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Chapter 1

Introduction

The present work describes an implementation of a parallel volume rendering,

accomplished by extending an existing graphics library, Aura, and employ-

ing the OpenGL API. The volume rendering is a field belonging to the more

general area of computer visualization, that is the efficient rendering onto a

display of a certain data set, in order to better understand and investigate

properties and structures of the data set. The branch of visualization tech-

niques concerning volumetric data set is the volume rendering. This work

is implemented using the 3D texture method, that is a volume rendering

technique which takes advantage of the new hardware facilities of modern

graphics boards. This approach is coherent with state of the art works, since

a truly interactivity can be achieved only exploiting the underlying hardware.

The reason to adopt a parallel solution is the need for processing data set that

are larger than the ones supported by a standard graphics board. A cluster

of PCs was used to test the volume rendering, according with recent research

trends. Actually clusters are preferred to customized high-end workstations,
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basically because clusters of commodity components are cheaper and inher-

ently easier to upgrade. Sort-last is the parallel model adopted, that is the

original 3D texture is distributed among the nodes of the cluster, and it is

splitted in a slicing phase. Each node is in charge of rendering its part of

the volume, then the framebuffer of each node is read and sent to a node

which performs the final compositing phase. Special cares are necessary if

the final compositing also requires alpha blending. A binary swap algorithm

among the nodes is implemented too. The binary swap allows to reduce the

compositing bottleneck that is generated when all the entire framebuffers are

sent to the same final node.

Chapter 2 exposes the main techniques in volume rendering. In sec-

tion 2.1 a short overview is provided, where the main application fields are

pointed out. It is introduced the first and simplest technique, the volume

slicing. Section 2.1.3 is about the indirect volume rendering, where the data

set is first fitted with geometric primitives and then is rendered. The aim is

to approximate with the geometry a certain iso-surface of interest, then the

rendering is achieved feeding the graphics board with the geometric primi-

tives. The basic algorithm for performing an indirect volume rendering is the

marching cubes. Section 2.2 presents the other main class of algorithms for

volume rendering, that is the direct volume rendering. The main difference

with the indirect techniques is that the data set rendering is achieved without

any intermediate geometry. The main techniques are ray casting, splatting,

cell projection, shear-warp and finally the hardware based texture mapping.

Section 2.3 describes the state of the art. Recent research trends tend to ex-

ploit the new GPUs features and to achieve volume rendering for large data
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set. Thus an algorithm is presented which intensively use the programmable

shaders to perform an hybrid method made up of texture mapping and ray

casting. Furthermore, the main issues related to irregular data set, out-

of-core algorithm and dynamic data set are presented. Section 2.4 shortly

describes the OpenGL API and its functions to create a 3D texture. Finally

the Aura graphics library is introduced.

Chapter 3 deals with parallel volume rendering, since several techniques

have been proposed to exploit hardware made of multiple computational

nodes. Section 3.1 presents an overall analysis of parallel rendering, first com-

paring the hardware support given by high-end graphics workstations with

clusters of commodity components. The Molnar’s taxonomy, a landmark for

classification of parallel rendering algorithms, is introduced, followed by a

deeper description of its three main classes: sort-first , sort-middle and sort-

last. Section 3.2 points out state of the art techniques and research trends in

parallel rendering. Hierarchical data structures are a preferred way to man-

age large data set, especially when it has to be distributed among several

nodes. The multi-threaded approach is also widely employed. An hybrid

algorithm which fall into both sort-first and sort-last classes is described.

Its performance overcomes the traditional sort-first or sort-last algorithms

in many cases. Section 3.3 presents software related to the parallel render-

ing. The Chromium library is widely accepted as the outstanding software

for parallel rendering. Aura, used for our work, also supports the parallel

rendering.

Chapter 4 concerns our implementation of a sort-last volume rendering

using the Aura library. Section 4.1 is about the design choices taken to
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add the new components to Aura. First an overview of the Aura internal

structure is given. The OpenGL buffers system and the read and write

operations on buffers are described. The project design is motivated and the

new components are introduced. Section 4.2 is about the slicing strategy

adopted in our work and the compositing phase. The alpha compositing

theory is introduced, according to the Porter and Duff results. OpenGL

implementation of the alpha compositing is given. Alpha compositing in

the 3D domain is generally achieved using the stencil buffer. However our

implementation can avoid the use of the stencil buffer. Section 4.3 deals with

the parallel compositing issue. The need for parallelism at the compositing

phase is pointed out. Three algorithms are proposed: direct send, parallel

pipeline and binary swap. The latter is the one adopted in our work.

Chapter 5 gives validation results. Chapter 6 presents the final consider-

ations and gives suggestions for future works.



Chapter 2

Volume rendering

2.1 Introduction and indirect techniques

2.1.1 Overview

Scientific visualization of volumetric data is required in many different fields

of interest. Medical applications are an obvious example. Several tools are

nowadays available to obtain image data from different angles around the

human body and to show cross-sections of body tissues and organs. The pur-

pose is to support the physician diagnosing internal disorders and diseases.

The computed tomography (CT) scanner consists of a large machinery with

a hole in the center, where a table can slide into and out. Inside the machine

an x-ray tube on a moving gantry fires an x-ray beam through the patient

body, while rotating around it. Each tissue absorbs the x-ray radiation at

a different rate. On the opposite side of the gantry a detector records this

1D projection, after a 360-degrees rotation around the body a computer can

5



2.1. Introduction and indirect techniques 6

compose all the projections to reconstruct a 2D cross-sectional view of the

body, or slice. The table advances and the same procedure is repeated for

the new section, until the interesting area is completely scanned and a set

of 2D slices is ready. Besides CT, magnetic resonance (MR) and ultrasound

imaging are widespread methods to produce a digital representation of the

human internals.

There are also other scientific areas which require to handle huge amounts

of image data. The goal is still to improve the knowledge of the data set

achieving a high-quality rendering and allowing a flexible and efficient ma-

nipulation. Numeric simulations in physics as computational fluid dynamics

are a good example. In sophisticated molecular modeling, oceanographic

experiments or meteorological simulations the parameters needed to be in-

vestigated are associated with shades of gray or, more commonly, with RGBA

colors. Generally speaking, all the areas concerning the study of a scalar field

can find an important support representing the 3D domain as a volumetric

data set:

f : D1 ⊂ <3 → D2 ⊂ <

Using a different and more convenient terminology, the data set is rep-

resented as a 3D array of scalar values, or voxel grid. Each of the elements

of the array is called voxel. The function which describes how the voxels

are spaced determines the grid type. The simplest case is of course the

constant function, where each voxel is regularly spaced (i ∗ d, j ∗ d, k ∗ d or

i ∗ dx, j ∗ dy, k ∗ dz) and thus the grid is called regular. Otherwise the grid

is curvilinear (x[i], y[j], z[k] or also x[i, j, k], y[i, j, k], z[i, j, k]). The grid is

referred to as unstructured if no function can be given to describe the voxels
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position.

Since real world data sets are usually generated and stored using the

scale of greys, it is necessary to map each voxel to a RGBA color, in order

to highlight the wished elements of the data set. This task is accomplished

using one or more transfer functions, which associate a RGBA value to a grey

one. For instance, the skin of a human hand has a certain constant value on

the scale of greys. The transfer function can be used to highlight the skin,

associating to its value a bright RGBA color. If we prefer to investigate the

hand internals the skin can be mapped to a transparent color (i.e, the alpha

value is set to zero). In the next paragraphs a short taxonomy of the main

techniques adopted in the volume rendering field is provided.

2.1.2 Volume slicing

The main task of a visualization application is to reduce the volumetric data

set to a 2D image, since the output is usually displayed on a 2D surface.

The simplest way to achieve such result is to extract a planar 2D slice from

the volume and to directly show it onto the screen, I(x, y). Of course with

this technique the data loss is enormous, all the advantages to exploit the

spatial organization of the data is lost. A method to partially overcomes this

problem is to show several slices simultaneously, or in a temporal sequence

I(x, y, t) = f(α1x, α2y, t)

In this case time replaces the missing spatial coordinate. Otherwise it’s

possible to display several slices at the same time, using also orthogonal cut-
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ting to allow the user to mentally reconstruct the three dimensional relations

of the volume. Orthogonal slices can also be embedded together to improve

the general comprehension of the volume.

2.1.3 Indirect volume rendering

A second approach is represented by the indirect volume rendering (IVR),

also referred to as surface rendering. Data are converted in a set of polygons,

and then rendered using the standard graphics hardware, typically able of

efficient rendering for geometric primitives. Here the main task is to detect

the surfaces of interest, and then to fit the volume with the appropriate prim-

itives. The surface is usually identified with a constant value, or iso-value,

so only the voxels of our volumetric data set with this value are displayed.

f(x, y, z) = k, k constant

Cuberilles was one of the first widely used methods for this purpose [12],

the basic idea is to use a binary segmentation to determine which voxels

belong to the surface and which do not. All the voxels of the object are then

joined together to approximate the final surface. If the number of voxels

is not large enough the final image can look like it’s made up of squared

bricks. To improve the image quality the original data set can be re-sampled

increasing the number of voxels, but this implies at the same time to increase

the computation time.

The well-known marching cubes algorithm is an important evolution of

this technique, proposed by [21]. In this case the volume is organized in
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Figure 2.1: Marching cubes basic combinations. Source:
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/Smooth
Surfaces/0the s047.html

cubes made up of 8 voxels. The goal is to detect which ones of the 8 voxels

of each cube belongs to the iso-surface, and then to create the appropriate

triangular patches which divide the cube between regions within the iso-

surface and regions outside. At each step a cube is classified with an index

for the values of its corners, potentially the combinations are 256 but a strong

simplification exploiting symmetries gets only 15 combinations. The index is

used to look up a precalculated table and to obtain the correct patches, then

vertexes are interpolated and the normal is calculated. Finally, the surface

representation is obtained by connecting the patches from all cubes.

Although marching cubes is a standard and wide used method for IVR,

many improvements were proposed to overcome unexpected behaviors due

to ambiguous cases. One way is to add 6 new combinations to the original 15

to remove ambiguities. Another way is the marching tetrahedra algorithm,
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where tetrahedra are used instead of cubes to detect surfaces. A finer detail

is provided and the arising of ambiguous cases is avoided.

2.2 Direct volume rendering

2.2.1 Ray casting

Another approach is the direct volume rendering, also simply known as vol-

ume rendering. The data set is directly projected onto the 2D viewing plane

without fitting visible geometric primitives to the samples. The data set is

represented as a kind of 3D cloud. The basic styles are ray casting, splat-

ting, cell projection, shear-warp projection and texture-based mapping, but

it’s common to combine these ground techniques to obtain hybrid methods.

Ray casting [19] is a special case of the more complex ray tracing method.

A ray is fired from every pixel in the image plane into the data volume, and

for this reason ray casting is classified as an image-order approach. Along

the intersection of the ray with the volume shading algorithms are performed

to obtain the final color of the pixel, using a back-to-front order for the final

composition. The contribution of each data sample to the pixel depends on

a set of optical properties, like color, opacity, light sources, emission and

reflection model. A first advantage compared to the IVR is that the vol-

ume shading is free of any classification of the voxels, while only the voxels

detected as belonging the surface are rendered in the IVR, resulting in fre-

quent false positives (spurious surfaces) or false negatives (unwished holes in

surfaces).

Ray casting performs a surface classification by mapping the voxels to an
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Figure 2.2: A ray is fired through the volume. Source:
http://smohith.tripod.com/proj/vhp/thesis/node92.html

opacity value. But ray casting is an extremely computation intensive process,

that’s why many improvements have been proposed to increase the perfor-

mance. The main remark is there are usually many transparent regions (i.e.,

opacity is zero) inside the volume, they do not give any contribute to the final

image but they are processed as significant ones. Transparent regions can

be skipped modifying the ray casting algorithm with the hierarchical spacial

enumeration [20]. An additional pyramidal data structure is required. All

the voxels are grouped together into cells of different sizes, the minimum with

the same size of a single voxel and the maximum with the size of the entire

volume. Each cell also contains links to parents and children cells and a value

set to one if there are children of the cell with an opacity greater then zero,

zero otherwise. So when a ray is cast the pyramidal structure is traversed

starting from the biggest cell and at each step the cell value is tested. The
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voxels on the base are reached and shaded only if all the cell parents get a

one as result, if a zero is encountered it means there is a transparent region.

Another optimization can be accomplished avoiding inner regions with an

high opacity coefficient when the ray has already accumulated an opacity

value close to one processing the data. A threshold is set and if it is reached

the ray can be terminated, further voxels would not be visible.

Ray casting is also employed to implement a different technique which

does not belong to the DVR algorithms, the maximum intensity selection

(MIP). The basic concept is to select the maximum value along with each

ray, in such a way only a little subset of voxels contribution to the final image.

This can be useful to depict a specific structure from the volume ignoring the

rest, as blood vessels in a data set produced by a MR scanner. MIP exists in

many variants as local MIP, where the first value above a given threshold is

selected. Furthermore, MIP can be joined with a DVR technique to obtain

a hybrid method.

2.2.2 Splatting and cell projection

Splatting, first proposed by [38], is an object-order approach, either back-to-

front or front-to-back; pixel values are accumulated by projecting footprints

of each data sample onto the drawing plane. This method processes only

objects existing in the volume, avoiding transparent regions. It’s particularly

efficient for sparse data sets. To skip opaque inner regions is more difficult,

because a voxel which doesn’t contribute to a certain footprint can contribute

to another one.

A similar approach is represented by the cell projection algorithms, such
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Figure 2.3: The four tetrahedra configurations. Source:
http://www.cs.unm.edu/˜kmorel/documents/dissertation/thesis full/node
28.html

as the projected tetrahedra of [31]. The volume is first decomposed in tetra-

hedrical cells which are then classified according with the viewpoint vector.

Tetrahedrons were chosen as the cell-shape because they are the simplest

possible polyhedron (4 vertices, 6 edges and 4 faces) and because they are

simple (non self-intersecting) and convex. Any kind of simple polyhedron

can be decomposed in a set of tetrahedrons. Furthermore, a tetrahedron

projected onto a plane can be broken into triangles, only four configurations

are possible. Thus once a tetrahedron is classified it can be decomposed with

triangles, values are linearly interpolated and then the triangles are rendered.

All the above methods are high quality methods with similar performance,

with a better behavior of splatting for sparse volumes and with an easier

parallel implementation for ray casting. The next methods have a lower

quality but they are faster.
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2.2.3 Shear-warp

A third method is shear-warp [16]. It is a hybrid technique which traverses

both image and object space at the same time. Unlike ray casting, the pro-

jection of the data set onto the surface is splitted in two different steps, a

shearing along the axis of the volume and a final 2D warp operation. The

sheared volume is projected on a base plane, normal to an axis of the volume

coordinate; the goal of the shearing phase is to simplify the projection op-

erations, that usually represent the computational bottleneck in many algo-

rithms, like ray casting. Finally the warp step corrects the image distortion,

due to the angle between the base plane and the viewing plane. To accelerate

the shear-warp rendering usually run-length encoding is used for sequences

of voxels with similar properties, for example for transparent regions. All the

pixels covered by the projection of a run are treated equally, increasing the

performance.

2.2.4 Texture-based rendering

Texture-based methods are a last approach, which takes advantage of the

texture mapping hardware. Although all the above basic methods can reach

important results and many efforts have been done to further improve their

performances, a truly real time DVR cannot be achieved only via a software

solution. If only 2D textures are available, we consider three axis aligned

sets of slices of the volume, each applied as 2D texture; the set that is most

perpendicular to the viewing direction is selected and alpha-blended in a

back-to-front order. Otherwise, if 3D textures are supported, only one set



2.2. Direct volume rendering 15

Figure 2.4: 3D texture. Source: [14]

of slices is necessary. They are constructed aligned in the object space or,

more likely, in the image space (i.e., perpendicular to the viewing direction)

and placed within the volume. Slices are then rendered using a trilinear

interpolation for the slices coordinates, using color and opacity values from

the volume loaded into the texture memory. To achieve the final rendering

the slices are blended together, again in a back-to-front order.

Since its first introduction the hardware based approach could overcome

long term performance issues related to volume rendering. In order to fully

understand its success it is worth noting that nowadays the power of GPUs is

increasing faster then the power of CPUs, thus there is a huge availability of

cheap and powerful graphics boards. However, data set size is also increasing

fast, and the texture memory available on a graphics board represents a

strong constraint to the hardware based approach. Moreover, this method

produces several fragments which may not contribute to the final image, as

seen for other techniques such as ray casting.
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2.3 State of the art

2.3.1 Hybrid methods

Recent works usually propose hybrid methods, where the good performances

of hardware based texture mapping are combined with the advantages of

other methods. [14] intensively exploit the new features available on the new

generation of graphics boards, that is programmable shader units, high band-

width to access the texture memory and high parallelism inside the rendering

pipeline, in particular with the presence of several fragment units. The ba-

sic idea is to generate slices textured with color and opacity from the data

set as in the standard hardware based texture mapping, and then to adopt

ray casting to skip inner regions and empty voxels or to detect iso-values.

In order to implement such method the hardware support has to allow the

redirection of the rendering process to a 2D texture (used to store the in-

termediate results, the texture is aligned with the viewport and it has the

same resolution), to allow the generation of texture coordinates (to access

slices and temporary textures while a ray is traversing the volume) and to

calculate arithmetic operations (but also more complex ones as dot product)

in the shader programs, and finally to allow a fragment to change its depth

value.

The method requires four passes:

1. Entry point determination. The front faces of the volume are rendered

and stored in a temporary 2D RGB texture (TMP). The color values

represent the 3D texture coordinates, thus the first intersection of the

rays of sight with the volume.
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2. Ray direction determination. The same procedure is executed for the

back faces of the volume, the rays direction and length are computed

and stored in a 2D RGBA texture (DIR), where the RGB components

are used for the normalized direction and the A component for length.

3. Ray traversal and early ray termination. Rays are casted through the

volume and the accumulated value is determined at each pass. The tex-

tures generated at the previous steps TMP and DIR are used as lookup

tables, while another 2D texture (RES) is employed to store interme-

diate results. The early ray termination is easily performed testing the

current ray length with the length stored in the A component of DIR. If

the ray exits the volume the corresponding A component in RES is set

to 1. The iso-surface detection can be performed traversing the volume

from back-to-front at this pass. When the current ray value is equal or

greater to a certain iso-value it is stored on a temporary variable.

4. Stopping criterion. The A component in RES related to the current ray

is compared with a threshold value, if it is greater the respective depth

value is set to a maximum value, otherwise to 0. The idea is to avoid

useless computations using the z-buffer test. The same idea can be

fruitful employed to perform an empty space skipping. An additional

3D RGB texture is needed to store octree hierarchy information. It

corresponds to a particular octree level with nodes of constant size. The

minimum and maximum value of the child nodes (i.e., the bounds of the

region covered by the octree node) is stored in the R and G components.

This extra 3D texture is used to address a 2D texture, where for each
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pair R/G it is shown if there are non-zero color component inside,

that is for each region it indicates if it is empty or not. The empty

space skipping test can be performed together with the threshold test,

if an empty region is detected the fragment depth value is set to the

maximum value (but whenever a non empty region is found is reset to

0).

2.3.2 Unstructured grids

Besides algorithms exploiting new GPUs features as seen above, many al-

gorithms have been developed to apply DVR techniques tailored for regular

grids to unstructured ones. The irregular data set is usually represented by a

tetrahedral mesh, that is a set of tetrahedra where for each pair of tetrahedra

is possible to determine if they are disjoint, incident or adjacent. However

meshes made of other types of cells are also possible, such as hybrid meshes

made of tetrahedra and irregular hexahedra. A first issue is to perform a

visibility ordering on the cells, that is a total order such as if cell A obstructs

the cell B for a given viewpoint, then B precedes A in the ordering. The

visibility ordering is essential to achieve a correct final result and it is useful

to efficiently exploit the graphics hardware.

A first object oriented approach is the Meshed Polyhedra Visibility Or-

dering (MPVO), where an adjacency graph is computed from the mesh. Ba-

sically, each node of the graph correspond to a cell, and the edge between

two nodes represents a shared face. The shared face defines a plane which

divides the space into two half spaces, each containing one of the two nodes.

The edge is oriented towards the node lying on the same half space of the
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viewpoint, thus the entire graph can be oriented and the visibility ordering

achieved.

An opposite, image oriented approach is the A-buffer, where the ordering

is performed after the rasterization. Each primitive is rasterized without any

concern about the ordering, then the generated fragments are stored in a

per-pixel linked list containing the depth values. The depth values are then

used to sort the list. The main disadvantage of the A-buffer method is it

requires extra memory to store the linked lists.

An hybrid approach is represented by the k-buffer, which combines the

previous methods. A first approximate ordering is performed by the CPU

on the cells, then the primitives are rasterized and a further ordering is

performed by the GPU using the k-buffer. The main difference between the

A-buffer and the k-buffer is that while the A-buffer memory requirements are

unbounded since linked lists are stored on the A-buffer, the k-buffer requires

a constant amount of memory, that is k entries are stored for each pixel.

Each entry contains the distance of a fragment from the viewpoint, it is used

to sort the fragments.

After the visibility ordering is accomplished the standard DVR methods

can be adopted as for regular grids. It is worth noting DVR of an unstruc-

tured grid is much easier if all the cells are convex, otherwise problems can

arise sorting the cells and applying the conventional algorithms (e.g., a ray

traversing a non-convex mesh with ray casting enters and exits a cell more

then once). Convexication of a mesh can be performed, nowadays it is still

a hard task though.
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2.3.3 Large and dynamic data set

The need for processing large data set represents another outstanding area

of interest, since data set size increases faster then hardware support. A first

method is to simplify the data set in order to obtain a data set that is easier

to handle. This is usually achieved with a pre-processing step, however it

produces a static approximation, thus it can introduce artifacts. If a texture

based method is being used, the pre-processing can split the original texture

into several bricks, detect and discard the empty regions and finally rearrange

the 3D texture. A more refined method consists in using hierarchical data

structure to provide a multi-resolution or level-of-detail (LOD) representation

of the data. [36] adopts this approach combined with the 3D texture based

technique. The texture is divided into several bricks, then for each brick a

set of coarser approximations is computed, thus a multi-resolution hierarchy

structure is generated. Only the more interesting regions of the data set

are rendered at the higher resolution, the less significative areas are loaded

and rendered at a coarser resolution, reducing the impact of the trilinear

interpolation and thus improving the interactivity.

Although all the above techniques allow to treat large data set, modern

applications and scientific experiments may need to handle even larger data

set, overwhelming the standard PC resources. This happens when the data

set have been generated by a supercomputer but the visualization process

has to be accomplished on a PC or a mid-range workstation. A solution to

this issue is addressed by the out-of-core approach, that is to use the disks

in order to overcome the main memory limits. The out-of-core approach was

not first employed by computer visualization, since it was already adopted for
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computational problems in science and engineering, which do not fit inside

the main memory, and for the database field, which is inherently out-of-core.

The main overheads introduced are due to the communication bottle-neck

between the disk and the memory and to the inefficient random access to

the disk, because each seek operation implies the movement of mechanical

parts. Thus the out-of-core approach is required to overcome such overheads,

usually providing an ad-hoc data structure to organize and efficiently handle

the data set on disk. For instance, [6] restructure the original data set using

an octree during a pre-processing step. The octree is recursively generated

inserting at each phase the cells into the octree node. When a node needs

to be splitted because it contains an exceeding amount of cells it creates its

children and distributes the cells among them. If a cell could intersect more

than one node it is replicated. After the pre-processing, the octree is used

to load only the required portion of the data set on demand. [8] propose

two out-of-core algorithms for DVR of large unstructured grids. The first is

a memory-insensitive rendering that requires only a small amount of main

memory. The basic idea is to pre-process the files containing the vertexes

and cells lists in order to avoid random access to the disk. Then each cell is

transformed and traversed by a ray, the intersection is computed and stored

when the ray enters and exits the cell. The sampled values are then sorted, so

all the values concerning the same pixel are grouped together, in a sequential

order, ready to be employed for the compositing phase. The second algorithm

is an extension of the in-core ZSWEEP, which basically sweeps the data with

a plane parallel to the view plane increasing the z coordinate. All the cells

incident to vertices are projected onto the plane, the contribute they give
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to each pixel is stored in a sorted list, the data structure adopted is similar

to the A-buffer. When the sweeping plane reaches a target z coordinate the

compositing is performed. The out-of-core ZSWEEP divides the data set in

chunks, so only a subset is loaded into the main memory at each time. To

further limit the amount of memory required, also the screen is subdivided

into tiles, for each tile the chunks that are projected onto it are rendered.

Another open topic of research is represented by the time-varying and

dynamic data set, since many scientific applications require to analyze the

evolution of the data set over time. In this case the field values can change,

but topological changes of the structure are also possible. While many so-

lutions already exist for the regular grids, the visualization of time-varying

unstructured grid is still an hard task, basically due to the enormous amount

of data needed to be handled. Compression techniques have been developed

to overcome this issue.

Finally, nowadays DVR is becoming practical also for the video-games

industry. Exploiting the new GPUs features, such as the increased texture

memory and the programmable shaders, it is possible to adopt DVR tech-

niques to enhance volumetric effects that usually are approximated. For

instance, fire explosions or lava spurts are achieved using particle systems

with point sprites. Since it is possible to procedurally generate 3D texture

and dynamically change the values, DVR can perform animated and non-

repeating effects.
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2.4 Software

2.4.1 OpenGL and 3D textures

OpenGL is a widely used application programming interface (API) for devel-

oping applications concerning 2D and 3D computer graphics. It is supported

on several platforms such as Windows, Linux and MacOS and there are var-

ious language bindings, for example to C, C++, Python and Java. The

API interface consists of over 250 functions, a program running OpenGL

can call such functions to exploit the underlying graphic hardware. How-

ever if no hardware acceleration is available the functions can be emulated

through software, of course decreasing the performance. OpenGL core API

is rendering-only since it is operating system independent, thus it provides

functions for the graphic output and does not directly support audio, print-

ing, input devices and windowing system. Additional APIs are required to

integrate OpenGL with such extra functionalities, as GLX for X11 and WGL

for Windows or the portable libraries GLUT and SDL. The OpenGL render-

ing pipeline operates on both geometric and image primitives and includes

features as lighting, geometric and view transformations, texture mapping

and blending. Nowadays OpenGL allows also to create and run customized

parts of the rendering pipeline using the OpenGL shading language (GLSL).

GLSL is a high level language based on C and extended with types that are

useful for graphics as vectors and matrixes. It allows to implement programs

(vertex and fragment shaders) loadable on the new generation GPU, giving

to the programmers a low level and flexible control of the rendering process.

The Architecture Review Board (ARB) is a consortium made of software and
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hardware companies leading the graphics market, it governs the OpenGL de-

velopment since its introductions in 1992 when the version 1.0 was released.

A single vendor can decide to add a specific function to the core set to bet-

ter exploit its graphic board or to achieve specific goals, thus the extension

mechanism is provided. The vendor extension can be promoted to become

a generic extension if it is adopted by a group of vendor, furthermore it can

become an officially ARB extension or even part of the core API.

Naturally OpenGL can be employed to implement volume rendering ap-

plications, further functions to achieve DVR via hardware acceleration are

provided as part of the core API since the version 1.2 released in 1998. The

basic idea is to extend the traditional 2D texture concepts to a volumetric

data set or 3D texture. The main function to generate a 3D texture is:

void glTexImage3D (GLenum target,

GLint level,

GLint internalformat,

GLsizei width,

GLsizei height,

GLsizei depth,

GLint border,

GLenum format,

GLenum type,

const GLvoid * pixels)

The main differences with the 2D case are the target (here GL TEXTURE 3D

or GL PROXY TEXTURE 3D) and the presence of a third spacial coordi-

nate, while the other parameters have the same interpretation. If 3D textures
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are enabled, image data are read from pixels and a 3D texture with size width

* height * depth * bytes per texel is created. The 3D texture can also be

thought as series or a stack of 2D textures, where the extra spacial parameter

(i.e., depth or r in texture coordinate) is used to select the proper 2D texture.

In order to create a 3D texture inside a program the basic steps are:

1. Load or procedurally generate the image array

2. Get a name for the texture (glGenTextures) and bind to it

3. Set specific parameters (glTexParameteri)

4. Create the texture (glTexImage3D)

The steps to render the texture are:

1. Bind to the texture (glBindTexture)

2. Specify geometric primitives and texture coordinates (glTexCoord3d

and glVertex3d)

The 3D texture will be mapped inside the geometry.

2.4.2 Aura and 3D textures

Aura is a high-level graphics library developed by the Free University of

Amsterdam and released under the GPL license, it is implemented for both

Windows and Linux. It is designed for non-expert scientists who intend to

use modern 3D graphics facilities both for teaching and research purposes.

Aura uses the widely known and employed APIs OpenGL and Direct3D to

exploit modern hardware accelerations, and it provides an easy to use C++
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interface. Aura is scene graph oriented, that is it furnishes to the programmer

a set of functions to easily build and manage a scene graph. Thus a typical

Aura application creates a scene graph where all the objects to be rendered

are inserted, then the main loop provides the rendering steps and updates the

scene. Of course the scene graph does not only contain the 3D geometry, but

also the light sources and the camera positions. In order to move the objects

and to achieve the animation of the scene, the affine transformations (i.e.,

rotation, translation and scaling) can also be inserted into the scene graph.

Moreover, interactivity is obtained with a further component, the reactor.

Whenever an event handler detects an incoming event (e.g., input from the

mouse or the keyboard but also collisions among objects of the scene graph),

a signal is sent to the appropriate types of reactors, which are in charge of

deciding the actions to perform. A reactor joined together with a camera is

called an avatar, it allows to interactively control the camera movements.

Each object has a state, such as material properties and textures applied

on it, which can be controlled and changed. Object geometry can be directly

specified using basic shape functions provided by Aura, or it can be loaded

from an external file if it is complex . Aura supports many formats such as

3DS, LWO, OBJ, PDB and PK3.

Many Aura settings can be changed quickly, avoiding a new full compi-

lation, writing the configuration file aura.cfg. This XML file contains tags

that control the general behavior and many initializing values (e.g., the tag

Display controls the resolution, the tag Server specifies if the rendering has

to be performed locally or on a remote host, etc..).

Finally, Aura supports and allows programming on virtual reality envi-
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ronments such as the CAVE and rendering on tiled displays.

Since Aura encapsulates the OpenGL functions, it supports the usage of

3D textures. The class Texture allows to apply a texture with one, two or

three dimensions to an object inside the scene graph. The main functions

provided to manipulate a texture are:

• The constructor to create the texture (Texture(uint aformat, uint

axsize, uint aysize = 0, uint azsize = 0) ). Besides the inter-

nal format, it is requested to specify the sizes. If only a dimension is

stated, it is assumed it is a 1D texture. Likewise if only two dimensions

are stated the texture is 2D, thus to get a 3D texture it is necessary to

specify all the three dimensions.

• Load functions to generate the texture from an external file. The sup-

ported formats are: JPG, PNG, TGA and RGB.

• Query functions to retrieve information about the texture state (e.g.,

the size, the internal format, the byte-per-pixel). It is also possi-

ble to get the color corresponding to a specified pixel (math::Color

Pixel(uint x, uint y = 0, uint z = 0) const).

• Write functions to create a copy power of two of the texture, to add an

alpha value to the texture, etc.. The function void Pixel(math::Color

c, uint x, uint y = 0, uint z = 0) allows to change the color to

the specified pixel, it is very useful to procedurally create a texture.

Thus a volumetric geometry can be easily filled with a 3D texture, whether

loaded from a file or generated from functions. For an instance:
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Geometry *volume = new Geometry("test");

A geometry node is created.

VolumeCube *v = new VolumeCube(NUM_SLICES,Box(-1,-1,-1,1,1,1));

volume->AddShape(v);

The generic geometry node is filled with a cube.

volume->SetAppearance(new Appearance());

Texture *tex = LoadTexture("NoiseVolume.dds");

volume->GetAppearance()->AddTexture(fog);

The geometry node is enhanced with an Appearance object, to handle the

state. A 3D texture is loaded from a file .dds and it inserted into the Ap-

pearance object.

AddGraph(volume);

Finally the geometry node containing the cube and the texture is added to

the scene graph.



Chapter 3

Parallel volume rendering

3.1 Parallel rendering

3.1.1 Clusters of commodity components

Since the size of data set produced by scientific experiments and simulations

is constantly increasing, standard volume rendering techniques have been

adapted to run also on parallel hardware. The aim is still to achieve a high-

quality and truly interactive rendering. The first solutions to be proposed

were to exploit expensive specialised parallel machines, such as supercomput-

ers or high-end graphics workstations. However, nowadays the high availabil-

ity and the decreasing costs of commodity PCs and network devices make

clusters of PCs a cheap and competitive alternative to parallel machines.

The main advantages to adopt a cluster are:

• Low cost: commodity PCs produced for a mass market are cheap, es-

pecially when compared to the prices of custom-designed machines.

29
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Furthermore, the price-to-performance ratio is in favour of PCs, also

because they can be equipped with powerful and cheap graphics accel-

erator. It is worth noting GPUs for PCs have a development cycle that

is short compared to customised hardware (six months against one year

or more), and their performance improving exceeds the Moore’s law.

Moreover, standard APIs as OpenGL allow to update and replace the

hardware components easy.

• Modularity: the off-the-shelf components are combined together using

the network devices and they only communicate by using the network

protocols. Thus it is possible to easily add or remove PCs, or to combine

heterogeneous machines together.

• Flexibility: the cluster is not constrained to be employed only for ren-

dering purposes, but it can also accomplish other tasks. It can act also

as a server and provide rendering services to a remote host.

• Scalability: increasing the number of PCs linearly rises the aggregate

computation, storage and bandwidth capacity. Since each component

does not share its CPU, memory, bus and I/O system the scalability is

better compared to a customised, shared memory architecture.

3.1.2 Molnar’s taxonomy

In the past several classifications were proposed for parallel volume rendering

algorithms, however comparisons were hard to perform because each analysis

tends to focus on unique features of the algorithms. In the next sections the

taxonomy proposed by [24] is presented, it is widely used and it overcomes
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comparison difficulties, all the parallel algorithms are evenly classified into 3

main categories: sort-first, sort-middle and sort-last.

Basically the standard rendering pipeline can be thought of as made of two

main parts, the first concerning geometric operations (transformations, light-

ing, clipping, etc.) and the second concerning rasterization (scan-conversion,

shading, texture mapping, etc.). In the parallel case the geometric and raster

primitives are spread among different processors. The main issue is to un-

derstand how each primitive contributes to each pixel, thus it is the problem

of sorting primitives onto the screen.

Each algorithm for parallel volume rendering is classified according to

this scheme: if the sorting takes place at the geometric stage it is sort-first, if

it occurs between the geometric and the rasterization stage it is sort-middle,

otherwise if it occurs at the final rasterization stage it is sort-last.

3.1.3 Sort-first

Sort-first algorithms have the main feature to distribute geometric primitives

at the beginning among the the processors. The final display is splitted into

disjointed tiles and each processor is responsible only for a tile (for this reason

sort-first is also referred to as an image-space approach), thus the main task

is to determine if the primitives which the processors have received belong

to its tile or they do not. In order to determine the primitive belonging to

tile pre-transformations are performed, usually calculating screen coordinates

of the primitives bounding boxes. If a primitive does not belong to the

processor a redistribution step has to be accomplished. The primitive is

sent through a communication channel to the proper processor. Of course
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the redistribution step introduces an overhead, proportional to the number

of primitives initially sent to the wrong processor. If only a frame has to

be rendered, most primitives will be assigned to the wrong processor, with

a related expensive redistribution step. To the contrary if multiple frames

have to be rendered and if there is an high frame-to-frame coherence (that

is, if the 3D model tends to locally change slightly between one frame and

the next), the redistribution overhead can be strongly reduced. There is

another overhead of sort-first that does not appear on the uniprocessor case.

It is when the same primitive overlaps several tiles and it has to be assigned

to multiple processors. If the primitive bounding box center falls into the

tile border it will overlap 2 tiles, if the center is on a corner the primitive

will overlap 4 tiles. Since each primitive has the same probability to fall

anywhere within the tile, the overlapping cases can be reduced if the tile size

is big compared to the bounding box size.

Sort-first can be prone to load-imbalance. A first case occurs when prim-

itives are well spread among the nodes but they require a different amount of

work to be rendered. A second case occurs whereas primitives are not equally

distributed on the screen, thus a tile contains much more primitives then an-

other one. A way to balance the amount of work is to reduce the tile size and

to assign several tiles to the same processor. This can be done whether stati-

cally or dynamically. Static load-balance is simpler to implement but cannot

be optimal for every data set, on the other hand the dynamic one increases

the algorithm complexity but allows to achieve better results. Another dis-

advantage of sort-first approach is that in order to exploit the frame-to-frame

coherence a processor has to retain primitives, to avoid a new initial random
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Figure 3.1: Sort-first. Source: [24]

distribution. Thus the algorithm has to provide appropriate mechanisms to

handle the retained primitives.

3.1.4 Sort-middle

Sort-middle performs the sorting between the geometry processing and the

rasterization. Since many systems compute these steps on different pro-

cessors, this is a natural place where to accomplish the primitive sorting,

however a sort-middle approach can be performed also if both the geometry

processing and the rasterization take place on the same physical processor.

At the beginning the primitives are randomly distributed among the nodes.

Each node does the full geometry processing until primitives are transformed

in screen coordinates. Transformed primitives are then sent to the appro-
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Figure 3.2: Sort-middle. Source: [24]

priate processors, that is, as in sort-first, the processors responsible of their

display tile.

The main overheads occur during the redistribution phase, because prim-

itives have to be sent through an interconnect network. Moreover, some

primitives can fall into more then one display tile, rasterization efforts have

to be at least doubled for such primitives.

Load-balance issues concern the object assignment and the unevenly dis-

tribution of primitives onto the screen. To guarantee a fair object assign-

ment, geometric primitives can be handled with hierarchical data structures.

To reduce load-imbalance during the rasterization the main technique is to

dynamically assign display tiles to each processor and to use smaller tile

(however, this can increase the number of overlaps).
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3.1.5 Sort-last

Sort-last distributes primitives to each processor without any concern about

the display tile the primitives fall in. Each processor performs a full ren-

dering, both the geometry processing and the rasterization. Finally, once

fragments are generated, pixels are sent to compositing processors, which

are responsible for resolving the visibility of pixels and to display the result.

Since every processor sends its pixels in the final phase, the network must

provide a high bandwidth in order to handle a high data rate. The sort-

last approach can be splitted into two main categories, the SL-full and the

SL-sparse. SL-full transmits the full image rendered by a processor to the

compositing processor, whereas SL-sparse sends only the pixels produced by

the rasterization, the aim is to minimise the communication work-load.

Sort-last does not introduce overheads during the geometry processing

and the rasterization, as in the uniprocessor rendering case. There are over-

heads during the pixel redistribution phase, where each processor has to send

its pixels to the proper compositing processor. Here the two approaches SL-

sparse and SL-full show their differences. SL-sparse sends only the generated

pixels, thus the data sent over the network depends on the part of the scene

assigned to the processor, but it is independent of the number of proces-

sors. SL-full is simpler to implement since the pixels messages sent are very

regular, its complexity does not depend on the contents of the scene, but it

depends on the number of processors and on the display resolution.

Load-imbalance occurs when the distributed primitives require a differ-

ent amount of work to be rendered, as for sort-first and sort-middle. Each

processor renders the entire scene, thus there are no overlapping problems.
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Figure 3.3: Sort-last. Source: [24]

SL-sparse presents load-imbalance if a processor sends more pixels to a com-

positor then another one. This issue can be overcome assigning to each

compositor interleaved arrays of pixels. Of course SL-full does not present

this type of load-imbalance, a full scene is always sent to the compositors.

3.2 State of the art

3.2.1 Complex hierarchical structures

Although for several years the most used approach was the sort-middle, re-

cently both sort-first and sort-last are commonly employed. The reason is

closely connected to the popularity of clusters of PCs. Customised hardware

supports provide high communication bandwidth among nodes and fast ac-

cess to the results of the geometry processing, thus a sort-middle approach is
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perfectly suited. By contrast, clusters do not usually provide such features,

thus sort-first or sort-last are generally preferred.

Efforts have been done to improve the sort-last, specially concerning the

load-balance issue. Trivial approaches divide the data set into sub-volumes

of the same size, then the sub-volumes are sent to the rendering nodes. The

load-balance is guaranteed at a task level, because each node has to perform

the same amount of work. However a deeper analysis shows that the contri-

bution of each node to the final image can vary according to the viewpoint

and the inner structure of the sub-volumes. Other approaches tend to em-

ploy parallel octrees to allow each rendering node to skip empty regions. The

global octree is created and sub-branches are assigned to different nodes. A

first processor reads data from an input file and sends them to the appropri-

ate processors, which will provide the split-down phase (the octree recursive

generation from the root to the leaves) and the final push-up phase (infor-

mation about the octree nodes are sent backwards from children to parents).

Links among octans (i.e., octree nodes) can be either local or off-processors.

Despite this technique can speedup the rendering time on each processor,

load-balancing remains static.

[18] propose to use composed hierarchical data structure to handle the

data set in order to achieve not only a task parallelism but a data parallelism

as well. The first step consists creating an octree, as already seen for other

standard approaches, and then to re-organise the data set using an orthogonal

BSP tree. A BSP tree (the acronym stands for Binary Space Partitioning)

is a tree where each node has no more than two children, and where each

sub-tree is obtained by splitting the space with an hyperplane (i.e., a plane
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in the tridimensional case). The BSP tree is generated starting from the root

node, which contains the whole data set, and then adopting a splitting plane

to divide the data into two disjointed sets. The procedure is recursively

applied to each sub-tree until a certain threshold is reached. At the end

every siblings pair is sorted with respect of the splitting plane. This is very

useful for rendering purposes because it has the same effect of a precalculated

painter’s algorithm.

A BSP tree satisfies the three main criteria to support a dynamic data

set: capacity to move the camera, to add and to remove an object. At

least the first criterion is easy to implement, it is only necessary to change

the traversal order. A BSP tree used together with an octree is useful to

achieve a true data parallelism, the octree allows to skip empty regions and

the BSP tree to fairly partition the relevant sub-volumes. A crucial phase is

represented by the choosing of the splitting planes, in order to get an easy

partitioning scheme. Adopting orthogonal, axis-aligned planes may be a good

strategy: first an axis is chosen, then all parallel planes are tested since a

fair partitioning of octree sub-volumes is reached, finally the procedure is

repeated for a new axis, until the number of BSP tree leaves is the same

as rendering nodes. Despite so far the above ideas are employed only for

static data set, they may be extended to the dynamic case as well, allowing

re-partitioning mechanisms.

3.2.2 Out-of-core and multi-threaded approach

Of course out-of-core techniques seen for the uniprocessor case also apply to

the parallel one. For instance, [5] extend the iWalk system originally thought
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for a single PC to a cluster of PCs. The basic iWalk concepts are to build

an on-disk octree representation of the data set performing a pre-processing

phase. At each step only a portion of the data fitting into the main memory

is loaded and processed. The resulting octree node is then stored in a dif-

ferent file, while an additional file is also created, the hierarchical structure

file, which contains the spacial relationships among nodes and other infor-

mation required for visibility tests. At run time, iWalk uses a multi-threaded

approach. A rendering thread is in charge of detecting which octree nodes

are visible, and then to forward the request to the fetch threads, responsible

for loading the nodes from disk to the memory. A look-ahead thread is used

to try to predict the next nodes required to be loaded. If no fetch requests

are pending prefetch threads can load into the memory the nodes requested

by the look-ahead thread. The parallel version of the iWalk system adopts

a sort-first approach. A client node handles the user inputs and notifies the

viewpoint changes to the rendering nodes. Besides, the full data set can be

stored directly onto the local hard disks of the rendering nodes or can be

stored onto a shared hard disk accessible through the network. Nevertheless,

each node loads on demand the required sub-volumes into the local memory

and performs the standard iWalk techniques. The only differences with the

uniprocessor case are: occlusion culling (each node performs the test only

according to the local frustum, since each display tile is independent), user

input (it is sent through sockets by the client node), synchronisation among

nodes (the MPI library is employed).
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3.2.3 Hybrid sort-first/sort-last approach

Hybrid approaches combining the three main techniques have also been de-

veloped, in order to reduce overheads and speedup the performance. [30]

propose an hybrid sort-first/sort-last algorithm and give several comparison

test results with the standard sort-first and sort-last. The algorithm core

ideas can be summarised in three phases:

• Phase 1: it consists basically in the pre-processing steps. Here the

more relevant aspect is that the data set is partitioned both in the

3D model space and in the 2D screen space. The aim is to assign a

disjoint group of geometric primitives and a display tile simultaneously

to each rendering processor, attempting to overcome the overhead due

to overlapping primitives for sort-first and the heavy pixel traffic for

sort-last. The partitioning is accomplished with a recursive binary

partition and a two-line sweep. At first, the longest screen axis is

selected and the two sweep lines are chosen perpendicular to the axis,

both placed at the opposite sides of the area to be partitioned (it is

noteworthy that this partitioning scheme is view dependent). The line

at the left side can be moved to the right direction and vice versa,

each line has associated a group of objects, at the beginning empty.

At each step the line with the smallest group is moved. When an

unassigned object is encountered it is inserted into the line group. This

process halts when all the objects have been assigned, then a little

swath between the two lines usually remains. The swath represents

an overlapping areas between the objects of the two groups, it will

require a compositing phase after the rendering phase. The partitioning
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procedure goes on using a new set of sweep lines perpendicular to the

previous ones, it stops when the number of tiles and group is the same

as the rendering processors.

• Phase 2: each group of objects and the corresponding tile is assigned

to a processor. The rendering is performed and then the color and

the depth buffer are read from the graphics board and loaded into

the main memory. Each processor sends its overlapping area to the

appropriate processors, and at the same time receives pixels from the

other processors. Compositing is achieved using depth information.

Pixels redistribution is done with a peer-to-peer communication model

among the nodes of the cluster, the communication bandwidth required

is lower compared to the pure sort-last approach.

• Phase 3: finally each processor sends its tile to the display node. Now

all the tiles are complete, since the phase 2 has provided the composit-

ing step in order to get the exact result also in the overlapping areas.

The processors only have to send the color buffer because no more com-

positing is needed (the tiles are not overlapped). Moreover, every pixel

is sent exactly once to the display node.

This hybrid approach gives good results (i.e., interactive frame rate) for

medium sized clusters, that is clusters with a number of nodes ranged be-

tween 8 and 64. Increasing the number of nodes shows that the amount of

work of the rendering nodes tends to decrease, the display node work remains

almost constant, while the client node work grows. The latter is due mainly

to the pre-processing algorithm, since the partitioning complexity depends
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on the number of rendering nodes. So a large cluster with more then 64

nodes has its performance constrained by the client node. However cluster

of such dimension are not common nowadays. Remarkably, the hybrid ap-

proach performance is better than the ones of the traditional sort-first and

sort-last approaches, because its design is done to reduce their main over-

heads. Sort-first overlapping overhead is small for the hybrid approach, as

the intense pixel traffic of sort-last. Moreover, the hybrid approach overheads

for the rendering nodes tend to decrease augmenting the number of nodes.

The study of the hybrid approach with an increasing screen resolution shows

its performance is still better than the other two. However the impact of

pixel write and read operations is significantly big, as for sort-last. Sort-first

is probably the best solution for very high-resolutions. Finally, it is interest-

ing to investigate how the number of objects (keeping constant the number of

polygons) affects the overall performance. On the client side, increasing the

number of objects (that is, the granularity) means a major work of partition-

ing. On the rendering processors side, the overheads tend to reduce. This

fact points out the importance of improving the client partitioning scheme.

3.3 Software for parallel rendering

3.3.1 Chromium

Chromium is an open source library which extends the standard OpenGL

API to specifically allow parallel rendering on clusters. It was first devel-

oped by the Stanford University as a further development of the WireGL

project. It was first released on 2001 and it runs on several platforms such
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as Windows and Linux. Chromium replaces the OpenGL library and pro-

vides almost every OpenGL function, so it is transparent to an application

using OpenGL. Moreover, it provides extra functions for the parallel render-

ing. The key idea is to give basic and highly customisable building blocks to

the programmer without constraining choices to a specific architecture. The

three basic employees of Chromium are:

• rendering a standard application on a high resolution display, multi-

screen display or tiled mural display (power wall).

• sort-first and sort-last parallel rendering.

• filtering and manipulation of OpenGL commands sent from the appli-

cation to the rendering nodes.

An OpenGL application performing a local rendering can be thought as

a graphics stream generator. It sends a stream of commands to the graph-

ics system. Chromium basically works intercepting the application OpenGL

commands with the application faker library (crappfaker), which then send

the commands to a stream processing unit (SPU). Several SPUs can be com-

bined together, creating a SPU chain. A SPU can be used to filter or change

a specific function call and leave the rest unchanged. For example, a SPU can

be used only to call glPolygonMode and set a wireframe rendering. It does

not change other function calls, but it eventually discards glPolygonMode

calls to preserve the wireframe setting. A SPU chain initialisation occurs

in a back-to-front order, beginning with the final SPU. The idea is that

every SPU declares a list of functions it implements. If a SPU does not

change a certain function call, it uses the function pointer of the downstream
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SPU, thus it avoids to introduce overheads. Specific SPUs are provided to

pack and send the commands to the network nodes (crserver) of the cluster.

Typically a SPU chain ends with a Render SPU, which performs the final

rendering. There are about 20 standard SPUs: the Render SPU (it pass

the OpenGL commands to the hardware support), the Pack SPU (it packs

commands into network messages), the Tilesort SPU (used for sort-first), the

Readback (used for sort-last), FPS SPU (it measures the frame rate), etc.

SPU implementation is object oriented, new SPUs are generated using the

inheritance mechanism. For example, the Readback SPU is derived from the

Render SPU, all the functions but the SwapBuffers do not change. Instead

SwapBuffers reads the current frame buffer with a glReadPixels and then

send it to the next SPU in the chain with glDrawPixels, in order to perform

a sort-last compositing.

The mothership is a python program responsible of the system config-

uration. It describes the global settings, the SPU chains loaded on each

node and the nodes arrangement. The latter is achieved giving the directed

acyclic graph (DAG) of the nodes, where each node in the graph represents a

cluster node and each edge represents the network traffic among the cluster

nodes. All the Chromium components query the mothership to get informa-

tion about other components and global settings.

3.3.2 Parallel rendering with Chromium

The main SPU concerning the sort-first parallel rendering is the Tilesort

SPU. It is usually employed to render an unmodified application on a mural

display, to replicate a rendering to several screens and to divide a high res-
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olution display into tiles. The application node contains the Tilesort SPU,

which sends the OpenGL commands to the network nodes. The Tilesort SPU

is responsible to send the geometric primitives to the appropriate nodes and

to keep track of the OpenGL state. If something of the state changes, Tile-

sort SPU sends the updates to the nodes. Several options are available, for

instance the size of the tiles can be either uniform or different on each node,

furthermore the same commands can be sent in broadcast to every node.

Since the Tilesort SPU consumes many computational resources and it is

ran on the node which already hosts the application, a powerful hardware

support is required. The network is also required to give enough bandwidth,

strategies can be adopted to overcome limitations, such as display lists and

vertex buffers.

Sort-last rendering may be achieved with three basic SPUs: Readback

SPU, Binary Swap SPU (it distributes the compositing process among the

nodes) and the Zpix SPU (it performs an image compression). Basically, the

color buffer and the Z buffer are read and sent to the compositor node (or

to a peer in the binary swap case). Buffers are then composited together

using the OpenGL alpha-blending and the Z-compositing via stencil buffer

(further details will be provided in chapter 4). Since Chromium is thread-

safe, multiple threads can run on the same host in order to speed up the

sort-last algorithm and take advantage of the host underlying hardware, such

as multiple graphics pipelines.

The sort-last scheme is also important to highlight the need of synchro-

nisation primitives. When several application nodes send their buffers to the

compositor crserver, it may be necessary to blend the buffers in a certain
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order, or to clean and swap the compositor buffer only once. These issues

can be accomplished adopting well-known primitives, such as semaphores

and barriers. The latter is used to guarantee all the application buffers are

already blended before swapping the current buffer. Semaphores can be used

to constrain to a specific order. For instance, the N application buffer waits

to be blended the N -1. When N -1 is done, a signal is send and the N buffer

can be processed. All these primitives are implemented on the compositor

crserver. That is, if an incoming SPU is waiting, the crserver does not ad-

vance its execution until the SPU is unblocked. Another issue is represented

by the input handling on the crserver. An additional component, CRUT, is

required to track the input and send it back to the application node, which

can update and render the new scene.

3.3.3 Parallel rendering with Aura

The Aura library supports the parallel rendering on clusters of PCs. The

Aura design differs significantly from the Chromium design, at least for two

reasons:

1. Aura adopts an ad hoc interface, so it is not transparent to an ap-

plication. An application must be rewritten to take advantage of the

Aura features, while the intercepting mechanism allows Chromium to

be used without modifying the off-the-shelf application. However, the

Aura approach permits to optimise the application according to the

rendering environment.

2. Aura adopts a retained mode strategy, in contrast to the Chromium
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immediate mode. On the one hand, Aura replicates the application on

each node, allowing local changes (e.g., the frustum area) in order to

achieve the appropriate rendering. Input events are broadcast from the

client node to the rendering nodes, to keep their state consistent. Syn-

chronisation among the nodes must be also provided to ensure frames

alignment. The main reason behind the retained mode approach is re-

lated to the performance, despite the major drawback is represented by

the redundancy. Problems can arise specially if the application reads

data from a database, since every node has to accomplish the same

operations.

On the other hand, Chromium avoids the replication issue, each stream

of commands is sent only to the node that will actually performs the

rendering. However, Chromium approach consumes a lot of network

bandwidth.

To achieve the parallel rendering Aura uses three kind of components:

master, slave and the Aura Rendering Service (ARS). The master is an Aura

application which demands the rendering to at least another application,

called slave, usually on a remote machine. Thus the scene graph generated

and controlled by the master is sent throw the network to the slaves, which

perform the rendering. The ARS is required in order to manage the connec-

tions among the master and the slaves. The ARS process should be the first

to be run followed by the slaves, which try to establish a connection with

the ARS to notify their presence. The ARS assigns to each slave a ranking

number, so it is possible to identify each slave. Whenever a master decides

to run an application as remote, it asks for the ARS the address of a slave,
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Figure 3.4: Logical structure of the parallel rendering in Aura

which acts as access point. Once the master obtains the address, it estab-

lishes a direct connection to the slave and starts to send to it the required

messages. The access point slave will propagate the incoming messages to

the other slaves.



Chapter 4

Implementation of a sort-last

rendering in Aura

4.1 Code design

4.1.1 Aura internals

Implementing a sort-last rendering in Aura means adding additional compo-

nents to the basic Aura library. A first step consists exploring the library

itself, since a wide knowledge of the internal structure is necessary. First,

it allows to reuse existing portions of code to create the extra components.

Furthermore, it gives insights on how to shape the component design, that

is which components to implement and where to place them.

Aura is strongly object-oriented, coherently with its high level and scene

graph oriented approach. The best way to understand Aura is possibly to

understand its classes and what is their purpose. In order to avoid an endless

49
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list, an overall view is given. The classes are grouped together following a

logical scheme (i.e., classes concerning the same aspect are grouped together).

The main classes adopted in the present work are highlighted and deeper

described.

• Core classes. This set of classes is required to create a basic Aura ap-

plication. The Environment class reads the Aura configuration file and

performs the initial set up. It creates the rendering context (Rendering-

Context) according to the operating system. On a Linux platform (as

the cluster used to run the sort-last rendering), the rendering context

basically encapsulates the glx functions, which are in charge of setting

up the frame buffer and accomplishing operations such as the swap

buffer and the clear buffer. The Environment class is also responsible

for setting the viewport (Viewport). The viewport can be of several

and customisable types. The three main choices are the default view-

port, for stand-alone applications, and the remote and slave viewports,

for the master and slave sides of a parallel framework respectively. The

viewport class is also very important because it is here where the Aura

processors of the application are specified. The event handler and the

scene graph classes, even used when a new environment is created, will

be treated below. Finally a special mention for the Application class,

which uses the above classes to instantiate a new application. Although

a programmer is not constrained to use this class to create its own ap-

plication, nevertheless it represents a standard and time saving way to

use the Aura features. It initialises the environment and it builds up

the scene creating the scene graph and setting the application behav-
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ior. The virtual function Step is usually adopted to provide the scene

animation.

• Interaction classes. These classes are related to the managing of in-

put events. Basic input handling as the keyboard and the mouse are

provided. Besides, more complex interactions are managed, as the ob-

ject selection and the collision detection. Is is also possible to attach a

camera to a certain kind of input, in order to move the camera along

the scene. For our purpose, the default Aura events were used, that is,

to translate and rotate the scene using keyboard inputs.

• Scene graph classes. Here the classes concerning the scene graph cre-

ation are grouped. Scene is the root node, and it performs the scene

global settings. Graph is the generic scene graph node, where all the

other classes are inserted. These are: Shape, which models the geome-

try of an object, Appearance, which models the state of the geometry

(Shape and Appearance are grouped together in a class Geometry),

Light, which sets the light parameters, etc. For the present work a

minimal scene graph was adopted, containing a Geometry object made

of a parallelepiped (provided by VolumeCube class) filled with a 3D

texture (Texture) defined in its Appearance.

• Processors classes. The processors allow to customise the rendering

pipeline of an Aura application. This is a powerful mechanism, since

several processors can be combined together to achieve more complex

results (despite there are not guarantees that two different processors

put together have a consistent behavior). This mechanism resembles
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the Chromium SPUs, despite the granularity is different. Chromium

SPUs act on OpenGL function calls, while Aura processors act on scene

graphs. Examples of Aura processors are the CullProcessor, to perform

the object culling, the OpenGLProcessor to perform the scene graph

rendering, a TransmitProcessor and a ReceiveProcessor to send and

receive a scene graph to a remote node in a parallel rendering. The

feature of the Aura processors was the central one adopted to imple-

ment the current work and will be described further below (4.1.4).

• Utils classes. This set of classes gives additional tools to the program-

mer, extending the basic set. For example, an xml parser is provided,

because it is required to read the configuration file. An image loader

is also provided, and a log tool useful for debug purposes. Here the

Socket class was heavily exploited, since it is required to exchange the

messages among the nodes. Using the socket mechanism a connection

between two nodes is established. The connection is then employed to

send and receive messages (based on the Aura Message class). In this

work the messages contain frame buffers or portion of frame buffers to

be composed together. Utils classes were also used to implement the

compositor node (see 4.1.7).

4.1.2 OpenGL buffers

Since Aura exploits the OpenGL API, it is also necessary to understand the

main features of OpenGL concerning the current work. These are mainly two:

the OpenGL rendering and the OpenGL buffers. In our work the former



4.1. Code design 53

concerns mostly how OpenGL manages and renders 3D textures. This is

accomplished locally on each node, so it has not a direct impact on the

overall design issue. The latter is more decisive, since the sort-last approach

requires the nodes to read, exchange and compose their buffers.

An OpenGL buffer is a rectangular array of pixels, usually stored on the

GPU memory. Each buffer gives some information on how to display the

rendering result onto the screen, or how to manipulate it. All the buffers en-

abled for a certain OpenGL context are referred to as frame buffer. However

in the rest of the chapter the notion of frame buffer will be slightly overloaded

and it will refer only to the color and z buffer together, which are the buffers

mainly used it this work, unless differently specified.

A basic OpenGL implementation usually provides:

• Color buffer. It is the only one directly visible. It provides color infor-

mation for each pixel, so it contains what is actually displayed onto the

screen. If the stereoscopic view is enabled, there are two color buffers,

left and right. Moreover, if the double buffer is enabled, there are also

a front and back color buffer. Each pixel can contain color-index or

RGBA values.

• Depth buffer (also called z buffer). It stores depth information for each

pixel. Its main aim is to perform a hidden-surface removal on a per

pixel basis. When the depth test is enabled, a pixel passes the test only

if its depth value according to the current viewpoint is lesser than the

one written onto the depth buffer. However, the depth buffer is not

constrained to only perform this task, since the depth test function can

be changed.
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• Stencil buffer. The main idea behind the stencil buffer is to allow the

user to restrict the drawing process onto the color buffer only to certain

areas. This filtering is based on the current stencil values. The stencil

test function and operation allow complex types of filtering.

• Accumulation buffer. It is used to accumulate RGBA images, so it

is similar to a color buffer, although the per pixel resolution is usu-

ally higher. For instance, it is used to perform anti-aliasing by super-

sampling the image, or motion blur of images accumulated at different

times.

Besides these standard buffers, OpenGL allows the user to create optional

buffer, in order to achieve special rendering or ad hoc operations. The per

pixel buffer resolution can vary according with the underlying hardware.

4.1.3 Read and write operations on buffers

The most common way to modify the buffers content is to render a scene.

However, OpenGL gives ad hoc functions to directly modify the buffers. This

is especially important for a sort-last rendering, because after the rendering

each node has to read its own frame buffer and to send it to the compositor

node (or to a peer with the binary swap algorithm). Furthermore, the com-

positor node works only by blending together different frame buffers, that is

it does not perform any primitives rendering. The two main functions are

glReadPixels (read operation) and glDrawPixels (write operation).

void glReadPixels(

GLint x,
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GLint y,

GLsizei width,

GLsizei height,

GLenum format,

GLenum type,

GLvoid *pixels)

Its aim is to read pixels from a specified buffer. The x and y parameters

specify the first pixel to be read, that is the lower left corner of the wished

pixel block. width and height indicate the pixel block size, in pixel. format

and type indicate the pixel format (e.g., RGBA) and type (e.g., byte), re-

spectively. Finally, pixels is a pointer to memory location where the pixels

block is stored.

void glDrawPixels(

GLsizei width,

GLsizei height,

GLenum format,

GLenum type,

const GLvoid *pixels)

The write function parameters are almost the same as for the read func-

tion. The only remarkable difference is that the parameters required to spec-

ify the first pixel are missing. The main reason is to allow a more complex

mechanism to specify the write starting point, in order to allow 3D write op-

erations. Thus the glRasterPos function is used, it sets the current raster

position (i.e., the write operation starting point) using 3D coordinates. Since
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the use of glRasterPos can be too complex if the aim is only to perform a

2D write onto a buffer, recent OpenGL versions also allow the glWindowPos

function. It allows to specify the write starting point using only 2D coordi-

nates.

4.1.4 Project structure

The rationale for the project structure is to optimise the rendering perfor-

mance and to exploit the already existing Aura structure. The latter is

almost obvious, since the present sort-last rendering does not represent a

stand alone application but it is a library extension. Summarising, a stan-

dard Aura parallel application is represented by a master node and several

slaves (at least one slave), coordinated by the ARS (see 3.3.3). The master

sends its whole scene graph to the slaves, which are in charge of performing

the rendering. In our case, the master is an application having a minimal

scene graph, mainly made of the 3D texture to be rendered. A first approach

could be ask for the master to partition the data set (i.e., the 3D texture)

and to send each chunk to a slave. However, the Aura parallel framework

always sends the entire scene graph, that is each slave receives the whole 3D

texture. Keeping the Aura behavior, as in our intent, means to take advan-

tage of this feature. So the master side is not changed, only an application

is implemented which has a scene graph basically made of a 3D texture and

which sets up the scene (e.g., setting the blending coefficient). The applica-

tion can be run locally or can act as the master, thus sending the texture to

the slaves. At this point, each node has to perform the actions concerning

the parallel rendering. The natural place where to add the new components
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Figure 4.1: Design: the SortLastProcessor (1), the SendBufferProcessor (2)
and the DisplayServer (3). Black arrows indicate the scene graph transmis-
sion, while red arrows the pixels transmission to achieve the compositing

is among the Aura processors on the slave side.

Each default slave has at least three Aura processors: one to receive the

scene graph, one to forward the messages to the other slaves, one to render

the scene. What is needed for a sort-last rendering is: each slave renders a

different sub-volume (first additional Aura processor) and sends the frame

buffer to a compositor node or a peer (second additional Aura processor).

The rationale for using extra Aura processors is that this is the favourite

Aura mechanism to provide customised components. Furthermore, extra

Aura processors are easily inserted into the slave program. The default slave

remains unaltered, with the exception of two extra Aura processors added

to it, one before the rendering Aura processor and one after. The former is
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called SortLastProcessor, it determines the sub-volume of the 3D texture to

be rendered. The latter, SendBufferProcessor, reads and sends the image on

the local buffer to a peer (if the binary swap algorithm is on), or directly to

the compositor node. The compositor node (called DisplayServer) represents

the last additional component added to Aura. It is a light-weight process

which composes and shows the final image.

4.1.5 Aura SortLastProcessor

The SortLastProcessor has the task to re-size the slave 3D texture. Each

slave has to render a different chunk, so the aim is to assign a different

portion of the 3D texture to each slave (slicing phase). The constrains are:

to ensure load-balance among the slaves, all the 3D texture has to be rendered

(i.e., the chunks have to cover the whole texture). The former implies we

want to split the texture into chunks of the same size. The latter means the

chunks give back the original texture when together. Both these constrains

depend on the number of the slaves. A trivial solution could be to allow the

slaves to cooperate exchanging messages. However, a standard Aura slave

gets information about its identity number (rank) and the total number of

slaves from the ARS. The master sends to the slaves the viewport position.

The user input on the master is also propagated to the slaves. Thus, each

slave already knows enough about the global environment to be able to split

locally its own copy of the 3D texture. Load-balance can be achieved using

the information concerning the total number of slaves. The consistency is

guaranteed using the rank number. Let n be the number of slave, the texture

is splitted into n chunks. Each chunk has the same size and has a rank. Each
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slave is in charge of rendering the chunk corresponding to its rank.

The SortLastProcessor basically detects the 3D texture into the received

scene graph and re-sizes it according to the above considerations. The smaller

texture (i.e., the chunk assigned to the slave) remains inside the scene graph,

which will be processed by the next Aura processor, typically the rendering

one.

4.1.6 Aura SendBufferProcessor

After the Aura rendering processor has accomplished the rendering, each

slave has its own partial image onto the frame buffer. Each slave has to

send its frame buffer to the compositor node (normal mode) or to a peer

(binary swap mode). Both modes require to read the frame buffer with

glReadPixels. If the normal mode is on, all the frame buffers are sent to

the compositor node. It means a connection via Aura socket is established,

and a message containing the frame buffer is sent. Afterward the SendBuffer-

Processor duty is finished. Otherwise, if the binary swap algorithm is used

(for full details see 4.3.4), the task of the SendBufferProcessor is more com-

plex. At each binary swap step, each node has to determine its peer. Then a

socket connection is established, and the two peers can exchange their frame

buffers and perform locally the compositing. As for the SortLastProcessor,

the best way to accomplish this task is avoiding extra slave communications.

The only communications allowed are those to exchange the buffers. Once

again, each slave exploits locally its global information: the number of slaves

and the slave’s own rank. Using this information each slave can determine:

which is its peer at the current step, which frame buffer portion it has to
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send, where it has to compose the incoming frame buffer.

4.1.7 DisplayServer

The compositor node is designed to display the final image onto a PC screen.

Since its task is very specific, the idea is to use a light application instead of

a typical Aura one. This means we do not use the scene graph or any other

high level Aura feature. The compositor node simply waits for the incoming

frame buffers. If the binary swap mode is active, its task is even simpler, since

the compositing already happened on each node. It receives tiles of the final

image, and it has only to write them onto the local frame buffer using the

glWritePixels. The relative position of each tile is determined according

to the rank of the slave sending the tile. If the more inefficient normal mode

is active, the compositor node has also to perform the compositing. In this

case every node has to send the whole frame buffer, so there is not any tile

position to determine. In both cases, the compositor node has to keep a

state about the number of frame buffers received. If it is the first one, a clear

operation on the local buffer has to be accomplished. If it is the last, a swap

buffer operation is necessary to display the final image.

4.2 Slicing and compositing

4.2.1 Slicing algorithm

Several approaches are suitable to split the original 3D texture. The one

adopted was chosen because it is quick and it allows to optimise the following
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compositing phase. The idea is that each slave is always in charge of the same

chunk. So after the 3D texture is partitioned the first time, it is not required

to rearrange the chunk division any more. The 3D texture is partitioned

along the three main axis, without regarding to the current viewpoint. Both

the volume geometry and the texture are reduced and rearranged. Despite

the former is trivial to implement, the latter is more difficult since only the

voxels falling into the selected sub-volume have to be kept. During the slicing

phase all the chunks are also sorted using their own centroid. A centroid

is calculated for each chunk. The distance between each centroid and the

current viewpoint is determined. All the distances are compared and each

chunk is classified according to the distance comparison result. That is, the

chunk with the farther centroid gets the smallest coefficient, the one with

the second outer centroid gets the same coefficient increased by one, and so

on. The coefficients are a way to sort the chunks and, after the rendering, to

sort their respective frame buffers. Since all the slaves share the viewpoint

information, each slave classifies its chunk consistently with the other slaves.

It means despite the algorithm is run locally by each slave, they all get the

same result. This method is not generalisable to every 3D context, because

it takes advantage of the simple and convex structure of the volumetric data

set. The rationale for this sorting classification will be better pointed out in

4.2.5.

4.2.2 Alpha compositing

The compositing phase consists of merging together the rendering nodes

framebuffers, in order to yield the correct final image. Here correct means
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the final outcome has virtually to be the same as if the rendering was accom-

plished only on one node (despite the rendering on a single node could be

impossible due to hardware or software constrains). A widely used technique

(and the one adopted in our work) is referred to as alpha compositing, first

formally introduced by [26]. An additional alpha component is added to the

three standard color components RGB, originating the well known RGBA

format. The alpha states how much of a pixel is covered by the RGB color.

The alpha component is necessary since, generally, it is impossible to express

the coverage information using only the RGB channels. An alpha set to 0

means the related color is completely transparent, while an alpha set to 1

means the color is full opaque. All the values between 0 and 1 can be used,

arising partially transparent effects.

When two images A and B are composed together, it is required to de-

termine how much of a pixel color contribution is given by A or B. Chosen

a generic pixel and the corresponding αA and αB for A and B, αAαB is the

portion of the pixel occupied by both images, αA(1 − αB) is the portion

occupied by a and not by B, αB(1 − αA) by B and not by A, and finally

(1 − αB)(1 − αA) represents the background visible through both A and B.

So each pixel of the composed image can be conceptually divided into four

subpixel areas: neither A or B contribute to the subpixel(0), only A (A), only

B (B) or both (AB). It is then possible to describe compositing operators,

according to the final effect on the above subpixel areas. Each operator may

be described as a quadruple, (a, b, c, d), where each element refers to the 0,

A, B or AB subpixel area respectively. For instance, (0, A, B, B), indicates

the area 0 receives a null contribution (trivial, since neither A nor B do not
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Figure 4.2: Porter and Duff operators. Source: Wikipedia

contribute to 0), the area A retains the color of A, the area of B the one of

B, and finally the area of overlapping AB is covered by B. Exploiting all the

possible configurations, the resulting compositing operators are:

• over. A over B, or (0, A, B, A), means that in the overlapping area the

A color is the foreground covering the B background.

• in. A in B, or (0, 0, 0, A), where only the overlapping area is taken

into account, using A as foreground.

• out. A out B, or (0, A, 0, 0), only the area of A not overlapped to B is

displayed.

• atop. A atop B, or (0, 0, B, A), where the not overlapped A is missing.

• xor. A xor B, or (0, A, B, 0), where the overlapping area is missing.

The operators definition is useful because each operator may also be de-

termined using the alpha values of A and B. So a generic operator, first
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logically thought as working on a subpixel base, is then defined on a pixel

base. For instance, the over operator definition can be formulated according

to the fraction of A (FA) and B (FB) actually employed for the composition.

If A over B is the case, then it means the full portion of A is used as fore-

ground. This is expressed saying the fraction of A is 1. B is not covered by

A only outside the overlapping area, so the fraction of B is (1 − αA). Now

it is possible to give a truly operative description of the over operator. The

pixel color resulting from the composition of A over B is :

cO = cA + cB(1− αA) (4.1)

(4.1) comes out from the generic operation equation:

cO = cAFA + cBFB (4.2)

It is noteworthy that (4.2) uses the pre-multiplied alpha. In order to un-

derstand the need for premultiplied alpha, let consider the RGBA quadruple

(0, 1, 0, 0.5). It is generally thought as a full green color covering half of a

pixel. It implies a multiplication has to be performed in order to compose

the color, that is (0, 0.5, 0, 0.5) in the above example. The color can be

pre-muliplied for the alpha, so a multiplication step is avoided. Given (r, g,

b, α), it is intended to be pre-multiplied, the color is (r/α, g/α, b/α) and it

covers α portion of the pixel. Otherwise, if no pre-multiplication is adopted,

the equation becomes harder:

cO = αAcAFA + αBcBFB (4.3)



4.2. Slicing and compositing 65

If (4.3) is used with the over fraction coefficients, the outcome is:

cO = αAcA + αBcB(1− αA)

= αAcA + αBcB − αAαBcB (4.4)

while (4.1) can be written as:

cO = cA + cB − αAcB (4.5)

Thus using (4.5) instead of (4.4) saves three multiplications. Since com-

positing operations usually concern a big amount of pixels, it may give a

consistent performance advantage. However, (4.5) becomes even more useful

if the composition steps are more then one. The cO resulting from both (4.5)

and (4.4) is a pre-multiplied value. Before (4.4) is applied again, cO has to

be converted to a non pre-multiplied value (i.e., divided by the alpha value).

On the other hand, the pre-multiplied formula does not suffer this problem.

4.2.3 OpenGL alpha blending

The OpenGL API fully supports the above compositing operators. OpenGL

refers to this feature as alpha blending. The main function is:

void glBlendFunc(GLenum sfactor,

GLenum dfactor)

It basically provides a mechanism to set the FA and FB of the above equa-

tion. sfactor and dfactor can be set to 0, 1, αA, αB, (1−αA) and (1−αB).

All the Porter and Duff operations can be accomplished. However, OpenGL
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extends this set of operations allowing also other values (e.g., cA or cB).

OpenGL gives further compositing operations using the glBlendEquation

extension, which allows to change the arithmetic operator of the equation

(e.g., subtraction instead of addition).

4.2.4 3D compositing via stencil buffer

A standard technique to perform a true 3D compositing is to use the depth

values from the z buffer. Each image is read from the color buffer together

with the z buffer, in order to keep the spacial position for each pixel. When

two images A and B are composed, first the A color and z buffers are copied

on the local frame buffer. Then, a two-pass algorithm is used in order to

perform the compositing. The basic idea is to compare the depth values of B

with the depth values of A, and to store the result on the stencil buffer. The

stencil buffer is afterward employed to enable the write operation only for

the pixel of B closer to the viewpoint. The algorithm is shortly implemented

as follows:

1. The stencil is cleared with 0 and the current color buffer is masked,

that is the write operation is disabled.

glClearStencil(0);

glClear(GL_STENCIL_BUFFER_BIT);

glColorMask(GL_FALSE, GL_FALSE,GL_FALSE,GL_FALSE);

2. The stencil test is enabled and the test function is set to always, that is

the stencil test is always passed. The key point here is the test does not
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depend on the stencil values, but only on the depth values comparison.

Finally, glStencilOp sets the action to be performed after the test.

Remarkably, if both the stencil test (trivial) and the depth test are

passed, a 1 is written onto the stencil buffer.

glEnable(GL_STENCIL_TEST);

glStencilFunc(GL_ALWAYS, 1,1);

glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);

3. The depth test is enabled, the test is passed only if the incoming pixel

(image B) is closer than the current one (image A) to the viewpoint.

Finally, the glDrawPixels writes the depth values of B, so the depth

test is performed between the B and A depth values. When a pixel of

B is closer, a 1 is written onto the stencil buffer.

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LESS);

glDrawPixels(xs, ys, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE,

data_z);

4. Now the depth test is disabled and the write operation on the color

buffer is enabled. The stencil test is passed only if the current stencil

pixel is set to 1.

glStencilFunc(GL_EQUAL, 1,1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

glDisable(GL_DEPTH_TEST);

glColorMask(GL_TRUE, GL_TRUE,GL_TRUE,GL_TRUE);
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5. The color buffer of B is written onto the local color buffer. The stencil

buffer ensures only the pixels closer to the viewpoint are written. The

final image A+B will be blended according to the spacial relationship.

glDrawPixels(xsize, ysize, GL_RGBA, GL_UNSIGNED_BYTE, data);

4.2.5 3D compositing without depth information

Despite early versions of this work used the 3D compositing via the stencil

method explained above, further developments allowed to improve the com-

positing algorithm. This is basically due to two reasons: the 3D texture is

a parallelepiped, all the slaves have the viewport position information. Both

features can be exploited during the slicing phase in order to sort the chunks

and the related rendering results stored on the local buffers. Thus in our work

it allows to avoid to send the z buffer values, since the chunk coefficient is

enough to compose all the color buffers in the proper order. The correctness

is guaranteed by the chunk geometry. If the buffer A has a smaller coefficient

than the buffer B, it means the A centroid is farther than B centroid from

the viewpoint. Every pixel of A is behind B, or not covered by B. So it is

required to compose A before B, and the depth information is not necessary.

The compositing algorithm can be reduced to:

glDrawPixels(xsize, ysize, GL_RGBA, GL_UNSIGNED_BYTE, data);

where data represents the color buffer to be composed.
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4.3 Parallel compositing

4.3.1 Parallelism at the compositing phase

The trivial approach to achieve a sort-last compositing consists of using only

one compositor node. After the rendering nodes have accomplished their

duty, they read and send their local buffers to the compositor node. In the

present work this is often referred to as normal mode.

In order to speed up the performance and increase the scalability, the

binary swap algorithm, first proposed by [22], has been implemented. The

main issue here is that if the compositing phase is performed only by a sin-

gle compositor, the number of buffers it receives increases linearly with the

number of processors. On the one hand, increasing the number of proces-

sor implies each rendering node has to render a smaller sub-volume, so the

rendering time decreases. On the other hand, the amount of work of the

single compositor increases, thus it becomes the main overhead of the overall

sort-last rendering.

The key idea is to use the availability of several nodes not only for the

local rendering of sub-volumes, but for the compositing phase as well. A

first approach is represented by the binary compositing. Basically, each node

reads and sends its color and depth buffers to another node, in charge of per-

forming an intermediate compositing with its own color and depth buffers.

Let the number of nodes be n, n/2 nodes perform the first compositing step.

Then, n/2 nodes seek a pair and n/4 perform the second compositing step.

After log n steps the final image is achieved. A shortcome of binary composit-

ing is that many nodes are idle during the compositing steps. Furthermore,
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active nodes decrease at each step.

4.3.2 Direct send

A suitable approach to achieve balanced compositing is represented by the

direct send method. Here a tile of the final image is assigned to each node.

The tile can be a rectangular portion of the screen, or can be a set of pixels

chosen randomly or interleaved. The latter is adopted in order to balance

the compositing work, since a node could compose images for a tile covering

an empty sector of the screen. Each node has to retrieve all the information

inherent to its tile. So each node has to communicate with all the other

nodes and get the pixels falling into its tile. At the same time, each node has

to send all its own pixels, with the exception of the ones belonging to the

tile it is responsible for. If the number of nodes is n, then each node has to

contact n − 1 nodes to compose its tile of the final image. Thus the overall

number of communications among nodes is n(n−1). In contrast with binary

swap, direct send uses messages of constant size. If xy is number of pixels of

the final image, each tile (and consequently each message) is made of xy/n

pixels.

4.3.3 Parallel pipeline

The parallel pipeline algorithm resembles the direct send, since the final

image is obtained after n(n− 1) message passing among the nodes. However

they differ because each node sends and receives the tiles from the same

nodes, while the tile it is responsible for changes. The nodes are organised

as a circular ring, each node always sends its buffers to the next node in
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the ring and receives the buffers of the previous ones. At each step, each

node changes the area where the incoming sub-image has to be composed.

This is done partitioning the z buffer into disjoint tiles, and using at each

step a different z buffer tile (and the corresponding color buffer tile) for the

compositing. On a node i a parallel pipeline step can be described as follows:

1. set to i the current composed area (only for the initialisation)

2. send the current area to the next node in the ring

3. receive the area of the previous node in the ring

4. calculate k, that is the local area where to compose the incoming area;

the area is addressed using the z buffer tiles

5. compose

6. set to k the current area

All the nodes perform at the same time the algorithm. Each step is

executed n− 1 times. The k coefficient is determined using the current step

index j, the node number i (i.e., the position of the node in the ring) and

the total number of nodes n:

k = (i− j) mod n

4.3.4 Binary swap

The binary swap algorithm exploits the idea to use multiple nodes not only for

the rendering but also for the compositing, as binary compositing. The main
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difference is that binary swap employs all the nodes at each step, avoiding

the lack of performance due to idle nodes. At each step, each node is coupled

with a peer. Each node sends half of its own image to the peer, and receives a

half image from the peer. Then, each node composes the received half image

with its own half image (i.e., the one it did not send). A different way to

see a binary swap step is that each image is partitioned into two disjointed

images, let say left and right or top and bottom. A node is responsible only

for one half, while the other is sent to the peer.

For example, the node A and B are coupled together at the step n. First,

both nodes partition their own image and get two half images, left and right.

Then, A is responsible only for the left images and sends its right to B. B

is responsible for the right images, so it receives its left from A and receives

A right. Finally, A composes together the left images and B the right ones.

Now, A and B use their composed left and right images, respectively, as

current image for the next step. It means a node is responsible of an image

size decreasing from step to step. At the first step, the total image size is

the one of the node color buffer, where the node already performed its local

rendering. It sends an image half the size of the color buffer. At the next

step, it sends an image that is a quarter of the original color buffer size, and

so on.

After each step, each node keeps lesser information about the total image,

since it becomes responsible of a smaller portion of the total image. However,

its information is more accurate, since its portion is achieved using the image

received from its peer. At the last step, each node has a tile of the final

image. The final image is obtained tiling together all the nodes sub-images.
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Figure 4.3: Binary swap example. Each couple of peers exchanges half frame
buffer at first (1), then a quarter (2). Each node has a tile of the final image
(3), which it is sent to a compositor node (4)

In order to keep all the nodes always active, a power of two number of nodes

is required. This constrain can be relaxed allowing some nodes to stay idle

at certain steps. Let n be the number of nodes, then each node had to

establish logn communications with other nodes in order to send and receive

the sub-images. So the overall number of communications is n log n.
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Validation

5.1 Analysis

5.1.1 Overall analysis

We define the parameters used in the following sections in order to compare

the algorithms and evaluate the tests. The number of slaves (i.e, the ren-

dering nodes) is n, while the master node is unique, and it hosts both the

application and the display node. The image resolution is of xy pixels. The

number of bits per pixel is given by bpp. The time to display a single frame

can be summarized as follows:

time = setup + render + compose + collectanddraw

setup has a heavy impact for the first frame, since the global Aura setup

is performed and the scene graph is sent from the application to the slaves.

The SortLastProcessor, running on each slave, splits the 3D texture. It

74
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requires to re-arrange the texture data, keeping the pixels falling into the

sub-volume assigned to the slave. However, these operations are performed

only once. Hereafter, setup is mainly represented by the transmission of the

viewpoint from the application to the slaves and the SortLastProcessor.

The latter classifies each sub-volume according to the distance from the cur-

rent viewpoint. Besides, it changes the number of slices fitting the volume.

render is the time required for the 3D texture rendering. Modern GPUs

facilities allow fast rendering, despite the graphics card memory represents

a constrain to the size of the texture. The compose term changes according

to the compositing strategy adopted. When no parallel compositing is ac-

tive, each slave simply reads its color buffer and sends it to the display node.

Otherwise, each step of the parallel algorithm requires to send and receive a

color buffer tile and to compose it locally. The SendBufferProcessor is in

charge of this duty. At each step i:

composei = readi + sendi + receivei + writei

readi and sendi create and send the tile for the peer, while receivei and

writei receive the tile and compose it onto the local buffer. All these terms

introduce overheads related to the underlying hardware, that is the internal

bus connecting the CPU to the graphics card for readi and writei (e.g., AGP

8x, PCI-X) and the network channel for sendi and writei (e.g., Ethernet,

Myrinet).

collectanddraw is the time needed by the display node for harvesting all

the buffers, compose them together and swap its local buffer. When no

parallel compositing algorithm is used, this is the main bottleneck. It does
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not scale, since increasing the number of nodes increases the pixels received

and the communication overheads. When a parallel compositing algorithm

is used, the task becomes easier. The most expensive operation becomes to

handle the incoming connections, while the compositing is reduced to n calls

to glDrawPixels with xy/n pixels, in order to write each tile onto the local

buffer.

5.1.2 Parallel compositing analysis

It is noteworthy that the number of pixels sent through the network is con-

stant for all the algorithms described in 4.3. Furthermore, also the trivial

approach where no parallel compositing is adopted sends the same amount of

pixels. The latter is easily shown since each node sends its entire color buffer

to the display node (here we do not consider the z buffer), thus it sends xy

pixels. If we are running the direct send algorithm, each node sends 1/n of

its color buffer to all the other n− 1 nodes. It means it sends (n− 1)(xy/n)

pixels. We have to add still a xy/n to this result, because it sends also its

own tile to the display node. A similar logic applies to the parallel pipeline

algorithm.

The standard binary swap requires a power of two number of nodes,

n = 2k. At each step, each node sends xyi = xy/2i pixels to a peer through

the network. The overall number of step is k = log n. Thus each node sends:

k∑
i=1

xyi =

log n∑
i=1

xy

2i
= xy(1− 1/n)

Adding the final message to the display node we get xy pixels, as for the
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above algorithms. This result can be easily explained, since each pixel of

the final image is obtained compositing all the pixels in the same position

generated on the slave side. It is the more general case, and the worst case if

compression techniques are used. The rationale to use binary swap instead

of the other parallel compositing algorithms is it sends less messages through

the network. If the overheads related to the network usage are high, or if

the number of nodes is high, the binary swap has the best performance. Its

main disadvantage is it requires a power of two number of nodes.

5.2 Tests

5.2.1 Cluster overview

The present work has been tested on a cluster made up of 9 nodes. Each

node is a PC equipped with the same basic hardware:

• processor : dual-CPU, each CPU is an AMD Athlon MP 1.2Ghz

• main memory : 512MB

• graphics board : NVIDIA GeForce 4 (128MB)

• network interface: 100Mbps Ethernet

One node acts as a master and controls the other 8 nodes, used as ren-

dering nodes. The master provides standard input/output devices such as

keyboard, mouse and monitor, in order to allow the user to manage the whole

cluster. Each rendering node has a video projector. All the projection areas
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are aligned, the resulting tiled display is of around 5 meters by 2 meters.

Each node is connected to an Ethernet switch. Linux is employed as oper-

ating system, and each node has the hardware acceleration provided by the

NVIDIA driver. The OpenGL API and the Aura library are also installed.

5.2.2 Tests

We ran our tests using several types of 3D textures, both procedurally gener-

ated or acquired from real world data sets. We were able to render textures

of up to 2563 voxels using windows of 5122 pixels, obtaining around 7 fps (i.e,

frame per second). [4] reports Kirihata obtained around 14 fps for the same

parameters, but using a Gigabit Ethernet connection. Since communication

overheads have a strong impact on our rendering, we would expect to ob-

tain a similar outcome with a faster connection. The comparison of several

compositing strategies shows the benefits related to the binary swap algo-

rithm. The usage of the depth information together with the stencil buffer

technique (Stencil on the diagrams) to achieve the compositing is highly in-

efficient. Remarkably, on the Display Server side the time required by the

compositing is greater than the time for the communication, whereas all the

other compositing strategies have the opposite behaviors. This can be easily

explained, since the two-pass stencil algorithm is more computational expen-

sive than a simple call to glDrawPixels. Using the sequential compositing

without depth information (Normal mode on the diagrams) improves the

performance, but it does not scale. The Display Server becomes the main

bottleneck. Adding additional rendering nodes imply to decrease the overall

performance. The binary swap shows the best performance, with an almost
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Figure 5.1: Binary swap has the best performance and scales better. Texture
dimension: 1283. Window size, in pixels: 5122

double fps when compared to the normal mode in its best case (i.e., two ren-

dering nodes). The binary swap performance slightly decreases adding extra

rendering nodes. Moreover, the slave side analysis shows the time spent wait-

ing for barriers is little, especially when compared to the stencil and normal

mode cases. It means the global work-load among the nodes is well balanced.

We also ran a test using binary swap but without pre-multiplied alpha, in

order to investigate the advantage of using pre-multiplied colors. The impact

on the performance is very small. This is due to the little portion of time

spent on the rendering (Rendering processor), even smaller than the time

required by the inexpensive slicing phase (SortLast processor).

In contrast with the above Aura processors, the slave side analysis shows

most of the time is spent for network and compositing operations. On each

slave the network operations are represented by the Receive and Forward pro-
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Figure 5.2: The window size has a strong impact on the performance. Texture
dimension: 1283. Compositing algorithm: binary swap

cessors, which handle and propagate the incoming messages from the master.

Besides, the SendBuffer processor highly uses the network channel when the

binary swap is active. It is noteworthy that much time (more than half with

binary swap) is registered as not measured. This is related on how the per-

formance is measured. The Aura performance monitor class is used to start

a global timer, which at even intervals prints performance measurements on

a log file. Important pieces of code, such as Aura processors, usually deserve

a local timer, in order to understand the component usage. All the time of

the global timer not belonging to a specific local timer is recorded as not

measured. Hence the not measured time is related to code of secondary im-

portance, at least on a logical point of view. Since Aura is a general purpose

graphics library able to accomplish several tasks, it can be easily explained.
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Figure 5.3: Components related to the communication and the compositing
have the biggest impact on the performance (Receive-, Forward-, SendBuffer
processor), while the slicing and the rendering components are negligible
(SortLast-, Rendering processor). Barrier overheads can be curtailed using
the binary swap. For an explanation of the not measured parameter see the
text. Texture dimension: 1283. Window size, in pixels: 5122. Rendering
nodes: 8
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Figure 5.4: Except for the stencil algorithm, the communication with the
slaves is the most time consuming operation on the Display Server. Texture
dimension: 1283. Window size, in pixels: 5122. Rendering nodes: 8

Reshaping the components to achieve an ad hoc application focused on the

parallel volume rendering would overcome this problem. Finally, tests on the

window size shows the strong impact of the pixel traffic on the performance.

This was fully expected, because it is the typical overhead of a sort-last ap-

proach. Compression techniques would be necessary to overcome such issue.
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Figure 5.5: MRI scan of a human head. The data set is of 2563

voxels. Each voxel is originally stored with 8 bits. The ren-
dering is accomplished using 4 rendering nodes. Data set source:
http://www9.cs.fau.de/Persons/Roettger/library/
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Figure 5.6: The thesis concept. 4 color buffers containing partial images are
composed together, achieving the final image



Chapter 6

Conclusion

Implementing a parallel volume rendering implies to deal with several topics,

since the graphics operations are achieved using several components and it

is requested to fully exploit the hardware support. It is required to deeply

understand how the rendering takes place on a uniprocessor architecture,

and how it is possible to parallelize it. Several strategies are suitable, each

one with its own advantages and drawbacks. In our case, the sort-last choice

stressed the need for a full knowledge of the alpha compositing technique.

Besides, the huge amount of pixels sent by the sort-last approach required to

employ an efficient way to exchange data, that is the binary swap algorithm.

The usage of the 3D textures allowed to locally exploit the hardware accel-

erators, and to use the Aura features concerning the textures manipulation.

Updated works [4] adopt a similar approach for parallel volume rendering,

that is texture-based and sort-last. This confirms the reasonability of our

choices.

Future works could address some unresolved issues and provide optimisa-
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tion techniques. Despite the parallel rendering is achieved equally splitting

the volume data set among all the nodes, the load-balance is not actually

guaranteed. The issue is well-known, as we pointed out in 3.2.1. Each node

has to work on the same amount of data, thus the parallelism is balanced at a

task level. However, a node can receive a complete transparent sub-volume,

whereas a different node can render a full opaque sub-volume. Both nodes

accomplish the same work, but only the latter gives a relevant contribution

to the final image. This means the work of one node is completely useless.

The problem can be addressed involving a pre-processing step. The whole

volume is analysed and each voxel is classified according to its relevancy. The

volume distribution can be done not merely assigning the same number of

voxels to each node, rather assigning the same number of relevant voxels.

The pre-processing would possibly require the employment of hierarchical

data structures to handle the data set.

The compositing phase could be boosted using a multi-threaded approach,

that is employing threads with specific tasks. For instance, a thread could

be in charge of the communication, while another thread deals with the

rendering. The threads introduction could imply drastically architectural

changes. Our implementation performed the compositing exploiting the local

GPU. The incoming buffer is composed with the one already stored on the

local graphics board memory. A drawback is the rendering is blocked while

the compositing is performed. A solution could be to use the CPU to yield

the compositing with an appropriate thread, allowing a rendering thread to

carry on the computation.

The sort-last could also be improved. In our work we used a sort-last full
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approach, as explained in 3.1.5. Each node reads and sends its entire local

buffer, even the pixels which do not contribute to the final image. A sort-

last sparse approach would require to read and send only those pixels which

actually contribute to the final compositing. It needs to filter the buffer in

order to detect only the relevant pixels. Otherwise it can be approximated

selecting the smallest rectangle containing the relevant pixels. The main

advantage is the pixels sent over the network and composed are generally

less if compared with the sort-last full approach.

Finally, the Aura lack of an appropriate transfer function tool had to be

filled, in order to easily handle real world data sets. First, the tool should be

able to load files containing the raw data. Then, it should provide an inter-

active framework to set and arrange the transfer values. Only professional

transfer function tools allow to truly exploit the impressive potential of the

volume rendering techniques.
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