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Abstract

This thesis presents the dependability study of the Beam Dumping System

of the Large Hadron Collider (LHC), the high energy particle accelerator to be

commissioned at CERN in summer 2007. There are two identical, independent

LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of

a series of magnets that extract the particle beam from the LHC ring into the

extraction line leading to the absorbing block. The consequences of a failure within

the LBDS can be very severe. This risk is reduced by applying redundancy to the

design of the most critical components and on-line surveillance that, in case of a

detected failure, issues a safe operation abort, called false beam dump.

The system has been studied applying Failure Modes Effects and Criticality

Analysis (FMECA) and reliability prediction. The system failure processes have

been represented with a state transition diagram, governed by a Markov regener-

ative stochastic process, and analysed for different operational scenarios for one

year of operation. The analysis of the system results in a safety level ranked SIL4

in the IEC 61508 standard and 4 (± 2) expected false beam dumps generated

per LBDS. These results will be validated through a three months reliability run.

Several sensitivity analyses have been made providing additional evidence on the

importance of the fault tolerant design features and the achieved trade-off between

safety and availability.

The Beam Dumping System is part of the LHC machine Protection System for

which a safety level SIL3 is required. A simplified model of the LHC Machine Pro-

tection System (MPS), including the LBDS and other critical protection systems,

has been analysed. Depending on the hazards (e.g. the fast beam losses being the

most critical event in the LHC) and their coverage, the safety of the MPS has been

calculated between SIL2 and SIL4 with about 40 (± 6) expected false dumps per

year, which is the 10% of the machine fills. In the context of the MPS the LBDS

is one of the safest systems and contributes to unavailability with an acceptable

fraction of false dumps.
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Introduction

The Large Hadron Collider (LHC), approved by the CERN Council in

December 1994, is planned to come into operation by the end of 2007. The

accelerator occupies an approximately circular tunnel, 27 km in circumfer-

ence and 3.8 m in diameter, located between 100 m and 150 m underground,

crossing the Swiss-French border at the periphery of Geneva. The LHC will

accelerate two counter-rotating beams of protons that are nuclei of hydrogen

atoms [56, 57]. The two beams will collide at a centre of mass energy of 2×7

TeV, about 35 times the energy of the LEP [55], a previous accelerator at

CERN, and 7 times the energy of the Fermilab Tevatron [64], which makes

the LHC the world’s most powerful particle accelerator for high energies

physics. The collisions will result in the scattering and disintegration of the

nuclei and their constituents with the production of particles that will permit

to investigate the matter on a sub-nuclear scale, searching for signatures of

super-symmetry, dark matter and the origins of mass [56].

This thesis presents the analysis of the dependability of the LHC Beam

Dumping System (LBDS). The LBDS performs the extraction of the high

energy proton beam from the LHC ring, its dilution and steering through

the dump tunnel and the safe deposition into an absorber block. Any failure

leading to the unavailability of the LBDS during the operation is a severe

safety concern for the LHC. The system has been designed in order to contain

the residual risk of failure. A safety level of SIL3 of the IEC 61508 standard

is demanded for the LHC Machine Protection System, of which the LBDS is

an important component. The study follows some similar work on different

xv



xvi Introduction

equipment already done at CERN (e.g. the quench protection system [90] and

the beam loss monitor system [37]). These studies describe the consequences

of failures and give an estimate of their likelihood, which is the ultimate goal

of the dependability assessment. They all apply FMECA (Failure Modes,

Effects and Criticality Analysis) though they differ in the methodology for

the analysis: the Monte Carlo simulation was applied in [90] while fault tree

analysis was used in [37].

This study applies Markov processes and Markov regenerative stochas-

tic processes to the modeling and analysis of dependability problems. This

approach is demonstrated to be an elegant and mathematically exact way

to describe the system failure processes together with the dependability at-

tributes, as alternative to either a fault-tree or a Monte Carlo approach.

The work is organized as follows. Chapter 1 gives an overview of the

LHC accelerator and some rudimentary information on accelerator physics

and technology. The LBDS is described in Chapter 2. Chapter 3 introduces

dependability terminology and design methods that apply to make a system

resilient to failure and safe in particular. Chapter 4 describes the proba-

bility models for modeling the dependability, which are used in Chapter 5

for reliability, availability and safety applications. Chapter 6 outlines the

FMECA analysis of the LBDS. In Chapter 7 the model of the LBDS failure

processes is built and an analysis is performed for one year of operation and

different operational scenarios, resulting in figures for safety and availability,

which are completed by an additional sensitivity analysis of the main design

parameters. Chapter 8 provides an overall estimate of the dependability for

a simplified LHC machine protection system, including the LBDS and the

most important protection systems. A summary of the results of the study

and some final remarks are given in Chapter 9.



Chapter 1

LHC Overview

1.1 The LHC Accelerator

The LHC is the highest energy accelerator of a chain of accelerators, rang-

ing from the particle production to the injection in the LHC rings where the

beam is stored, accelerated and finally extracted at the end of the opera-

tional cycle, see Figure 1.1. In each accelerator the beam energy is increased

[56]. The protons p+ are a type of hadrons, which form a broad category of

particles that includes also neutrons and in general all particles that build

the nucleus of the atoms1. They are produced in the LINAC (LINear ACcel-

erator), packed in bunches during the acceleration process and transferred to

the PS booster and further into the PS (Proton Synchrotron). From the PS

they are transferred to the SPS accelerator (the Super Proton Synchrotron)

where they are accelerated up to an energy of 450 GeV and subsequently

injected into the LHC rings2. The final LHC proton beam, at nominal inten-

sity, will consist of 2808 (nb) bunches , each containing 1.15 × 1011 protons

(Np) resulting in a total beam current of 0.584 A. The two beams are acceler-

ated to a beam energy of 7 TeV and can be kept circulating for hours at the

ultra-relativistic velocity of 0.999999991 times the speed of light, completing

1The LHC will also accelerate ions but at less intensity than the proton beams.
2The nominal LHC filling requires 12 injections from the SPS for each LHC ring [57].

1



2 1. LHC Overview

Figure 1.1: The CERN complex [19].

a machine circumference of 26.7 km in 89 µs.

Beam collisions are foreseen at four interaction points in the heart of

the main experiments: ALICE (A Large Ion Collider Experiment), ATLAS,

CMS (Compact Muon Solenoid), and LHCb (LHC beauty experiment). At

the ATLAS and CMS experiments, the beams are squeezed in transverse

beam size to about 16 µm, which increases the chances of a collision among

the individual particles of the two beams. Just to give an idea, the squeezing

of 100,000 million protons (at nominal beam currents) per bunch down to 16

µm (1/5 the width of a human hair) at an interaction point results in around

20 collisions per crossing. The bunch spacing is 25 ns, so that one collision

occurs every 25 ns. The LHC main parameters are listed in Table 1.1.

1.2 Accelerator Physics and Technology

The LHC is a synchrotron, which is a type of particle accelerator usually

characterized by a quasi-circular vacuum chamber (i.e. the ring) in which

the beam is circulating, surrounded by magnets. The ring is split in 8 oc-

tants, separately powered and accessible from the surface through the access

points, see Figure 1.2. One beam is injected at point 2, the other at point
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Quantity Value

Beam energy (E) 7.00 TeV

Beam current 0.584 A

Circumference 26.7 Km

Number of protons per bunch (Np) 1.15 × 1011

Dipole field (B) 8.4 Tesla

Revolution frequency (frev) 11.24 kHz

Number of bunches per beam (nb) 2808

Proton (rest) mass (m0) 1.672 × 10−27 kg

Normalized emittance (ǫn) 3.75 µm × rad

Proton charge (q) 1.602 × 10−19 Coulomb

Beta function at collision (β) 0.50 m

Luminosity (L) 1.0 × 1034 cm−2sec−1

Table 1.1: The LHC and beam main nominal parameters [56].

8. The extraction or beam dumping system is located at point 6. The Radio

Frequency (RF) system, required to accelerate the beam, is placed at point

4 while the collimators (beam cleaning) are at points 3 and 7.

The LHC ring is occupied by magnets for steering and focusing the beam

in order to keep a high energy and intensity beam circulating for the necessary

length of the experiments. The most important magnets for the LHC are the

dipole magnets and the quadrupole magnets.

The dipole magnets play a crucial role in the LHC as they determine

the bending angle of the quasi circular orbit in the horizontal plane. The

relation between bending angle and magnetic field of the dipole magnets is

calculated with Lorenz’s law. The bending angle Θ is determined by the

magnetic induction B, the relativistic mass m, the charge q, the velocity v of

the particle and the length of the magnet l :

Θ = q × Bl

mv
(1.1)

where m = m0√
1−(v/c)2

. At the top LHC beam energy of 7 TeV the required

magnetic induction is 8.4 T for 14.3 m long magnets, resulting in a bending

angle of 0.0051 rad. This field requires a current of around 11,700 A in the
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Figure 1.2: LHC schematic.

superconducting dipole magnets for a total of 1232 of magnets that deviate

the beam over 2π. The super-conducting magnets of the LHC work at a

super-fluid helium temperature of 1.9 K. They have two apertures, one for

each of the counter-rotating beams. In order to avoid undesired collisions

with residual gas molecules, an ultra high vacuum of 1.33× 10−10 mbar (∼= 3

million molecules/cm3) is created in the beam pipes. Additional small orbit

correctors, shorts dipole magnets, are installed to correct the beam orbit in

the horizontal and vertical planes.

The quadrupole magnets focus the beams in the transverse planes. A

quadrupole magnet has four poles with alternating polarities, symmetrically

arranged around the centre of the magnet. The resulting magnetic field lines

follow a hyperbolic contour with the strength increasing proportionally to

the distance from the centre. The magnet acts like a focusing lens in one

plane, and a defocusing lens in the other plane. A global beam focusing in

both planes is reached by alternating focusing and defocusing quadrupole
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magnets, called FODO lattice. The obtained transverse motion around the

circular trajectory for a single particle is described by Hill’s equation.

d2z

s2
+ K(s)z = 0 (1.2)

where z stands for either the horizontal x or vertical coordinate y and s is the

longitudinal displacement along the reference orbit3. The focusing strength

K (s) is a function of s, K(s) = (q × g(s))/p, where g(s) = ∂By/∂x is the

gradient of the quadrupole magnet in the x plane and g(s) = −∂Bx/∂y

is the gradient in the y plane, p is the momentum and q is the charge of

the particle. The solution of (1.2) is a residual harmonic oscillation called

betatron oscillation:

x(s) =
√

ǫβ(s)cos(φ(s) + φ0) (1.3)

where ǫ is the a constant called emittance4, which describes the beam quality,

β(s) is the beta-function, φ(s) + φ0 is the phase advance which together

describe the magnetic optics. The equation (1.2) is solved for the initial

condition ǫ and φ0, which define the position of the particle in the phase space

x, dx/ds. Other quantities derived from (1.2) are the number of betatron

oscillations per turn that is called the betatron tune Q, and the transverse

beam size which is given by σx,y =
√

ǫβ.

The beam is accelerated by a longitudinal electric field from a resonant

cavity, generated by the Radio Frequency (RF) system. The frequency of the

cavity is set to a multiple of the beam revolution frequency. In the LHC, this

frequency is 400 MHz, which corresponds to an oscillation period of 2.5 ns.

This defines the stable phase for the bunches of particles, separated by 25

ns at the injection in the LHC and during the complete LHC operational

cycle. All particles describe a longitudinal oscillation around the stable phase,

called synchrotron oscillation (for the LHC around 21.4 Hz). The synchrotron

3This equation is only valid for particles without any energy deviation and large bending

radii.
4The emittance is related to the normalized emittance as quoted in Table 1.1 by ǫn =

βγǫ, where β and γ are the relativistic parameters.
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oscillation must not be confused with another phenomenon, the synchrotron

radiation, which is related to the deflection of the high energy particles by

the dipole bending magnets, giving rise to emission of light. The synchrotron

radiation is mostly important for light particles like electrons and was a major

effect for the LEP. Nevertheless, it will not be totally negligible for the LHC

due to the high energy reached for the beams. The RF will compensate these

losses.

Second order phenomena exist that affect the beam quality and require

the addition of higher order multipole magnets. Sextupole magnets are

placed close to the quadrupoles in the LHC in order to control the chro-

maticity, a quantity that relates the Q tune spread to the momentum spread

of the beam. The skew quadrupoles control the coupling between the two

transverse planes. Other magnets like octupoles and decapoles are introduced

in order to handle resonances and higher order effects. A more detailed de-

scription of this extensive subject is beyond the scope of this thesis and is

not treated here.

All magnets for steering and focusing the beam or compensating the

higher order phenomena are arranged in a cell structure that repeats iden-

tically along the arcs of the LHC ring, see Figure 1.3. Every three bending

dipoles there is a quadrupole with orbit correctors positioned close to it.

Special types of magnets are used for the injection and the extraction

of the two beams into and from the LHC ring respectively. These are the

kicker magnets, which are pulsed, and the septum magnets, which work

continuously. The extraction magnets are part of the beam dumping system.

In this system there are 15 extraction fast pulsed kicker magnets, followed

by 15 septum magnets and 10 dilution kicker magnets that guide the beam

along 700 meters of the dump tunnel toward the graphite absorber block.

The safety of the beam dumping system of the LHC is the main subject of

this thesis. Details of its functioning and the design will be given in Chapter

2.

The most important LHC parameter for the experiments is the beam
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Figure 1.3: Regular arc cell of the LHC [19].

luminosity. This is defined as the number of particles per square centimeter,

per second crossing at the interaction point:

L =
N2

p nbfrev

2πσ2
(1.4)

Whereas in past and present colliders the luminosity culminates around L =

1032cm−2s−1, the LHC is designed to reach L = 1034cm−2s−1, two orders

of magnitude higher, see also Table 1.1. This gain in luminosity is not for

free. When two bunches cross in the centre of a physics detector only a tiny

fraction of the particles collide, giving about 20 collisions per crossing, and

result in the wanted events. The large majority of the particles are deflected

by the electromagnetic field of the opposing bunch without colliding. These

deflections, which are stronger for denser bunches, accumulate turn after turn

and may eventually lead to particles loss. This beam-beam effect was studied

in previous colliders, where experience showed that one could not increase

the bunch density beyond a certain value, the so called beam-beam limit, to

preserve a sufficiently long beam lifetime. In order to reach the maximum

luminosity the LHC has to operate as close as possible to this limit.

A collimation system, made of various blocks of different materials, is

designed to catch and absorb any unstable particles before they can reach
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the beam pipe wall and quench5 the superconducting magnets. This way

the beam losses are confined in well-shielded regions far from any supercon-

ducting elements. Beam losses in the LHC ring are detected by the beam

loss monitoring system or indirectly by the quench protection system of the

superconducting magnets. Other instruments are also required, in particular

the Beam Position Monitors (BPM) to measure the beam position.

1.3 Safety Concerns and Machine Protection

The studies on the safety of particle accelerators are a necessity for the

accelerators with large stored beam energy for which the severity of failures

are drastically amplified. In this respect, the LHC is going to be the most

powerful particle accelerators both for the energy stored in the beam and

the energy stored in its magnets6. The consequences of a failure in the LHC

are estimated in damage to costly superconducting magnets and radioactive

contamination, resulting in many months or even years of downtime for the

accelerator. For these reasons, the LHC project is demanded to comply

with strict safety recommendations similar to those applied in nuclear power

engineering7.

The safety in the LHC is assured by the LHC Machine Protection System

MPS [56, 92]. The MPS checks continuously for the existence of safe condi-

tions for the LHC, before entering operation and especially during operation

when the beam is circulating. In case of detected failures in the machine or

beam anomalies, the MPS issues a beam dump request and the operation is

aborted. The unavailability of the MPS has potentially serious consequences

[89], depending on the part of system which failed or is left without protec-

5The quench is the transition of the superconducting state to its normal state and

releases the magnetic energy stored in the magnets.
6The energy stored in the magnets is 11 GJ [56], equivalent to 2.8 tons of TNT.
7The timescale of failures developing in a nuclear power plant is longer than that in

the particle accelerators where a reaction time of milliseconds could not be sufficient to

preserve the machine from the catastrophe.



1.3 Safety Concerns and Machine Protection 9

tion and exposed to an increased hazard. The overall MPS is required to be

SIL3, that corresponds to a failure rate in the interval [10−8/h, 10−7/h] as

specified in the IEC 61508 standard [42]. The failsafe strategy of aborting the

operation in case of any detected failure is expected to be determinant in the

achievement of the required safety level for the LHC, as it will be explained

in section 3.5. Nevertheless, none of the MPS components should disrupt the

machine operation above a reasonable limit by creating physically unfounded

dump requests or beam-inhibit signals. This is a further requirement which

determines a trade-off between the safety and availability for the MPS.

The MPS consists of a large number of complex systems involved in the

protection task of the LHC. Some of these systems are devoted to the beam

surveillance (e.g. beam losses, beam position, etc.), others to the surveil-

lance of the status of critical equipment (e.g. super conducting magnets,

power converters, etc.). An inventory of these includes: the beam loss mon-

itor system to detect beam losses, the beam dumping system for the beam

extraction, the quench protection system that detects load change in the

superconducting elements, the powering interlock controller that interlocks

the powering of the superconducting magnets, the collimation systems, the

RF system, the beam position monitors, the vacuum system and others (see

Figure 1.4).

The core of the MPS is the Beam Interlocking System that consists of 16

Beam Interlock Controllers (two per sector) communicating via fiber optics to

form the beam permit loop, see Figure 1.5. All machine protections systems

are directly or indirectly connected to a Beam Interlock Controller (BIC) with

their user permit signal. The beam permit loop is the result of a handshaking

protocol (user permit ⇐⇒ beam permit) between the users and the local BIC.

Each BIC receives the 10 MHz signal (i.e. the token) that is retransmitted

to the neighbour BIC only if all local user’s permit signals are received,

which means that they are functioning. If this holds for all 16 BICs, the

token starts circulating and the beam can be injected in the machine. For

reliability reasons, there are two loops per beam, four in total, with one token
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Figure 1.4: The Machine Protection Systems along the LHC Ring [56].

circulating in the clockwise direction and another anti-clockwise. Each BIC

may cut the loops at any moment during operation in case at least one of

the user permits has turned to false8, and a dump request is transmitted

to the LBDS. The timing response from the detected critical event to the

transmission at the LBDS interface is estimated to be about 70 µs [13].

Among the systems that make part of the MPS, the LBDS has a the

responsibility of completing the protective task with a safe beam dump. As

every operation always terminates with a beam dump, this system is the one

for which safety has to be certified largely SIL3 or even better. The analysis

of dependability of a simplified MPS will be given later in Chapter 8.

8More in general, the set of the interlocked systems depends on the operational phase

of the LHC. The full set is necessary only for high energy and high intensity beam and,

in the remaining period, a subset of the users can be masked.
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Chapter 2

The LHC Beam Dumping

System

This chapter describe the functioning principles of the LHC Beam Dump-

ing System and its components.

2.1 The System Inventory

The LHC Beam Dumping System (LBDS) has the role of extracting the

beams on demand from the LHC rings and safely depositing them onto the

absorbing block at the end of the dump channel. For each LHC beam the

LBDS consists of the following components, see Figure 2.1:

• The MKD system is a series of 15 kicker magnet assemblies with their

pulse generators that horizontally deflects the beam from the circulat-

ing orbit onto the extraction trajectory.

• The Q4 superconducting quadrupole is part of the optical elements of

the circulating LHC beam but also enhances the horizontal deflection

given by the MKD system to the extracted beam by more than 30%.

It has an individual power converter.

• The MSD system is a series of 15 septum magnets for the vertical

13
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deflection. There are three types of MSD; the MSDA, MSDB and

MSDC, which differ in septum thickness and their magnetic field. They

are connected to a single power converter.

• The MKB system consists of a series of 10 kicker magnet assemblies and

their pulse generators, arranged into 4 MKBH and 6 MKBV systems

for the horizontal and vertical dilution of the beam respectively. Due

to the dilution of the beam, the MKB magnets reduce the beam energy

density when it arrives at the absorbing block.

• The TDE absorbing blocks are at the end of the beam dump lines. The

extracted beam impacts onto the TDE graphite block stamping a char-

acteristic ‘e’ twisted shape profile (15 × 25 cm), imposed by the MKB

system, see Figure 2.2. This is important for avoiding any damage of

the TDE due to overheating.

• The TCDS is a passive element that protects the MSD magnets from

beam impact. The TCDQ and the TCS are passive elements that

protect the Q4 and the downstream LHC from beam impact.

The system inventory also includes: FPGA based electronics to gener-

ate the synchronized triggering of the kicker magnets; PLC to guarantee the

beam energy tracking of the power converters in the system, general status

surveillance and diagnostics. The vacuum system of the beam pipes, the

nitrogen over-pressure for the TDE and the different types of beam instru-

mentation are also part of the LBDS but are not shown in Figure 2.1. The

main LBDS parameters are summarized in Table 2.1.

2.1.1 Operational Modes

Three different operational modes of the LBDS can be defined: the ready

mode, the firing mode and the post-operational mode. The LBDS is required

to be in the ready mode at any moment when there is beam in the LHC. The

triggering system of the LBDS receives the revolution frequency from the RF
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Figure 2.1: LBDS essential layout (courtesy of M. Gyr).

Figure 2.2: The twisted ‘e’ beam shape profile at the TDE target (courtesy

of B. Goddard).
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System N. items Length [m]
∮

Bdl [Tm] Deflection [mrad]

MKD 15 22.5 0.25 0.240

Q4 1 3 0.08 0.090

MSD 15 67.5

Type A: 0.8

Type B: 0.99

Type C: 1.17

2.400 (total)

MKBH 6 7.6 1.64 +/- 0.28

MKBV 4 7.2 1.077 +/- 0.28

TDE 1 8 - -

Dump line - 975 - -

Table 2.1: Main LHC Beam Dumping System parameters.

system, which is phase-locked to the beam abort gap, a time interval of 3µs

where the ring is deliberately left free of particles and corresponds to the rise

time of the magnetic field of the extraction kicker magnets MKD. The beam

energy is measured by the beam energy measurement system (BEMS) that

translates the current measured at the power converters of the LHC main

dipoles into a beam energy value, which is delivered to the MKD and MKB

systems and applied as voltage settings of the local power converters. The

voltage settings of the MSD and Q4 also track the beam energy, although

they are generated in a different way, external to the LBDS.

As soon as a dump request is generated the system passes to the firing

mode. The triggering system receives the dump request from the beam-

interlocking controller BIC (see Chapter 8), which is converted into a trigger

signal synchronously distributed to the MKD and MKB systems. As a result,

the MKD kicker magnets will fire simultaneously and will all reach their

nominal field in less than 3 µs. The nominal field is kept at least 90 µs, the

time necessary for the removal of the entire beam from the ring. After the

MKD the beam passes through the Q4 and the MSD magnets, reaching the

MKB magnets for the dilution.

The system moves to the post operational mode after the beam dump.

Currents and voltages from magnets generators, power switches, etc. are

recorded and processed in post mortem diagnostics in order to check that
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everything has functioned as expected. In particular, they make it possi-

ble to discover faults that have either accumulated undetected during the

operation, or occurred at the moment of the beam dump. If this check is

passed successfully, the system is re-armed and the local beam permit signal

is generated and sent to the Beam Interlocking System. In case of discovered

anomalies during the post operational mode further investigation could be

necessary, with a temporary stop of LHC operation.

2.2 The MKD System

The MKD system of the LBDS consists, per beam, of a series of 15

kicker magnet assemblies with their individual generator. The functional

architecture of the MKD system is shown in Figure 2.3. Each kicker magnet

is about 1.5 meter long and consists of a tape wound steel yoke with a one-

turn winding at either side of the beam aperture, surrounded by a mechanical

support frame. The beam aperture is delimited by a ceramic chamber that

also acts as vacuum barrier with a vacuum of about 10−11 mbar. The magnet

is connected to its generator by 8 parallel high voltage low inductance coaxial

cables. Each generator consists of two identical redundant branches in

parallel, charged to a voltage proportional to the beam energy signal that is

received from the BEMS, see section 2.7. The high intensity current pulse of

around 20 kA is the result of the discharge of a primary capacitor, charged up

to 30 kV (depending on the beam energy), through a solid-state switch1. Two

circuits compensate the overshoot, the first (OS1) charged at 350 V, and the

second (OS2) beam energy tuned around 300 V. Both compensation circuits

discharge through the same switch. All power switches receive the trigger

command from the triggering system via two redundant power triggers. The

capacitors are of the self-healing type that means that an internal short-

circuits only leads to a small reduction of the total capacitance, which can

be monitored. The magnet current pulse reaches a maximum of 18.5 kA for

1The solid state switch is more reliable than traditional gas switches [8].
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Figure 2.3: The functional architecture of one MKD generator assembly.

a 7 TeV beam, with less than 3 µs rise time followed by a period of at least

90 µs where the field varies by less than 7.5%. The expected beam deflection

is shown in Figure 2.4.

Many failures of the MKD system are deemed catastrophic. The MKD

system is designed fault tolerant and continuously surveyed in order to with-

stand these failures up to a certain limit or generating a failsafe operation

abort once they are detected. These features are listed below:

• Redundancy of the MKD systems. 14 out of 15 systems are still

able to perform a proper beam extraction2.

• Dual branch generator. Each generator has two identical branches

in parallel with an independent solid state switch in each branch. One

branch may withstand the full current pulse in case of failure of the

other.

2There exist few failure modes that overdo this redundancy. They are treated in section

6.3.
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Figure 2.4: The beam deflection angles [mrad] for the MKD and the

MKB(H/V) magnets (courtesy of J. Uythoven).

• Redundant triggering. Two independent power triggers drive the

switches of both generator branches.

• Surveillance of erratic triggers. The re-triggering system moni-

tors the erratic triggers in the MKD generators by 10 current pick-ups

(placed at different points in the circuit) per system. In case of a de-

tected erratic trigger, all MKD (and MKB) systems will be triggered

asynchronously with the beam abort gap.

• Surveillance of the beam energy tracking. The primary and over-

shoot (OS2) capacitor voltage settings are monitored. The values are

acquired by a local Beam Energy Acquisition (BEA) card and trans-

mitted to the Beam Energy Interlocking (BEI) card where they are

compared to the present beam energy. One BEA-BEI card per MKD

magnet generator exists. A dump request is issued if the difference

between the reference beam energy and the measured settings exceeds

the 0.5%.

Many signals are recorded at the moment of the dump trigger like the currents

in the power triggers, in the switches and at the magnets. Their analysis in

post mortem diagnostics permits to discover failures that have accumulated

silently in the system.
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2.2.1 Power Triggers for the Kicker Magnets

The power trigger receives the trigger signal from the triggering and

the re-triggering systems (sections 2.5 and 2.6) and re-transmits this sig-

nal, shaped and amplified, to the MKD or the MKB generator switches, see

Figure 2.3. The system is housed in a dedicated VME crate, one per MKD

system, and consists of two identical Power Trigger Modules (PTM) working

in parallel, as shown in Figure 2.5. Each PTM consists of a primary driver

that receives the signal from the triggering and re-triggering systems. The

driver commands the power switch (three Insulated Gate Bipolar Transistors,

IGBT, in series) for the discharge of a capacitor at a voltage that ranges be-

tween 800 V and 3000 V, as calculated by the power trigger controller (PTC)

on the basis of the present beam energy. A mono-stable circuit generates the

resulting output pulse. For reliability reasons, a second redundant path ex-

ists, which makes it possible that the trigger signal reaches the power switch

even in case of failure of the primary driver3. A compensation driver com-

mands another power switch (IGBT) for the discharge of an internal capaci-

tor, which lengthens the pulse for the activation of the compensation circuit

of the MKD generator. The compensation driver is designed to fire only if

the primary has already fired, avoiding the dangerous scenario where only

the compensation pulse is generated. Independent powering exists for the

Power Trigger Controller (PTC-PS), the PTM (PTM-PS) and the primary

capacitor of the trigger module (HV-PS). The resulting trigger pulse has the

duration of 3 µs with 200 ns rise time and 400 A peak current.

The failure of the power trigger may lead to catastrophic consequences

especially when it results in an erratic trigger for the MKD system. Fault

tolerance and surveillance make it possible to withstands failures or issue an

operation abort in the case that the failure is detected:

• Dual branch trigger module. The trigger signal is generated in two

independent modules. One module is able to withstand the failure of

3In this case, the current flowing through the second path will damage the switch and

the card, which will then need to be replaced.
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the other. As a resulting drawback the likelihood of erratic triggers is

doubled.

• Surveillance of power supplies failure. The Power Trigger Con-

troller (PTC) provides the continuous surveillance of the power supplies

(+/-150V, 48V and 15V). The power supply of the primary capacitor

within the Power Trigger Modules (PTM) is also monitored.

The input and output currents of the power triggers are monitored for

post mortem diagnostics. They may reveal either a false contact or a missed

trigger from an input line4.

2.3 The MSD System

The MSD system consists of a series of 15 septum magnets comprising five

MSDA, five MSDB and five MSDC. The functional architecture is shown in

Figure 2.6. Each magnet is about 4.5 meter long and consists of a laminated

iron-dominated frame, built using a welded construction of two half-cores,

the coil and the septum. One chamber exists for the circulating beam and

one for the extracted beam, kept at a vacuum of 10−11 mbar and 10−8 mbar

respectively. One power converter supplies all magnets with a current that

depends on the actual beam energy [9]. The nominal septum current for a 7

TeV beam is 880 A, resulting in an integrated magnetic field of 0.80 Tm in

the MSDA, 1.0 Tm in the MSDB and 1.17 Tm in the MSDC magnet.

No failure of any magnet in the MSD can be tolerated and the conse-

quences are severe. To reduce this risk, the system implements continuous

surveillance:

• Surveillance of the beam energy tracking. The local BEI com-

pares the measured current in the generator PC, which is identical to

4The perfect coverage of all failures is impossible. For instance, one major concern is

the fault of the clamping diodes in the input section that leaves the module unprotected

from over voltages with an increased risk of breakdowns.
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Figure 2.6: The functional architecture of the MSD system: the system (left)

and one MSDC magnet (right).

the current in the magnets, to the theoretical value derived from the

present beam energy. The dump request is generated and delivered to

the BETS if a 0.5% error is detected (see section 2.8). This check is

also effective for slow load changes that make the field change beyond

the 0.5% tolerance5.

• Surveillance of fast magnet field decay. A short in a magnet coil

or in the PC is expected to provoke a fast field drop in less than 1 ms

that is covered by the Fast Magnet Current Change Monitor (FMCCM)

[96].

• Surveillance of coil overheating. The septa magnets are water-

cooled. In case of a cooling system failure any overheating is detected

by thermo-switches (one per coil layer, 75 in total for the MSD system)

and an alarm will be sent to the local PLC that generates a dump

5As the septa are continuously powered the survey of their current is a better guarantee

of their proper operation than the survey of the voltage of the pulsed magnets. Some of

these failures are also caught by the PC internal surveillance, which is not included in the

analysed system.



24 2. The LHC Beam Dumping System

request and will subsequently switch off the PC.

Currents and voltages are collected for post mortem diagnostics in order

to discover failures that have accumulated silently, as well as slow drifts in

the electrical parameters that lead to a degraded magnet field.

2.4 The MKB System

The MKB system of the LBDS consists of 10 kicker magnets arranged

into 4 MKBH, for the deflection in the horizontal plane, and 6 MKBV, for the

deflection in the vertical plane. The magnet length is 1.9 m for the MKBH

and 1.2 m for the MKBV. The functional architecture is shown in Figure

2.7. The system is mounted in a vacuum tank with a pressure of 10−6 mbar

and no vacuum chamber for the beam is required. Each magnet is connected

to its generator by 10 parallel low inductance high voltage coaxial cables.

Each generator is powered to a voltage proportional to the calculated beam

energy and triggered by the triggering system. More in detail, the generator

for the MKBH consists of an oscillating capacitor circuit CH (pre-charged

up to 16.4 kV) that discharges through a solid-state switch6 (switch-H). The

resulting current pulse is an attenuated sinusoid, 25 kA of amplitude and 70

µs of period, which at its maximum causes a beam deflection of 0.278 mrad

in the horizontal plane for the total of four MKBH magnets, see Figure 2.4.

Similarly, the MKBV consists of one resonant capacitor circuit CV (pre-

charged up to 22.3 kV) that discharges through a solid-state switch (switch-

V). The resulting current pulse is an attenuated sinusoid, phase shifted by 90

degrees with respect to the MKBH pulse, which produces a beam deflection

of 0.277 mrad in the vertical plane for the six magnets, see Figure 2.4.

The failure of the MKB system is severe only if all magnets are lost for

the vertical or the horizontal dilution, which is a conservative definition. In

all other cases, dilution of the beam energy is reduced but still acceptable,

6The solid-state switches are identical to those used in the MKD generators and receive

their trigger signal from one power trigger per magnet.
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Figure 2.7: The functional architecture of one MKB generator.

resulting in possible overheating of the TDE block. Differently from the

MKD system, the architecture of the generators is not redundant. There

is only one power trigger instead of two and one branch instead of two per

generator. For this reason, the system has continuous surveillance for the

energy tracking failures with one BEI card per magnet generator, connected

to the BETS. During operation, the currents at the local power triggers, the

power switch and at the magnet are collected for post mortem diagnostics.

2.5 The Triggering System

The triggering system delivers the synchronized trigger signal to the

power triggers of the kicker magnet generators [4, 16]. It consists of two

independent VME (LinxOS) boards housed in one VME (64X) crate. Each

board is connected to the local Beam Interlock Controller (BIC point 6, see

Chapter 8) via an optical interface. Dump requests are received and stored

into a buffer. The signal that drives the buffer is generated by an oscillator

implemented in an FPGA, which keeps it tuned to the beam revolution fre-

quency and locks the phase to the beam free gap. Once the dump request
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Figure 2.8: The functional architecture of the triggering system.

has been received, this is transmitted (synchronized) to an output trigger

gate where it is shaped and amplified. A fan-out current transformer dis-

tributes the output pulse to the power triggers of the MKD and MKB kicker

magnets. For reliability reasons, a delayed (> 90µs) asynchronous trigger is

also sent to the re-triggering system [17, 77]. The functional architecture of

the triggering system is shown in Figure 2.8.

The failure of the triggering system is catastrophic only in case the trig-

ger is not transmitted to all magnets (i.e. generation part failure) or it is

transmitted to less than 14 MKD (i.e. fan-out distribution failure). The

synchronization error is not critical due to the passive protection elements

TCDQ, TCDS and TCS that minimize the consequences of a sweep of the

beam over the Q4 and MSD magnets. However it is unwanted because of the

likelihood of generating quenches of the superconducting magnets, and the

increased risk of damage if, for example, the TCDQ is not in its correct po-

sition. To reduce the likelihood of these failures, the system is fault tolerant
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and continuously surveyed.

• Redundancy in the trigger generation part. The trigger genera-

tion is made of two redundant and identical modules so that one trigger

generation failure can be tolerated.

• Redundancy in the trigger distribution. The trigger distribution

consists of two independent paths for the synchronized trigger so that

one distribution failure can be tolerated. The re-triggering lines still

carry a delayed asynchronous trigger in case of the complete failure of

the trigger distribution.

• Surveillance of synchronization failures. A crosschecking mecha-

nism detects local and external synchronization errors with the beam

free gap. Two internal synch-error bits are generated within the trig-

gering system FPGA and shared between the trigger generators A and

B. When a failure is detected, the status of one of these bits changes.

The failed trigger generator must inhibit its dump request buffer and

communicates its failure to the other trigger generator that issues a

local dump trigger [77].

The output currents of the trigger generators and the trigger distribution

lines, as well as the FPGA status, are recoded for post mortem diagnostics.

2.5.1 The VME Crate

The VME crates house the electronics boards of the triggering system

and other LBDS electronics. The crate consists of one power supply module,

one fan-tray module and the VME backplane designed to accept user boards

that comply with the VME bus standard (6U × 160 mm). The power supply

module receives 230 V AC main power from the UPS unit, which is internally

converted into 15 V, 5 V and 3.3 V (DC). The system is cooled by a fan-tray

consisting of three fans plus the fan control unit, which governs the rotation

speed of each fan, depending on the air temperature. Internal surveillance
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gives information on the status of the three converters and a dump request is

generated in case a powering failure is detected. A beam dump request can

also be programmed in case of failures of a fan. Customizing the VME crate

could reduce the contribution to the system unavailability. For instance,

one fan failure might be tolerated without generating a dump request and a

second power supply module could be added in parallel to reduce the VME

failure rate.

2.6 The Re-triggering System

The re-triggering system is designed to catch erratic triggers in the MKD

system and re-distribute them to all 15 MKD generators. If one MKD kicker

fires, the other kickers will be triggered with a maximum delay of 700 ns

for beam energies above 3 GeV/c. This action is not synchronized with

the beam abort gap and produces beam losses to the septa and the arc

aperture. Again, these losses are intercepted by the TCDS and TCDQ/TCS.

The functional architecture is shown in Figure 2.9. The system consists of

two independent re-triggering distribution lines A and B connected to the

MKD power triggers via two Re-Triggering Boxes (RTB) [16, 17]. The re-

triggering line also receives a trigger signal from the triggering system. Each

re-triggering box picks up the current at different points in the primary and

secondary circuit of the MKD pulse generators. It is connected to the power

triggers A and B of the local MKD generators and to the re-triggering line.

Once the erratic trigger reaches the RTB, it is distributed to the other RTB

by a domino effect, using the energy stored at each stage.

The failure of the re-triggering system leaves the trigger event uncovered

in all or part of the MKD systems. The re-triggering system is not surveyed7

but it implements redundancy in order to withstand failures at a reasonable

extent.

7The re-triggering system is realized in passive components that make it unable to

generate spurious triggers.
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Figure 2.9: The functional architecture of the re-triggering system.

• Redundancy in the current measurements. Every current in the

circuits is measured twice, and go to different RTBs, which guarantees

a higher fault tolerance (see Table 2.2). For example, the primary

capacitor current is picked up by one channel to the Re-Trigger Box

A and one to the Re-Trigger Box B. This also assures the coverage of

the erratic trigger at the power trigger, upstream the MKD generator

branches.

• Double triggering lines. The re-triggering lines are doubled in order

to withstand the failure of one of them.

At every beam dump the re-trigger signals (currents) are distributed to

the kickers, which are analysed by post mortem.

2.7 The Beam Energy Measurement System

The Beam Energy Measurement System (BEMS) calculates the beam en-

ergy that is distributed to the MKD and MKB systems in order to derive

their settings [16]. The system receives the measured current of the LHC
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Input channel Source of erratic Power trigger MKD primary MKD OS1/2

Re-triggering line A

INA1 Primary capacitor A A, B A, B

INA2 Primary switch A A, B

INA3 Comp. switch A A, B A

INA4 Primary switch B A, B

INA5 Comp. switch B A, B B

Re-triggering line B

INB1 Primary capacitor B A, B A, B

INB2 Primary switch B A, B

INB3 Comp. switch B A, B B

INA4 Primary switch A A, B

INA5 Comp. switch A A, B A

Table 2.2: Coverage of the erratic trigger events.

main dipole power converters at the points 4/5 and 7/8. To improve the

reliability and for internal data validation, each current is measured twice by

two Direct Current-Current Transformers (DCCT), connected to one Beam

Energy Acquisition cards (BEA), as shown in Figure 2.10. The BEA acts

as an Analogue to Digital Converter (ADC) between the power converter of

the dipole magnets and the BEMS. A multiplexer alternates the input to

the ADC module between four analogue values: two reference voltages and

the two measurements from the DCCT of the same dipole magnet. The four

values are converted in the ADC into 16-bit digital values. A noise filtering is

applied by calculating the average of 16 samples for each of the 4 inputs. Re-

sults are encoded and transmitted through a serial optical link8 to the BEM

card where they are decoded and treated separately. In this phase possible

transmission, reception and timing errors will be detected. If no errors are

detected, the four values are sent to two voters for the internal crosscheck:

the input 1 is compared to the input 3 and the input 2 is compared to the

input 4. The four values are then averaged and converted into a beam energy

value, using a pre-loaded look up table saved into a flash-ROM and moved

to two internal ROMs of the FPGA. The BEM sends the calculated beam

energy to the the MKD and MKB magnets via an 8 bits bus where it is

8A Cyclic Redundancy Check (CRC) and Manchester encoding are used.
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Figure 2.10: The functional architecture of the BEMS.

finally translated into voltage settings.

The failure of the BEMS can be catastrophic due to the fact that it may

deliver a wrong beam energy reference to the magnet power converters. In

order to reduce this risk, the BEMS implements on-line surveillance over

the the data processing for many input and output quantities. Part of the

failures generated in the system are also detectable by the BETS.

• Redundancy in the data acquisition. The LHC dipole magnet

currents used to determine the beam energy are measured at two dif-

ferent sources at point 4/5 and 7/8. At each point the measurements

are taken by two DCCTs.

• Surveillance of Transmission/Reception errors at the BEA-

BEM interface. A dump request is issued in case the BEM has

received a corrupt packet.

• Surveillance of timing errors in the BEM. A watchdog timer
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surveys the normal flux of operations. Timing errors with a resolution

of 1 ms are caught and a dump request is generated.

• Surveillance of wrong values before conversion. A voting mech-

anism checks that the values received from the two BEA cards are in

agreement. A dump request is issued in case of any inconsistency.

During operation, various signals are collected for post mortem diagnos-

tics in order to discover failures that have accumulated silent in the system,

FPGA included. There still remains subtle failures that are not detectable:

if the current reading of all dipole PCs is erroneous and if the look-up tables

have identical faults for the two BEMS. Those kinds of failures are called

systematic or common mode type. Nevertheless, as they can only happen at

the system start up, they are discovered during the dumping of the low inten-

sity pilot beam in the operational mode, see section 2.1.1, with no resulting

damage to the machine.

2.8 The Beam Energy Tracking System

The Beam Energy Tracking System (BETS) continuously checks that the

settings in the LBDS power converters agree with the actual beam energy

within a ±0.5% error tolerance [16]. The architecture is shown in Figure

2.11. The voltages of the MKD, MKB generators and the currents of the

MSD and Q4 generators are acquired via BEA-BEI cards. In total, there are

27 BEA-BEI per beam, 15 for the MKD, 10 for the MKB, 1 for the MSD

and 1 for the Q4. The BEI interfaces to the BEA with an optical receiver.

The received values are first decoded then averaged and converted into beam

energy values according to an internal look up table. As a final step, a voter

compares the calculated energy value to the value received on the VME bus

from another BEMS, which takes the measurements at the dipoles 5/6 and

6/7. A dump request is issued if the difference between any pair exceeds the

preset ±0.5% threshold. The dump request mechanism is implemented in
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Figure 2.11: The functional architecture of the BETS.

Data acquisition channels BEMS MKD MKB MSD Q4

BEA-BEI 1 . . . 15 All set 1 per magnet

BEA-BEI 16 . . . 25 All set 1 per magnet

BEA-BEI 26 Yes Yes

BEA-BEI 27 Yes Yes

Table 2.3: BETS coverage matrix

the BETS with a current loop. Each BEI is able to cut the loop with the

generation of the local dump request. This event is detected by the Beam

Energy Controller (BEC) and transmitted to the triggering interface and

the Beam Interlock Controller of the machine protection system. Like the

RTS, the BETS is able to cover the energy tracking failures distributed in

the LBDS, as shown in the coverage matrix of Table 2.3. The systems runs

continuously self-surveillance over the whole data-processing, in the BEMS,

in the BEI-BEA cards, and in the BEC.

A failure of the BETS leaves the LBDS uncovered with respect to all pow-

ering failures or just a part of them, as it is shown in the coverage matrix of
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Table 2.3. One BEI card per MKD and MKB generator assures the coverage

of the energy tracking failures, one is for the MSD power converters while

the failure in the BEMS is covered by the entire set of BEI cards. The BEC

is responsible for the management of the dump requests from all BEI cards

and represents a single point of failure for the system. In order to reduce

the likelihood of these failures, the system verifies continuously the correct

functioning of its parts. After a dump request, the BET system is checked

with post mortem diagnostics and potential hidden failures are discovered.



Chapter 3

Introduction to Dependability

This chapter introduces to dependability engineering with a special at-

tention to the architectures used for safety critical applications.

3.1 The System Dependability Attributes

Dependability is the measure for the quality of service in time given

by the system. It encompasses the notions of availability, reliability, safety,

maintainability and other more specialized attributes. In [53] dependability

is defined ‘the ability of the system to deliver a service that can be justifiably

trusted’ but other definitions are given by international standards authorities

like ISO. Definitions of some dependability attributes are:

• Availability: the readiness for correct service.

• Reliability: the continuity of correct service.

• Safety: absence of catastrophic consequences in case of failure.

• Maintainability: the ability to undergo modifications and repairs.

Availability distinguishes from reliability for the possibility of withstand-

ing more service outages during the system lifetime, just one outage being

unacceptable for a reliable system. Safety distinguishes from availability and

35



36 3. Introduction to Dependability

reliability for the consequence of the service outage, which is ranked accord-

ing to a severity level. Maintainability is the measure of the repair process

including fault diagnosis, localization and isolation plus repair or replacement

[2]. The dependability attributes can be also combined with other quantities

(e.g. costs, quality of service, etc.) into indexes of performance, classified in

literature under the term performability [88].

3.2 The Failure Process

The system failure is the final pathology of the failures of its compo-

nents and their propagation. Its description is based on the fault-error-failure

model, also called the ‘chain of threats’ [3]. Faults occurring at physical level

are activated by patterns that can be reproducible (i.e. hard faults) or not

(i.e. soft faults). The reproducible faults are also called permanent faults

and move the component into a persistent faulty state. Faults are called

transient if they happen under certain conditions that are difficult to repro-

duce and predict. Failures are called random if they occur due to progressive

degradation (hardware), or systematic (hardware and software) if they are in-

troduced during the system life cycle [46]. Faults can develop independently

but there may exist causes that provoke them simultaneously, generating a

common mode failure, which is the most undesired event for the system. A

detailed classification of faults and failures can be found in [53] and [73].

The dynamics of failures are intrinsically complex to analyse because of

their random nature and the dimension of the failure space, often larger

than the space of admissible states. A qualitative analysis, consisting of the

classification the system failure modes, is necessary before looking at their

likelihood through a quantitative analysis.

A qualitative analysis enumerates all failure mechanisms in the system

and their consequences. Failure Modes and Effects Analysis (FMEA) or

Failure Modes Effects and Criticalities Analysis (FMECA), if criticality (C)

is also a concern, are systematic techniques for qualitative failure analysis [39,
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65]. The FME(C)A studies all fault-error-failure chains in the system, which

are classified by name, the way they occur and propagate, the possibility of

being compensated and/or detected, the consequence and their criticality.

A quantitative analysis provides a statistics of the Time To Failure

(TTF) of a component. This is the hazard function, which is the probability

that the component will fail at time t given it has not failed before [39]:

h(t) =
f(t)

R(t)
= −dR(t)/dt

R(t)
(3.1)

where R(t) = 1 −
∫ t

0
f(τ)dτ = exp[−

∫ t

0
λ(τ)dτ ] is the reliability, f(t) is the

probability density function of TTF. For hardware components, the hazard

function experiences (in time) the characteristic bathtub curve with three

distinct periods: the burn-in, the useful and the wear-out period [2], see

Figure 3.1. The burn-in period is characterized by ‘infant mortality’ mainly

due to production or manufacturing errors. As soon as these are discovered

and eliminated, the hazard function decreases and a Decreasing Failure Rate

(DFR) is expected. A Constant Failure Rate (CFR) characterizes the useful

period. During the wear-out period aging and wearing processes dominate

the system, which suffers from an Increasing Failure Rate (IFR)1.

The probability distribution of the TTF must account for the failure

during the full lifetime of the component. The Weibull distribution is one

of these. It is characterized by two parameters2, the shape factor α and the

scale factor λ [39]:

F (t) = P (T ≤ t) = 1 − exp[−(λt)α] t ≥ 0 (3.2)

The average or Mean TTF (MTTF) is E[T ] = Γ( 1
α

+ 1) and the variance is

V ar[T ] = 1
λ2 [Γ( 2

α
+1)−Γ2( 1

α
+1)], where the function Γ is the Gamma func-

tion3. The hazard function h(t) is αλ(λt)α−1. By choosing the parameters α

1The hazard function for software does not have the wear out period and it is charac-

terized by a long burn-in period due to the removal of systematic failures.
2The Weibull distribution is usually referred in literature as Weibull[α,1/λ].
3The gamma function is Γ(α) =

∫
∞

0
xα−1e−xdx, α > 0. The gamma density function

is f(t) = λαtα−1e−λtΓ(α)−1.
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Figure 3.1: The bathtub curve of the hazard rate function.

is possible to obtain DFR (α < 1) or IFR (α > 1). For α = 1, the Weibull

has constant failure rate λ and corresponds to the exponential distribution,

which is the most used distribution for the description of random failure

processes. The MTTF of the exponential distribution is 1/λ and is defined

by the component surviving at t = MTTF with a probability of 0.37. The

standard deviation of the exponential distribution is 1/λ. An introduction

to the families of TTF distributions can be found in [83] and [39].

The TTF distribution of a component is estimated from failure reporting,

during the system use, or from reliability runs and accelerated life testing

[2, 83]. As an alternative, the TTF statistics are calculated by reliability

prediction using existing literature on the components failure rates. The

reliability prediction is a mathematical tool and it is cheaper (in time and

money) with respect to testing, though less accurate. The most popular

reliability prediction tool is the Military Handbook 217 (MIL-HDBK 217),

issued in many versions dating from the early sixties by the Department

of Defense of the USA [66] and recently by the Reliability Analysis Center

(RAC) [31].

The MIL-HDBK 217 provides two different methods for the calculation

of failure rates: the stress analysis and the parts count analysis [66]. The

stress analysis is the most complete one. The failure rate is calculated as
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function of various parameters: environmental and operational temperatures,

humidity, electrical fields, vibrations, radiations, voltage and current ratings,

power and quality [71]. The failure mechanism is activated according to the

Arrenius’s equation TTF = CeEAkT , where EA is the activation energy of the

component failure, k is the Boltzmann constant and T is the temperature,

The Arrenius’s equation expresses the development of a failure by analogy

with a chemical reaction [83]. The part count analysis is a simplified

version of the stress analysis. A base failure a rate λb is calculated with

the stress analysis for standard operating conditions, then it is adjusted with

respect to the quality factor and the environment, that is λ = πQλb(πE), some

14 different environments existing from ground benign to airborne critical

[12]. The parts count analysis is useful in the early design phase when the

necessary information is either lacking or unreliable. Whatever the used

method, the calculated failure rates are defined as the 90% confidence interval

estimate.

Reliability prediction does not apportion the failure rates into failure

modes. This becomes very important when one is concerned with the con-

sequences of a failure. A method for the apportionment of failure modes is

provided by the RAC FMD-97 [34] and in part also by the military standard

MIL-HDBK 338B [67] for a large set of components.

Other methods for reliability prediction exist. Some of these are special-

ized to the telecommunications like the Telcordia of Bell and AT&T indus-

tries, the Siemens and CNET of France Telecom. The IEC 62380 [43] of the

International Electro-technical Commission (IEC) is derived from the MIL-

HDBK 217. Benefits and drawbacks of the different methods compensate

each other, depending on the field of application and the aim of the analysis,

so that it is difficult to say a-priori what is the best [48]. The true alterna-

tive to the reliability prediction is the physics to failure approach [91]. The

mechanisms of failure are more accurately defined but the philosophy that is

behind is totally different. No failure rates are provided but guidelines that

help to prevent flaws in the component production, those potentially impair-
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ing the TTF, i.e. more quality assurance in the production stage rather than

reliability prediction.

Many criticisms exist about the reliability prediction using the MIL-

HDBK 217: the assumption of constant failure rate bounds the applicability

of the tool to the useful period, which for many components ranges between

2 and 5 years only [30]; the failure rate is not apportioned in failure modes

[12]; the failure rates database quickly becomes obsolete, especially for elec-

tronic technology that changes in few years; the stress analysis based on the

Arrenius’s equation is someway arbitrary [91].

Despite these criticisms, the reliability prediction is still the most used

tool to assess the component reliability. Many complex systems have been

certified using the MIL-HDBK 217 like the international space station ISS,

civil and military airplanes, avionics systems, nuclear and chemical plants

and so on. As opportunely remarked by the RAC president J. Fedduccia in

[70]; the reliability prediction MIL-HDBK 217 is mostly a tool for comparing

design alternatives, discovering weak points and bottlenecks rather than for

obtaining precise reliability estimates, for which its results are inaccurate

and possibly conservative. The tool is also not recommended as guideline for

reliability improvement. For example, designing a costly cooling system for

lowering the operating temperature and therefore the failure rate, or using

ceramic packaging, more reliable but even heavier than the plastic ones,

would lead to benefits that are doubtable and likely disproportionate to the

additional costs. For analogous reasons, the simpler parts count method is

usually preferred to the stress analysis method, which can be used to refine

the analysis of critical components operating in extreme conditions. But, if

this is the case, only testing will give the final response.

3.3 Dependability Modeling Techniques

Dependability modeling techniques aim at building a mathematical model

for the description of the dependability attributes of the system as a function
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of the system architecture and the failure modes with their statistics, as

derived by FME(C)A and reliability prediction. The analysis is performed for

an assumed mission profile (i.e. the operational scenario), either analytically

or by simulation, and returns a probability for the dependability attribute

or a derived statistic4. The dependability modeling techniques split into two

main categories: combinatorial and state based.

3.3.1 Combinatorial-based Techniques

Combinatorial techniques describe the system failure as the logic com-

bination of failures occurring in its components. At the basis there is the

definition of structure function of the system [39, 80, 83]:

Definition 3.1. The structure function ΦA : X → [0, 1] is a function of

the state of the components X of the system, arranged with respect to the

system architecture A, which returns the values 0 if failed or 1 if functioning.

The definition of the structure function may be applied at a lower level

provided that the each component is given a binary variable x : 1 if function-

ing and 0 if failed. As an example, a non-fault tolerant architecture will be

sensitive to the failure of every component, which is the case of the series

architecture. On the contrary, a redundant architecture will be sensitive to

the accumulation of failures, which is the case of the parallel architecture.

For any system with the architecture A, the structure function will always

be between the series (S) and the parallel (P) architectures so that:

ΦS(X) ≤ ΦA(X) ≤ ΦP (X). (3.3)

The structure function can be expanded in minimal terms: the minimal

path sets ρ and the minimal cut sets χ [39].

Definition 3.2. A minimal path set is the set of components that are all

necessary for the system to function.

4Statistics are the MTTF, the MTBF (Mean Time Between Failures), the MTTD

(Mean Time To Detection) and the MTTR (Mean Time To Repair).
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For a series system there is only one minimal path set ρ, which is the entire

X, while in a parallel system |X| path sets exist5. The structure function is:

ΦA(X) = 1 −
∏

k

(1 − ρk) (3.4)

and at least one path must be satisfied in order that ΦA(X) = 1.

Definition 3.3. A minimal cut set is a set of components, whose failure

leads to the failure of the system.

The definition of cut set is complementary to that one of path set. In a

parallel structure there is only one cut-set χ, which is X, while |X| cut-sets

exist for a series system. The structure function is:

ΦA(X) =
∏

k

χk (3.5)

and all the cut-sets must be satisfied in order that ΦA(X) = 1.

The structure function is limited in its applications. It relies on the

assumption that each component has only one failure mode, which is suitable

for reliability calculations but not for safety. In addition, the translation of a

Boolean expression into a probability is a delicate passage that is simplified

under the assumption of statistic independence of failures.

Fault-trees and the reliability blocks are examples of combinatorial tech-

niques [39]. Fault-trees describe the system failure arranged into a tree-

like structure, where the root represents the system that has failed and the

leaves account for the failures at the components level. A fault-tree calcu-

lates Prob{1−ΦA(X)} in minimal cut sets. The reliability blocks describe

the condition that the system is functioning as any fault-free path existing

from two points, the source and the sink, in between of which there are the

blocks, i.e. the system modules, arranged likewise the functional architec-

ture. A reliability block diagram calculates Prob{ΦA(X)} in minimal path

sets. Examples of fault tree and reliability block diagram are given in Figure

5|X| is the cardinality of the set X.
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Module 1 Module 2 Module 3

FAULT TREE RELIABILITY BLOCK DIAGRAM

Module 1

Module 3

Module 2

Voter

Voter

Figure 3.2: Fault tree (left) and reliability block diagram (right) of a Triple

Modular Redundancy.

3.2 for the Triple Modular Redundancy architecture with voter presented in

3.4.1. The voter is assumed to be single point of failure6. The fault tree

in Figure 3.2 (left) describes the logic condition of failure for the system,

which is ΦTMR = xV (x1x2 + x1x3 + x2x3), where x = 1 if the component is

functioning, 0 if failed. The reliability block describes the condition for the

success of the system, which is ΦTMR = 1− (1−xV )(1−x1)(1−x2)(1−x3).

The advantage of the combinatorial approach, and of fault trees in par-

ticular, is that they arrange the failure modes into a logical hierarchy, which

is also useful as a database for diagnostics and failure reporting. On the

contrary, the main limit of combinatorial techniques is the difficulty of mod-

eling the cause-effect dependence between failures, because this would break

through the assumption of statistical independence. The combinatorial tech-

niques are ranked at the lowest level of the dependability modeling techniques

[62]. Recent studies have tried to extend the modeling capability and the dy-

namic fault trees are an example [29]. Vast literature exists on this subject

[39, 68, 84, 83].

6This is the case when the voter produces the average from the output three modules.
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3.3.2 State-based Modeling Techniques

The paradigm of the Discrete Events Systems (DES) is suited to describe

failure processes and dependability problems in general, assuming that they

are governed by discrete events throughout a finite set of states.

Definition 3.4. A DES model is a stochastic timed automata, which is

formally defined with a 5-tuple {X, E, δ(x, e), x0, Ψ}, where X is the space

of states, E is the space of events, δ(x, e) is the state function that calculates

the state transition given the event e has occurred, x0 is the initial state and Ψ

describes the distribution functions for the events in E [18]. The probability

distribution of X at time t describes the evolution of the stochastic process.

The mathematics underlying the state-based techniques is more complex

than the mathematics of the combinatorial techniques. Some assumptions

are necessary in order to make the problem analytically treatable like for the

Markov processes which will be introduced in section 4.3. Even when the

solution is mathematically feasible, some millions states that can be gener-

ated for realistic case studies. In literature, this is called the states explosion

problem. There are modeling languages that automatically generate the state

transition diagram from a high-level description of the system behavior, as

it is the case of the stochastic Petri nets. The model generated by the Petri

nets is a DES that under certain conditions underlies a Markov chain [25].

Recent studies exist for deriving a Petri net from the UML (Unified Modeling

Language) representation of the system [50].

The state-based approach is the most powerful in the modeling hierarchy

[62]. It is suited to model a larger set of features that characterize a fail-

ure process, like cause-effect mechanisms, events concurrency, fault detection

mechanisms, periodical inspections, etc. As rule of thumb, the state based

approach must be preferred for failure processes that are observable and con-

trollable in their dynamic. In absence of this, a combinatorial approach is

usually preferred. Hybrid approaches exist in literature, which combine the

advantages of state based and combinatorial techniques. Logic expressions
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(e.g. like in a fault tree) drive transitions between set of states [10, 11], with

an expected reduction for the size of the problem.

3.4 Design for Dependability

Design for dependability can be considered the combination of various

activities involving the different phases of the system lifetime7 from specifica-

tion and design passing through the prototyping, the manufacturing and the

production, up to the installation and the operational phase [2, 49, 84]. These

activities are classified in fault prevention, fault tolerance, fault removal and

fault forecasting8 [53]. Fault prevention avoids failure in the design phase

by the use of quality assurance and system engineering procedures. Fault

removal consists of checking the system functionality by formal methods (ex-

haustive in the exploration of the state space of the system) or testing via

injection of fault patterns. These two activities are not treated here. Fault

forecasting estimates the dependability attributes on a mathematical model

of the system and is the subject of a next chapter. This section aims at

introducing to fault tolerance and its general features.

Fault tolerance increases dependability by designing a system that is

able to deliver the service, or some degraded version of it, even in the case

of some specific classes of faults [46]. This is a collection of techniques that

aims at reducing the likelihood of failure and preserving as long as possible

the system functionality. The core of fault tolerance is redundancy by fault

masking. The system has the possibility to withstand one or more faults

without interrupting the service. In addition to this, fault tolerance includes

7Several standards have tried to incorporate the dependability design along the system

lifetime, like for example the BSI standard 5760 [39].
8These four activities globally aims at making the system resilient to failures, which

does not mean that a system, which is certified dependable, is complying with the func-

tional specification. These two points of view, design for the function and design for the

dependability of the function, have to be kept separated and sometimes they are a source

of misunderstanding.
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fault containment, which is the ability of confining the fault and to avoid

the propagation, and fault recovery, which is the ability of treating a fault

by detection, insulation and repair, before this might affect the system’s

functionality. The harmonization of these techniques, used together, is often

managed by complex systems called fault management systems.

The type of fault tolerance to implement in the design of the system is

also based on the results obtained by the FME(C)A, reliability prediction and

fault forecasting in general [73]. Moreover, it depends on the dependability

attribute. For example, design diversity9 is introduced as a fault tolerant

solution for common mode failures [1]. Redundancy and fault masking apply

to reliability applications, fault recovery techniques is for availability appli-

cations and real-time fault management is for safety critical applications [85].

The elimination of failure in a fault tolerant system is feasible up to a

certain extent only, because the complete elimination is either impossible

or costly. The above considerations do not take into account the cost of

the design. To include this would mean to make the fault tolerant design a

problem of optimal apportionment of resources [82].

3.4.1 Static Fault Tolerance

Static (passive) fault tolerance implements fault-masking strategies [74].

The simplest scheme is the parallel redundancy where failures are tolerated

up to a certain extent. Every time the system must deliver a unique value

from the parallel computation, a voter of the outputs of the redundant com-

ponents is needed. An example is the Triple Modular Redundancy (TMR),

see Figure 3.3. In a TMR the voting mechanism is majority based (e.g., 2

out of 3), which permits the system to withstand one failure, but more so-

phisticated voting techniques exist depending on the delivered output. For

example, average or median voters are used if the output is a signal to a con-

trolled process (e.g., the command to the actuators). In this case the voter is

9Design diversity is redundancy for systems that provide the same function but imple-

ment different technologies, which reduces the possibility of sharing failures modes.
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Figure 3.3: Triple Modular Redundancy.
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Figure 3.4: State transition diagram for the Triple Modular Redundancy.

a single point of failure and it must be very reliable and if necessary it is du-

plicated [82, 54]. The N-Modular Redundancy (NMR) is the generalization

of the TMR, which tolerates M - 1 failures (M < N) out of N components.

Static fault tolerance is applied for high reliability applications for which the

service is non-interruptible and repair is not possible (e.g., space missions).

An example of state transition diagram for the TMR is shown in Figure

3.4. The failure rate of each identical module is assumed constant and equal

to λ. The failure of one module is detected by the voter and is tolerated.

The failure of the voter leaves the system uncovered so that in case of failure

of one of the three modules the system fails.

3.4.2 Dynamic Fault Tolerance

Dynamic (active) fault tolerance allows for system reconfiguration after

the failure. The reconfiguration process consists of detection, localization,
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and insulation of the fault, followed by recovery of the system to the healthy

state. It may cause a downtime period during which the service is inter-

rupted. The basic architecture is the duplication with comparison: the

outputs of two parallel systems are compared and if they disagree a fault

detection routine is launched after which the faulty module is recovered or

replaced with a new one. Stand-by spare parts are used to this end. They

distinguish into hot and cold stand-by spares depending if the spare unit is

powered or not. Hot stand-by spares optimize the reconfiguration downtime

because they are already switched on, whereas they consume energy and may

fail. Cold stand-by spares have a longer reconfiguration downtime because

they are switched off, whereas they do not consume energy and do not fail.

The spare activation plays a crucial role like the voter for the static fault

tolerant architecture [74]. Dynamic redundancy is applied for long life high

availability applications (e.g., satellite communications) for which a short

downtime for failure recovery is acceptable.

An example of state transition diagram for a TMR with one spare module

is shown in Figure 3.5. If one module fails, this is discovered by the voter, and

the spare activation starts with a probability of success C. Once the spare is

successfully activated the TMR is recovered at full redundancy (state 2+1

UP), on the contrary the system continues with 2 modules (state 2 UP). The

failure of the voter leaves the system uncovered (state 3 UP no voter), so

that the failure of one of the three modules leads the system to the state

failed10.

3.4.3 Hybrid Fault Tolerance

Hybrid fault tolerance combines together static and dynamic fault toler-

ance [74]. The dynamic reconfiguration task can be applied to a static NMR

scheme. The spare unit replaces the faulty module and the system is recov-

ered to full redundancy. If this is not possible because there are no more

10If the voter were a single point of failure its failure would lead straightway to the state

failed.
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Figure 3.5: State transition diagram of a Triple Modular Redundancy with

one stand-by spare.

spares available, then the pool of survived components is reconfigured after

the failure in order that a majority voting still exists. For example, the 3 out

of 5 architecture becomes a 2 out of 3 by removing the faulty module plus

another one. The hybrid fault tolerance gives the best results but it is more

complex and costly11. The general hybrid NMR is shown in Figure 3.6.

3.4.4 The Role of Maintenance

Maintenance is the main instrument to keep the system in a healthy sta-

tus and preventing the accumulation of faults caused by aging-wearing phe-

nomena [44]. A maintenance program will consist of preventive scheduled

maintenance policies when it is performed periodically at scheduled instants,

and corrective maintenance when it is performed on demand, at the occur-

rence of a failure [2, 84]. The preventive maintenance further specializes into

wearing and aging policies. The wearing policies survey the status of the

component, which is replaced if it is worn above an acceptable threshold.

The aging policies replace the component at fixed intervals, called age limits,

which does not depend on the status of the component. The choice of the

11The basic principles of software fault tolerant architectures are derived from the pre-

sented hardware architectures, like the multi-versions software with voting, though the

algorithms for reconfigurations and fault recovery are more sophisticated in order to apply

roll-back and roll-forward procedures [82, 74].
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Figure 3.6: Hybrid N-Modular Redundancy with M spares.

wearing threshold, the age limit of a component and the inspection intervals

is traded-off with the costs for maintenance [26].

As an example, the TMR can be periodically inspected and the faulty

item repaired and restored in the pool of three components. In the model of

figures 3.4 and 3.5, a transition is added from every state to the initial one.

In case the dependability attribute is the reliability, then the failed state is

absorbing and cannot be recovered.

3.4.5 Comparison of Fault Tolerant Architectures

Some of the presented fault tolerant architectures are compared consid-

ering their MTTF and hazard function. They are: an architecture with two

modules in parallel, a TMR and a TMR with spare. The failure rate of each

module λ and the failure rate λV of the voter are assumed to be constant. For

the TMR with stand-by spare, the probability of successful spare activation

is modeled with the constant C, 0 < C ≤ 1.

The dual parallel architecture has a reliability R2P = 2R − R2, where

R = e−λt, for a MTTF2P = 3
2λ

. For the other architectures the reliability
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can be calculated by solving the respective Markov chain, shown in Figure

3.4 and Figure 3.5 respectively, or using the analytic expression. To obtain

this result are used formulas that will be presented in the next Chapter 5.

The reliability of the TMR is calculated using equation (5.8):

RTMR1(t) = α

∫ t

0

Hyp[3λ + λV , 2λ]dτ + β

∫ t

0

Hyp[3λ + λV , 3λ]dτ (3.6)

where α = ( 3λ
3λ+λV

), β = ( λV

3λ+λV
) and Hyp is the hyperexponential distribu-

tion12. The MTTF is calculated using equation (5.9):

MTTFTMR1 = α(
1

3λ + λV

+
1

2λ
) + β(

1

3λ + λV

+
1

3λ
) (3.7)

The maximum is obtained for λV = 0, for which MTTF = 5
6λ

. The reliability

of the TMR with spare is calculated using equation (5.8):

RTMR2(t) = RTRM1 + C(α2

∫ t

0

Hyp[3λ + λV , 3λ + λV , 2λ] −

α

∫ t

0

Hyp[3λ + λV , 2λ] + αβ

∫ t

0

Hyp[3λ + λV , 3λ + λV , 3λ]) (3.8)

from which the MTTF results:

MTTFTMR2 = MTTRTMR1 +

C(α2( 2
3λ+λV

+ 1
2λ

) − α( 1
3λ+λV

+ 1
2λ

) + αβ( 2
3λ+λV

+ 1
3λ

)) (3.9)

The equations above attest, as is logical, that reliability and the MTTF of

the TMR with spare is always bigger than the reliability and the MTTF of

the TMR, whatever the parameter settings. The maximum is obtained for

C = 1 and λV = 0, for which MTTF = 5
3λ

.

The three architectures are compared with respect to the resulting MTTF.

The MTTF of the TMR with spare, assuming a never faulty spare activation,

is the longest one followed by the dual parallel redundancy and the TMR.

12The hyperexponential distribution is obtained by the convolution of the density func-

tions characterizing each state transition in the chain. This definition holds for homoge-

neous continuous time Markov chain, see section 5.2.
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The MTTF of the TMR is even shorter than the MTTF of a single mod-

ule, which is 1/λ. This result is well known in literature and demonstrates

mathematically that the TMR is not suited for long missions.

The three architectures are compared with respect to the hazard functions

defined in equation (3.1), for λ = 0.0001, λV = 0 and C = 1. Results are

shown in Figure 3.7. At the early period (< 4000 h) the hazard function (b)

of the TMR with spare is below all other curves, which confirms the efficacy

of this architecture already attested by the longest MTTF. In this sense,

the crossing point around 3000 hours with (d) is not that significant. The

hazard function (a) of the simple TMR is always larger than the dual parallel

architecture (d) and of the TMR with spare (b). Nevertheless, the TMR

hazard function stays below the 0.0001 failure rate of the single module (c) up

to 8.000 hours13. Once more this justifies the utilization of this architecture

for missions of medium length.

The effect of maintenance, either corrective or scheduled at fixed intervals,

may further ameliorate the behavior of the analysed examples. Results are

sensitive to the voter failure rate and the spare activation, which can degrade

the performance of the TMR architectures. This is not only a mathematical

evidence. For those systems demanded to be safe and reliable, a simple ar-

chitecture is often preferred. This is because the sensitivity (i.e. robustness)

of the result with respect to the other design facilities represents a factor of

uncertainty on the calculated dependability attribute, which turns to be a

design trade-off. For this reason, a simple parallel redundancy is preferred

to more complex architectures.

13More properly, the crossing point is the time where the two architecture have the same

reliability, which is related to the integral of hazard function. This is expected to be larger

than the crossing point shown in Figure 3.7
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Figure 3.7: Hazard functions of the TMR (a), the TMR with spare (b), a

single module (c) and two modules in parallel (d).

3.5 Design for Safety

A system is defined safety critical if it delivers at least one safety critical

service [63]. A service is called safety critical if its failure may have serious

consequences such as loss of human life and severe injuries (i.e. life-critical),

large-scale environmental damage (i.e. environmental-critical) or economical

penalties (i.e. costs-critical) [46]. These definitions apply to many fields like

military, industry, transports, emergency communications, medicine, nuclear

and chemical plant and space missions14.

A safe design is based on some preliminary recommendations. First of all,

the system must be testable. As this is easier for hardware than for software,

the safety critical systems are preferably hardware. Secondly, no single points

of failure must exist so that back-up parallel systems, possibly using different

technology, are recommended [46]. Thirdly, as the man-machine interface is

a major concern for safety, it must be assured that the risk to harm the

system by non-intentional human errors is reduced to a minimum. As a

result of the safe design, a system is classified inherently safe, fail safe (i.e.

14Safety only deals with non-malicious failures, i.e. those originated either by the system

failure process or by flaws in the design and the production. A hazardous state can be

reached intentionally but in this case it concerns security and not safety.
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Category Likelihood Frequency/year

Frequent Very likely to occur event > 1

Probable Likely to occur event 0.1 - 1

Occasional Possible and expected to occur event 0.01 - 0.1

Remote Possible but unexpected to occur event 0.001 - 0.01

Improbable Unlikely to occur 0.0001 - 0.001

Negligible Extremely unlikely to occur < 0.0001

Table 3.1: Frequency categories.

the mission shutdown), fail operational (i.e. emergency back-up units) and

fail soft (graceful degradation). Inherently safe systems deal with intrinsic

safety, while the others deal with engineered safety [63].

Design for safety deals with the reduction of the frequency of the hazard

and the control of the consequences, see Tables 3.1 and 3.2. The product of

the hazard frequency by the consequences is the risk, see Table 3.3. The risk

is quantified by risk analysis [5], the result of which returns a maximum

failure rate or a failure probability that the system must satisfy in order to

be certified safe15. The IEC 61508 standard ranks safety in four categories,

the Safety Integrity Levels (SIL), from SIL1 to SIL4, the strictest one [42, 5]

to which corresponds four classes of risk from I to IV, see Table 3.4. The

class of risk I is the highest and corresponds to an intollerable risk. The

classes of risk II corresponds to a undesiderable risk that is tolerable only if

its reduction is impracticable or excessively costly with respect to the gained

improvement. The class III corresponds to a tolerable risk obtained by a

reasonable risk reduction16. Class IV is a negligible risk.

The systems that contribute to achieve such a SIL are defined in liter-

ature as Safety Related Systems (SRS). Two types of SRS exist: SRS for

continuously controlled systems and SR protection systems. Both of them

drive the system into a safe state from where the system cannot arbitrarily

15As an example, high safety critical applications require a probability of failing unsafe

below 10−9 for 10 hours mission [74].
16Qualitative guidelines to judge a risk of II or III type are given by the As Low As

Reasonably Predictable (ALARP) principle [5].
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Category Gravity Damage

Gravity N. fatalities Loss(CHF) Downtime

Catastrophic Multiple fatalities > 1 > 100 MCHF > 3 months

Major Single fatalities 1 1-100 MCHF 1 week - 3 months

Severe Non fatal injuries 0.1 0.01 - 1 MCHF 4 hours - 1 week

Minor Minor injuries 0.01 0 - 10 KCHF < 4 hours

Table 3.2: Consequence categories.

Frequency Consequences

Catastrophic Critical Marginal Negligible

Frequent I I I II

Probable I I II III

Occasional I II III III

Remote II III III IV

Improbable III III IV IV

Incredible IV IV IV IV

Table 3.3: Frequency x consequences = class of risk.

SIL SR Control systems SR protection systems

Failure rate/h Prob. of failure on demand

4 [10−9, 10−8] [10−5, 10−4]

3 [10−8, 10−7] [10−4, 10−3]

2 [10−7, 10−6] [10−3, 10−2]

1 [10−6, 10−5] [10−2, 10−1]

Table 3.4: Safety Integrity Levels.
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move [63]. The first type of SRS maintains the system in a safe state by

activating a back-up unit that continues to perform the vital functions as

long as it is necessary (e.g., the fly by wire control systems of an airplane).

The second type of SRS works on demand and leads the system into a safe

state by a mission shutdown as soon as a critical event has been detected

(e.g. the protection system of a nuclear power plant) [45, 63]. The SIL for

the two categories of SRS are shown in the two columns of Table 3.4.

These days, the SRS are PLC based architectures. A rich literature in

standards and manuals exists that address the subject like the IEEE guide

for nuclear power station protection systems [45], the IAEA safety guide for

protection systems [41] and the IEC standard for safety related systems [42].

3.5.1 Failsafe Protection Systems

The architectures for safety critical applications are all characterized by

a protection system that surveys those events that may potentially impair

the system safety. Parts of these event are detected by monitoring a physical

process, for example an over temperature or an over pressure. Another part

concern the monitoring of the status of the components. The monitored

events are the initiating events of the protective action [41]. Once an

initiating event has been detected, the protective action is transferred to

a safety actuation system that moves the system into a failsafe state. For

a protection system of a nuclear power plant the protective action generates

the mission abort and drops the graphite rods into the core of the reactor to

stop the reaction. For the LHC, the protective action generates the mission

abort by removing the beams from the rings, as explained in section 1.3.

The temporary unavailability of a protection system does not directly

harm safety. The system still functions, though subject to higher risks [5].

Nevertheless, every protection system should have self-monitoring facilities

implemented that in case of detected internal failure, trigger a safe shutdown

avoiding the possibility the protected system might function at an uncovered

risk. A shutdown because of safety reasons is called a false shutdown, which
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Figure 3.8: The state transition diagram for a failsafe Triple Modular Re-

dundancy.

is a false trip in the nuclear power plants or a false beam dump in the

LHC. The safety is a trade-off with respect to other dependability attributes,

like availability and reliability, which usually gets penalized by the failsafe

strategy of aborting the operation [22, 74]. As an example of a failsafe

architecture, the TMR can be transformed failsafe if the disagreement among

the outputs, detected by the voter, results in a failsafe shutdown. This is

modeled in the state transition diagram of Figure 3.8 for the TMR of Figure

3.4. Similar modifications apply to the model of Figure 3.5.
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Chapter 4

Probability Models

This chapter introduces to the theory of renewal stochastic processes,

the Markov processes and the Markov regenerative processes. Foundaments

on probability theory are omitted as they can be found in many textbooks

[39, 80, 87].

4.1 Generalities on Stochastic Processes

A stochastic process is a family of random variables X(t), called states

of the process, defined in the probability space X, with t ∈ T, where T

is the time index. The stochastic processes are classified into 4 categories

depending on T and the state space X, which can be discrete or continuous

[87]. For both T and X being continuous, a realization of the process is a

function x(t) for t ∈ [0, T ). For X being discrete, a realization of the process

is a sequence of n ordered outcomes {xi, ti}, i = 1,2. . . n, and the stochastic

process is called a chain.

Definition 4.1. A stochastic process is fully characterized with its n-order

probability distribution P : X × T → [0, 1], which is defined as:

0 ≤ F [x̄, t̄] = P [X(t1) ≤ x1, . . . , X(tn) ≤ xn] ≤ 1 (4.1)

where x̄ = (x1, . . . , xn) are n samples of X(t) at the instant t̄ = (t1, . . . , tn).

59
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The process is called strict stationary if equation (4.1) is invariant to the

time shift t+ τ for all n and τ > 0. It is called wide stationary if the average

E[X(t)] is constant and the autocorrelation function is invariant to the time

shift that is R(t+ τ, τ) = E[X(t+ τ)X(τ)] = R(t) [87]. The process is called

ergodic if equation (4.1) is constant or asymptotically converges to a constant

steady state distribution.

The process is driven by dependencies existing within the states to reach

the next and all or part of the visited states, i.e. the history of the process.

A further classification is possible considering this feature:

Definition 4.2. Stochastic processes are independent if the n-order distri-

bution is deduced from the first order distribution.

P [x̄, t̄] = P [X(t1) ≤ x1, . . . , X(tn) ≤ xn] =
∏

i=1...n

P [X(ti) ≤ xi] (4.2)

Definition 4.3. Stochastic processes are Markov if the n-order distribution

is deduced from the first order conditional distribution.

P [x̄, t̄] = P [X(t1) ≤ x1, . . . , X(tn) ≤ xn] =

=
∏

i=2...n

P [X(ti) ≤ xi|X(ti−1) ≤ xi−1]P [X(t1) ≤ x1] (4.3)

The equations (4.1), (4.2) and (4.3) hold if X is a partial ordered set,

which is not necessarily true for X being discrete. In this case, (4.2) and

(4.3) have to be rewritten as follows:

P [x̄, t̄] =
∏

i=1...n

P [X(ti) = xi] (4.4)

P [x̄, t̄] =
∏

i=2...n

P [X(ti) = xi|X(ti−1) = xi−1]P [X(t1) = x1] (4.5)

Equations (4.4) and (4.5) describe the probability of a single realization in

X, T. The time that the process spends in each state is called sojourn time.
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4.2 Renewal Processes

Renewal processes deal with random events that occur as statistically

identical replicas of themselves, independently from the history of the pro-

cess. The formal definition follows:

Definition 4.4. A renewal process is a process of independent identically

distributed random variables X(tk) [87] for which the equation (4.2) describes

the probability of a single realization.

Some examples of renewal processes are given assuming X to be discrete.

A renewal sequence {Xi, Ti, i ≥ 0} is a renewal process for discrete T and

generally distributed sojourn times. For X equal to {0,1}, the sequence

{Xk, k = 1, 2, 3 . . .} is called a Bernoulli process. The sum Sn = X1+. . .+Xn

of n consecutive outcomes of a Bernoulli process is a random variable in

{0,1, . . . , n}, which describes a discrete time renewal counting process

called also Binomial process. An example is shown in Figure 4.1, where the

probability p is the probability of leaving the state and 1-p is the probability

of remaining in the state.

The sum Sn = X1 + . . . + Xn in [0, t) of the outcomes of a renewal

process for continuous T and X = {0,1} is the random variable N(t) = n for

t > 0 which describes a continuous time renewal counting process. An

example is shown in Figure 4.1. where rate λ is the instantaneous conditional

probability of leaving the state. The average number of renewals in [0, t) is

the renewal function M(t) = E{N(t)} and is calculated with the fundamental

renewal equation:

M(t) = F (t) +

∫ t

0

M(t − x)dF (x) (4.6)

where F (t) is the probability that X = 1 at time t. The time derivative of

(4.6) is the renewal density m(t), described by the renewal equation:

m(t) =
dM(t)

dt
= f(t) +

∫ t

0

m(t − x)f(x)dx = f(t) + m(t) ⊗ f(t) (4.7)
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Figure 4.1: Renewal counting processes.

where f(t) is the time derivative of F (t) and the symbol ⊗ indicates the

convolution operator1.

The renewal continuous time counting process is called Homogeneous

Poisson Processes (HPP) if the sojourn times are exponentially distributed

with constant rate λ. In this case, the variable N(t) is Poisson distributed

with renewal density λ [87]. The Non-Homogeneous Poisson Process (NHPP)

generalizes the counting processes allowing for general distributed sojourn

times though it loses the renewal property [39]. For a renewal counting pro-

cess the time is reset at the occurrence of the renewal event. This is not true

for the NHPP for which the sojourn time between two consecutive events

depends on the absolute time t of the process, which is never reset.

Other renewal processes can be obtained if the set X is taken different

from {0,1}. For X = {1, 2, 3, . . . } the sum S is known as random walk. If

negative values for X are also allowed, then the process describes a Brownian

motion2 [80].

The alternating renewal processes are a generalization of the renewal pro-

cesses, where two or more variables with their distributions alternate each

other. For example, the failure of a component and its repair is an alternat-

1Both equations (4.6) and (4.7) can be transformed in the Laplace domain [39, 87].
2For T being a real number and x(t) Gaussian distributed, the Brownian motion is

known as white noise.
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ing renewal process. On the contrary, the superposition of renewal processes

is not a renewal process, as this class is not closed to this operator with

the only exception of the superposition of Poisson processes that remains a

Poisson process [39, 87].

4.3 Markov Processes

Markov processes deal with discrete event systems, the dynamic of which

is governed by an elementary cause-effect mechanism among neighbour states.

The memory-less property states that the future evolution of the process de-

pends on the last reached state and, in general, on the time t when this state

has been reached.

Markov chains are Markov processes with continuous T and discrete

X, either finite or countable infinite. The equation (4.5) describes a Non-

Homogeneous Continuous Time Markov Chain (NHCTMC). If the condi-

tional probability depends only on the time that the process spends in each

state and not on the instant when they are reached, then an Homogeneous

Continuous Time Markov Chain (HCTMC) is obtained. The sojourn times

of the HCTMC are exponentially distributed and the equation (4.5) can be

rewritten as:

P [x̄, t̄] =
∏

k=2...n

P [X(τk) = xk|X(0) = xk−1]P [X(t1) = x1] (4.8)

where τk = tk − tk−1. The (4.8) describes the probability of a realization

of the process, namely the sequence of states xk visited at the instants tk.

It can be used to calculate either the probability that the final state xk is

reached from x1 at time t = tk for the given sequence of states, whatever the

timing, or the probability the state xk is reached at t = tk from x1 whatever

the sequence of states and the timing.

For a finite state space X of size N, the total probability to be in the

state xk at time t, given the initial state x1 at time t1, is described by the
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Chapman-Kolgomorov equation [87]:

P [X(t) = xk] =
∑

k∈X

pik(t, t1)P [X(t1) = x1] = P [X(t1) = x1]Vk(t, t1) (4.9)

where V (t, t1), t > t1 is the N × N matrix of the conditional probabilities,

with V (t, t) = I, the identity matrix. The probability distribution in X

at time t is also calculated by the Kolgomorov equations [87, 80], which

derives from (4.9):
dP (t)

dt
= P (t)Q(t) (4.10)

where
∑

k∈X Pk(t) = 1 is the condition of normalization3. The equation

(4.10) calculates the transient solution of the Markov chain for the initial

distribution P (0) = P0. Q(t) is the matrix of the transition rates4 that is

defined as:

Q(t) = lim
∆t→0

V (t + ∆t, t) − I

∆t
(4.11)

The following properties for the matrix Q(t) hold:

(i) qij(t) ≥ 0, ∀xi 6= xj,

(ii) qii(t) ≤ 0, ∀xi,

(iii)
∑

xi∈X qij(t) = 0,∀xi.

The items i) and ii) state that the input rates are positive for all states and

the output rate is negative. The item iii) is the balance equation of the input-

output rates that holds only for closed Markov chains, i.e. those ones that

have neither sources nor sinks. For the HCTMC, the matrix Q is constant

and V (t) = exp(Qt)[87].

The steady state solution of (4.10) is the state probability distribution

P (t) for t → ∞. For the HCTMC, it is obtained by the solution of the system

of linear equations PQ = 0, which does not depend on the initial condition

3The normalization holds only for closed Markov chains.
4The Q accounts for the instantaneous conditional probabilities and respects the

Markov property, while Vjk(t) is the cumulative conditional probability that accounts

for all the paths leading to the state xk from the state xj in time interval t.
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and for this reason is said ergodic. In general, for the NHCTMC, the steady

state solution depends on the initial condition.

A Markov Chains can be studied with respect to the structural prop-

erties of its matrix Q. This analysis makes it possible to classify the states

with respect to their reachability (i.e. looking at the Markov chain like an

oriented graph) and the expected dynamics. Some definitions follow:

Definition 4.5. A state xk is reachable from the state xj if there exists at

least one path, i.e. a sequence of oriented arc-transitions, leading to it.

On the basis of this definition, the chain is called irreducible (or cyclic) if

every state is reachable from every other state, otherwise it is called reducible.

The transition matrix of a Markov chain is usually a sparse blocks matrix.

In the special case where each state is reachable from the others in only one

step, Q is a dense matrix.

Definition 4.6. A state is called transient if there is a positive probability

the system will not return in it, and it is called recurrent if the probability

to return in that state is unitary. A recurrent state is called absorbing if its

output rate is null.

The transient analysis usually applies to Markov chains with X parti-

tioned in absorbing and transients states, for which the analysis at the steady

state is less interesting. On the contrary the steady-state analysis applies to

irreducible Markov chains, where each state is recurrent, for which the tran-

sient solution is less interesting [80, 87, 18].

Markov chains with infinite countable states underlie the same mathe-

matics of the finite Markov chains but they are harder to solve. Solutions

exists if a repetitive structure exists, as it is the case of elementary queuing

and failure-repair models5

5A birth-death process has as state variable X = n, (n ≥ 0) that represents the balance

births - deaths at time t. The steady state exists if the chain is stable, namely the

birth/death ratio is less than 1 [87].
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The class of Markov process is large enough to include some of the renewal

processes presented in section 4.2. For example, a Binomial process is a pure

death discrete time Markov chain (DTMC), a Non Homogeneous Poisson

Process is a NHCTMC and a random walk is a Markov chain.

4.4 Markov Regenerative Processes

Markov regenerative processes deal with processes that regenerate at de-

terminate instants according to an embedded Markov-like dynamic [59]. The

formal definition is:

Definition 4.7. A stochastic process X(t), t ≥ 0 is defined a Markov Regen-

erative Process MRGP if there exists a Markov Renewal Sequence MRS

{Yi, Ti, i ≥ 0} of random variables Y embedded in the process, where Y ∈
S ⊆ X, such that all conditional finite dimensional distributions of {X(Ti +

t), t ≥ 0} given {X(u), 0 ≤ u ≤ Ti, Yi = m} are the same as those of

{X(t), t ≥ 0} given Y0 = m.

The process is regenerated at given epochs, called the regeneration points,

which are the outcomes of the MRS. In general, more than one regeneration

event can be enabled at time t. Within one epoch, the variable X(t) changes

according to the subordinated process, which is not necessarily Markov. At

the triggering of the regeneration event, the reached state is frozen and the

process restarts in the new epoch with regenerated dynamic6.

The transient solution of the MRGP [59] gives the probability distri-

bution in X = {1, 2, 3 . . . N} at time t. The matrix V(t) of equation (4.9) is

the solution of the generalized Markov renewal equation:

V (t) = L(t) +

∫ t

0

V (t − u)dK(u) = L(t) + V (t) ⊙ K(t) (4.12)

6This does not imply that the state probability distribution or any cumulated statistics

go back to the initial value. Only the instantaneous conditional probabilities do.
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Figure 4.2: A realization of a Markov regenerative process.

for the initial conditions V (0) = I. The operator ⊙ is the Laplace-Stieltjes

convolution. The (4.12) is a set of coupled Volterra integral equations of the

second kind, which can also be transformed in the Laplace domain [59].

The N ×N matrix K(t) is the global kernel of the MRGP and governs

the occurrence of the regenerations epochs. It is defined as:

Kij(t) = P [Y1 = j, T1 ≤ t|Y0 = i] (4.13)

The N×N matrix L(t) is the local kernel of the MRGP and governs the

conditional probability distribution of subordinated process in one epoch. It

is defined as:

Lij(t) = P [X(t) = j, T1 > t|Y0 = i] (4.14)

An intuitive representation of equation (4.12) is given in Figure 4.2. The

state X = j is reached from the state X = i from two paths: one is direct,

within one epoch, while the second passes through one or more regeneration

epochs. For simplicity, only the initial state i, the final state j and the

regeneration states s ∈ S are shown, though the system is free to move into

others states in X, according to the local kernel L(t).
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The steady state solution of an MRGP exists if the MRS is a-periodic

and irreducible. The steady state of the MRS is calculated by solving the sys-

tem of equations Y = Y × limt→∞ K(t), normalized in S, that is
∑

s∈S Ys = 1

and calculating A =
∫∞

0
L(t)dt. The steady state of the MRGP for the state

j is :

πj =

∑
s∈S YsAsj∑

s∈S Ys

∑
r∈S Ajr

(4.15)

which is the sum of the product of the fraction of time spent in each state of

the MRS multiplied by the time spent in j, divided by the total time spent

in each visit of j [59].

4.4.1 Examples of Markov Regenerative Processes

In its general formulation, the MRGP is very hard to solve except for

some special conditions that, if verified, help to keep the problem mathemat-

ically treatable. They are: 1) a simple structure of the MRS (e.g. a-cyclic,

non recurrent), 2) the subordinated process that is Markov and 3) the inde-

pendence between the MRS and the subordinated process. Some examples

from literature follow.

The Semi-Markov processes (SMP) are MRGP for which each state

transition is a regeneration point. As a consequence, the matrix L(t) is

diagonal [59].

Lij(t) = [1 −
∑

j∈S≡I

Kij(t)]δij (4.16)

where δij = 1 if i = j, otherwise it is zero. An SMP can be deduced from a

general MRGP. Given an embedded renewal Markov sequence {Yi, Ti}, then

the continuous process X(t), t ≥ 0 such that X(t) = YN(t), N(t) = sup(n ≥
0, 0 ≤ Tn ≤ t), is an SMP. If the Markov renewal process is a Semi-Markov

chain {1, 2, . . . M}, with only one regeneration event active at time, then

V (t) becomes:

V (t) = L(t) + K1(t) ⊙ (L(t) + K2(t) ⊙ (. . .) (4.17)
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In literature, there exist cases of MRGP that also applies to the solution

of special classes of Petri nets. If the subordinated process is HCTCM

then the overall MRGP is demonstrated to underlie the class of the Markov

Regenerative Stochastic Petri nets [21]. In case the MRS is a sequence of

deterministically distributed variables, enabled one at time and never pre-

empted, then the MRGP underlies the class of the Deterministic Stochastic

Petri nets and the solution of (4.17) reduces to a series of matrix multiplica-

tions [20, 69]:

V (t) =

(
j−1∏

h=1

exp[Qτh]∆h

)
L(t −

∑

h=1...j−1

τh) (4.18)

where τh are the deterministic sojourn times in the state h of the MRS, and

∆ is the branching probabilities matrix that accounts for the instantaneous

state mapping between two consecutive regeneration epochs.

4.5 Markov Reward Processes

The Markov reward processes extend the modeling capability of all previ-

ously illustrated models thanks to the possibility of defining reward functions

of the states of the system. A more formal definition follows:

Definition 4.8. A reward wx is a rate assigned to each state X of the stochas-

tic process (rate-type reward) or to the transitions (impulse-type rewards).

Definition 4.9. The cumulative reward function W (t) is a function of the

rewards accumulated over t in the state space X.

Definition 4.10. A Markov Reward Process MRP is a Markov process for

which reward rates are associated either with states (rate-type rewards) or

with transitions (impulse-type rewards) [88].

Only rate-type rewards are considered here. The Markov reward processes

have constant reward rates assigned to each state of the chain, so that the

cumulative reward function W (t) is the sum of all rewards cumulated in each
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state of X. The formulas of the expected instantaneous reward rate and the

expected cumulative reward are the following [59]:

E[w(t)] =
∑

i∈I

wiPi(t) (4.19)

E[W (t)] =
∑

i∈I

wi

∫ t

0

Pi(τ)dτ (4.20)

The integral of P (t) is the cumulative state probability vector of the MRP

and denotes the expected total time spent by the process in a state during

the interval [0, t). To compute this quantity, it is necessary to solve the

following equation, derived from (4.10):

dΠ(t)

dt
= Π(t)Q + P (0) (4.21)

where Π(t) =
∫ t

0
P (x)dx.

The reward rate at the steady state are obtained by multiplying the vector

w by the steady-state distribution [88]. Reward processes can be built on

Semi-Markov [24] and Markov regenerative processes [59] as well. For the

Markov regenerative reward process the variable w(t) is evaluated through

different epochs, that is:

E[w(t)] = [V (t)wT ]P (0) (4.22)

where V (t) is calculated with (4.12). A generalization of the MRP is the

non homogeneous MRP (NHMRP), for which the reward rate may be a

function of time t.

A reward processes can be defined on the models presented in the previ-

ous sections of this chapter. As an example, the compound HPP is a class

of reward processes built on the Poisson processes, where the cumulative

rewards W1,W2, etc. are independent random variable with identical proba-

bility distribution associated to the states 1, 2, etc. . . . The reward function

is W (t) =
∑

i=1...N(t) Wi. The Wald’s theorem provides the average and the

variance of W (t) equal to E{W}λt and λt(E{W}2 +V ar{W}2) respectively
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[39]. The renewal reward processes are a generalization of the compound

HPP.

Reward process are suited for performability analysis, with the reward

function representing the performance index of the system. They can also

define dependability attributes. For example, assuming a reward rate equal

to 0 for the states where the system has failed and a reward rate equal to 1

for the states where the system is functioning defines a reward function that

corresponds to the system reliability.

4.6 The Solution of a Markov Process

The analysis of a stochastic process passes through the choice of the solu-

tion method, the characterization of the result as function of the uncertainty

in the parameters and its sensitivity to small perturbations.

There exist various methods to obtain the solution of the Markov chain.

A sample of these are listed in Table 4.1 with their asymptotic complexity7

O() and applicability. The transient solution of a Markov chain, with finite,

discrete X and continuous T, is the expression:

P (t) = V (t, 0)P (0) (4.23)

where P (t) is a vector of size N and V (t, 0) is a N × N matrix depending

on Q(t) through the Peano-Baker series [79]. In general, the expression

is not analytically treatable, with the exception of a constant Q. In this

case, the solution can be obtained either using Laplace or through spectral

decomposition (i.e. looking for the eigenvalues and eigenvectors of Q) [87].

These techniques are effective for small N and well conditioned matrix. In

the more general case other methods apply, which are based on the series

expansion of V (t, 0), like the uniformization technique [80]. The solution

can also be achieved by standard numerical methods (e.g. trapezoidal rule

7The asymptotic complexity give the upper bound of the complexity of an algorithm g(),

so that g() is O(f), with O(f) = {g : N → R|∃c > 0,∃n0 ∈ N,∀n > n0 : g(n) ≤ c × f(n)}
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Technique Solution Complexity Remarks

Laplace transform Analytical O(N5) Not cyclic Markov chains

Spectral decomposition Analytical O(N4) Not large Markov chains

Uniformization Numerical O(N3 log(qt)) Stiffness problems

Num. methods Numerical O(N2qt) Apply to stiff and large chains

Table 4.1: The solution techniques for Markov chains.

based) and similar that may cope with the stiffness of Q at the desired level

of accuracy. A survey of the solution techniques can be found in [78] while

some special cases are treated in [6] for stiff Markov chains, [81] for adaptive

uniformization, [58] for semi-Markov process, [79] for NHCTMC and [35] for

MRGP.

The solution also depends on the accuracy of the parameters of the matrix

Q. In reliability and more in general in dependability problems modeling the

system failure processes, the parameters of Q are related to the failure rates,

which are average values taken from standard literature, see section 3.2. As

a consequence, the obtained solution is more properly an average solution.

In literature there are few studies aiming at characterizing statistically the

solution on the basis of the statistics of the parameters [38]. This analysis is

usually addressed by Monte Carlo simulation [95].

In absence of statistics on the parameters of Q, a sensitivity analysis

may give similar and even more general information. Sensitivity studies are

made by perturbing the model with respect to a parameter and measuring

the difference from the original solution8 [76]. The sensitivity analysis can

be performed either for a single parameter variation or for multi-parameter

variations. The sensitivity of the state probability vector P (t) with respect

to a single parameter λ is defined the partial derivative of the probability

vector SP (t) = ∂P (t)/dλ. By substituting the definition in equation (4.10)

it is obtained:
dSP (t)

dt
= P (t)F + SP (t)Q(t) (4.24)

8This perturbation is called structured. The perturbation is called unstructured if it is

due the round-off error, which affects the entire calculation.
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where SP (0) = 0 and F = ∂Q(t)/dλ. If Q is constant the solution is:

SP (t) = P (0)

∫ t

0

eQτFeQ(t−τ)dτ (4.25)

The sensitivity to multi-parameter requires the definition of the struc-

tured perturbation δs(t) as a function of the perturbation of the transition

matrix Qs = Q + ∆s:

δs(t) = Ps(t) − P (t) = P (0)(eQst − eQt) + δs(0)eQst

For small variations of the parameters the following formula holds:

δs(t) ∼=
∑

i

∆λi
∂P (t)

dλi

= ∆λiSi(t) (4.26)

which depends on the solution of (4.24). As an alternative, sensitivity bounds

can be defined on the norm of the matrix S(t) [76], where the bound for a

single parameter variation is ‖S(t)‖ ≤ t
∥∥∂Q

dλ

∥∥.
Similar sensitivity formulas exist in literature for the Markov reward pro-

cess [76, 38], the semi-Markov and the Markov regenerative process [60].

In addition to the techniques illustrated so far there exist other techniques

whose main goal is to treat the state explosion problem. They all apply

states aggregation and composition on the basis of the structural properties

of the matrix Q of the Markov chain [51], defined in section 4.3. The original

chain results split into smaller sub-chains, which are separately solved in the

respective state space.
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Chapter 5

Dependability Modeling

This chapter applies the theory of chapter 4 to the modeling of the failure

mechanisms for reliability, availability and safety applications.

5.1 Modeling of Elementary Failure Mecha-

nisms

A Markov chain with constant failure rates describes the failure process

of two components A and B, see Figure 5.1, where λA1 and λB1 are the failure

rates of A and B in the initial state, λA2 is the failure rate of A after the

failure of B and λB2 the failure rate of B after the failure of A. The state

probability distribution is given by equation (4.10):

d

dt
p(t) = p(t)




−λA1 − λB1 λB1 λA1 0

0 −λA2 0 λA2

0 0 −λB2 λB2

0 0 0 0


 (5.1)

which is solved for the initial state probability vector p(0) = [1, 0, 0, 0]. The

probability to be in the failure state is also given by the formula:

PA∩B(t) = α

∫ t

0

Hyp(λA1 +λB1, λB2)dτ +β

∫ t

0

Hyp(λA1 +λB1, λA2)dτ (5.2)

75
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A,B Failure

B

A

B1

B2

A2

A1

Figure 5.1: Markov chain for modeling failure dependence.

where α = λA1

λA1+λA2
, β = λB1

λA1+λA2
, and Hyp(λ1, λ2) = λ1λ2

λ1−λ2
[exp(−λ1t) −

exp(−λ2t)] is the hypoexponential distribution [87]. The two terms in (5.2)

accounts for two separate contributions to the system failure, one through

the state B, given A has failed first, and the other through the state A, if B

has failed first. The Mean Time To Failure (MTTF) is:

MTTF =

∫ ∞

0

[1 − PA∩B(τ)]dτ =
1

λA1 + λB1

(1 +
λA1

λB2

+
λB1

λA2

) (5.3)

The presented model is general enough to define the elementary failure

mechanisms occurring between two components.

Definition 5.1. Two components A and B are called statistically indepen-

dent if the failure of A does not depend on the failure of B and vice versa,

that is PA∩B = PAPB.

The model of Figure 5.1 for A and B being independent has λA1 = λA2

and λB1 = λB2. The MTTF = 1/λA + 1/λB − 1/(λA + λB).

Definition 5.2. Two components A and B are called positive dependent

if the failure rate of one component increases after the failure of the other

component so that PA∩B = PA|BPB > PAPB, where PA|B is the conditional

probability that A has failed given B has failed [39].

The cascade and propagation failures are an example of positive de-

pendent failures, where the failure of a component accelerates the failure
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rate of the other. The common mode failures are a case limit of positive

dependency where the failure of one of the two components causes (deter-

ministically) the failure of the other component1. In the model of Figure 5.1

this is accounted for by assuming λA2 = ∞ (λB2 = ∞). Another example of

positive dependency is represented by the fault detection mechanism. The

failure of A is possible only if the other component B, the fault detector, has

failed before. This is accounted for by assuming λB2 = 0. In this case, the

state B is the state for the successful detection. The probability of failure is

an ordered statistics2:

P (A|TB < TA) =

∫ t

0

PB(t)dPA(t) (5.4)

for which MTTF = λB

λA+λB
( 1

λA+λB
+ 1

λA
)

Definition 5.3. Two components A and B are called negative dependent

if the failure rate of one component decreases after the failure of the other

component so that PA∩B = PA|BPB < PAPB.

Concurrent and mutual exclusive events are examples of negative

dependency, where the failure of one components inhibits the failure of the

other. In the model of 5.1 this is represented with λA2 = λB2 = 0.

5.2 Models for Reliability

Reliability models splits the state space X into transient states and ab-

sorbing states. The set of the unreliable states U consists of absorbing states.

As a consequence, the Markov chain for reliability models has a singular

transition matrix Q = [Qn×m, 0n×(n−m)]
T . The reliability is defined as the

probability to be in the subset of the reliable states X|U at time t, which is

a non-increasing function of time tending to zero asymptotically.

R(t) = 1 −
∑

k∈U

pk(t) (5.5)

1In literature there exist specific models for common mode failures, like the β model

that splits the failure rate into two part, one common mode and one independent [39].
2An ordered statistics accounts for the timing when the events occur.
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The Mean Time To Failure (MTTF) is calculated by the definition or

with the final value theorem of the Laplace transform of R(t):

MTTF = lim
t→∞

∫ t

0

R(t)dt
L↔ lim

s→0
R(s) (5.6)

Any failure in the system may be recovered by means of repairs or scheduled

inspections provided it has occurred in X|U .

5.2.1 Model without Repair

The unreliable set U can be reached through many different oriented

acyclic paths3 in X, starting from one initial state in X|U and leading to

one of the absorbing states in U. In the example of Figure 5.2(A) a generic

path is shown, consisting of N + 1 states (x0, x1,. . .xN), with U ≡ xN , N

transitions with constant failure rates λk, (k = 0 . . . N − 1), and other N

transitions with failure rate λ
′

k that leave the path from each state xk. The

path is a realization of a stochastic process that can be modeled like an

open Markov chain with state probability vector pk(t), {k = 0, 1, . . . , N}
and initial distribution p(0) = [1, 0, . . . , 0]:

d

dt
p(t) = p(t)




−λ0 − λ
′

0 λ0 0 · · · 0 0

0 −λ1 − λ
′

1 λ1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · −λN−1 λN−1

0 0 0 · · · 0 0




(5.7)

The probability of moving into the final state xN and the MTTF associated

to the path are respectively:

pN(t) = 1 −
N−1∏

j=0

λj

λj + λ
′

j

∫ t

0

Hyp(Λ, τ)dτ (5.8)

MTTF =
N−1∑

j=0

1

λk + λ
′

k

j∏

k=0

λk

λk + λ
′

k

(5.9)

3An oriented path is defined acyclic if the states are visited only once (no cycles).
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where the function Hyp(Λ, t) = Hyp(λ0 + λ
′

0, . . . , λk−1 + λ
′

k−1, t) is the k

stages hyperexponential distribution, resulting from the convolution of the

probability distributions of the sojourn times of each state in the Markov

chain, taken in the exact order they are visited. The system unreliability

will be the sum of all contributions of the paths that lead to one state in U.

There exist several applications of this model in literature. As an example,

the pure death process is obtained if λ
′

j = 0,∀j, and reliability and MTTF

are given by the following formulas:

R(t) = 1 −
N−1∑

i=0

N−1∏

j=0,j 6=i

λj

λj − λi

(1 − exp(λi)) (5.10)

MTTF =
N−1∑

i=0

1

λi

(5.11)

If all failure rates are identical, i.e. λk = λ, ∀k = 0, . . . N −1, the probability

to be in the state k is described by the Erlang distribution. The expression

of reliability and MTTF are further simplified:

R(t) =
N−1∑

i=0

(λt)i

i!
exp(−λt) = Erl(k, λ) (5.12)

MTTF = N/λ (5.13)

The model of Figure 5.2(B) is variant of the model given in 5.2(A), for

which all output arcs lead to the failed state. This model can be used to

the description of failures (λ
′

k) that lead straightway to the failed state (e.g.

shock), and failures (λk) leading to progressive degeneration (e.g. wearing).

The reliability at time t and the MTTF are:

R(t) = 1 −
N−1∑

k=0

∫ t

0

λ
′

kpk(t)dt − pN(t) (5.14)

MTTF = MTTF +
λ

′

0

(λ0 + λ
′

0)
2

+
N−1∑

j=1

λ
′

j

(λj + λ
′

j)
2

j−1∏

k=0

λ
′

k

(λk + λ
′

k)
2

(5.15)

where MTTF is the MTTF calculated in (5.9).
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(A)

(B)

(C)

(D)

Figure 5.2: Models of failure processes.

5.2.2 Model with Repairs on Demand

Repair on demand recovers from failure in the subset X|U just at the

instant they are detected, with the effect of slowing down the failure process.

As case study, a birth-death process with final absorbing state is considered,

see Figure 5.2(C). The Kolgomorov equations that calculate the probability

distribution are:

d

dt
p(t) = p(t)




−λ0 λ0 0 · · · 0 0

µ1 −λ1 − µ1 λ1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · −λN−1 − µN−1 λN−1

0 0 0 · · · 0 0




(5.16)

for the initial state probability vector p(0) = [1, 0, . . . , 0]. The MTTF is

calculated by applying the final value theorem of the Laplace transform to

(5.16). The obtained formula is:

MTTF =
N−1∑

r=1

N−r∑

k=0

1

λk

r−1∏

j=1

µk+j

λk+j

(5.17)
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A lower bound is MTTF > 1
λN−1

∏N−2
k=0

µk+1

λk

, which still quantifies the bene-

fits of the repair facilities. This model can be applied to describing a failure

process where each state represent a recoverable degradation down to the

complete system failure.

5.2.3 Model with Periodic Inspections

Periodic inspections permit to discover failures in the subset X|U at

scheduled instants, say every T. This model is shown in Figure 5.2(D), where

the repair transitions are enabled at the time of inspection. The process is

a Markov chain between two consecutive inspection intervals. At the time

of inspection, the system is shutdown and all states, except for the final

one, are recovered to the initial state. This has consequences on the system

equivalent failure rate that becomes periodic with period T, with benefits

on the failure process that slows down4. The reliability can be calculated

with (5.10) within one inspection interval. After M consecutive inspections,

during the mission M+1, the reliability and the MTTF are:

R(MT + t) = [1 − PN(T )]M [1 − PN(t)] (5.18)

MTTF =

∫ T

0
R(t)dt

1 − R(T )
(5.19)

where 0 ≤ t < T . A shorter inspection interval leads to a higher reliabil-

ity, which is is generally true but does not take into account the inspection

downtime. This is analysed more in detail in the next section.

5.3 Models for Availability

Availability models have the state space X of recurrent, non absorbing

states. The unavailable set U is a subset of X. The metrics for availability

are the instantaneous availability, the average availability and the steady

state availability, also called Mean Time Between Failures (MTBF). The

4Partial inspections and imperfect repairs are not taken into account.
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instantaneous availability A(t) is the probability to be in the subset X|U
at time t. The average availability is the percent of time spent in X|U
during the interval T, Ā(T ) = 1

T

∫ T

0
A(t)dt. The average availability tends

asymptotically to the steady state availability5, that is Ass = limt→∞ Ā(t)

[39].

5.3.1 Model with Repair on Demand

A model with repair on demand used for availability calculations is the

model of Figure 5.2(C) provided that a repair transition is added from state

xN to xN−1. A birth-death process of N +1 states is obtained, with U ≡
N, constant failure rates λk and repair rates µk. The initial probability

distribution is p(0) = [1, 0, . . . , 0]. The Kolgomorov equations that calculate

the probability distribution are:

d

dt
p(t) = p(t)




−λ0 λ0 0 · · · 0 0

µ1 −λ1 − µ1 λ1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · −λN−1 − µN−1 λN−1

0 0 0 · · · µN −µN




(5.20)

The instantaneous availability is a non-increasing function of time t, tending

asymptotically to the steady state value. A lower bound approximation for

the steady state availability is:

Ass = 1 − lim
t→∞

pN(t) > 1 − 1

1 +
∏N

k=1
µk

λk−1

(5.21)

which quantifies the benefits of the repair facilities6.

5For HCTMC this is obtained with the solution of Kolgomorov steady state equation

pQ = 0, where Q is the non singular transition matrix of the Markov chain [87].
6In the more general case, the model should account for a coverage factor C, represent-

ing the probability that the failure is detected.
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5.3.2 Model with Periodic Inspections

An availability model with periodic inspection is shown in Figure 5.2(D)

provided that a transition is added from the state xN to x0. The result-

ing instantaneous availability is periodic with period T. The steady state

availability is the average availability for one inspection period T:

Ass = lim
t→∞

∫ t

0
[1 − PN(t)]dt

T
(5.22)

The equation attests that a shorter inspection interval results in a higher

availability. This conclusion does not take into consideration the total system

downtime, which depends on the inspection interval T. If this is considered,

then a trade-off can be found between availability and inspection policy.

Assuming that D is the time necessary for the inspection, then the total

system downtime at time t is:

TD =

⌊
t

T + D

⌋
D (5.23)

The shorter the inspection interval the bigger the downtime, which is the

trade-off with the availability. A cost function of Ass and TD can be defined

in order to find the optimal inspection interval T.

5.4 Models for Safety

Safety models have the state space X split into a set of safe states S

and a set of unsafe states FU. The set S is further split into functioning

state OP and failsafe state FS [63]. The safety is the probability to be in

S. The definition applies to systems that operate either continuously (i.e.

reliable) or on demand (i.e. available). The statistics for continuous safety

are the MTTUF (Mean Time To Unsafe Failure), or MTTHE (Mean Time

To Hazardous Event) [22], in analogy to the MTTF for reliability. In case the

system operates on demand, the applied statistics are the safety at the steady

state or the MTBUF (Mean Time Between Unsafe Failure), also defined like

MTBUF = MTTUF + MTTR [86].
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5.4.1 Model for non Recoverable Safety

The model for non recoverable safety is built on the simplified architecture

for safety critical systems described in section 3.5 and consists of four states:

the operating state OP1, the operating state without protection OP2, the

failsafe state FS and the fail unsafe state FU, see Figure 5.3. The FU state

is assumed to be absorbing, which makes safety to be non recoverable during

mission time. For this reason, the model applies to those safety critical

systems that operate continuously. The transition from OP1 to OP2, with

rate λP1, represents the failure of the protection system. The transition from

OP1 to FU, with rate λS1, represents the fraction of system failure uncovered

by the protection system (e.g. the silent failure modes). The transition from

OP2 to FU, with rate λS1 + λS2, leads to the failure of the system when the

protection system has failed. The fraction of the system failure rate λS2 is

now uncovered and adds up with its contribution. The transition from OP1

to FS, with rate λS2 + λP2, is the fraction of system failure covered by the

protection system plus the failures detected within the protection system.

After the system has failed safely at time T, this is inspected and re-

covered to the initial state. In case of perfect recovery, the system is ‘as

good as new’ and λk(T+) = λk(0) for all failure rates. The downtime for

rearming the system does not concern safety and for this reason it is not

considered. The resulting stochastic process is Markov regenerative with the

failsafe events that govern the embedded Markov renewal sequence and rep-

resent the regeneration points of the process. The probability distribution is

the solution of the Markov regenerative process with initial state probability

distribution p(0) = [1, 0, 0, 0], see section 4.4. The global kernel K(t) and

the local kernel L(t) defined in equation (4.13) and (4.14) respectively are:

K(t) =




−λP2 − λS2 0 λP2 + λS2 0

0 0 0 0

0 0 0 0

0 0 0 0


 (5.24)
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OP1

FS

FU
S1

Shutdown

OP2

Figure 5.3: A safety model with failsafe shutdown.

L(t) =




−λP1 − λS1 λP1 0 λS1

0 −λS1 − λS2 0 λS1 + λS2

0 0 0 0

0 0 0 0


 (5.25)

The equation for safety is derived from equation (4.12):

S(t) = R(t) + S(t) ⊙ pFS(t) (5.26)

where R(t) = pOP1(t) + pOP2(t), S(0) = R(0) = 1 and ⊙ stands for the

Laplace-Stieltjes convolution. The MTTUF is:

MTTUF = MTTF + lim
t→∞

∫ t

0

S(t) ⊙ pFS(t) (5.27)

The safety S(t) is the solution of a Volterra’s second kind integral equation

where the first term stands for the probability the system was continuously

operating up to t (i.e. reliable) and the second term is the contribution

of the failsafe shutdowns occurred in [0,t). The formulas (5.26) and (5.27)

attest that safety is always bigger than reliability. The equation (5.26) can

be transformed and solved in the Laplace domain:

S(s) =
R(s)

1 − sPFS(s)
(5.28)

As an alternative, the solution can be obtained by numerical integration.



86 5. Dependability Modeling

The two following recursive formulas approximate the Laplace-Stieltjes con-

volution in (5.26) with the discrete summation [59]:

Ŝ(tn) = R(tn) +
n∑

i=0

Ŝ(tn − ti)[pFS(ti) − pFS(ti−1)] (5.29)

Š(tn) =
R(tn) +

∑n
i=1 Š(tn − ti+1)[pFS(ti) − pFS(ti−1)]

1 − pFS(t1)
(5.30)

where Ŝ(t0) = 1, Š(t0) = 1, R(t0) = 1, pFS(ti) = 0 for ti ≤ 0. Equation

(5.30) is identical to equation (5.29) but with safety shifted in time of one

discretization step. As this is a decreasing function with time, the (5.30)

represents an upper bound of safety so that Ŝ(tn) ≤ S(tn) ≤ Š(tn). The

arithmetic mean (Ŝ(tn) + Š(tn))/2 is an estimator of safety. The accuracy of

the solution depends on the discretization step ti − ti−1. This aspect will be

treated in Chapter 7 for a case study.

As an example, the transition rates of the Markov chain of Figure 5.3 are

assumed to be constant: λS1 + λS2 = λS and λS2 = CλS, where the term C

represents the fraction of failure rate covered by the protection system7. In

this case the expression of the MTTUF becomes:

MTTUF =
1

λS

+
C

λP1 + (1 − C)λS

(5.31)

The maximum is obtained for C = 1 for which the MTTUF is the sum of

the MTTF of the system and its protection system. In this case, a suffi-

cient condition for the system to comply with the Safety Integrity Level x

(x=1,2,3,4), see also section 3.5, is that the protection system is SILx. This

is verified if MTTUF ≥ 1/λSILx, where λSILx is the failure rate correspond-

ing to SILx. If the protection system fails always safely (i.e. λP1 = 0)

then MTTUF = MTTF/(1 − C) and the desired SIL depends only on the

coverage C.

7Alternative definitions of coverage for safety can be found in [86] and in [47].
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5.4.2 Model for Recoverable Safety

The model for recoverable safety includes a recovery transition from the

FU state to OP1, which is not absorbing anymore, see Figure 5.4. The model

applies to those systems operating on demand. The repair action is triggered

by the detected fault, while the entire process is regenerated at the shutdown

in the FS state. The failsafe shutdown still prevents from a system unsafe

failure. The resulting stochastic process is Markov regenerative, with the

failsafe events representing the regeneration points, and initial distribution

p(0) = [1, 0, 0, 0], see also section 4.4. K(t) is given by equation (5.24) while

L(t) is:

L(t) =




−λP1 − λS1 λP1 0 λS1

0 −λS1 − λS2 0 λS1 + λS2

0 0 0 0

µ 0 0 −µ


 (5.32)

The instantaneous safety and the steady state safety are:

S(t) = A(t) + S(t) ⊙ pFS(t) (5.33)

Sss = Ass + lim
t→∞

∫ t

0
S(t) ⊙ pFS(t)

t
(5.34)

where A(t) = pOP1(t) + pOP2(t) and S(0) = A(0) = 1. The formulas attest

that safety is bigger than availability. The equation (5.33) can be transformed

and solved in the Laplace domain:

S(s) =
A(s)

1 − sPFS(s)
(5.35)

As an alternative, the solution can be obtained numerically like in (5.29) and

(5.30) provided that R(t) is replaced by A(t).

Assuming that the failure rates are constant with λS1 + λS2 = λS and

λS2 = CλS, where C is the fraction of failure rate covered by the protection

system, the expression for safety at the steady state becomes:

Sss = 1 − (1 − C)λ2
S + λSλP1

(1 − C)λ2
S + λP1µ + λS(µ + λP1)

(5.36)
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OP1

FS

FU
S1

Shutdown

OP2

Figure 5.4: A safety model with failsafe shutdown and repair.

For C = 0, the protection system does not play any role. The resulting safety

at the steady state is Sss = 1 − λS

λS+µ
, which ameliorates by increasing the

repair rate. If C = 1 then Sss = 1− ( µ
λS

+ µ
λP1

+ 1)−1. In case the protection

system never fails silent (i.e. λP1 = 0), then Sss = 1−(1+ µ
(1−C)λS

)−1 and the

coverage and the repair rate are the parameters to reach the required SIL8.

A variant of the illustrated model includes periodic inspections at ev-

ery fixed interval T instead of repair on demand, in addition to the failsafe

shutdown, see Figure 5.5. The inspection is modeled with a transition from

states OP2 and FU to OP1, which takes place at the instant T. If the system

moves to FU, it must wait for the next inspection as the failsafe shutdown

is inhibited in FU. After inspection the system is assumed to be recovered

‘as good as new’. The resulting stochastic process is Markov regenerative,

with the failsafe shutdown and the periodic inspections acting as regenera-

tion points. The solution is calculated for one interval T, during which the

system may undergo a certain number of safe shutdowns. The instantaneous

safety is periodic with period T, that is S(t + T ) = S(t), with S(t) obtained

from equation (5.26). Also the equivalent failure rate to the unsafe state is

periodic with period T. Safety at steady state is the average of S(t) over the

8More specialized case studies can be found in [14, 36].
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OP1
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FU
S1

Shutdown

OP2

Inspection
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Figure 5.5: A safety model with failsafe shutdown and periodic inspection.

time interval T between two consecutive inspections:

Sss =
1

T

C(1 − e−[(1−C)λS+λP1]T )λS

[(1 − C)λS + λP1](CλS − λP1)
+

1

T

(1 − e−λST )λP1

λS(−CλS + λP1)
(5.37)

If coverage C = 0 then Sss = 1
T
(1 − e−λST )λ−1

S . If C = 1, then Sss =
1
T

C(1−e−λP1T )λS

λP1(λS−λP1)
+ 1

T
(1−e−λST )λP1

λS(−λS+λP1)
.

In case FU is absorbing, the safety at time t, as calculated by (5.26), and

the MTTFU become:

S(t + MT ) = S(T )MS(t) (5.38)

MTTUF =

∫ T

0
S(t)dt

1 − S(T )
(5.39)

The downtime due to inspection interval, presented in section 5.3.2 for avail-

ability, is a trade-off with safety too.

5.4.3 Other Models for Safety

Other models for the analysis of safety critical systems exist. One of these

represents the status of the protection system embedded in the transition

rates [47], see Figure 5.6 (right). This model is equivalent to the model of Fig-

ure 5.3. Three states are obtained OP1, FS, FU instead of four, with transi-

tion rates λOP1−FS = (λP2+λS2)RP (t) and λOP1−FU = λS1 + λS2[1 − RP (t)],
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Figure 5.6: Alternative models for safety.

where RP (t) is the reliability of the protection system that depends on λP1.

Safety becomes:

S(t) = pOP1(t) + S(t) ⊙ pFS(t) (5.40)

which is solved for the initial conditions S(0) = POP1(t) = 1.

Another model represents the status of the protection equipment instead

of the system, see Figure 5.6 (left). Three states exist, OP1, OP2, and FS

with transition rates λOP1−OP2 = λP1 and λOP1−FS = λP2 +λS2. The system

safety is a cumulative reward function of the three states defined on the

Markov regenerative reward process, see section 4.5:

S(t) = SOP1(t)pOP1(t) + SOP2(t)pOP2(t) + S(t) ⊙ pFS(t) (5.41)

which is solved for the initial conditions pOP1(0) = 1 and pOP2(0) = pFS(0) =

0 . The functions SOP1, and SOP2 are the reward functions in the states OP1

and OP2 respectively. The model is equivalent to the models in Figures 5.6

(right) and 5.3.

It is possible that more levels of protection exist for a safety critical

system. For example, consider K protection systems, each one covering a

fraction of the system failure rate. The exact model will account for 2K + 2

states. A fair approximation is to disregard the second order failures (2

or more protection systems failed) provided that these are independent, see

Figure 5.7. The approximated model will consist of K + 3 states. The
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Figure 5.7: A safety model for more protection systems.

calculated safety will be an upper bound, suited for checking the compliance

with SIL level with some tolerance margin.

All presented models have the common feature of issuing an operation

shutdown in case of a failure has been detected. Actually, the decision taken

at the occurrence of a detected failure might not necessarily be a shutdown.

For instance, it could depend on the type of failure, the overall status of the

system and the phase criticality. To include fault management and supervi-

sion in the models would lead to a Markov decision process and is not treated

here.

5.4.4 The Safety Trade-off

The mission shutdown stops the operation at a possible detriment of the

system reliability or availability. This represents a trade-off for the reachable

safety especially if caused by false alarms within the protection system. The

number of operation aborts due to system shutdowns is calculated in the same

way for all presented models. At time t, the system will have undergone N

operation shutdowns, part of these due to detected system failures (NS2)
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and part due to failures in the protection system (NP2). The number of

operation shutdowns N(t) is the result of a renewal counting process with

renewal density λP2 + λS2, see equation (4.7). The fundamental renewal

equation provides the average M(t) = E[N(t)]:

M(t) = pFS(t) + M(t) ⊙ pFS(t) (5.42)

for the initial conditions M(0) = pFS = 0, where ⊙ stands for the Laplace-

Stieltjes convolution. The solution is obtained by Laplace transform or by

numerical integration like in (5.29) and (5.30). The upper and lower bound

expressions for the number of missions at time t are:

M̂(tn) = p4(tn) +
n∑

i=0

M̂(tn − ti)[p4(ti) − p4(ti−1)] (5.43)

M̌(tn) =
p4(tn) +

∑n
i=1 M̌(tn − ti+1)[p4(ti) − p4(ti−1)]

1 − p4(t1)
(5.44)

where M̂(0) = 0, M̌(0) = 0, pFS(ti) = 0 for ti ≤ 0 and M̂(tn) ≤ M(tn) ≤
M̌(tn) for the same reasons given for the calculation of safety. The arithmetic

mean (M̂(tn) + M̌(tn))/2 is an estimator of M(t), which depends on the

discretization step ti − ti−1.

If the failure rates are assumed to be constant, then the distribution of

N(t) is a Poisson process:

P (N(t) = n) =
(λP2 + λS2)

n

n!
e−(λP2+λS2)t (5.45)

for which the average number of operation aborts is E[N, T ] = (λP2 + λS2)t

and the variance is λP2 + λS2. The conditional distribution of the operation

shutdowns due to false alarms NP2 is:

P (NP2(t) = nP2|N(t) = n) =

(
n

nP

)
(

λP2

λP2 + λS2

)nP (
λS2

λP2 + λS2

)n−nP (5.46)

for which the average number of false alarms is E[N, T ] = λP2t. The above

formula does not hold anymore for non constant failure rates. In this case

other quantities need to be taken into consideration, for example the average

of the failure rates over a certain time interval.
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The trade-off existing between safety and the number of operation aborts,

due to false alarms, can be formulated like an optimization problem. As

an alternative, a qualitative approach is followed. If operation aborts due

to false alarms exceed an acceptable limit (e.g., 30%), a reduction can be

reached through voting mechanisms and signal/data processing that filter

out the undesired shutdown. As drawback this solution adds complexity to

the system, which may introduce undesired factors of uncertainty for the

safety assessment, see also 3.4.5. On the contrary, if the largest contribution

to the operation aborts is due to the system failure rate λS2, then system

reliability becomes the main concern and a design revision is to be taken in

consideration.
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Chapter 6

Failure Modes Analysis of the

LHC Beam Dumping System

This chapter describes in detail the failure mechanisms of the LHC Beam

Dumping Systems LBDS ad deduced from the architecture of the system

presented in Chapter 2.

6.1 The Modeling Framework

The dependability study of the LBDS concerns those systems that play

an active role in the removal and dilution of the beams from the ring. This is

the core-architecture of the LBDS. They are the MKD, the MSD, the MKB,

the triggering system and the Beam Energy Measurement System (BEMS),

plus the Beam Energy Tracking System (BETS) and the Re-Triggering Sys-

tem (RTS), see Figure 6.2. The quadrupole Q4 is not included in the core

architecture because its failure is detected independently from the LBDS, for

instance as beam loss by the beam loss monitors or by the quench protection

system. The TDE, the TCDS, the TDCQ and the TCS as well as the beam

instrumentation are also outside the core architecture. In case of malfunc-

tioning of any of these systems, the LBDS becomes unavailable with possible

consequences on safety.

95
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Figure 6.1: Dependability modeling and analysis framework.

The structure of the study is shown in Figure 1. The adopted approach

combines qualitative (FMECA [65, 67, 34]) and quantitative techniques (re-

liability prediction [66]), applied at lower level, and the state based rep-

resentation of the system failure process at a higher level. The modeling

hierarchy permits to mask details, while working on the higher level, and

gives the possibility to analyse the system for a large set of parameters, dif-

ferent operational scenarios and the design features like fault masking (i.e.

redundancy), fault detection (on-line), post mortem diagnostics and fault

recovery (off-line). This chapter contains the FMECA of the core LBDS and

its sub-systems, while the reliability prediction and the dependability anal-

ysis of the model of the system failure process will be treated in the next

Chapter.

6.2 The LBDS Failure Modes

Most malfunctioning in the LBDS does not lead to beam losses or leads to

beam losses that can be tolerated as their consequences are mitigated by the

passive protection devices. Some ‘beyond design’ failures exist and may lead

to the loss of the entire beam with catastrophic consequences [89]. This is the

case of failures during the beam extraction of the MKD or the MSD magnet
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15 MKD 15 MSD 10 MKBQ4BEAM TDE

BETS

BEMS

Triggering

Re-triggering

Figure 6.2: LBDS functional description.

assemblies or in the control electronics like the beam energy measurement

and tracking and the triggering system. Failures in the beam dilution are

less critical though the complete unavailability of the MKB system might

destroy the dump block, requiring long downtime for repair or replacement.

The system failure modes can be classified in three categories: fail silent

modes, failsafe system failures modes and failsafe surveillance failures modes,

which are false alarms.

• F1: fail silent and undetectable.

• F2: failsafe due to detectable faults in the system.

• F3: failsafe due to false alarms in the surveillance devices.

The F1 failure mode affects safety. Fault tolerance may mask to a certain

extent these type of failure modes that accumulate undetected before the

system fails silent, and can only be discovered when the LBDS is in the

firing mode, see Chapter 2. The F2 failure mode affects both safety and

availability. Surveillance cover these failure modes generating an operation

abort if they occur. In case the surveillance has failed, these failure modes

turn to be silent. The F3 failure modes affects availability and not safety, as

they do not correspond to any hazard in the machine. Safety and availability

are a trade-off for the LBDS as demonstrated in 5.4.4: for a higher level of

safety the availability is reduced. The maximum safety level is reached if the
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number of F1 failure modes is reduced by system design and all remaining F2

failure modes are detected (i.e. the coverage is unitary) while the minimum

safety is reached if the F2 modes are missed and add to F1 (i.e. the coverage

tends to zero).

A complete list of failure modes of the core LBDS architecture of Figure

6.2, taken at system level, is summarized in Table 6.1. They are classified

with respect to the three modes F1, F2 and F3, the detection (if any) and

the consequences on the dependability attributes (i.e. safety and availabil-

ity) according to a FMECA-like approach presented in section 3.2. For the

small part of failsafe modes that are self-announcing the dump request is

automatically generated. Surveillance devices like the BETS and the RTS

are listed separately in Table 6.1, at the same level of the other systems,

while other internal surveillance is apportioned to each system. This choice

is made on the basis of the importance of the monitoring of energy tracking

failures and erratic triggers. The naming of the failure modes includes the

type of failure, the system where it occurs and the position in the Table. For

example, F2MKD1 refers to the first failure mode of type F2 that is listed for

the MKD system. This failure mode has partial internal compensation by

redundancy, it is covered by the beam energy tracking system and may have

consequences on safety and availability.

The following assumptions have been made throughout the FMECA:

• Assumption 1: All failure modes are assumed to be confined to the

component where they develop, ignoring possible fault propagations.

• Assumption 2: All failures are assumed concurring and statistically

independent events, see section 5.1.

• Assumption 3: All failsafe modes, once triggered, are assumed to lead

to a safe state.

The first assumption makes it possible to build a system hierarchy where

each component may be separately analysed at the required level of detail.

As an example, a trigger failure is caused by the triggering system in case
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this affect all MKD and MKB generators or an asynchronous trigger has

been generated. A trigger failure can develop within the MKD system if the

switching mechanism inside a generator did not function or one erratic trigger

has been generated. Analogously, the energy tracking failures is caused by the

BEMS, where the beam energy is calculated and distributed, and affects all

generators, or it may develop within each generator. The second assumption

take some benefits in the composition of the logic expression of failure while

the third neglects the possibility the dump request is generated when the

system had already failed, which is unlikely and already accounted for as a

system failure. About the mutually exclusiveness of failures, it is possible

that some failure may accumulate while others cannot, and their occurrence

may inhibit the occurrence of other failure modes, see also section 5.1. In

the present description, this level of detail is ignored, as the gain in accuracy

would not justify the added mathematical complexity.

The failure modes in Table 6.1 will be separately deduced for each system

in the next sections.

6.3 The MKD System Failure Modes

The detailed list of failure modes of the MKD components is shown in

Table 6.2. These failure modes combine together in logic expressions that

describe the failure modes at system level, given in Table 6.1, applying the

logic operators in Table 6.3. The five failure modes of the MKD system are:

F1MKD: two or more MKD systems have failed silent. The iden-

tified causes for this failure mode are: the power triggers that are not re-

sponding to the input trigger (PT1, see Table 6.2), the primary or the com-

pensation switches that are not closing (SP1, SC1), the primary capacitors

or the overshoot capacitors charged but not connected to the circuit (CP2,

COS12, COS22) and the magnet failure including the transmission cables

and the connections (M). These failure modes are arranged in the following
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Failure modes Compensation Detection Attribute

MKD system

F1MKD Less that 14 MKD available Redundancy No Safety

F2MKD1 Energy tracking failure Partial Red. BETS Safety/Av.

F2MKD2 Erratic trigger No RTS Safety/Av.

F2MKD3 Power supplies failures No IS Availability

F3MKD IS false alarm No Self-an. Availability

MSD system

F2MSD1 Energy tracking failure No BETS Safety

F2MSD2 Fast current changes No IS Safety/Av.

F3MSD IS false alarm No Self-an. Availability

MKB system

F1MKB No MKBH or no MKBV available Redundancy No Safety

F2MKB1 Energy tracking failure Partial Red. BETS Safety/Av.

F2MKB2 Power supplies failures No IS Availability

F3MKB IS false alarm No Self-an. Availability

Triggering system (trigger generation and distribution)

F1TRG No trigger Redundancy No Safety

F2TRG1 Spurious triggers No Self-an. Availability

F2TRG2 Synchronization error Redundancy IS Availability

F3TRG IS false alarm No Self-an. Availability

Beam Energy Meter System (BEMS)

F2BEMS Energy tracking failure Redundancy IS, BETS Safety/Av.

F3BEMS IS false alarm No Self-an. Availability

Beam Energy Tracking System (BETS)

F1BETS Unable to trigger a dump request No No Safety (coverage)

F3BETS False alarm No Self-an. Availability

Re-Triggering System (RTS)

F1RTS Unable to re-trigger Redundancy No Safety (coverage)

Table 6.1: Failure modes of the LHC Beam Dumping System.
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Failure modes Type Compensation Detection

Power supplies

PSP1 Primary PS under-voltage Failsafe No BEI, BETS

PSP2 Primary PS over-voltage Failsafe No BEI, BETS

PSOS1 Overshoot1 PS failure Failsafe No BEI, BETS

PSOS2 Overshoot2 PS failure Failsafe No BEI, BETS

Power triggers

PT1 Power trigger not responding Fail silent Redundancy Diagnostics

PT2 Erratic trigger Failsafe No Re-triggering

PT3 Power supply failure Failsafe No IS

Capacitors

CP1 Primary capacitor slow leakage Failsafe No BEI, BETS

CP2 Primary capacitor open failure Fail silent Redundancy Diagnostics

COS11 Overshoot1 capacitor slow leakage Failsafe No BEI, BETS

COS12 Overshoot1 capacitor open failure Fail silent Redundancy Diagnostics

COS21 Overshoot2 capacitor slow leakage Failsafe No BEI, BETS

COS22 Overshoot2 capacitor open failure Fail silent Redundancy Diagnostics

Switches

SP1 Primary s. fails to open Fail silent Redundancy Diagnostics

SP2 Primary s. closes erratically Failsafe No Re-triggering

SC1 Compensation s. fails to open Fail silent Redundancy Diagnostics

SC2 Compensation switch closes erratically Failsafe No Re-triggering

Magnet

M Magnet failure Fail silent No Diagnostics

Beam energy data acquisition ad interlocking

V D Voltage divider failure Failsafe No BEI, BETS

BEA Data acquisition error Failsafe No BEI, BETS

BEI1 BEI unavailable Fail silent No Diagnostics

BEI2 False alarm Failsafe No Self-an.

Table 6.2: MKD system failure modes.

Operator Symbol

AND ∧
OR ∨
NOT ¬
XOR ∨̇
k out of n

(
n
k

)

AND T-priority ∧T

Table 6.3: Logic operators.
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logic expression for F1MKD:

F1MKD =

(
15

2

)
[MKDsilent] (6.1)

MKDsilent = (PT1A ∧ PT1B) ∨ (SP1A ∧ SP1B) ∨ (SC1A ∧ SC1B) ∨ (CP2A ∧ CP2B) ∨

(COS12A ∧ COS12B) ∨ (COS22A ∧ COS22B) ∨ M

A and B are the generator branches.

F2MKD1: the system has failed due to an energy tracking failure.

This failure mode is surveyed by the Beam Energy Interlocking (BEI) cards,

one per MKD generator, 15 in total. The BEI generates locally the dump

request that sends to the BETS1. If all 15 BEI and the BETS are functioning,

the failure mode is fully covered and detectable otherwise pert of the system

is exposed to an increased hazard of failing undetected. The logic expression

for the undetected failure mode is the following2:

F̃2MKD1 = ∨̇k=1...15[XBEI(k) ∧ MKDuncovered(k)] (6.2)

MKDuncovered(k) = (
(
k
1

)
[MKDenergy]∧

(
14
1!

)
[MKDsilent])∨

(
k
2

)
[MKDenergy]∨

(
k
1

)
[PSP2]

MKDenergy =

(PSP1 ∨ PSOS1 ∨ PSOS2 ∨ CP1A ∨ CP1B ∨ COS11A ∨ COS11B ∨ COS21A ∨ COS21B)

The variable XBEI(k) means that k BEI cards have failed silent (BEI1) and

15-k are functioning, that is ¬(BEI1 ∨ BEI2). All energy-tracking failures

are masked by 14 out of 15 redundancy with the exception of the over-voltage

of the power generator (PSP2). The operator
(

k
1

)
[MKDenergy] means that

only one of the k uncovered magnets had an energy tracking failure, which is

not a failure for the system but, in combination with exactly one silent failure

in the remaining 14 magnets
(
14
1!

)
[MKDsilent], is another way of failing3. If

1The analysis of failure modes of the BEI and the BETS is done in section 6.9.
2Hereafter, the superscript˜ is used for the undetected failsafe mode while the super-

script̂is used for the detected ones.
3This notation means that only one failure out of 14 is taken. The occurrence of two

of them is a system failure and it is already accounted in F1MKD.
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the BETS has failed silent, all BEI are blind and the failure mode expression

becomes:

F̃2MKD1noBETS = MKDuncovered(15) (6.3)

The failure mode is detected in case that it has occurred within the set

of the functioning BEI cards. The logic expression becomes:

F̂2MKD1 = ∨̇k=1...14[XBEI(k) ∧ MKDcovered(k)] (6.4)

MKDcovered(k) =
(
(15−k)

1

)
[MKDenergy ∨ PSP2] ∨

(
k
2

)
[MKDenergy]

∧
(
14
1!

)
[MKDsilent]

Again, this failure mode is not detectable if the BETS has failed silent.

F2MKD2: The system has failed due to an erratic trigger. This

failure mode is surveyed by the Re-Triggering System (RTS). It occurs if at

least one erratic has been generated in either one power trigger (PT2) or one

switch (SP2, SC2) in at least one of the 30 generator branches A and B per

LBDS system. The risk of leaving an erratic trigger uncovered at the source

is largely dominated by the probability that both the re-triggering lines have

failed, as it will be demonstrated in this Chapter, section 6.7. The logic

expression for F2MKD2 is:

F2MKD2 =

(
15

1

)
[PT2A ∨ PT2B ∨ SP2A ∨ SP2B ∨ SC2A ∨ SC2B] (6.5)

F2MKD3: The system has failed due to a failure in one power

trigger power supply. This failure mode is generated by the detected

failure of at least one power supply in the 30 power triggers of the MKD

system. The logic expression is:

F2MKD3 =

(
15

1

)
[PT3A ∨ PT3B] (6.6)

F3MKD: The surveillance has generated a false alarm. The system

fails safely for a false alarm if the BEI has internally generated a false alarm

or the beam energy acquisition, including the BEA4 and the voltage divider,

4The failure modes analysis of the BEA is done in section 6.8.
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Failure modes Type Compensation Detection

Driver primary

DP1 Fail to trigger Fail silent Redundancy Diagnostics

DP2 The driver fires erratically Failsafe No Re-triggering

Switch primary

PTSP1 The switch does not close Fail silent Redundancy Diagnostics

PTSP2 The switch closes erratically Failsafe No Re-triggering

Driver compensation

DC1 Fail to trigger Fail silent Redundancy Diagnostics

DC2 The driver fires erratically Failsafe No Re-triggering

Switch compensation

PTSC1 The switch does not close Fail silent Redundancy Diagnostics

PTSC2 The switch closes erratically Failsafe No Re-triggering

Redundant trigger path

RP1 Failed open Fail silent Redundancy Diagnostics

RP2 Erratic trigger Failsafe No Re-triggering

Power supplies

PTM Breakdown Failsafe No IS

HV Breakdown Failsafe No IS

PTC Breakdown Failsafe No IS

Power Trigger Controller

PTC1 Surveillance unavailable F. Silent No Diagnostics

PTC2 False alarm Failsafe No Diagnostics

PTC3 Erroneous ref. voltage Fail silent No Diagnostics

Table 6.4: Power trigger failure modes.

has failed. This latter failure assumes the availability of the BEI. The logic

expression is:

F3MKD =

(
15

1

)
[BEI2 ∨ [(BEA ∨ V D) ∧ ¬(BEI1 ∨ BEI2)]] (6.7)

6.3.1 The Power Triggers Failure Modes

The failure modes of the power trigger are shown in Table 6.4. They

combine together to obtain the failure modes PT1, PT2 and PT3, which

enter the expressions of some MKD and MKB failure modes.

PT1: The system is not able to trigger. This failure mode oc-

curs if the primary or the compensation circuits have failed in both modules

(DP1, RP1, PTSP1, DC1, PTSC1) or these are powered at the wrong voltage

setting (PTC3). In addition to this, there is the contribution of the unde-
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tected failure of the power-supplies (PTM-PS, HV-PS), which may occur if

the Power Trigger Controller PTC has failed silent (PTC1) before the failure

of the power supply (i.e. time priority). The logic expression is:

PT1 = PT1A ∨ PT1B ∨ PTC3 ∨ [(PTM ∨ HV ) ∧T (PTC1)] (6.8)

PT1A/B = [(DP1A/B ∧ RP1A/B) ∨ PTSP1A/B ∧ (DC1A/B ∨ PTSC1A/B)]

PT2: The system has generated an erratic trigger. An erratic

trigger may occur either in the primary or in the compensation circuit. The

logic expression is:

PT2 = PT2A ∨ PT2B (6.9)

PT2 = DP2A/B ∨ RP2A/B ∨ PTSP2A/B ∨ DC2A/B ∨ PTSC2A/B

PT3: The system has a power supply failure. A safe dump request

is generated when the PTC has detected a failure in the power supplies of

the PTC, the PTM and the HV capacitor.

PT3 = [(PTC ∨ PTM ∨ HV ) ∧ (XPTC)] ∨ PTC2 (6.10)

This failure is detected if XPTC = ¬(PTC1 ∨ PTC2 ∨ PTC3).

6.4 The MSD System Failure Modes

The failure modes for the extraction septa MSD are listed in Table 6.5.

They combine together in the system failure modes listed in Table 6.1. Due

to continuous surveillance of the status of the system, only failsafe modes of

type F2 and F3 exist.

F2MSD1: The system has failed due to an energy tracking failure.

The failure mode depends on the status of the local BEI card that is expressed

with the variable XBEI . The logic expression is:

F2MSD1 = PC1 ∧ XBEI (6.11)
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Failure modes Type Compensation Detection

Power converter

PC1 Slow failure Failsafe No BEI, BETS

PC2 Fast failure/power cut-off Failsafe No FMCCM

Magnet

M1 Field out of tolerance Failsafe No FMCCM

M2 Shorts developed slowly Fail silent No Diagnostics

PLC and thermo-switches

PLC PLC unavailable Fail silent BEI, FMCCM Diagnostics

TS1 Failed stuck-at Fail silent Sec. effects Diagnostics

TS2 Erratic trigger Failsafe No PLC

FMCCM

FC1 Unavailable Fail silent No Diagnostics

FC2 The switch closes erratically Failsafe No Re-triggering

V D Generic failure Failsafe No FMCCM

Beam Energy Data Acquisition and Interlocking

DCCT Generic failure Failsafe No BEI, BETS

BEA Error in data acquisition Failsafe No BEI, BETS

BEI1 Unavailable Fail silent No Diagnostics

BEI2 False alarm Failsafe No Self announcing

Table 6.5: MSD system failure modes.

The failure is undetected if XBEI = BEI1 and the event occurred before

PC1 (i.e. time priority). This is detected if XBEI = ¬(BEI1 ∨ BEI2). In

the case the BETS has failed silent, whatever the state of the BEI card, the

failure mode PC1 remains undetected.

F2MSD2: The system has failed due to a fast load change. The

failure mode depends on the status of the FMCCM:

F2MSD2 = (PC2 ∨
(

15

1

)
[M1]) ∧ XFMCCM (6.12)

The failure is undetected if XFMCCM = FC1 and the event occurred before

the failure (i.e. time priority). This is detected if XFMCCM = ¬(FC1∨FC2).

F3MSD: The surveillance has produced a false alarm. The logic

expression for this failure mode accounts for failures in the BEA-BEI, in

the FMCCM, in the voltage divider of the FMCCM, in the DCCT magnet

current measurement and in any failure of the thermo-switches that may lead
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Failure modes Type Compensation Detection

Power supplies

PSH1 MKBH PS failure under-voltage Failsafe No BEI, BET

PSH2 MKBH PS failure over-voltage Failsafe No BEI, BET

PSV1 MKBV PS failure under-voltage Failsafe No BEI, BET

PSV2 MKBV PS failure over-voltage Failsafe No BEI, BET

Power triggers

PT1 Power trigger not responding Fail silent Redundancy Diagnostics

PT2 Erratic trigger Failsafe No Re-triggering

PT3 Power supply failure Failsafe No IS

Charging circuits

CH1 Capacitor charging failure Failsafe No BEI, BET

CH2 Capacitor silent failure Fail silent No Diagnostics

CV1 Resonant circuit charging failure Failsafe No BEI, BET

CV2 Resonant circuit silent failure Fail silent No Diagnostics

Switches

SW1 Failed open Fail silent No Diagnostics

SW2 Switch erratic Failsafe No BEI, BET

Magnet

M Magnet failure Fail silent No Diagnostics

Beam Energy Data Acquisition and Interlocking

BEA Error in data acquisition Failsafe No BEI, BETS

BEI1 Unavailable Fail silent No Diagnostics

BEI2 False alarm Failsafe No Self announcing

V D Voltage divider failure Failsafe No BEI, BET

Table 6.6: MKB system failure modes.

to a false alarm. The logic expression is:

F3MSD = [(DCCT2 ∨ BEA) ∧ ¬(BEI1 ∨ BEI2)] ∨ BEI2 ∨ FC2 ∨
[(V D ∨

(
15
1

)
[M1]) ∧ ¬(FC1 ∨ FC2)] ∨

(
75
1

)
[TS2] ∧ ¬(PLC) (6.13)

The FMCCM may also generate false alarms due to high frequency noise

on the measured current signal. It is difficult to quantify this contribution

and it is considered to be beyond the aim of this study.

6.5 The MKB System Failure Modes

The failure modes of the MKB system are listed in Table 6.6. The fail-

ure modes at component level combine together in system failure modes, as
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listed in Table 6.1. The MKB has silent modes (F1), which can accumulate

undetected, and failsafe modes of the F2 and F3 type, which may issue a

dump request.

F1MKB: all MKBH or all MKBV magnets are unavailable. The

definition of the failure mode assumes that the loss of either the vertical or

the horizontal dilution is a failure concerning safety. The identified causes

of this failure mode are: a missed triggering of the power triggers (PT1),

the generators switch not closing (SW1), the capacitor unable to discharge

(CH2) and the magnet failure (M). The logic expression is:

F1MKB =

(
4

4

)
[F1MKBH ] ∨

(
6

6

)
[F1MKBV ] (6.14)

F1MKBH = (PT1 ∨ SW1 ∨ CH2 ∨ M) and F1MKBV = (PT1 ∨ SW1 ∨ CV2 ∨ M)

F2MKB1: The system has failed due to an energy tracking failure.

The logic expression for this failure mode depends on the status of the BEI

cards that perform the first level of interlocking before the BETS. If all BEI

are available then the energy tracking failure are properly detected whatever

the origin. If at least one BEI has failed silent then it is possible that sufficient

MKBs have failed to provoke a system failure. Analogously to the MKD

system, an over voltage in the generators (PSH2 and PSV2) is not tolerated

and is not covered by redundancy. This is accounted for in the following

expression:

F̃2MKB1 = ∨̇k=1...4[F̃2MKB1H(k)] ∨ ∨̇h=1...6[F̃2MKB1V (h)] (6.15)

F̃2MKB1H(k) = XBEIH(k) ∧ ∨̇n=0...k[
(

k
n

)
[F2MKB1H ] ∧

(
(4−n)
(4−n)

)
[F1MKBH ] ∨

(
k
1

)
[PSH2]]

F̃2MKB1V (h) = XBEIV (h) ∧ ∨̇m=0...h[
(

h
m

)
[F2MKB1V ] ∧

(
(6−m)
(6−m)

)
[F1MKBV ] ∨

(
h
1

)
[PSV2]]

F2MKB1H = (PSH1 ∨ CH1 ∨ SW2 ∨ PT2), F2MKB1V = (PSV1 ∨ CV1 ∨ SW2 ∨ PT2)

XBEIH/V (k) means that k BEI have failed silent (BEI1) before the surveyed

failure modes (i.e. time priority) and the others are functioning (¬(BEI1 ∨
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BEI2)). The contribution of over-voltage failure mode dominates all other

failures. In case the BETS is not available the BEI card is not useful any-

more and the failure mode expression (6.15) changes in a simpler expression

calculated for k = 4, h =6, without the term XBEIH(k) and XBEIV (h).

The failure mode turns to be safe and detectable by the BETS in case

the failure has occurred within the set of the functioning BEI. In this case,

the logic expression becomes:

F̂2MKB1 = ∨̇k=1...4[F̂2MKB1H(k)] ∨ ∨̇h=1...6[F̂2MKB1V (h)] (6.16)

F̂2MKB1H(k) = XBEIH(k) ∧
(
(4−k)

1

)
[F2MKB1H ∨ PSH2]

F̂2MKB1V (h) = XBEIV (h) ∧
(
(6−h)

1

)
[F2MKB1V ∨ PSV2]

If the BETS has failed silent the failure mode is not detectable.

F2MKB2: Failure in at least one power trigger power supply. The

logic expression accounts for at least one detected power supplies failures in

the power triggers of the MKBH and the MKBV:

F2MKB2 =

(
4

1

)
[PT3] ∨

(
6

1

)
[PT3] (6.17)

F3MKB: The internal surveillance has produced a false alarm.

This failure mode includes the failures of the BEA, the BEI false alarm and

the voltage divider. The BEA and the voltage divider failures are detected

if the BEI is available, that is ¬(BEI1 ∨ BEI2). The logic expression is:

F3MKB = F3MKBH ∨ F3MKBV (6.18)

F3MKBH/V =
(
k
1

)
[(V D ∨ BEA) ∧ ¬(BEI1 ∨ BEI2) ∨ BEI2]

where k = 4 for the MKBH and k = 6 for the MKBV.

6.6 The Triggering System Failure Modes

The failure modes of the triggering system are listed in Table 6.7. They

are combined in the system failure modes of Table 6.1. The triggering system
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Failure modes Type Compensation Detection

Client interface

C1 Stuck at no dump request Fail silent Redundancy Diagnostics

C2 Spurious dump request Failsafe No Self-announcing

Oscillator

O Loss of RF frequency Failsafe No Surveillance

Phase lock

PL Loss of RF phase Failsafe No Surveillance

Dump request storage

DR1 Unable to store a dump request Fail silent Redundancy Diagnostics

DR2 Storage of false dump request Failsafe No Self-announcing

Trigger output gate

TO1 The trigger is not transmitted Fail silent Redundancy Diagnostics

TO2 Spurious trigger Fail safe No Self-announcing

Trigger distribution

TD Loss of one TX to power trigger Fail silent Redundancy Diagnostics

Delayed trigger path

DT1 Cable/connectors failed Fail silent No Diagnostics

DT2 Loss of the link to one RTS line Fail silent Redundancy Diagnostics

Clock

CLK Clock failure Failsafe No Surveillance

Surveillance

S1 Unavailable Fail silent No Diagnostics

S2 False alarm Failsafe No Self-announcing

VME crate

V ME Power supplies and fans failure Failsafe No Self-announcing

Table 6.7: Triggering system failure modes.

has fail silent modes (F1) and failsafe modes (F2 and F3 type), which may

issue a dump request. As an assumption, all functions implemented in the

Field Programmable Gate-Array (FPGA) are assumed to fail independently.

The realistic scenario is very difficult to analyse and is not expected to lead

to significantly different results.

F1TRG: The system is not able to trigger to an external dump

request. The identified causes are: the failure of the client interface (C1),

the missed storage of the dump request (DR1), the failure of the trigger

output gate (TO1) in both trigger generators in combination with the failure

of the re-triggering path (DT ). The logic expression is:

F1TRG = F1TRG−A ∧ F1TRG−B (6.19)
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F1TRG = C1A/B ∨ [(DR1A/B ∨ TO1A/B) ∧ DT ]

F2TRG1: The system has generated a spurious trigger. The identified

causes of this failure mode are a detected synchronization error (CLK,O, PL),

an erratic in the client interface (C2), in the dump request storage unit (DR2)

or in the trigger output gate (TO2). Part of this failure is self-announcing and

part is failsafe, which depends on the status of the synchronization surveil-

lance XSY NC in branches A and B. The logic expression is:

F2TRG1 = F2TRG1−A ∨ F2TRG1−B (6.20)

F2TRG1−A/B = C2A/B ∨ [(CLKA/B ∨OA/B ∨PLA/B)∧XSY NCA/B ]∨DR2A/B ∨TO2A/B

The synchronization error is detected if XSY NCA/B = ¬(S1 ∨ S2).

F2TRG2: The system has generated an asynchronous trigger. This

failure modes occurs if at least one unit among the oscillator, the timing or

the internal clock has failed undetected. The logic expression is:

F2TRG2 = F2TRG2−A ∨ F2TRG2−B (6.21)

F2TRG2 = (CLKA/B ∨ OA/B ∨ PLA/B) ∧T XSY NCA/B

This failure is undetected if the variable XSY NCA/B = S1A/B and this failure

occurred before the surveyed failures (i.e. time priority).

F3TRG: The system has generated a false alarm. The logic ex-

pression for F3TRG is the false alarm of the internal surveillance or detected

failures in the VME crate:

F3TRG = V ME ∨ SA2 ∨ SB2 (6.22)

The failure of the VME crate concerns the system unavailability only. From

the point of view of safety, a possible concern is represented by the internal

surveillance that misses the failure of the VME power supplies. This contri-

bution is negligible. Moreover, the triggering system would likely detect this

event indirectly as a synchronization error.
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Failure modes Type Compensation Detection

Input channel

IN One erratic trigger source uncovered Fail silent Redundancy Diagnostics

Output channel

OUT Loss of output to one power trigger Fail silent Redundancy Diagnostics

Re-triggering line

L Failure of one re-triggering line Fail silent Redundancy Diagnostics

V ME Power supplies and fans failure Failsafe No Self-announcing

Table 6.8: Re-triggering system failure modes.

6.7 The Re-triggering System Failure Modes

The failure modes of the re-triggering system are listed in Table 6.8 and

contributes to the the silent failure mode (F1) in Table 6.1. This corresponds

to the complete unavailability of the system, which is defined as the loss of

both the re-triggering lines A and B:

F1RTS = LA ∧ LB (6.23)

Another risk concerns the loss of the coverage of the erratic trigger at the

source where the current is picked up. To demonstrate that this is actually a

secondary risk with respect to (6.23), it is necessary to define the re-triggering

path. A re-triggering path consists of the input channels that covers the

erratic trigger at the source plus the re-triggering lines leading the signal to

the re-triggering box connected to the power triggers. A re-triggering action

is successfully completed if there are enough re-triggering paths available to

re-trigger at least 14 MKD generators. The erratic triggers originated in the

power triggers are largely covered as they occur upstream all re-triggering

paths. The likelihood of missing one of them is absolutely negligible. The

other two sources of erratic triggers (primary and compensation circuits) are

covered by two independent input channels, again resulting in a negligible

risk of missing the erratic trigger. For this reason, whatever the source of

the erratic trigger is, the failure of the re-triggering lines dominates all other

possible failure modes within the re-triggering system.
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Failure modes Type Local detection External detection

Reference voltage (0,10V)

REF1 Incorrect reference voltage Failsafe Voting BETS

MPX analog multiplexer

AS1 Multiplexer stuck at an input Failsafe Voting BETS

ADC, analog to digital converter

ADC1 Incorrect digital output Failsafe Voting BETS

Averaging module (16 samples)

AV1 Incorrect output Failsafe Voting BETS

Transmission

TX1 Incorrect transmission Failsafe RX surveillance Voting, BETS

DCCT, current measurement

DCCT Incorrect output Failsafe Voting BETS

Table 6.9: Beam Energy Acquisition failure modes.

6.8 The BEMS Failure Modes

The failure modes for the BEA and the BEMS are listed in Table 6.9

and Table 6.10 [40]. Only failsafe modes F2 and F3 have been identified5

and listed in Table 6.1. The ‘compensation’ column is not useful for these

systems and it is replaced by a column including the external detection of the

failure mode (if any). F2BEMS: The system delivers the wrong beam

energy reference. This failure is mainly due to errors in the conversion of

the measured dipole current to beam energy and its transmission. The logic

expression is:

F2BEMS = (

(
4

1

)
BEAF2 ∧ XV T ) ∨ BEMF2 (6.24)

BEAF2 = (DCCTx ∨ DCCTy) ∨ (REF1 ∨ AS1 ∨ AV1 ∨ ADC1) ∨ TX1

BEAF2 is the failure of the BEA card for which the system delivers the wrong

beam energy. The failure is undetected if XV T = V T2A∧V T2B and the event

occurred before the system failure occurs (i.e. time priority). On the con-

trary, the failure mode is detected if XV T = ¬(V T1A∨V T2A)∨NOT (V T1B ∨
V T2B).

5The failure modes of F1 type, for example those concerning an error in the look-

up table for the energy conversion, have been excluded from the analysis because of the

rearming procedures that make their likelihood negligible.
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Failure modes Type Local detection External detection

RX data receiver

RX1 Invalid format (CRC) Failsafe RX surveillance Voting, BETS

RX2 No data, 1ms timeout Failsafe RX surveillance Voting, BETS

RX3 Wrong calculated current value Failsafe Voting BETS

RX4 No value calculated (timeout) Failsafe Watchdog Voting, BETS

RX interlocking

RXD1 False alarm Failsafe Self-announcing

RXD2 Unavailable Fail silent Diagnostics

Voter interlocking

V T1 False Alarm Failsafe Self-announcing

V T2 Stuck at no dump request Fail silent Diagnostics

Watchdog timer

WDT1 False Alarm Failsafe Self-announcing

WDT2 Unavailable Fail silent Diagnostics

Averaging module

AV2 Incorrect output Failsafe BETS

AV3 No value calculated (timeout) Failsafe Watchdog

Current to beam energy reference conversion module

ER1 Incorrect output Failsafe BEI

ER2 No value calculated (timeout) Failsafe Watchdog

Transmission, ANYBUS

TX2 Incorrect coding Failsafe BETS

TX3 Incorrect transmission Failsafe BETS

TX4 No transmission Failsafe BETS

Table 6.10: BEMS failure modes.
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BEMF2 is due to a BEM failure for which the incorrect beam energy is

delivered. Again, this failure is possible only if the internal surveillance has

failed silent before. The expression for the undetected failure is:

B̃EMF2 = [(RXA1 ∨ RXA2) ∧T XRXDA] ∨ [(RXB1 ∨ RXB2) ∧T XRXDB ] ∨ [(RXA4 ∨

RXB4 ∨ AV3 ∨ ER2) ∧T XWDT ] ∧T (XV T )

where XV T = (V T2A ∧ V T2B), XRXD = RXD2, XWDT = WDT2. On the contrary,

the expression for the detected failure is:

B̂EMF2 = [(RXA1 ∨ RXA2) ∧ (XRXDA ∨ XV T )] ∨ [(RXB1 ∨ RXB2) ∧ (XRXDB ∨

XV T )] ∨ [(RXA4 ∨ RXB4 ∨ AV3 ∨ ER2) ∧ (XWDT ∨ XV T )]

where XV T = ¬(V T1A ∨ V T2A) ∨ ¬(V T1B ∨ V T2B), XWDT = ¬(WDT1 ∨ WDT2),

XRXDA = ¬(RXD1A ∨ RXD2A) and XRXDB = ¬(RXD1B ∨ RXD2B).

F3BEMS: The system has generated a false alarm. The logic ex-

pression for this failure mode accounts for false alarms in the surveillance:

F3BEMS = RXDA1 ∨ RXDB1 ∨ V TA1 ∨ V TB1 ∨ WDT1 (6.25)

6.9 The BETS Failure Modes

The failure modes of the BETS are listed in Table 6.11 [40] and combine

together in system failure modes as listed in Table 6.1. The system can fail

silent (F1 type) or failsafe (F3 type) with a dump request.

F1BETS: The system is blind to powering failures. The failure mode

accounts for those failure modes that make the system unable to detect an

energy tracking error, whatever the source is. This corresponds to the fail

silent mode of the BEC module:

F1BETS = BEC1 (6.26)

F3BETS: The system has generated a false alarm. This failure mode

accounts for all detected internal failure modes in the BEMS and the BEC6.
6This is classified as a false alarm because the unavailability of a surveillance devices

does not directly affect safety.
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Failure modes Type Local detection External detection

BEI RX data receiver

RX1 Invalid format (CRC) Failsafe RX surveillance Voting, BETS

RX2 Invalid format from BEAs (CRC) Failsafe RX surveillance Voting

BEI RX interlocking

RXD1 False alarm Failsafe Self-announcing

RXD2 Unavailable Fail silent Diagnostics

BEI averaging

IC1 Incorrect output Failsafe Voting

BEI conversion

ER3 Incorrect output Failsafe Voting

BEI voter

V T1 False Alarm Failsafe Self-announcing

V T2 No detection, voter failure Fail silent Diagnostics

BEC beam energy controller

BEC1 Stuck-at no dump request Fail silent Diagnostics

BEC2 False alarm Failsafe Self announcing

BEMC for comparison

F2BEMS Wrong energy reference Failsafe IS BEI

F3BEMS Internal false alarm Failsafe Self-announcing

Table 6.11: BETS failure modes.

The failure of the VME crate that houses all BEI cards is also included.

F3BETS = F2BEMS ∨ F3BEMS ∨ BEC2 ∨ V ME (6.27)

There are two failure modes of the BEI cards: failed silent (BEI1) and

false alarm (BEI2). The first failure mode is the silent failure of the voter,

namely BEI1 = V T2. The second failure mode corresponds to any internally

detected fault:

BEI2 = [RX1 ∨ RX2 ∧ [XRXD ∨ XV T ] ∨ [IC1 ∨ ER3 ∧ XV T ] ∨ V T1 ∨ RXD1

where XV T = ¬(V T1 ∨ V T2), and XRXD = ¬(RXD1 ∨ RXD2).



Chapter 7

Dependability Analysis of the

LHC Beam Dumping System

This chapter contains the dependability analysis of the LHC beam dump-

ing system for one year of operation and different operational scenarios.

7.1 From FMECA to Failure Statistics

The logic expression of failure modes, obtained by FMECA in Chapter

6, are transformed into probabilities by applying failure rates statistic at

component level. The failure rates are available in manuals, handbooks and

manufacturer’s datasheets, as average value with 90% confidence level. For-

mulas exist that adjust them to the operating conditions [66] and apportion

to the failure modes that are foreseen for each component [34, 67]. When

deriving these figures, some approximations can be applied. For example, the

failure rate found in literature for the solid-state switch of the MKD genera-

tor is 100 FIT (1 FIT = 10−9 failures/h). Taking into account the operational

conditions, this is adjusted to 240 FIT and apportioned into 10% failed open

mode, 80% failed short mode and 10% slow drift in the electrical parame-

ter. The consequences of slow drifts are negligible due to the post mortem

diagnostics, and this quota can be redistributed to the other failure modes

117
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Operator Probability

AND A ∧ B PAPB

OR A ∨ B 1 − (1 − PA)(1 − PB)

NOT ¬ A 1 − PA

XOR A ∨̇ B PA + PB

k out of n
(
n
k

)
A

(
n
k

)
P k

A(1 − PA)n−k

AND priority A ∧t B
∫ t

0
PA(t)dPB(t)

Table 7.1: Logic operators and probabilities.

according to a conservative approach. Another approximation concerns the

statistical independence of failure modes. In the case of the switch the short

and open failure modes are mutually exclusive, therefore dependent, see the

models described in section 5.1. Nevertheless, the error from assuming them

to be independent is small and simplifies the calculations. In the present

study, similar approximations have been applied to almost all components.

Once every component failure mode has been attributed a failure rate, the

logical expression of the failure modes at system level are transformed into

probabilities. The probabilities expressions for the basic logical operators are

shown in Table 7.1 for two independent failure modes A and B. For more

complex logical expressions, the translation into probabilities may require

a pivoting decomposition. The pivoting resolves the ambiguities when a

logical term occurs twice or even more times in the expression. Disregarding

this aspect of computation would lead to an error because all terms would

be assumed independent even when they are not. For example, the logic

expression f(·) of the failure mode F is assumed to contain the failure mode

A at least twice. To apply pivoting with respect to the failure mode A

consists of splitting f(·) into two sub-expressions: f(A) that holds when the

A has occurred and f(Ā) that holds when A has not occurred. In doing

so, the ambiguity is resolved and the two expressions can be translated into

probabilities as follows:

P [(A ∧ f(A))∨̇(¬A ∧ f(Ā))] = PAPf(A) + (1 − PA)Pf(Ā) (7.1)

The final result of these mathematical passages is the distribution PF (t) of
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the random variable Time To Failure (TTF) of the system failure mode F or

its equivalent hazard function λ(t) defined in equation (3.1) of section 3.2,

where PF (t) = 1 − RF (t).

The passages from the FMECA to the calculation of the failure modes

statistics are illustrated for the MKD system. The calculations are identical

for the other components of the LBDS. The probability expression of the

failure mode F1MKD, derived from equation (6.1), becomes:

PF1MKD = 1 − 15(1 − PMKDsilent)
14 + 14(1 − PMKDsilent)

15 (7.2)

PMKDsilent = 1−(1−P 2
PT1)(1−P 2

SP1)(1−P 2
SC1)(1−P 2

CP2)(1−P 2
COS1−2)(1−P 2

COS2−2)PM

PPT1 = 1 − (1 − P 2
PTM )[1 −

∫ t

0
PPTC1∂(1 − (1 − PPTM−PS)(1 − PHV −PS))](1 − PPTC3)

PPTM = 1 − (1 − PPTSP1)(1 − PDC1)(1 − PPTSC1)(1 − PRP1PDP1)

The F2MKD1 failure mode is detectable or undetectable depending on the

status of the 15 BEI cards that survey this failure in the 15 MKD generators,

and on the status the BETS, which collects all BEI outputs and decides on

dumping the beam, see section 6.3, equation (6.2). The logical expression

for the undetected failure mode, given the BETS is functioning, is:

P̃F2MKD1 =
∑

k=1...15

(
15

k

)
(1 − PBEI1 − PBEI2)

15−k

∫ t

0

P k
BEI1∂P (k, t) (7.3)

where P (k, t) is a complex expression that describes the probability that an

energy tracking related failures may occur in the k uncovered MKD. Another

expression is obtained if the BETS has failed silent, see (6.3). In this case

the status of the BEI does not enter the formula that becomes:

P̃F2MKD1nobets = 1 − [1 − [1 − (1 − PMKDenergy)
15]14PMKDsilent]

[(1 − PMKDenergy)
15 + 15PMKDenergy)](1 − PPSP2)

15 (7.4)

The failure mode is safe if the failure has occurred within the set of the

functioning BEI. The probability expression for the detectable failure is:

P̂F2MKD1 =
∑14

k=0

(
15
k

)
(1 − PBEI1 − PBEI2)

15−kP k
BEI1

((1 − PMKDenergy)
15−k(1 − PPSP2)

15−k) (7.5)
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PMKDenergy =

1 − (1 − PPSP1)(1 − PPSOS1)(1 − PPSOS2)(1 − PCP1)
2(1 − PCOS1−1)

2(1 − PCOS2−1)
2

On the contrary, if the BETS has failed silent, this failure mode is not de-

tectable and its probability is zero.

The failure probabilities in the above expressions are quantified using the

statistics on failure rates at component level, see Appendix A. Results for the

MKD failure modes are shown in the plots of Figure 7.1. Where redundancy

exists, the failure mode rate starts at zero for t = 0, it reaches a maximum

and then tends to a finite asymptotic value, as it is the case of F1MKD,

see the first plot (top left) of Figure 7.1. Similar behavior is obtained when

surveillance and redundancy act together in the same failure mode, as it is

the case of F̃2MKD1, see the third plot of Figure 7.1. The asymptotic value

is zero because depends on the reliability of the surveillance, which tends

asymptotically to zero. The failure rate decreases with time for all detectable

failure modes F̂2MKD1, F2MKD3 and F3MKD, as shown in the second, sixth

and seventh plot of Figure 7.1. The asymptotic value is zero unless a self-

announcing quota exists, which is independent from surveillance. The failure

rate of F̃2MKD1nobets starts at a certain rate and therefore increases up to a

finite value1. The failure rate of F2MKD2 is constant because all sources of

erratic triggers are independent and add up with their constant contribution.

The failure rates for the failure modes of the MKD and the other LBDS

subsystems, see Table 6.1, are summarized in Table 7.2. They are given for

t = 0, the maximum value (if any), the asymptotic value and the value for t

= 10 h, which is an average mission time used in the next section.

1A residual non zero failure rate for t = 0 is due to the over voltage failures that are

not covered by redundancy.
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Failure modes and rates (1/h) Rate at 

T=10 h 

Rate at 

T=0 h 

Maximum 

Rate          T [h] 

Rate 

Asymptote 

for t → ∞ 

F1MKD  < 14 MKD available 8.4×10
-11

 0 1.18×10
-5

   1.4×10
6
 8.3×10

-6
 

~ 1.5×10
-11

 0 6×10
-8

     57720 0 

~nobets 7.55×10
-6

 7.5×10
-6

 - 7.3×10
-5

 

F2MKD1  Energy tracking 

^ 7.7×10
-5

 7.8×10
-6

 - 0 

F2MKD2 Erratic trigger 9.8×10-6 9.8×10-6 9.8×10-6 9.8×10-6 

F2MKD3 Power supplies failures 3.89×10
-5

 3.9×10
-5

 - 0 

F3MKD IS fails safely 5.39×10
-5

 5.4×10
-5

 - 6×10
-6

 

~ 5×10
-12

 0 3.7×10
-8

     2×10
5
 0 F2MSD1 Energy tracking  

^ 4.99×10
-6

 5×10
-6

 - 0 

~ 1.3×10
-11

 0 1.13×10
-7

   3.2×10
5
 1×10

-7
 F2MSD2 Fast load changes 

^ 6.49×10
-6

 6.5×10
-6

 - 0 

F3MSD IS fails safely 1.05×10
-4

 1.05×10
-4

 - 1×10
-4

 

F1MKB No MKBH or no MKBV  4.8×10
-23

 0 1.4×10
-6

   1.94×10
6
 3×10

-7
 

~ 5×10
-12

 0 4.6×10
-8

     3.2×10
5
 0 

~nobets 2.5×10
-6

 2.5×10
-6

 8.25×10
-6

   8.3×10
5
 5.3×10

-6
 

F2MKB1 Energy tracking 

^ 4.44×10
-5

 4.45×10
-5

 - 0 

F2MKB2 Power supplies failures 1.29×10
-5

 1.3×10
-5

 - 0 

F3MKB IS fails safely 3.47×10
-5

 3.48×10
-5

 - 2×10
-6

 

F1TRG No trigger 2.8×10
-13

 0 5.5×10
-8

   4.37×10
6
 8×10

-9
 

F2TRG1 Spurious triggers 8.58×10
-7

 8.6×10
-7

 - 0 

F2TRG2 Synchronization error 4.4×10
-13

 0 6.35×10
-8

   4.6×10
6
 0 

F3TRG IS fails safely 2.206×10
-5

 2.207×10
-5

 - 2.2×10
-5

 

~ 3×10
-17

 0 2.7×10
-8

     3.8×10
6
 3×10

-7
 F2BEMS Energy tracking 

^ 1.19×10
-5

 1.2×10
-5

 - 0 

F3BEMS  IS fails safe 5×10
-7

 5×10
-7

 5×10
-7

 5×10
-7

 

F1BETS Unable to trigger a dump 1×10
-7

 1×10
-7

 1×10
-7

 1×10
-7

 

F3BETS BET fails safe 3.53×10
-5

 3.5×10
-5

 - 2.3×10
-5

 

F1RTS  Unable to re-trigger 2.2×10
-12

 0 - 5.19×10
-7

 

 

Table 7.2: The rates of the LBDS failure modes.
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Figure 7.1: The rates of the MKD system failure modes.
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7.2 Dependability Modeling of the LBDS

7.2.1 The State Transition Diagrams

A state transition diagram representing the failure process of the LBDS is

deduced from the models for not recoverable safety presented in section 5.4,

see Figure 7.2. The BETS and the Re-Triggering System (RTS) are explicitly

modeled with their failure rates2. Six states in total are obtained:

• X0: the system is available.

• X1: the system is available without the BETS.

• X2: the system is available without the RTS.

• X3: the system is available without the BETS and the RTS.

• X4: the system has failed safe.

• X5: the system has failed unsafe.

The model describes the system during the mission time, when the beam

is circulating. Once the beam is dumped and the mission is concluded, the

system moves into the check phase and post mortem diagnostics is performed.

In this phase the system cannot fail and all states are recovered to the initial

state X0 with the exception of X5 that is absorbing, see Figure 7.3. Diag-

nostics and fault recovery aims at restoring full redundancy in the system.

If this is the case, all failure rates go back to the value assumed for t = 0,

the checks become regeneration points for the failure process and the system

is recovered to an ‘as good as new state’. In the worst case, if diagnostics is

not performed, the redundancy is not restored and the system is said ‘as bad

as old’. The realistic scenario is supposed to be very close to the as good as

new case.

2The other Internal Surveillance (IS) is implicitly accounted for in the mechanism that

governs the state transitions like in the three state model of subsection 5.4.3.
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Figure 7.2: The state transition diagram during the mission time.

Figure 7.3: The state transition diagram during checks.
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Rate Expression

λF1 λ̃F1MKD + λ̃F1MSD + λ̃F1MKB + λ̃F1TRG

λ̃F1MKD λF1MKD + λ̃F2MKD1(1 − x1 − x3)

λ̃F1MSD λ̃F2MSD1 + λ̃F2MSD2

λ̃F1MKB λF1MKB + λ̃F2MKB1(1 − x1 − x3)

λ̃BETS λ̃F2MKD1nobets + λ̂F2MSD1 + λ̃F2MKB1nobets + λ̂F2BEMS

λRTS λF2MKD2

λF2 λ̂F2MKD3 + λ̂F2MSD2 + λ̂F2MKB2 + λ̂F2TRG2 + λ̂F2BEMS + λF3

λF3 λF3MKD + λF3MSD + λF3MKB + λF3TRG + λF3BEMS + λF3BETS

λ̂BETS λ̂F2MKD1 + λ̂F2MSD1 + λ̂F2MKB1 + λ̂F2BEMS

Table 7.3: Expressions used in the definition of the state transition rates.

Each state transition in the model of Figure 7.2 is characterized by its

sojourn time, which is a random variable with rate λ(t), calculated on the

basis of the failure rates of Table 7.2. During mission time, the transitions

within the available states X0, X1, X2 and X3 are governed by the failures

of the BETS and the RTS systems. All other transitions lead outside these

four states, either to the unsafe state X5 (λFU/Xk) or to the safe state X4

(λFS/Xk).

The transition rate λFU/Xk is defined as the rate from the state Xk (k =

0, 1, 2, 3) to the state X5. A binary variable xk is introduced, which is 1 if

the system is in the state k and 0 elsewhere. The formula for λFU/Xk is:

λFU/Xk = λF1 + (x1 + x3)λ̃BETS + (x2 + x3)λRTS (7.6)

where λF1, λ̃BETS and λRTS are defined in Table 7.3. The rate λF1 is the

common term of the unsafety rate, independent from the state of the system.

It accounts for the likelihood that the system has failed unsafe either because

of the accumulation of silent failures above a certain threshold, or due to

failsafe modes undetected by the internal surveillance and therefore turned

to be silent. The other two contributions depend on the status of the BETS

and the RTS, which is accounted for by the variables xk. They give their

contribution only if the respective surveillance has failed silent so that the

highest unsafe transition rate is found in X3, for which the BETS and the



126 7. Dependability Analysis of the LHC Beam Dumping System

RTS have both failed silent, see λFU/X3 in Figure 7.4. All transition rates

leading to the unsafe state X5 are increasing with time3.

The transition rate λFS/Xk is defined as the rate from Xk (k = 0, 1, 2, 3)

to the state X4. Again, a binary variable xk is introduced, which is 1 if the

system is in the state k and 0 elsewhere. The formula for λFS/Xk is:

λFS/Xk = λF2 + (1 − x2 − x3)λ̂BETS + (1 − x1 − x3)λRTS (7.7)

where λF2, λ̂BETS and λRTS are defined in Table 7.3. The rate λF2 is the

common term of the failsafe rate similarly to λF1. It accounts for the system

failsafe modes detected by internal surveillance, the self-announcing failures

and the internal false alarms. The other two contributions depend on the

status of the BETS and the RTS, which is accounted for by the variables xk.

They give their contribution only if the respective surveillance is available so

that the highest transition rate is found for X0, for which both BETS and

RTS are available, see λFS/X0 in Figure 7.5. All transition rate leading to

the safe state X4 are decreasing with time4.

The probability distribution in X = {X0, X1, X2, X3, X4, X5} at time

t is the state probability vector p(t) = [p0(t), p1(t), p2(t), p3(t), p4(t), p5(t)].

The calculation of p(t) requires the solution of the Kolgomorov differential

equations, see equation (4.10) of section 4.3:

d

dt
p(t) = p(t)




−λ0 λF1BETS λF1RTS 0 λFS/X0 λFU/X0

0 −λ1 0 λF1RTS λFS/X1 λFU/X1

0 0 −λ2 λF1BETS λFS/X2 λFU/X2

0 0 0 −λ3 λFS/X3 λFU/X3

0 0 0 0 0 0

0 0 0 0 0 0




(7.8)

Due to the failure rates that are not constant, the equation (7.8) describes a

Non-Homogeneous Continuous Time Markov Chain (NHCTMC). The (7.8)

3This is due to the additional contribution of the failure modes of F2 type remained

undetected because of the surveillance failure and turned to be unsafe.
4They lose the undetected part that has turned to be unsafe.
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Figure 7.4: Transition rates [1/h] leading to the unsafe state X5.
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Figure 7.5: Transition rates [1/h] leading to the safe state X4.
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is solved for the initial state probability distribution [1,0,0,0,0,0] at t = 0.

The diagonal elements of the transition matrix Q are combination of the

defined system failure modes, that is:





λ0 = λFS/X0 + λFU/X0 + λF1RTS + λF1BETS

λ1 = λFS/X1 + λFU/X1 + λF1RTS

λ2 = λFS/X2 + λFU/X2 + λF1BETS

λ3 = λFS/X3 + λFU/X3

(7.9)

Safety and availability are the dependability attributes of interest for the

LBDS. They are defined in the state space X. Safety S(t) is the probability

that the system never moves into the state X5. Availability A(t) is the

probability to dump the beam while being in one of the states X0, X1, X2 or

X3. In other words, during one mission time, safety is the system availability

plus the probability the system has failed safely into X4, that is:

{
S(t) = 1 − p5(t)

A(t) = S(t) − p4(t)
(7.10)

For one year of operation, safety is the probability of never moving into

the unsafe state X5. The availability can be related to the number of mission

aborts or false beam dumps issued per year, which is a random variable with

its probability distribution. The post mortem diagnostics after the beam

dump during the check phase is totally irrelevant from the point of view of

safety calculation though it may affect the machine availability in a broader

sense.

7.2.2 Operational Scenarios

The operational scenario consists of missions and checks that regularly

alternate until either the system has failed unsafe or one year of operation is

reached. This can be modeled as a timed stochastic Petri net [25], see Figure

7.6 and Table 7.4. One token marks the states of the net by moving in five

places {MISSION, CONTINUE, CHECK, STOP, COUNTER}. The system
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Transition Type Guard

TDR Random -

TC Random -

TFD Instantaneous X = X4

TNo Instantaneous (X = X5) OR 1 year

TY es Instantaneous X = {X0,X1,X2,X3}

Table 7.4: The transitions of the Petri net.

waits in the place MISSION for the firing of the random transition TDR,

corresponding to an external dump request, or the instantaneous transition

TFD, that fires when the status X of the system moves to X4. After the

beam dump, the token moves into the place CONTINUE. Two instantaneous

transitions can be enabled depending on the status X of the system. TNo is

enabled if X = X5 or one year of operation is reached5 and the token moves

to STOP. TY es is enabled if X = {X0, X1, X2, X3} and the token moves to

CHECK. The token also moves to the CHECK place in case of false dump.

After leaving the CHECK place, one token is deposited into COUNTER and

another moves to MISSION for the start of a new operation. The resulting

marking of the Petri net identifies the system when this is running a mission

or performing checks. For example, the marking < 1, 0, 0, 0, k > means that

the system is running the k+1 mission after k safe missions. The Petri net

and the subordinated failure process in X are mutually dependent, as attested

by the guards that enable the transitions of the Petri net depending on X,

and the dynamic of the failure process that changes depending on the phase

executed. The combination of the Petri net and the subordinated processes

results in the state transition diagram of Figure 7.7. The macro state XAk

is the set of available states X0, X1, X2 and X3 for the mission k.

Three different operational scenarios (OP) are assumed for the depend-

ability analysis of the LBDS. They depend on the characterization of the

5This event can be related to the number of performed missions in COUNTER or to

a variable T, i.e. the cumulated operational time, which can be represented as a reward

function in the Petri net.
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Operational scenario Mission length Regeneration at check

OP1 Deterministic Yes

OP2 Deterministic No

OP3 Random Yes

Table 7.5: The operational scenarios.

mission time (deterministic vs. random) and the check (regeneration points

vs. no regeneration points), see Table 7.5. For the three operational scenarios

considered, an analytical description exist. OP1 and OP3 describe stochas-

tic Markov regenerative processes (the OP1 is by far simpler to analyse than

OP3), see section 4.4. In OP2 the solution can be obtained by reconfigur-

ing the Markov chain (i.e. transition matrix and initial state probability) at

every new mission6. The equation for the description of the various models

have been solved numerically within the Mathematica R© framework [94].

7.3 The Operational Scenario 1

7.3.1 Dependability Analysis

The dependability analysis of the first operational scenario is based on

the following assumptions:

• (A1) 400 missions, 10 hours each, alternate to 2h hours of checks for

200 days of operation.

• (A2) The system is recovered to an ‘as good as new’ state after each

check.

• (A3) Operation is stopped if the system has failed unsafe.

The assumption A1 defines a deterministic operational scenario. The 10

hours mission length accounts for an average exploitation of the machine,

6The case study without regeneration points and random mission can only be treated

by Monte-Carlo simulation, which also applies to the other three cases. This last scenario

is not taken into consideration.
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Figure 7.8: The unsafety rate (left) and the unsafety of the LBDS (right).

while the 2 hours check accounts for a reasonable interval including the post

mortem diagnostics (up to a few minutes) and the rearming procedures. The

assumption A2 states that the failure processes are repeated identically for

each mission. As a consequence, it is possible to solve the Kolgomorov equa-

tions (7.8) for one mission time instead of for 400 missions, and arrange the

result like in equation (5.38) of section 5.4.2. The formula used to calculate

the unsafety U(t) = 1 − S(t) for one year of operation is:

{
U(t) = 1 − S(τ)S(10)k−1 k > 0

U(t) = 1 − S(t) k = 0
(7.11)

where t = 10k+τ and 0 ≤ τ ≤ 10. The time between two operational periods

does not enter the calculation, as during this period the system cannot fail.

The unsafety U(t) versus the number of mission is shown in Figure 7.8 (right).

It starts at zero for k = 0, and increases to 2.418 × 10−7 for k = 400,

which is one year of operation. The MTTUF, calculated in equation (5.39),

is 1.65 × 1010 hours and corresponds to a rate of 6.05 × 10−11/h that is

largely SIL4. The unsafety rate or residual hazard rate is shown in Figure

7.8 (left) for 10 consecutive missions, check downtimes excluded. The effect of

diagnostics results in the regeneration of the unsafety rate after each mission,

which becomes periodic.
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Figure 7.9: Probability distribution of the number of false dumps for one

year of operation.

The expected number of false dumps N is Binomially distributed with

parameter p = p4(t) for t = 10 h and 400 missions:

P [N = n] =

(
400

n

)
pn(1 − p)400−n (7.12)

The resulting distribution is shown in Figure 7.9. The average value and

the standard deviation are respectively 400 × p and
√

[400(1 − p)p], which

results in 4.06 false dumps per year, with ±2.03 as standard deviation (80%

confidence level).

7.3.2 Criticality Analysis

The system unsafety can be apportioned to the various subsystems in

order to identify those that take the largest contribution. The unsafety is

rewritten as U(t) = U0(t)+U1(t)+U2(t)+U3(t), where Uk(t) is the probability

of failing unsafe from one of the four states X0, X1, X2 and X3. For one year

of operation, U0 = 2.147×10−7, U1 = 0.271×10−7 and U2 = 0.88×10−11. U3

is negligible being several order of magnitude smaller than U2. Each Uk (k =

0, 1, 2, 3) is apportioned to the LBDS sub-systems. The probability that a

subsystem failure is at the origin of the failure of the system is an a-posteriori

conditional probability and can be calculated in good approximation using

the average of the failure rates over a mission time interval. For example, the
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conditional probability that the MKD system is the cause of the transition

to X5 from X0 is:

Π0
MKD = (ΛF1MKD + ΛF2MKD1)/ΛFU/X0 (7.13)

where ΛY = 1
10

∫ 10

0
λY dt is the average failure rate over one mission time

interval. The fraction of U(t) caused by the MKD system is:

UMKD =
∑

k=0,1,2,3

Πk
MKDUk (7.14)

so that the MKD system contributes to the unsafe failure of the LBDS with

the percent ρMKD = UMKD/U . Identical calculations are made for the other

subsystems.

The resulting apportionment of unsafety to the LBDS components is

shown in Table 7.6. In total, 99.5% of unsafety is due to the complete

magnets assembly (i.e. magnets plus power converters) with the remaining

0.5% due to the triggering and the beam energy tracking electronics. The

largest contribution is due to the MKD system, which is responsible for 75%

of unsafety. The analysis can be continued by investigating the criticalities

inside each sub-system. The MKD bottlenecks for safety are the magnet

failure, which is masked by 14 out of 15 redundancy, and the over-voltage

of the power supplies in the generator, which is surveyed but not masked by

redundancy. The MSD bottleneck is the short-circuit in the magnet coil or

in the power converter, which leads to a fast magnet current change. The

MKB bottleneck is the over-voltage of its generators, which is monitored

but not masked. The trigger output gate is the bottleneck of the triggering

system, which is masked by 1 out of 2 redundancy. The critical part of the

BEMS is the averaging of the dipole currents, the beam energy conversion

and the transmission to the MKD and MKB generators, which remain totally

uncovered as soon as the BETS has failed silent.

In a similar way, the false dumps can be apportioned to the LBDS sub-

systems. Results are shown in Table 7.7. The expected biggest source of

false dumps is again the MKD system (61%), followed by the MKB (20%),
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System From X0 From X1 From X2 Total%

MKD 78.14 48.8 ∼= 1 74.8

MSD 16.9 32.4 9.8 × 10−6 18.6

MKB 4.7 16.3 2.5 × 10−6 6.1

BEMS 0 2.5 0 0.27

Triggering 0.26 9.0 × 10−7 1.4 × 10−7 0.23

Table 7.6: Apportionment of unsafety to the LBDS components.

MKD MSD MKB Triggering BEMS BETS

2.47 (61.4%) 0.46 (11.4%) 0.83 (20.6%) 0.08 (2.16%) 0.05 (1.25%) 0.14 (3.5%)

Table 7.7: Apportionment of false dumps to the LBDS components.

the MSD (11%) and the electronics (triggering system, BEMS and BETS).

At component level, the largest contribution to false dumps is expected from

the failure of the power trigger power supplies with about 2 per year. A

negligible contribution is expected from the fast current change in the MSD,

with 0.02 per year, and the detected synchronization failures in the triggering

system. The false dumps can also be apportioned with respect to the failure

modes. Four types of failures are considered: the energy tracking failures,

the erratic triggers, the failure modes detected by Internal Surveillance (IS)

and the false alarms. The results are shown in Table 7.8. Both energy track-

ing failure and erratic triggers are expected to give a minor contribution to

the false dumps. The erratic triggers also represent the expected number of

asynchronous dumps per year, ∼= 0.4 in total. A significant fraction of false

dumps is calculated to come from false alarms in the surveillance systems,

about 1 per year.

Energy tracking Erratic triggers Others IS False alarms

0.55 (13.6%) 0.39 (9.6%) 2.1 (51.95%) 1 (24,7%)

Table 7.8: Apportionment of false dumps to the failure modes.



136 7. Dependability Analysis of the LHC Beam Dumping System

7.3.3 Sensitivity Analysis

The aim of sensitivity analysis is to quantify the effect on the system de-

pendability if some of the fault tolerant design features were totally or par-

tially removed, provided the functionality is not compromised. It also investi-

gates the sensitivity of the calculated safety and number of false dumps with

respect to the model parameters, i.e. the component failure rates. Through

sensitivity analysis it is also possible to discover if safety and availability,

which are a design trade-off, are well balanced in the system.

Sensitivity to the Fault Tolerant Design

Redundancy exist at various levels in the MKD system, see Figure 2.3.

At high level 14 out of 15 redundancy permits to withstand the failure of one

MKD assembly (i.e. magnet and/or generator). The removal of one MKD

assembly would results in an unsafety of 0.011 per year, namely 2.75×10−6/h

that is SIL1, for a number of false dumps of 3.89 on average per year. At

lower level, one generator branch can be removed inside each MKD generator

without compromising its functionality. The resulting unsafety is 2.34×10−6

per year, which is still SIL4, while the number of false dumps decreases7 to

3 per year. This result demonstrates that redundancy is more important if

applied at system level (i.e. 14 out of 15) than at sub-system or component

level. A further demonstration is given for the power triggers of the MKD and

MKB kickers, see section 2.2.1. The removal of one the two modules working

in parallel in the power trigger is less important because it is embedded in

1 out of 2 generator branches within 14 out of 15 redundancy of the MKD

system. The unsafety remains practically unchanged, 2.420× 10−7 per year,

with a saving of 0.2 false dumps per year. Redundancy can also be removed

from the triggering system using one instead of the two trigger generators in

parallel, see Figure 2.8. In this case the unsafety increases to about 4.7×10−4

7The saved fraction of false dumps is less significant if considered in the global context

of the machine protection system, see Chapter 8.
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Case studied Unsafety/year False dumps/year

Default scenario 2.41 × 10−7 (> SIL4) 4.06

No redundant power triggers 2.34 × 10−6 (SIL4) 3.02

No redundant triggering sys. 4.68 × 10−4 (SIL2) 4.02

14 MKD 0.011 (SIL1) 3.89

No BETS 0.059 (< SIL1) 3.40

No RTS 0.32 (< SIL1) 4.06

Table 7.9: Sensitivity to fault tolerant design and surveillance.

per year, which is 1.17× 10−7 per hour. This is SIL2 and is not acceptable8.

The results are also sensitive to on-line surveillance of the energy tracking

failures in all magnet power converters and the erratic triggers in the MKD.

The removal of the BETS and the BEI-BEA cards, used for analysing the

signals from the magnet power converters, leaves the system uncovered with

respect to any energy tracking failure. Only the BEMS is kept for the beam

energy measurement and distribution. This scenario is described by equation

(7.8) for an initial state probability distribution [0,1,0,0,0,0] corresponding

to the state X1. The unsafety would increase to 0.059 per year, namely

1.4× 10−5/h, which is not even SIL1. If the re-triggering system is removed,

any erratic trigger in the MKD becomes unsafe. This scenario is described

by equation (7.8) for an initial state probability distribution [0,0,1,0,0,0] cor-

responding to the state X2. In this case, unsafety dramatically increases to

0.32 per year that corresponds to 8 × 10−5/h as equivalent failure rate (<

SIL1). Results of the presented sensitivity analyses are summarized in Table

7.9.

Sensitivity to the Failure Rates

The calculated system dependability is sensitive to the variation of the

parameters of the model, i.e. the failure rates. The LBDS is designed in order

to have no single point of failure. For this reason, the variation of the failure

8The triggering system is upstream the MKD and does not benefit of the 14 out of 15

redundancy.
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Failure rate Safety False dumps/year

MKD magnets ×100 SIL2 4.06

MKD power supplies ×100 SIL4 25

BEI cards ×100 SIL4 24

Power trigger module ×10 >SIL4 16.5

Table 7.10: Sensitivity to the failure rates.

rates is expected to be less important for safety, while a significant increase

of the number of false dumps is expected at detriment of availability. Some

examples are given for the magnets, the power supplies of the MKD system,

the BETS data acquisition channels and the power trigger modules, see Table

7.10. One MKD magnet failure is masked within 14 out of 15 redundancy.

For an assumed two order of magnitude larger magnet failure rate λm the

system unsafety would increases from 2.418× 10−7 to 0.0013 per year, which

is SIL2, crossing SIL3 around 60λm. The MKD is sensitive to the failure rate

of the power supplies in the MKD generators, 45 in total, in particular to the

over-voltage failure mode that is not tolerated by 14 out of 15 redundancy. If

the assumed default value of 1× 10−6/h increases of two order of magnitude

the safety remains still SIL4, thanks to the BETS surveillance that detects

the failure. As a drawback, these detected failures add up to the number of

false dumps, which increases from 4 to 25 on average per year. Similar results

are obtained for the failure rates of the BEI cards. If these increase of two

orders of magnitude, unsafety would be around 8×10−6 per year, which is still

SIL4, for 24 false dumps per year, see Table 7.10. Another very interesting

example concerns the power trigger modules of the power trigger system.

The redundancy of two trigger modules in parallel per power trigger takes

a negligible contribution to safety. If the failure rates in the power trigger

modules is increased one order of magnitude the safety remains practically

the same 2.36 × 10−7, for a number of false dumps that becomes 16.5 per

year9. This is a non acceptable trade-off and shows a potential weakness in

9As a collateral effect of the augmented number of false dumps, the mission time is

shortened, and the system has less time to fail unsafe, which explains the better value
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the design of the power trigger from the availability point of view.

7.4 The Operational Scenario 2

7.4.1 Dependability Analysis

The analysis of the second operational scenario is based on the same

assumptions A1 and A3 given for the operational scenario 1, plus a new

assumption A2:

• (A2) The check is performed only if the system has failed safely.

The new assumption A2 says that the system is ‘as bad as old’ at the start

of every new mission for those failures that are masked by redundancy and

may accumulate undetected. Only if the surveillance has detected the failure

and issued a false dumps, the check is performed and the system is recovered

to an ‘as good as new’ state. The resulting stochastic process is not Markov

regenerative and its solution must be calculated for one year of operation

instead of one mission time like in OP1. The transition matrix Q and the

initial conditions in the Kolgomorov equations (7.8) are recalculated at every

new mission k according to the following formulas:





Q(1, t) = Q(t)

Q(2, t) = p4(1, T )Q(1, t) + [1 − p4(1, T ) − p5(1, T )]Q(1, t + T )

· · ·
Q(k + 1, t) = p4(1, T )Q(1, t) + [1 − p4(k, T ) − p5(k, T )]Q(k, t + T )

(7.15)

where 0 ≤ t < 10 and k < 400. The initial conditions are:




p(1, 0) = [1, 0, 0, 0, 0, 0]

· · ·
p(k + 1, 0) = [p0(k, T ) + p4(k, T ), p1(k, T ), p2(k, T ), p3(k, T ), 0, p5(k, T )]

(7.16)

obtained for safety.
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The matrix Q(k+1, t) is the transition matrix in the mission k+1. It consists

of two terms. The first term is the ‘recovered part’ p4(1, T )Q(1, t) which is

the probability that the system has failed safely in the previous mission k

multiplied by the transition rate matrix regenerated at t = 0. The other

term is the ‘aging part’ [1 − p4(k, T ) − p5(k, T )]Q(k, t + T ) which is the

availability of the system in the mission k multiplied by the transition rate

matrix, updated for a time interval T = 10 h that accounts for the missed

regeneration. In a similar way, the initial state probability vector is recovered

to X0 only for the fraction of false dumps p0(k, T )+ p4(k, T ). The algorithm

used for the calculation of safety for one year of operation is the following:

< Initialize Safety array of length 400 >

< Initialize False dumps array of length 400 >

...

/* Loop for missions 1 to 400 */

For}k = 1 to 400

{

/* Update transition rates matrix */

switch (k)

{

case k==1:

{Q(1,t) = Q(t); p0=[1,0,0,0,0,0]};

break;

default:

{Q(k,t) = False_dumps[k-1]Q(0,t)+(Safety[k-1]-False_dumps[k-1])]Q(k-1,t+T);

p0 = [p_1(k,T)+p_1(k,T),p_1(k,T),p_2(k,T),p_3(k,T),0,p_5(k,T)]};

break;

}

p(k,t) = Markov[Q(k,t), p0];

Safety [k] = (1 - p_{5}(k,T));

False_dumps [k] = p_{4}(k,T);

};

The function ‘Markov’ returns the solution of (7.8) for the transition ma-

trix Q(k, t) and the initial distribution p(k, 0) as calculated by the equations

(7.15) and (7.16).
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Figure 7.10: Comparison of the unsafety rate for the operational scenario 1

and the operational scenario 2.

The average number of false dumps is still about 4.0 for 400 missions,

which means that the system is recovered ‘as good as new’ four times per

year, corresponding to a regeneration interval of 80 missions on average. The

resulting unsafety is 3.15× 10−5 (SIL4), two orders of magnitude larger than

the unsafety calculated for the previous operational scenario. This can be

explained by comparing the unsafety rate for the operational scenario 1 and

for the operational scenario 2. They are shown in Figure 7.10 (left) for five

consecutive missions. The unsafety rate for the operational scenario 2 keeps

increasing except for a little percentage, not appreciable in the plot, which

is regenerated at the false dump.

The operational scenario 2 could be further developed for quantifying the

benefit of a maintenance program that includes inspections policies for the

various parts of the system. This issue is not treated in the present study.
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7.5 The Operational Scenario 3

7.5.1 The Markov Regenerative Model

The analysis of this third operational scenario is based on the assumptions

A2 and A3 of the operational scenario 1, plus a new assumption A1:

• (A1) Missions of random duration alternate to checks of 2 hours for

200 days (i.e. 4800 hours) of operation.

The assumption A1 describe a random operational scenario. The mission

length is determined by the occurrence of a dump request, which can be inter-

nal like a false dump (FD), or external (DR) like a planned dump request or

other dump requests (e.g. beam induced, machine protection). These events

are the regeneration points of the Markov regenerative process (MRGP) that

governs the status of the system over one year of operation (see section 4.4).

The subordinated process o the MRGP is the Markov chain described by

equation (7.8), provided that the rates of the external dump requests are

added to all transition rates10 leading to the state X4. The embedded re-

newal sequence is governed by the dump request events and contains the

states {X0k}, for k being the number of mission. Safety is calculated by the

generalized Markov renewal equation defined in (5.26) of section 5.4:

S(t) = A(t) +

∫ t

0

S(t − τ)dp4(τ) (7.17)

where S(0) = A(0) = 1. A(t) = p0(t) + p1(t) + p2(t) + p3(t) and p4(t) are

calculated using (7.8). The solution of (7.17) is achieved numerically using

as reference value S(t) = (Ŝ(t) + Š(t))/2, with Ŝ(t) and Š(t) calculated by

(5.29) and (5.30) respectively.

The number of missions performed over one year is a renewal counting

process (see section 4.2). The average number of missions per year is derived

from equation (5.42) of section 5.4.4:

M(t) = p4(t) +

∫ t

0

M(t − τ)dp4(τ) (7.18)

10The rates can be added as they are statistically independent events.
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where M(0) = 0. The solution is obtained numerically using as reference

value M(t) = (M̂(t)+M̌(t))/2 with M̂(t) and M̌(t) calculated by (5.43) and

(5.44) respectively.

The results obtained from the equations (7.17) and (7.18) are the average

values for safety and the number of missions for one year of operation. The

figures must be adjusted by including the 2h checks downtime. The following

steps are applied to the analysis of the operational scenario 3:

• Step 1: calculate the safety by solving (7.17) for t = 4800 h:

S(t) = 1
2
(Ŝ(t) + Š(t))

• Step 2: calculate the number of performed missions and the average

mission time TM by solving (7.18) for t = 4800 h:

TM = 4800/M(4800) where M(t) = 1
2
(M̂(t) + M̌(t))

• Step 3: calculate the expected number of missions per year Myear

including the 2 hours check in between missions:

Myear = 4800/(TM + 2)

• Step 4: recalculate the safety for one year of operation now including

the 2 hours check:

Syear = S(TM × Myear)

• Step 5: calculate the number of false dumps per year.

The steps 1 - 4 adjust the results to the operational profile. The last step

derives the number of false dumps from the number of missions performed.

A way to do this is to split the state X4 into two states: one X4FD for the

false dumps, and the other X4DR for the external dump. The Markov chain

is solved for one mission length and provides the probability p4FD(t) of being

in the state X4FD, p4DR(t) of being in the state X4DR. The probability that

the mission is terminated by a false dump is p4FD(t)
p4FD(t)+p4DR(t)

, which depends

on t. As average value is taken the following quantity:

ρFD = lim
T→∞

∫ T

0

1

T

p4FD(t)

(p4FD(t) + p4DR(t)
dt (7.19)
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The same formula can be used for the apportionment of the others dump

requests with their distributions.

Two scenarios are analysed for OP3: OP3A that includes planned dump

request of random duration and OP3B that includes the same planned dump

request of OP3A plus the dump request caused by the beam instabilities

during the early period of LHC operation.

7.5.2 Analysis of the Operational Scenario 3A

The planned dump requests are modeled with a Weibull[5,11] distribu-

tion, see equation (3.2), which corresponds to 10.1 hours average and ±2.31

standard deviation.

The calculated lower and upper bound for unsafety are Ŝ = 2.9507×10−7

and Š = 3.259 × 10−7 at t = 4800 h, for a mean value of 3.105 × 10−7, see

Figure 7.11. The number of missions at t = 4800 h is within 455 and 503,

for a mean value of 479 missions with a 10.02 hours average mission time.

This value is smaller than the assumed 10.1 average length of the planned

dump requests because of the additional false dump requests. The results

are adjusted following steps 3 and 4. The number of missions Myear that

alternate with 2 h check is recalculated and results in 399 per year on average.

The unsafety ranges between Ŝ = 2.452 × 10−7 and Š = 2.708 × 10−7 for a

mean value of 2.58× 10−7 that is very close to 2.418× 10−7 obtained for the

operational scenario 1. The number of false dumps is calculated using (7.19)

and it is 4.1 per year, which is practically the same value that was obtained

for the operational scenario 1.

The Accuracy of the Numerical Solution

The accuracy of the numerical solutions for safety and for the number of

missions is analysed for a 240 hours time interval versus the integration step,

taken between 1/8 and 8 hours11. The accuracy is the difference between

11The demonstration does not depend on the chosen time interval length.
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Figure 7.11: Unsafety upper and lower bound solutions for one year of oper-

ation, assuming a Weibull[5,11] for the planned dump request.
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Figure 7.12: Upper bound, lower bound and mean value after 240 hours of

operations, versus the integration step, for unsafety (left) and the number of

dump requests DR (right).

the upper and lower bound solutions, that is (5.29) and (5.30) for safety,

(5.43) and (5.44) for the number of missions. This difference reduces as the

integration step increases, see figure 7.12. In addition, the arithmetic mean

of safety seems insensitive to the integration step up to about 2 h where

it starts diverging as shown in Figure 7.12 (left). The same holds for the

mean of the number of missions, as shown in Figure 7.12 (right). This result

confirms the possibility to use the arithmetic mean as an estimator of S(t)

with the taken integration step of 1 hour12.

12The solution algorithm is O(2n), where n = 4800/integration step.
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Sensitivity to the Dump Request Distribution

The sensitivity to the planned dump requests Weibull distribution is anal-

ysed with respect to the variance and the average. For the variance, three

Probability Density Functions (PDF), Weibull[3,11.3](A), Weibull[5,11](B)

and Weibull[10,10.61](C) with the same average of 10 hours and different

variance ±3.57, ±2.31 and ±1.25 hours respectively, are shown in Figure

7.13. The result for unsafety, false dumps (FD), number of missions (Myear)

and average mission time (TM) are listed in Table 7.11. A larger variance

turns in more unsafety for the system, which is explained by the increasing

fail unsafe rates, see Figure 7.4.

The results are also sensitive to the average value of the Weibull distri-

bution. Two PDF, Weibull[5,7](D) and Weibull[10,15](E) with averages 6.4

and 13.8 hours respectively are shown in Figure 7.13. The results are shown

in Table 7.11. Again, the differences between figures can be explained by the

increasing failure rate. The probability of failing unsafe is higher for a long

average mission time than for a short one. Similar considerations hold for the

false dumps for which a long mission has a higher probability of being aborted

than a short one. In general, a longer mission time implies a lower safety but

a higher exploitation of the machine. For example, the Weibull[5,11] has 399

missions 10.02h each on average that makes 3998 hours of LHC operation

with the beam, while the Weibull[5,7] yields 573 shorter missions 6.37h each,

which makes only 3650 hours of LHC operation with the beam per year.

The impact of the 2 hours downtime for checks is determinant. It is also true

that shorter missions have the advantage of a higher beam luminosity. This

is a trade-off between safety and the machine exploitation. Treating properly

this subject would require the definition of performance indexes that com-

bine the dependability attributes and other quantities related to the quality

of the LHC experiments. This subject goes beyond the aim of the thesis and

it is not treated here.
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Figure 7.13: Weibull probability density functions (pdf) for the planned

dump request with average 10 h and three different values of the variance

(A,B,C) and for the planned dump requests with different averages (D,E).

Distribution Unsafety/y FD/y Myear TM [hours] σ

(A) Weibull [3, 11.3] 2.78 × 10−7 4.083 399 10.018 3.57

(B) Weibull [5, 11] 2.58 × 10−7 4.089 399 10.02 2.31

(C) Weibull [10, 10.61] 2.49 × 10−7 4.087 399 10.028 1.25

(D) Weibull [5, 7] 1.51 × 10−7 3.75 573 6.37 2.16

(E) Weibull [5, 15] 3.68 × 10−7 4.27 306 13.67 9.95

Table 7.11: Sensitivity to the planned dump requests distribution.
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7.5.3 Analysis of the Operational Scenario 3B

In this scenario, three independent sources of dump request are consid-

ered: the false dumps, the planned dumps and the beam induced dumps. The

beam induced dump requests have a bigger likelihood during the injection,

ramp and squeeze phase, roughly in the first two hours of the operational

period when the beam is more unstable. After this period, they are expected

to proportionally decrease to a constant rate, corresponding to the stable

physics conditions in the LHC. The distribution for the beam induced dump

request is derived from (3.1) using as rate λ(t) = λ∞+(tb+ 1
λ0

)−1, with b > 1.

The rate λ(t) starts at λ0 and tends asymptotically to λ∞. The probabil-

ity density function resulting from the beam induced dump request (b = 3,

λ0 = 0.1 and λ∞ = 0.001) and the planned dump request (Weibull[5,11]) is

shown in Figure 7.14. The larger probability of terminating the operation in

the first 2-3 hours is due to the ‘beam instability’. If the system passes this

first critical stage, then the planned dump requests become the main cause

of dump request with the maximum likelihood around 10 h. The system

unsafety calculated by equation (7.17) is 2.964 × 10−7 for 592 missions per

year. The result is adjusted following steps 2, 3 and 4. The average mission

time is 8.1 hours that implies 475 missions alternate to 2 hours checks for

one year of operation. The recalculated unsafety results in 2.401 × 10−7 per

year. Using formula (7.19), the 475 dump requests are apportioned to 361

planned dumps, 110.1 beam-induced dumps (23% of the total) and 3.9 false

dumps.

Sensitivity to the Beam Induced Dump Requests

The sensitivity to the beam induced dumps distribution is analysed with

respect to the three parameters b, λ0 and λ∞. If b = 2, the rate decreases

slower to the asymptotic value. The unsafety calculated by (7.17)is 2.89 ×
10−7 per year for 631 dump requests. If the initial value λ0 is 1 instead of

0.1 (i.e. more beam instability), the unsafety is 2.72× 10−7 with 1380 dump

requests per year. If λ∞ is 0.01 the unsafety becomes 2.93 × 10−7 with 620
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Figure 7.14: Probability density function for the external dump requests of

the operational scenario OP3B.

Unsafety/y FD/y BI/y Myear TM [hours]

Default 2.401 × 10−7 3.9 110.1 475 8.1

b = 2 2.295 × 10−7 3.88 166.8 502 7.6

λ0=1 1.725 × 10−7 3.1 615 876 3.48

λ∞=0.01 2.330 × 10−7 3.9 146.7 492 7.74

Table 7.12: Sensitivity to the beam induced dumps distribution.

missions on average per year. Results are adjusted following step 3 and 4 and

shown in Table 7.12 for unsafety, number of false dumps (FD), number of

beam induced dumps (BI), number of missions (Myear) and average mission

time (TM). For the three cases unsafety is smaller than the unsafety obtained

for the default OP3B. This can be explained by the fact that the mission

average length is shorter than before, which is a consequence of the higher

probability of terminating the operation with a beam induced dump, either

in the early or in the late stage of the mission. The number of false dumps

remains practically the same in all analysed cases.
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7.6 Comparison Between the Different Oper-

ational Scenarios

The results of the analysed operational scenarios are shown in Table 7.13.

The operational scenario OP3B is the most realistic and complete one. It

results in a system unsafety of 2.401 × 10−7 and about 4 false dumps on

average per year. These figures are also confirmed by the other scenarios. In

particular, the value for unsafety calculated for OP3B is very close to that

obtained for OP1, but for a shorter mission time. It is worthwhile reminding

that OP1 enters the check phase only after 10 hours, even if the system has

dumped the beam before with a false beam dump. On the contrary, OP3B

enters the check phase as soon as a dump request has been generated. The

two scenarios can be compared if the mission length of OP1 is set to 8.1

h, equal to the average mission length of OP3B. In this case, the resulting

unsafety of OP1(2) is 1.88 × 10−7 per year, which is smaller than the value

obtained for OP3B. The same holds for OP1 and OP3A, which have identical

average mission length but different unsafety. Three factors concur in this

result: 1) the fail unsafe rates that increase in time, 2) the number of missions

per year, determined by the average mission length, and 3) the variance of

the distribution of the mission length. For short average mission length the

system is exploited less due to the two hours of check, and also operates at

lower failure rates, with the result that the system is safer as demonstrated

in 7.5.2. In the case considered, the difference between OP3B and OP1(2) or

OP3A and OP1 cannot be explained by the average mission lengths, which

are identical, but it is explained by the variance of the distribution of the

mission length. Figure 7.15 (right) shows the distribution of the mission

length for OP3A together with the fail unsafe rate (×109). For OP3A there

exist a probability that the system works at a higher failure rate for t > 10,

while this is not possible for OP1 that stays within 10 hours. The additional

hazard depends on the variance of the distribution of the mission length. If

the variance tends to zero, the two scenarios are practically identical, and
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Figure 7.15: The failure rate (×109) and the distribution of the planned

dump requests (right). The unsafety with respect to the variance of the

planned dump requests (left).

results should coincide. The validity of this thesis is attested by plot of Figure

7.15 (left). For a variance tending to zero, also unsafety decreases and tends

asymptotically to the value obtained for OP1, which corresponds to a zero

variance distribution (i.e. a delta of Dirac in t = 10h).

The obtained figures for unsafety and number of false dumps for all pre-

sented scenarios can be doubled13 for the two LBDS in the LHC. The analysis

could be extended over the many years until machine disposal but this would

require a deeper understanding of the wearing and aging processes, which

have not been treated in the present study where all component failure rates

are assumed constant. Assuming an ideal overhaul maintenance between the

operational years, with perfect replacement of all aged parts, the system un-

safety after N years would be N times the unsafety calculated for one year of

LHC operation.

7.7 Reliability Runs

Reliability runs of the LBDS are planned before the commissioning of

the LHC with beams. The aim of the reliability runs is twofold: 1) to

13This is possible because the LBDS are assumed to be identical and their failure pro-

cesses are assumed to be statistically independent.
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Scenario Missions/y TM [hours] Unsafety/y False dumps

OP1 400 (fixed) 10.0 (fixed) 2.418 × 10−7 4.0

OP1(2) 475 (fixed) 8.1(fixed) 1.880 × 10−7 3.9

OP2 400 (fixed) 10.0 (fixed) 3.150 × 10−5 4.0

OP3A 399 (average) 10.02(average) 2.580 × 10−7 4.1

OP3B 475 (average) 8.1 (average) 2.401 × 10−7 3.9

Table 7.13: Summary of the analysis of the operational scenarios.

troubleshoot the infant mortality problems and 2) to validate the reliability

figures obtained by the presented analysis of the system. As a sample study,

a reliability testing policy for the MKD generators is presented for the point

2, and formulated like a hypothesis to be verified (i.e. accepted or rejected):

• (H1) The MKD generator branch failure rate is λ ≤ 10−4/h.

The hypothesis sets an upper limit of the failure rate equal to 10−4/h, which

corresponds to a safety level of SIL3 for the system of 15 MKD assemblies.

The mathematics of testing relies on statistical inference [39, 80, 87]. The

lifetime of a component is estimated from the number of observed failure

within a population of NC identical components tested for a time T . In the

analysed example, the population is the set of 60 independent identical MKD

pulse generators branches. A single test experiment consists of arming the 60

branches and then pulsing according to the sequence that will be repeated

many time during the LHC operational cycle. The following assumptions

define the test policy:

• (i) The test interval T consists of experiments of fixed duration τ during

which the branches are armed waiting in stand-by for the pulse.

• (ii) The effective time for test is assumed to be 75% of the total. The

remaining 25% is downtime.

• (iii) The generator branch failure rate λ is assumed to be constant and

identical either while pulsing or in stand-by.
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• (iv) Failures are discovered by inspection, after pulsing, and the failed

components are replaced to keep a 60 units population.

At the end of the test period, the number k of observed failures over NE =

60T/τ experiments is a Binomially distributed random variable:

P (k, T ) =

(
NE

k

)
pk(1 − p)NE−k (7.20)

where p = 1 − R(τ) = 1 − eλτ and 0 ≤ k ≤ NE. The average failure rate is

calculated by the maximum likelihood estimator:

λ̂ =
− ln(1 − k

NE
)

τ
(7.21)

The goal of the test is to accept/reject the hypothesis H1, with a certain

confidence level on the decision threshold14. The one-sided confidence inter-

val of the generator branch failure rate λH1 is a function of the number of

observed failures k, the given confidence level c and a test duration T . It is

calculated by solving the integral equation below:

∫ λH1

0

P (k, T )dλ = c

∫ ∞

0

P (k, T )dλ (7.22)

As an alternative, the solution can be obtained using the χ2
n distribution [80]

that is a special case of the gamma distribution:

χ2
n = γ[1/2,n/2] =

t(n/2−1)e−t/2

(2n/2Γn/2)
(7.23)

where Γn/2 =
∫∞

0
xn/2−1e−xdx and n is the degree of freedom of the dis-

tribution. The (7.23) approximates the binomial distribution provided that

p < 0.1, which is verified for the case studied. The following inequality holds:

p <
1

2NE

χ2
2(k+1)c (7.24)

from which it is possible to deduce λH1.

14In literature, this test is called type I censored life testing [39].
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Figure 7.16: The 95% one side confidence interval for the MKD generator

branch failure rate.

The one-sided confidence interval curves versus the number of observed

failures k = [0 . . . 10] are shown in Figure 7.16 for c = 0.95, the length of a

single experiment τ = 1 h and the test time T = 1, 2, 3 and 4 months. The

curves cross the decision threshold (10−4/h) for a certain number of observed

generator branch failures, above which the hypothesis H1 is rejected. The

crossing point is one failure for one month of testing, while it is 6 failures for

3 months of testing. The latter is a large enough decision threshold and for

this reason is chosen as test period for the MKD reliability run.

The time distribution of failures has been ignored so far, whereas it might

be important, especially for assessing a reliability growth in the components

under test. If failures are concentrated in the early testing period and once

discovered they progressively disappear, then the system is said to experience

a reliability growth. In this case, even if the acceptance threshold is globally

exceeded, the hypothesis H1 might still be accepted. The choice of using a

test period of three months at least could also cover these effects.

A second hypothesis could be formulated for verifying the existence of

common mode failures in the MKD branches. This failure mode has not been

included in the analysed models. The 60 branches may be tested separately

and then the results compared to the results of the test on the 30 generators,
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each working with two branches in parallel. Eventual disagreement in the

estimated statistics would attest a positive dependence of the components

failure modes, and the consequent rejection of the assumed hypothesis of

independence. A model for common mode failure has been described in

section 5.1. The two branches are assumed to fail independently with rate

λ but, as one of the two fails, the survived component will suffer from an

additional rate, passing to the new failure rate λ + λC > λ. This effect can

be observed using the same test policy.

The presented reliability test can be applied to the other systems of the

LBDS provided that the decision thresholds are adjusted to the component

under test.
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Chapter 8

Dependability Assessment of

the Machine Protection System

The results of the dependability analysis of the LBDS described in Chap-

ter 7 are integrated into a simplified model of the LHC Machine Protection

System, including the most important protection systems.

8.1 A Simplified Machine Protection System

The LHC Machine protection System (MPS) has been presented in Chap-

ter 1. Here a simplified MPS is considered including the most important

components that are involved in the protection task [33] that are: the Beam

Interlocking System BIS, the LHC Beam Dumping System, the Beam Loss

Monitors System (BLMS), the Quench Protection System (QPS) and the

System Quantity Position in the LHC ring Function

LBDS 2 Sector 6 Beam extraction

BIC 16 2 per sector Beam permit transmission

PIC 36 several per sector Power permit

BLM 3500 several per sector Beam loss detection

QPS 4000 several per sector Quench protection

Table 8.1: The components of the simplified MPS.

157
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Powering Interlock Controllers (PIC), see Table 8.1. In the simplified model,

the BIS consists of 16 Beam Interlock Controllers (BIC) for the generation

of the beam permit signal and the reception of the beam dump requests, see

also section 1.3. The LBDS consists of two extraction systems, one per LHC

beam. The BLM system consists of 3500 monitors (i.e. ionization chambers

with preset detection threshold) plus electronics (i.e. VME crates) for the

generation of the user permit signal [27]. The QPS consists of some 4000

channels (i.e. quench detectors and electronics) that survey any resistive

transition of the superconducting magnets and can be activated to dissipate

safely their stored energy [90]. The PICs, 36 in total, implement the power

permit loop by interlocking the status of the power converters of the super-

conducting magnets in a similar way to the beam permit loop [75]. The

power permit loop is established at the start of the operation and may be

cut indirectly by the QPS via the PIC, resulting in a dump request to the

local BIC. No difference in the configuration of the MPS for the 8 sectors of

the LHC is assumed.

These systems are expected to cover all main types of hazard in the LHC,

because a beam loss is the ultimate consequence of any critical failure in the

machine. They also partially overlap their protection actions. For instance,

a superconducting magnet quench may be caused by a slow beam loss and

the same beam loss may be detected by different BLMs in the ring, thus

increasing the overall coverage. These important features are included in the

present study.

8.2 A Dependability Model for the Simplified

MPS

Safety and availability are the dependability attributes of interest for the

MPS and are represented in the state transition diagram of Figure 8.1, for

a single LHC operation. The model consists of four states: the ready state

(waiting for a dump request), the available state (after successful operation),
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Figure 8.1: The simplified state transition diagram of the MPS.

the failed safe and failed unsafe state. The failed safe state is reached due

to a detected failure in one of the MPS components, resulting in a false

beam dump. The system is recovered to the ready state, after post mortem

diagnostics, from all states with exception of the failed unsafe state that is

absorbing.

The safety over one LHC operation (i.e. mission) is the probability that

the system has dumped safely, whatever the cause of the dump request. The

availability is the probability the system has dumped safely at a planned

dump request or at a detected beam loss in the LHC, and excludes the false

dump requests generated internally to the MPS.

Two different combinatorial models are chosen for modeling separately

the safety and the availability of the simplified MPS. The model for safety is

shown in Figure 8.2, in which the simplified MPS is arranged into a reliability

(safety) block diagram. The blocks represent the components of the MPS

that must be available at the time of the dump request, in the order in which

they are involved, from the detection of the hazard, to the distribution of the

dump request to the LBDS for the beam extraction. With the exception of

the BIC and the LBDS, which are always required, the other MPS systems

may be demanded or not depending on the source of the dump request. Four

different sources of dump request are considered in the model:
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Figure 8.2: The reliability block diagram of the simplified MPS.

• XPDR: planned dump requests from the control room

• XBLfast: fast beam losses (< 10 ms)

• XBLslow: slow beam losses (> 10 ms)

• XOthers: other sources.

False dumps have been assumed safe and for this reason they do not enter the

list. The model also accounts for the possibility that more systems work in

cross-redundancy contributing in parallel to the generation of the same dump

request. This holds for the BLM and the QPS (via the PIC) that work in

cross redundancy for slow beam losses, which also results in a magnet quench.

Redundancy is also considered within the BLM. The BLM detectors with the

front-end electronics (BLM1) are separated from the VME crate electronics

(BLM2) that collect their signals and transmit the dump request. A constant

P (0 ≤ P ≤ 1) accounts for the probability that two monitors detect the same

beam loss. Redundancy within more BLMs is possible but not taken into

consideration.

The formula for the calculation of safety of the simplified MPS is:

S = SLBDSSBIC [XPDR + Xothers + XBLfastSBLM(P )

+XBLslow(1 − (1 − SBLM(P ))(1 − SPICSQPS))] (8.1)
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SBLM(P ) = PSBLM2(2SBLM1 − S2
BLM1) + (1 − P )SBLM1SBLM2

where Sx stands for the safety of the system x, and XPDR + XBLfast +

XBLslow + Xothers = 1 are the relative contributions from the four sources

of dump requests. In (8.1) each branch contributes to the total unsafety by

the weight of the respective fraction of dump requests. For N consecutive

missions the safety of the MPS is SN .

The model for the availability of the simplified MPS is the series of all

its components. The false dumps of just one of them is sufficient to abort

the operation. The overall MPS false dump rate λFD is the sum of all false

dump rates:

λFD = 2λLBDS + 16λBIC + 36λPIC + 3500λBLM + 4000λQPS (8.2)

The number of false beam dumps over N operations per year is a binomi-

ally distributed random variable. The formula (7.12) can be applied with

p = 1 − exp(−λFDT ), where T is the length of one LHC operation. The

average number of false dump and the standard deviation are respectively

N × p and
√

[N(1 − p)p]. The number of false dumps generated in the MPS

does not depend on the given apportionment of dump request and the cross-

redundancy.

8.3 Analysis of the Simplified MPS

The following assumptions define the scenario I for the dependability

analysis of the simplified MPS model:

• (A1) 400 missions, 10 hours each, alternate with 2 hours of check for

200 days of operation.

• (A2) The diagnostics during the check period has a different effect on

the MPS components. For the LBDS this is assumed to be a regener-

ation point, see Chapter 7, while this is partially true for the BIC and

the BLMs. The QPS and the PICs are inspected at periodic interval

of one month or after a power abort.
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System Unsafety/year False dumps/year

Average Std. dev.

LBDS 2.4 × 10−7 × 2 = 4.8 × 10−7 4 × 2 = 8.0 2.0

BIC [13] 1.4 × 10−8 0.5 0.5

BLM [37]
1.44 × 10−3(BLM1)

0.06 × 10−3(BLM2)
17.0 4.0

PIC [97] 0.5 × 10−3 1.5 1.2

QPS [90] 0.4 × 10−3 15.8 3.9

MPS 2.3 × 10−4 41.0 6.0

Table 8.2: Safety and number of false dumps for the MPS for the scenario I.

• (A3) Dump requests are apportioned in 60% planned beam aborts, 15%

fast beam losses, 15% slow beam losses and 10% other sources1.

• (A4) Cross-redundancy within the BLM is not included, that is P = 0.

For the BIC, the BLMS, the QPS and the PIC, the dependability figures

have been obtained from different studies [13, 37, 90, 97]. The results for the

individual systems and the complete MPS are shown in Table 8.2. Unsafety

is 2.3 × 10−4 per year, which corresponds to an equivalent failure rate of

0.58 × 10−7 per hour which is SIL3.

A different scenario II assumes a larger contribution from the fast beam

losses. The dump requests apportionment for this scenario is 20% planned,

45% fast beam losses, 25% slow beam losses and 10% others. The unsafety

becomes 6.8× 10−4 per year, which corresponds to an equivalent failure rate

of 1.7×10−7 per hour that is SIL2, see Figure 8.3 (left). The result for safety

can be explained by the fact that the fast beam losses are covered by only

one BLM as specified in the assumption A4 (P = 0). This assumption is

relaxed in another scenario III. The unsafety decreases with the parameter

P to a minimum value of 2.8×10−5 per year for P = 1, see Figure 8.3 (right).

This corresponds to an equivalent failure rate of 7.0 × 10−9 per hour that is

SIL4.

1This distribution is in part inspired by the HERA accelerator experience [93].
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Figure 8.3: Sensitivity to dump requests apportionment (left): gray bars for

scenario I, black bars for scenario II. Sensitivity to cross-redundancy within

the BLM (right): black bars for scenario II, gray bars for scenario III with

P = 1.

The number of expected false dumps is 41 (±6) per year for all scenarios,

about 10% of the total machine fills. The average number of false dumps is

not exactly the sum of the contribution of each system taken separately but

a value slightly smaller as these act as concurrent events.

The three different scenarios I, II and III show a strong dependency of

safety with respect to the source of beam dump request and the redundancy

among the protection systems. Depending on the setting of the parameters

in the model, the calculated safety of the simplified MPS ranges between

SIL2 and SIL4. The number of expected false dumps is 41 false dumps per

year, 10% of the total machine fills. The power supplies of the electronics for

the different systems are expected to be the main cause of the false dumps,

with a failure rate of ∼= 10−5/h taken from literature. An alternative design

with two power supply units in parallel has been demonstrated effective for

the QPS where the false dumps can be halved from 16 to 8 per year [90].

The presented model is suited to improvements. Only the LBDS, the

QPS and the BLM have been analysed in details, while the results for the

PIC and the BIC refer to simplified architectures and should be taken as

provisional. Other protection systems like the Beam Current Transformer,

the Beam Position Monitors, the collimators are not included in the model,
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but could contribute significantly to safety and the number of false dumps.

An improved study could also take into consideration the integrity of the post

mortem diagnostics and the rearming procedures that will play an important

role not only for the safety of the LBDS, as demonstrated in this thesis, but

also for the other systems.



Chapter 9

Conclusions

The most important results of the dependability study of the LHC Beam

Dumping System are presented in this chapter together with some concluding

remarks.

The calculated safety of the LBDS largely complies with SIL4 under the

assumption that checks are able to regenerate the system to an ‘as good as

new’ state, after every beam dump, while it can decrease to SIL3 if this as-

sumption is removed. The largest contribution (99%) to unsafety is expected

to come from the magnet assemblies MKD, MSD and MKB, with a remain-

ing small fraction from the electronics. Looking per system the MKD is the

most critical component of the LBDS, accounting for more than 75% of the

total unsafety, followed by the MSD (18%) and the MKB (6%). Within the

MKD, the increase of the magnet failure rate with time (e.g. due to wear-

ing) has been shown to be a possible concern for safety. The system has also

been demonstrated to be sensitive to redundancy and on-line surveillance,

and without all or just part of these features the required safety would not

be obtained.

The LBDS unavailability has resulted in 4 ± 2 false dumps per LBDS,

per year. Again, the MKD system is responsible for the largest contribution

with around 60% of the total generated number of false dumps, followed by

the MKB (20%) and the MSD (11%). A significant fraction is expected to

165
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come from the power triggers of the MKD and MKB systems and results in

2 false dumps per year, 50% of the total.

The presented figures of safety and number of false dumps refers to an

operational scenario that accounts for missions of random duration driven

by three independent events: a false beam dump generated by a detected

failure in the LBDS, a planned dump issued by the control room, and the

beam induced dump requests generated by detected beam anomalies during

the LHC operation. Other operational scenarios have been studied, which

do not differ significantly in the obtained results.

Safety and availability are a trade-off for the LBDS. In most analysed

cases they are well balanced, as the redundancy and surveillance are either

strictly necessary or assure some additional safety margin that results only

in a small contribution to the number of false dumps. Nevertheless, for some

cases the failure of the components in the redundant architecture and in the

surveillance can have an important impact on the system availability. For

example, an increase of the failure rate of the two independent power trig-

ger modules in the power trigger system has resulted a minor safety concern

because of surveillance and redundancy, but a major concern for the avail-

ability as this significantly increases the number of false dumps. The same

holds for the failure rate of the power supplies in the electronics and the

data acquisition channels of the BETS. These examples could be taken into

account for the final installation of the equipment as they might represent a

potential weakness in the design trade-off.

The results of the study are going to be validated through reliability runs.

A test period of three months is planned to collect the necessary statistics on

failures of the MKD branches and to draw a decision about the reliability. Six

generator branch failures observed in that period are the calculated decision

threshold for accepting/rejecting the hypothesis that the MKD system is at

least SIL3 with a 95% confidence level.

The dependability study of the LBDS has not only a relevance for the

LHC but, due to the complexity of its architecture, it represents a benchmark
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for the applied methodology of modeling and analysis the dependability of

complex systems. Some numbers may give an idea of the complexity of the

analysed case. The studied LHC beam dumping system consists of the series

of 15 MKD extraction kicker magnets, 15 MSD extraction septum magnets

and 10 MKB dilution kicker magnets, with the associated power converters,

the electronics for triggering and re-triggering the MKD and MKB systems,

the beam energy measurement and the beam energy tracking systems. In

total, about 2130 independent failure modes at component level have been

identified for the LBDS architecture and arranged in 21 independent failure

modes at system level. These failure modes have entered a compact state

transition diagram of six states for the description of the system failure pro-

cesses and the analysis the dependability attributes. A distinction is made

between the collection of failure statistics at component level and the model-

ing of the failure processes at system level. For the first issue, the presented

study applied Failure Modes Effects and Criticality Analysis (FMECA) to-

gether with international standards and military handbooks, with the aim

of disposing of a homogeneous data source for the component failure modes

and rates. For the description of the system failure processes, a modeling

hierarchy is presented for supporting the analysis. This represents an inno-

vative part of this thesis. Combinatorial techniques are used at lower level

for deducing the statistics of failure modes while the mathematics of Markov

processes and Markov regenerative processes is applied at higher level for

representing the failure modes into a state transition diagram. The adopted

approach is alternative to other more traditional modeling techniques (e.g.

fault trees). The main advantages of this approach are listed below:

• The failure process is described at system level, with the component

failure modes and statistics driving the state transitions.

• The phase transitions (i.e. missions and checks) can be embedded

in the model and treated with the Markov regenerative mathematics.

This permits to model separately the different events that can issue a

dump request, giving the possibility of larger range of scenarios to be
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analysed.

• The model is able to represent both safety and availability of the LBDS,

which is another advantage of state transition diagrams with respect to

a combinatorial approach, where only one dependability attribute can

be addressed at a time.

• A compact state transition diagram is suited for presenting results in

contexts (e.g. project management) where a global picture of the sys-

tem is often preferred.

A simplified model of the Machine Protection System (MPS) including

the LBDS, the Beam Interlock Controller, the Beam Loss Monitors, the

Quench Protection System and the Powering Interlock Controller has been

studied. The model has been analysed for different operational scenarios,

which resulted in a safety level between SIL2 and SIL4, and 41 ± 6 expected

false dumps per year, 10% of the total number of machine fills. The resulting

safety has been demonstrated to be sensitive to the type of dump requests

and their coverage, in particular those caused by the fast beam losses that

are clearly the most critical events concerning safety in the LHC. The results

can be refined for some of the components of the MPS, and the model can

be extended by including other protection systems. Even without other im-

provements, this study has the merit of being the first attempt to address

the dependability analysis of the LHC MPS in homogenous way, by including

the most important components involved in the machine protection task.

With respect to the SIL3 requirement demanded from the MPS, the LBDS

has been demonstrated to be one of the safest sub-systems, largely within

SIL4, with a calculated contribution of 8 false dumps (4×2 LBDS), which is

considered to be an acceptable fraction of the total number of the expected

false dumps generated by the MPS.



Appendix A

Reliability Prediction of the

LBDS Components

This appendix gives an overview of the methods used to obtain failure

rates statistics for the LBDS components. The information on the failure

rates of the various components was only for a small part available from the

manufacturer and CERN historical databases, while the largest part came

from the military handbook [66]. In the reliability handbook, these figures

are given for accelerated-test conditions (T = 55 ◦C, and 90% confidence

level). They have been adjusted for a ground-fixed environment, using the

formula λa = λbπQ where λb is the base failure rate πQ is the quality factor.

After that, failure rates have been apportioned into failure mode rates using

manuals and standards [67] and [34]. Failure modes have been deduced at

component level using the electrical layout. If not differently specified, they

have all been assumed statistically independent.

A.1 A Sample Case Study: The MKD Sys-

tem

The reliability prediction is applied to calculate the failure rate statistics

in the MKD systems, at component level. One MKD generator assembly is

169
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described in section 2.2, and shown in Figure 2.3 .

The primary switch layout is shown in Figure A.1. Two failure modes

exist, SP1 silent (i.e. it fails to close at the input trigger) and SP2 erratic

(i.e. it closes without an input trigger), see Table 6.2. A component may

fail silent if at least one coaxial input (coax1, coax2) has failed short or both

the diodes of the input section (D-IN) have failed open. The switch may fail

erratically due to a failure in the GTO (Gate Turn-Off thyristor) stack that

results in a voltage drop at the voltage dividers VDP1 and VDP2, detected

by the retriggering system. In this sense, a breakdown in the resistor R1-10,

the short of one GTO T1-10 and the leakage in the capacitors C1-10 do not

result into a dump request. These failure modes are not detected at the

voltage divider but at the resistor RN10. The failure is not critical because

the survived GTOs can still drive the proper current and the dump request

is not generated. The high-voltage stress at the secondary transformer (right

branch of Trk in Figure A.1) is more serious and may provoke a short towards

the primary one (left branch of Trk in Figure A.1) and then backwards to the

power triggers. This failure is caught by the re-triggering system, not at the

switches but at the primary capacitors as a voltage drop. The study of the

back-propagation of the fault (sneak circuit analysis) and the consequences

are still to be addressed and might suggest some extra-protection in the

design. In total, the rate of the failure mode SP1 is 1.4 FIT (Failures In

Time, 10−9/h) and SP2 is 180 FIT, which is mainly due to the Tr transformer

short. If a beam dump request were generated by a GTO failure then SP2

would be 2364 FIT, which turns to be 4464 FIT if the failure of one capacitor

in the stack is included as well. This hypothesis is not taken into account.

The compensation switch layout is shown in Figure A.2. The failure

modes are SC1 silent and SC2 erratic, listed in Table 6.2. The components

may fail silent if the coax 3 has failed (either open or short) or the GTO

T11 has failed open or one among R11, R12, and D2 has failed short. Other

failures, like the opening of the diode stack RD1 (the combination of diode

and resistor opening), are deemed very unlikely and therefore neglected. The
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switch may fail erratically for the erratic closing of the GTO T11. In total

the rate of the failure mode SC1 is 309 FIT and SC2 is 216 FIT.

The primary capacitors assembly is shown in Figure A.3. Two failure

modes exist, CP1 (capacitance leakage) and CP2 (connection failure), see

Table 6.2. A capacitance drift can be caused by slow leakages that are de-

tected by the BET and results in a dump request. The capacitor may fail

open for the bad connection to the circuit. The opening of RDP1 is neglected.

The rate of the CP1 failure mode is 270 FIT and CP2 is 30 FIT.

The capacitor assembly of the overshoot1 and overshoot2 circuits are

shown together in Figure A.4. Two failure modes exist for the overshoot1:

COS11 (capacitance leakage) and COS12 (connection failure), see Table 6.2.

The OS1 capacitor may have a capacitance leakage that is detected by the

BET and results in a dump request. The assembly fails open if COS1 has

failed open or R-OS1 has failed open. The rate of COS1 failure mode is

270 FIT and COS2 is 61 FIT. Two failure modes exist for the overshoot2,

COS21 (capacitance drift) and COS22 (open), see Table 6.2. It fails open

if the capacitor COS2-A/B has failed open. The primary capacitor may

have a capacitance leakage that is detected by the BET and results in a

dump request. The open failure of both diodes DC-A and B can disconnect

the OS2 capacitors from the compensation switch. This contribution is very

unlikely, nevertheless it could accumulate undetected. The short of one (DC-

A or B) of these diodes will produce a wrong powering and therefore a dump

request. The rate of the COS22 failure mode is 30 FIT and the COS21 is

390 FIT (120 FIT from the DC-A, B).

The primary power supply circuit is shown in Figure A.5 (left). Two

failure modes exist, PSP1 (under-voltage) and PSP2 (over-voltage), see Table

6.2. The PSP1 failure mode is due to the coax-IN failed open, one of the two

diodes D-PSP failed (either short or open), the resistance R-PSP failed open

or the capacitor breakdown. The result is a voltage drop detected by the

BET and generating a dump request. In addition, the primary power supply

can fail internally producing a voltage either lower or higher than expected.
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This failure rate λPS is provided by the manufacturer (Heinzinger 35KV, 103

FIT). It is equally apportioned into 50% under voltage and 50% over voltage.

In both cases the BET detects the error. The first is tolerated by redundancy

while the second is not (over-voltage). The failure rate of PSP1 is λPS/2 +

246.6 FIT and PSP2 is λPS/2.

The overshoot2 power supply circuit is shown in Figure A.5 (right). The

component may fail in the input section due to the coax-IN failed open, the

failure of D-OS2 (either short or open) and the short of R-OS2. In addition,

the OS2 power supply can fail internally. Its failure rate λOS2 is provided

by the manufacturer (Heinzinger 300V, 103 FIT). These failures mode are

caught by the BET. The failure rate of PSOS2 is λOS2 + 66.4 FIT. The

overshoot1 power supply circuit may fail due to the coax-N failure or the

failure of the power supply itself (Heinzinger 350V, 103 FIT). This failure is

not monitored and does not generate a dump request. The failure rate of

PSOS1 is λOS1 + 5.2 FIT.

The magnet is considered as the assembly of the coil plus transmission

cables and connectors to the generator, see Figure A.6. It may fail (not

powered) due to a short in one of the 8 coaxial cables (16 sockets) each

of failure rate λTX . The open failure of capacitor Cm and the failure of

Rm2 result in the propagation of the current back to the pulse generators

with unpredictable consequences. At present, the rate λL of the coil failure

(open/short) is unknown. The failure mode M, including the transmission

lines, has rate 8λTX + λL. with assumed λTX = 10 FIT and λL = 100 FIT.

The failures in the diode stacks of the primary capacitor, in the com-

pensation switch assembly and the diodes DC-A,B may accumulate silently

during the operation. The possibility of detecting these failures during post

mortem, as a secondary effect on the pulse shape, is not trivial and it is not

considered at moment. Failure rates and modes are shown in Table A.1. For

each components a quality factor and a base failure rate are given, which

are used to calculate the failure rate adjusted according to the parts count

method of the MIL HDBK 217F, see also 3.2. The failure rate are appor-
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tioned into failure modes.

A.2 The LBDS Components Failure Rates

The reliability predictions have also been conducted for the other systems

in the LBDS. The results are presented in Tables A.2 to A.10 for the MKD

system, the MKB system, the MSD system, the power triggers, the triggering

system, the re-triggering system, the BETS and the BEMS. Most failure

modes are given a failure rate deduced from literature. All failure rates not

deduced from literature have been left unspecified with their symbol. Then a

value for the analysis has been assumed looking at similar components and/or

technology. For example, the power supplies of the MKD and MKB have

an assumed failure rate (λPS and λOS1) of 1000 FIT. The voltage dividers

are given a rate (λV D) of 100 FIT, the magnet coil is given a failure rate

(λL) of 100 FIT and the transmission lines a rate (λTX) of 10 FIT. For the

synchronization surveillance unit of the triggering system, as no information

was available on literature about the apportionment of the failure, this has

equally been apportioned to the safe and the silent mode.
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Figure A.1: The primary capacitor of the MKD generator
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Figure A.2: The compensation switch.
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Figure A.3: Primary capacitor assembly.
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Figure A.4: Compensation capacitors assembly of the overshoot1 circuit.
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circuit (right).
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Component Quality factor ππππQ Base Failure 

rate λλλλb in FIT 

Adjusted Failure 

rate λλλλa in FIT 

Failure modes 

apportionment 

GTO Thyristor 

T1-T10,T11 

JAN 2.4 100 (ABB 

experience) 

240 10% open 

90% short 

Self-healing capacitor  

C1-10, C11, CP-A,CP-B, 

COS1-A, COS1-B, COS2-A, 

COS2-B, C2 

MIL-SPEC 3 100 (CERN 

Requirement) 

300 10% 

90 % slow leakage 

Capacitor 

C-PSP, Cm 

MIL-SPEC 3 7 21 30 % open 

70 % breakdown 

Magnet Coil 

Lm 

- - 100 (assumed) - 

High voltage Resistors 

R-PSP, R-OS2, R, R12,  

MIL-SPEC 3 41 123 95% open 

5% short 

Film Resistors 

R1-10, R11 

MIL-SPEC 3 16 48 95 %open 

5 % short 

Network Resistors 

RN1-RN10  

MIL-SPEC 3 8.4 25.2 95% open 

5% short 

Ceramic comp. Resistors 

Rm1, Rm2, RP, R-OS1 

MIL-SPEC 3 11 33 95% open 

5% short 

Fast recovery Diode 

D2, DP 

JAN 2.4 190 456 40% open 

60% short 

High voltage rectifier 

diodes 

D-PSP, D-OS2 

JAN 2.4 22 55.2 40% open 

60% short 

Avalanche rectifier diodes 

D 

JAN 2.4 24 57.6 40% open 

60% short 

High voltage Power diode 

DC-A,B 

1 100 100 40% open 

60% short 

Voltage divider 

VDP1, VDP2 

VD1, VD2A, VD2B 

- - 50 (assumed) - 

Power Transformer Tr1 MIL-SPEC 1 360 360 50% open 

50% short 

Current transformer PU No MIL-SPEC 3 0.2 0.6 - 

Coaxial 1,2,3,IN NON-MIL 2 1.3 2.6 75 % open 

25 % short 

Coaxial A, B CERN - 10 (assumed) 75 % open 

25 % short 

Power s. 35KV - 1000 1000 50% below spec. 

50% above spec. 

Power s. -300V - 1000 1000 - 

Power s. -350V - 1000 1000 - 

 

Table A.1: Failure rates and the apportionment of failure modes for the MKD

components.
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Figure A.6: Magnet coil and transmission lines.

Symbol Failure mode Failure rate/h 

FIT 

PSP1 Primary PS under-voltage. λPS/2 + 246.6  

PSP2 Primary PS over-voltage λPS/2 

PSOS1 Overshoot1 PS failure  λOS1 + 5.2 

PSOS2 Overshoot2 PS failure λOS2 + 66.4 

CP1 Primary capacitor slow leakage 270 

CP2 Primary capacitor open failure 30 

COS11 Overshoot1 capacitor slow leakage 270 

COS12 Overshoot1 capacitor open failure 61 

COS21 Overshoot2 capacitor slow leakage 391 

COS22 Overshoot2 capacitor open failure 30 

SP1 Primary switch open 1.4 

SP2 Primary switch erratic 180 

SC1 Compensation switch open 309 

SC2 Compensation switch erratic trigger 216 

M Magnet failure 10λTX + λL 

VD Voltage divider failure λVD 

 

Table A.2: MKD system failure rates.
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Symbol Failure mode Failure rate/h 

FIT 

PS-H1 Power supply failure (35kV) 0.75×λPS 

PS-H2 Power supply failure (35kV) – above 50% 0.25×λPS 

PS-V1 Power supply failure (–350kV) 0.75×λPS 

PS-V2 Power supply failure (–350kV) – above 50% 0.25×λPS 

CH1 Capacitor charging failure 294 + λVD 

CH2 Capacitor silent failure 30 

CV1 Resonant circuit charging failure 294 + λVD 

CV12 Resonant circuit silent failure 300 + λVD 

SW1 Primary switch open 1.4 

SW2 Primary switch erratic 180 

M Magnet failure 10λTX + λL 

VD Voltage divider failed λVD 
 

Table A.3: MKB system failure rates.

Symbol Failure mode Failure rate/h 

FIT 

PC1 Slow failures (> ms) 5000 

PC2 Fast failures 5000 

M1 Winding shorts or false contacts 100 

M2 Minor shorts (tolerated) 100 

PLC Unavailable 100 

TS1 Failed stuck-at 100 

TS2 Failed erratic 100 

DCCT Failed stuck-at 100 

FC1 Unavailable 100 

FC2 Failed safe, false alarm 100000
 

VD Failed λVD 

 

Table A.4: MSD system failure rates.
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Symbol Failure mode Failure rate/h 

FIT 

DP1 Driver primary failed silent 216
 

DP2 Driver primary failed erratic 192 

PTSP1    Switch primary failed silent 170 

PTSP2    Switch primary failed erratic 191 

DC1   Driver compensation failed silent 491 

DC2   Driver compensation failed erratic 388 

PTSC1    Switch compensation failed silent 682 

PTSC2    Switch compensation failed erratic 603 

RP1   Redundant path failed open 66 

RP2   Redundant path failed erratic 61 

PTM-PS   PTM Power supply failure 5965 

HV-PS HV power supply failure 2124+λHV-

PS(5000) 

PTC1 No surveillance λPTC1 (100) 

PTC2 False alarms λPTC2  (100) 

PTC3 Wrong voltage reference λPTC3  (100) 

 

Table A.5: Power trigger failure rates.

Symbol Failure mode Failure rate/h 

FIT 

C1 Client interface failed open 117.6
 

C2 Client interface erratic dump request 50.4 

DR1    DR unit failed silent 57.6 

DR2    Dump request unit erratic failure 38.4 

TO1   TO unit failed open 548 

TO2   TO erratic failure 7.1 

TD-k   Distribution line failed 4.7 

DT1   Connector/cable failure 9.4 

DT2   Re-triggering lines failed 2.6 

CLK    Clock failure 201.2 

O Synchronization failure 66 

PL Phase lock failure 66 

S1 Synch surveillance failed silent C×66 (C =0.5) 

S2 Synch surveillance failed safe (1-C)×66 

 

Table A.6: Triggering system failure rates.
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Symbol Failure mode Failure rate/h 

FIT 

IN Input channel failed 700
 

OUT Output channel failed 31.5 

L    Re-triggering line failed 78 

 

Table A.7: Retriggering system failure rates.

Symbol Failure mode Failure rate/h 

FIT 

RXD1 RX error detector false alarm 100 

RXD2 Missed detection, failed silent 100 

IC1 Voter, incorrect result 100 

ER3 Energy Conversion, incorrect result 120 

VT1 Voter, false Alarm 100 

VT2 Missed detection, failed silent 100 

 

Table A.8: BETS failure rates.

Symbol Failure mode Failure rate/h 

FIT 

RX1 Optical receiver, invalid format (CRC) 282 

RX2 No data, 1ms timeout 400 

RX3 Wrong calculated current value 100 

RX4 No value calculated (timeout) 100 

RXD1 RX error detector, false alarm 100 

RXD2 Missed detection 100 

VT1 Voter, false Alarm 100 

VT2 Missed detection, failed silent 100 

WDT1 Watch dog timer, false Alarm 100 

WDT2 Missed detection 100 

AV2 Average module, incorrect result 100 

AV3 No value calculated (timeout) 100 

ER1 Energy conversion, incorrect result 175 

ER2 No value calculated (timeout) 100 

TX2 Transmitter, incorrect coding 100 

TX3 Incorrect transmission 100 

TX4 No transmission 100 

 

Table A.9: BEMS failure rates.
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Symbol Failure mode Failure rate/h 

FIT 

REF1 Incorrect reference voltage 560 

AS1 Multiplexer stuck at an input 62 

ADC1 Conversion, incorrect digital output 1380 

AV1 Averaging, incorrect result 100 

TX1 Incorrect transmission 145 

DCCT General failure 100 

 

Table A.10: BEA failure rates.
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