for any F(t,z) € S(R x R"™) we have the estimate

/ =98 p(s Yds|| < C|[F||x.
t>s X/
In particular, the solutions to (4.1.1) satisfy the smoothing - Strichartz estimate

lullx: SNl +1Fx - (6.1.14)

REMARK 6.1. The estimate (6.1.14) implies various interesting inequalities. For example we
have the classical Strichartz estimate

ol S 1+ n Py + IRl s

as well as the smoothing - Strichartz estimates

lelly S 1z + _in

Jnf iy s I Foll g esisn

sup  |ullparr S Nfllz + [1Fly -
(q,m)—Str.
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The main idea to prove this theorem is to apply appropriate scale invariant estimate for the
free Schrodinger equation involving Strichartz and smoothing type norms.

Estimates of this type have been obtained earlier in [163] and [164] with Strichartz type norms
of the form || ([  2n/(n+2) L2 Recently, we found a similar estimate in the work [95] and this estimate

has the form
t

|DL/? / =D (s, ) ds|| rz 2,12 < ClIF Il 2 p2n/nva. (6.1.15)
0
On one hand, this estimate can be used to derive the Strichartz estimate for the perturbed Schrodinger
equation provided its (formally) "dual" version
t
/ei@*SmF(s, Nds < C’HD;”QFHLéng,Lg. (6.1.16)

0 LELin/(nf2)

is verified . The properties (L>°)" # L! and (L!)’ = L*° show that (6.1.16) implies (6.1.15), but not
viceversa. However, we establish (6.1.16) and show that these estimates are stable under small
magnetic perturbations satisfying (6.1.13).

2. Preliminaries

2.1. Fourier transform and Littlewood-Paley projections. Define the Fourier transform
and its inverse by

F© = | fla)e ™ eda
/

f(z) = / (&),

R”

Introduce a positive, decreasing, smooth away from zero function y : RL — R!, supported in
{€:0< &< 2}and x(§) =1, for all 0 < £ < 1. Define ¢(§) = x(§) — x(2£), which is positive and
supported in the annulus {1/2 < |{| < 2}. We have that ¢ is smooth and }°, > ¢(27%¢) = 1 for all
¢ # 0. In higher dimensions, we slightly abuse the notations and denote a function with similar
properties by the same name, i.e. ¢(&) = ¢(|¢]), x(£) = x(¢]) ete. Note that for n > 1, x(£) : R — R!
is a smooth function even at zero.

The k' Littlewood-Paley projection (see also Section 11, Chapter 1 for more details) is defined as a
multiplier type operator by ]SZf (&) = p(27%¢) f(€). Note that the kernel of P, is integrable, smooth
and real valued for every k. In particular, it is bounded on every L? : 1 < p < oo and it commutes
with differential operators. Another helpful observation is that for the differential operator D?
defined via the multiplier |£|*, one has

D2 Pyu = 2% P,

where P, is given by the multiplier ¢(2-%¢), where ¢(£) = o(€)[€[°.
We also consider Py := >, _, P, which essentially restricts the Fourier transform to frequencies
< 2k,

114



Chapter 6. Smoothing - Strichartz Estimates 2. PRELIMINARIES

Define also the function ¢(§) = x({/4) — x(4€). Note that ) has similar support properties as ¢
and ¥ (&)p(§) = ¢(§). Thus, we may also define the operators Z; by Z/k\f(g) = (275 f(€). By the
construction, Z;, P, = P, and Z, = P2+ ...+ Pr11.

Recall a version of the Calderén commutator estimate (see for example Lemma 2.1 in the work of
Rodnianski and Tao, [161]), which reads

1P, Flgllpr < C27F IV Fll L llgll o s

whenever 1 <r,p,q < ocoand 1/r=1/q+ 1/p.
Also of interest will be the properties of products under the action of P.. Starting with the relations

Pu(fg) =Y Pi(figm),
Lm

Pe(fogm) = / / Pe(&)Pu(€ — 1) (€ — 0) P () (m)e2™ S ddn,

R" R™

we exploit the property supp Py (&) C {28! < [¢] < 2FF!} and see that the sum can be restricted to
the set

{|¢ —=m| > 2+ Ny, |max({,m) — k| <3} U{|{ —m| <14 Ny, k <max(¢,m)+ 3},

where Ny > 1 is an arbitrary number. This domain can be enlarged slightly using the inequality
max(¢,m) < £+ 1+ Ny provided | — m| < 1+ Ny. So we can restrict the sum over the union of the
following sets (the first two are disjoint for Ny > 5, while the third one can overlap with them)

(m<k—No+1, |[{—k| <3}, {{<k—No+1, |m—k| <3}
and
{|€—m|§1—|—N0, éZk—N0—4}

In conclusion, for any two (Schwartz) functions f, ¢ we have the pointwise estimate

Pl < 3 S 1P figm) @) +

I>k—No—4 |m—£|<1+Ng
+ | Pe(f<k—No+1 Gh—3<-<kt3)(x)| +

H P (fr-3<-<k+3 9<k—No+1)(T)]-

Taking for determinacy Ny = 7, we get

|Pe(f9)(@)] < [f<k—6(x)gr(x)| + [[Phs f<h—6lgr—3< <kt3(®)| +
+|Pi(fr-s<<kis g<r-o) @+ D D |Pu(figm)(@)].

I>k—11 |m—0|<8

In particular, we need an appropriate (product like!) expression for
P, (AVu). The main term is clearly when Vu is in high frequency mode, while A is low frequency.
More precisely, according to our considerations above,

Pi(AVu) = Acy_6Vuy, + EF,
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where E*(r) satisfies the pointwise estimate
|E*(2)] < [Py, A<i—6]Vur-3<.ky3(2)] + (6.2.17)
Do D P A V) (@) + [Pe(Ar—s< <hrs - Vusk)(@)]
I>k—11 |m—(|<8

Note that in terms of L? behavior and Littlewood-Paley theory, one treats these error terms as
if they would appear in the form (9, A)u.

2.2. Besov space versions of the "local smoothing space". The space Y was introduced as
the closure of S(R x R™) with respect to the norm in (6.1.9), where

1611y, =252 27 | Pedll 12 2 o mamy - (6.2.18)

We can replace | F||2(jz|~2m) by the comparable expression |[¢(27™-)F||;2. This will be done fre-
quently (and without much discussions) in the sequel in order to make use of the Plancherel’s
theorem, which is of course valid only in the global L? space. We mention also that the norm ||¢||y
is scale invariant for rescale factors any diadic number.

We show that the "local smoothing space” defined as a closure of Schwartz functions ¢ with
respect to "local smoothing norms”

> 22 | Dy ()|

L2L2(|z|~2m)
can be embedded in Y.
LEMMA 6.1. There is a constant C' = C(n), so that for every Schwartz function ¢ we have

llly <C> 2m/? (6.2.19)

D51 26(t,)

L3L2(|z|~2m)
Proof. Taking into account the definition of the space Y, it is sufficient to establish the estimate:

6y, < Y272 | D7 20u (2, )

L2L2(|z|~2m)

for any integer k. Using the scale invariance of the estimate we see that we lose no generality taking
k = 0. Thus, we have to verify the estimate

S22 (2 )R]0 < O 272 (27D 20t )|

m

2L’

Since
Pap= > RDY*D;Y?Pp= > > PRyp(27")D; 2Py,
|k|<2 |k|<2 €€

we can apply the triangle inequality, and reduce the proof to the following estimate

S0 o ot 0
m LEL e
< CZ 2[/2 Hw(sz)Dgl/Q(bk(t’ ZZ?)’ o ’
Y/ t T
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where k € Z, |k| < 2. This estimate follows easily from

[em)Bope ], < CllFlzy < 241 (6.2.20)

\]sa(2"”-)%cp(z—é,)fHLg SC2Z"|fllpz, m=€+2 (6.2.21)

and the obvious observation that

Z 2m/2_|_ Z 2m/22—m§2€/2'
m<l+1 m>0+2

The estimate (6.2.20) is obvious, while the proof of (6.2.21) follows from
P27 Pop(27) f = [p(27™), Polp(2 1) f, m > £ 42

and the Calderon estimate
[, Bolg| , < 027 lgllz

This completes the proof of the lemma. ad

REMARK 6.1. Note that the argument in the proof of this lemma implies also the estimates
IP(D)filly S fklly = 1£lly, » VE € Z (6.2.22)
for any pseudodiferential operator with symbol P(¢) € C§°(R™).
We have also the following estimate (dual to (6.2.19))

LEMMA 6.2. There is a constant C = C(n), so that for every Schwartz function ¢ € Y, we have

sup2~™/2 HDi/QqS(t,x)}

< Cy l|8lly - (6.2.23)

LIL2(|z|~2m)

REMARK 6.2. Some generalizations of the previous two lemmas can be seen in Theorem 1.6 and
Theorem 1.7 in [69].

3. Estimates for the bilinear form Q(F, G)
The sesquilinear form
Q(F,G) = / / (e =I2F(s), G(t)) 2 (mnydsdt
t>s

with Schwartz functions F, G, was used in [115] to derive Strichartz estimates (with endpoint) and

this estimates can be expressed in terms of )

< ’ i / s . .
QUGN <CIFI g, 1G], (6.3.24

2 )
x

for all Strichartz pairs (q1,71), (g2, 72).
We have the following estimate that can be obtained by applying Lemma 3 from the work of
Ionescu-Kenig [95].
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THEOREM 6.2. There exists a constant C = C(n) so that for any integer k, any F(t,z) € S(RxR™)
and G(t,z) € S(R x R™)

|Q(Fk,Gk)| <C <Z 2m/22k/2|(p(2m-)Fk|LfL§> |‘GkHLfL§n/(n+2)' (6.3.25)

meZ
We have also the following energy-smoothing estimate.

THEOREM 6.3. There exists a constant C = C(n) so that for any integer k, any F(t,z) € S(RxR")
and G(t,z) € S(R x R")

|Q(Fy, Gi)| < C (Z 27"/22—’“/%w(z—m-)Fmng) 1G]l 32 (6.3.26)

meEZ
Before proving these theorems, we verify some of the smoothing estimates used in this chapter.

3.1. Estimates in the local smoothing space. For n = 1 we have the following smoothing
estimates (see Kenig, Ponce, Vega [116, 117])

25272 fill e r2(y) < Ol fill 22, (6.3.27)

2]{}/2 / e—i(t—s)AFk(S)dS
s<t

< C||Fkllp1zz, (6.3.28)
LL?

as well as

ok/2 < C”Fk”L}rL%v) (6.3.29)

/ e AL (t)dt
vy L2

for any interval v C R,. Here C' > 0 is a constant independent of f, F, .
For n > 1 we may assume

~

supp f(§) C{I¢] < &1/10, & = (&, - &)} (6.3.30)

Then we have the representation

(72 f) (z1,2)) = (6.3.31)
B C/ / TG L (i85 ) () dE'dy
Rn—1 JRn—1

where Ay = 92 .
This representation and the one—dimensional estimates (6.3.27), (6.3.28) and (6.3.29) lead to
the following statement:

LEMMA 6.3. There exists a constant C depending only on the dimension, so that for any [ €
S(R™), F € S(R x R™), satisfying (6.3.30) and

suppe F(t,€) C{|¢] < &1/10, € = (&, &)} (6.3.32)
we have
22| A fill e 12, n2ty) < Cllfillzz, 2, (6.3.33)
oh/2 / e~ I-DA R (5)ds < C|Fllos 12, (6.3.34)
s<t L;ol Li/ t e
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and
ok/2 / e AR (t)dt < Ol Fellzs 12,12+ (6.3.35)
v LilLi’ e
for any interval v C R,.
Proof. To prove (6.3.33) we use (6.3.31) and find
(eﬁf) (21,€) = (6.3.36)

= ce'tle'l’ (eiitAlf) (v1,€) = ce A (eit|§’\2f(,’€/)) (z1).
Note that
Pp(&1) ~ Pi(§) (6.3.37)

for £ € suppg fdue to (6.3.30). From this observation, the one dimensional estimate (6.3.27) and
the Plancherel identity imply (6.3.33), since

Hf(iﬁlafl)HLg,L;q > Hf(fflaf/)”L;ng, = ||f($laff/)||L;<;Li,-

In a similar way we prove (6.3.34) and (6.3.35). This completes the proof of the lemma. o

Applying Holder inequality

lgllz:, < Z 2m/2|\9||L§1(|m|~2m), sup 27m/2”gHL§1(|w|~2m) < llgllzgs
mel MmeZL

we obtain
COROLLARY 6.1. The smoothing estimates (6.1.6), (6.1.7), (6.1.8) are satisfied.
By Corollary 6.1 one gets
|Q(Fy, Gi)| < Cn (3o 274/22m/2 el L2 L2 (o o2y ) X
X227 M227 2 G| 2 ) (6.3.38)

After this prepartion, we turn to

3.2. Proof of Theorem 6.2: Bilinear smoothing-Strichartz estimate. The estimate (6.3.25)
is scale invariant and for this we can take k = 0. We have the relation

Q(F,G) = / /R ) (eTNAF(s), G(t)) 2 (rnydsdt—

_ / / (DD (5), G(t)) g dsdt
t<s

Qo(F,G) = < / ds e A F(s), / dt e“AG(t)>
R R L2(Rm)
we can apply the Cauchy inequality and via (6.1.3) and (6.1.7) we get

For the form

|Qo(Fo, Go)| = C <Z 2m/2|<ﬂ(2m')F0||L$Lg> 1Goll 220/

meZ
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Hence it remains to evaluate the form
@) = [ [ (€ IF6),60) 1
t<s

and verify the inequality

|Q*(FO’ Go)l S C <Z 2777’/2”90(2_7”)17‘0”[/?[/3) ||G0||L%Lin/("+2)- (6339)

mEeZ
To prove (6.3.39) it is sufficient to consider F' with

suppe F(t,€) C {|¢'| <&/10, € = (&, &)} (6.3.40)
Also, note that

Q'(F.C) = / F(s,y)uls,p) dsdy,

RxR"
where u is a solution to the free Schrédinger equation i0;u + Au = G having initial data identically
0.
With (6.3.40) in mind, applying Lemma 3 from Ionescu-Kenig [95], we get

HDglg{QU”LgolLi,,t N ||GHL§L§"/<"+2>- (6.3.41)
Here and below we use the notations « = (z1,2),2" = (22, ,2,). So we have
Q*(F.G)| < C (”D;ll/QFHLilLi/ ) Gl e (6.3.42)

Thus, we need to establish the inequality
1052 Follia 12, < 1Follve = 3 277202 ™) Full 2.

' meZ
For the purpose it is sufficient to apply (6.2.22), the Holder inequality

lglles S 37 2™ 2ligllsa

meZ
and note that
D;!?F, = P(D)F,

for some P(¢§) € C§°(R™) due to our assumption (6.3.40). This completes the proof of the theorem.

3.3. Proof of Theorem 6.3: bilinear energy — smoothing estimate. The proof follows the
same line of the proof of Theorem 6.2 with the following changement: in the place of Ionescu-Kenig
inequality (6.3.41) we use

t
sup /ei(t_s)AFk(s,-)dS
0

t

<C (Z om/29=k/2 ||Fk||L§L2(|I|N2m)> : (6.3.43)
L

mEZ

This estimate is trivial, since by the L? energy conservation, the left-hand side of this inequality is

equal to
sup
t

t
/ e A Fi(s,-)ds
0

and applying the estimate (6.1.7), we can finish the proof as before.

L3
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4. Proof of Theorem 6.1

We start by some reductions of the problem. First, note that (4.1.1) is in the form

{&u —iAu+2AVu = F(t,z) (6.4.44)
u(0,2) = f(2), h
where F = F — div(A)u — i(3°; A7)u. We claim that is suffices to prove

lullxr < Calllfllz2 + I1F]1x), (6.4.45)

for the solutions of (6.4.44). Indeed, assuming the validity of (6.4.45) and since by our assumptions
and Sobolev embedding HVAHL?:L;N + |\A||L$OL;L <C ||VAHL§OL;/2 < Ce, we have

lull s < ClAlle + CIFx <

< Cflgz +CIFllx + CUVAl 2 + IAIT 2 ) Nl g2 p2nso-2

S Cullfllze + CullFllx + Cne llullpzpzn/m-2 <

S Cnllfllpz + CullFllx + Cne flullx -
It follows that

lullx < Clfll +ClIFlx

as claimed, as long as ¢ : Cp,e < 1/2.

Thus, we concentrate on showing (6.4.45) for the solutions of (6.4.44), where we denote the right
hand side by F' again.

Next, we take a Littlewood-Paley projection of (6.4.44). We get

8tuk - iA’U,k = Fk - 2A<k,6Vuk - 2Ek = Hk,

where E* is the error term E* = P, (AVu) — A<j_¢Vuy given by (6.2.17).
We will show that the solution to d;u), — iAuy, = Hj, with initial data u(0,2) = f, satisfies the
estimate

luellxr < Cllfell 2 + CllHel x- (6.4.46)
First we will show how (6.4.46) implies Theorem 6.1 and then we proceed to show (6.4.46).

4.1. (6.4.46) implies Theorem 6.1. Apply (6.4.46) to u;. We have

lukllx: < Cllfillpe + CUFellx + HEkHL2L2"/(n+2) + 6,447
+C 22272 || A6 Vurl| o pa (ap oz ) (6.447)

We will need the following estimates:

OB 2 s 0)M2 < (Y ullFa ansn-2)"/2 < Cue Jull, (6.4.48)
k k

> 2m 2o 2 A gVl g (g agm) < Cne k| x; - (6.4.49)
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Let us show how based on (6.4.48) and (6.4.49), we finish the proof of Theorem 6.1. Plugging in
these estimates in (6.4.47), using the definition (6.1.12) for X’ and square summing in k yields

1/2
Jull e = <Z |uk||§<é> < Culllf 2 + I1F1Lx) + Cue [lul .
k

whence with the choice of ¢ : C\,e < 1/2,

lullx: < CullfllLz + 1 x)-

Thus, in this section, remains to Nshow (6.4.48) and (6.4~.49).
4.1.1. Proof of (6.4.49). Let k be integer with |k — k| < 3. We have

2 [ Aoy :

~

kllL2r2(jz|~2m)

m —m/26—k/2 -
S <Z2 ||A<k5|L°°L°°(|m|~2m)> sglp2 2 Hvuk’ L2L2(|z|~2m) <

m

< Cnasup2_m/22_k/2 HVuﬂ 222 .
m L2L2(|z|~2m

This last expression is very similar to Hu%H . We will show that it is controlled by it, which of
X/

course is enough to establish (6.4.49).
Fix an m. Then

277?7,/227]6/2 Hvu};‘

< 27m/22k/2 H 9=m, » ~’
LeL(aaam) (27" )Qruz

3

L2L2

where Q, acts as a (vector) multiplier 1)(27%¢)27%¢. We have by the Calderén commutator estimate!
and the Bernstein inequality

2 2 Qs < 22 Qe )+
P Qe kg 2 i+
+27Hk/2 lukll Lz pon/ns) S 2722 @7 k| o + ekl pansn-s
<Cy, ||Ulc||x,'c :

4.1.2. Proof of (6.4.48). We treat E* on a term-by-term basis in (6.2.17). For the first term, by
Calderén commutators,

(Z I[P, A<k76]vukHizmnﬂwz))l/z S
k

S O IVAGhsllfoe prrz un—s< <krsllizpzn o) S
k

2
S Sllip HVA<k76||L°°L"/2 (Z |\ka3§~§k+3||L2L2n/<n—2))1/2 S
k

S IVA[ oo o llull 0 -

IWe are using the particular form H[Qk,cp(2*m-)]uk||L2L2 < 27komm ||(ch)(Z*””“)HLZn/3 lukll pon/n-3) =

2752 /2 g || 2/ (n—3)
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For the second term, we have by standard Littlewood-Paley theory
O IBGZ2 2y r10) > S NG g2 p2nsini

k
IO Nl 2 e ~ gl forall 1<p< oo,
l

whence with m, ¢ € Z with |m — ¢| < 8 we have
(Z HP]@( Z Ay Vum)||%szn/<n+z))1/2 ~
k

|e—m]<8

~ || Z Ag . VUmHL2L2n/(n+2) ,S
le—m|<8

SO 22 A 2N poe sl Q1 Pmtel*) 2 | paans o2y ~
4 m

~ ||VAHL°°L"/2 HUHL?L?”/(”*?) Se ||“HX/ .

For the third term in (6.2.17), observe that since forall 1 < p < 2,
O NGHIT)Y? < Cull O IGHP) 2 1
k k

we can estimate as follows:

(Z | Pi(An—s<<iss - Vicr—s) 72 pon/mnin) /2 <
k

SO 2| Ar—s<.<hisPer—stl3oponin)/? S
k

SN 2% Ak—s<<hysl[Par—sul®) 2| o pon /i S
k

S ”(Z 22k|Ak—3§»§k+3|2)1/2HLaoLn/z || Sl;lp |p<]g—5u|||L2L2n/(n—2) S
k

SIVA|peopnre Jull p2pznsm-2 S e llullx -

Here, we have used the pointwise estimate(see section 6.1, Chapter I, [186]) sup; |Px_sul(z) <
CM (u)(z), where M (u) is the Hardy-Littlewood maximal function and therefore

I s%p|15<k75u||\m < Cllul|zr

forall 1 < p < .

4.2. Proof of (6.4.46). The nontrivial part of (6.4.46) is the case when u; is the solution to
Opuy, — iAuy, = Hj, with zero initial data u(0,2) = 0. Then the fact that the norm of X, has three
components implies that the inequality

lJullx < CllHllx
is equivalent to the following nine inequalities

lukll g2 p2n/ -2 < C I Hill L2 p2nscnse) 5 (6.4.50)
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Nkl p2p2n/ -2 < C HHkHL}p ) (6.4.51)
kel g2 ponsin-n < C Y 22272 | Hyll a1 ey » (6.4.52)
H“kHme <C HHk”Lszn/(nH) ) (6.4.53)

lurllpoe g2 < C Il Hillpap2 5 (6.4.54)

Jurllpoo 2 < Cz2m/22_k/2 ||Hk||L§L2(|z|~2m) ) (6.4.55)
282 sup,, 27 m/? HukHLfL2(|z|~2m) <C ||HkHLgL2n/<n+2> ) (6.4.56)
2412 $upy 272 [k o 1oy < € Nkl 1o (6.4.57)

and
282 sup,, 27/ lukll L2 2 mam) <

<Ccy om/29—k/2 ”HkH’LfL?( (6.4.58)

|z|~2m)

The estimates (6.4.50), (6.4.51), (6.4.53) and (6.4.54) are Strichartz inequalities (see (6.1.4) for
the general case).

The estimate (6.4.58) is smoothing - smoothing estimate established in Corollary 6.1 (actually
they follow from the bilinear estimate (6.3.38)).

The estimates (6.4.52), (6.4.56) are smoothing - endpoint Strichartz inequalities following from
the bilinear estimate of Theorem 6.2.

Finally, the estimates (6.4.55), (6.4.57) are smoothing - energy inequalities following from bilin-
ear estimate of Theorem 6.3.

The first inequality is the usual Strichartz estimate, while the second one is equivalent to
(6.3.25).

This completes the proof of the inequality (6.4.46) and of Theorem 6.1.

5. On the Spectrum of A 4
We conclude this chapter with an interesting theorem, regarding the spectrum of A 4.

THEOREM 6.4. Let n > 3 and A = A(z) : R® — R"™ be a real-valued vector potential, such
that the smallness conditions of Theorem 6.1 are satisfied. Let also V = V(x) : R* — R!, with
WVl n2 << 1. Then the spectrum of —A 4 + V does not contain eigenvalues.

This is a standard corollary of the Strichartz estimates in higher dimensions. Note that the
requirement n > 3 is necessary, and in fact such result fails in dimensions one and two.
Proof. Assume that there is an eigenvalue \ with eigenvector f for —A 4 + V. Then u(t, ) = et f
is a solution to the Schrodinger equation
up = i(—As+ V)u.

It follows from the Strichartz estimates of Theorem 6.1

A

||uHL2(07T)L2n/(n,2) <Ol + HVU||L2(0,T)L2n/<n+2)) >
< CU ANz + MV IInrz Nlull o p2n/m-2) <

Cllfllgz + Ce |‘u||L2(o,T)L2n/<n—2> .
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Clearly, if Ce < 1/2, we have that
||U||L2(0,T)L2n/<n—2> S L?,

for every T > 0, which is a impossible, since ||| ;2o 1) 20/(n -2 = CTY? || f p2nscn-2- O

In dimension two, one may consider the Aharonov-Bohm type vector potentials (i.e. of the form
A(r,0) = g(r)w(0)(sin(f), — cos(h))), for which —A, + V is unitarily equivalent to —A + V, [12].
For the Schrédinger operators —A + V however, it is well-known that eigenvalues may exists for
arbitrarily small (and smooth compactly) potentials V. This is due to B. Simon [176], see also [158,
p.274, Theorem XIII.80]. Therefore, such result must fail in dimensions two.

Similar examples must be easier to construct in dimension one.
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