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Introduction

Gravitational waves are a prediction of general relativity but have not yet

been directly detected.

Ground based interferometric antennae like Virgo, LIGO or GEO600 aim

at doing it in the next years.

Virgo sensitivity extends from a few Hz to a few kHz and is limited at low

frequency (around 5 Hz) by seismic and gravity gradient noise and at high

frequencies (over 500Hz) by shot noise. In the intermediate frequency range

there are two noise floors, due to pendulum thermal noise (below 100 Hz)

and to mirror thermal noise (over 100 Hz). Therefore, the comprehension

and the modelization of the thermal noise in its various aspects is of crucial

importance for Virgo and for any interferometer of the 2nd or 3rd generation

too.

The main problem is that the real components of the suspension system

are more complex than the ideal ones used for thermal noise analytical calcu-

lations: the symmetry of the problem can be very different from the one used

in the theoretical models. Therefore, at the level of sensitivity involved, even

small geometric deviations are important. It is necessary to have a flexible

tool for investigating thermal noise effects with the actual designed mirror

and mirror suspensions: finite element analysis.

Secondly, especially in the context of R&D activities, looking at cryogenic

interferometric detectors as a new workable solution, it is interesting to study

1
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new materials, characterizing ex novo their thermomechanical properties.

Silicon is a very promising candidate and it is worthwhile to build up an

experiment to test crystalline silicon fibers to be used as future suspensions.



Chapter 1

Gravitational Waves

Since the theory of gravitation was stated, many efforts have been made to

detect gravitational wave radiation. Gravitational waves come directly as a

solution of Einstein field equations [1] in the weak field approximation and

they are a spin-2 metric distortion that propagates at the speed of light.

Their emission takes place during catastrophic cosmic events that involve

large masses rapidly changing their distribution — e.g. coalescing binary

systems, asymmetric pulsars or the Big bang itself.

There are many experiments around the world that are active at the

moment but none of them has detected anything yet. Gravitational wave

emission and propagation processes are well theorised, and with the study on

the revolution period of the binary pulsar system PSR1913+16 the existence

of gravitational radiation was indirectly proved [2]. The problem of direct

detection lies on the extremely small coupling of the gravitational field. For

this reason all the experiments implemented for their detection — from the

resonant bar to the interferometer antennas — have to face great technical

problems to reach the needed sensitivities.

3



4 Chapter 1. Gravitational Waves

1.1 Propagation

1.1.1 Theory of General Relativity

According to the theory of general relativity space and time are merged to-

gether in a 4-dimensional manifold. The presence of masses on this man-

ifold causes its distortion and, on the other hand, the distortion of the

4-dimensional space governs the dynamics of the masses on it. This is the

kernel concept that is embedded in the Einstein field equations that can be

written as

Gµν = 8πGTµν , (1.1)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor, rep-

resenting the distribution of mass and energy in the space-time. To identify

the Einstein tensor other basic definitions are needed: first of all the metric

tensor gµν , which defines the distance ds of two slightly separate points

ds2 = gµνdxµdxν (1.2)

and it’s used to raise and lower the indexes of the other tensors; then the

affine connection Γµ
νλ

Γµ
νλ +

1

2
gµα(gαν,λ + gαλ,ν − gνλ,α) (1.3)

and the Riemann tensor defined using the affine connection

Rµ
ναβ + Γµ

νβ,α − Γµ
να,β + Γµ

γαΓγ
νβ − Γµ

γβΓγ
να . (1.4)

Introducing the Ricci tensor and the Ricci scalar

Rµν + Rα
µαν , (1.5)

R + Rα
α , (1.6)

the Einstein tensor is defined as

Gµν + Rµν −
1

2
gµνR . (1.7)
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1.1.2 The weak-field approximation

Owing to the non-linearity of Einstein field equations, it’s very hard to find

general radiative solutions to them. In fact, any solution carries energy and

momentum that modify the second member of the equation itself. One ap-

proach can be to study the weak-field radiative solution which describes waves

carrying not enough energy and momentum to affect their own propagation.

This seems reasonable because any observable gravitational radiation is likely

to be of very low intensity. Suppose to have a metric gµν differing from the

Minkowskian one ηµν by a little quantity hµν so that

gµν = ηµν + hµν , (1.8)

with |hµν | � 1; using ηµν to raise and lower all indexes and writing Ricci

tensor and affine connection up to the first order in h, the Einstein field

equations read

�hµν −
∂

∂xλ∂xµ
hλ

ν −
∂2

∂xλ∂xν
hλ

µ +
∂

∂xµ∂xν
hλ

λ = −16πGSµν , (1.9)

with

Sµν + Tµν −
1

2
ηµνT

λ
λ . (1.10)

Choosing the so called harmonic coordinate defined by the gauge

gµνΓλ
µν = 0 , (1.11)

that, to the first order in h corresponds to

∂

∂xµ
hµ

ν =
1

2

∂

∂xν
hµ

µ , (1.12)

the field equations now read

�hµν = −16πGSµν (1.13)
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leading to the retarded potential solutions:

hµν(~x, t) = 4G

∫
d3~x′

Sµν(~x
′, t− |~x− ~x′|)
|~x− ~x′|

. (1.14)

This solution describes a gravitational radiation, produced by the source Sµν ,

that propagates with unit velocity, i.e. the velocity of light. As r→∞ the

retarded wave approaches a plane wave of the form

hµν(x) = eµνe
ikλxλ

+ c.c. , (1.15)

satisfying

kµk
µ = 0 , (1.16)

coming from (1.13) with Sµ
ν= 0, and

kµe
µ
ν =

1

2
kνe

µ
µ , (1.17)

coming from (1.12). The symmetric matrix eµ
ν is the polarization tensor.

For a monochromatic wave, propagating along the z axis (1.15) reduces to

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 eikλxλ

, (1.18)

where it is evident that there are only two independent components usually

called plus and cross polarization.

1.1.3 Effects on free-falling particles

What happens during the passage of a gravitational wave on the matter? If

we consider a particle at rest in the coordinate frame of the harmonic gauge,

using the geodesic equation it comes out that the particle is not subject to

any acceleration. So we have to consider the relative motion of two particles

and, consequently, we have to use the equation of geodesic deviation

d2nµ

dτ 2
−Rµ

αβγ

dxα

dτ

dxβ

dτ
nγ = 0 , (1.19)
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where nµ is the vector connecting the two masses and xµ the position of

one of them. Considering only the first order in hµν and using the fact that

the masses will move with a velocity much smaller than the speed of light,

equation (1.19) brings to a solution

nµ(t) = nα(0)
(
δ µ
α +

1

2
h µ

α

)
, (1.20)

where we took the two particles at rest at t = 0. It is evident that the

relative displacement of the two masses oscillates periodically with the same

frequency of the overpassing gravitational wave. The effect is directly pro-

portional to the distance of the particles and to the amplitude of the wave.

In figure 1.1 the effect induced by a gravitational wave on a ring of particles

is shown either for a plus polarization, or for a cross one.

cross polarization

plus polarization

Figure 1.1: Effect on a ring of particles posed on the x-y plane due to the
passage of a gravitational wave coming along z axis with a plus polarization
or a cross polarization. It is shown that the effect on two chosen orthogonal
directions is strongly depending on the polarization of the wave.
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1.2 Generation

1.2.1 Radiation formula

From rather complicated tensor calculations, in the approximation of slow

moving masses, it is possible to calculate the gravitational-wave power L

expressed in terms of the reduced quadrupole moment of the source Ijk. The

final result is

L =
1

5
〈
...
I jk

...
I jk〉 , (1.21)

where the average is intended over several characteristic periods of the source

system and Ijk is defined as

Ijk +
∫

ρ
(
xixj −

1

3
δijr

2
)
d3x . (1.22)

The gravitational wave radiation is a quadrupole radiation and so it is

impossible for spherically or axially symmetric sources to emit anything.

1.2.2 Sources

There are essentially three kinds of gravitational wave sources: burst sources,

periodic sources and stochastic sources.

Impulsive sources

These are sources that emit an impulsive signal in a very short time.

The main sources of this kind are supernovae, especially the supernovae

of type II, that are exploding in a non axial-symmetric way. For such an

event, called burst, at 10 kpc, the amplitude has been estimated to be of

the order of 10−20 at hundreds or thousands of Hz. A detection can give

information about explosion itself and also about the process of neutron-star

and black-hole birth.

Compact binaries in their last instants before coalescence, are supposed

to be impulsive sources too. For neutron-star neutron-star (NS-NS) binaries
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the signal is expected to be at a few thousand Hz with h∼10−21 at 20 Mpc.

Gravitational waves from NS-NS binaries carry important information about

the equation of state of the NS, the physics of the emission and the distance

from the source. If the binary is a black-hole black-hole (BH-BH) system the

peak of emission, for a source in our galactic halo, is expected to be at about

500 Hz with h∼10−18 [3, 4]. Unfortunately, at the present time, no systems

of this kind are known.

For a very massive BH couple the gravitational wave emission moves down

in frequency to 0.01 mHz, far from the sensitivity band of ground based in-

terferometers and the signal cannot be considered impulsive anymore lasting

even thousands of seconds.

Among the impulsive sources one should consider also the BH formation

and the falling of matter on a massive BH. These events are expected to

happen in the center of galaxies in a frequency band from 1 mHz to 10 mHz.

Periodic sources

These systems, for their intrinsic constitution, are emitting gravitational ra-

diation at a well defined frequency for a consistent amount of time.

This is the case of compact binaries. The emission of gravitational waves

from such a system has been proved in an indirect way measuring the decay

of the revolution period of the two rotating stars [2]. In the first part of their

rotation the signal is periodic and of low intensity (h∼10−22). The final part

of their rotation cannot be considered periodic anymore: we are in presence

of the so called chirp, that is classified under the burst sources.

Another group of periodic sources comes from pulsars among which there

are two kinds of candidates for gravitational waves emission: pulsars with a

quadrupolar momentum, i.e. pulsars that are slightly asymmetric, emitting at

a frequency that is twice the rotational one, and pulsars with no quadrupolar
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momentum, but rotating along an axis that is not the axis of symmetry; in

this case the emission frequency is the rotational one. The amplitude for

these signals is of the order of 10−27÷10−24.

Despite the little amplitude, these signals can overcome the detection

background thanks to their periodicity, which permits a long integration

time.

Stochastic sources

The origin of stochastic gravitational waves can simply be the summation

over a large amount of bursts or periodic sources.

But during the evolution of the universe various phenomena originating

stochastic signals could have taken place. This can be the case of the gravi-

tational radiation as an echo of the moment in which the gravitational waves

decoupled from the other elementary particles (this happened at about the

Plank time from the beginning of the universe)1.

Other sources could be related to the consequence of the eventual phase tran-

sitions occurred during the evolution of the universe. One can imagine exotic

events like collisions of bubbles, collapses of cosmic strings or pressure fluc-

tuations as a cause of stochastic gravitational waves in the frequency region

below 1 mHz.

1.3 Detection

1.3.1 Resonant detectors

The first kind of gravitational wave detector developed in the last decades

are the resonant bars. There are many experiments of this kind all over the

world: the Italian AURIGA (Padova) [5], EXPLORER (CERN, Geneva) [6]

1If the inflation occurred this radiation should be replaced by the gravitational waves
caused by quantum fluctuation.
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and NAUTILUS (LNF, Rome) [7]; ALLEGRO (USA) [8].The detection sys-

tem can be schematized as two masses m at a distance L interacting through

a spring of elastic constant k. If a gravitational wave passes through the

system, the masses start oscillating, modulating their distance. The bar de-

tectors are long isolated cylinders — or spheres — made of a material with a

low viscous coefficient and free to oscillate in the longitudinal direction. The

role of the restoring force is played by the intrinsic elasticity of the material.

The measurement of bar-length variations is done through capacitive trans-

ductors. The response of the system is the best at the resonance frequency

of the bar, where the signal is maximally amplified. A gravitational signal

at this frequency is also stored for a long time: for this reason bar detectors

are considered systems with memory. The main limitation of this kind of

detector is the narrow frequency-window in which the bar is highly sensitive.

For frequencies out of the resonance band the signal induced on the bar is

almost null. The sensitivity is limited by the thermal elastic vibration and

by the noise of the transducers. For these reasons the detectors are made of

low loss material and are cooled to cryogenic temperatures.

1.3.2 Interferometric detectors

A very promising technique to reveal gravitational waves involves the use of

large Michelson-Morley interferometers. There are currently 4 experiments

based on this idea: LIGO [9] (USA, with two 4 km long interferometers),

VIRGO [10] (Italy and France, 3 km), GEO600 [11] (United Kingdom and

Germany, 600 m), TAMA [12] (Japan, 300 m). The Michelson-Morley inter-

ferometer is a device that measures with high precision distance differences

along two chosen directions using the time travel of photons. A laser beam

passes through a beam splitter generating two twin beams each one traveling

back and forth along an arm thanks to the reflection on end mirrors. The
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two beams recombine at the beam splitter and the signal is analyzed through

a photo detector. If a gravitational wave propagating along z with a plus

polarization passes through the interferometer that has its arms along the x

and y directions, the proper distance ds2 is given by

ds2 = −c2dt2 + (1 + h(t))dx2 + (1− h(t))dy2 + dz2 . (1.23)

For a ray propagating along the x direction, dy = dz = 0 and ds2 = 0, so it

follows
dx

dt
= ± c√

1 + h(t)
, (1.24)

with the plus and minus signs referring to the two directions of propagation

along the arm. The mirrors in the x and y directions can be considered

as free falling, so, doing the calculation in the TT gauge, their position is

constant in time. Assuming that the light enters the arm of length lx at the

time t1 and arrives on the beam splitter at the time t0, integrating equation

(1.23), it follows ∫ t0

t1

dt′√
1 + h(t′)

=
2lx
c

. (1.25)

In the first term of the equation it is possible to use the approximation of

h � 1, ∫ t0

t1

(
1− 1

2
h(t′)

)
dt′ ' (t0 − t1)−

1

2

∫ t0

t0− 2lx
c

h(t′)dt′ . (1.26)

Calling Ω the angular frequency of the light, the round-trip phase φx(t) is

φx(t) = Ωt1 = Ω

(
t0 −

2lx
c
− 1

2

∫ t0

t0− 2lx
c

h(t′)dt′
)

. (1.27)

From an analogous argument, considering the light traveling along the y axis,

φy(t) = Ωt2 = Ω

(
t0 −

2ly
c

+
1

2

∫ t0

t0−
2ly
c

h(t′)dt′
)

, (1.28)

where t2 is the entering time of the light in the y arm and ly is its length.

So, the phase difference of the two beams is:

∆φ(t) + φx(t)− φy(t) =
2Ω(lx − ly)

c
−∆φGW(t) , (1.29)



1.3 Detection 13

where

∆φGW(t) = Ω

∫ t0

t0− 2l
c

h(t′)dt′ (1.30)

and it has been used lx ' ly = l. The transfer function from the incoming

gravitational wave to the phase change of the Michelson interferometer is

then

H(ω) =
2Ω

ω
sin

( lω

c

)
e−ilω/c , (1.31)

revealing that there is an optimal length lopt depending on the angular fre-

quency ωGW of the gravitational wave of interest

lopt =
πc

2ωGW

= 250 km

(
300 Hz

f

)
. (1.32)

Delay line and Fabry-Perot cavity

From the equation (1.32) it is evident that an experiment that aims to reveal

gravitational waves at a few hundred Hz needs an interferometer with a

few hundred km arms! There are problems of cost and construction that

limits the length of the arms to few kilometers. But there are two methods

to enhance the effective optical length: delay-lines and Fabry-Perot cavities.

In the first case the light path is folded in the arms through a multiple

reflection between the two faced mirrors. The actual path is L= nl with l

the length of the arm and n the number of reflections that occur in the arm

before the light comes back to the beam splitter. Unfortunately there are

great difficulties in constructing an arm with n >10. Another drawback is

in the response function of the arm: owing to the delay-line configuration, it

presents a lot of zeros corresponding to the multiple reflections occurring to

the beam. In the second case Michelson arms are two Fabry-Perot cavities.

The parameter that defines the features of a Fabry-Perot cavity is the finesse

F defined as the ratio between the distance of two resonant peaks and the
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width at half height of the resonant peak for the transmission coefficient:

F =
π
√

r1r2

1− r1r2

, (1.33)

where r1 and r2 are the reflection coefficients of the input and of the end

mirror of the cavity. The effect of such a cavity is to “store” the light,

simulating an enhancement of the optical path in the interferometer arms.

It is possible to define a storage time τs as the time required for the reflected

light to decrease its power of a factor 1/e once the laser is turned off, that is

τs =
L

c

r1

1− r1

' LF

πc
. (1.34)

A drawback of the Fabry-Perot cavity is that the heating of the laser on

the mirrors starts to be relevant and can cause distortion of the surface. It

is possible to calculate that the phase shift produced in the laser from a

displacement variation δL between the two mirrors is∣∣∣∣∂φ

∂L

∣∣∣∣ =
4r1

1− r1

k , (1.35)

with k=2π/λ and λ is the wave length of the laser light. For a displacement

∆L=2Lh due to a gravitational wave, the power modulation at the output

of the interferometer is

Pout = Pin cos2

(
4r1

1− r1

k∆L

)
= Pin cos2

(
4r1

1− r1

2kLh

)
. (1.36)

Comparing this equation with the one of a classic Michelson it is evident

that the visible phase shift is amplified of a factor 4r1

1−r1
. To maximize the

contrast2, the working point for the interferometer is chosen by satisfying

k∆L =
π

2
+ nπ (n ∈ N) “dark fringe” , (1.38)

2The contrast is defined as:
C =

Pmax − Pmin

Pmax + Pmin
(1.37)

where Pmax and Pmin are the maximum and the minimum power read from the output
photodiode when the signal phase changes from 0 to 2π.
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but in this condition the sensitivity of the interferometer is at its minimum:

Pout = Pin cos2(k∆L) = 0 and
∂Pout

∂∆L
= 0 . (1.39)

To avoid this situation a heterodyne phase modulation is used: through a

small asymmetry in the length of the two arms it permits to have ∂Pout

∂∆L
6=0.

As for the detection a technique that goes under the name of Pound-Drever

technique is implemented. The phase of the incoming light in the interferom-

eter is modulated through a Pockel-cell, an electro-optic transducer whose

refraction index varies proportionally to the potential ∆V . This technique

allows to isolate the gravitational signal from any kind of noise external to

the interferometric cavity, translating the information in higher frequency

regions (usually radio frequency). The acquired signal is non-null only in

presence of real variation of the optical path of the light due to gravitational

signal or real displacement of the optic elements. For this reason this kind

of detectors are referred to as “null instruments”.
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Chapter 2

Noise sources in interferometric
detector

In this chapter the main important noise-sources limiting the sensitivity of

a gravitational wave interferometer will be discussed in the frequency band

of interest. Throughout this thesis the strain sensitivity h will be used,

defined as h = 2
L

√
SX (in units 1/

√
Hz), where SX is the displacement power

spectrum of the quantity considered and L is the length of one interferometer

arm.

2.1 Optical read-out noises

2.1.1 Shot noise

In the previous chapter it was explained that the detection of gravitational

waves with interferometers is possible through the measurement of the power

variation at the output port. This corresponds to the count of the number

of photons that arrive at the photo-diode in the unit of time, because

Pout = n
~c

λ
, (2.1)

with n medium number of photons coming on the photo-diode in the unit of

time, ~ Planck’s constant, c velocity of light and λ wave length of the laser.

Such a counting is governed by the Poisson statistic; the fluctuation σn of

17
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the mean number is

σn

n
=

1√
n

. (2.2)

For a Michelson interferometer, in the working point in which Pout= Pin/2,

this happens to be a simulated variation of the arm-length difference [15]

δ∆L =
σn

n
Pout

(
dPout

d∆L

)−1

=

√
~cλ

4πPinτ
, (2.3)

where τ is the observation time interval. This phenomenon is called shot

noise and, for a Fabry-Perot interferometer in the dark fringe working point,

it takes the following form [16]:

δh̃Shot(f) =
χ

8LF

√
4πc~λ

ηCPin

√
1 +

(
f

fFP

)2

, (2.4)

where δhShot is the strain sensitivity contribution due to the shot noise,

fFP= cπ
2LF

is the frequency corresponding to the characteristic wave length

of the Fabry-Perot cavity of finesse F , C is the recycling factor, η is the

quantum-efficiency of the output photo-diode and χ is a corrective factor

taking into account the modulation1.

The presence of a recycling factor C is due the positioning of a recycling

mirror, between the mode cleaner and the beam splitter (refer to figure 2.1 on

page 26). Since the interferometer is close to a null in the interference pattern,

nearly all of the light supplied would be reflected back towards the laser;

in other words the laser would not be properly impedance matched to the

interferometer. The recycling mirror, with a correctly chosen transmission,

improves the impedance matching allowing to reach the kilovolts needed on

the beam splitter from the tens of volts coming from the laser.

1Bondu estimated [17] that for Virgo χ=
√

3/2.
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For high and low frequency regions w.r.t. fFP the shot noise reduces to:

δh̃Shot(f) =


χ

8LF

√
4πc~λ

ηCPin

∝ 1

F
√

CPin

, for f � fFP ,

χf

2

√
4π~λ

cηCPin

∝ f√
CPin

, for f � fFP ,

(2.5)

showing, for low frequency, a constant behavior followed, over the Fabry-Perot

frequency, by a slope proportional to the frequency. Therefore this noise is

the dominant one at high frequencies. It is evident that going at high finesse

and power laser on the beam splitter (high CPin) can be a solution to limit

this noise. But there are technical limitations that put constraints on F and

C. In fact introducing the optical loss l and the transmittance of the inner

mirror t one has:

F 6
2π

t + 2l
(2.6)

and

C 6
1

2neff l + lBS

, (2.7)

where neff is the effective number of bounces of the laser in the Fabry-Perot

cavity (neff =2F/π) and lBS is the loss of the beam splitter.

2.1.2 Radiation pressure noise

The mirror is pushed by the back-action of the reflected photons, whose

number is fluctuating according to the photon statistics. The radiation pres-

sure noise is the noise related to this uncertainty of the mirror position on a

macroscopic scale. In the case of a Fabry-Perot cavity, the radiation pressure

induced displacement is [18]

δh̃Rad =
F

mLπ2f 2

√
~CPin

πcλ

1√
1 + (f/fFP)2

. (2.8)
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For high and low frequency regions w.r.t. fFP the radiation pressure noise

reduces to

δh̃Rad(f) =


F

mLπ2f 2

√
~CPin

πcλ
∝ F

√
CPin

f 2
, for f � fFP ,

1

4mL2π2f 3

√
c~CPin

πλ
∝
√

CPin

f 3
, for f � fFP ,

(2.9)

showing a f−2 behavior at low frequencies, followed by a slope proportional to

f−3 over the Fabry-Perot frequency. It is evident that this noise dominates

at low frequencies and that can be limited decreasing the finesse and the

power on the beam splitter (CPin). Unfortunately this is a requirement that

is opposite to the one found for the shot noise reduction.

Actually, shot noise and radiation pressure noise are strongly related

through a quantum-mechanical relation: the quantum noise δhQuant satis-

fies

δh̃2
Quant + δh̃2

Shot + δh̃2
Rad > 2

√
δh̃2

Shotδh̃
2
Rad = 2δh̃Shotδh̃Rad . (2.10)

This is an obvious consequence, being the interferometer a Heisenberg mi-

croscope. The equality is verified when δh̃Shot= δh̃Rad and in this case the

quantum noise is called Standard Quantum Limit (SQL) and it is

δh̃SQL =
1

Lπf

√
2~

m
√

η
. (2.11)

The SQL represents an intrinsic limit for the sensitivity of an interferometer

and can be overpassed in a limited frequency band (obviously losing infor-

mation in other bands) using new techniques like the signal recycling [13] or

the light squeezing [14].

2.2 Thermal noise

Thermal noise constitutes the most important noise source in the band from

some dozen Hz to many hundred Hz. It represents the fluctuation of a macro-

scopic observable of the system at the thermodynamic equilibrium with the
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ambient, due to the thermal agitation of the microscopic elements constitut-

ing it. For this reason this noise comes out to be an unavoidable limit for

the precision of many measurements. In the interferometers this noise enters

the sensitivity in the following ways:

� suspension thermal noise, which is responsible for displacement of the

mirrors center of mass. It has three different sources:

– pendulum mode thermal oscillation,

– vertical mode thermal oscillation,

– violin modes thermal oscillation;

� mirror thermal noise (in the bulk and in the coating), which can be

divided into:

– Brownian thermal noise,

– thermoelastic noise,

– thermorefractive noise.

All these noise sources will be examined in detail in chapter 4.

2.3 Environmental noises

2.3.1 Seismic noise

Seismic noise is the main source of noise at low frequency (below 100 Hz).

In this band it is mainly due to human or geologic activity. Typically the

spectral amplitude has the form [23]

x̃Seism(f) ≈ 10−7

(
1 Hz

f

)2
m2

Hz
, for f > 0.01 Hz. (2.12)

The damping of the seismic noise is obtained through the use of a me-

chanical oscillator. The transfer function H(f) of an oscillator of mass m,



22 Chapter 2. Noise sources in interferometric detector

elastic constant k, under a viscous damping b is

H(f) =
f 2

0

f0 − f 2 + if b
2πm

, (2.13)

where f0 = 1
2π

√
k
m

. At frequency f greater than the resonance

H(f) ≈ f 2
0

f 2
, for f � f0 , (2.14)

that is, the oscillator acts as a filter for frequencies over the resonance fre-

quency. By the way, at the resonance an input signal is amplified of a factor

Q=2πmf0/b. So it is important for the system to be highly dissipative, i.e.

with a very low Q.

2.3.2 Gravity gradient noise

The Gravity gradient noise, also known as Newtonian noise, is the noise

due to the change in the gravitational attraction felt by the mirrors of the

interferometer. Variations in the position of masses in the vicinity of the

mirrors or in the ground or atmosphere density around the mirrors generate

a differential gravitational force that acts directly on the mirrors, bypassing

all the isolation systems. Obviously the interferometers are built in areas

far away from human activity — car, truck or train passages —; on the

other hand the atmospheric Newtonian noise is estimated to be well below

the sensitivity of the interferometers of this generation. The main important

contribution to the Newtonian noise is so due to the ground movements

induced by surface waves from the seismic activity.

Different models were done to estimate gravity gradient noise [19, 20],

all presenting similar behaviors. The most important variable that enters

the calculation is the local seismic activity model. According to Saulson’s

model [19]:

δh̃Saul
GG = β

2Gρ

πL

x̃Seism

f 2
(2.15)
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where ρ is the density of the ground around the mirror, x̃Seism is the power

spectrum density of the seismic noise and β is an order-of-unity parameter

that takes into account the seismic noise level for the particular moment un-

der consideration. In the next-generation interferometers, with the increased

sensitivity gravity gradient noise should be relevant in the interesting band

around 10 Hz. At the moment there are studies to limit this noise through the

construction of underground interferometers, with elliptical caves to displace

the mirrors in, to mainly annihilate also the effect of the seismic compression

wave propagating parallel to earth surface.

2.3.3 Residual gas noise

The gas molecules along the optical path affect the sensitivity of the inter-

ferometer through their refraction-index fluctuation. The effect is estimated

to be [15]

δh̃Gas =
2

L

√
V0

NA

(n− 1)2

2πu0

√
L

λ

(
p

p0

) (
T0

T

)3
2

, (2.16)

where n is the refractive index of the gas, V0 is the volume of one gas mole

at the standard temperature T0, NA is the Avogadro’s number, u0 is the

mean velocity of the gas molecules at the standard state and p and p0 are

the pressures at the temperature T and at the standard state respectively.

The typical required vacuum level for a kilometer class detector is ∼10−6Pa.

In most of the constructed pipes there is a pressure of ∼10−8Pa, taking a

good safety margin.

2.4 Other noises

There are also other noise sources depending on the characteristics of the

laser, on the readout electronics and on the vacuum apparatus.
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2.4.1 Laser frequency noise

In a single Fabry-Perot cavity the spectral frequency noise δν̃ of the laser

light directly couples to the spectral displacement noise δL̃ through a simple

relation:

δL̃ = L
δν̃

ν
, (2.17)

where L is the optical length of the cavity and ν is the frequency of the light;

thus with a shorter cavity the effect is less important. In the Fabry-Perot

Michelson interferometer, the frequency noise is subtracted optically at the

interference of the detection port and it appears as a signal through the

asymmetry ∆L of the two arms:

δh̃Freq = 2
δν̃

ν

∆L

L
. (2.18)

2.4.2 Laser intensity noise

In a single Fabry-Perot cavity a laser intensity fluctuation in input is seen as

a displacement noise at the output and the locking of the cavity will compen-

sate for it as if it were a gravitational wave signal. In the case of a Fabry-Perot

Michelson interferometer this effect almost cancels out; it remains because

of a coupling with the residual displacement xRMS of the mirrors around the

resonance of the cavity, giving a strain equivalent noise δhInt:

δh̃Int =
2

L

δP̃

P
xRMS (2.19)

where P is the power and δP̃ is the spectral power fluctuation.

2.4.3 Thermal lensing

If the power circulating in the cavities is increased in order to lower the

shot noise, as planned for future interferometers, a static distortion of the

mirror (thermal lensing) appears. This distortion must be corrected by using
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some thermal compensation through auxiliary laser, as in LIGO, or through

peripheral heated devices on the mirrors, as in GEO600. This noise can be

huge, depending on the finesse asymmetry [23].

2.4.4 Electric noise

The mirror position is changed by the seismic motion, especially at the res-

onance of the isolation system; for this reason the Fabry-Perot cavity length

has to be controlled and kept at its resonance through a feed-back force act-

ing on the mirror. The servo circuit and the actuator circuit for this control

can disturb the mirror position. On the one hand the servo circuit is de-

signed to have a sufficient gain for stable operation and suppression of the

other noises, but on the other also a high gain can introduce noise. Thus the

design of the servo-loop comes from a balance between a high gain and a low

introduced noise. Similarly the actuators should have enough dynamic range

and a sufficiently strong coupling. The actuator-circuit noise is typically of

the order of few nV/
√

Hz so, in order to make the actuator noise smaller

than the goal sensitivity, the uncontrolled motion of the mirror has to be

damped as much as possible using passive isolation or various active control

at different stages.

2.4.5 Scattered light

It can happen that photons of the beam are scattered by mirror imperfections

and bounce on the pipe walls getting different phases. If they recombine with

the laser beam a phase noise arises. To avoid this problem a set of mechanical

filters made by absorbing steel are usually placed along the pipe [21].
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2.5 An example: the Virgo interferometer

It is interesting to see how the various noise levels discussed above reflect

on the sensitivity of an actual interferometer like the Virgo one, constructed

during the last years by a French-Italian collaboration in Cascina, near Pisa.

2.5.1 A Virgo overview

It will be helpful to have an overview of the whole interferometer with the

scheme showed in figure 2.1. The main important technical features of the

Figure 2.1: A schematic representation of the Virgo optical scheme.

Virgo interferometer are discussed in the following.

� Suspension system. Virgo has developed a suspension system called

superattenuator [22] for suppressing the seismic noise transmission to

the mirror above 5÷10 Hz. This is a peculiar feature of this inter-

ferometer w.r.t. the ones of the other gravitational wave experiments.

The superattenuator is essentially a multi-stage pendulum about 10 m

tall, where each suspended mass is a special device acting as a vibra-
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tion low-pass filter in each of the 6 degrees of freedom. A scheme of a

superattenuator is shown in figure 2.2.

Figure 2.2: A schematic representation of the Virgo superattenuator. A chain
of 5 filters (with a horizontal resonant frequency fh =0.45 Hz and a vertical
one fv =0.4 Hz) is attached to the top of a big tripod, that acts as an inverted
pendulum (with fh =30 mHz). The mirror is hanged through a device called
marionetta that allows a fine control of its position along the three relevant
degrees of freedom.

Shorter suspensions are used for the input bench, the mode cleaner and

the detection bench.
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� Laser. It is a Nd:YVO4 emitting at λ = 1064 nm. Its output, in the

TEM00 mode, is about 20 W and its stability requirements (derived

from (2.18) and (2.19) assuming the measured xRMS of the residual

movements of the mirror) are:

– in power:

δP̃

P
<

{
3×10−5/

√
Hz , for f = 10 Hz ,

3×10−7/
√

Hz , for 100< f < 1 kHz ;
(2.20)

– in frequency:

δν̃

ν
'

{
10−4/

√
Hz , for f = 10 Hz ,

10−6/
√

Hz , for 100< f < 1 kHz .
(2.21)

The laser, its stabilization apparatus and the phase modulator are not

under vacuum and they are placed on an optical table in a clean room.

� Input bench. It is under vacuum and it holds the triangular refer-

ence cavity for the laser frequency pre-stabilization, the input and the

output mirrors of the mode cleaner and the main beam expansion and

alignment optotronics.

� Mode cleaner. It is a triangular 144 m long cavity with the middle

mirror suspended to a short superattenuator and connected with the

two other mirrors by a dedicated pipe.

� Power recycling. The recycling cavity is made by an additional sus-

pended mirror and the interferometer itself. The recycling factor is

about 50 and a power of about 1 kW goes on the beam splitter.

� Fabry-Perot cavities. Four fused silica mirrors (35 cm in diameter

and 9.6 cm thick) form two 3 km long Fabry-Perot cavities with a fi-

nesse F=50. Input mirrors are made of Suprasil with a coating (10 cm
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in diameter, 2.25 µm thick) made of 12 alternating layers of SiO2 and

Ta2O5; end mirrors are made of Herasil with a coating (28 cm in diame-

ter, 5.45 µm thick) made of 35 alternating layers of the same materials.

The optical requirements on the end mirrors are reported in table 2.1.

Property Value Units

reflectivity 0.99995 —

roughness 10 nm

coating loss < 5 ppm

bulk loss < 0.7 ppm/cm

Table 2.1: Optical properties required for end mirrors.

� Detection system. It is composed of a detection bench holding the

output mode cleaner and an optical table outside the vacuum vessel

holding the photodiodes (with a quantum efficiency η=0.85).

� Vacuum system. The vacuum vessel is composed of two parts: the

pipes (containing the optics) and the towers (containing the superatten-

uators). The pipes are 1.2 m in diameter and have a partial pressure of

10−9 mbar for hydrogen, 10−14 mbar for hydrocarbons2 and 10−10 mbar

for other gases. The ultra-high vacuum required in the pipe cannot be

achieved in the towers because of the devices outgassing; thus the tow-

ers are divided into two parts by a roof with a little hole for allowing

the passage of the wire holding the last stage of the suspension.

2The limit on hydrocarbons is more stringent because of the capability they have to
stick on the mirror surfaces degrading their quality.
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2.5.2 Virgo sensitivity curve

In figure 2.3 the main important noise contributions for the Virgo interferom-

eter are shown [23]. The sum of them, expressed in unit of strain (defined at

the beginning of this chapter), is the so called sensitivity curve. It is evident

that there are four frequency intervals characterized by a dominating noise

source over the others:

� Seismic wall. Below 4÷5 Hz the seismic noise cannot be sufficiently

filtered by the superattenuators (see figure 2.2) and rapidly grows,

roughly with f−11.

� Pendulum thermal noise. It dominates approximately between 5

and 40 Hz and it goes as f−5/2 (see § 4.3).

� Mirror thermal noise. It is the dominant noise in the range 40÷500 Hz

and it goes as f−1/2 (see § 4.1).

� Shot noise. Above 500 Hz it dominates increasing proportionally to

the frequency (see § 2.1.1).
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Figure 2.3: Virgo sensitivity curve.
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Chapter 3

Theory of thermal noise

In this chapter a theoretical background for the comprehension and calcula-

tion of the thermal noise is given through the fluctuation-dissipation theorem.

The quality factor and the loss angle are introduced as essential quantities in

the characterization of the dissipative behavior of the materials. The basic

estimation methods of thermal noise are introduced and the evaluation of

the relevant thermal noise for interferometric gravitational wave detectors is

discussed.

3.1 The fluctuation-dissipation theorem

It is known that systems, left free to evolve in thermodynamical equilibrium

at a temperature T , show a fluctuation in the variables describing them. An

example is the Brownian motion of particles suspended in water [24]. The

particles follow complex trajectories that can be seen as fluctuations of the

position variable; the origin of this behavior resides in the collision processes

between them and the water molecules. The momentum transfer depends on

the velocity distribution of the molecules and therefore on the temperature

of the bath.

The same collisions are at the base of another process: the viscous damping.

A particle, moving in a fluid loses momentum by collisions with the other

33
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molecules, until it dissipates all its non-thermal kinetic energy. The above

examples show that it exists a relationship between the physical processes

responsible for the dissipation and fluctuation: they are originated from the

same mechanism. Having a tight link with the equilibrium temperature of

the system, the fluctuation takes the name of thermal noise.

The comprehension of the link between irreversible processes and fluctu-

ation allows to find quantitatively the power spectrum of the thermal noise

once the nature of the irreversibility is known. This result had been ob-

tained in a general way by Callen and Welton that stated it in the so called

Fluctuation-Dissipation Theorem (FDT) [25, 26, 27, 28]. Consider a linear1

and dissipative2 system in thermodynamical equilibrium. Let F (t) be an

external solicitation and Ẋ(t) the response of the system derived from the

equation of motion. In order to introduce the generalized force into this

equation of motion, the new term

Hint = −F (t)X(t) (3.1)

is added to the Hamiltonian of the system. The information of the dissipation

of the system is embedded in the impedance function Z(ω), defined as

Z(ω) +
F̃ (ω)˜̇X(ω)

, (3.2)

where the tilde stands for the Fourier transform. It is also useful to define

the admittance as

Y (ω) +
1

Z(ω)
(3.3)

and the transfer function as

H(ω) +
X̃(ω)

F̃ (ω)
=

1

iωZ(ω)
=

Y (ω)

iω
. (3.4)

1The linearity states that the dissipated power is quadratical w.r.t. the amplitude of
the solicitation.

2A system is considered dissipative if, under an external solicitation, it absorbs energy
through irreversible processes.
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The FDT states that the power spectrum of the thermal noise for the quantity

X is

SX(ω) =
4kBT

ω2
Re[Y (ω)] (3.5)

or, using (3.2) and (3.3), that the power spectrum of F is

SF (ω) = 4kBTRe[Z(ω)] , (3.6)

where kB is the Boltzmann’s constant and T is the temperature of the system.

Integrating the spectrum of (3.5) over frequency, one gets kBT/2 as it should

be from the equipartition theorem.

As an example it can be considered a resistor in an electric circuit. Calling

R the impedance of the resistor, the voltage V plays the role of F , the charge

the role of X and, from (3.5), it follows that the power spectral noise of the

tension is

V 2(ω) = 4kBTR(ω) , (3.7)

that is the well known Johnson-Nyquist formula [29].

3.1.1 FDT in an n-dimensional system

The previous discussion can be extended to a system which has n coordinates

Xi. The interaction between the system and the world can be represented

by the generalized forces Fi introducing the new term

Hint = −Fi(t)Xi(t) (3.8)

in the Hamiltonian of the system. In this case the equation (3.2) becomes

F̃i(ω) = Zij(ω) ˜̇Xj(ω) , (3.9)

where now the impedance Zij is a matrix. Defining the admittance as the

inverse matrix of the impedance

Yij + Z−1
ij , (3.10)
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the FDT in the form of the equation (3.5) is now written as

SXiXj
(ω) =

4kBT

ω2
Re[Yij] , (3.11)

where SXiXj
is the cross spectrum density, i.e. the Fourier transform of the

cross correlation function between Xi and Xj; the cross spectrum for i=j is

identical to the power spectrum density of Xi. Equation (3.6) becomes

SFiFj
(ω) = 4kBTRe[Zij(ω)] , (3.12)

where SFiFj
is the cross spectrum density between Fi and Fj.

3.1.2 FDT for a linear combination of coordinates

In many practical situations it is necessary to evaluate the behavior of a

coordinate that is not a natural mode of the system but is easily measurable.

This can be the case of the surface of a mirror as seen by a laser beam profile.

A new coordinate Xnew of the n-dimensional system can be defined as

Xnew = PiXi , (3.13)

where Pi are arbitrary real constants. In this paragraph it is shown that the

power spectrum of Xnew can be derived using the FDT with no particular

effort, obtaining a formula of the same kind of (3.5), also in the case of a

continuous combination of coordinates. To allow the presence of a force Fnew

that drives only the momentum conjugate to Xnew the term to add in the

interaction Hamiltonian shall be of the form

Hint = −FnewXnew = −FnewPiXi = −(PiFnew)Xi (3.14)

and, comparing this equation with (3.8), it is evident that the Hamiltonian

of the interaction of the 1-dimensional system described by Xnew can be
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reinterpreted as a Hamiltonian of a n-dimensional system where PiFnew plays

the role of Fi; so, from the definition of Yij,

˜̇Xi = YijF̃j = YijPjF̃new . (3.15)

It is straightforward to define the admittance Ynew of the system w.r.t. the

new coordinate as

Ynew +
˜̇Xnew

F̃new

=
Pi

˜̇Xi

F̃new

=
PiYijPjF̃new

F̃new

= PiPjYij , (3.16)

where equations (3.13) and (3.15) were used. From equations (3.11) and

(3.13) it is possible to calculate the power spectrum density SXnew of the new

coordinate Xnew,

SXnew(ω) = PiPjSXiXj
(ω) =

4kBT

ω2
Re[PiPjYij(ω)] (3.17)

and, using equation (3.16),

SXnew(ω) =
4kBT

ω2
Re[Ynew(ω)] , (3.18)

that has the same form of equation (3.5) for the thermal noise of a 1-d system.

In a similar manner it is possible to derive the power spectrum of the force

fluctuation

SFnew(ω) = 4kBTRe[Znew(ω)] , (3.19)

where Znew+ F̃new/ ˜̇Xnew.

If X is a function of a continuous parameter r, i.e.

Xnew =

∫
P (r)X(r)d3r , (3.20)

all the previous calculations are still valid: the Hamiltonian of the interaction

is rewritten as

Hint = −
∫

FnewP (r)X(r)d3r (3.21)
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and, comparing with the Hamiltonian of a generic system with a continuous

set of coordinates

Hint = −
∫

F (r)X(r)d3r , (3.22)

it is evident that FnewP (r) plays the role of F (r), so

˜̇X(r′) =

∫
Y (r, r′)F̃ (r) =

∫
Y (r, r′)P (r′)F̃new(r) (3.23)

and equation (3.16) becomes

Ynew +
˜̇Xnew

F̃new

=

∫
P (r′) ˜̇X(r′)d3r′

F̃new

=

∫
P (r′)P (r′′)Y (r′, r′′)d3r′d3r′′ .

(3.24)

Therefore the spectrum of the thermal fluctuation is still equation (3.18),

with Ynew given by (3.24).

3.1.3 The harmonic oscillator and the loss angle

The equation of motion of a harmonic oscillator of mass m is

mẍ + mω2
0x = F (t) , (3.25)

where F (t) is the force acting on the mass and ω0 is the resonance of the

system. Passing in the frequency domain, the transfer function H(ω) defined

in (3.4) results to be

H(ω) =
1

m(ω2
0 − ω2)

. (3.26)

There is no dissipation involved and the response of the system diverges when

ω= ω0.

In a real system the elastic response to the external force F (t) is not

immediate and the elongation x is shifted in time w.r.t. the forcing term,

causing a deviation from the Hooke’s law that is called anelasticity. The effect

of this anelasticity is that a dissipation and a damping can occur, so that the

resonance peak becomes finite. To introduce the anelasticity in the model of
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the harmonic oscillator Hooke’s law is generalized. Hooke’s law says that the

stress σ needed to produce a relative displacement ε is proportional to the

latter through a constant E, called Young’s modulus. A possible extension of

this law to the anelastic case is to assume that the proportionality constant

can be a complex number and can depend on frequency:

σ(ω) = E(ω)ε(ω) , (3.27)

where the coefficient E(ω) can be written as

E(ω) = E1(ω) + iE2(ω) = |E|eiφ(ω) . (3.28)

The phase angle φ takes the name of loss angle. If the deformation ε is

ε(ω) = ε0e
iωt , (3.29)

the relative stress is phase shifted of an angle φ w.r.t. deformation of the

anelastic body:

σ(ω) = |E|ε0e
i(ωt+φ(ω)) . (3.30)

If the effects of anelasticity are small, equation (3.30) reduces to

σ(ω) ' |E|
(
1 + iφ(ω)

)
ε(ω) . (3.31)

From the previous formula it is evident that the introduction of anelasticity in

the harmonic oscillator is the same as defining a generalized elastic constant

with an imaginary part:

k = mω2
0 → mω2

0(1 + iφ) (3.32)

and the transfer function of equation (3.26) becomes

H(ω) =
1

m(ω2
0 − ω2 + iφω2

0)
. (3.33)
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It is possible to show that the loss angle at the resonance frequency is related

to the ratio between the dissipated energy in a cycle and the stored energy

in the oscillation. In fact, the maximum energy of the oscillator is [30]

Estor =
1

2
Re[σ]Re[ε] (3.34)

and, for a deformation of the kind ε = ε0e
iωt, in the limit of low dissipation

(E2 � E1), the maximum stored energy is

Emax
stor =

1

2
ε2
0E1 . (3.35)

The dissipated power is

Wdiss = Fẋ = Re[σ]Re[ε̇] = ωRe[σ]Im[ε] (3.36)

and, making the integral over a period, the dissipated energy is

ET
diss +

∣∣∣∣∫ T

0

Wdissdt

∣∣∣∣ = πε2
0E2 . (3.37)

The relation between the loss angle and the introduced quantities is then

φ−1(ω0) ' (tan φ)−1 =
E1

E2

= 2π
Emax

stor

ET
diss

. (3.38)

It is usual to define a new parameter, the quality factor Q as

Q + 2π
Emax

stor

ET
diss

, (3.39)

so that at the resonance Q = φ−1(ω0).

As an example it is worthwhile to apply the anelastic model and the FDT

to the harmonic oscillator. The most simple case is the damped harmonic

oscillator with one degree of freedom; the damping is modeled by a loss angle

φ that is comprehensive of all the loss sources:

φ(ω) =
∑

i

φi(ω) . (3.40)
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The mechanical impedance of the system is

Z =
m

ω

(
φω2

0 + i(ω2 − ω2
0)

)
(3.41)

and the FDT (3.5) allows to calculate the power spectrum of the thermal

noise

x̃2
th =

4kBT

mω

φω2
0

(ω2 − ω2
0)

2 + φ2ω4
0

. (3.42)

Note that if there is no dissipation (φ=0) there is no fluctuation. In the limit

of far higher or lower frequencies w.r.t. the resonance frequency, equation

(3.42) reduces to

x̃2
th =

4kBT

mω

φ(ω)

ω2
0 + ω2

0φ(ω)2
, for ω � ω0 , (3.43)

x̃2
th =

4kBT

mω5
ω2

0φ(ω) , for ω � ω0 . (3.44)

3.2 Dissipation models

Anelasticity can be described by a mechanical model [31] in which the system

is treated as the parallel between a spring of restoring constant k on one side

and a series of another spring with constant ∆k and a dash-pot with damping

constant c on the other side. The ideal body constructed in such a way is

called Debye’s solid. To calculate the effective restoring constant keff of the

solid it is possible to use a method based on a parallelism between mechanical

systems and electric circuits. In this way

keff ' k

(
1 + i

∆k

k

ωτ

1 + ω2τ 2

)
, (3.45)

where τ = c/∆k is the time constant that characterizes the response to the

solicitation. Comparing with (3.32)

φ(ω) =
∆k

k

ωτ

1 + ω2τ 2
. (3.46)



42 Chapter 3. Theory of thermal noise

This dependency of the loss angle w.r.t. frequency is called Debye’s peak.

Debye’s peak reproduces the effects of many kinds of irreversible processes

that happen in real bodies. The most important ones are examined in the

following paragraphs.

Internal losses

Consider a solid body with an internal structure. Anelastic dissipations

of acoustic energy in the lattice can occur in presence of dishomogeneities

of temperature field (see on page 43); also processes that involve lattice

phonons interaction can subtract energy [32]. In conductive solids it is not

negligible the presence of dissipative processes, due to phonon-electron in-

teractions, that occur also at very low temperature [33]. In the real lattice,

rich of impurities and dislocations, imperfections play the role of dissipation

sources. Irreversible processes due to defects in the lattice structure are var-

ious and not completely understood. They can involve point-like impurities,

wide dislocations (parallel or not to the crystallographic axes) and effects of

dislocation-impurity interactions [33].

3.2.1 Structural damping

Consider acoustic vibrations of an imperfect lattice. If it is vibrationally ex-

cited, the lattice can change its geometry toward more stable configurations.

Also local vibrations of the impurities can be energetically preferred. These

deformations and vibrations absorb acoustic energy from the mechanical vi-

brations causing their damping. For all these structural processes in the body

it can be imagined an activation energy ∆U . Therefore the time constant of

these anelastic processes depends on temperature and on activation energy



3.2 Dissipation models 43

following an Arrehnius’ exponential law:

τr = τ0e
∆U
kBT . (3.47)

With this value for τ , the loss angle φ follows a Debye’s peak:

φ(ω) =
∆k

k

ωτr

1 + ω2τ 2
r

. (3.48)

The experimental data do not agree with the previous formula. In a wide

range of frequencies the loss angle for structural damping is almost constant.

To model this experimental behavior a dominant relaxation process with a

unique τ0 is imagined, but with activation energies distributed with a density

f(u) almost constant over a great interval. It follows that:

φ(ω) =
∆k

k

∫ u2

u1

ωτr

1 + ω2τ 2
r

f(u)du

' ∆k

k
f(ū)

∫ u2

u1

ωτr

1 + ω2τ 2
r

=
∆k

k
f(ū)kBT

(
arctan(ωτ1 − arctan(ωτ2)

)
, (3.49)

where

τ1,2 = τ0e
u1,2
kBT . (3.50)

The loss angle φ(ω) obtained is poorly dependent on frequency, and the

flatness of the behavior increases with the widening of the interval [u1, u2].

3.2.2 Thermoelastic damping

If the distribution of the temperature field of a vibrating body is not ho-

mogeneous, dissipation can occur. A mechanical vibration creates periodic

contractions and stretching in some regions; in the compressed parts tem-

perature increases and in the stretched ones it decreases. Under certain
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conditions a heat flux can be originated between two regions at a different

temperature; the reaching of the equilibrium requires a characteristic time

in which part of the vibrational energy is absorbed. Such a process is called

thermoelastic effect [34, 35].

The importance of the thermoelastic effect w.r.t. other energy-absorption

processes depends in a critical way on the geometric configuration of the

vibrating body and on the particular kind of vibration. In fact, if the two

regions with a different temperature are far away from each other, the time

necessary for the thermalization is great and compressions and expansions

occur in an adiabatic way. On the other hand if the two regions are near,

the thermalization is almost instantaneous and the vibration is isothermal.

The typical heat-migration time τth between two regions at a distance d

can be estimated starting from the equation of the heat diffusion [36]:

∂T

∂t
=

κ

cV

∇2T − EαT0

cV (1− 2σ)

∂(∇ · u)

∂t
, (3.51)

where cV is the specific heat per unit volume3, κ the thermal conductivity,

E Young’s modulus, T the temperature, α the coefficient of linear thermal

expansion and u the elastic deformation. It results that

τth ' d2 cV

κ
. (3.52)

Defining ωth = 2π/τth, if the vibrating angular frequency is ω� ωth compres-

sion and expansion occur adiabatically; on the other hand, if ω � ωth the

process it isothermal. The thermoelastic effect will be maximum if ω and ωth

are of the same order. Therefore Debye’s peak is centered in ωth and has the

form

φ(ω) = φ0
ωωth

ω2 + ω2
th

, (3.53)

3It is measured in J
m3K .
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where the constant coefficient φ0 is

φ0 = TE
α2

cV

. (3.54)

Vibrating objects with a small section w.r.t. their length, as fibers and strings,

typically show important thermoelastic peaks at the first resonance modes.

This effect, vice versa, is not observable in thick objects for which ωth is small

w.r.t. the modal frequencies.

3.2.3 Superficial losses

Lattice defects and impurity are not distributed in a uniform way in the

volume of the body. The region near the surface of the body is continually

exposed to damages due to chemical or mechanical contacts: it is reasonable

to think that most of the dissipation occurs in the external shell. In fact, in

particular geometric configurations, materials with very low values of bulk

loss angle appear to have greater losses because of superficial effects. The

loss angle φtot including also these effects can be introduced as

φtot =
∆Ebulk + ∆Esurf

Etot

, (3.55)

being Etot the total energy stored in an oscillation, ∆Ebulk and ∆Esurf the

absorbed energy in the volume and in the surface respectively. To describe

the dependency of the superficial loss on the the geometry of the body it

suffices [37] to assume that ∆Esurf is proportional to the surface of the body

and ∆Ebulk to the volume. In this case it is possible to write:

∆Esurf

∆Ebulk

= µds
S

V
. (3.56)

The coefficient µ takes into account the relative amount of elastic deformation

occurring at the surface — depending on the system geometry and oscillation

mode-shape — and ds, called dissipation deepness, has the dimension of a
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length and measures the entity of the surface dissipation. Because Etot'Ebulk,

defining φbulk = ∆Ebulk/Ebulk, it follows

φtot =
∆Ebulk

Etot

+
∆Esurf

Etot

= φbulk

(
1 + µds

S

V

)
. (3.57)

For cylindrical fibers of diameter d, oscillating transversally to the axis of the

fiber, µ=2 and

φtot = φbulk

(
1 + 8

ds

d

)
. (3.58)

The superficial effects are relevant when ds . d. The deepness ds can be

theoretically calculated [38] and, if Young’s modulus is constant in the body,

ds =
1

φbulk

∫ h

0

φ(n)dn , (3.59)

where h is the thickness of the superficial zone of dissipation. If the loss angle

is constant w.r.t. the deepness it follows that

φsurf '
ds

h
φbulk . (3.60)

External losses

The three processes examined above take place inside the body determining

its intrinsic anelasticity. On the other hand, energy losses can involve the

ambient in which the body is settled. In the following the attention is focused

on these external sources of losses.

3.2.4 Recoil losses

A vibrating body tends to transmit its oscillation to the supporting frame.

In the ideal case the frame is infinitely massive and rigid, but, in reality, it is

flexible and its mass is finite and so its vibration can be a dissipation source.

It is possible to modelize this situation as in figure 3.1. Let m be the mass of

the oscillating body connected with the supporting frame of mass M through
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m

k kmM

M

Figure 3.1: Schematization of the model done for calculating recoil losses.

a spring of elastic constant km. The frame is also joined to a perfectly rigid

environment through another spring of elastic constant kM . The dissipations

on the masses m and M are included by means of φm and φM respectively.

The elastic constants to use in the model become

km = mω2
m(1 + iφm) and kM = Mω2

M(1 + iφM) , (3.61)

where ωm and ωM are the proper vibration frequencies of the body and of

the frame. If the mass m is acted by a force F , from the equations of motion

it follows

F

xm

= −mω2
m

−1 +
ω2

ω2
m

− iφm +
(1 + iφm)2

µ
ω2

M

ω2
m

(1 + iφM) + 1 + iφm − µ ω2

ω2
m

 ,

(3.62)

where µ = M/m. After little manipulation the last expression can be written

as

F

xm

= keff + imω2
mφeff (3.63)

and the total dissipation is determined by the effective loss angle

φeff = φm + φM
ω2

mω2
M

µ(ω2
M − ω2

m)2
. (3.64)

Therefore this kind of loss has a tiny effect if µ�1; on the other hand, near

the resonance of the system, the recoil losses are not negligible.
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3.2.5 Air losses

If a body is vibrating in a fluid, it undergoes viscous friction causing dissi-

pation. This loss source can be easily reduced keeping the oscillation under

vacuum. The friction in a rarefied gas is well modeled by a force proportional

to the velocity of the body:

F = −bẋ . (3.65)

In this case the transfer function defined in (3.4) is

H(ω) =
1

m(ω2
0 − ω2 + iωb

m
)

, (3.66)

from which, by comparison with (3.33), the expression for the loss angle due

to gas friction can be derived:

φgas(ω) =
b

mω2
0

ω . (3.67)

If the pressure is sufficiently low the mean free path of molecules is larger

than the typical dimensions of the oscillator and the dissipation caused by

the momentum transfer between the oscillator and the molecules is larger

than that caused by the viscosity of the gas. In this case, calling ρgas the

gas density and v̄ the mean velocity of the gas molecules, it can be shown

that [15, 40]:

b =
1

4
ρgasAv̄ , (3.68)

where A is the surface of the body in which the friction occurs; therefore, in

general4

φgas =
ρgasAv̄

4mω2
0

ω . (3.70)

4For example, in the case of a cylindric vibrating fiber of diameter d, (3.70) leads to

φgas(ω) =
v̄ρgas

2ρdω2
0

ω . (3.69)
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For example, a lower limit on the Q-value limited by the air damping on a

cylinder is expressed as

Qgas = d
ρω0

n
√

mmolkBT
, (3.71)

where d, ρ and ω0 are the size, the density and the angular resonant frequency

of the oscillator respectively. The values n and mmol are the numerical density

and mass of the gas molecules.

3.2.6 Dislocation propagation

In a mono-crystal lattice there can be a lot of defects: holes in the periodic

structure, impurities, dislocations. Mechanical vibrations or thermal excita-

tion can cause irreversible movements or vibrations of the dislocation lines

connecting the impurities. In this way a part of the acoustic energy of the

vibration can be absorbed. The Granato-Lücke theory [41] predicts a loss

angle for the ultrasounds band according to the following law:

φ(ω) ∝ ΩL4ω , (3.72)

where Ω is the dislocation density, and L the mean length of a dislocation.

In the low frequency region a vibration of a dislocation of a certain length

L generates a Debye’s peak. Experiments have found that φ has an almost

constant behavior w.r.t. frequency and therefore it is necessary to suppose a

continuous distribution of length L that makes the theory fit the experimental

data as explained at the end of § 3.2.1.

Therefore the acoustic waves dissipation theories for dislocation propa-

gation are still in progress. At the moment the theoretical formulas include

hardly measurable parameters (e.g. density of dislocation and Burger’s vec-

tor) or arbitrary relaxation-time distributions. One thing is definitely sure:

the dislocation losses are proportional to the dislocation density and can be

reduced with processes such as the baking of the material.



50 Chapter 3. Theory of thermal noise

3.2.7 Impedance coupling

In the case of longitudinal acoustic waves in a bar the impedance can be

written as

Z = S
√

ρE , (3.73)

where S is the section of the bar, ρ its density and E its Young’s modulus. To

avoid acoustic wave radiation at the contact surface of two connected bars,

the impedances shall be chosen to be very different from each other. In the

case of contacts between solids of an arbitrary shape it is very difficult to

quantify the impedances of the two bodies but the material choices that give

very different values for
√

ρE seem to give good results.

To limit the acoustic wave radiation, it seems reasonable to reduce the

contact surface. For example in the case of contact between a cylinder of

length L and radius r, and a plane parallel to its axis the surface is given by:

S =

√
4Flr

π

(
1− ν2

1

E1

+
1− ν2

2

E2

)
, (3.74)

where E1 and ν1 are Young’s modulus and Poisson’s ratio of the cylinder, E2

and ν2 the ones of the solid plane and F the force exerted on the surface.

Typically the material choice does not allow a great variation of Young’s

modulus and so it is the cylinder radius reduction that minimizes the contact

surface.

3.3 Thermal noise calculation methods

To apply the FDT (3.18) in calculating the thermal noise power spectrum,

it is necessary to know the real part of the admittance of the system in a

broad frequency band. This is usually hard work because the imaginary part

is much bigger than the real one [42, 43, 44]. Thus, to calculate Re[Y (ω)]

there are different methods that try to overcome this difficulty. Chronolog-
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ically, the first one used was the so called “normal-mode expansion” that

derives Re[Y (ω)] from the measured Q-values of each mode of the resonator,

supposing homogeneity of the losses. A natural extension of this method is

the so called “advanced mode expansion” introduced recently to take into

account the inhomogeneous losses on the resonator [45]. This method gives

a clear physical interpretation of the losses processes and it’s substantially

in agreement with the nowadays used techniques called “direct approaches”

that do not require any mode decomposition [46, 16, 12, 18].

3.3.1 Normal mode expansion

In the following it will be described how to derive the thermal noise of an

oscillator through the method of the normal-mode expansion. An observable

physical quantity X of a system is

X(t) =

∫
u(r, t) · P (r)dV , (3.75)

where u(r, t) is the displacement vector of the system at the location r at

time t and P (r) is a vector weighting function defining the physical quantity

to be observed. For example, for thermal noise fluctuation of the internal

modes of interferometers’ mirrors, r is a 2-dimensional vector on the surface

of the mirror and P (r) is the laser beam profile. The power spectrum den-

sity of X, SX , is obtained from the equation (3.18). In order to calculate

the admittance in (3.18), the generalized force F (t)P (r) is applied on the

system, leading, for the system without dissipation, to the following equation

of motion:

ρ
∂2u

∂t2
+ L(u) = F (t)P (r) , (3.76)

where ρ is the density and L(u) a linear operator representing the elastic re-

sponse of the system. The solution of (3.76) can be viewed as a superposition
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of basis functions w(r):

u(r, t) =
∑

n

wn(r)qn(t) , (3.77)

where wn satisfy the eigenvalues problem

L
(
wn(r)

)
= ρω2

nwn(r) , (3.78)

ωn being the angular resonant frequency of the n-th resonant mode of the

system. The wn(r) are orthogonal:∫
ρ(r)wi(r) ·wj(r)dV = miδij , (3.79)

and can be normalized imposing∫
wn(r) · P (r)dV = 1 . (3.80)

The parameter mn is called effective mass of the n-th mode and δij is Kro-

neker’s symbol. The function qn(t) in (3.77) represents the time evolution of

the n-th mode. To derive the equation of motion for qn, the expression (3.77)

for u is substituted in (3.76). Multiplying (3.76) by wn and using (3.79) and

(3.80), it follows

mnq̈n(t) + mnω
2
nqn(t) = F (t) . (3.81)

Therefore, the time evolution of the n-th mode is the same as that of a

harmonic oscillator of mass mn and angular resonant frequency ωn with an

external force F (t) acting on it. Putting (3.77) in (3.75) and using (3.80) it

follows

X(t) =
∑

n

qn(t) , (3.82)

showing that the observable coordinate X can be simply described as a su-

perposition of the motions of the harmonic oscillators qn. Moreover, the

kinetic energy of the system Ekin is expressed as

Ekin =

∫
1

2
ρ|u̇(r, t)|2dV =

∑
n

1

2
mn|q̇n|2 , (3.83)
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showing that it is the sum over all the harmonic oscillators energies mn|q̇n|/2.

To evaluate the admittance function Y (ω), the equation of motion (3.81) is

rewritten in the frequency domain, including the dissipation:

−mnω
2q̃n + mnω

2
n

(
1 + iφn(ω)

)
q̃n = F̃ , (3.84)

where φ(ω) is the loss angle. From the previous equation and (3.82), Y (ω)

is described as

Y (ω) +
˜̇X(ω)

F̃ (ω)
= iω

∑
n q̃n

F̃ (ω)
= iω

∑
n

1

−mnω2 + mnω2
n

(
1 + iφn(ω)

) . (3.85)

The power spectrum density of X, SX can now be derived using (3.18) and

(3.85):

SX(ω) =
4kBT

ω

∑
n

ω2
nφn(ω)

mn

(
(ω2 − ω2

n)2 + ω4
nφ

2
n(ω)

) . (3.86)

Therefore the thermal motion of the system is the sum of the harmonic

oscillators of the normal-mode expansion. Equation (3.86) allows to calculate

the thermal noise from the angular resonant frequency ωn, the effective mass

mn and the loss angle φn(ω) of each mode. The angular resonant frequency

and the displacement of the mode wn are obtained from the eigenvector

problem (3.78). The effective mass mn is calculated from the wn found

and equation (3.79). The loss angle is derived from the experiments but

its measurement in a wide frequency range is commonly difficult; thus, it is

usual to estimate it from the Q-value on the resonant frequencies according

to the following relation:

Qn =
1

φn(ωn)
; (3.87)

this formula is frequently used to estimate the thermal noise of interferome-

ters through the structural damping model.
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3.3.2 Advanced mode expansion

Theoretical researches of the nineties [47, 48, 49, 46] have shown that the pre-

dictions on thermal noise made by the normal-mode expansion were wrong

in the case of oscillators with inhomogeneous losses. The reasons of this

disagreement come clear if one considers the more accurate mode expansion

called “advanced mode expansion” [45]. The difference between this expan-

sion and the traditional one relies on the introduction of the dissipation term

in the equation of motion from the very beginning and not after the mode

decomposition.

In the case of viscous damping the equation (3.76) becomes now

ρ
∂2u

∂t2
+ ρΓ(r)

∂u

∂t
+ L(u) = F (t)P (r) , (3.88)

Γ(r) being the coefficients of the friction forces. Following the same pro-

cedure as in the previous section and considering the dissipation term as a

perturbation, the derived equation for the n-th mode is

−mnω
2q̃n + mnω

2
n

(
1 + iφn(ω)

)
q̃n +

∑
k 6=n

iαnk(ω)q̃k = F̃ , (3.89)

where αnk is defined by

αnk = ω

∫
ρ(r)Γ(r)wi(r) ·wj(r)dV = αkn (3.90)

and

φn(ω) =
αnn(ω)

mnω2
n

. (3.91)

The last term of the left-hand side of (3.89) does not exist in the formula

obtained from the traditional mode expansion. It contains the contributions

to one mode due to the coordinates of all the others, i.e., it accounts for the

coupling between modes. The normal mode expansion gives results consistent

with the advanced mode expansion only if all the αnk(n 6= k) vanish. The
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comparison between (3.90) and (3.79) tells that this happens if

Γ(r) = Γ , (3.92)

that is, if the losses are homogeneously distributed over the oscillator.

It is possible to apply the advanced mode expansion to a body with

inhomogeneous structural damping. The equation of motion for an elastic

isotropic body is

ρ
∂2ui

∂t2
− ∂σij

∂xj

= F (t)Pi(r) (3.93)

where ui and Pi are the i-th components of the displacement u and of the

weighting function P , and the stress tensor is

σij =
E0

1 + σ

(
uij +

σ

1− 2σ
ullδij

)
, (3.94)

where E0 is Young’s modulus, σ Poisson’s ratio and uij the strain tensor. To

take into account the structural damping the stress tensor is rewritten in the

frequency domain as

σij =
E0

(
1 + iφ(ω, r)

)
1 + σ

(
uij +

σ

1− 2σ
ullδij

)
, (3.95)

where φ is the loss angle. Following the same procedure as in the case of

viscous damping, the derived equation for the n-th mode is exactly equation

(3.89), with φ as in (3.91) and αnk now defined by

αnk +
∫

E0φ(ωr)

1 + σ

(
wn,ijwk,ij +

σ

1− 2σ
wn,llwk,ll

)
dV = αkn , (3.96)

where wn,ij is the strain tensor of the n-th mode. The condition of not having

coupling terms between the modes now becomes

φ(ω, r) = φ(ω) . (3.97)

This implies that the traditional mode expansion is valid when the damping

is homogeneous.
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The advanced mode expansion relies on the approximation that the dis-

sipation could be treated as a perturbation. This happens if the following

condition on the distance between the resonant peaks is satisfied:

|α|2nk �
mnmk

4
|ω2

n − ω2
k|2 . (3.98)

It is worthwhile to think about the physical reason for which an inho-

mogeneous distributed loss can cause mode coupling. Consider the decay of

a single resonant mode. When the loss is homogeneous the phase of its de-

cay does not depend on the position and so the displacement shape does not

change w.r.t. time. If the loss is concentrated in some regions, a phase lag will

appear in those places and, as a consequence, the shape of the displacement

will change, i.e., other modes will be excited.

3.3.3 Direct approach

Nowadays the most used technique to calculate the thermal noise is the

direct method. Its difference from the previous ones relies on a computation

that leaves aside a modal decomposition. There are many different ways of

implementing this computation. In the following the main analytical one, by

Levin [46] will be reviewed, together with the numerical dynamic approach

firstly used by Numata [18].

Levin’s method

In 1997 Y. Levin [46] proposed a new technique in calculating mirror thermal

noise. The novelty of his approach consists essentially in restating the FDT

for a continuous combination of coordinates (3.18) in an easier to calculate

form. Consider the surface of the mirror invested by the laser beam which

has a profile given by the weighting function P (r). The read-out variable
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will be

Xnew(t) =

∫
P (r)u(r, t)d2r , (3.99)

where u(r) is the displacement of the mirror surface in the direction of the

beam propagation axis. At the end of § 3.1.2 it was shown that, if we have to

deal with a coordinate Xnew that is a continuous combination of coordinates,

the thermal noise power spectrum will take the form

SXnew(ω) =
4kBT

ω2
Re[Ynew(ω)] , (3.100)

where Ynew is the admittance associated with the new coordinate as defined

in (3.24). Therefore, the calculus of the thermal noise reduces to the calculus

of the real part of the admittance. Levin suggested an easy way to calculate

Re[Ynew]. Suppose to apply on the mirror surface an oscillatory continuous

force F (r, t) that mocks the profile P (r) of the laser beam:

F (r, t) = F0 cos(ωt)P (r) ; (3.101)

this force, as explained in § 3.1.2, corresponds to a generalized force

Fnew(t) = F0 cos(ωt) , (3.102)

that drives only the momentum conjugate to the Xnew defined in (3.99);

therefore, using the definition of Ynew, it is possible to calculate the mean

dissipated power

〈Wdiss〉 = 〈Re[F̃new
˜̇Xnew]〉 =

= 〈Re[F̃ 2
newYnew]〉 =

= F0〈Re[cos2(ωt)Ynew]〉 =

=
1

2
F 2

0Re[Ynew] (3.103)

and to rewrite the fluctuation dissipation theorem (3.18) in the form

SX(ω) =
8kBT

ω2

〈Wdiss〉
F 2

0

. (3.104)
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Also Nakagawa [16] solved the same Levin’s problem in a different formalism,

using Green’s function, but arriving at exactly the same result. It is worth to

mention that Tsubono [45] developed an interesting method based on matrix

formalism, that is quite simple to apply but is limited to analyze system that

extends mainly in only one dimension.

Numerical dynamic approach

This method was firstly introduced by Numata [18]. To avoid all the problems

related to an analytical calculation, he decided to perform a finite element

analysis of the system. In this way he could solve the equation of motion

numerically and then apply the FDT theorem in the form of (3.104). He

was not forced to do any static approximation and so the problem of finding

the mirror thermal noise was solved even in the frequency region near mirror

resonances. Moreover, in his analysis, he could use models of the mirror

including separately the magnets and the coating, performing calculations

that would have been difficult to do with the analytical method. Basically,

the steps of the method are the following:

� do a geometric model of the complete system and mesh5 it, in order

to have a model with not too many elements but with a good mesh

definition in the smallest and in the most solicited parts,

� apply boundary constraints and an oscillatory force on the mirror sur-

face mocking the laser beam profile,

� perform a harmonic analysis at the desired frequency,

� extract from the solved model the dissipated energy multiplying, ele-

ment by element, the stored strain energy by the loss angle,

5The meaning of the words “mesh” and “elements” will be clarified in chapter 5.
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� apply equation (3.104) in order to extract the thermal noise for the

system at the chosen frequency,

� redo the last three steps for all the desired frequencies.

In chapter 5 it is shown that the potential of finite element analysis is

highly enhanced if the model is performed with a particular care in driving

the mesh and applying the pressure profile: this allows to perform harmonic

analyses on a complete model of the actual mirror (never done before) and

opens the field to faster and more precise parametric analyses.



60



Chapter 4

Thermal noise of
interferometers and some
relevant problems for Virgo

In this chapter, after a theoretical review of the various sources of thermal

noise for interferometers, just listed in § 2.2, a discussion is presented on

the relevant problems a Virgo-like interferometer has to deal with, especially

looking at future developments towards a better sensitivity. A review of

the studies performed in the past years for minimizing the loss angle in

mirrors, mirror coatings and suspensions is then presented, identifying the

most relevant causes of loss, trying to modelize the dissipation processes and

to measure the losses on bulk, membrane and fibre samples.

The thermal noise limits the interferometer sensitivity in a frequency band

that ranges from few Hertz to about 1 kHz.

This noise is intimately related to the mechanics of the suspension system

used for the mirrors and to the geometry and constitution of the mirror

itself. In interferometer detectors the mirrors are suspended at the end of

a chain of oscillators for damping as much as possible the horizontal and

the vertical motion of the ground together with the thermal noise coming

from the upper stages. In fact, over the lower characteristic frequency of

61
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the resonators, oscillations are filtered and suppressed. Therefore, the main

sources of thermal noise are the components of the mirror-suspension last

stage. Firstly our attention will be focused on the mirror and its behaving

under the impinging laser beam and then on the suspension-system resonator.

4.1 Mirror-bulk thermal noise

In this section the theoretical model of the bulk contributions to the mir-

ror thermal noise will be reviewed. The theoretical efforts done in the last

decade can be referred to three main branches: Brownian thermal noise,

thermoelastic noise and thermal lensing.

Brownian thermal noise can be interpreted as a fluctuation of the mirror

surface position coming from the mirror recoil from its internal phonons or,

using the FDT, as fluctuations induced by a structural damping.

Thermoelastic noise is intended as a noise that comes from the coupling

of thermal fluctuations with displacement fluctuations thanks to a non-null

coefficient of thermal expansion.

Finally, thermal lensing is caused by the coupling of thermal fluctuation

to phase fluctuations of the light (and therefore to measured displacement)

thanks to a non-null coefficient β = dn/dT , where n is the refraction index

and T is the temperature.

4.1.1 Brownian thermal noise

Normal mode expansion

This section is a short review of the results of the modal-expansion analysis

(presented in § 3.3.1), in the approximation of a free mirror with an impinging

laser beam with a Gaussian profile. A detailed calculation for the Virgo

mirrors with this procedure was done by Bondu and Vinet [50]. The basic
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idea is to solve with a harmonic analysis the equation of the acoustic-wave

propagation in the continuous media:

ρ∂2
t u = µ∇2u + (λ + µ)∇(∇ · u) , (4.1)

where u is the displacement of each point of the solid and λ and µ are the

Lamé coefficients. Passing to cylindric coordinates, A.E.H. Love [51] found

three independent solutions (two transversal and one longitudinal) that can

be mixed as proposed by J.R. Hutchinson [52] to satisfy all the constraints

to be imposed on the external surfaces of the mirror, that is considered free.

It results that all the constraints can be satisfied only for a set of particular

frequencies. Three numbers, n, ξ and m, identify the various solutions (one

for each frequency): n represents the number of nodal diameters of the mode

under consideration (it enters through the Bessel functions Jn of which the

solutions are a superposition), ξ is a boolean variable representing the parity

(1 or 0 depending on if the opposed mirror faces oscillate on phase or not)

and m is the order number (that plays a role very similar to n but in the

radial direction instead of the azimuthal one).

If a Gaussian beam of waist w0 =
√

2r0 is impinging on the center of the

mirror, it sees a displacement equal to

∆z =

∫
S

uz(r, φ, z = 0)
1

πr2
0

e
− r2

r2
0 rdrdφ , (4.2)

where S is the surface of the mirror, located at z = 0. It can be shown

that n > 1 implies ∆z = 0. Therefore, only the modes with n = 0 (that are

axisymmetric and referred to as “drum modes”) are a source of noise. Given

a certain displacement ∆z the effective mass mi can be defined through the

relation

1

2
miω

2
i ∆z2 + E , (4.3)
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where i is the index of the mode (the set n, ξ, m) and E is the energy of the

mode, calculated from

E =

∫
V

(λ

2
u2

ii(r) + µu2
ik(r)

)
dr3 (4.4)

where the integral is intended over the whole mirror volume V and uik(r)

are the components of the strain matrix. The thermal noise can be calcu-

lated using (3.86), where the summation has to be done over a number of

modes that assures a good convergence of the series. This is a critical point

of this method, because it can happen that there is not such a frequency

and, moreover, even if the series converges, it can bring to a wrong result

due to the coupling between the various modes produced by the presence

of inhomogeneous losses (that are not included in the model as explained in

§ 3.3.2). For the Virgo mirrors, supposing a bulk loss angle φB not depending

on frequency, they calculated the Brownian thermal noise for the bulk to be

SBrown
x,B = 3× 10−38 T

300 K

100 Hz

f

φB

10−6

m2

Hz
. (4.5)

Advanced mode expansion

Unfortunately there are no calculations done on mirrors using this method

(see § 3.3.2) and Yamamoto himself, in his work on it [45], says that the

analysis is not performed with this method because it would be necessary

to take into account too many modes for having a good convergence of the

series.

Levin’s method

Following the idea presented in § 3.3.3 Levin [46] calculated the thermal noise

for a mirror with homogeneously distributed losses, so that Young’s modu-

lus E ′ = E
(
1 + iφ(ω)

)
can be used. If this is the case, using (3.38) it is
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straightforward to calculate the average dissipated power 〈Wdiss〉 under the

application of an oscillatory force:

〈Wdiss〉 = Emax
stor ωφ(ω) , (4.6)

where Emax
stor is the energy of the elastic deformation of the mirror at the

moment of maximal strain configuration. Levin supposed that the mirror

is an infinite half-space and that the force F0 is a static one (a reasonable

hypothesis because the first resonance mode of the mirror is far higher than

the region of interest). With these assumptions he obtained

Emax
stor =

1− σ2

2
√

2πEr0

F 2
0 , (4.7)

where σ is Poisson’s ratio of the material. Assuming φ(ω)=φB, from (3.104)

it follows:

SBrown
x,B (ω) =

4kBT

ω

1− σ2

√
2πEr0

φB . (4.8)

As for the homogeneous case an identical result was reported by Bragin-

sky [53], calculating the real part of the admittance of the system and using

(3.18). The calculation was also made by Bondu et al. [54], Nakagawa et

al. [55] and reviewed by Liu and Thorne [56] in the case of a finite size mirror.

Their result is

SBrown
x,B (ω) =

8kBT

ω
φB(ω)(U0 + ∆U) , (4.9)

where U0 and ∆U are infinite series of Bessel function with coefficients de-

pending on the material properties and on mirror and beam-spot size dimen-

sions. If compared with the result in the approximation of infinite mirror

mass, this calculation gives a correction that, e.g. in the case of the new

LIGO-II mirrors, starts to be greater than 10% for beam spot sizes greater

than 2.5 cm. Considering that there is the project to use flat beams, this cor-

rection becomes crucial in estimating the Brownian thermal noise correctly.
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Numerical dynamic approach

Following the method described in § 3.3.3 Numata calculated the thermal

noise using a finite element analysis. He performed the simulation [18] for the

BK7 mirror used in his experiment (7 cm in diameter, 6 cm thick) in three

separate cases: homogeneous losses, losses coming only from the coating,

losses coming only from the magnets. His results are in good agreement with

analytical approximated calculations [57]. He showed that the relative error

is about 3% in the case of coating loss and that the magnets contribution

can be neglected.

4.1.2 Thermoelastic noise

The thermoelastic noise is generated by temperature fluctuations that couple

with displacement thanks to the non-null coefficient of thermal expansion α.

Energy is dissipated because of the thermal flux induced by the generated

temperature field.

Temperature fluctuations can be originated either by intrinsic thermody-

namical fluctuation, or by laser-photon absorption.

By thermodynamical fluctuations

In the field of the thermoelastic noises, thermodynamical fluctuations are the

FDT-counterpart of the thermoelastic damping process. The mechanism of

this kind of dissipation was explained in § 3.2.2. To calculate this noise for

the mirror it is necessary to solve the equation of elasticity [30] for a field of

deformation u

1− σ

1 + σ
∇(∇ · u)− 1− 2σ

2(1 + σ)
∇×∇× u = α∇δT , (4.10)
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together with the thermal conductivity equation for the temperature dis-

homogeneity δT

∂δT

∂t
− κ

cV

∇2δT = − αET

cV (1− 2σ)

∂(∇ · u)

∂t
, (4.11)

where E, σ, α, κ and cV are Young’s modulus, Poisson’s ratio, the coefficient

of linear thermal expansion, the thermal conductivity and the specific heat

per unit volume of the mirror.

Braginsky et al. [53] solved the problem using the fluctuation-dissipation

theorem in the form (3.18), approximating the mirror with an infinite half-space

and considering that the frequency ω is far higher w.r.t. the typical frequency

of the heat flow

ωc =
1

τth

=
κ

r2
0cV

, (4.12)

where r0 is the beam radius and τth was defined in (3.52). This is the so

called adiabatic limit in which the second term on the right hand side of

(4.11) is neglected. They found that the displacement power spectrum is

Sth-dα
x,B =

8kB√
2π

(1 + σ)2κ

(
αT

cV

)2
1

r3
0ω

2
. (4.13)

Moreover they solved the same system of coupled equations directly calculat-

ing the displacement fluctuations and using the Langevin approach (without

using the FDT). On the mirror they applied a heat source — the right side of

(4.11) — coming from the temperature fluctuations satisfying the following

thermodynamical relation:

〈δT 2〉 =
kBT 2

VcV

. (4.14)

The solution they found is exactly the same as (4.13), therefore he demon-

strated that thermodynamical fluctuations of temperature are the physical

source of fluctuations deduced by FDT based on thermoelastic damping.
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Liu and Thorne [56] solved the same problem with the same approxima-

tions applying the FDT in Levin’s form (3.104) and using

Wdiss =
〈TdS

dt

〉
=

〈 ∫
kT

T
(∇δT )2dV

〉
, (4.15)

where S is the entropy of the system and the temperature perturbation δT

comes from the law of adiabatic temperature change [30]

δT = − αET∇ · u
cV (1− 2σ)

. (4.16)

They achieved the same solution (4.13). They also made the calculations for

a finite cylindrical test mass finding the correction factor w.r.t. the infinite

test mass solution. It is worth noting that the correction for a wide range of

beam-spot size is not greater than 10% if the ratio between the radius and

the thickness of the cylinder is near unity.

Cerdonio et al. [58] extended the Liu analysis releasing the assumption of

the adiabatic limit, i.e. performing the analysis that is valid also at low tem-

peratures and/or small beam spot size. Equation (4.13) has to be multiplied

by a correction factor Ω2J(Ω) with1

Ω +
ω

ωc

, (4.17)

J(Ω) =

√
2

π3

∫ ∞

0

du

∫ ∞

−∞
dv

u3e−u2/2

(u2 + v2)
(
(u2 + v2)2 + Ω2

) (4.18)

and ωc as defined in (4.12). For ω�ωc this factor is equal to unity but for

ω�ωc goes as ω3/2 and then Sth-dα
x,B ∝ ω−1/2.

By photothermal fluctuations

This effect is called dynamic photo-thermal noise2 and it is due to the tem-

perature fluctuation induced by random absorption of optical photons in

1Formula (4.18) in [58] had a wrong factor as noted by Numata [18].
2It is also referred to as photo-thermal shot noise.
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the surface layer of the mirror. Thanks to a non-null coefficient of thermal

expansion these fluctuations couple with displacement fluctuations.

Braginsky et al. [53] assumed that the coating thickness of the mirror is

much smaller than the beam radius, and, in the adiabatic limit, found the

following expression for the power spectral displacement noise:

S
ph-thα
x,B =

2

π2
(1 + σ)2

(
α

cV r2
0

)2

~ω0〈Wabs〉
1

ω2
, (4.19)

where the mean of the absorbed power Wabs is intended over a period π/ωgw

and ~ω0 is the typical energy of the absorbed photons.

Cerdonio et al. [58] extended the calculation releasing the assumption of

the adiabatic limit finding:

S
ph-thα
x,B =

2

π2
(1 + σ)2

(
α

κ

)2

~ω0〈Wabs〉K(Ω) , (4.20)

with

K(Ω) =

∣∣∣∣∣ 1π
∫ ∞

0

du

∫ ∞

−∞
dv

u2e−u2/2

(u2 + v2)(u2 + v2 + iΩ)

∣∣∣∣∣ . (4.21)

Equation (4.20) reduces to (4.19) for ω�ωc but for low frequencies it gives

lower values w.r.t. the adiabatic prediction and it displays a behavior almost

independent of frequency.

4.2 Mirror-coating thermal noise

As done in the mirror-bulk thermal noise section the review is logically di-

vided into three parts: Brownian thermal noise, thermoelastic noise and

thermorefractive noise.

4.2.1 Brownian thermal noise

Following their formalism [16], Nakagawa et al. [57] calculated the dissipation

induced by an inhomogeneous loss distribution on a half-infinite mirror due
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to the fact that loss angle in the bulk material φB is different from loss angle

in the coating φC:

SBrown
x,C =

4kBT

ω

(1 + σB)(1− 2σB)

πEB

dC

r2
0

φC , (4.22)

where EB, σB and dC are the bulk Young’s modulus, the bulk Poisson’s ratio

and the coating thickness respectively. It is worth noting that there is a

linear dependence on 1/r2
0 as predicted by the scaling argumentation done

by Levin [46] and that the result is exactly the same if performed using

Levin’s method [46, 57].

Harry et al. [38], using Levin’s method, generalized this result for a non-

isotropic coating loss φC

φC =

(
δU‖dC

U
φ‖ +

δU⊥dC

U
φ⊥

)
, (4.23)

where δU‖ and δU⊥ are the surface integrals of the coating energy-density

components along the parallel and perpendicular direction w.r.t. the surface,

φ‖ and φ⊥ are the associated coating loss angles and U is the total energy

stored in the bulk. For a thin coating, provided that σC ' σB, EC + EC‖ '

EC⊥ and σC + σC‖ ' σC⊥, they found3

φC =
1√
2π

dC

r0

(
EC(1 + σB)(1− 2σB)2 + EBσC(1 + σC)(1− 2σB)

EB(1 + σC)(1− σC)(1− σB)
φ‖+

EB(1 + σC)(1− 2σC)− ECσC(1 + σB)(1− 2σB)

EC(1− σC)(1 + σB)(1− σB)
φ⊥

)
(4.24)

and therefore

SBrown
x,C =

4kBT

ω

(1− σB)2

√
2πE

B
r0

φC . (4.25)

Equation (4.25) is valid provided that the coating loss occurs in the coating

materials themselves and not for rubbing in the bulk/coating or layer/layer

3It is worth to note that Harry [59] recently performed some calculations to account
for eventual anisotropies in Young’s modulus and Poisson’s ratio of the coating.
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interfaces. At the first order in σB and σC formula (4.25) reduces to

SBrown
x,C =

2kBT

ω

dC

πE
B
r2
0

(
EC

EB

(1− 2σB)φ‖ + σC(φ‖ − φ⊥) +
EB

EC

φ⊥

)
. (4.26)

If φ‖ ' φ⊥, then the lowest coating-induced thermal noise occurs when

Young’s modulus of the coating is matched to that of the substrate.

4.2.2 Thermoelastic noise

Temperature fluctuations (that couple with displacement thanks to αC 6=0)

can be originated either by intrinsic thermodynamical fluctuation, or by laser-

photon absorption.

By thermodynamical fluctuations

The problem was extensively treated by Braginsky and Vyatchanin [60].

Firstly, using the Langevin approach, they solved the problem for a half-

infinite mirror with an expansion coefficient α′C +αC−αB for the coating and

α′B =0 for the bulk; the bulk and the coating are treated as if they had the

same elastic constants. Taking into account only stresses produced by the

coating due to non-uniform temperature distribution, they obtained

Sth-dα
x,C =

4
√

2

π
(1 + σB)2α′C

2kBT 2

√
κBcVB

(
dC

r0

)2
1√
ω

. (4.27)

Secondly, using the FDT theorem, they calculated a formula for the case of

different elastic parameters between the bulk and the coating: it suffices to

use the same formula (4.27) with4

α′C =
αC

2αB

(
1 + σC

(1− σC)(1 + σB)
+

EC(1− 2σB)

EB(1− σC)

)
− cVC

cVB

, (4.28)

They generalized formula (4.27) and (4.28) for multilayer coating [60] also.

Thirdly, using the FDT approach developed by Liu and Thorne [56], they

4The formula in [60] has an error, successively corrected by [61] as reported.
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calculated the finite test mass correction factor that, e.g., is about 1.6 in the

case of LIGO-II.

Recently Fejer et al. [61] performed the same calculation in the case of dif-

ferent thermoelastic properties of coating and substrate (other than thermal

expansion) and out of the low-frequency region.

By photothermal fluctuations

In literature this effect was not given so much attention because of its small-

ness. An estimate of the behaving of the effect was made by Rao [62]. He

studied two different cases depending on the values assumed by the thermal

conductivity in the bulk κB and in the coating κC.

Figure 4.1: Heat flow simulation on a
coated mirror with a highly conduc-
tive bulk.

Figure 4.2: Heat flow simulation on a
coated mirror with a low conductive
bulk.

If κB�κC, the heat generated by photons absorption flows in the coating

essentially in one dimension (see figure 4.1). Following the same approach of

Braginsky et al.[53] he found that

S
ph-thα
x,C =

2

π2

(
αC

cVC
r2
0

)2

~ω0〈Wabs〉
1

ω2

(
1− e−dC

√
iωcVC

/κC

)4

, (4.29)

where

αC =
1

d
(α1d1 + α2d2) , (4.30)
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calling α1, α2 and d1, d2 the coefficients of thermal expansion and the total

thickness for the two coating materials. At high frequencies equation (4.29)

takes the same dependency form as (4.19) and at low frequencies approaches

zero.

If κB � κC the heat flow behaves like shown in figure 4.2. Following a

technique similar to [60], he solved the heat flow in a uniform half-space, com-

puting the average temperature for a layer near the surface with a frequency-

dependent scale height determined by rt =
√

κ/(ρcV ω). He found

S
ph-thα
x,C =

1

π2

(
αCdC

r2
0

)2 ~ω0〈Wabs〉
cVC

κC

1

ω
, (4.31)

that shows a behavior like 1/ω.

4.2.3 Thermorefractive noise

The thermorefractive noise is generated by temperature fluctuations that

couple with phase fluctuations of the laser (and therefore with measured

displacement) thanks to the non-null coefficient β = dn/dT , where n is the

refraction index. Temperature fluctuations can be originated either by in-

trinsic thermodynamical fluctuation, or by laser-photon absorption.

By thermodynamical fluctuations

Following the same approach as in [53], Braginsky et al. [63] calculated the

thermorefractive noise induced by thermodynamical fluctuation of tempera-

ture. Considering the frequency range (that is typical for the ground inter-

ferometer) in which the detection frequency ω satisfies

dC �

√
κC/cV

C√
ω

� r0 , (4.32)

where dC is the coating thickness and r0 the beam radius, they calculated

S
th-dβ

x,C =

√
2

π

kB√
cVC

κC

(
βeffλT

r0

)2
1√
ω

, (4.33)
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where5

βeff =
n1n2(β1 + β2)

4(n2
1 − n2

2)
(4.34)

and β1 = dn1/dT , β2 = dn2/dT , the indexes referring to the two materials

alternating in the coating layers.

By photothermal fluctuations

This effect is numerically much smaller than the other thermorefractive noise,

just discussed here before, and it will not be reviewed (see, e.g., [64] for

details).

4.3 Suspension thermal noise

Usually the horizontal damping of the test mass is obtained through simple

pendula and the vertical one through springs or blades. These kinds of

filters introduce noise in each degree of freedom of the whole structure they

enter, according to the fluctuation dissipation theorem. This problem has

been theoretically dealt with since the early nineties [65, 66, 67] and can be

divided into four separate contributions: the pendulum thermal noise, the

vertical thermal noise, the violin-modes thermal noise and the tilt/rotational

mode thermal noise.

4.3.1 Pendulum thermal noise

The suspension wires, together with the suspended mass, constitute a pen-

dulum with a proper resonance frequency determined by the restoring elastic

force of constant ke(1 + iφe) and by the gravity force acting as a spring of

constant kg = mg/l, that is lossless. The viscous damping of the air is made

negligible by the low pressure involved (10−9 mbar) and so the equation of

5The formula reported in [63] was wrong and was successively corrected [60] as it is
reported.
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motion can be written as

mẍ = −kgx− ke(1 + iφe)x , (4.35)

which is equivalent to

mẍ = −(kg + ke)
(
1 + i

ke

kg + ke

φe

)
x ; (4.36)

therefore the effective loss angle is equal to

φeff = φe
ke

kg + ke

' φe
ke

kg

, (4.37)

being usually ke� kg. The factor ke/kg is called “dilution factor” and it is

evident that, thanks to it, the effective losses of the pendulum system are

much lower than the internal φe. The elastic constant ke of a wire is given

by [39]

ke =
1

2l2

√
TEI , (4.38)

where l is the wire length, T is the tension applied on the wire, E is Young’s

modulus of the material and I is the superficial moment of inertia of a wire

cross-section. In the last-stage suspension different solutions can be adopted

in the way the test mass is suspended, depending on how many wires are

used. To reduce the dilution factor it is convenient to have T and I as low

as possible. Usually the wires are loaded at a defined ratio c (c'0.3÷0.4) of

their breaking stress σb. Therefore, if the mirror is suspended with a certain

load in a multi-wire configuration, the tension on each wire is reduced and

the radius of the wire can be reduced accordingly. If there are N wires for a

mirror of mass m, the requirement for being at the working tension is

mg

Nπr2
= cσb (4.39)

and so the elastic constant is

ke =
N

2l2

√
TEI =

N

2l2

√
mg

N
E

πr4

4
=

1

4l2cσb

√
m3g3E

Nπ
, (4.40)
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where (4.39) was used to explicitly show the dependence on m and N . The

loss angle is then

φeff = φe
1

4lcσb

√
mgE

Nπ
(4.41)

and this value can be used to evaluate the pendulum thermal noise using

formula (3.42) with ω0 =
√

g/l:

Spend
x =

4kBT

mω

φeffω2
0

(ω2 − ω2
0)

2 + φ2
effω4

0

. (4.42)

Since the band of interest is over the resonance frequency (from a few Hertz to

few a hundred Hertz) the approximated formula (3.44) can be used, showing

that the pendulum thermal noise scales as m−1/2 and N−1/2.

4.3.2 Vertical mode thermal noise

Owing to the non uniform gravitational field generated by the earth, local

vertical directions at both ends of the arms are not parallel to each other.

Therefore, a vertical motion of the mirrors gives a change in the cavity length

that can mock a gravitational wave signal. The coupling between the vertical

motion and the horizontal one is exactly equal to the angle under which an

arc of length Larm/2 is seen from the center of the earth (figure 4.3). For this

arm

θ
R

L

0

Figure 4.3: The vertical directions at the ends of the arm are not parallel
and give origin to a coupling between the vertical and the horizontal dis-
placements of the mirrors.
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reason a part of the thermal noise associated with the vertical oscillation is

seen on the horizontal direction according to the following formula:

Svert
x = θ0

4kBT

mω

φω2
v

(ω2 − ω2
v)

2 + φ2ω4
v

, (4.43)

in which ωv is the resonance frequency of the vertical motion of the system

whose value is given by

ω2
v =

πr2E/l

m/N
=

gE

cσbl
, (4.44)

where l is the wire length, E and σb are Young’s modulus and the breaking

stress of the material and (4.39) was used to show explicitly that there is no

dependence on the mass m of the mirror and on the number N of suspension

wires.

4.3.3 Violin modes thermal noise

The wires suspending the mirror present numerous resonances relative to the

normal modes of oscillation called violin modes. These oscillations show up

each time a wire is under a certain tension. If there are N wires of density ρ,

Young’s modulus E, radius r and length l, cross-sectional inertia momentum

I, holding a mirror of mass m, considering that the load on each wire is

T = mg/N and the linear density of the wire is ρlin = πr2ρ, the resonance

angular frequencies will be [39]

ωn =
nπ

l

√
T

ρlin

(1 + a) =
nπ

l

√
mg/N

πr2ρ
(1 + a) , (4.45)

where

a =
2

l

√
EI

T
=

2

l

√
Eπr4/4

mg/N
, (4.46)

and n is the mode number under consideration. The violin mode contribu-

tions to thermal noise can be evaluated using [39]:

Sviol
x = N

4kBT

ω

2ρr2l

πm2

∑ 1

n2

ω2
nφn

(ω2 − ω2
n)2 + φ2

nω
4
n

, (4.47)
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where the loss angle φn of each mode is given by

φn =
aφ(ωn)

1 + a
4
n2φ2(ωn)

. (4.48)

Therefore, the contribution of this noise to the sensitivity curve is limited to

the various resonance frequencies of the suspension system.

4.3.4 Tilt and rotational modes thermal noise

The term “tilt mode” is referred to the oscillation of the suspended mirror

around a horizontal axis perpendicular to the laser beam, while “rotational

mode” is referred to the oscillation around a vertical axis.

The angular displacements θ induced by these modes are expressed by

formulas similar to (4.42) where the appropriate angular frequency and loss

angle should be used. These modes have no effect on the sensitivity at the

first order in θ because the induced optical path difference is δL ∼ θ2.

4.4 The problem of new materials for Virgo

Having a look at figure 4.4, it is possible to make some considerations on the

perspective to improve Virgo sensitivity fighting the various noise floors in the

relative frequency bands. As already said in § 2.5.2, the main contributions

limiting the sensitivity from higher to lower frequencies are the shot noise,

the mirror thermal noise and the suspension noise. As regards the seismic

noise, Virgo can already be considered an advanced gravitational detector,

because of the superattenuator system (see § 2.5.1).

4.4.1 Lowering the shot noise

Shot noise limits the sensitivity for frequencies over 500 Hz.

Looking at (2.4) it is evident that a direct way of lowering the shot noise

floor is to use a higher power laser. In a provisional draft about an advanced
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Figure 4.4: The Virgo sensitivity curve with all its main noise contributions
(taken from [23]).

Virgo [64] a laser of 100 W is foreseen, gaining a factor
√

5 in sensitivity.

Apart from the technical problems of going to further higher powers, there

is a limitation imposed by the radiation pressure noise. According to equa-

tion (2.8) this noise increases as the square root of the power impinging on

the beam splitter. Fortunately it has a dependence on the inverse of the

suspended mass also, so that it can be convenient to go toward higher loads.

4.4.2 Lowering mirror-bulk thermal noise

In the frequency region between 50 Hz and 500 Hz the dominating noise is

the Brownian thermal noise of the mirror substrate (see § 4.1.1).

According to (4.5) or (4.9) this noise is proportional to the loss angle φB

of the mirror substrate. This is why during the last years a lot of efforts

have been done in order to measure losses in various substrates and trying
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to estimate the intrinsic loss in the frequency region of interest. Hereafter a

short list of recent results is furnished.

Rowan et al. [68], using metal-wire single-loop suspensions, have measured

a loss factor of 3.7×10−9 for HEM sapphire, grown by a method suitable for

producing test masses of the required size and quality.

Numata et al. [69, 70, 71] performed accurate series of measurements on

fused-silica bulk-samples using a nodal support system (a horizontal mirror

on a ruby ball touching the center of the mirror face). They found values

for φB ranging from 2.5×10−8 to 1.5×10−6, demonstrating that the nodal

technique is a valid one in this kind of high precision measurements and

that annealing helps to increase the quality factor. They also verified that

the losses have a behavior that is roughly proportional to frequency. The

understanding of this phenomenon is crucial in estimating the quality factor

in the 50÷500 Hz band, which usually is some orders of magnitude lower than

the frequency-region of measurements on samples. Willems and Busby [72]

suspended sapphire and fused silica samples with the same method as [68];

the wires were mechanically polished and greased with lard. They obtained

phi down to 4×10−9 for sapphire and 8.3×10−9 for fused silica.

Smith et al. [73] measured bulk loss angles on fused silica masses attached

to fused silica suspensions in a configuration adopted in the last 2 stages of

GEO 600 finding loss angles down to 2.6×10−7.

Penn et al. [74], relying on measurements performed on several fused silica

samples of various shapes, proposed a heuristic model of the loss angle φ as

a function of both frequency and volume to surface ratio:

φ(f, V/S) = φsurf + φbulk + φth−el =

= C1(V/S)−1 + C2f
C3 + C4φDebye(f) ,

(4.49)

where φDebye(f) is a function embedding the typical Debye peak described

by equation (3.53). The best fit for the four parameters gave, in the case of
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Suprasil 2 and Suprasil 312, the results shown in table 4.1. It is worth to note

Type C1 C2 C3 C4

2 8.6×10−9 7.1×10−12 0.8 1.0

312 7.1×10−9 4.6×10−12 0.8 —

Table 4.1: Best fit values of the four parameters of the function described in
(4.49) for Suprasil 2 and Suprasil 312 samples.

that the exponent of the explicit frequency dependency is 0.8, which gives

a strong frequency dependence of the loss angle. This value is in agreement

with the value found by Wiedersich et al.(' 0.78 [75]) with light scattering

experiments on silica glass. A plot of φ(f, V/S) is shown in figure 4.5. For

Figure 4.5: A plot of the best fit to data for the 2-d function described
by (4.49), modeling with 4 parameters the loss as a superposition of bulk,
surface and thermoelastic losses.

frequencies around 200 Hz and for volume-to-surface ratio of the order of

1 cm (for a mirror this number can be up to 10 cm) the estimated loss angle

is further lower w.r.t. all the available measurements.
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Penn et al. [76] and Ageev et al. [77], following an experimental setup of

the same kind of Gretarsson et al. [37], performed some measurements on

annealed fused silica rods, finding values down to 5×10−9 for the loss angle.

4.4.3 Lowering mirror-coating thermal noise

The problem of treating thermal noise in the coating is not trivial because

it requires the knowledge of modeling the effects of non-homogeneously dis-

tributed losses (coating loss angles are usually higher than bulk loss angles).

Yamamoto [45] clarified definitely the unreliability of the normal-mode ex-

pansion method (see § 3.3.1) in this kind of problems and proposed an ad-

vanced modal expansion method (see § 3.3.2) as a solid theoretical tool. By

the way, from the practical point of view, it was two years before, with

Levin [46] and his direct method, (see § 3.3.3) that actual calculations started

to be possible.

The first ones who demonstrated the invalidity of the normal-mode ex-

pansion experimentally were Yamamoto et al. [79] with measurements on

an inhomogeneous slab. Their theoretical predictions [80] for mirror thermal

noise with inhomogeneous losses (performed using Levin’s method) were con-

firmed by their experimental work [81, 82] on an aluminum hollow cylinder to

which they could apply an arbitrary loss distribution through eddy currents

induced by strong magnets. They studied two distinct cases (also with the

help of FEA): losses concentrated in the front face of the mirror (the laser

side) and losses in the back face, demonstrating the importance of the loss

distribution w.r.t. the position of the impinging laser beam.

The results reviewed in the previous paragraph are extremely encourag-

ing, in the frame of lowering the mirror-bulk thermal noise, but they imme-

diately open the field to other battles, this time against the noise induced by

Brownian and thermodynamical fluctuations in the coating.
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By Brownian fluctuations

Calculating the ratio of the Brownian thermal noise for the bulk, equation

(4.8), to the one for the coating, equation (4.22), it follows

SBrown
x,B

SBrown
x,C

=

√
π

2

1− σ2
B

(1 + σB)(1− 2σB)

φBr0

φCdC

'
√

π

2

φBr0

φCdC

' 5× 10−5

φC

, (4.50)

where, in the last passage, the values φB ' 5×10−9, r0 ' 5×10−2 m, dC '

5×10−6 m have been used. It is evident that, if φC is higher than 5×10−5, the

Brownian thermal noise of the coating starts to be a serious problem. This is

why a lot of researchers focused their efforts on measuring the intrinsic loss

of the coatings.

The effect of optical coating deposition on fused silica slabs was studied by

Gretarsson et al. [83]. In their work they stressed the importance of keeping

under control dissipations due to surface losses (see § 3.2.3). They showed

that a variety of surface treatments (washing with detergent, acetone, KOH,

or HF etching) produced no change in the condition of the surface or made

it a little worse. They found that the intrinsic loss angle of the standard

SiO2/Ta2O5 coating was φC'4×10−4.

Crooks et al. [84] performed measurements on Al2O3/Ta2O5 coatings de-

posited on two fused silica mirrors. They found an excess loss of unknown

source: it was neither due to the inhomogeneity of the coating, nor due to the

possible difference among φ‖ and φ⊥ in the coating (see § 4.2.1), nor due to

the friction in the mirror suspension points. By the way, with a multivariate

regression analysis they got φC =(6.4±0.6)×10−5.

In a companion paper Harry et al. [38], following the model reviewed

in § 4.2.1, tried to measure φ‖ of SiO2/Ta2O5 coating on three fused silica

samples. They found φ‖ = (4.2±0.3)×10−4 for coatings deposited on com-

mercially polished slides and φ‖=(1.0±0.3)×10−4 for coating deposited on

a superpolished disk.
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Penn et al. [85] investigated the sources of loss in SiO2/Ta2O5 coatings on

polished and annealed fused silica samples of various thickness. Their series

of measurements give strong evidence that losses due to coating/bulk and

layer/layer interfaces are negligible w.r.t. losses associated to the intrinsic φ

of the material constituting the coating.

By thermodynamical fluctuations

As for the thermal noise induced by thermodynamical fluctuations on the

coatings, the situation can be even more critical. Equations (4.33) and (4.27)

do not depend on the intrinsic loss of the coating and so the research should

move on quite a new field, exploring the possibility of using different materials

in order to achieve the aimed sensitivities.

To have an idea of the relative weight of the thermorefractive contribution

and the thermoelastic one in the coating losses, the square root of the ratio

between (4.33) and (4.27) can be used:√√√√S
th-dβ

x,C

Sth-dα
x,C

'

√
β2

effλ2

4(1 + σB)α′2Cd2
' βeffλ

2α′dC

, (4.51)

which, in the case of SiO2/Ta2O5 coatings on a fused silica substrate, is

around6 2÷3. It is evident that relative weight strongly depends on the

thermoelastic characteristic of the materials involved. From a theoretical

point of view, good models trying to take into account the differences among

the thermoelastic coefficients of the bulk and the various layer materials are

being developed (see § 4.2). To have an idea of the variety of the out-coming

effects, figure 4.6 can be considered: following thermoelastic predictions by

Fejer et al. [61], it is evident how different the effect of the same type of

coating (e.g. Al2O3/Ta2O5) can be in dependence of the substrate it is applied

6This factor was initially found to be about 7 time smaller because of the used value
αTa2O5 =−4×10−5 [86] instead of αTa2O5 =4×10−6 [87, 88].
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Figure 4.6: Calculated thermoelastic noise [61] of coatings of Al2O3/Ta2O5

or SiO2/Ta2O5, applied to silica or sapphire samples. Dashed lines are from
the complete model, solid lines from the low-frequency approximation.

to.

On this research line there is the work by Baker et al. [89] about the depen-

dence of hardness on density of Ta2O5 layers, through Rutherford backscat-

tering spectroscopy and nanoindentation studies. Tien et al. [87] performed

simultaneous measurements of αTa2O5 and ETa2O5 and Braginsky et al. [88]

performed measurement of αTa2O5 , both groups using phase shifting interfer-

ometry.

There is a clear need to carry out a series of experiments, in which coat-

ing parameters are systematically varied as this will allow the source of the

coating losses to be investigated.

4.4.4 Lowering suspension thermal noise

In the frequency region up to 50 Hz the dominating noise is the thermal noise

of the suspension (see § 4.3). Among the various suspension thermal noise

contributions, pendulum thermal noise is by far the main important one.
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Looking at (4.42) and (4.41) it is evident that it is convenient to suspend

heavy masses in a multiple-wire configuration using materials with a high

breaking stress and low internal loss angle. Researches on materials with

good properties in the past years proceeded together with the studies on the

clamping and on the identification of possible excess losses.

The first measurements testing the theoretical models were performed by

Gillespie and Raab [90, 91], giving encouraging results.

Cagnoli et al. [92] focused the attention on the geometry of the clamp for

the suspensions. They obtained a significant decrease of losses due to the

stick-and-slip mechanism on the clamp surfaces by increasing and localizing

the clamping pressure on the heads of the suspension wires. Their work gave a

strong impulse to investigate suspension techniques different from clamping,

like welding [93] and silicate bonding [94].

Ageev et al. [95, 96] studied excess losses connected with loaded suspen-

sion wires made of steel and tungsten. They found that spurious increases

of the noise floor and isolated noise peaks (which could not be explained by

a mechanical shot noise model [92]) are much less present in steel wires than

in tungsten wires. A recent study by Gretarsson and Saulson on tungsten

and silica fibres [97] demonstrated that such kind of effects are negligible.

Cagnoli et al. [98] performed internal friction measurements for the nor-

mal modes of circular fibres of different materials demonstrating that the loss

angle in fused silica is 2 orders of magnitude better than the one in metallic

wires.

Gretarsson and Harry [37] performed accurate measurements on fused

silica fibres reducing clamp losses thanks to the introduction of an isolation

bob between the sample and the clamp. They noted that surface losses

dominated at diameter values less than about 1 mm.
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Experiments on all fused-silica massive pendula [99, 100] gave values for

the total loss angle around 10−8.

Ribbons seem to be a good alternative to fibres [101] and recently [102]

it has been shown that, with the correct aspect-ratio choice (to minimize

thermoelastic damping) they can perform even better than fibres.

4.4.5 Guidelines for new materials

To summarize, there are a number of constraints which affect the selection

of materials for test masses, coatings and suspensions of long baseline gravi-

tational wave detectors. In addition to the common feature of having a very

low loss angle at room temperature,

the materials for the bulk should:

– have very low optical loss at the wavelength of the laser light to

minimize the heat deposited,

– have high thermal conductivity and low thermal expansion to min-

imize mechanical distortion when heat is deposited in it by the

laser beam,

– have a low rate of change of refractive index with temperature to

minimize thermal lensing effects for transmitted laser beams,

– be suitable for polishing and coating to sub-angstrom surface rough-

ness,

– be capable of being produced in suitable size, to reduce radiation

pressure noise,

– have oxidised aluminum or silicon in their makeup so that they

can be hanged to suspension through silicate bondings;

the materials for the coating should:
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– have thermoelastic properties that match with the substrate ones,

to minimize mechanical distortion when heat is deposited in it by

the laser beam,

– have a low value of change of refractive index w.r.t. temperature

to minimize thermorefractive noise,

– be capable of being deposited in quarter-wavelength layers;

the materials for the suspension should:

– have high thermal conductivity and low thermal expansion to min-

imize the thermoelastic damping,

– be capable of being produced in suitable shapes (ribbons or fibres),

– have oxidised aluminum or silicon in their makeup so that they

can be attached to test masses through silicate bondings.

Good candidate materials for mirror bulks can be very pure glasses such as

fused quartz and fused silica or single-crystal materials such as sapphire and

silicon. For the coating there are researches on Al2O3/Ta2O5, SiO2/Ta2O5

and SiO2/TiO2-doped Ta2O5.

In this complex research context, finite element analysis can be a very

useful tool in various steps of the modelization as it will be shown in chapter 5

through the work done by the candidate.

As far as suspensions are concerned, fused silica can be a good material:

a lot of work has been done on it, and presently there is already a planning

for bringing Virgo to an upgraded detector, called Virgo+, in which C85 steel

wires will be replaced by fused silica fibres.

Silicon also is a very promising candidate: in chapter 6 its interesting

features will be described, together with the experiments performed by the

candidate in order to measure the loss angle of crystalline fibres, aiming at
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the possibility of using this new material for the suspensions of future 3rd

generation GW interferometric detectors.



90



Chapter 5

Using finite element analysis

In the general framework of calculating thermal noise in composite system,

the finite element analysis (FEA) can play a central role. The power of FEA

resides on the possibility of facing many different problems connected with

the behavior of complex systems. In many steps of the calculations that

are necessary toward a complete thermal noise evaluation, FEA can give its

support and, in some cases, it can allow to undertake problems otherwise

impossible to solve.

In this chapter, first of all the FEA basis is introduced examining strong

points and limitations of this approach. Then it will be discussed the appli-

cation of FEA to an actual model of a Virgo mirror for calculating thermal

noise with a direct method.

5.1 The basis of finite element analysis

The finite element method is a discretization process that, through the use of

a mathematical model and numerical calculus techniques, allows the study

of particularly complex problems. A solution is sought on the basis of funda-

mental equations governing the phenomena under investigation and through

apposite approximations of the variables involved. The basic idea of FEA is

quite simple and two separate steps can be identified:

91
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� the discretization in which the structure is divided into finite elements

with dimensions that bring to approximate the stress and strain fields

within a certain error;

� the building of the structure in which all the single elements are assem-

bled together, to solve the complete system so that

– the stress and strain fields satisfy the continuity requirements on

elements interfaces,

– the internal stresses are in equilibrium, considering the applied

loads and the boundary conditions.

In mechanical analyses of structures FEA can be used to face many different

problems: linear and non-linear elastic, plastic, viscoplastic either static or

stationary or dynamic. For a generic structural problem — whatever the

geometry, the loads and the materials involved— three main conditions are

always present:

� equilibrium condition:

it relates the stress to itself and the applied forces. If the displacements

are small, the equilibrium equations are linear;

� compatibility:

it relates the strain to the displacements, in a geometric way. If the

displacements are small the compatibility equations are linear;

� constitutive relation:

it is an empirical law, as the elastic or the thermal one, that defines

the constitutive equation of the system.

The software looks for a displacement field satisfying the above conditions.

The found solution is not an exact one, but it gives a good approximation
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of the real one1, in the analysis of problems for which obtaining the solution

with the classical methods in an analytic way is, when possible, very difficult.

5.1.1 The principle of virtual displacements

The method adopted inside the FEA for solving the equilibrium equations is

based on the principle of virtual displacements (PVD). The PVD states that

if the system is subjected to a displacement field (arbitrary but compatible

with the vincula) w.r.t. the equilibrium configuration, the work done by the

internal forces equals the work done by the external ones. For a generic solid,

subjected to the volume force Fi and to the surface force Pi, this means∫
V

σijuijdV =

∫
V

FiuidV +

∫
S

Piuids , (5.1)

where ui, σij and uij are the displacements, the stress matrix and the strain

matrix of the system respectively. Introducing in the previous equation the

compatibility relation between the strain uij and the displacements ui

uij =
1

2
(∂iuj + ∂jui) (5.2)

and using the Gauss theorem in the form2

∫
V

(
σij∂iuj + uj∂iσij

)
dV =

∫
S

σijujnids , (5.3)

it follows ∫
V

ui

(
∂jσij + Fi

)
dV −

∫
S

ui

(
σijnj − Pi

)
dS = 0 , (5.4)

where ni are the components of the unit vector normal to the surface of inte-

gration. Assuming u(r) is an arbitrary everywhere-continuous function, its

1The accuracy of such an approximation depends on the refinement of the mesh as it
will be explained in § 5.1.4.

2An important requirement for the theorem to hold is that ∂iuj and ∂iσij are finite
inside the volume V of integration, i.e. the fields σ and u are continuous.



94 Chapter 5. Using finite element analysis

coefficients must vanish in V and S to satisfy the previous relation, bringing

to the equilibrium equations

∂iσij + Fj = 0 in V and (5.5)

niσij = Pj in S. (5.6)

The same equations can be obtained also imposing the system to be in a

minimum of the potential energy. However, especially in the context of FEA,

the PVD method reveals its power.

5.1.2 The elements

It is simple to solve integrals of known functions if an approximated method

is used. This is the knot of the finite element method when it is used in

a structure on which the displacements field is characterized by continuous

but unknown quantities; the first step is to divide the structure into parts

— finite elements — so tiny that they can suitably mock the real variation

of the involved quantities.

The integral necessary to solve the structural problem can be substituted

by a sum over functions evaluated on the elements. Therefore the finite

element method can be simply viewed as a strategy to numerically solve

integrals otherwise too complex — if not even impossible — to solve in a

closed form. Moreover, for solving the integral, it is necessary to hypothesize

the form of the displacements in the interior of each element: form functions

are used to interpolate these values to obtain an everywhere defined solution

to be used in the algorithm. Generally a simple kind of form function is

used (linear or quadratic) and the precision of the solution is assured by the

refinement of the mesh.
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Element types

There are many types of elements that can be used, depending on the geom-

etry of the system and on the kind of analysis that has to be performed.

The first thing characterizing an element is the dimensionality of the

space in which it is immersed: it can be a 2-D or a 3-D space.

A 2-dimensional element is useful in problems in which the structure

extends essentially on a plane and there are no stresses in the orthogonal

direction. It can also be used for modeling structures in which there is a

rotational or translational symmetry along one axis. In these kinds of model

the analysis is performed on one section only, introducing ad hoc boundary

conditions to take into account the actual behavior of the whole structure.

In all the other cases — and this also happens in the work performed in

this thesis — elements in 3 dimensions are used. They divide into various

categories depending on the dimensionality of the internal structure of the

element itself:

� line elements. They are used to model strings, bolts, preloaded bolts,

tubular members or any long, slender members where only membrane

and bending stresses are needed. They have 2 or 3 nodes.

� shell elements. They are used to model thin panels or curved surfaces.

The definition of thin depends on the application but, as a general

guideline, the major dimension of the shell structure should be at least

10 times its thickness. They have a rectangular shape — with 4 or 8

nodes —, that can degenerate to a triangular one.

� solid elements. They are used for structures which — because of ge-

ometry, materials, loading or detail of required results — cannot be

modeled with simpler elements. They are also used when the model
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geometry is transferred from a 3-D CAD system and a large amount of

time and effort is required to convert it to a 2-D or shell form. They

have a brick shape — with 8 or 20 nodes —, possibly degenerating into

tetrahedrons, pyramids and prisms, or a tetrahedral shape — with 8

nodes —.

Each element is associated with a set of values that defines the degrees of

freedom w.r.t. which the FEA has to be solved. A thermal element type,

for example, has one d.o.f., which is the temperature, whereas a structural

element type may have up to six d.o.f., i.e. three translations and three

rotations. The most commonly used element types of the finite element

software ANSYS©R 8.1 [103] are reported in table 5.1. All the reported elements

2-D Solid 3-D Line 3-D Shell 3-D Solid

Linear PLANE42∗
BEAM4 SHELL63 SOLID45

BEAM188 SHELL181∗ SOLID185∗

Quadratic
PLANE82∗

PLANE2
BEAM189

SHELL93

SHELL99

SOLID95

SOLID92

SOLID186∗

Table 5.1: Commonly used structural element types of ANSYS©R software.
Stars indicate elements suitable for non-linear analyses.

are good for describing the behavior of linear materials; element types with a

star must be used for non-linear analysis. Elements PLANE2 and SOLID92

have a triangular and a tetrahedral shape respectively. Element SHELL99 is

designed for shells composed of a great number of layers (up to 250).

5.1.3 The mesh

Half of the efforts in doing a FEA concerns the realization of a good finite

element model.
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After choosing the various element types and after defining the actual

properties of the involved materials, the model has to be divided into a sort

of grid, called mesh: each element is assigned a definite part of space and

close elements are related to each other in the required way. In the last

years a lot of improvements have been done in order to supply routines that

automatize as much as possible this step of the modeling. The program has

a specific engine, the mesher, that decides on an optimal disposition for the

elements.

It is up to the user to pilot the mesh toward the desired configuration. If

the mesher is run without any particular setting, it will generally construct

a mesh of nearly identical in volume elements by using tetrahedral ones for

the volumes and triangular ones for the areas. The user has many ways of

modifying the building of the mesh, in order to optimize the extraction of the

needed quantities, to simplify the application of boundary conditions and to

reach the required level of precision for output results. He can choose that

elements volumes are in a particular range and that lines or areas are divided

into elements only in a certain number of parts or following a defined scheme.

He can also modify the mesh after its constitution choosing to refine it at

some locations.

5.1.4 Checking the FEA results

The hypothesized form functions introduced in § 5.1.2 could not represent

what is happening really and approximation errors can occur, independently

of what kind of element has been chosen for the FEA. Out of balance forces

can appear among the applied loads and the reaction of the elements. This

is why it is necessary to do ”sanity check” to make sure the solution is

acceptable.

Generally it is very useful to verify if the results agree with hand calcu-
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lation or experimental data, especially for the displacement solution, from

which all the other results are derived. If this kind of calculation is not

possible on the actual structure, it is possible to perform it on a model that

embeds all the physical phenomena under consideration but that is simplified

in the geometry (fewer objects of simpler shape).

The reaction forces should balance the applied loads and the mesh should

be adequately refined. Criteria for understanding if the mesh is correct are

described in the following.

Mesh error

The residual error can be physically interpreted as a continuous and artifi-

cial load — or constraint — that forces the element to maintain, e.g. in a

structural analysis, the approximate deflection. If it is imagined to gradu-

ally remove this constraint and to leave the system moving toward the true

equilibrium position, a positive work would be exerted by the applied forces.

Therefore the elastic potential energy of the system increases releasing the

constraints: the deformation energy of a structure, when it is an approximate

solution obtained using the PVD, is less than the real deformation energy.

The solution is called a lower bound solution and the structure can appear

more rigid than the real one. By increasing the degrees of freedom, a con-

vergence of the results toward the real value occurs. That phenomenon is

referred to as mesh convergence. It is important to notice that the limit of

the real value is on the mean of the total energy and not on the tension and

displacements in a point; locally the tension could be higher than the real

one.

The usual assumptions in FEA lead to a displacement field that is con-

tinuous on the elements and a stress field that is discontinuous. The element

stress σ̂ are obtained using the value inside the chosen element; the nodal
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stress σ∗ are obtained as a mean among all the values of the elements con-

curring at the chosen node. The difference

∆σ = σ∗ − σ̂ , (5.7)

among element and nodal stresses is a value that can be easily computed

in the post-processing and it gives a good indication of the suitability of

the current mesh refinement. To define an error ei of the mesh on the i-th

element3 it is possible to integrate the deformation work done by ∆σ on the

i-th element volume Vi:

‖ei‖2 +
1

2

∫
Vi

∆σijE
−1

ik∆σkjdV , (5.8)

where Eij is the elasticity matrix of the material. Therefore an estimation of

the percentage error etot on a series of selected elements is given by4

etot = 100%

( ∑
i ‖ei‖2∑

i ‖ui‖2 +
∑

i ‖ei‖2

) 1
2

, (5.9)

where ‖ui‖2 is the deformation energy of the i-th element. As a general rule

of thumb, etot should be under 10%. The elements of the structure where

this threshold is overtaken are good candidates for a mesh refinement5.

Another way to check mesh adequacy is to plot the element stresses and

look for elements with high stress gradients.

5.2 FEA as a general tool in thermal noise

studies

Finite element analysis is a very useful tool in solving several theoretical and

experimental problems in the framework of thermal noise studies. A list of

various cases in which FEA can be used is here shown.
3This value in ANSYS©R is called SERR.
4This value in ANSYS©R is called SEPC.
5Since the quantity etot is always highest at stress singularities, it is necessary to uns-

elect the relative elements before investigating the error distribution.
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5.2.1 Resonance modes extraction

Frequency and shape of resonance modes of a system can be extracted per-

forming a modal analysis on its finite element model. There are many prac-

tical situations in which such kind of analysis can be very useful.

Ring-down experiments

In a class of experiments aiming at measuring quality factors of materials,

the ring-down technique is used. The quality factors Q are extracted using

Q=ωrτ/2, performing measurements on the time decaying constant τ in ring-

down of oscillations at the various resonance frequencies ωr of the system.

Therefore, especially for quite complex systems, for which the analytical

calculation is not straightforward, it is useful to know the exact values of

the resonances in order to excite them without losing time in looking for

them. In fact, if the quality factor of the resonator is very high the spectral

amplitude of its resonances is very sharp and it can be difficult finding them

with a white noise or a swept-sine excitation.

The strain energy E of each mode can be expressed as [30]

E = µ

∫
V

(uik −
1

3
δikull)

2d3r +
1

2
K

∫
V

u2
lld

3r = Esh. + Eh.c. , (5.10)

where the integrals have to be performed on volume V of the sample. The first

addendum of (5.10) is due to a pure shear (distortion without volume change)

and the second to hydrostatic compression (volume change without shape

modification). The quantities K and µ are called modulus of hydrostatic

compression and modulus of rigidity respectively and they are related to

Young’s modulus E and Poisson’s ratio σ by

µ =
E

2(1 + σ)
, (5.11)

K =
E

3(1− 2σ)
. (5.12)
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It can happen that the quality factor is related to whether the energy is

stored in compression or shear. With a FEA it is possible to compute, from

the strain distribution of each mode, the compression part and shear part of

the strain energy.

Interferometer read-out

In interferometer mirrors like the ones used in Virgo only certain modes give

a non-zero contribution to the effective displacement read through the laser

beam. The gaussianity of the laser-beam profile makes the interferometer

almost insensible to mirror surface movements relative to modes that have

radial node-lines: during an oscillation the shortening of the light path hap-

pening on one side of the nodal line is exactly compensated by the lengthening

happening on the other. Therefore it is important to identify the modes that

can represent, with their excitation, a noise for the interferometer.

In § 5.4.1 there will be shown the analysis done with a FEA on the resonances

of a mirror like the one used in Virgo.

5.2.2 Shape parameter extraction

As explained in § 3.2.3, superficial losses could be dominant in ring-down

experiments and they depend on geometries and mode shapes. The size of

the effect is described by (3.57), in which a correct calculation of µ becomes

crucial for a precise estimate of the superficial losses. According to [37]

µ =
V

S

∫
S

u2
ik(r)d2r∫

V
u2

ik(r)d3r
, (5.13)

where S, V and uik(r) are the surface on which the dissipation occurs, the

volume of the sample and the strain induced by the considered mode at the

position r on the sample. This calculation, especially for higher modes and
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for complex sample shapes, can be hard to perform. In § 5.4.2 FEA will be

used to calculate the parameter µ in the case of a mirror like the one used in

Virgo.

5.2.3 Brownian thermal noise in complex systems

Nowadays, as it was explained in § 3.3.3, the most used technique for thermal

noise calculation is Levin’s direct approach. Numata [18] was the first to

use this approach in combination with a FEA performed to calculate the

mean dissipated energy to be used in Levin’s formula (3.104). He did the

analysis for an axisymmetric mirror including the loss of a 1-layer coating

and, separately, of the magnets. In § 5.4.3 there will be shown how to perform

a complete analysis of the mirror as a whole, including the presence of a multi-

layer coating, magnets, spacers and markers. The result obtained for the

north-input (NI) and the north-end (NE) mirrors of the Virgo interferometer

will be shown. It is the first time that such an analysis has been performed.

5.2.4 Parametric analyses

Thanks to detailed finite element models like the one developed hereafter

for the mirror, it is possible to perform calculations previously impossible,

investigating behaviors of the thermal noise budget w.r.t. arbitrarily chosen

variables. That is very important because, on following the same scheme of

finite element model creation, it will be possible, during the design phase of

the future mirror, to chose the most suitable configuration for minimizing

thermal noise contributions.

As an example, in § 5.4.4 there will be analyzed the effect of markers

position on the thermal noise of the silicate bonding layer used to attach

markers on the mirror surface.
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5.2.5 Analysis on thermoelastic noise

In § 3.2.2 the thermoelastic damping process has been introduced and in

§ 4.1.2 and § 4.2.2 its effect on the bulk and the coating thermal noise has

been reviewed. Following the method introduced by Liu and Thorne [56] and

described in § 4.1.2 on page 67, the thermoelastic noise can be evaluated once

the average dissipated power Wdiss is known. It is possible to calculate Wdiss

through a finite element analysis using thermal elements associated with the

structural ones but, because of the complexity of the problem and the lack

of a specific ANSYS©R element type, an actual calculation on realistic mirrors

has not been performed yet.

In chapter 6 it is shown how a FEA can enter the study of thermoelastic

noise in crystalline silicon fibres.

5.3 Finite element model of a Virgo mirror

The first step of a FEA on a Virgo mirror is the construction of a finite

element model. The ANSYS©R 8.1 [103] finite element software was used and

the analysis is performed on the mirrors of the north-arm Fabry-Perot cavity

which will be referred to as north input (NI) and north end (NE). For a

complete modelization, all the components of the mirror used in the actual

interferometer should be implemented: bulk , coating, magnets, markers and

spacers.

5.3.1 The bulk

It consists of a single fused silica cylinder 350 mm in diameter and 96 mm

thick for both NE and NI mirrors. NI mirror is made of Suprasil and NE of

Herasil. The lateral surface is filed in order to obtain rectangular flat areas

for spacer settlement. The volume is modelized with tetrahedral SOLID92
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elements created with a free-mesh after the mesh of all the other components.

In this way the mesher is forced to create transition zones between the high-

definition regions and the low-definition ones.

5.3.2 The coating

It consists of alternating layers of Ta2O5 and SiO2, materials with high and

low refractive indexes respectively. On the NI the coating diameter is 100 mm

and on the NE it is 280 mm because the transversal dimension of the resonant

mode increases along the Fabry-Perot cavity reaching its maximum at the

NE mirror. The composition of the two coatings for the mirrors are reported

in table 5.2. The NI has four extra layers on the surface; their specifications

are reported in table 5.3. The mesh is driven in a particular shape in order

Type Thickness
# of layers

NI NE

High 130.4 nm 17 4

Low 182.2 nm 18 4

Table 5.2: Coating layer constitution for the two mirrors.

NI extra layers

Type Thickness # of layers

High 100.8 nm 1

Low 252.7 nm 1

High 121.0 nm 1

Low 539.1 nm 1

Table 5.3: Characteristics of the four extra layers of the NI mirror.

to simplify and optimize the application of a pressure with a Gaussian profile.

First of all a series of circular lines is created with a definite spacing factor,
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in order to have a better spatial resolution in the central area. These lines,

together with 4 other radial straight lines, identify a set of areas (figure 5.1a).

Secondly the mesher is forced to follow a definite pattern of line division for

the node creation (figure 5.1b). Finally the mesh is created using SHELL99

elements (figure 5.1c). In the central part of the coating the mesh is simply

Figure 5.1: Steps of the mesh-driving procedure followed for creating the
shell element of the coating on the mirrors. Area creation (a), lines division
forcing (b), mesh with SHELL99 elements (c).

completed with triangular elements in order to have only 7 extra nodes (see

figure 5.2).

Figure 5.2: A magnification of the central part of the coating mesh. Only 7
nodes are added to complete the coating model.
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5.3.3 Magnets, markers and spacers

Figure 5.3: A view of the various components on the mirror: magnets (in
blue), markers (in red) and spacers (in green).

Magnets: they are four elements (blue colored in figure 5.3) attached

to the backside of the mirror and they consist of two parts: a cylin-

dric support made of SiO2 and a cylindrical magnet (simulated with a

material with the same properties as C85 steel). A view of a meshed

magnet is shown in figure 5.4a.

Markers: they are located on the front-side of the mirror, external to

the coating and they are four simple cylinders made of SiO2 (red colored

in figure 5.3). A view of a meshed marker is shown in figure 5.4b.

Spacers: they are four prisms (green colored in figure 5.3) with a

triangular base, attached along a lateral face on the flattened area of the

mirror lateral side. A view of a meshed spacer is shown in figure 5.4c.



5.4 Application of FEA to a Virgo mirror 107

Figure 5.4: A view of a meshed magnet (a), marker (b) and spacer (c).

Silicate bonding areas: magnets, markers and spacers are attached

to the bulk by means of the silicate bonding process. The interface

region is modeled with SHELL99 elements formed by a 100 nm thick

layer of SiO2.

The characteristics of the materials used are reported in table 5.4 A view of

the complete NI mirror is shown in figure 5.5.

Material ρ [kg/m3] E [GPa] σ

SiO2 2202 73.2 0.164

Ta2O5 8316 140 0.23

C85 7900 200 0.3

Table 5.4: Characteristics of the materials used in the simulation: density ρ,
Young’s modulus E and Poisson’s ration σ.

5.4 Application of FEA to a Virgo mirror

Hereafter, using the model of the Virgo mirror described in § 5.3, there will

be a review of the FEA’s performed by the candidate in the various research
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Figure 5.5: A view of the complete finite element model of the NI mirror.

areas anticipated in § 5.2.

5.4.1 Resonance modes extraction

A modal analysis has been performed on the finite element model of the

mirror described in § 5.3. A plot of the found resonances w.r.t. the sequential

mode number is shown in figure 5.6 to give an idea of the plethora of modes

that characterizes this system. It is interesting to analyze the shape of the

resonance modes.

The modes can be catalogued depending on oscillation-directions of the

system points (along x̂, ŷ, ẑ working in Cartesian coordinates or r̂, ϑ̂, ẑ in

cylindric ones or r̂, ϑ̂, ϕ̂ in spherical ones). The choice of the coordinate sys-

tem depends on the easiness of the mode-pattern description. If not specified

otherwise, the cylindric coordinate system will be used. Each pure mode is
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Figure 5.6: Resonance mode frequency of the NI mirror versus the sequential
mode number, plotted for the first 356 modes.

labeled with a capital letter, indicating the oscillation direction, and by a set

of three numbers indicating the behavior of the oscillation (which is simply

related to the number of the nodal planes) along the three coordinate direc-

tions. For example, Zr,ϑ,z refers to a mode along ẑ with r nodal cylindric

surfaces ⊥ r̂, with ϑ nodal radial half-planes6 (⊥ ϑ̂) and z nodal planes ⊥ ẑ.

In 2-D and 3-D, objects generally do not produce pure modes, because

they couple with modes along orthogonal directions having other kinds of

symmetry. For example (see figure 5.7), consider the first mode of the mir-

ror in cylindrical coordinates called butterfly mode: it is practically a pure

Z0,2,0 but it is slightly coupled with R0,2,1 and Θ0,2,1 modes, which are along

orthogonal directions w.r.t. ẑ and with a (r = 0, ϑ = 2, z = 1) symmetry.

Sometimes the coupling is very high and all the pure concurring modes are

6The nodal surfaces for Rr,ϑ,z and Θr,ϑ,z are the same as for Zr,ϑ,z with the exception
of r label of Θ , which corresponds to r/2 cylindrical surfaces for r even and to (r−1)/2
cylindrical surfaces for r odd.
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Figure 5.7: The first mode of the NI mirror in a three-quarter view (a) and
in a front view (b). It is evident that the motion is mainly along ẑ but that
it slightly couples with movements along r̂ and ϑ̂.

strongly present. See, e.g., the 6th mode (figure 5.8): the two pure modes

R0,2,0 and Θ1,2,0 are both present as shown in the diagram of figure 5.9a.

Figure 5.8: Three-quarter view of the 6th mode of the NI mirror.

Whatever the coupling is, the resulting symmetry is the composition of
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Figure 5.9: Diagram of the superimposition of the R0,2,0 and Θ1,2,0 pure
modes forming the 6th mode. Nodal surfaces are indicated with thick lines,
nodal axes with thick points (a). The composition of the nodal surfaces is
shown, giving birth to 5 nodal axes (b).

the pure-mode symmetries. In figure 5.9b the composition of the 2 pure-

modes symmetries is shown for the 6th mode. The intersection among the

mode nodal-surfaces is taken, resulting in 5 nodal axes.

In table 5.5 the pure modes constituting the first 41 modes of the FEA

mirror are reported (the bold font indicates the dominant ones). Some modes

appear on the same row because they go into each other7 with a rotation

along ẑ.

7This is not strictly true because of the presence of magnets, markers and spacers that
break this symmetry. By the way, the the modes are so slightly different from each other
that the two frequencies are nearly equal and it makes sense to consider them part of the
same doublet.
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Mode
Pure modes Frequency Eh.c.

Etot
zout Name

number

1,2 R0,2,1 Θ1,2,1 Z0,2,0 3879, 3883 .106 7×10−4 aB2

3 R0,0,1 — Z1,0,0 5544 .736 1 aD1

4,5 R0,3,1 Θ1,3,1 Z0,3,0 7549, 7552 .197 1×10−6 aB3

6,7 R0,2,0 Θ2,2,0 Z0,2,1 8042, 8048 .019 3×10−5 sB2

8,9 X1,1,0 Y2,0,0 Z0,1,1 9021, 9023 .458 5×10−8

10,11 X2,4,1 Y1,1,1 Z r,ϑ,z
1,1,0 10121, 10124 .673 2×10−5

12 R0,0,0 — Z1,0,1 10379 .737 7×10−2 sD1

13,14 R0,4,1 Θ1,4,1 Z0,4,0 11308, 11321 .207 2×10−3 aB4

15,16 R0,3,0 Θ2,3,0 Z0,3,1 12297, 12299 .103 7×10−8 sB3

17,18 R0,2,0 Θ3,2,0 Z0,2,1 13900, 13926 .566 2×10−6

19,20 R1,2,1 — Z1,2,0 14434, 14465 .594 8×10−4

21,22 R0,5,1 Θ1,5,1 Z0,5,0 15072, 15079 .205 2×10−5 aB5

23 R1,0,1 — Z2,0,0 15606 .651 5×10−1 aD2

24,25 R0,4,0 Θ2,4,0 Z0,4,1 15938, 15961 .154 1×10−2 sB4

26 R1,0,0 Θ2,0,0 — 17647 .000 4×10−6

27,28 R1,3,1 — Z1,3,0 18412, 18415 .587 3×10−5

29,30 X2,4,0 Y1,1,0 Zr,ϑ,z
1,1,1 18620, 18622 .546 3×10−8

31,32 R0,6,1 Θ1,6,1 Z0,6,0 18788, 18810 .194 6×10−4 aB6

33,34 R0,3,0 Θ3,3,0 Z0,3,1 19106, 19115 .406 1×10−6

35,36 X2,2,1 Y1,1,1 Z r,ϑ,z
2,1,0 19172, 19173 .516 3×10−5

37,38 R0,5,0 Θ2,5,0 Z0,5,1 19360, 19363 .179 8×10−7 sB5

39 R0,0,1 Θ0,0,1 — 19719 .001 2×10−6 aT1

40,41 X1,1,1 Y2,0,1 Zr,ϑ,z
1,1,1 21381, 21389 .285 5×10−6

Table 5.5: The first 41 mode frequencies of the FEA mirror are listed together
with the pure modes forming them (the bold font indicates the dominant
ones). The modes appearing in pairs are doublets, connected by simple
rotations along ẑ. The 4th column reports the ratio between hydrostatic
compression energy Eh.c. and total energy Etot of the mode. In the 5th column
the effective read-out displacement per unit of

√
Etot is shown, referring it to

3rd-mode displacement. The last column indicates the common name of the
mode: “B”, “D” and “T” stand for “butterfly”, “drumhead” and “torsional”
respectively; “a” and “s” stand for asymmetric and symmetric.
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Ring-down experiments

Frequencies obtained with FEA have to be considered reliable within 1�;

therefore they are very useful as a guide to find the resonances to be excited

in a ring-down experiment. In table 5.5 the frequencies of the first 41 modes

of the mirror are reported as obtained with a modal analysis performed with

ANSYS©R.

As explained in § 5.2.1, if the damping of the modes can depend on how

the energy is distributed between shear and compression, it is relevant to

calculate these quantities for each mode. Shear energy Esh. and hydrostatic

compression energy Eh.c. are obtained by the integrals over mirror volume

defined in (5.10). Obviously in FEA these integrals reduce to a sum of

products among volumes Vn and strain components uij,n of each element:

Esh. = µ
∑

n

(uik,n −
1

3
δikull,n)2Vn = µ

∑
n

(u2
ik,n −

1

3
u2

ll,n)Vn , (5.14)

Eh.c. =
1

2
K

∑
n

u2
ll,nVn , (5.15)

where µ and K are defined in (5.11) and (5.12). These values were calcu-

lated from ANSYS©R output, using AWK [104], a pattern-directed scanning and

processing language.

In table 5.5 the ratio between Eh.c. and the total energy of the mode is

reported. This value is almost zero (energy completely stored in shear) for

the torsional modes (e.g. 26th and 39th), it is below 0.2 for the butterfly modes

and it is distributed around 0.6 for the others, with the highest values of over

0.7 for the first drumhead modes, indicating a great hydrostatic compression.

Interferometer read-out

As regards the influence of mirror resonances on interferometer read-out, it

is possible to calculate, for each mode, the neat displacement read by the
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Gaussian laser beam at the maximum of oscillation. The beam profile is

simulated with forces Fn acting on the mirror-coating nodes reproducing

a Gaussian pressure-profile as it will be explained in § 5.4.3. The effective

displacement zout, normalized to the displacement of the 3rd mode, is obtained

for each mode by the coating-nodes displacements zn using

zout =

∑
znFn√
Etot

√
Etot,3∑

zn,3Fn,3

, (5.16)

where Etot is the total energy stored in the mode and the index “3” refers

to the 3rd mode. The factor
√

Etot is necessary to consider modes as having

the same stored energy; the square root takes into account that energy is a

quadratic form of displacements.

The obtained values, referred to the 3rd-mode displacement, are listed in

table 5.5: it is evident that among the first 41 modes the most contribut-

ing ones are the three drumhead aD1, sD1, aD2, followed — two orders of

magnitude further down — by the butterfly modes.

5.4.2 Shape parameter extraction

In § 5.2.2 the importance of the shape parameter µ defined by (5.13) has

been stressed. A FEA has been performed to calculate this parameter from

the element strain distribution.

The particular conformation of the actual mirror forces to consider two

distinct sources of superficial damping: the coating surface and all the other

uncoated surfaces. Therefore (3.56) now becomes

∆Esurf

∆Ebulk

=
∆Ec

surf

∆Ebulk

+
∆Euc

surf

∆Ebulk

= µcdc
s

Sc

V
+ µucduc

s

Suc

V
. (5.17)

where the notation is the same as in (3.56) and the superscripts “c” and

“uc” refer to coated and uncoated surfaces respectively. In order to calculate

µc and µuc with formula (5.13), superficial strain energy density for coated
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and uncoated surfaces is needed. ANSYS©R software does not allow access to

superficial densities directly, but for the coated surface the strain is almost

constant through the coating SHELL elements, in the direction normal to

the surface, so that∫
Sc

u2
ik(r)d2r

Sc

'
∫

Vc
u2

ik(r)d3r

Vc

=

∑
n u2

ik,n∑
n Vn

, (5.18)

where the integral in the numerator has moved from the coating surface to

the coating volume and finally it has become a simple sum over the coating

elements. As regards the uncoated surfaces, the finite element model of the

mirror has been slightly modified covering them with a layer of fused silica

0.1 µm thick.

In table 5.6 the calculated µc and µuc parameters for the first 41 modes

of NI and NE mirrors are reported. The values for µc are more variable

(from 0.0 to 6.7) w.r.t. the ones for µuc (from 0.4 to 2.3). This is due to

the fact that µc is extremely sensitive to modes that, for their particular

shape, have a lot of energy in the center of the mirror; on the other side µuc

mediate on a larger surface, with parts either near or far w.r.t. the center of

the mirror. Moreover, focusing on µc, low values (below 2) for the NI mirror

systematically correspond to higher values for the NE one and vice-versa,

except for the 10th and 11th modes. This is related to the different coating

radius (28 cm for NE and 10 cm for NI) that allows the parameters to be

more or less sensitive to the energy stored in the center or the peripheral

parts of the mirror.

5.4.3 Brownian thermal noise calculation

Brownian thermal noise calculation for the NI and NE mirror of Virgo ex-

periment has been performed using FEA. The formula (3.104), reported also
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Mode µc µuc

number NI NE NI NE

1,2 6.70 4.68 1.89 1.29

3 10.50 5.26 1.68 1.11

4,5 1.02 3.71 2.06 1.49

6,7 4.46 2.03 0.60 0.37

8,9 0.28 1.22 1.06 0.87

10,11 2.68 4.58 1.55 0.92

12 2.77 1.79 0.70 0.49

13,14 0.16 3.05 2.13 1.65

15,16 1.03 1.94 0.80 0.51

17,18 0.83 0.82 1.26 1.15

19,20 1.49 3.88 1.48 0.93

21,22 0.03 2.57 2.22 1.81

23 5.18 4.13 1.32 0.80

24,25 0.20 1.85 0.98 0.69

26 0.20 1.83 0.66 0.37

27,28 0.55 3.17 1.48 1.01

29,30 0.96 1.64 0.56 0.34

31,32 0.00 2.20 2.32 1.96

33,34 0.26 0.57 1.32 1.23

35,36 3.17 1.99 0.69 0.45

37,38 0.04 1.75 1.16 0.88

39 0.00 0.00 0.73 0.73

40,41 0.34 0.49 1.06 0.99

Table 5.6: Shape parameters for the coated (µc) and uncoated (µuc) surfaces
of NI and NE mirror for the first 41 modes.

here for clarity,

SX(ω) =
8kBT

ω2

〈Wdiss〉
F 2

0

, (5.19)

gives the power spectrum of the Brownian thermal noise SX(ω) from the

average dissipated power Wdiss by the mirror subjected to a pressure distri-

bution (of total force F0) that mocks the laser power profile, as explained in
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§ 3.3.3.

Virgo laser has a total power P0 = 20 W, distributed with a Gaussian

profile P (r, ϑ) expressed by

P (r, ϑ) =
P0

πr2
0

e
− r2

r2
0 , (5.20)

where r0 is the beam radius related to the beam waist w0 by w0 =
√

2r0 (on

the NI w0 =2 cm, on the NE w0 =5.5 cm). The coating has been meshed, as

explained in § 5.3.2, in order to simplify as much as possible the application

of the pressure profile, that is simulated with a set of forces acting on the

corner nodes of the SHELL elements constituting the coating itself. These

forces are scaled according to the effective area corresponding to each node

on which they act. The parameter F0 is simply obtained by the sum of all

the applied forces.

ANSYS©R software allows a harmonic analysis: all the applied forces are

varied periodically with a function sin(2πft) on a set of defined frequencies

f and the solution of the dynamic problem is stored, for each frequency, in a

result file. From (3.38) it follows that average the dissipated power 〈Wdiss〉 is

〈Wdiss〉 =
∑

i

〈Wdiss,i〉 = 2πf
∑

i

Emax
stor,iφi , (5.21)

where the sum is intended over the various mirror parts (bulk, coating, mag-

nets, markers, spacers) for which Emax
stor,i is the strain energy at maximum

oscillation and φi is the loss angle, reported in table 5.7. Loss angle val-

ues for the mirror bulk are taken from [105] and for the coating from [106].

Magnets, markers and spacers dissipate through the silicate bonding layer

connecting them to the mirror surface; silicate bonding loss angle is taken

from the measurements done in [107]. Formula (5.21), plugged in (5.19),

gives the total power spectrum of Brownian thermal noise as a sum of the

various mirror-part contributions. In figure 5.10 these quantities are shown
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NI mirror NE mirror
Coating

Silicate

bulk bulk bonding

Material Suprasil Herasil SiO2/Ta2O5 SiO2

φ 9.6×10−7 5.5×10−7 4×10−4 10−2

Table 5.7: Material and loss angle of the various mirror parts contributing
to dissipation.

in strain sensitivity units8. For comparison it is plotted the prediction of

Figure 5.10: Brownian thermal noise for NI mirror. Contributions for the
various mirror parts are highlighted by different colors. The yellow line in-
dicates the prediction for and uncoated finite-size mirror made by Bondu,
Hello and Vinet (with Liu and Thorne correction).

Bondu, Hello and Vinet [54] corrected by Liu and Thorne [56] for an un-

coated finite size mirror (see (4.9) on page 65): simulated Brownian thermal

noise follows the theoretically predicted trend, being proportional to ω−1/2.

8It implies that, for a single-mirror noise, it is plotted the equivalent noise of the
interferometer having, in the two Fabry-Perot cavities, 4 mirrors identical to it. For the
definition of strain sensitivity units see on page 17.
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Figure 5.11: Brownian thermal noise for NI mirror in a linear frequency
scale from 25 kHz to 45kHz. Contributions for the various mirror parts are
evidenced with different colors.

Coating noise is about one order of magnitude lower w.r.t. bulk noise and,

among the other contributions, the most relevant is the one due to markers.

The big peaks correspond to the three drumhead modes (aD1, sD1 and aD2

with the notation of table 5.5); this is in agreement with the high values cal-

culated on those modes for the read-out displacement zout, listed in table 5.5.

An enlargement of the frequency region from 25 kHz to 45 kHz is shown in

figure 5.11. It is evident that with this analysis it is possible to compute

directly the Brownian thermal noise in near-to-resonance regions, including

the coupling effects induced by the inhomogeneous loss distribution.

In figure 5.12 it is shown a comparison among NI and NE mirror ther-

mal noise in interferometer strain units. The factor of about 2 in the bulk

contributions is due to the different loss angle of NI w.r.t. NE mirror (see
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Figure 5.12: Brownian mirror thermal noise comparison among NI and NE
mirrors for bulk and coating.

table 5.7). The coatings are contributing similarly with a little difference due

mainly to their diameters (10 cm for the NI and 28 cm for the NE).

5.4.4 The effect of the markers

Calculations of the same kind as the ones described in the previous section

have been performed on NI mirror in order to see the effect of marker position

on Brownian thermal noise.

Markers are settled at a radial distance of 155 mm from the mirror center.

This distance d has been varied from 155 mm down to 62 mm (a position in

which they are almost touching the coating). A harmonic analysis has been

performed in each configuration calculating the contribution of the markers

to the Brownian mirror thermal noise at 100 Hz and at 600 Hz.

The results are shown in figure 5.13. It is evident the increment in thermal
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Figure 5.13: Marker contribution to Brownian mirror thermal noise as a
function of the distance of the markers from the center. The analysis has
been performed for two frequencies inside the Virgo band.

noise budget as the distance of the markers w.r.t. the center of the impinging

beam decreases. This is in agreement with what expected because a source

of loss nearer to the mirror axis can influence the read-out easier. The de-

pendence is roughly linear in 1/d6/5 and is not influenced by the inspected

frequency.
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Chapter 6

Research on new materials for
suspensions: characterization of
silicon crystalline fibres

This chapter begins with a description of the interesting features of silicon

as a material for mirror suspensions in interferometers of the 3rd generation.

Then there will be the description of the experiment performed by the can-

didate in order to measure the loss angle of crystalline fibres. Finally, there

will be an outline of the foreseen work on the same research line.

6.1 Silicon properties

Silicon thermal and mechanical properties are extremely favorable to reduce

thermal noise in the optics suspensions of a GW interferometric detector.

In the frequency range comprised between the pendulum resonance and the

first violin mode of the suspension fibres, the power spectral density of the

thermal noise displacement of a suspended mirror Spend
x can be deduced by

the formulas (4.42) and (4.41) with the approximation ω�ω0:

Spend
x =

kBT

ω5

g

l2cσb

√
gE

mNπ
φ(ω) . (6.1)

where the loss angle φ(ω) represents the sum of all the dissipative processes

that occur in the material (structural and thermoelastic losses) plus an ef-

123
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fective loss angle for the losses associated with the connecting elements such

as clamps, break-off points or chemical bonded pieces. Silicon is expected to

have large bulk tensile strength (about 7 GPa, dominated by surface effects

that can decrease the value down to about 200 MPa [108]) and comfortably

low intrinsic loss angle — φi(300 K) ' 2.8×10−8, φi(77 K) ' 5×10−9 and

φi(4.2 K)' 6×10−10 [36, 109, 110] —. The behavior of the linear thermal

expansion coefficient α and of the thermal conductivity κ are peculiar1 as

displayed in figure 6.1.

Figure 6.1: Linear thermal expansion coefficient and thermal conductivity
of silicon; the two temperatures (about 18 K and 123 K), where the thermal
expansion coefficient vanishes, and the peak of the thermal conductivity at
low temperature are well evident.

The thermal expansion coefficient decreases with temperature until it

vanishes at about 123 K, it is negative in the temperature interval 18÷123 K

and almost zero at lower temperatures. This means that the thermoelastic

dissipation decreases sharply with temperature and becomes negligible w.r.t.

1All the thermo-mechanical properties of silicon reported in this paragraph are taken
from [111].
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the structural losses in the range 120÷130 K and below 20 K as reported in

figure 6.2.

Figure 6.2: The amplitude of the linear thermoelastic loss angle in a silicon
fibre, computed using (3.54) and [111] is shown with the solid line. Ideally, at
the two temperatures where the thermal expansion coefficient vanishes φ0 is
null. The expected temperature dependence of thermoelastic peak frequency
1/τth in a 560 µm diameter silicon fibre is also shown (dashed line). The
increase at low temperatures should contribute to reduce the thermoelastic
dissipation in the suspension.

The thermal conductivity κ of silicon increases at low temperatures push-

ing the thermoelastic peak toward higher frequencies according to equations

(3.53) and (3.52). After reaching a maximum, the thermal conductivity

drops as the phonon mean free-path becomes larger than the square root of

the typical cross-section of the sample (see the red curve in figure 6.1). Note

that the thermal conductivity varies greatly with the doping of the material

and with the concentration of the lattice defects, so that the red curve of

figure 6.1 ought to be taken as a qualitative representation of κ(T ).

It is worth to compare the thermoelastic losses in different materials.

Almost all the present GW interferometric detectors use steel wires to sus-
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pend the main optics. This choice provides a convenient solution to keep

in position (safely and easily) very expensive optics. In Virgo the wire steel

(C85) [98] and the suspension design [112] have been selected to optimize the

thermal noise control. The intrinsic loss angle of C85 has been measured to

be about 2×10−4 at the best, while many crystalline materials (like sapphire

or YAG) have intrinsic loss angles well below that value. However, these ma-

terials have not been considered for low thermal noise suspensions because

of their large thermal expansion coefficient, which enhances their thermoe-

lastic dissipation according to (3.53) and (3.54). The thermoelastic losses of

different materials are compared in figure 6.3. For instance the advantage in

Figure 6.3: Expected thermoelastic peaks at room temperature (T=300 K)
in fibres (560µm in diameter) made of: C85 steel (solid curve) [98], sapphire
(dashed curve) [111], fused silica (dotted curve) [98, 111] and silicon (dash-
dotted curve) [111].

using sapphire fibres is clearly nullified by the dominant thermoelastic loss

angle at low frequency. On the contrary, fused silica has an intrinsic loss
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angle below 10−7÷10−8 (depending on the type of fused silica) and, more

notably, its thermoelastic dissipation is suppressed by a small thermal ex-

pansion coefficient. Finally, figure 6.3 suggests that another material could

be selected to realize low thermal noise suspension, namely crystalline sili-

con. In fact, silicon does have a large thermoelastic peak, but for very high

frequencies. This is due to the high thermal conductivity of silicon. As a

result, at low frequencies, where thermal noise in the suspensions dominates

the noise budget of GW detectors, the thermoelastic dissipation in silicon

fibres could be even lower than in fused silica fibres. This effect, together

with its low intrinsic loss angle [109], singles out silicon as one of the most

promising materials for low thermal noise suspensions in GW detectors.

6.2 Silicon fibres production

Silicon fibres were grown in a dedicated research facility of an INFM Pisa

laboratory. There, a crystal growth furnace that uses the so-called micro

pulling down technique (µ-PD) was set up. Basically the µ-PD method in-

volves downward pulling of a crystal fibre through a micro nozzle placed at

the bottom of the crucible as shown in figure 6.4. The method allows to

grow crystals in shape of fibres, rods or ribbons with diameters ranging from

0.15 mm to 5 mm at widely variable pulling rates [113].

The melt is placed in crucibles made of materials stable at temperatures

as high as the melting point of the target crystalline material. The crucibles

are heated using a radio-frequency (RF) generator. At the first stage a crystal

fibre seed, produced from previous experiments or cut from a bulk crystal

of the corresponding material, is inserted into the crucible orifice. The seed

is then pulled downward using a precise pulling mechanism. Normally the

surface forces do not allow the melt to separate from the bulk material.
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Figure 6.4: Schematic diagram for the µ-PD growth apparatus (hot zone
part).

Therefore the melt passes through the nozzle at the bottom of the crucible

and the new fibre is grown. Application of an after heater allows adjustment

of the appropriate temperature gradients under the crucible and therefore

regulation of the position of the solid-liquid interface in the vicinity of the

crucible tip.

The shape and location of the growth interface are among the most im-

portant parameters determining the quality and uniformity of the resulting

crystal. Therefore special attention is normally paid to monitor and detect

the spatial distribution of the temperature gradient in the vicinity of the

phase boundary. CCD camera and monitor are considered to be very good

tools to view the solid-liquid interface and the meniscus region.

The furnace can be evacuated and an inert atmosphere can be inserted.

It has been tested with several materials and about 20 silicon fibres have

already been grown.
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6.2.1 Growth process

The starting material was a 5-N-purity silicon in small pieces of a few mil-

limeters. These pieces were inserted in a vitreous carbon crucible about

27 mm high and 18 mm in diameter; it was placed on an after heater of the

same material and everything was held by a zirconate pedestal in a vertical

alumina ceramic tube and was heated using a RF generator. Cylindrical

heat shields made of alumina or zirconate ceramics were placed around the

crucible as shown in figure 6.4.

The calibrated orifice made in the bottom of the crucible was about

0.5 mm in diameter. The crucible temperature was controlled by the power of

the RF coil which is about 80 mm long and 70 mm in diameter with 8 wind-

ings and the maximum operating furnace temperature is around 2400 K. To

avoid the oxidation of the crucible, the fibre was grown in Ar gas of 5-N

purity. Visual observation of the meniscus region, solid-liquid interface and

crystal growing was made by a CCD camera and monitor.

6.2.2 Seeding and growth procedure

Several Si single crystals with different lengths and diameters were grown.

As a first step, a <100> oriented thin cut from a Si disk was used as a seed.

The crystals were grown at various pulling rate in the range 0.3÷2 mm/min

and were 0.4÷3 mm in diameter and 40÷310 mm in length.

The growth of crystal fibres is affected by vibrations which become es-

pecially intense at longer length. It was found that the length of crystal

oscillations also depends on the fibre diameter [114]. Disconnections of the

fibre growing from the molten zone were never observed, but the growth pro-

cess was not perfectly stable and some abrupt changes in diameter and/or

temperature happened, probably due to instabilities of the RF generator and
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Figure 6.5: Image of the fibre during the growth process.

to reactions between silicon and the crucible that also prevented a good con-

tact between the seed and the melt. Anyway, for most of their length, fibres

show good quality. An image of the growth process for a sample is shown in

figure 6.5.

Some typical Si crystal fibres, grown with different diameters and lengths,

are shown in figure 6.6. The crystal orientation of the fibre was determined

using Laue X-ray diffraction method. From this measurement it is pos-

Figure 6.6: Grown Si crystal fibres about 0.4 mm in diameter, 17 cm and
21 cm long.

sible to say that all the good quality parts of the fibre inspected showed

single crystalline character (figure 6.7), but it was found that the orientation
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Figure 6.7: Laue simulation for Si.

Figure 6.8: Absorption spectrum for Si.

changes along the fibre length in every point in which the diameter is not

stable. As a result the fibres are not single crystals along the whole length
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but they are composed of several single-crystal parts.

Absorption investigations, which did not show the presence of any con-

taminants within the sensitivity of the apparatus, were also performed (see

figure 6.8).

6.3 Experimental setup

In this paragraph there will be a description of the two experimental appa-

ratuses for measuring the loss angle of excited fibres and for taking a profile

of their shape to be used in the subsequent stage of data analysis.

6.3.1 Loss angle measurement apparatus

The experimental apparatus for measuring the quality factor of the silicon

fibres produced as explained in the previous paragraph, is made of 4 func-

tionally independent parts. The first one allows the clamping in the desired

configuration; the vacuum chamber reduces the air damping to acceptable

values; the electrostatic actuator and shadow-meter permit to manage the

measurement. In figure 6.9 there is a scheme of the whole apparatus. A

description of each of these subsystems will follow.

Vacuum system

The measured loss angle can significantly be affected by the presence of air

around the fibre. In § 3.2.5 it was explained how the loss angle increases

for viscous and molecular air damping. The best way to avoid this effect

is to reduce air pressure: the stand with the clamping system of the fibre

was put on a bench inside a vacuum chamber equipped with bull’s eye and

a pass-through connector.

The vacuum is realized through the action of two pumps arranged in

cascade. A rotative pump brings the internal pressure (measured by a con-
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Figure 6.9: A scheme of the phi-measurement apparatus. Inside a vacuum
chamber (d) there is a stand supporting the clamp (a), the excitation system
(b) and the sensing shadowmeter (c).

duction manometer) to values around 6 · 10−2 mbar; under this condition of

pressure the turbo-molecular pump — whose rotor reaches 600 rpm in about

15 min — can be started up. Thanks to the turbo-molecular pump it is

possible to reach a pressure around 10−6 mbar in about a day. Under this

condition the air friction is negligible (the associated loss angle is less than

10−7).

It is worth to note that the two pumps are linked with the vacuum cham-

ber through semi-rigid tubes; for that reason the vibrations induced by the

rotation of their mechanical parts are transferred to the stand: the vibra-

tion of the fibre will present noise structures, especially at 600 Hz and 50 Hz,

which are the two pumps rotational frequencies.
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Figure 6.10: The stand of the suspended fibre is shown. In the upper part
there is the clamp, in the middle the excitation system and at the bottom
the sensing shadowmeter.

The stand and the clamp

During the measurement the fibre is in a vertical position being clamped at

the upper end to a rigid stand (figure 6.10).

The excitation and the read-out system can be moved along the fibre axis

and fixed to the stand; the fibre is clamped with two aluminum blocks and

can be up to 27 cm long out of the clamp.

The fibre clamping is of the utmost importance for a good measurement:

if the sample is softly tightened, it can move among the blocks and dissi-

pate energy, if it is tightened too much it can be damaged on the surface,

generating other losses. Moreover, as explained in § 3.2.4, even if the clamp-

ing system is extremely rigid, energy losses can occur due to the recoil of
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the whole structure. Although the mass of the stand is considerably greater

w.r.t. the fibre mass (µ � 1) it is better to avoid measurements near the

resonance modes of the structure (of the order of kHz).

The excitation system

The fibre can be excited at the desired frequency; this is useful, both in a

preliminary stage to determine the resonance frequencies and in the mea-

surement stage to excite the known modes.

The excitation makes use of the polarization of the dielectric material

that forms the fibre; this is dipped into a high-gradient electric-field ~E, sinu-

soidally variable in time:

~E(~x, t) = ~E0(~x) sin ωt . (6.2)

The fibre polarizes and, on its surfaces, a density charge σp proportional to

the polarization ~P is induced :

σp = ~P · n̂ = ε0(εr − 1) ~E · n̂ , (6.3)

where n̂ is the versor of the fibre surface, ε0 and εr are the vacuum and

relative dielectric constants. The effect of the electric field is to generate a

local force per unit surface:

~F

∆A
= σp

~E = ε0(εr − 1)E2
0 sin2(ωt)(Ê0 · n̂)Ê0 . (6.4)

The excitation is proportional to the square of sin(ωt), and so, having sin2(ωt)

a period of π, the effective angular frequency is 2ω. To avoid this discrepancy

between the frequency of the field and of the induced excitation, a constant

field ~Ec is over-imposed. The exciter is composed by 2 electrodes in shape

of compenetrating combs, in a way that two consecutive teeth are linked to

opposite poles of the generator. The fibre is put near the plane of the combs
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(figure 6.11), among two teeth: here the gradient is almost maximum and

parallel to the plane itself.

Figure 6.11: Photo of the actuator made by a comb capacitor.

In this way the fibre is forced to oscillate in the direction more convenient

for the detection. The signal used for the excitation has a peak-to-peak

amplitude of 700 V, to which a continuous voltage of 400 V is over-imposed.

The read-out system

The movements of the excited fibre are detected following the displacements

of the fibre shadow, projected by a LED diode on a double photodiode.The

photodiode is separated in two elements by an insensitive gap of about

500 µm; each element is about 5 mm wide. The two photodiodes were ini-

tially placed as shown in figure 6.12a with the gap parallel to the direction

of the fibre axis. In this configuration the allowed oscillating region for a

good detection is restricted to a little slice, about two fibre diameters wide:

the detection is made extremely difficult, especially for the low frequency

resonance modes for which the oscillating amplitude is quite high. It was

decided to tilt the photodiodes of about 45 degrees and thus the detecting

region is much bigger as shown in figure 6.12b. If the fibre is exactly placed

at the center of the gap, the difference of the signal from the two elements
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b)a)

Figure 6.12: Two different configuration for the read-out system are shown
with the photodiode gap parallel (a) and tilted (b) w.r.t. the fibre axis. The
gray areas highlight the allowed sensitive regions for a good detection.

is zero; it becomes negative or positive if the fibre moves and its amplitude

and frequency mock the fibre oscillation.

It is worth to note that the read-out system detects the movements of

the fibre at only one point, and gives no information on the whole motion

of the fibre. It can happen that, for certain resonance modes, the detection

point shows small or even null displacements (if it is a nodal point or if the

movements are on the same direction of the LED light); in this case, the

relative frequency does not admit a Q-factor measurement.

A sketch of the output line is shown in figure 6.13. The two photodiodes

are put in a push-pull configuration in order to subtract their signal and the

difference is filtered and amplified.

outV

Figure 6.13: Sketch of the acquisition system circuit.
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The cables with the output voltage from the photodiodes come out of the

vacuum chamber by means of a feed-through; inside the chamber they are

bound by aluminum foils put at a reference voltage, to shield them from the

electro-magnetic noises induced by the surrounding electric currents (espe-

cially the ones in the high voltage cables of the excitation system).

The LED diode is fed from outside; the power supply is stabilized to

reduce at minimum the fluctuation introduced in the reading. The power

voltage is tunable and it is around 6 V.

Data acquisition

The output of the filter is referred to the ground of the system and goes on a

single ended port of the computer acquisition board. The board is driven by

a LabVIEW©R 6.0 [115] program that samples the signal and converts it with a

16-bit ADC. The program allows to choose the internal clock frequency of

the acquisition (number of sample per second); this value has to be chosen

high enough to avoid aliasing in the acquired signal.

In order to measure the fibres quality factor, several programs have been

realized with LabVIEW©R. In each of them the basic part is the sampling

system and the digitalization of the measurement (DAQ) that acquires N

samples at a frequency fc in a time N/fc.

In a centering program the signal is acquired continuously in time and

followed with a real-time plot. This is useful to accurately position the fibre

in front of the photodiode and to verify the whole acquisition system.

A test program acquires the signal in subsequent sets of N samples and

filters them with a digital band-pass filter around a chosen frequency. The

signal is followed in the excitation phase at the given frequency ωr and in the

subsequent phase of excitation interruption; the behaving of the oscillation

allows to verify the actual presence of a resonance. If this is not the case,
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when the excitation is suspended, the signal abruptly decreases instead of

decaying exponentially.

The program that manages the standard measurement enables the DAQ

procedure to start as soon as the excitation of the fibre is interrupted.

The acquisition extends for a time at least of the order of the characteristic

damping time τ :

τ =
2Q

ωr

. (6.5)

With the acquired samples vector, the program extracts the Fourier spectrum

through the FFT algorithm (Fast Fourier Transform), identifies the peak of

the excited resonance and calculates the frequency finding the centroid with

a Gaussian fit.

The sampled signal is then filtered sharply around the resonance fre-

quency with a digital filter in order to isolate that Fourier component only.

This component is shown in a plot and its amplitude shall follow an expo-

nential damping.

To obtain an estimate of the quality factor of the single measurement the

program makes a Hilbert transform x̂ of the filtered signal x(t):

x̂(t) = − 1

π

∫ +∞

−∞

x(s)

t− s
ds . (6.6)

If the Fourier transform is referred to with a superscript tilde, the following

identity ˜̂x(ω) = −i sign(ω)x̃(ω) (6.7)

holds. Thus the Hilbert transform yields a dephase of −π/2 for the positive

frequency components of x(t), leaving their amplitude unaltered. Assuming,

as it is for the unfiltered signal, that

x(t) = Ae−
t
τ sin(ωrt) , (6.8)
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the Hilbert transform is

x̂(t) = −Ae−
t
τ cos(ωrt) . (6.9)

The quantity

Z(t) = x(t) + ix̂(t) (6.10)

is defined pre-envelope of x(t). The program, once x̂(t) has been extracted,

defines Z(t) as in (6.10) and gets the envelope of the oscillation calculating

the squared modulus of the pre-envelope

|Z(t)|2 = A2e−
2t
τ

(
cos2(ωrt) + sin2(ωrt)

)
= A2e−

2t
τ (6.11)

To determine the quality factor it is necessary to measure τ (see (6.5)); thus

it suffices to calculate the logarithm of the envelope:

R(t) = ln(|Z(t)|2) = 2 ln(A)− 2
t

τ
, (6.12)

The output signal should be a straight line; the program performs a linear

fit, giving the best value for the slope γ = −2/τ . This quantity is used to

have an estimate of Q:

Q = −ωr

γ
. (6.13)

It is worth to note that the initialization procedure of the filter is not imme-

diate. The filter algorithm proceeds through the computation of the convolu-

tion product between the signal and the transfer function in the time domain;

the filter shall be filled with a samples vector in order to work properly. The

creation of this vector needs a while, depending on the passing band; the

beginning of the acquisition is jeopardized and thus a samples set in which

R(t) is linear is selected for the fitting procedure.

It can happen that the characteristic decay time τ is of the order of

hundreds of seconds, or more. Under those conditions the number of samples
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can be very high. On the other hand, it is not possible to decrease the

acquisition frequency at will, because of aliasing. To solve this problem a

lock-in amplifier can be inserted before the acquisition board. The lock-in

multiplies the input, at high frequency ωin, by a generated sinusoidal signal at

a frequency ωg ' ωin. The output results to be a superposition of two signals

at frequencies ωlow = |ωin−ωg| and ωhigh = ωin+ωg. The lock-in includes also

a low-pass filter that selects the ωlow component only. The amplitude decay

of this signal has the time constant of the original signal and the Q-factor

measurement can proceed as explained before, filtering again around the

resonance frequency, if necessary.

This method is valid if τ is high enough. In fact, to see the oscillation

damping, several oscillations in the time (τ) are needed. Thus, if τ is short,

ωlow should be high. This reduces the usefulness of the lock-in and introduces

in the output-signal spectrum the input noise, in a band of 2ωlow width,

centered around the frequency ωg. Therefore it can happen, especially at

high frequencies, that the standard procedure is preferable.

6.3.2 Profile measurement apparatus

The produced silicon fibres do not have a circular-cylindrical shape: the

diameter changes along the fibre axis and the section is more similar to an

ellipse indeed, that can also have a variable axes orientation. In order to

make a more realistic model of the fibres it was decided to construct an

apparatus to perform a measurement of the diameter changes. The main

axis of the fibres, on the other hand, is straight (this is a consequence of the

growing procedure) and there was no need to model its bending. These data

are used to reconstruct a 3-D model of the fibre as explained in § 6.4.3.

The fibre to be measured is put on a stand in the same configuration

as it is clamped during the φ measurements. The stand is settled on a rail
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to allow sliding along the fibre axis by means of a long rotating screw fixed

w.r.t. the optical bench as shown in figure 6.14; the structure provides also

the possibility of rotating the fibre of a chosen angle around its axis.

The sensing part of the apparatus consists of a shadowmeter realized

with a 635 nm He-Ne laser of 1 mW power and a 5 mm×5 mm photodiode

that receives the shadow projected by a little segment of the fibre. The

light from the laser is focused to obtain a plane wave front and a sufficiently

large beam spot size. The photodiode is shielded and receives the laser light

passing through a little fissure only. This allows diameter measurements at

a particular chosen position along the fibre axis. Before being shielded the

laser light impinges on a beam splitter: a part of it goes towards the fibre

and the remaining part is focused on another photodiode. The signal from

the latter is used as a reference to compensate for laser power instabilities:

the acquired signal is taken as the ratio between the shadowmeter signal and

the reference one.

Another shadowmeter system, similar to the previously described one, is

used for monitoring the displacement of the fibre. As the stand moves on

the rail, a rotating shield alternatively passes on the beam, generating an

oscillating signal on the photodiode. This signal is used as a trigger for the

acquisition.

The three signals are amplified and sent to an acquisition board on a

computer (see figure 6.15). The board is driven by a LabVIEW©R program that

samples the signals at 10 kHz and converts them with a 16-bit ADC. As

a first step the signals are modulated using a filter around the modulation

frequency of 1360 Hz. The signal coming from the trigger photodiode is

analyzed with a program that identifies the peaks due to the rotating shield.

In coincidence with the peaks times, a routine performs a mean over 200
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samples of the signals coming from the detecting photodiode and from the

reference one, and calculates the ratio between them. The results are stored

in a file.

trigger

reference
photodiode

beam
splitter

lenses

laser

sliding
stand

laser

photodiode
detection

clamp

fibre

photodiode

Figure 6.14: Sketch of the profilation system setup.

6.4 Measurement of the thermoelastic peak

6.4.1 Standard measurement procedure

The measurement proceeds following the general scheme as described be-

low. Before starting the thermoelastic peak measurement it is necessary to

perform an acquisition of the fibre profile.

A calibration sample, consisting of four wires of well known sections, is

clamped on the stand of the profile apparatus. The measurement of the wires

diameters is performed making the stand slide on the rail by means of the

long turning screw and using the acquisition program described in § 6.3.2.
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DAQ
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Figure 6.15: A sketch of the acquisition system for profile measurement is
shown. The signals from the three photodiodes are amplified and come to
the acquisition system. Using the signal (a) as a trigger, the ratio between
the main signal (c) and the reference one (b) is performed and stored in a
file.

The data, stored in a file, are used for a calibration of the signal from the

sensing photodiode.

Then it is necessary to accurately clean the surface of the fibre with iso-

propilic alcohol, to remove impurities and chemical volatile residuals, which

could compromise the Q-factor measurement and the efficiency of the vacuum

system.

The fibre is filed at one end on two opposite sides as shown in figure 6.16.

In this way the contact surface is increased allowing a tighter clamping and

lowering the probability of breaking the fibre in the clamping process. A

total force acting on the clamp is chosen and is applied using a simple device

based on scales and a press.

The fibre, together with its clamp, is put on the stand of the profile

apparatus. Profile measurements are performed as just described for the

calibration procedure and fibre diameters are measured for several rotation

angles around fibre axis, usually every 30◦. The produced data are used

inside a finite element analysis (FEA) to reproduce an accurate model of the
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fibre as explained in § 6.4.3.

Then the fibre is ready for the φ measurement and it is settled in the

vacuum chamber and blocked on the stand together with the clamp. Using

the centering program described in § 6.3.1, the position read-out system is

set in order to center the fibre shadow w.r.t. the gap between the two sensing

photodiodes. The vacuum chamber is closed and the air pressure is lowered

as described in § 6.3.1. In this phase it is important to avoid activating the

excitation system: around a pressure of 1 mbar the gas in the chamber is at

a critical pressure for the production of electric discharges.

At a level below 10−5 mbar the measurement can start. Preliminarily, it

is necessary to identify the various resonance mode frequencies of the fibre.

A power-spectrum analyzer is used to display the frequency response of

the fibre to a white noise excitation. The analyzer shows a mean over several

acquisitions and the visible peaks reveal the presence of resonances. The

FEA model gives these frequencies with a good level of precision, except for

a scale factor very near to unity. This can be very useful in speeding up the

procedure: once the first two modes are identified, it is easy to find all the

others, exciting with a sweeping frequency near the expected ones.

The test program described in § 6.3.1 allows a direct check of the damping

behavior of the found frequencies.

When a set of frequencies is available, for each one a Q-factor measure-

ment is performed exciting the oscillation and then interrupting the excita-

tion abruptly. The subsequent damping motion is detected and recorded as

a file for possible further analysis. The standard measurement program gives

an estimate of the Q-factor. For each frequency the measurement is repeated

several times and the mean of the results is taken as the final value with an

error equal to the standard deviation of the set. This error ranges from 1%
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to 5%; the contribution coming from the fit is only al the level of 1%.

b)a)

Figure 6.16: The head of the cylindrical fibre (a) is filed on two sides in order
to allow a better clamping (b).

6.4.2 The etching process

It is possible to operate on the fibres with a chemical process called etching.

It consists essentially of a bath in a chemical solution that acts on the surface

of the fibre removing atoms layers.

It can be very useful if it is necessary to polish the surface from contam-

inants or unwanted oxides. Their presence can jeopardize the measurement

of the fibre Q-factor hiding the real loss angle of the material as described in

§ 3.2.3.

Another advantage of the etching process is that it allows to deeply act

on the fibre shape.

On the one hand it is possible to lower the fibre diameter for exploring

different regions of the thermoelastic noise, whose frequency peak depends

on the diameter. In fact, there are problems in producing fibres with diame-

ters below 500 µm, because of instabilities and technical difficulties occurring

during the micro-pulling down process.
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On the other hand the form of the profile can be shaped in order to

reduce clamp losses or correct macroscopic defects. In fact, the etching can

be realized only on certain parts of the surfaces, shielding the rest with a

layer of enamel — like the nail varnish —.

It is possible to shield the head of the fibre: the obtained bigger head allows

a better clamp — the bigger the surface, the more tightened the clamp can

be — and shifts the most solicited parts of the fibre to a region that is far

from the clamp itself. The latter condition is important because the heavily

solicited parts near the clamp can introduce extra friction on clamp surfaces

and transmit energy to it affecting the loss angle measurement.

It is also possible to act locally on different segments of the fibre in order to

correct any defects that may have risen during the growing process. In this

way the fibre can be made more regular by simplifying the modelization and

analysis phases.

The used chemical solution is composed of nitric acid by 75% (HNO3 at

a 70% concentration), fluoridric acid by 15% (HF at a 59.2% concentration)

and acetic alcohol by 10% (CH3COOH). Etching occurs via a redox reaction

followed by the dissolution of the oxide by HF that acts as a complexing

agent. The reaction can be schematized as

Si + HNO3 + 6HF → H2SiF6 + HNO2 + H2O + H2 . (6.14)

Points on silicon surface randomly become oxidation or reduction sites. These

act like localized electrochemical cells, sustaining corrosion currents of about

100 A/cm2, which are relatively large currents. For the kind of solution under

consideration, each point spends, on the average, the same amount of time

being an anode or a cathode site; this leads to an isotropic etching, i.e. an

etching whose corrosion velocity of the material is the same in all directions.

The nitric acid gives birth to NO2, that is reduced at a cathode site which
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produces free holes:

2NO2 → 2NO−
2 + 2h+ . (6.15)

Simultaneously, silicon is promoted to a higher oxidation state at an anodic

site through positive charges in the form of holes:

Si0 + 2h+ → Si2+ . (6.16)

The Si2+ combines with OH− to form SiO2:

Si2+ + 2OH− → Si(OH)2 → SiO2 + H2O (6.17)

and SiO2 is then dissolved by HF to form a water soluble complex of H2SiF6:

SiO2 + 6HF → H2SiF6 + 2H2O . (6.18)

The nitric acid has a complex behavior and its concentration manages a

chain of reactions that form an autocathalitic cycle for holes production and

HNO2. The acetic acid is a frequent substitute for water as a diluent; it has

a lower dielectric constant w.r.t. water, thus it produces a minor dissociation

of HNO3, yielding a higher oxidation power for the etching. Furthermore,

acetic acid is less polar than water and it can help to achieve proper wetting

of slightly hydrophobic silicon.

In figure 6.17 it is shown a triangular diagram [116] that allows to find

the various etching velocity depending on the concentrations of the three

solution components. The little circle represents the working point chosen

for the solution described above.

The etching is performed in a long basin filled with the HNA solution.

The fibre can enter the solution staying in a horizontal position. This is

a much more efficient way of doing the etching w.r.t. a vertical immersion:

in the latter case the reaction products, which are hotter and come to the

solution surface, do create vertical gradients — either gradient of the reagents
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Figure 6.17: Diagram of the etching velocity for an HNA etching solution.
Three iso-velocity lines are shown together with the working point corre-
sponding to the solution used for the fibre etching described in the text.

concentration, or gradient of temperature — that can deeply modify the

velocity of the etching itself. In fact, it was experimentally found that the

fibre surface is etched faster at the top than at the bottom. With a horizontal

etching the above mentioned problems are avoided and the reaction velocity

is seen to be constant all along the fibre.

The etching procedure consists of three steps. First of all an etching last-

ing some minutes is performed in order to remove the superficial impurities.

Secondly, after deciding the target diameter of the fibre and calculating the

duration time of the etching, which depends on the particular HNA chosen

solution, a second etching is performed. During this phase it is also possible

to apply nail varnish on the fibre surface in regions that are already thin or

on the part chosen to become the head to be inserted in the clamp. Finally

the nail varnish is removed with acetone and the fibre is subsequently dipped

into a fluoridric acid solution to deeply clean the fibre from the oxide that

may still be present on its surface. An example of a fibre etching is shown in
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figure 6.18.

Figure 6.18: The profile of a fibre at a particular angle is shown before (solid
blue line) and after (dashed red line) an etching. It is evident that the
diameter has reduced of about 200 µm.

6.4.3 Modeling the fibre

From the data obtained with the profile measurement apparatus, described

in § 6.3.2, it is possible to reproduce a 3-D model of the fibre to be used

for a finite element analysis (FEA) in the framework of the ANSYS©R 8.1 [103]

software.

Profiles alignment

The data coming from the profile measurement (§ 6.3.2) are 6 vectors of num-

bers representing the longitudinal views of the same fibre every 30◦ of rotation

along the fibre axis. The data acquisition has not a definite and reproducible

starting point of one profile w.r.t. the subsequent rotated one. Therefore, to

make the fibre profiles correspond to one another it is necessary to manually

align them. The procedure is done with the help of a MATLAB©R 6.5 [117]

program that acquires the data and shows the different profiles on the same
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Figure 6.19: Profiles at various section angles are shown for the part of
the fibre near to the tip. The alignment of the different data sets (one for
each angle) is realized manually over-imposing along the x axis the points
preceding the 400 µm-diameter line crossing indicated on the left by the
orange dashed line.

Figure 6.20: Profiles at various section angles.
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plot. In figure 6.19 the beginning of the 6 sets is shown after the alignment,

done by choosing as starting points the ones preceding the crossing of the

400 µm-diameter line indicated in orange. In figure 6.20 an example of the

aligned profiles is shown for a 177.5 mm-long fibre. It is evident that the

fibre is not a perfect cylinder but it is also evident that the various profiles

are very similar to one another. The aligned profiles are stored in a matrix

for further analysis.

Shadow-projection correction

Data have to be corrected for a geometrical effect due to the setup of the pro-

file apparatus. The laser-shadowmeter system systematically overestimates

the diameter at the various acquisition angles: the parts of the fibre project-

ing the shadow are not always the expected ones because the fibre is not a

perfect cylinder. To understand this effect refer to figure 6.21, in which

b)a)

30o

Figure 6.21: Estimation of the fibre section from profile measurements. Pro-
jecting directions of the shadows are indicated by black arrows and estimated
section points are in red (a). Without any correction the “true” section of
the fibre (blue ellipse) is falsely interpreted to be the red polygon (b).

the “true” fibre section is drawn in blue and the direction of the projecting

shadow is indicated by black arrows every 30◦. Without making any correc-
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b)a)

Figure 6.22: Correction of the estimated fibre section from profile measure-
ments. Two consecutive shadow projections identify construction points (the
green squares). The new estimated section points (cyan triangles) are cho-
sen to be the mid-points of the segments delimited by the green squares (a).
A comparison among the “true” section (in blue), the fake estimation (in
red) and the corrected one (in cyan) is given (b). It is evident that the
peanut-shell deformation is corrected.

tions, the shadows are interpreted to come from the red points and not from

the tangential points between the fibre and the black arrows. It is evident

that elliptical sections are distorted toward a peanut-shell shape. The more

the eccentricity, the more the deformation and if the fibre were perfectly

cylindrical this effect would disappear. This is not the case, because most of

the sections are roughly elliptical.

Therefore an algorithm done with MATLAB©R software was developed to

correct the introduced bias. It resides on the idea that the real section of

the fibre is contained inside the envelope of all the projection directions of

the shadows. As shown in figure 6.22a, two consecutive shadow projections

intersect in construction points identified with green squares. The new esti-

mated section points (cyan triangles) are chosen to be the mid-points of the

segments delimited by the green squares. A comparison among the “true”

section (in blue), the fake estimation (in red) and the corrected one (in cyan)
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is given in figure 6.22b. It is evident that the peanut-shell shape, present in

the red curve, is corrected toward a shape much more similar to the real one.

The finite element model

The corrected data are imported in ANSYS©R thanks to a routine done with

AWK [104], a pattern-directed scanning and processing language. The routine

converts the data file into an ANSYS©R macro file that executes all the com-

mands to create the keypoints. They are intermediate point-like structures

used as frames to construct areas, volumes and, finally, the elements of the

3-D model. These steps of the model creation are done with an automated

ANSYS©R macro file that has just to be slightly corrected from fibre to fibre,

depending on the number and the length of the profiles and on the mean

section of the fibre itself.

Firstly the lateral surface of the fibre is created. It is simply a set of

triangles sharing edges. The triangles have two keypoints of one section and

one keypoint of the previous section or the following one. A view of the

lateral surface of a fibre is shown in figure 6.23 for two adjacent rings of

triangles.

Secondly areas associated to each fibre section are created. They have

no physical significance but they are of fundamental importance for creating

intermediate volumes, delimited by 2 of these areas and by 24 lateral trian-

gles. The volumes are glued together to form a unique object and the model

is ready to be meshed.

Usually it suffices to mesh volumes with an automated command provided

by ANSYS©R, called “free mesh”. In some particular cases2, the mesh has to be

guided by an intermediate one, generally done on 2-D surfaces. This is the

2This usually happens when the model is a 3-D model with one dimension that extends
much more or much less w.r.t. the others.
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Figure 6.23: A part of the lateral surface creation of the fibre model is
shown. The surface is constructed by the definition of triangles connecting
two adjacent fibre sections.

case, and a mesh is preliminarily done with PLANE2 elements on the slice

areas. The elements are triangular and their dimensions are taken in order

to have 12÷16 elements for each section. This feature is obtained imposing

single elements to have a size proportional to the section area. In figure 6.24

several fibre sections are shown together with the PLANE2 elements on them.

It is evident that the number of elements per section is constant even if the

section is widely changing dimension.

Thanks to the grid provided by the PLANE2 elements on the sections, it is

straightforward to mesh the whole model. It suffices to force no line division3,

in order not to have too many elements, and to use the standard free-mesh

command with 3-D SOLID92 elements. A view of the model elements is

shown in figure 6.25 where a set of them has been removed to permit the

vision of the other underlying elements.

The elements can be assigned the material properties, i.e. Young’s mod-

3This means that the mesher cannot use parts of the already defined lines in building
the elements of the model.
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Figure 6.24: Several sections of a fibre are shown together with the triangular
elements on them. The number of elements per slide is not depending on the
slide dimension.

Figure 6.25: View of elements of a fibre model. Some of them are removed
to allow the vision of the underlying elements.

ulus, Poisson’s ratio and the density. In order to simulate the clamping,

the last section on one end of the fibre is constrained in all the degrees of

freedom.

The model is ready to perform a modal analysis on it. In the modal
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analysis the software extracts the frequencies and the shapes of the resonance

modes. It allows also the user to look for stress and strain distribution on

the surface or inside the simulated objects.

6.4.4 Phi measurements

Measurements of the thermoelastic peak are performed following the proce-

dure described in § 6.4.1.

The measured values for a 308 mm long fibre are shown in figure 6.26; the

free length of this fibre after the clamping is 289 mm. As it will be explained

in § 6.5, from the analysis of these data the values of Young’s modulus E, of

the thermal expansion coefficient α and of the thermal conductivity κ can

be evaluated. Using the measured value of E, an “effective” diameter can

be defined for each resonance mode. On assuming a cylindrical-shaped fibre

with this diameter it is possible to predict a value for the loss angle for each

resonance frequency. These predictions, with the error coming mainly from

the uncertainty in the diameter measurement, are also shown in figure 6.26.

It is quite evident that there is the presence of an excess loss. This excess

can be due to contaminants present on fibre surface: after the production

of the fibre, the external surface is in fact subject to oxidation; furthermore

the deposition of some impurities on it, during the growing process, is also

possible. To verify this hypothesis a chemical etching process was performed

on the fibre as described in § 6.4.2, removing the first silicon layers. The part

of the fibre inside the clamp was not etched: in this way the narrowing of the

fibre just outside the clamp can help to further reduce the clamping losses.

In figure 6.27 the measured values of the loss angle for the same fibre

after the etching are shown. The free length of the fibre after the clamping is

278 mm and the diameter reduction shifts the position of the thermoelastic

peak to higher frequencies.
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Figure 6.26: Measured loss angle for a 289 mm (free length) fibre, with an
average diameter of 746 µm. The squares represent the thermoelastic contri-
bution as predicted by the model described in the text.

Figure 6.27: Measured loss angle for the same fibre as that shown in fig-
ure 6.26 after the etching process; the average diameter is now 574 µm, while
the free length is 278 mm.



6.4 Measurement of the thermoelastic peak 159

The comparison between these values and the expected thermoelastic

losses, computed as previously described, points out that the excess loss is

not present anymore, thus confirming the surface contamination hypothesis.

A small excess is still found at low frequencies: this is probably due to clamp

losses.

In figure 6.28 the measured values of φ for another fibre — 111.5 mm

long — treated with chemical etching are shown. Since this fibre has a

Figure 6.28: Measured loss angle for a 111.5 mm (free length) fibre. The blue
and the red squares represent the measured loss angle values relative to “a”
and “b” modes respectively.

roughly elliptical section, it is evident that there are two sets of modes,

corresponding to the different length of the two ellipse axes. An unloaded

cylindrical fibre of length L, diameter d and clamped at the upper edge shows

a set of resonance frequencies given by [30]:

fi =
1

2πL2

√
EI

ρS
k2

i =
d

8πL2

√
E

ρ
k2

i , (6.19)
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where ki = αi/L, αi are the solutions of

cos(α) cosh(α) + 1 = 0 (6.20)

and E, S and I are Young’s modulus of the material, the section and the

cross-section moment of inertia of the fibre. A very good approximation for

αi values is

αi =

{
1.8755 , for i = 1 ,

(i− 1
2
π) , for i > 2 .

(6.21)

Therefore, in the case of an elliptical fibre there will be a split of each reso-

nance in doublets. The frequencies will roughly correspond to the ones of the

cylindrical fibres with sections tangent to the ellipse as shown in figure 6.29.

a−mode

b
a b−mode

Figure 6.29: The section of an elliptical fibre is shown together with the
direction of the split modes due to the difference between the 2 semi-axes
“a” and “b” of the ellipse. The modes relative to the shorter axis are at a
lower frequency and usually called a-modes; the ones relative to the longer
axis are at a higher frequency and called b-modes.

6.5 Extraction of silicon thermo-mechanical

properties

The analysis done for extracting the silicon thermo-mechanical properties

from the measurement of the thermoelastic peak resides on the finite element

model realized with ANSYS©R (see § 6.4.3). The model is constructed on the
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data coming from profile measurements, as described in § 6.3.2. Therefore

it is important to estimate carefully the errors coming from the profilation

procedure.

6.5.1 Estimating the errors of the profilation

The data coming from the profilation apparatus are pure numbers, taken as

ratios R between the signals coming from the detection photodiode and the

reference one (see figure 6.14 on page 143). Therefore they need a calibration

to be converted in displacements. It is better to do the calibration just before

and after the profiles measurement on a fibre.

A series of wires of well known diameter is measured with the profilation

apparatus bringing a set of data like the ones reported in figure 6.30. The

Figure 6.30: Profile of the series of wires used for calibrating the profile
measurement apparatus.

ratio R and its error are taken to be the mean and the mean square difference

of the oscillations in each of the six steps. The values are fitted with a straight

line R(d):

R = ad + b (6.22)
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and the value of the diameter can be extracted:

d(R) =
R− b

a
(6.23)

The error σd on d is calculated as

σ2
d =

1

a2
(σ2

R + d2σ2
a + σ2

b ) (6.24)

and it is around 100 µm, i.e. around 10%, dominated by the σ2
a term. To

measure the fibre profile there is also an independent method, more precise

but extremely slow. It resides on the possibility of taking several photos of

the fibre profile with a digital camera set on a microscope. The photos are

merged into a unique image that is processed by a MATLAB©R program that

finds the edges of the fibre. The error for this method is a composition of

the error on the pixel/mm conversion factor and the error on the position of

the edge found by the algorithm. In figure 6.31, the data obtained with the

camera profile (green bars) and the standard procedure (red bars) are shown

for a part of a fibre. It is evident that there is a overestimation of the errors for

the standard procedure. That is the case for all the regions inspected along

the fibre. Thanks to the agreement found, it seems reasonable to downscale

the error on the standard profile measurement to the value coming from the

camera profilation, i.e. 3.5%.

6.5.2 Young’s modulus

From (6.19) it follows that for a cylindrical fibre the value fi/k
2
i is constant.

For an elliptical one two preferred values are expected. That is what happens,

for example, with the 111 mm long fibre as it can be seen in figure 6.32. The

data, indicated by blue squares, follow two different trends reflecting the

ellipticity of the fibre section; the values are not constant since the fibre

geometry is irregular.
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Figure 6.31: Comparison between profile measurements on a part of a fibre,
obtained with the digital camera (little green bars) and with the standard
procedure (big red bars).

Figure 6.32: Plot of fi/k
2
i versus the mode number for the 111 mm long fibre.

With the FEA on the modeled fibre it is possible to predict the values

fi/k
2
i and find the best Young’s modulus Ebest to use in order to obtain a set
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of frequencies fmodel
i that minimizes the quantity

∑
i

(
f exp

i − fmodel
i

k2
i

)2

. (6.25)

As for this fibre, Ebest is 150 GPa with an error of 11 GPa coming mainly

from the diameter uncertainty. In figure 6.32 there are also shown, with

magenta squares, the values predicted by the FEA using for Young’s modulus

the obtained value Ebest. The agreement between data and prediction is

very good: since the model considers a fibre whose properties are constant

along the length, it is possible to conclude that the geometry of the fibre

is taken into account properly and that any variation of the mean4 Young’s

modulus is small along the fibre. Using FEA it is also possible to identify

some modes which are not purely transversal; in these modes the plane of

oscillation changes a lot along the fibre axis (see figure 6.33a) or the violin-

string oscillations are coupled with “breathing” modes (see figure 6.33b).

These modes are not used in thermoelastic analysis since there is not a simple

a) b)

Figure 6.33: Two non-purely-transversal modes of the 111 mm long fibre are
shown. In the mode at 6104 Hz (a) the plane of oscillation is changing a lot
along the fibre axis. In the mode at 8602 Hz (b) the transversal oscillation is
coupled with an “explosion” mode.

4It can happen that Young’s modulus has big changes on the scale of some millimeters
or less; in these cases the modes only “see” an average value of Young’s modulus, and it
is this quantity that has to be considered.
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model of the loss angle for these situations.

An analogous analysis on the 308 mm long fibre leads to a value of

(174±12) GPa for Young’s modulus.

6.5.3 The coefficient of linear thermal expansion

The experimental value of the thermoelastic peak together with its theoretical

prediction — equation (3.54) — allows to estimate the coefficient of linear

thermal expansion α. By using the known specific heat cV =707 J/(kgK)

and density ρ=2330 kg/m3 of silicon [111], for the 308 mm long fibre the

extracted peak value is φ0 =(10.12±0.12)×10−5.

The error is due to the fact that the thermoelastic peak is sampled only

at the resonance frequencies and the maximum amplitude is estimated us-

ing the φ trend around the peak. The maximum for the peak value was

taken equal to the intersection point of the two steepest straight lines that

can be constructed with the couples of experimental points just before and

after the peak. The minimum for the peak estimate was taken equal to the

maximum measured values. An example of the process on this fibre is given

in figure 6.34. Assuming for T the measured value of 293 K it follows that

α=(2.56±0.11)×10−6 K−1. For the 111 mm long fibre the extracted value

for the peak is φ0 =(17.26±0.24)×10−5 and α=(2.54±0.13)×10−6 K−1.

6.5.4 The coefficient of thermal conduction

The τth parameter in the thermoelastic curve, discussed in § 3.2.2, allows

a determination of the thermal conductivity κ of the fibre. The heat flux

characteristic time is

τth = F
cV d2

κ
(6.26)

where d is an effective distance for the heat flow and F is a geometrical

constant keeping into account the shape of the fibre section. For the measured
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Figure 6.34: An enlargement of loss angle measurements around the ther-
moelastic peak is shown for the 308 mm long fibre. There are also indicated,
as “min” and “max”, the limits of the error interval taken for the peak value.

roughly-elliptical fibres an estimate of d can be deduced for each mode by

assuming a cylindrically shaped fibre oscillating at that frequency. In this

way the elliptical section is approximated with two circular sections, one

with the larger axis as a diameter and the other with the dimension of the

shorter axis, for the two main oscillating directions (refer to figure 6.29).

Nevertheless the larger curvature radius assumed for the external circular

section leads to an underestimation of the heat gradient and consequently to

an overestimation of τth; the opposite happens assuming the internal circular

section. A better first order estimation can be obtained by modifying (6.26)

with the introduction of a parameter c correcting the form factor known for

a cylindrical geometry

τth =
1

2.16
(1± c)

cV d2

κ
, (6.27)
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where the sign + in front of c is used when the inscribed circular cross section

is taken into account. The values found with a fit by using this expression for

the 111 mm long fibre are κ=(146±13) W/(mK) and c=0.18±0.002, only

considering the pure transverse resonance modes. The error was evaluated

varying the model parameters inside their errors. For the 308 mm fibre,

performing the same fit, the obtained values are κ = (138± 11) W/(mK)

and c=0.001±0.001. In table 6.1 the physical parameters measured for the

111 mm long fibre and the 308 mm long one are summarized.

L (mm) E (GPa) α (K−1) κ (W/(mK))

111.5±0.5 150±11 (2.54±0.13)10−6 146±13

308.0±0.5 174±12 (2.56±0.11)10−6 138±11

Table 6.1: Measured parameter for two different silicon fibres.

6.6 Future work

The activity described in this chapter has been done in the framework of

a larger research program on new materials for interferometric detectors of

the 3rd generation. The group that I belong to is constructing a cryogenic

facility to measure, on fibres, the coefficient of thermal conductivity κ, of

thermal expansion α and the loss angle φ as a function of temperature. In

fact, it is of crucial importance to have the possibility of measuring these

properties easily, in a robust way and on fibre shaped samples, in order to

characterize silicon and new silicon-based materials, whose properties have

not been measured yet.

Measuring κ(T )

Inside a cryostat, already installed and working at liquid nitrogen temper-

ature, there will be a metallic copper box — whose temperature is tunable
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thanks to coil heaters — inside which a fiber is clamped. The specific thermal

conductivity of the fiber will be calculated by measuring fiber geometry and

its absolute conductivity (through thermometers at the end of an induced

temperature gradient along the fibre itself).

Measuring α(T )

The same cryostat will be used for the absolute measurement of the linear

coefficient of thermal expansion.

Because of the low value of thermal expansion expected for silicon, which

is of the order of 10−8 K−1 (see figure 6.1), the displacement detector should

have a stability of 1 nm over a period of 10÷15 minutes. The choice of a

suitable optical layout fell on Fabry-Perot cavities.

The final design of the full facility is sketched in figure 6.35. A 20 cm

Figure 6.35: Layout of the thermal expansion measurement facility.
a) 200 mW Yag laser; b) Faraday isolator; c) EO modulator; d) mixer;
e) InGaAs photodiode; f) Zerodur cavity; g) flat-concave optical cavities;
h) piezo; i) vacuum tank; j) copper shield; k) cryostat; l) quarter wave plates.
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long Zerodur reference cavity controls the frequency of a 200 mW YAG laser

through a piezoelectric actuator, which has its negative expansion coefficient

partially matched by a washer of aluminum with a suitable thickness. The

laser beam coming out of the reference cavity tracks the changes of length

in the measuring cavity. The information on the fibre length is contained in

the signal fed into the piezo.

Measuring φ(T )

The facility realized for measuring fibers loss angles can be used at cryogenic

temperatures with minor changes.

Particular care should be paid in order to realize a clamp that does not

become too tight or too loose on the fibre going towards low temperatures.

The realization of a composite clamp, made of two different materials —

whose thermal expansion coefficients add up to be near the silicon thermal

expansion — is being investigated: particular clamps like the one shown in

figure 6.36 have been designed and realized. In the future they will be tested

Figure 6.36: Sketch of a realized clamp made of brass and aluminum.

on silicon fibres.
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Chapter 7

Conclusions

This work has moved from the idea of using finite element analysis (FEA) as

a general tool for thermal noise studies relating to improve the performances

of interferometric gravitational wave antennae.

On the one hand FEA has been used to simulate some thermal noise con-

tributions for the Virgo mirrors. For the first time ever, a complete model of

a Virgo mirror has been used to perform Brownian thermal noise calculations

through the numerical dynamic approach, which relies on Levin’s method.

The analysis is a harmonic FEA, of the same kind as other analyses already

made, but presents a series of new important elements:

� the analysis is performed including in one model only all the ancillary

components on the mirror: the coating, the markers, the spacers and

the magnets (in former analyses all those contributions were investi-

gated separately as worsening inputs);

� the mesh of the coating is driven in a new way, with a double advantage:

– it allows to apply in a more efficient and precise way the pressure

profile on the mirror;

– it allows the creation of relatively simple models on which para-

metric analyses can be run;

171
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� the coating is simulated using SHELL99 elements, which allow to define

up to 250 layers with different properties.

The results are in agreement with the ones by Levin [46] and by Numata [18].

Besides,

� the effects of the mirror resonance modes on the read-out have been

calculated on the actual model of a Virgo mirror through a modal FEA

and

� a parametric analysis has been done moving the position of the markers

and showing, for the first time, the heuristic relation between the dis-

tance of the markers from the laser beam axis and the induced silicate

bonding Brownian thermal noise.

On the other hand, in the framework of research of new suspension ma-

terials for future interferometric antennae, a facility for measuring fibre loss

angle φ has been realized. For the first time, measurements on crystalline

silicon fibres have been performed with the ring-down technique.

FEA enters that experiment in a novel way: an apparatus to measure the

fibre profiles — which, for production problems, is not perfectly cylindrical

as aimed to be — has been made and the profile data are used to create

finite element models. The creation of the 3-D models of such thin objects

resides on the particular mesh-driving process used. A modal analysis allows

to find the resonances of the fibers helping the Q-measurement procedure

and a parametric analysis w.r.t. Young’s modulus E allows to fit E itself

from the modeled frequencies and the theoretical wave numbers.

The values obtained for the measured loss angles are consistent with the

predicted thermoelastic peaks and are encouraging thanks to the possibility

of clamping the fibre without evident clamping losses.
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In the future the efforts will be focused on performing:

� a simulation of thermoelastic noise in the mirror;

� a complete simulation of thermoelastic noise in fibres;

� a modelization of the clamping dissipative processes;

� cryogenic measurements of thermal conduction coefficient, thermal ex-

pansion coefficient and loss angle on silicon fibres.
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