Università di Pisa

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Matematica Anno Accademico 2004/2005

> Tesi di Laurea 27 ottobre 2005

Funzioni $W^{1/2}$ a valori in S^1 e correnti

Candidato Luca Covassin Relatore Prof. Mariano Giaquinta

Indice

Introduzione 3		
1	Preliminari1.1Funzioni $W^{1/2}(\Omega)$ 1.2Correnti	3 3 6
2	Chiusura e compattezza 2.1 Sollevamenti	13 13 18
3	Densità: caso 1-dimensionale	25
4	Densità: caso 2-dimensionale4.1Dipoli4.2Densità in B^2	31 31 35
5	Caso generale 5.1 Costruzione del dipolo	41 41
Bi	Bibliografia	

Introduzione

Negli ultimi anni si è visto un discreto interesse nello studio delle funzioni nello spazio di Sobolev $W^{1/2}$ da un aperto limitato $\Omega \subset \mathbb{R}^n$ a valori in S^1 . Ciò è motivato dal fatto che, come per lo spazio $W^{1,2}$ a valori in S^1 , le successioni di mappe regolari con norme $W^{1/2}$ equilimitate mostrano anch'esse delle concentrazioni di energia $W^{1/2}$, ed inoltre se $n \geq 2$ esistono delle funzioni in $W^{1/2}(\Omega, S^1)$ che non possono essere approssimate in norma $W^{1/2}$ con delle funzioni in $C^{\infty}(\Omega, S^1)$, come si può vedere dalla funzione $u(x) = \frac{x}{|x|}$ definita su B^2 . Per tali ragioni siamo interessati a tali spazi, in particolare all'identificazione di quali siano i limiti deboli delle successioni regolari con energie $W^{1/2}$ equilimitate, stimarne l'energia e più in generale studiare lo spazio di tali limiti.

Nel primo capitolo definiremo lo spazio $W^{1/2}(\Omega)$ come il st
tospazio delle funzioni $u \in L^2$ per cui l'integrale

$$\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+1}} dx \, dy$$

è finito, dandone alcune proprietà fondamentali. In particolare vedremo il legame che c'è tra tale spazio e lo spazio $W^{1,2}(\Omega \times [0,1])$, definendo quindi il concetto di traccia di una funzione in $W^{1,2}$. In seguito definiremo le correnti ed in particolare vedremo cos'è lo spazio $cart^{1/2}(\Omega \times S^1)$, dandone alcune proprietà.

Nel secondo capitolo vedremo che ogni corrente in $cart^{1/2}(\Omega \times S^1)$ ha un sollevamento ad una corrente in $\Omega \times \mathbb{R}$, ovvero esiste una $r : \Omega \to \mathbb{R}$ per cui T coincide con il bordo del sottografico di r; in particolare otterremo che tale r potrà essere presa in $W^{1/2} + BV(\Omega)$ nel caso 1-dimensionale, mentre nel caso generale possiamo prenderla in $L^1(\Omega)$. Nel seguito dimostreremo il teorema di chiusura e compattezza, vedendo che limiti deboli di successioni equilimitate in $cart^{1/2}$ sono anch'essi in tale spazio, dando inoltre una stima superiore per la loro energia. Come conseguenza immediata di tale fatto vedremo che i limiti deboli di funzioni equilimitate in $W^{1/2}(\Omega, S^1)$ stanno in $cart^{1/2}(\Omega \times S^1)$. Nel terzo capitolo dimostreremo che le funzioni in $C^{\infty}(B^1, S^1)$ sono dense in $W^{1/2}(B^1, S^1)$, in seguito sfruttando questo risultato vedremo che ogni corrente in $cart^{1/2}(B^1 \times S^1)$ è il limite debole di una successione di grafici di mappe regolari in $W^{1/2}(B^1, S^1)$.

Nel capitolo successivo studieremo il caso 2-dimensionale, vedendo che a differenza di quello 1-dimensionale le concentrazioni saranno dei dipoli, ovvero avremo che l'energia si concentrerà lungo un segmento e quindi esso non avrà bordo nullo, dando origine a concentrazioni di segno opposto sugli estremi del segmento. Per tale motivo provvederemo prima ad approssimare tali concentrazioni ed in seguito vedremo che il risultato di densità è valido anche nel caso 2-dimensionale. Nell'ultimo capitolo, dopo aver generalizzato il dipolo nel caso *n*-dimensionale ed essere riusciti ad approssimarlo, proveremo che ogni corrente in $cart^{1/2}(\Omega \times S^1)$ è il limite debole di una successione di grafici di funzioni regolari in $W^{1/2}(\Omega, S^1)$.

I risultati che abbiamo provato in questa tesi sono la rielaborazione di alcuni lavori recenti sulla classe $cart^{1/2}(\Omega \times S^1)$, in particolare abbiamo utilizzato il lavoro [7] di Giaquinta, Modica e Souček, per ciò che riguarda i risultati di compattezza e gli articoli [6], [4] per i risultati di densità. Per ciò che concerne i preliminari invece abbiamo utilizzato come riferimento i testi [1], [8] e [14], e rimandiamo perciò a tali testi per le dimostrazioni dei teoremi enunciati in tale capitolo.

Capitolo 1 Preliminari

Vogliamo ora dare una definizione degli spazi che utilizzeremo in seguito, elencando alcune delle principali proprietà di tali spazi.

1.1 Funzioni $W^{1/2}(\Omega)$

Sia Ω un aperto di \mathbb{R}^n , ricordiamo che lo spazio $W^{m,p}(\Omega)$, con $m \in \mathbb{N}$ e $p \geq 1$, è lo spazio delle funzioni $u \in L^p(\Omega)$ che hanno le derivate distribuzionali fino all'ordine m in $L^p(\Omega)$, dotato della seguente norma

$$||u||_{m,p} = \left(\sum_{0 \le |\alpha| \le m} ||D^{\alpha}u||_p^p\right)^{1/p} \text{ se } 1 \le p < \infty$$
 (1.1)

$$||u||_{m,\infty} = \max_{0 \le |\alpha| \le m} ||D^{\alpha}u||_{\infty}.$$
 (1.2)

Vogliamo quindi definire gli spazi $W^{s,p}(\Omega)$ per un generico $s \ge 0$. A tal proposito definiamo $T^{\sigma,p}(\Omega)$, con $0 < \sigma < 1$ e $1 \le p < \infty$, come lo spazio delle funzioni (classi di equivalenza) $u \in L^p(\Omega)$ per cui la seguente norma

$$\|u\|_{T^{\sigma,p}} := \left\{ \|u\|_p^p + \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n + (1 - \sigma)p}} \, dx \, dy \right\}^{1/p}$$

è finita.

Definizione 1 Dato $s \geq 0$. Se s = m è intero, definiamo $W^{s,p}(\Omega) = W^{m,p}(\Omega)$; se non è intero, scriviamo $s = m + \sigma$, con $0 < \sigma < 1$, e definiamo $W^{s,p}(\Omega)$ come lo spazio delle fuzioni $u \in W^{m,p}(\Omega)$, che hanno derivate distribuzionali D^{α} , $|\alpha| = m$, appartenenti a $T^{1-\sigma,p}(\Omega)$. Se $s=m+\sigma$ con $0<\sigma<1,$ poniamo quindi in $W^{s,p}(\Omega)$ la seguente norma

$$||u||_{s,p} = \left\{ ||u||_{m,p}^{p} + \sum_{|\alpha|=m} \int_{\Omega} \int_{\Omega} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|^{p}}{|x - y|^{n + \sigma p}} \, dx \, dy \right\}^{1/p}.$$
 (1.3)

Con tale norma abbiamo che $W^{s,p}(\Omega)$ è uno spazio di Banach; in particolare se p = 2 sarà di Hilbert. Nel seguito saremo interessati nello studio dello spazio $W^{1/2,2}(\Omega)$, che indicheremo più semplicemente con $W^{1/2}(\Omega)$, ovvero le funzioni $u \in L^2(\Omega)$ che hanno seminorma $W^{1/2}$ finita

$$|u|_{1/2,\Omega}^2 := \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+1}} \, dx \, dy. \tag{1.4}$$

Le funzioni in $W^{1/2}$ possono essere caratterizzate anche in termini della loro restrizione 1-dimensionale. Indichiamo con Π_j^{\perp} il piano $x_j = 0$ in \mathbb{R}^n , con x' i punti in Π_j^{\perp} e con $\Omega_{j,x'}$ l'aperto 1-dimensionale dato dall'intersezione di Ω con la retta $\Pi_j(x')$ ortogonale a Π_j^{\perp} e passante per x'. Data $u \in L^2(\Omega)$, per \mathcal{H}^{n-1} -q.o. $x' \in \Pi_j$ la restrizione di u a $\Omega_{j,x'}$,

$$u \sqcup \Pi_{\Omega_{j,x'}} : \Omega_{j,x'} \to \mathbb{R},$$

è ben definita e vale

Proposizione 1 Sia $u \in L^2(\Omega)$. Allora $u \in W^{1/2}(\Omega)$ se e solo se per ogni $j = 1, \ldots, n$ e per \mathcal{H}^{n-1} -q.o. $x' \in \Pi_j$ abbiamo $u \sqcup \Pi_{\Omega_{j,x'}} \in W^{1/2}(\Omega_{j,x'})$. Inoltre $|u|^2_{1/2,\Omega}$ è equivalente a

$$\sum_{j=1}^{n} \int_{\Pi_{j}} |u \sqcup \Pi_{\Omega_{j,x'}}|^{2}_{1/2,\Omega_{j,x'}} \, dx'$$

Osserviamo che se $u \in W^{1/2}(\Omega)$ allora per ogni $j = 1, ..., n, D_j u$ appartiane allo spazio duale $W^{-1/2}(\Omega)$ di $W^{1/2}$ ed abbiamo

$$|\langle Du, \varphi \rangle| \le c|u|_{1/2}|\varphi|_{1/2} \quad \forall u, \varphi \in W^{1/2}(\Omega).$$
(1.5)

Inoltre se $v \in W^{1/2} \cap L^{\infty}(\Omega)$ allora vDu definisce una distribuzione in Ω , ovvero un funzionale lineare continuo su $W^{1/2} \cap L^{\infty}$ dato da

$$\langle v Du, \varphi \rangle := \langle Du, v\varphi \rangle;$$

infatti

$$|\langle v Du, \varphi \rangle| \le c |u|_{1/2} \left(||v||_{\infty} |\varphi|_{1/2} + ||\varphi||_{\infty} |v|_{1/2} \right),$$
(1.6)

dove si è utilizzato il fatto che

$$|uv|_{1/2} \le ||u||_{\infty} |v|_{1/2} + ||v||_{\infty} |u|_{1/2} \ \forall u, v \in W^{1/2} \cap L^{\infty}(\Omega).$$

Per $x \in \Omega$ e $r < dist(x, \partial \Omega)$ indichiamo con B(x, R) la palla di centro xe raggio R in \mathbb{R}^n e con $u_{x,R}$ la media di u su B(x, R). Da

$$\int_{B(x,R)} |u - u_{x,R}|^2 \, dy \le \frac{1}{R^n} \int_{B(x,R)} dz \int_{B(x,R)} |u(y) - u(z)|^2 \, dy$$

deduciamo che vale la seguente disuguaglianza di Poincaré per le funzioni $u \in W^{1/2}(\Omega)$

$$\int_{B(x,R)} |u - u_{x,R}|^2 \, dy \le 2^n R \int_{B(x,R)} dz \int_{B(x,R)} \frac{|u(z) - u(y)|^2}{|z - y|^{n+1}} \, dz.$$

Poiché, detto

$$\Sigma = \left\{ (x,y) \in \Omega \times \Omega | \limsup_{r \to 0} \frac{1}{r^{n-1}} \int_{B(x,r)} \int_{B(y,r)} \frac{|u(z) - u(w)|^2}{|z - w|^{n+1}} \, dz \, dw > 0 \right\},$$

abbiamo che $\mathcal{H}^{n-1}(\Omega \setminus \Sigma) = 0$, dalla disuguaglianza di Poincaré otteniamo

Proposizione 2 Sia $u \in W^{1/2}(\Omega)$; allora $\mathcal{H}^{n-1}(\Omega \setminus \Sigma_u) = 0$, dove

$$\Sigma_u = \left\{ x \in \Omega | \oint_{B(x,r)} | u(y) - u_{x,r} | \, dy \to 0 \, \text{ per } r \to 0 \right\}.$$

Ciò poteva anche essere dedotto dall'analogo risultato per le funzioni in $W^{1,2}$, infatti $W^{1/2}$ può essere visto come lo spazio delle tracce di $W^{1,2}$. In particolare abbiamo che per ogni $u \in W^{1/2}(\mathbb{R}^n)$ esiste una $U \in W^{1,2}(\mathbb{R}^n \times \mathbb{R}_+)$ tale che $U_{|\mathbb{R}^n \times \{0\}} = u$. Più in generale si ha che se $U \in W^{1,2}(\Omega)$ allora $u := U_{|\partial\Omega}$ appartiene a $W^{1/2}(\partial\Omega)$ e

$$||u||_{W^{1/2}(\partial\Omega)} \le K_1 ||U||_{W^{1,2}(\Omega)},$$

e viceversa, se $u\in W^{1/2}(\partial\Omega)$ allora esiste una $U\in W^{1,2}(\Omega)$ tale che $U_{|\partial\Omega}=u$ e

$$||U||_{W^{1,2}(\Omega)} \le K_2 ||u||_{W^{1/2}(\partial\Omega)}$$

in tal caso diremo che u è la traccia di U, u := T(U).

Definiamo allora lo spazio

$$W^{1/2}(\Omega, S^1) := \{ u \in W^{1/2}(\Omega, \mathbb{R}^2) | |u(x)| = 1 \text{ per q.o.} x \in \Omega \},\$$

e poiché la norma $W^{1/2}$ di una funzione $u \in W^{1/2}(B^n, S^1)$, per quanto appena detto, risulta equivalente alla norma $W^{1,2}$ della sua estensione $U := Ext(u) \in W^{1,2}(B^n \times [0,1], \mathbb{R}^2)$ definita come la funzione armonica che minimizza l'integrale di Dirichlet

$$D(U) := \frac{1}{2} \int_{B^n \times [0,1]} |DU(x,t)|^2 dx \, dt$$

tra le funzioni che coincidono con u su $B^n \times \{0\}$. In tal modo, detta $\varepsilon_{1/2}(u) := D(Ext(u))$, abbiamo che $\varepsilon_{1/2}(u)$ è equivalente alla seminorma $W^{1/2}$, e quindi possiamo lavorare con tale energia; ed inoltre si ha che l'immagine di U sarà contenuta nel disco unitario,

$$U \in W^{1,2}(B^n \times [0,1], \overline{B}^2).$$

Se $\Omega \subset \mathbb{R}^n$ e $n \geq 2$, poniamo $R^{\infty}_{1/2}(\Omega, S^1)$ l'insieme delle funzioni $u \in W^{1/2}(\Omega, S^1)$ regolari tranne che su un insieme $\Sigma(u)$ della forma

$$\Sigma(u) = \bigcup_{i=1}^{r} \Sigma_i, \quad r \in \mathbb{N},$$

dove Σ_i è un sottoinsieme regolare (n-2)-dimensionale di Ω . Allora abbiamo che vale il seguente risultato

Teorema 1 Sia $\Omega \in \mathbb{R}^n$, $n \geq 2$; allora $R^{\infty}_{1/2}(\Omega, S^1)$ è denso in $W^{1/2}(\Omega, S^1)$.

1.2 Correnti

Vogliamo ora introdurre il concetto di corrente. Sia Ω un aperto di \mathbb{R}^n e sia $0 \leq k \leq n$, indichiamo allora con $\mathcal{D}^k(\Omega)$ lo spazio delle k-forme differenziali a supporto compatto in Ω con l'usuale topologia, caratterizzata da

$$\omega_i := \sum_{\alpha \in I(k,n)} \omega_{\alpha}^i \, dx^{\alpha} \to \omega := \sum_{\alpha \in I(k,n)} \omega_{\alpha} \, dx^{\alpha} \,,$$

se esiste un compatto $K \subset \Omega$ tale che

- (i) $spt \, \omega_{\alpha}^{i} \subset K \, \forall \alpha \in I(k, n) \in \forall i$
- (ii) $\lim_{i\to\infty}D^\beta\omega^i_\alpha=D^\beta\omega_\alpha\,\forall\alpha\in I(k,n)$ e per ogni multi-indice $\beta,$

dove
$$I(k, n) = \{ \alpha = (\alpha_1, \dots, \alpha_k) | \alpha_i \in \mathbb{N}, 1 \le \alpha_1 < \dots < \alpha_k \le n \}.$$

Definizione 2 Una corrente k-dimensionale in Ω è un funzionale lineare e continuo su $\mathcal{D}^k(\Omega)$. Lo spazio delle correnti k-dimensionali lo indicheremo con $\mathcal{D}_k(\Omega)$.

Data una successione $\{T_i\} \in \mathcal{D}_k(\Omega)$, diremo che essa converge debolmente a $T \in \mathcal{D}_k(\Omega), T_k \to T$, se $T_i(\omega) \to T(\omega) \forall \omega \in \mathcal{D}^k(\Omega)$. Ad ogni corrente possiamo associare un proprio bordo che è definito nel seguente modo

Definizione 3 Il bordo di $T \in \mathcal{D}_k(\omega)$, ∂T , è la (k-1)-corrente tale che

$$\partial T(\eta) := T(d\eta) \quad \forall \eta \in \mathcal{D}^{k-1}(\Omega);$$

poniamo

$$\partial T = 0$$
 se $T \in \mathcal{D}_0(\Omega)$

Il supporto di $T \in \mathcal{D}_k(\Omega)$ è definito da

$$spt T = \bigcap \left\{ K \subset \Omega | K \text{chiuso in } \Omega, T(\omega) = 0 \,\forall \omega \in \mathcal{D}^k(\Omega), spt \, \omega \subset \Omega \setminus K \right\}.$$

Definizione 4 Sia $\Omega \subset \mathbb{R}^n$, $U \subset \Omega$ un insieme aperto $e T \in \mathcal{D}_k(\Omega)$. La massa di T in U è data da

$$M_U(T) := \sup\{T(\omega) | \omega \in \mathcal{D}^k(\Omega), \, spt \, \omega \subset U, \, |\omega(x)| \le 1 \, \forall \, x \in \Omega\}.$$

Se $U = \Omega$ indicheremo semplicemente M(T) anziché $M_U(T)$, e poniamo

$$\mathcal{M}_k(\Omega) = \{T \in \mathcal{D}_k(\Omega) | M(T) < \infty \}$$
$$\mathcal{M}_{k,loc}(\Omega) = \{T \in \mathcal{D}_k(\Omega) | M_U(T) < \infty \,\forall \, U \subset \subset \Omega \}.$$

Abbiamo quindi dalla definizione di massa che valgono le seguenti proposizioni

Proposizione 3 (s.c.i. della massa) Sia $\{T_j\}, T \in \mathcal{D}_k(\Omega), se T_j \rightharpoonup T$ allora per ogni aperto $U \subset \Omega, M_U(T) \leq \liminf_{j \to \infty} M_U(T_j).$

Proposizione 4 (Chiusura-compattezza) Data una successione $\{T_j\} \in \mathcal{M}_{k,loc}(\Omega)$ con $\sup_j \mathcal{M}_U(T_j) < \infty \forall U \subset \subset \Omega$, allora esiste una sottosuccessione $\{T_{j'}\} \in T \in \mathcal{M}_{k,loc}(\Omega)$ tale che $T_{j'} \rightharpoonup T$. Inoltre

$$M(T) \le \liminf_{j' \to \infty} M(T_{j'}) < \infty$$

se le masse di $T_{i'}$ sono equilimitate.

Dati

- (i) $\mathcal{M} \subset \Omega \mathcal{H}^k$ -misurabile e numerabilmente k-rettificabile,
- (ii) $\theta: \mathcal{M} \to \mathbb{R} \ \mathcal{H}^k$ -misurabile, localmente $\mathcal{H}^k \sqcup \mathcal{M}$ -sommabile,
- (iii) $\xi : \mathcal{M} \to \Lambda_k \mathbb{R}^n \mathcal{H}^k$ -misurabile con $\|\xi\| = 1 \mathcal{H}^k \sqcup \mathcal{M}$ -q.o.,

diremo che una corrente $T \in \mathcal{D}_k(\Omega)$ è del tipo $\tau(\mathcal{M}, \theta, \xi), T = \tau(\mathcal{M}, \theta, \xi)$ se

$$T(\omega) = \int_{\mathcal{M}} \langle \xi, \omega \rangle \theta \, d\mathcal{H}^k$$

ovvero

$$T = \theta \xi \mathcal{H}^k \, \sqcup \, \mathcal{M}.$$

Definizione 5 Una corrente $T \in \mathcal{D}_k(\omega)$ si dice rettificabile se e solo se è della forma $T = \tau(\mathcal{M}, \theta, \xi)$ per qualche \mathcal{M}, θ, ξ e inoltre $\xi(x)$ è un k-vettore associato al piano tangente $T_x \mathcal{M}$ per $\mathcal{H}^k \sqcup \mathcal{M}$ -q.o. x. Se inoltre la densità θ è a valori interi diremo che T è una corrente intera rettificabile. La classe delle correnti intere rettificabili sarà indicata con $\mathcal{R}_k(\Omega)$.

Indicando ora con $\mathcal{P}_k(\mathbb{R}^n)$ la classe delle k-catene poliedrali intere in \mathbb{R}^n ; dove P è una catena poliedrale intera se può essere scritta nella forma $P = \sum_i a_i[\Sigma_i]$ con $a_i \in \mathbb{Z}$ e Σ_i k-simplessi. Vale allora il seguente teorema di approssimazione:

Teorema 2 (Approssimazione di Federer) Sia T una corrente intera e rettificabile, $T \in \mathcal{R}_k(\mathbb{R}^n)$, con supporto compatto e con $\partial T \in \mathcal{R}_{k-1}(\mathbb{R}^n)$. Sia $\varepsilon > 0$, allora esiste una catena poliedrale intera P ed un diffeomorfismo f di classe C^1 di \mathbb{R}^n su \mathbb{R}^n tale che

$$M(P - f_{\#}T) + M(\partial P - \partial f_{\#}T) \leq \varepsilon,$$

$$sptP \subset \{x | dist(x, sptT) \leq \varepsilon\} \quad Lip(f), \ Lip(f^{-1}) \leq 1 + \varepsilon$$

$$f(x) - x | \leq \varepsilon \ \forall x \in \mathbb{R}^n \quad e \quad f(x) = x \ se \ dist(x, sptT) \geq \varepsilon$$

Definizione 6 Data una corrente $T \in \mathcal{D}_k(\Omega)$, diremo che è normale se $M(T) + M(\partial T) < \infty$, la classe di tali correnti sarà indicata con $N_k(\Omega)$.

Ad ogni k-forma $\varphi \in \mathcal{D}^k(\Omega)$ possiamo associare la seguente seminorma relativa al compatto $K \subset \Omega$

$$F_K(\varphi) := \max\{\sup_{x \in K} \|\varphi\|, \max_{x \in K} \|d\varphi\|\}.$$

Per una corrente $T \in \mathcal{D}_k(\Omega)$ la norma piatta relativa a K è definita da

$$F_K(T) := \sup\{T(\varphi) \mid \varphi \in \mathcal{D}^k(\Omega), F_K(\varphi) \le 1\}.$$

Lo spazio delle catene piatte è definito come la chiusura di $N_k(\Omega)$ rispetto la norma F_K , ovvero

Definizione 7 T appartiene a $F_{m,K}(\Omega)$ se e solo se esiste una successione di m-correnti normali T_j tale che $F_K(T - T_j) \rightarrow 0$. Quindi porremo

$$F_m(\Omega) := \bigcup \{ F_{m,K}(\Omega) \, | \, K \subset \Omega, \, K \, compatto \}.$$

Per quanto riguarda la rettificabilità di una catena abbiamo che vale il seguente criterio di rettificabilità ottenuto da White

Teorema 3 Sia data una k-catena piatta T di massa finita in \mathbb{R}^n . Allora T è rettificabile se e solo se per quasi ogni (n - k)-pianio P, parallelo a un piano coordinato, lo slice $T \cap P$ è una 0-catena rettificabile.

Vogliamo ora a vedere come sono definite e quali sono le principali proprietà delle correnti in $\Omega \times S^1$, in particolare siamo interessati alle correnti associate ad una funzione. A tal proposito sia $(y^1, y^2) \in S^1$ ed indichiamo con

$$\theta := y^1 \, dy^2 - y^2 \, dy^1$$

la forma angolare su S^1 , possiamo allora scrivere ogni forma $\omega \in \mathcal{D}^n(\Omega \times S^1)$ nel seguente modo

$$\omega = \omega_0(x, y)dx + \sum_{i=1}^n (-1)^{n-i}\omega_i(x, y)\widehat{dx^i} \wedge \theta$$

dove $dx := dx^1 \wedge \ldots \wedge dx^n$ e ω_0 e ω_i sono funzioni in $C_0^{\infty}(\Omega \times S^1)$. Se $u \in W^{1/2}(\Omega \times S^1)$ abbiamo che $\omega_i(x, u(x))$ apparterrà a $W^{1/2}$, e quindi, poiché $Du \in W^{-1/2}$ possiamo definire la corrente grafico associata ad u come

$$G_u(\omega) := \int_{\Omega} \omega_0(x, u(x)) dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^2 - u^2 D_i u^1, \omega_i(x, u(x)) \rangle dx + \sum_{i=1}^n \langle u^1 D_i u^2 - u^2 D_i u^2$$

Inoltre possiamo vedere G_u come un funzionale sulla classe delle forme con al più un differenziale verticale; ovvero, se

$$\omega = \omega_0(x, y)dx + \sum_{j=1}^2 \sum_{i=1}^n (-1)^{n-i} \omega_{ij}(x, y)\widehat{dx^i} \wedge dy^j$$

definiamo

$$G_u(\omega) := \int_{\Omega} \omega_0(x, u(x)) dx + \sum_{i=1}^n \langle D_i u^j, \omega_{ij}(x, u(x)) \rangle$$

Abbiamo che se u_k converge forte ad u in $W^{1/2}$, allora G_{u_k} converge debolmente a G_u .

Si ha in
oltre che per una $u\in W^{1/2}(\Omega,S^1)$ vale la seguente disuguaglianza

$$|G_u(\omega \wedge \theta)| \le c|u|_{1/2}(1+|u|_{1/2})(\|\varphi\|_{\infty}+|\varphi|_{1/2})$$
(1.7)

se $\omega = (-1)^{n-i} \varphi(x) \widehat{dx^i}$ e $\varphi \in C_0^{\infty}(\Omega)$.

Vogliamo allora definire le correnti cartesiane di energia $W^{1/2}$ finita

Definizione 8 Una corrente $T \in \mathcal{D}_n(\Omega \times S^1)$ appartiene a cart^{1/2} $(\Omega \times S^1)$ se esiste una funzione $u_T \in W^{1/2}(\Omega, S^1)$ e una (n-1)-corrente intera rettificabile L_T in Ω tali che T si decomponga come $T = G_{u_T} + L_T \times [S^1]$ e $\partial T \sqcup \Omega \times S^1 = 0$. Diremo inoltre che la corrente $T \in \operatorname{cart}_{\varphi}^{1/2}(\widetilde{B}^n \times S^1)$ se $T \in \operatorname{cart}^{1/2}(\widetilde{B}^n \times S^1)$ e $(T - G_{\varphi}) \sqcup (\widetilde{B}^n \setminus \overline{B^n} \times \mathbb{R}^2) = 0$.

Osserviamo che ogni $T \in cart^{1/2}(\Omega \times S^1)$ si decompone in modo unico, infatti la u_T si può ritrovare testando la T sulle forme del tipo $\omega = \varphi(x)y^j dx$,

$$T(\varphi(x)y^j dx) = \int \varphi(x) u_T^j(x) dx \ \forall \varphi \in C_0^\infty(\Omega),$$

е

$$L_T(\varphi) := T - G_{u_T}(\varphi \wedge \theta).$$

Per una corrente $T \in cart^{1/2}(\Omega \times S^1)$, con $T = G_{u_T} + L_T \times [S^1]$, definiamo allora la sua energia come

$$\varepsilon_{1/2}(T) := |u|_{1/2}^2 + \pi M(L_T).$$

Come fatto per le funzioni $u \in W^{1/2}(\Omega, S^1)$, possiamo definire un'estensione anche per le $T \in cart^{1/2}(\Omega \times S^1)$.

Definizione 9 Sia $T \in cart^{1/2}(\Omega \times S^1)$, allora l'estensione $\widetilde{T} := Ext(T)$ è la corrente $\widetilde{T} \in \mathcal{D}_{n+1}(\Omega \times [0,1] \times \mathbb{R}^2)$ definita da

$$\widetilde{T} := (-1)^{n-1} \left(G_{U_T} + L_T \times \left[\overline{B}^2 \right] \right),$$

dove $U_T := Ext(u_T)$.

Osserviamo infine che essendo

$$\partial (L_T \times [\overline{B}^2]) = \partial L_T \times [\overline{B}^2] + (-1)^{n-1} L_T \times \partial [\overline{B}^2],$$

da $\partial L_T \times [\overline{B}^2] = 0$ su $\mathcal{D}^n(\Omega \times S^1)$, abbiamo

$$(-1)^{n-1}\partial(L_T \times [\overline{B}^2]) = L_T \times [S^1]$$
 su $\mathcal{D}^n(\Omega \times S^1)$,

e quindi il bordo di \widetilde{T} su $\Omega \times \{0\} \times S^1$ è uguale a T. Possiamo inoltre definire l'energia di \widetilde{T} nel modo seguente

$$D(\widetilde{T}) = E_{1/2}(T) := \frac{1}{2} \int_{\Omega \times [0,1]} |DU_T|^2 dx \, dt + \pi M(L_T),$$

in tal modo abbiamo che $\varepsilon_{1/2}(T)$ è equivalente a $D(\tilde{T})$, essendo $D(U) \in |u|_{1/2}$ equivalenti.

Se indichiamo ora con $\pi : \mathbb{R}^n \times \mathbb{R}^2 \to \mathbb{R}^n$ e $\hat{\pi} : \mathbb{R}^n \times \mathbb{R}^2 \to \mathbb{R}^2$ le proiezioni ortogonali rispettivamente sul primo e sul secondo fattore, e definiamo la corrente $\mathbb{P}(u) \in \mathcal{D}_{n-2}(B^n)$ ponendo

$$\mathbb{P}(u)(\phi) := (-1)^n \partial G_u(\pi^\# \phi \wedge \hat{\pi}^\# \theta)$$

dove θ è la 1-forma in S^1 e $\phi \in \mathcal{D}^{n-2}(B^n)$, abbiamo che vale il seguente risultato

Proposizione 5 Sia $u \in W^{1/2}_{\varphi}(\widetilde{B}^n, S^1)$ $e\{u_k\} \subset R^{\infty}_{1/2, \varphi}(\widetilde{B}^n, S^1)$ una successione che converge forte in $W^{1/2}$ a u, allora

- (i) esiste una corrente intera rettificabile $L \in \mathcal{R}_{n-1}(\widetilde{B}^n)$, con spt $L \subset \overline{B}^n$ e $M(L) < \infty$, tale che $\mathbb{P}(u) = \partial L$, in particolare $\mathbb{P}(u)$ è una catena piatta;
- (ii) se $L_{u_k,u}$ indica la (n-1)-corrente intera rettificabile di massa minima con supporto contenuto in \overline{B}^n tale che

$$\partial L_{u_k, u} = \mathbb{P}(u) - \mathbb{P}(u_k),$$
 (1.8)

allora $M(L_{u_k,u}) \to 0;$

(iii) se n = 2, esistono dei punti $a_i, b_i \in \overline{B}^2$ tali che

$$\mathbb{P}(u) = \sum_{i=1}^{\infty} (\delta_{a_i} - \delta_{b_i}), \quad \sum_{i=1}^{\infty} |a_i - b_i| < \infty.$$

Capitolo 2

Chiusura e compattezza

In questo capitolo vogliamo dimostrare il primo risultato importante di questa tesi, ovvero proveremo la compattezza dello spazio $cart^{1/2}(\Omega \times S^1)$ e come conseguenza vedremo che successioni di funzioni regolari equilimitate in $W^{1/2}$ hanno limiti in $cart^{1/2}$. Per provare ciò, vedremo prima un risultato sui sollevamenti delle correnti in tale spazio.

2.1 Sollevamenti

In seguito, dato un aperto limitato $\Omega \in \mathbb{R}^n$, indicheremo con q_0 la mappa costante $q_0 : \Omega \to S^1$, $q_0 := (1,0)$ e con $i : \Omega \times \mathbb{R} \to \Omega \times S^1$ la mappa $(x,t) \to (x, \cos t, \sin t)$. Data $u \in L^1(\Omega)$, la sua corrente sottografico sarà definita come la (n + 1)-corrente in $\mathcal{D}_{n+1}(\Omega \times \mathbb{R})$ data da

$$SG_u(\varphi(x,t)dx \wedge dt) := \int_{\Omega} \int_0^{u(x)} \varphi(x,t)dt \ , \ \varphi \in C_0^{\infty}(\Omega \times \mathbb{R}).$$

In questa sezione vedremo che ogni $T \in cart^{1/2}(\Omega \times S^1)$ ha un sollevamento ad una corrente in $\Omega \times \mathbb{R}$, ovvero esiste una funzione $r : \Omega \to \mathbb{R}$ tale che $T = G_{q_0} + (-1)^n i_{\#} \partial SG_r$. In particolare nel caso 1-dimensionale avremo

Proposizione 6 Sia $T \in cart^{1/2}((a,b) \times S^1)$, allora esiste una funzione $r := v + w, v \in W^{1/2}((a,b)), w \in BV((a,b))$, tale che

$$T - G_{q_0} = -i_{\#} \partial S G_r, \tag{2.1}$$

ovvero

$$e^{ir} = u \ q.o., \quad e \ T(\varphi \wedge \theta) = -\int_a^b r\varphi' \, dx,$$

dove θ è la forma angolare su S^1 e $\varphi \in C_0^{\infty}((a, b))$.

Dimostrazione: Sia $T = G_u + L \times [S^1] \in cart^{1/2}((a, b) \times S^1)$. Poiché, da [2], abbiamo che nel caso 1-dimensionale ogni $u \in W^{1/2}((0, 1), S^1)$ è il sollevamento di una $v \in W^{1/2}((0, 1), \mathbb{R})$, ovvero

$$u = (\cos v, \sin v), \quad v \in W^{1/2}((0, 1), \mathbb{R}),$$

е

$$< v', \varphi > = < u^1 u^{2'} - u^2 u^{1'}, \varphi > \quad \forall \varphi \in C_0^{\infty}((0,1)),$$

o equivalentemente,

$$e^{iv} = u$$
, $e \int v\varphi' dt = -G_u(\varphi \wedge \theta)$

Prendendo $\omega(t) := 2\pi \sum_{i=1}^{k} n_i \chi_{[x_i,b]}(t)$, siccome L può essere scritta nella forma $L = \sum_{i=1}^{k} n_i \delta_{x_i}$, abbiamo che

$$e^{i\omega} = (1,0), \quad e \quad \int \omega \varphi' dt = -2\pi L(\varphi);$$

da cui ponendo r := v + w, abbiamo

$$e^{ir} = u$$
, $e \int r\varphi' dt = -T(\varphi \wedge \theta)$.

Nel caso n > 1, non siamo in grado di provare che ogni corrente in $cart^{1/2}(\Omega \times S^1)$, $\Omega \subset \mathbb{R}^n$, ha un sollevamento in $W^{1/2} + BV(\Omega)$. Comunque per il nostro scopo ci basterà vedere che possiamo trovare un sollevamento in $L^1(\Omega)$.In particolare proveremo

Proposizione 7 Sia q < n/(n-1), per ogni $T \in cart^{1/2}(\Omega \times S^1)$ esiste una funzione $r \in L^q(\Omega)$ tale che

$$T = G_{q_0} + (-1)^n i_{\#} \partial S G_r,$$

ovvero

$$e^{ir} = u \ q.o.$$
, $e \quad T(\omega \wedge \theta) = (-1)^n \int_{\Omega} r \ div \ \varphi \ dx$

per ogni $\omega := \sum_{i=1}^{n} (-1)^{n-1} \varphi_i(x) \widehat{dx}^i \in \mathcal{D}^{n-1}(\Omega) \text{ con } \varphi \in C_0^{\infty}(\Omega, \mathbb{R}^n).$ Inoltre

$$\|r - r_{\Omega}\|_{L^{q}(\Omega)} \le c\varepsilon_{1/2}(T)$$

dove c è una costante assoluta.

Dimostrazione: Poiché Ω è semplicemente connesso, se consideriamo i gruppi di omologia relativa $H_n(\Omega, \partial \Omega)$ e $H_n(\Omega \times S^1, \partial \Omega \times S^1)$ abbiamo che sono entrambi uguali a \mathbb{R} e la proiezione $\pi_{\#} : H_n(\Omega \times S^1, \partial \Omega \times S^1) \to H_n(\Omega, \partial \Omega)$ è un isomorfismo. Inoltre abbiamo $\pi_{\#}T = \pi_{\#}G_{q_o} = [\![\Omega]\!]$, quindi $T \in G_{q_0}$ sono cicli omologhi relativi, ne segue quindi che esiste $\Sigma \in D_{n+1}(\Omega \times S^1)$ tale che

$$T - G_{q_0} = (-1)^n \partial \Sigma$$
 su $\mathcal{D}^n(\Omega \times S^1)$.

Sia allora R la distribuzione definita da

$$< R, \varphi > := \Sigma(\varphi \, dx \wedge \theta), \ \varphi \in \mathcal{D}(\Omega);$$

se $\omega := \sum_{i=1}^{n} (-1)^{i-1} \varphi(x) \widehat{dx^{i}}, \text{ con } \varphi \in C_{0}^{\infty}(\Omega, \mathbb{R}^{n}), \text{ abbiamo}$

$$\langle R, \operatorname{div} \varphi \rangle = \Sigma(\operatorname{div} \varphi \, dx \wedge \theta)$$

$$= \partial \Sigma(\omega \wedge \theta)$$

$$= (-1)^n (T - G_{q_0})(\omega \wedge \theta)$$

$$= (-1)^n T(\omega \wedge \theta)$$

$$(2.2)$$

quindi, essendo $T:=G_u+L\times [\![S^1]\!],$ otteniamo

 $| < R, \operatorname{div} \varphi > | \le c |u|_{1/2} (1 + |u|_{1/2}) (\|\varphi\|_{\infty} + |\varphi|_{1/2}) + 2\pi M(L) \|\varphi\|_{\infty};$

di conseguenza dal teorema di immersione di Sobolev,

$$| < R, \operatorname{div} \varphi > | \le (c|u|_{1/2}(1+|u|_{1/2})+2\pi M(L)) |\varphi|_{1,q'},$$

ottenendo così che DR è una distribuzione in $W^{-1,q}(\Omega, \mathbb{R}^n), R \in L^q(\Omega)$ e

$$||R - R_{\Omega}||_{q} \le c|u|_{1/2}(1 + |u|_{1/2}) + 2\pi M(L).$$

Per la caratterizzazione delle funzioni in $W^{1/2}(\Omega)$ rispetto alle loro restrizioni e dal caso 1-dimensionale abbiamo che esistono $g_j \in L^2(\Omega_j, W^{1/2})$ tali che $e^{ig_j} = u_T$ q.o. e $D_jg_j = u^1D_ju^2 - u^2D_ju^1$. Ovvero se

$$\omega_j := (-1)^{j-1} \varphi(x) \widehat{dx^j}, \quad \varphi \in C_0^\infty(\Omega)$$

si ha

$$\int g_j D_j \varphi \, dx = -G_u((-1)^{n-j} \varphi(x) \widehat{dx^j} \wedge \theta) = (-1)^n G_u(\omega_j \wedge \theta).$$

Quindi da (2.2) otteniamo

$$(-1)^n \int_{\Omega} (R - g_j) D_j \varphi dx = (T - G_u)(\omega_j \wedge \theta) = L \times [S^1](\omega_j \wedge \theta) = 2\pi L(\omega_j).$$

Poichè $T \in cart^{1/2}(\Omega \times S^1)$, L deve essere una corrente intera rettificabile di massa finita. Detti $\Pi_j^{\perp} := \{x \in \mathbb{R}^n | x_j = 0\}$ e $x' \in \Pi_j^{\perp}$ sia $\Pi_{j,x'}$ la retta ortogonale a Π_j^{\perp} passante per x', abbiamo allora che per $q.o. x' \in \Pi_j^{\perp}$ lo slice di L su $\Pi_{j,x'}$ è una corrente 0-dimensionale intera rettificabile di massa finita, ovvero è somma di masse di Dirac che si concentrano su un numero finito di punti sulla linea $\Pi_{j,x'}$. Quindi la funzione

$$k_j(x) := -\int_{-\infty}^{x^j} d(L \sqcup \Pi_{j,x'})$$

è q.o. a valori interi,
e $D_j k_j(x) = -d(L \sqcup \Pi_{j,x'}),$

$$(-1)^n \int_{\Omega} (R - g_j) D_j \varphi \, dx = 2\pi L((-1)^{j-1} \varphi(x) \widehat{dx^j})$$
$$= 2\pi \int_{\Pi_j^\perp} dx' \int_{-\infty}^{+\infty} \varphi(x) \, d(L \sqcup \Pi_{j,x'})$$
$$= 2\pi \int_{\Pi_j^\perp} k_j(x) D_j \varphi(x) \, dx',$$

ed otteniamo dunque

$$D_j(R - g_j - (-1)^n 2\pi k_j) = 0 \quad \forall j = 1, \dots, n,$$

ovver
o $R-g_j-(-1)^n2\pi k_j$ è indipendente da $x^j.$ Per q.o.
 $x \in x_0$ in Ω abbastanza vicini, se poniamo

$$z_i := (x_0^1, \dots, x_0^i, x^{i+1}, \dots, x^n), \quad \phi_j := g_j - (-1)^n 2\pi k_j$$

in modo che $z_0 = x$ e $z_n = x_0$, abbiamo

$$R(z_0) - \phi_1(z_0) = R(z_1) - \phi_1(z_1)$$

$$R(z_1) - \phi_2(z_1) = R(z_2) - \phi_2(z_2)$$

$$\vdots$$

$$R(z_{n-1}) - \phi_n(z_{n-1}) = R(z_n) - \phi_n(z_n)$$

da cui si ottiene

$$R(x) - \sum_{j=1}^{n} \phi_j(z_{j-1}) = R(x_0) - \sum_{j=1}^{n} \phi_j(z_j),$$

e poichè $e^{i\phi_j} = u_T \ \forall j,$

$$\frac{e^{iR(x)}}{u_T(x)} = \frac{e^{iR(x_0)}}{u_T(x_0)}.$$

Poiché Ω semplicemente connesso, otteniamo allora che esiste una costante $c \in [0, 2\pi]$ tale che posto r := R - c abbiamo $e^{ir} = u_T$; quindi per le stime su R otteniamo che $r \in L^q(\Omega)$ e

$$||r - r_{\Omega}||_{L^{q}} \le c|u_{T}|_{1/2}(1 + |u_{T}|_{1/2}) + 2\pi M(L).$$

Ci resta quindi da provare che

$$T = G_q + (-1)^n i_\# \partial S G_r. \tag{2.3}$$

Per fare ciò è sufficiente vedere che tale uguaglianza vale per sia le forme del tipo $\omega = \varphi(x,\theta) dx$ che per quelle del tipo $\omega = (-1)^{i-1} \varphi_i(x) dx^i \wedge \theta$. Verifichiamo annanzi tutto che l'uguaglianza è valida per le forme del tipo $\omega = \varphi(x,\theta) dx, \varphi \in C_0^{\infty}(\Omega \times S^1)$. Infatti, posto $\tilde{\varphi}(x,t) := \varphi \circ i(x,t)$, abbiamo

$$i_{\#}\partial SG_r(\varphi(x,\theta)dx) = i_{\#}(SG_r)((-1)^n\varphi_{,\theta}dx \wedge \theta)$$

$$= (-1)^n \int_{\Omega} dx \int_0^{r(x)} \varphi_{,t}(x,s)ds$$

$$= (-1)^n \int_{\Omega} \widetilde{\varphi}(x,r(x)) - \widetilde{\varphi}(x,0)dx$$

$$= (-1)^n \int_{\Omega} \varphi(x,u_T(x)) - \varphi(x,q_0)dx$$

$$= (-1)^n (G_u - G_{q_0})(\omega)$$

$$= (-1)^n (T - G_{q_0})(\omega).$$

L'uguaglianza vale inoltre per le forme del tipo $\omega = (-1)^{i-1} \varphi_i(x) d\widehat{x}^i \wedge \theta$:

$$(T - G_{q_0})(\omega) = (-1)^n \partial \Sigma(\omega)$$

= $(-1)^n \Sigma(d\omega)$
= $(-1)^n \int_{\Omega} r \operatorname{div} \varphi \, dx$
= $(-1)^n SG_r(\operatorname{div} \widetilde{\varphi} \, dx \wedge dt)$
= $(-1)^n i_{\#} \partial (SG_r)(\omega).$

Come conseguenza di tale proposizione otteniamo

Teorema 4 Sia q < n/(n-1) e $T \in cart^{1/2}(\Omega \times S^1)$; allora esiste una successione di mappe regolari $u_k : \Omega \to S^1$ con $\sup_k ||u_k||_{L^q} < \infty$ tale che $G_{u_k} \rightharpoonup T$ in $\mathcal{D}_n(\Omega \times S^1)$.

Dimostrazione: Applicando la proposizione precedente abbiamo che esiste una funzione $r \in L^q(\Omega)$ tale che $T - G_{q_0} = (-1)^n i_{\#} \partial SG_r$; quindi se $\{r_k\}$ è una successione di funzioni regolari con $r_k \to r$ forte in L^1 , deduciamo $SG_{r_k} \rightharpoonup$ SG_r , e quindi $i_{\#} \partial SG_{r_k} \rightharpoonup i_{\#} \partial SG_r$. Prendendo allora $u_k := e^{ir_k}$, abbiamo $(-1)^n i_{\#} \partial SG_{r_k} = G_{u_k} - G_{q_0}$ da cui ne segue la tesi.

2.2 Chiusura e compattezza

Data $u \in W^{1/2}(\Omega, S^1)$ definiamo l'estensione di u

$$U := \operatorname{Ext}(u) \in W^{1,2}(\Omega \times I, \mathbb{R}^2)$$

dove I := [0,1] e U è la funzione armonica che minimizza l'integrale di Dirichlet

$$D(U) := \frac{1}{2} \int_{\Omega \times I} |DU(x,t)|^2 \, dx \, dt$$

tra le funzioni che coincidono con $u \text{ su } \Omega \times \{0\}$, e poniamo

$$\varepsilon_{1/2}(u) := D(\operatorname{Ext}(u)).$$

Abbiamo perciò

$$D(\operatorname{Ext}(u)) \simeq |u|_{1/2}$$

ed inoltre l'immagine di U è contenuta in \overline{B}^2 . Se $T = G_u + L \times [S^1]$ è in $cart^{1/2}(\Omega \times S^1)$, sostituiamo $\varepsilon_{1/2}(T)$ con l'equivalente

$$E_{1/2}(T) := \frac{1}{2} \int_{\Omega \times I} |DU| dx \, dt + \pi M(L)$$

in modo che

$$E_{1/2}(T) = \mathcal{D}(\widetilde{T}),$$

dove $\widetilde{T} := G_U + L \times \llbracket B^2 \rrbracket \in \mathcal{D}_{n+1}(\Omega \times \mathbb{R} \times \mathbb{R}^2), \mathcal{D}(\widetilde{T})$ è l'integrale di Dirichlet di $\widetilde{T} \in G_U$ è la corrente indotta dal grafico di U; tale corrente è intera e rettificabile di massa finita ed agisce su $\mathcal{D}^{n+1}(\Omega \times \mathbb{R} \times \mathbb{R}^2)$, però in generale il bordo non ha massa finita; comunque abbiamo che vale la seguente **Proposizione 8** Sia $u \in W^{1/2}(\Omega \times S^1)$; ∂G_U è una corrente ben definita con supporto in $\partial(\Omega \times I) \times \mathbb{R}^2$ e coincide su $\mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2) \simeq \mathcal{D}^{n,1}(\Omega \times \{0\} \times \mathbb{R}^2)$ con $(-1)^{n+1}G_u$,

$$G_u = (-1)^{n+1} \partial G_U \quad su \quad \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2).$$
(2.4)

Inoltre si ha

$$T = (-1)^{n+1} \partial (G_U + L \times \llbracket B^2 \rrbracket) \quad su \ \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2),$$

se $T = G_u + L \times \llbracket S^1 \rrbracket, \ u \in W^{1/2}(\Omega, S^1), \ L \in \mathcal{D}_{n-1}(\Omega) \ e \ \partial T = 0.$

Dimostrazione: Scegliamo una successione $\{u_k\} \subset W^{1/2}(\Omega \times \mathbb{R}^2)$ di mappe regolari, che convergono forte in $W^{1/2}(\Omega \times \mathbb{R}^2)$ a u, così che le estensioni U_k convergano forte all'estensione U di u in $W^{1/2}(\Omega \times I \times \mathbb{R}^2)$. Quindi $G_{u_k} \to G_u$ su $\mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2)$ e $G_{U_k} \to G_U$ su $\mathcal{D}^{n+1}((\Omega \times \mathbb{R}) \times \mathbb{R}^2)$; perciò $G_{u_k} = (-1)^{n+1} \partial G_{U_k}$ su $\mathcal{D}^n(\Omega \times \mathbb{R}^2)$, e quindi è verificata la (2.4). L'ultima affermazione segue facilmente dal fatto che $(-1)^{n+1} \partial (G_U + L \times [B^2]) =$ $G_u + L \times [S^1] + (-1)^{n+1} \partial L \times [B^2]$.

Proposizione 9 Sia $\{T_k\}_{k\in\mathbb{N}} \subset cart^{1/2}(\Omega \times S^1)$ con $\sup_k E_{1/2}(T_k) < \infty$; a meno di sottosuccessioni le T_k convergono debolmente a una corrente $T \in \mathcal{D}_n(\Omega \times S^1)$.

Dimostrazione: Sia $T_k := G_{u_k} + L_k \times [S^1]$. Consideriamo allora le (n + 1)correnti in $\mathcal{D}_{n+1}(\Omega \times \mathbb{R} \times \mathbb{R}^2)$ date da $\widetilde{T}_k := G_{U_k} + L_k \times [B^2]$, esse soddisfano $\sup_k \mathcal{D}(\widetilde{T}_k) < \infty$, quindi a meno di sottosuccessioni $\widetilde{T}_k \to \widetilde{T} \in \mathcal{D}_{n+1}(\Omega \times \mathbb{R} \times \mathbb{R}^2)$. Da ciò $\partial \widetilde{T}_k \to \partial \widetilde{T}$, e di conseguenza

$$T_k \rightharpoonup T := (-1)^{n+1} \partial \widetilde{T} \text{ su } \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2),$$

e quindi in particolare su $\mathcal{D}^n(\Omega \times S^1)$.

Proposizione 10 Sia $T := G_u + S \in \mathcal{D}_n(\Omega \times S^1)$ tale che $\partial T = 0$, e $u \in W^{1/2}(\Omega \times S^1)$ con S completamente verticale, ovvero $S(\omega) = 0$ sulle forme $\omega \in \mathcal{D}^{n,0}(\Omega \times S^1)$. Definiamo

$$L(\varphi) := \frac{1}{2\pi} S(\varphi \wedge \theta).$$

Allora abbiamo $S = L \times [S^1]$, e quindi

$$T = G_u + L \times \llbracket S^1 \rrbracket.$$

Dimostrazione: Prendiamo una successione di mappe regolari $u_k : \Omega \to \mathbb{R}^2$ che converge fortemente in $W^{1/2}(\Omega, \mathbb{R}^2)$ a u. Allora $G_{u_k} \to G_u$ su $\mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2)$ e quindi

$$\partial G_u = 0 \text{ su } \mathcal{D}^{n,0}(\Omega \times \mathbb{R}^2)$$

poiché $\partial G_{u_k} = 0 \ \forall k$. Quindi, indicate con (x, y) le coordinate in $\Omega \times \mathbb{R}^2$ con $x \in \Omega \in y \in \mathbb{R}^2$, per ogni $\eta \in \mathcal{D}^{n,0}(\Omega \times \mathbb{R}^2)$

$$S(d_y\eta) = S(d\eta) - S(d_x\eta) = S(d\eta) = -G_u(d\eta) = 0.$$

Essendo ogni forma $\omega \in \mathcal{D}^n(\Omega \times S^1)$ decomponibile come

$$\omega = \overline{\omega} \wedge \theta + d_{\theta} \alpha, \quad \overline{\omega} \in \mathcal{D}^{n-1}(\Omega), \alpha \in \mathcal{D}^{n,0}(\Omega \times S^1),$$

otteniamo

$$S(\omega) = S(\overline{\omega} \wedge \theta) = 2\pi L(\overline{\omega}) = L \times [S^1](\overline{\omega} \wedge \theta) = L \times [S^1](\omega),$$

dove l'ultima uguaglianza è data dal fatto che $L \times [S^1](d_{\theta}\alpha) = 0.$

Proposizione 11 Sia $\{T_k\}$ una successione in $cart^{1/2}(\Omega \times S^1)$ tale che $T_k \rightarrow T$ e si abbia $sup(T_k) < \infty$; allora T è della forma $T := G_u + L \times [S^1]$ per qualche $u \in W^{1/2}(\Omega, S^1)$ e $L \in \mathcal{D}_{n-1}(\Omega)$ con $M(L) < \infty$, inoltre

$$E_{1/2}(T) \le \liminf_{k \to \infty} E_{1/2}(T_k)$$

Dimostrazione: Sia $T_k = G_{u_k} + L_k \times [S^1]$, a meno di passare a sottossuccessioni, possiamo supporre che $\{u_k\}$ converga debolmente in $W^{1/2}$ e fortemente in L^2 a una funzione $u \in W^{1/2}(\Omega, S^1)$. Per come sono definite $T \in G_u$, abbiamo che coincidono su $\mathcal{D}^{n,0}(\Omega \times S^1)$, e perciò l'intera successione $\{u_k\}$ converge a $u \in T$ è della forma $G_u + S$ con S corrente completamente verticale, ovvero S = 0 su $\mathcal{D}^{n,0}(\Omega \times \mathbb{R}^2)$, quindi per la proposizione precedente abbiamo $T = G_u + L \times [S^1]$ per qualche $L \in \mathcal{D}_{n-1}(\Omega)$.

Sia allora $\widetilde{T}_k := G_{U_k} + L_k \times \llbracket B^2 \rrbracket \in \mathcal{D}_{n+1}(\Omega \times \mathbb{R} \times \mathbb{R}^2)$; per definizione

$$E_{1/2}(T_k) = \mathcal{D}(\widetilde{T}_k) = \frac{1}{2} \int_{\Omega \times I} |DU_k|^2 dx dz + \pi M(L_k).$$

perciò le $\{\widetilde{T}_k\}$ hanno masse equilimitate in $\Omega \times \mathbb{R} \times \mathbb{R}^2$. Ne segue (passando a sottossuccessioni) che \widetilde{T}_k convergono debolmente a una corrente $\widetilde{T} \in \mathcal{D}_{n+1}(\Omega \times (-1, 1) \times \mathbb{R}^2)$ e per la semicontinuità dell' integrale di Dirichlet

$$\mathcal{D}(\widetilde{T}) \leq \liminf_{k \to \infty} \mathcal{D}(\widetilde{T}_k).$$

Analogamente alle u_k , le U_k convergono debolmente in $W^{1,2}$ e forte in L^2 a qualche U, quindi $\widetilde{T} = G_U + S$ con S completamente verticale, cioè S = 0 su $\mathcal{D}^{n+1,1}(\Omega \times (-1,1) \times \mathbb{R}^2)$ e spt $S \subset \overline{\Omega} \times \{0\} \times \mathbb{R}^2$; quindi abbiamo

$$\frac{1}{2}\int_{\Omega\times I}|DU|^2dxdz+M(S)=\mathcal{D}(\widetilde{T})<\infty$$

D'altro lato abbiamo $T_k = (-1)^{n+1} \partial \widetilde{T}_k$ e siccome $\widetilde{T}_k \rightharpoonup G_U + S$,

$$T := G_u + L \times \llbracket S^1 \rrbracket = (-1)^{n+1} \partial (G_U + S) \text{ su } \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2),$$

quindi dalla Proposizione 8

$$L \times \llbracket S^1 \rrbracket = (-1)^{n+1} \partial S \text{ su } \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2),$$

in particolare, provando con $\eta \wedge \theta$, $\eta \in \mathcal{D}^{n-1}(\Omega)$, e osservando che $d\eta \wedge \theta \in \mathcal{D}^{n+1,1}(\Omega \times S^1)$ otteniamo

$$2\pi L(\eta) = (-1)^{n+1} S(d\eta \wedge \theta) + 2S(\eta dy^1 \wedge dy^2) = 2S(\eta dy^1 \wedge dy^2)$$

da cui

$$\pi M(L) \le M(S),$$

quindi $M(L) < \infty$ ed anche

$$E_{1/2}(T) = \frac{1}{2} \int_{\Omega \times I} |DU|^2 dx dz + \pi M(L)$$

$$\leq \frac{1}{2} \int_{\Omega \times I} |DU|^2 dx dz + M(S) = \mathcal{D}(\widetilde{T})$$

$$\leq \liminf_{k \to \infty} \mathcal{D}(\widetilde{T}_k) = \liminf_{k \to \infty} E_{1/2}(T_k).$$

Proposizione 12 Sia $\{T_k\}$ una successione in $cart^{1/2}((a, b) \times S^1)$ con energie equilimitate, $\sup_k E_{1/2}(T_k) < \infty$, $e T_k \rightharpoonup T$. Allora esiste una funzione $r \in W^{1/2} + BV((a, b))$ tale che

$$T - G_{q_0} = (-1)^n i_{\#} \partial SG_r \quad su \ \mathcal{D}^n((a, b) \times S^1).$$

Dimostrazione: Dalla Proposizione 6 abbiamo

$$T_k + G_{q_0} = (-1)^n i_{\#} \partial SG_{r_k} \text{ con } \sup_k ||r_k||_{W^{1/2} + BV} < \infty.$$

Passando a una sottosuccessione, r_k converge debolmente in $W^{1/2} + BV$ e forte in L^1 a una funzione r, ne segue dunque $SG_{r_k} \rightharpoonup SG_r$, da cui otteniamo la tesi.

Siamo ora in grado di provare il seguente risultato di compattezza

Teorema 5 (Compattezza) Sia $\{T_k\} \subset cart^{1/2}(\Omega \times S^1)$ una successione con $\sup_k \varepsilon_{1/2}(T_k) < \infty$. Passando a una sottossuccessione, $\{T_k\}$ converge debolmente in $\mathcal{D}_n(\Omega \times S^1)$ a una corrente $T \in cart^{1/2}(\Omega \times S^1)$; inoltre

$$\varepsilon_{1/2}(T) \le c \liminf_{k \to \infty} \varepsilon_{1/2}(T_k),$$

dove c è una costante assoluta.

Dimostrazione: Dalle proposizioni provate in precedenza sappiamo che $T = G_u + L \times [S^1]$ con $u \in W^{1/2}(\Omega, S^1), L \in \mathcal{D}_{n-1}(\Omega)$ e $M(L) < \infty$. Rimane quindi da provare che L è una (n-1)-corrrente rettificabile. Per tale motivo converrà considerare separatamente il caso 1-dimensionale da quello generale.

Caso n = 1. Sia $\Omega = (a, b)$, allora per la Proposizione 12 possiamo trovare una $r \in W^{1/2} + BV((a, b))$ e tale che

$$e^{ir} = u \quad e \quad \int r\varphi' dt = -T(\varphi \wedge \theta).$$

D'altro lato, essendo n = 1 esiste $v \in W^{1/2}((a, b))$ tale che

$$e^{iv} = u$$
 e $\int v\varphi' dt = -G_u(\varphi \wedge \theta).$

Abbiamo allora che la funzione r - v è in $W^{1/2} + BV$ a valori interi i cui salti sono multipli di 2π , in particolare dovrà avere un numero finito di salti, x_1, \ldots, x_m . Considerando i distinti intervalli in $\Omega \setminus \{x_1, \ldots, x_m\}$, dalla disuguaglianza di Poincaré, ricaviamo che r - v è costante in ognuno di tali intervalli, otteniamo perciò che $L = \sum_{j=1}^m n_j \delta_{x_j}$ con $n_j \in \mathbb{Z}$.

Caso generale. Sia P una retta orientata in \mathbb{R}^n , P^{\perp} il (n-1)-piano ortogonale a P passante per l'origine e per ogni $x \in P^{\perp}$, sia P_x la retta parallela a P e passante per x. Se $T = G_u + L \times [S^1]$ è in $cart^{1/2}(\Omega \times S^1)$ e $\widetilde{T} := G_U + L \times [B^2]$, allora \widetilde{T} è una corrente intera refificabile con

$$(-1)^{n+1}\partial \widetilde{T} = T \text{ su } \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2).$$

Quindi per \mathcal{H}^{n-1} -q.o. $x, \widetilde{T} \sqcup (P_x \times \mathbb{R} \times \mathbb{R}^2)$ è anch'essa una corrente intera rettificabile, ed è data da

$$\widetilde{T} \, {\sqcup} \, (P_x \times \mathbb{R} \times \mathbb{R}^2) = G_{U_{|P_x \times \mathbb{R}}} + (L \, {\sqcup} \, P_x) \times \llbracket B^2 \rrbracket$$

con $U_{|P_x \times \mathbb{R}} \in W^{1,2}(\Omega \cap P_x, \mathbb{R}^2)$, e la traccia $T(U_{|P_x \times \mathbb{R}}) = u_{|P_x}$. Inoltre $L \sqcup P_x$ è una corrente intera rettificabile di massa finita, ed infine

 $(-1)^{n+1}\partial(\widetilde{T} \sqcup (P_x \times \mathbb{R} \times \mathbb{R}^2)) = G_{u_{|P_x}} + (L \sqcup P_x) \times \llbracket S^1 \rrbracket \text{ su}\mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2)$

e ciò dimostra che

$$G_{u|P_x} + (L \sqcup P_x) \times \llbracket S^1 \rrbracket \in cart^{1/2}((\Omega \cap P_x) \times S^1)$$

per \mathcal{H}^{n-1} -q.o. $x \in P^{\perp}$.

Se $\{T_k\} \in cart^{1/2}(\Omega \times S^1), T_k \rightarrow T := G_u + L \times [S^1]$ con $u \in W^{1/2}$ e $M(L) < \infty$. Ragionando come sopra, abbiamo che per \mathcal{H}^{n-1} -q.o. t esiste una sottosuccessione di T_k tale che

$$G_{u_k|P_x} + (L_k \sqcup P_x) \times \llbracket S^1 \rrbracket \rightharpoonup G_{u|P_x} + (L \sqcup P_x) \times \llbracket S^1 \rrbracket.$$

Da quanto visto per il caso 1-dimensionale, essendo P_x delle rette, possiamo conludere che $L \sqcup P_x$ è una corrente intera rettificabile per \mathcal{H}^{n-1} -q.o. x. Ci sarà sufficiente vedere che L è una catena piatta; infatti, dal criterio di rettificabilità di White, tale condizione assieme a $M(L) < \infty$ e alla rettificabilità di $L \sqcup P_x$ per \mathcal{H}^{n-1} -q.o. $x \in P^{\perp}$ e per tutte le direzioni di P dà la rettificabilità della corrente L.

Dalla Proposizione 12 abbiamo $T - G_{q_0} := (-1)^n i_{\#} \partial SG_r$. Essendo SG_r una catena piatta se $r \in L^1$ ne segue che T è una catena piatta. D'altro lato

$$T = (-1)^{n+1} \partial (G_U + L \times \llbracket B^2 \rrbracket) \text{ su } \mathcal{D}^{n,1}(\Omega \times \mathbb{R}^2).$$

Essendo G_U una corrente intera rettificabile di massa finita, ∂G_U è una catena piatta, di conseguenza

$$L(\varphi) := \frac{1}{2\pi} (T - G_u)(\varphi \wedge \theta)$$

è anch'essa una catena piatta.

Possiamo inoltre vedere che vale l'analogo risultato per successioni di funzioni in $W^{1/2}(\Omega, S^1)$

Teorema 6 Sia $\{u_k\} \subset W^{1/2}(\Omega, S^1), u_k : \Omega \to S^1$, una successione di mappe regolari con $\sup_k ||u_k||^2_{W^{1/2}} \leq K$. A meno di passare a sottossuccessioni si ha

$$G_{u_k} \rightharpoonup T := G_{u_T} + L_T \times \llbracket S^1 \rrbracket$$

dove u_T è il limite debole di $\{u_k\}$ in $W^{1/2}$ e L_T è una (n-1)-corrente intera rettificabile in Ω . Inoltre

$$||u_T||_{W^{1/2}}^2 + M(L_T) \le cK$$

Dimostrazione: Per provare tale risultato è sufficiente applicare il teorema precedente alle correnti $G_{u_k}.$

Capitolo 3

Densità: caso 1-dimensionale

Ora proveremo un risultato di densità per correnti in $cart^{1/2}$, in particolare in questo capitolo vedremo che ogni corrente $T \in cart^{1/2}(B^1 \times S^1)$ è limite di una successione di grafici di funzioni regolari.

In seguito indicheremo

$$B_r^+ := \bar{B}_r^2 \cap \mathcal{C}^2, \quad \partial^+ B_r := \partial B_r^2 \cap \{(x,t) \in \mathcal{C}^2 | t > 0\},$$
$$J_r := \partial B_r^+ \setminus \partial^+ B_r = [-r,r] \times \{0\},$$

dove $B_r^2 = \{(x,t)|x^2 + t^2 < r\} \in \mathcal{C}^{n+1} := B^n \times [0,1]; \in \widetilde{B}^n$ indicherà un aperto di \mathbb{R}^n tale che $B^n \subset \subset \widetilde{B}^n$.

Osservazione 1 Se indichiamo con $S_{\varepsilon}^{1} := \{y \in \mathbb{R}^{2} | dist(y, S^{1}) \leq \varepsilon\}$ l' ε -intorno di S^{1} , allora esiste un ε_{0} tale che per $0 < \varepsilon \leq \varepsilon_{0}$ la mappa $\Pi_{\varepsilon} : S_{\varepsilon}^{1} \to S^{1}$, dove $\Pi_{\varepsilon}(y)$ è la proiezione di y su S^{1} , è ben definita e con costante di Lipschitz $L_{\varepsilon} \to 1^{+}$ per $\varepsilon \to 0$; inoltre abbiamo che S_{ε}^{1} è topolocicamente equivalente a S^{1} .

Proposizione 13 Sia $P \in S^1$, allora esiste una successione di funzioni lipschitziane $f_{\varepsilon} : B^+ \to B^2$ tali che $f_{\varepsilon|\partial^+B} \equiv P$, $f_{\varepsilon}(J) \subset S^1_{\varepsilon}$, $f_{\varepsilon\#}[B^+] = [B^2]$ e $f_{\varepsilon\#}[J] = [S^1]$, e

$$\lim_{\varepsilon \to 0} D(f_{\varepsilon}, B^+) = M(\llbracket B^2 \rrbracket) = \pi.$$

Dimostrazione: Per ogni $\varepsilon > 0$, modificando la mappa identità su B^2 , possiamo definire una funzione Lipschitziana $g_{\varepsilon} : B^2 \to B^2$ tale che $g_{\varepsilon\#}[B^2] = [B^2]], A(g_{\varepsilon}, B^2) \leq \pi + \varepsilon$ e g_{ε} mandi $\partial^+ B$ costantemente nel polo nord $P_N = (0, 1) \in S^1$. In seguito, unendo P_N a P in S^1_{ε} , possiamo modificare g_{ε} in modo che $\partial^+ B$ venga mandato costantemente nel punto $P \in S^1$ dato, mentre $g_{\varepsilon}(\partial B^2) \subset S^1_{\varepsilon}$, e $g_{\varepsilon\#}[\partial B^2]] = [S^1]$. Sia ora $\psi : B^+ \to \overline{B}^2$ un omeomorfismo bilipschitziano che sia l' identità su $\partial^+ B$; quindi, ponendo $\tilde{f}_{\varepsilon} := g_{\varepsilon} \circ \psi : B^+ \to B^2$, abbiamo che \tilde{f}_{ε} è lipschitziana e soddisfa $\tilde{f}_{\varepsilon|\partial^+ B} \equiv P, \ \tilde{f}_{\varepsilon}(J) \subset S^1_{\varepsilon}, \ \tilde{f}_{\varepsilon\#}[\![B^+]\!] = [\![B^2]\!] \in \tilde{f}_{\varepsilon\#}[\![J]\!] = [\![S^1]\!]$, ed inoltre

$$A(f_{\varepsilon}, B^+) = A(g_{\varepsilon}, B^2) \le \pi + \varepsilon.$$

Applicando ora il teorema di ε -conformalità di Morrey e definiamo un diffeomorfismo $\Psi_{\varepsilon} : B^+ \to B^+$ che conservi l'orientazione e tale che, detta $f_{\varepsilon} := \tilde{f}_{\varepsilon} \circ \Psi_{\varepsilon}$, si abbia

$$D(f_{\varepsilon}, B^+) \le (1+\varepsilon)A(f_{\varepsilon}, B^+) = (1+\varepsilon)A(\widetilde{f_{\varepsilon}}, B^+) = (1+\varepsilon)(\pi+\varepsilon).$$

Infine possiamo definire la Ψ_{ε} in modo che mappi $\partial^+ B$ su $\partial^+ B$ e J su J; da ciò ne segue la tesi.

Da questa proposizione ricaviamo il seguente risultato

Proposizione 14 Sia U una mappa regolare in $W^{1,2}(\mathcal{C}^2, \mathbb{R}^2)$ con traccia $T(U) \in W^{1/2}(B^1, S^1_{\varepsilon})$; allora esiste una successione $\{U_k\}$ di mappe regolari da \mathcal{C}^2 in \mathbb{R}^2 , con tracce $u_k := T(U_k) \in W^{1/2}(B^1, S^1_{2\varepsilon})$ per ogni k, ed una successione di raggi $\delta_k \searrow 0$ tale che $U_k = U$ fuori da $B^+_{\delta_k}$ e $G_{U_k} \rightharpoonup G_U + \delta_0 \times \llbracket B^2 \rrbracket$ debolmente in $\mathcal{D}_2(\mathcal{C}^2 \times \mathbb{R}^2)$ con

$$\lim_{k \to \infty} D(U_k, \mathcal{C}^2) = D(U, \mathcal{C}^2) + M(\llbracket B^2 \rrbracket)$$

Dimostrazione: Se P := U(0), definiamo $U_{k,r} : B_r^+ \to B^2$, per $k \in \mathbb{N}$ e $r \in (0, 1)$, nel modo seguente

$$U_{k,r}(z) := \begin{cases} U(z) & \text{se} \quad |z| > r \\ v_r(z) & \text{se} \quad r/2 \le |z| \le r \quad z \in \mathcal{C}^2 \\ f_k(2z/r) & \text{se} \quad |z| < r/2 \end{cases}$$

dove f_k è data dalla proposizione precedente con P = U(0), e

$$v_r(z) := \left(\frac{2}{r}|z| - 1\right) \cdot U\left(r\frac{z}{|z|}\right) + \left(2 - \frac{2}{r}|z|\right) \cdot U(0).$$

Poiché $v_r(z) = U(z)$ per |z| = r e $v_r(z) \equiv P$ per |z| = r/2, ne segue che $U_{k,r}$ è lipschitziana; inoltre dalla proposizione precedente e con un cambio di variabili otteniamo

$$D(U_{k,r}, B_{r/2}^+) = D(f_k, B^+) \to M([B^2])$$

per $k \to \infty$, quindi ci basta verificare che

$$\liminf_{r \to 0^+} D(v_r, B_r^+ \setminus B_{r/2}^+) = 0, \tag{3.1}$$

prendendo $U_k := U_{k,r_k}$ per un' opportuna successione $r_k \searrow 0$. Abbiamo che vale la seguente stima

$$D(v_r, B_r^+ \setminus B_{r/2}^+) \le c \left(\|U(z) - U(0)\|_{\infty,\partial B_r^+}^2 + r \int_{\partial B_r^+} |D_\tau U|^2 d\mathcal{H}^1 \right).$$

dove c è una costante e τ è la direzione tangente a ∂B_r^+ . Dalla continuità di U(z) abbiamo $||U(z) - U(0)||_{\infty,\partial B_r^+}^2 \to 0$ per $r \to 0^+$; in più dalla formula di coarea, posto $F(r) := \int_{\partial B_r^+} |D_{\tau}U|^2 d\mathcal{H}^1$, otteniamo

$$\int_{0}^{r_{0}} F(r)dr \le \int_{B_{r_{0}}^{+}} |DU|^{2}dx < +\infty.$$

Come conseguenza di ciò, $\liminf_{r\to 0^+} rF(r) = 0$, e quindi la (3.1) è verificata.

Da questa proposizione possiamo ora dimostrare il seguente teorema di densità

Teorema 7 Data una corrente $T \in cart^{1/2}(B^1 \times S^1)$, allora esiste una successione $\{u_k\}$ di mappe regolari con $u_k : B^1 \to S^1$ e tali che $G_{u_k} \rightharpoonup T$ debolmente in $cart^{1/2}$ e

$$\lim_{k \to +\infty} \varepsilon_{1/2}(u_k, B^1) = \varepsilon_{1/2}(T, B^1 \times S^1).$$

Prima di passare alla dimostrazione del teorema premettiamo innanzitutto il seguente risultato di densità su $W^{1/2}(B^1, S^1)$

Teorema 8 $C^{\infty}(B^1, S^1)$ è denso in $W^{1/2}(B^1, S^1)$

Dimostrazione: Sia $u \in W^{1/2}(B^1, S^1)$ e consideriamo $U \in W^{1,2}(\mathcal{C}^2, \mathbb{R}^2)$ tale che U = T(u). Per $h < \frac{1}{2}$, e per $x \in \mathcal{C}^2$ poniamo

$$U_h(x) := \frac{1}{h^2} \int_{\mathcal{C}'^2(x,h)} U(z) \, dz,$$

dove $\mathcal{C}'^2(x,h) := \{z \in \mathbb{R}^2 | z = x + y, y \in \mathcal{C}'^2(h)\} \in \mathcal{C}'^2(h) = [-h/2, h/2]^2$. Otteniamo quindi che $U_h \in C^0 \cap W^{1,2} \in U_h \to U$ in $W^{1,2}(\mathcal{C}^2, \mathbb{R}^2)$; sia u_h la restrizione di U_h a B^1 , abbiamo dunque $u_h \in C^0 \cap W^{1/2}$ e $u_h \to u$ in $W^{1/2}$. Sia $\varepsilon > 0$, e scegliamo h_0 tale che per $h \leq h_0$ si abbia

$$\int_{\mathcal{C}'^2(x,h)} |DU|^2 \, dz \le \varepsilon \,, \quad \forall \, x \in \mathcal{C}^2.$$

Possiamo supporre, a meno di traslazioni, che x sia l'origine di \mathbb{R}^2 . Chiamiamo P(h, j) l'iperpiano ortogonale a e_j e passante per he_j , dove e_1 , e_2 sono i vettori della base ortonormale stardard di \mathbb{R}^2 . Considerando P(h, 1), sia $h_1 \in [-h/2, h/2]$ tale che

$$\frac{1}{h} \int_{\mathcal{C}'^{2}(h) \cap P(h_{1},1)} |DU|^{2} dz \leq 2 \int_{\mathcal{C}'^{2}(h)} |DU|^{2} dz \leq 2\varepsilon.$$
(3.2)

Dal teorema di immersione di Sobolev otteniamo perciò

$$\max_{x,z\in\mathcal{C}'^{2}(h)\cap P(h_{1},1)} |U(x) - U(z)| \le C\varepsilon^{1/2};$$
(3.3)

preso allora $z_0 \in B^1 \cap P(h_1, 1)$, la disuguaglianza precedente ci dà

$$\max_{x \in \mathcal{C}'^2(h) \cap P(h_1, 1)} |U(x) - y_h| \le C\varepsilon^{1/2},$$

dove $y_h := U(z_0) \in S^1$. Prendiamo or
a $\eta > 0,$ che determineremo in seguito, e poniamo

$$A_h := \left\{ h' \in \left[-h/2, h/2\right] \mid \int_{P(h',2)} |DU|^2 dx \le h^{-1} \eta \varepsilon \right\}$$
$$B_h := \left[-h/2, h/2\right] \setminus A_h.$$

Se $h' \in A_h$, dall'immersione di Sobolev abbiamo

$$\max_{x,z\in\mathcal{C}^2(h)\cap P(h',2)} |U(x) - U(z)| \le C\eta^{1/2}\varepsilon^{1/2}.$$

Preso quindi $z \in P(h_1, 1) \cap P(h', 2)$, e combinando a disuguaglianza precedente con la (3.3), per $h' \in A_h$ otteniamo

$$\max_{x \in P(h',2)} |U(x) - y_h| \le C(\eta^{1/2} + 1)\varepsilon^{1/2},$$

e quindi

$$\frac{1}{h^2} \int_{h' \in A_h} dh' \int_{P(h',2)} |U(z) - y_h| d\sigma \le C(\eta^{1/2} + 1)\varepsilon^{1/2}$$
(3.4)

D'altro lato, poiché $\int_{h' \in B_h} \int_{P(h',2)} |DU|^2 \leq \varepsilon$, abbiamo che la misura di B_h è minore o uguale a h/η ; quindi essendo $|U(Z)| \leq K$ abbiamo

$$\frac{1}{h^2} \int_{h' \in B_h} dh' \int_{P(h',2)} |U(z) - y_h| d\sigma \le 2K/\eta$$

Da questa disuguaglianza e dalla (3.4) abbiamo

$$\frac{1}{h^2} \int |U(z) - y_h| dz \le 2K/\eta + C(\eta^{1/2} + 1)\varepsilon^{1/2}.$$

Scegliamo quindi $\eta \in \varepsilon$ in modo che $2K/\eta \leq \theta/2 \in C(\eta^{1/2} + 1)\varepsilon^{1/2} \leq \theta/2$; otteniamo perciò, per $x_0 \in B^1$

$$|u_h(x_0) - y_h| = |U_h(x_0) - y_h| \le \theta.$$

Poiché $y_h \in S^1$, $u_h(x_0) \in S^1_{\theta}$; definendo ora $\widetilde{u}_h = \pi \circ u_h$, dove $\pi : S^1_{\theta} \to S^1$ è la proiezione, otteniamo chiaramente che $\widetilde{u}_h \in C^{\infty}(B^1, S^1) \cap W^{1/2}$ e $\widetilde{u}_h \to u$ in $W^{1/2}(B^1, S^1)$.

Dimostrazione del teorema 7: Essendo le u_k definite su B^1 , come fatto nel teorema 8, possiamo trovare una successione $U_k : \mathcal{C}^2 \to \mathbb{R}^2$ tale che $U_k \to Ext(u)$ in $W^{1,2}(\mathcal{C}^2, \mathbb{R}^2)$ ed inoltre possiamo prendere la successione in modo che esista $t_0 > 0$ tale che $U_k(B^1 \times [0, t_0]) \subset S^1_{\varepsilon_0}$ per ogni k. In particolare avremo che le tracce $u_k := T(U_k) \in W^{1/2}(B^1, S^1_{\varepsilon_0})$ e $u_k \to u$ in $W^{1/2}(B^1, S^1_{\varepsilon_0})$.

Considerando ora i semidischi $x_i + B_{r_k,h}^+$ attorno a x_i e contenuti in \mathcal{C}^2 , applichiamo la proposizione 14 ad ogni U_k e troviamo una successione $\{U_{k,h}\}_h$ da \mathcal{C}^2 in \mathbb{R}^2 , le cui tracce $u_{k,h} := T(U_{k,h}) \in W^{1/2}(B^1, S_{\varepsilon_0}^1)$ per ogni h, ed una successione di raggi $r_{k,h} \searrow 0$ per $h \to +\infty$ tale che $U_{k,h} = U_k$ fuori da $x_i + B_{r_{k,h}}^+$,

$$G_{U_{k,h}} \rightharpoonup G_{U_k} + \sum_{i=1}^{i_0} \delta_i \times \llbracket B^2 \rrbracket$$

debolmente in $\mathcal{D}_2(\mathcal{C}^2 \times \mathbb{R}^2)$ e

$$\lim_{h \to +\infty} D(U_{k,h}, \mathcal{C}^2) = D(U_k, \mathcal{C}^2) + \sum_{i=1}^{i_0} M([B^2]).$$

Con un procedimento diagonale troviamo quindi una successione $\{V_k\} \subset C^1(\mathcal{C}^2, \mathbb{R}^2)$, con $v_k := T(V_k) \in W^{1/2}(B^1, S^1_{\varepsilon_0})$ e tale che $G_{V_k} \rightharpoonup \tilde{T}$ debolmente in $\mathcal{D}_2(\mathcal{C}^2 \times \mathbb{R}^2)$ e $D(V_k, \mathcal{C}^2) \rightarrow D(\tilde{T})$ per $k \rightarrow +\infty$. Ponendo quindi $u_k := \Pi \circ v_k$, otteniamo la tesi. Da questo teorema segue facilmente il seguente

Corollario 1 Per ogni $T \in cart_{\varphi}^{1/2}(\widetilde{B}^1 \times S^1)$ esiste una successione di mappe regolari $\{u_k\} \subset C_{\varphi}^{\infty}(\widetilde{B}^1, S^1)$ tale che $G_{u_k} \rightharpoonup T$ debolmente in $cart^{1/2}(\widetilde{B}^1 \times S^1)$ e $\varepsilon_{1/2}(u_k, \widetilde{B}^1) \rightarrow \varepsilon_{1/2}(T, \widetilde{B}^1 \times S^1).$

Dimostrazione: Essendo u regolare su $\widetilde{B}^1 \setminus B^1$, possiamo definire la successione $U_k : \mathcal{C}^2 \to \mathbb{R}^2$ in modo tale che $(G_{u_k} - G_{\varphi}) \sqcup (\widetilde{B}^1 \setminus B^1) \times \mathbb{R}^2 = 0$ per ogni k. Inoltre poiché in $T = G_{u_T} + \sum_{i=1}^{i_0} \delta_{x_i} \times [S^1]$ i punti x_i possono essere presi distanti dal bordo di B^1 , possiamo applicare la proposizione 14 prendendo i raggi $r_{k,h}$ sufficientemente piccoli in modo che $U_{k,h}$ coincida con U_k in un intorno di $\partial B^1 \times I$, e da ciò deriva la tesi.

Capitolo 4

Densità: caso 2-dimensionale

In questo capitolo vedremo che il risultato di densità per le correnti in $cart^{1/2}$ è valido anche nel caso 2 dimensionale.

4.1 Dipoli

Prima di dimostrare la densità nel caso 2-dimensionale è necessario introdurre i dipoli. Dati due punti, a_+ , $a_- \in B^2 \times \{0\}$, e sia $L \in \mathcal{R}_1(\mathbb{R}^3)$ la corrente integrazione lungo il segmento che unisce a_- con a_+ , orientata in modo che $\partial L = \delta_{a_+} - \delta_{a_-}$ e con $M(L) = l := |a_+ - a_-| \in (0, 1)$, tale corrente costituisce un dipolo. Il nostro scopo è quindi quello di approssimare un dipolo con mappe regolari.

Sia $0 < \delta < 1$ e $0 < m \ll 1,$ poniamo

$$\varphi_{\delta}^{m}(y) := \min\{my, m(l-y), \delta\}, \quad 0 \le y \le l;$$

consideriamo la funzione $\phi_{\delta}^m: (0,l) \times B^+ \to \mathcal{C}^3$ definita nel seguente modo

$$\phi_{\delta}^{m}(x_1, x_2, t) := (x_1, \varphi_{\delta}^{m}(x_1)x_2, \varphi_{\delta}^{m}(x_1)t),$$

esia

$$\Omega^m_\delta := \phi^m_\delta((0,l) \times B^+).$$

Vale quindi il seguente lemma:

Lemma 1 Sia $V: (0, l) \times B^+ \to \mathbb{R}^2$ una funzione in $W^{1,2}$, e sia

$$V^m_{\delta}(z) := V \circ (\phi^m_{\delta})^{-1}(z), \quad z \in \Omega^m_{\delta}.$$

Allora esiste una costante assoluta c > 0 tale che

$$\int_{\Omega_{\delta}^{m}} |DV_{\delta}^{m}|^{2} dz \leq \int_{(0,l)\times B^{+}} |D_{(x_{2},t)}V|^{2} dz + c\delta^{2} \int_{(0,l)\times B^{+}} |D_{x_{1}}V|^{2} dz + cm^{2} \int_{((0,\delta/m)\cup(l-\delta/m,l))\times B^{+}} |D_{(x_{2},t)}V|^{2}. \quad (4.1)$$

Dimostrazione: Per come è definita V^m_δ abbiamo

$$\int\limits_{\Omega^m_\delta} |DV^m_\delta|^2 \, dz = \int\limits_{(0,l)\times B^+} |DV(z)D(\phi^m_\delta)^{-1}(\phi^m_\delta(z))|^2 |\det D\phi^m_\delta(z)| dz.$$

Da un semplice calcolo abbiamo $|\det D\phi_{\delta}^{m}(z)| = (\varphi_{\delta}^{m})^{2}$, inoltre calcolando $DV(z)D(\phi_{\delta}^{m})^{-1}(\phi_{\delta}^{m}(z))$ otteniamo la seguente stima che ci dà la tesi:

$$\int_{\Omega_{\delta}^{m}} |DV_{\delta}^{m}|^{2} dz \leq \int_{(0,l)\times B^{+}} |D_{(x_{2},t)}V|^{2} dx + c \int_{(0,l)\times B^{+}} |D_{x_{1}}V|^{2} |\varphi_{\delta}^{m}|^{2} dx + c \int_{(0,l)\times B^{+}} |z|^{2} |D_{(x_{2},t)}V| |(\varphi_{\delta}^{m})'|^{2} dz \leq \int_{(0,l)\times B^{+}} |D_{(x_{2},t)}V|^{2} dx + c\delta^{2} \int_{(0,l)\times B^{+}} |D_{x_{1}}V|^{2} + cm^{2} \int_{((0,\delta/m)\cup(l-\delta/m,l))\times B^{+}} |D_{(x_{2},t)}V|^{2}.$$

Sia ora $q \in \mathbb{Z} \setminus \{0\}$, indichiamo allora con $q[S^1] \in q[B^2]$ le correnti integrazione su $S^1 \in B^2$ rispettivamente, con molteplicità |q| e orientazione indotta dal segno di q. Inoltre, riadattando la dimostrazione della proposizione 13 otteniamo la seguente

Proposizione 15 Per ongi $q \in \mathbb{Z} \setminus \{0\}, P \in S^1 \ e \ \varepsilon > 0$, esiste una successione di funzioni lipshitziane $f_{\varepsilon}^P : B^+ \to B^2$ tali che $f_{\varepsilon|\partial^+B}^p \equiv P, f_{\varepsilon}^P(J) \subset S^1, f_{\varepsilon\#}^P[B^+] = q[B^2], f_{\varepsilon\#}^p[J] = q[S^1], e$

$$D(f_{\varepsilon}^{P}, B^{+}) \leq |q|\pi + \varepsilon.$$

Inoltre possiamo definire le f_{ε}^{P} in modo tale che per ogni $\sigma > 0$ esiste $\eta > 0$ tale che per ogni $P_{1}, P_{2} \in S^{1}$ tali che $|P_{1} - P_{2}| < \eta$ allora $||f_{\varepsilon}^{P_{1}} - f_{\varepsilon}^{P_{2}}||_{\infty} < \sigma$. Dimostrazione: Per provare questa proposizione è sufficiente considerare la mappa in variabili complesse su B^2 data da

$$z = \rho \, e^{i\theta} \mapsto \rho^{|q|} e^{iq\theta}, \quad q \in \mathbb{Z} \setminus \{0\}$$

e modificandola leggermnete possiamo definire una funzione lipschitziana g_{ε}^{P} tale che $g_{\varepsilon\#}^{P}[B^{2}] = q[B^{2}], A(g_{\varepsilon}^{P}, B^{2}) \leq |q|\pi + \varepsilon$ e tale che mandi $\partial^{+}B$ sul punto dato $P \in S^{1}$. Procedendo quindi come fatto nella dimostrazione della proposizione 13 proviamo la prima parte. Per quanto riguarda la seconda parte essa deriva dal fatto che g_{ε}^{P} possiamo definirle facendo sì che dipendano in modo continuo rispetto al punto P.

Proposizione 16 Sia $U : \widetilde{\mathcal{C}}^3 \to B^2$ una funzione in $W^{1,2}$, che sia regolare all' interno di $\Omega_{\delta_0}^{m_0}$, per qualche $m_0, \delta_0 > 0$, e tale che $u := T(U) \in W_{\varphi}^{1/2}(\widetilde{B}^2, S^1)$, e sia $q \in \mathbb{Z} \setminus \{0\}$. Allora per ogni $\varepsilon > 0$, $0 < \delta < \delta_0$ e $0 < m < m_0$ esiste una mappa $U_{\varepsilon} : \widetilde{\mathcal{C}}^3 \to B^2$ con traccia $T(U_{\varepsilon}) \in W_{\varphi}^{1/2}(B^2, S^1)$ e che sia regolare sulla chiusura di Ω_{δ}^m , eccetto che sui punti (l, 0, 0) e $0_{\mathbb{R}^3}$ (*i* punti di bordo del dipolo); inoltre $G_{U_{\varepsilon}} \to G_U + \llbracket (0, l) \rrbracket \times q\llbracket B^2 \rrbracket$ in $\mathcal{D}_3(\widetilde{\mathcal{C}}^3 \times \mathbb{R}^2)$ per $\varepsilon \to 0$ e

$$D(U_{\varepsilon}, \widetilde{\mathcal{C}}^3) \le D(U, \widetilde{\mathcal{C}}^3) + l \cdot |q|\pi + \varepsilon$$

Dimostrazione: Poiché U è regolare nell'interno di $\Omega_{\delta_0}^{m_0}$, senza perdità di generalità possiamo supporre che l'oscillazione di U sia minore di ε su $\Omega_{\delta_0}^{m_0}$. Prendendo delle palle di raggio r attorno ai punti $a_+ := (l, 0, 0)$ e $a_- := 0_{\mathbb{R}^3}$, possiamo sostituire in tali palle U con le mappe radiali

$$U_r(z) := U\left(a_{\pm} + r\frac{z - a_{\pm}}{|z - a_{\pm}|}\right)$$
(4.2)

in modo che

$$D(U, B_r^3(a_{\pm}) \cap \mathcal{C}^3) = \frac{r}{2} \int_{\partial B_r^3(a_{\pm}) \cap \mathcal{C}^3} |D_{\tau}U|^2 d\mathcal{H}^2 = O(r)$$

dove τ è un sistema ortonormale di $\partial B_r^3(a_{\pm}) \in O(r_j) \to 0$ per $r_j \searrow 0$.

Introducendo ora le coordinate cilindriche

$$z = (x_1, x_2, t) = F(\rho, \theta, x_1) := (x_1, \rho \cos \theta, \rho \sin \theta), \ \rho > 0, \ \theta \in [0, \pi]$$

così che $\rho = \sqrt{x_2^2 + t^2}$; indicheremo in seguito

$$\hat{V}(\rho, \theta, x_1) := V(F(\rho, \theta, x_1)).$$

Essendo U regolare, possiamo scegliere m in modo che

$$\int_{K_{a_{\pm}}^{m}} |DU|^2 d\mathcal{H}^2 < \infty \tag{4.3}$$

dove $K_{a_{\pm}}^{m}$ è il cono di vertice a_{\pm} ed angolo arctan m

$$K_{a_{\pm}}^{m} := \left\{ z = F(\rho, \theta, y) \in \mathcal{C}^{3} : 0 < \rho = m | y - a_{\pm} | \right\}.$$

Definiamo quindi $W_{\varepsilon}:(0,l)\times B^{+}\rightarrow \mathbb{R}^{2}$ tramite

$$W_{\varepsilon}(x_1, x_2, t) := f_{\varepsilon}^{P(x_1)}(x_2, t),$$

dove $f_{\varepsilon}^{P(x_1)}$ è data dalla proposizione precedente in corrispondenza del punto $P(x_1) := U(x_1, 0, 0)$. Ponendo allora

$$\Phi_{\varepsilon}(z) := W_{\varepsilon} \circ (\phi_{\delta}^m)^{-1}(z), \quad z \in \Omega_{\delta}^m,$$

dal lemma 1 abbiamo la seguente stima

$$D(\Phi_{\varepsilon}, \Omega_{\delta}^{m}) \leq \int_{(0,l)} D(f_{\varepsilon}^{P(x_{1})}, B^{+}) d\mathcal{H}^{1}(x_{1}) + \varepsilon \leq l \cdot (|q|\pi + \varepsilon) + \varepsilon$$

a patto di prendere δ sufficientemente piccolo. Definiamo quindi $V_\varepsilon:\Omega^m_\delta\to\mathbb{R}^2$ nel seguente modo

$$\hat{V}_{\varepsilon}(\rho,\theta,x_1) := \begin{cases} \hat{\Phi}_{\varepsilon}(2\rho,\theta,x_1) & \text{se} \quad 0 \le \rho < \varphi_{\delta}^m(x_1)/2\\ \hat{\Psi}_{\delta}^m(\rho,\theta,x_1) & \text{se} \quad \varphi_{\delta}^m(x_1)/2 \le \rho \le \varphi_{\delta}^m(x_1), \end{cases}$$

dove $\theta \in [0, \pi], x_1 \in (0, l)$ e

$$\hat{\Psi}^m_{\delta}(\rho,\theta,x_1) := \left(\frac{2\rho}{\varphi^m_{\delta}(x_1)} - 1\right) \cdot \hat{U}(\varphi^m_{\delta}(x_1),\theta,x_1) + \left(2 - \frac{2\rho}{\varphi^m_{\delta}(x_1)}\right) \cdot \hat{U}(0,\theta,x_1),$$

in modo che $\hat{\Psi}^m_{\delta}(\varphi^m_{\delta}(x_1), \theta, x_1) = \hat{U}(\varphi^m_{\delta}(x_1), \theta, x_1)$ e, poiché $\hat{U}(0, \theta, x_1) = U(x_1, 0, 0) = P(x_1), \ \hat{\Psi}^m_{\delta}(\varphi^m_{\delta}(x_1)/2, \theta, x_1) = \hat{\Phi}_{\varepsilon}(\varphi^m_{\delta}(x_1), \theta, x_1).$ Abbiamo perciò

$$D(V_{\varepsilon}, \{0 \le \rho < \varphi_{\delta}^{m,i}/2, \theta \in [0,\pi], x_1 \in (0,l)\}) = D(\Phi_{\varepsilon}, \Omega_{\delta}^m).$$

Se $\delta/m < x_1 < l - \delta/m$, allora $\varphi_{\delta}^m(x_1) \equiv \delta$ e poiché abbiamo supposto che l'oscillazione di U fosse minore di ε , abbiamo la seguente stima

$$D(V_{\varepsilon}, \{\rho \in (\varphi_{\delta}^{m}(x_{1})/2, \varphi_{\delta}^{m}(x_{1})), x_{1} \in (\delta/m, l - \delta/m), \theta \in [0, \pi]\}) \leq \leq 4l\varepsilon^{2} + c\delta \int_{(0, l) \times \partial B_{\delta}^{2}} |DU|^{2} d\mathcal{H}^{2}.$$

Se $l-\delta/m < x_1 < l,$ allora $\varphi^m_\delta(x_1) = m(l-x_1),$ ed essendo $m \in (0,1)$ abbiamo

$$D(V_{\varepsilon}, \{\rho \in (\varphi_{\delta}^{m}(x_{1})/2, \varphi_{\delta}^{m}(x_{1})), x_{1} \in (l - \delta/m, l), \theta \in [0, \pi]\}) \leq \leq c \left(\frac{\delta}{m} \varepsilon^{2} + m \int_{K_{a_{\pm}}^{m} \cap B_{r_{\delta,m}}^{3}(a_{\pm})} |DU|^{2} d\mathcal{H}^{2}\right),$$

dove $r_{\delta,m} := \delta \sqrt{1 + m^2}/m$; inoltre una stima analoga si ha per $0 < x_1 < \delta/m$. Otteniamo quindi

$$D(V_{\varepsilon}, \{\varphi_{\delta}^{m}(x_{1})/2 \leq \rho < \varphi_{\delta}^{m}(x_{1}), \theta \in [0, \pi], x_{1} \in (0, l)\}) \leq c(\frac{\delta}{m}\varepsilon^{2} + l\varepsilon^{2} + \delta \int_{(0, l) \times \partial B_{\delta}^{+}} |DU|^{2}d\mathcal{H}^{2} + m \int_{K_{a_{\pm}}^{m} \cap B_{r_{\delta,m}}^{3}(a_{\pm})} |DU|^{2}d\mathcal{H}^{2}).$$

Ora, detto $\Phi(\rho) := \int_{(0,l)\times\partial B_{\rho}^{+}} |DU|^2 d\mathcal{H}^2$, da $\int_0^1 \Phi(\rho) d\rho < \infty$ ricaviamo lim $\inf_{\rho \to 0^+} \rho \Phi(\rho) = 0$; scegliendo prima *m* sufficientemente piccolo, ed in seguito $\delta = \delta(V_{\varepsilon}, \varepsilon, m)$, da (4.3) otteniamo

$$c(\frac{\delta}{m}\varepsilon^2 + l\varepsilon^2 + \delta \int_{(0,l)\times\partial B_{\delta}^+} |DU|^2 d\mathcal{H}^2 + m \int_{K^m_{a_{\pm}}\cap B^3_{r_{\delta,m}}(a_{\pm})} |DU|^2 d\mathcal{H}^2) \ll \varepsilon,$$

e quindi

$$D(V_{\varepsilon}, \Omega^m_{\delta}) \le l \cdot (|q|\pi + \varepsilon) + 2\varepsilon.$$

Infine ponendo $U_{\varepsilon} \equiv U$ su $\widetilde{\mathcal{C}}^3 \setminus \Omega^m_{\delta}$, e $U_{\varepsilon} := \Pi_{\varepsilon} \circ V_{\varepsilon}$ su Ω^m_{δ} , otteniamo la tesi.

4.2 Densità in B^2

Per provare il risultato di densità dobbiamo prima vedere come rimuovere i punti di singolarità omologicamente banali.

Proposizione 17 (Rimozione punti singolarità) Sia $\varphi \in C^{\infty}(B^2, S^1)$ e $u \in R^{\infty}_{\varphi}(B^2, S^1)$ in cart^{1/2}(B^2, S^1); allora esiste una successione di funzioni $u_k \subset C^{\infty}(B^2, S^1)$ che converge forte in $W^{1/2}$ a u.

Dimostrazione: Poiché si tratta di un argomento locale, potremo assumere che u abbia un solo punto di singolarità nell'origine, ossia $u \in C^{\infty}(B^2 \setminus \{0\}, S^1)$. Per 0 < r < 1 poniamo

$$Q_r := B_r^3 \cap \mathcal{C}^3, \quad \partial^+ Q_r := \partial B_r^3 \cap \{ z = (x, t) \in \mathcal{C}^3 | t > 0 \}, \quad F_r := Q_r \cap (B^2 \times \{ 0 \}),$$

e si
a $U\in W^{1,2}(\mathcal{C}^3,\mathbb{R}^2)$ l' estensione di u. Per ogn
i $\varepsilon>0$ fissato, sia $0< R=R(\varepsilon)\ll 1$ tale che

$$D(U,Q_R) \le \varepsilon.$$

Essendo

$$D(U, Q_R \setminus Q_{R/2}) = \frac{1}{2} \int_{R/2}^R dr \int_{\partial^+ Q_r} |DU|^2 d\mathcal{H}^2,$$

esiste $r = r_{\varepsilon} \in [R/2, R]$ tale che

$$D(U,\partial^+Q_r) := \frac{1}{2} \int_{\partial^+Q_r} |DU|^2 \, d\mathcal{H}^2 \le \frac{4}{R} D(U,Q_R \setminus Q_{R/2}) \le \frac{4\varepsilon}{R}.$$
(4.4)

Al fine di rimuovere la singolarità di u, è sufficiente vedere che

$$\{w \in W^{1/2}(B_r^2, \mathbb{R}^2) \cap C^0(\overline{B}_r^2, S^1) \mid w_{|\partial B_r^2} = u_{|\partial B_r^2}\} \neq \emptyset,$$

ovvero $u_{|\partial B_r^2}$ è omotopa a una funzione costante in S^1 ; quindi basterà verificare che per ogni 1-forma chiusa ω in S^1 abbiamo $d u_{|\partial B_r^2}^{\#} \omega = 0$. Ciò segue dal fatto che $u \in cart^{1/2}(B^2, S^1)$, infatti

$$\int_{\partial B_r^2} u_{|\partial B_r^2}{}^{\#}\omega = G_{u_{|\partial B_r^2}}(\widehat{\pi}^{\#}\omega) = \partial G_{u_{|B_r^2}}(\widehat{\pi}^{\#}\omega) = G_{u_{|B_r^2}}(\widehat{\pi}^{\#}d\omega) = 0.$$

Come conseguenza abbiamo che esiste un' estensione regolare $u_r: B_r^2 \to S^1$ di $u_{|\partial B_r^2}$ con $W^{1/2}$ -energia finita.

Sia ora $V_r: Q_r \to \mathbb{R}^2$ una soluzione del problema di Dirichlet su Q_r con le seguenti condizioni al bordo

$$\begin{cases} V_r = U & \text{su } \partial^+ Q_r \\ V_r = u_r & \text{su } F_r. \end{cases}$$

Sia inoltre $0 < \delta < r,$ definiamo quindi $U_r: \mathcal{C}^3 \to \mathbb{R}^2$ come segue

$$U_r(z) := \begin{cases} V_r\left(\frac{r}{\delta}z\right) & \text{se } |z| \le \delta \\ U\left(r\frac{z}{|z|}\right) & \text{se } \delta \le |z| \le r \\ U(z) & \text{se } |z| \ge r \end{cases}$$

cosicché $U_r \in W^{1,2}(\mathcal{C}^3, \mathbb{R}^2)$ è continua e la traccia $T(U_r) \in W^{1/2}(B^2, S^1)$. Abbiamo perciò la seguente stima

$$D(U_r, \mathcal{C}^3) \le D(U, \mathcal{C}^3) + c r D(U, \partial^+ Q_r) + \frac{\delta}{r} D(V_r, Q_r)$$

dove c > 0 è una costante assoluta; quindi da (4.4), ed essendo r < R,

$$D(U_r, \mathcal{C}^3) \le D(U, \mathcal{C}^3) + 4 c \varepsilon + \frac{\delta}{r} D(V_r, Q_r) \le D(U, \mathcal{C}^3) + (4c+1)\varepsilon,$$

prendendo $\delta = \delta(\varepsilon)$ sufficientemente piccolo. Considerando ora il limite $\varepsilon \to 0$ deduciamo che $U_{r_{\varepsilon}} \to U$ in $W^{1,2}(\mathcal{C}^3, \mathbb{R}^2)$ e quindi $T(U_{r_{\varepsilon}}) \to u$ in $W^{1/2}(B^2, S^1)$, con $T(U_{r_{\varepsilon}}) \in W^{1/2}(B^2, S^1)$ continue. Con un metodo standard, possiamo ora approssimare $T(U_{r_{\varepsilon}})$ con funzioni regolari ed ottenere così la tesi.

Proposizione 18 Sia $n \ge 2$ e $T \in cart^{1/2}(B^n \times S^1)$, rispettivamente $T \in cart_{\varphi}^{1/2}(\widetilde{B}^n \times S^1)$; Allora esiste una successione $\{u_k\}$ in $R_{1/2}^{\infty}(B^n, S^1)$, rispettivamente in $R_{1/2,\varphi}^{\infty}(\widetilde{B}^n, S^1)$, che converge a u_T in $W^{1/2}$, tale che, se L_{u_k,u_T} è data da (1.8), allora

$$T_k := G_{u_k} + ((-1)^n L_{u_k, u_T} + \mathbb{L}(T)) \times [S^1]$$

appartiane a cart^{1/2}($B^n \times S^1$), rispettivamente a cart^{1/2}_{φ}($\widetilde{B}^n \times S^1$), le masse $M(\partial((-1)^n L_{u_k,u_T} + \mathbb{L}(T)))$ sono finite per ogni k, $T_k \to T$ e $\varepsilon_{1/2}(T_k) \to \varepsilon_{1/2}(T)$.

Dimostrazione: Possiamo supporre innanzitutto $T \in cart_{\varphi}^{1/2}$. Dalla decomposizione di $T := G_{u_T} + \mathbb{L} \times [S^1]$ e da $\partial T = 0$ su $\mathcal{D}^{n-1}(\widetilde{B}^n \times S^1)$ abbiamo

$$\partial \mathbb{L}(T) = (-1)^{n-1} \mathbb{P}(u_T).$$

Quindi dalla proposizione 5 otteniamo

$$\partial((-1)^n L_{u_k, u_T} + \mathbb{L}(T)) = (-1)^{n-1} \mathbb{P}(u_k),$$

che è una (n-2)-corrente intera rettificabile, somma di masse di Dirac nel caso 2-dimensionale; inoltre

$$\partial G_{u_k} = (-1)^n \mathbb{P}(u_k) \times \llbracket S^1 \rrbracket \text{ su } \mathcal{D}^{n-1}(\widetilde{B}^n \times S^1),$$

da cui $T_k \in cart^{2,1}_{\varphi}(\widetilde{B}^n \times S^1)$, e $T_k \rightharpoonup T$. Quindi scrivendo

$$T_k = G_{u_k} + \mathbb{L}(T_k) \times [S^1], \quad \mathbb{L}(T_k) = (-1)^n L_{u_k, u_T} + \mathbb{L}(T)$$

abbiamo $M(\mathbb{L}(T_k) - \mathbb{L}(T)) = M(L_{u_k, u_T}) \to 0$, e perciò $\varepsilon_{1/2}(T_k) \to \varepsilon_{1/2}(T)$

Possiamo ora dimostrare il seguente risultato di densità

Teorema 9 Sia $\varphi : \widetilde{B}^2 \to S^1$ una funzione regolare in $W^{1/2}$; per ogni $T \in cart^{1/2}(B^2 \times S^1)$, rispettivamente $T \in cart^{1/2}_{\varphi}(\widetilde{B}^2 \times S^1)$, esiste una successione $\{u_k\}$ di mappe in $C^{\infty}(B^2, S^1)$, rispettivamente in $C^{\infty}_{\varphi}(\widetilde{B}^2, S^1)$, tale che $G_{u_k} \to T$ debolmente in cart^{1/2} e

$$\lim_{k \to +\infty} \varepsilon_{1/2}(u_k) = \varepsilon_{1/2}(T)$$

Dimostrazione: Possiamo supporte $T \in cart_{\varphi}^{1/2}(B^2 \times S^1)$, allora T si decompone come

$$T = G_{u_T} + \mathbb{L}(T) \times \llbracket S^1 \rrbracket$$

con $u_T \in W^{1/2}_{\varphi}(\widetilde{B}^2, S^1) \in \mathbb{L}(T) \in \mathcal{R}_1(\widetilde{B}^2)$, con spt $\mathbb{L}(T) \subset \overline{B}^2$. Quindi dalla proposizione precedente possiamo supporre

$$T = G_{u_T} + \sum_{q \in \mathbb{Z}} \mathbb{L}_q \times q[S^1], \quad \widetilde{T} := Ext(T) = (-1)^{n-1} (G_{U_T} + \sum_{q \in \mathbb{Z}} \mathbb{L}_q \times q[S^1]),$$

dove $U_T := Ext(u_T)$, \mathbb{L}_q sono 1-correnti intere rettificabilidi molteplicità 1, con supporti disgiunti contenuti in \bar{B}^2 , massa del bordo finita, $\sum_q M(\partial \mathbb{L}_q) < \infty$.

Poiché i supporti delle correnti \mathbb{L}_q sono disgiunti, possiamo applicare il teorema di approssimazione di Federer, trovando così per ogni $q \in \mathbb{Z}$ una 1catena poliedrale P_q^{ε} il cui supporto è contenuto in un intorno di raggio $c\varepsilon$ del supporto di \mathbb{L}_q , e una funzione $U_{\varepsilon} \in C^{\infty}(\widetilde{\mathcal{C}}^3, B^2)$, con traccia $u_{\varepsilon} := T(U_{\varepsilon}) \in$ $R_{1/2,\omega}^{\infty}(\widetilde{B}^2, S^1)$, tale che detta

$$\widetilde{T}_{\varepsilon} := G_{U_{\varepsilon}} + \sum_{q \in \mathbb{Z}} P_q^{\varepsilon} \times q[B^2],$$

 $\widetilde{T}_{\varepsilon} \rightharpoonup \widetilde{T}$ debolmente in $\mathcal{D}_3(\widetilde{\mathcal{C}}^3 \times \mathbb{R}^2)$ e

$$D(U_{\varepsilon}, \widetilde{\mathcal{C}}^3) + \sum_{q \in \mathbb{Z}} q \pi M(P_q^{\varepsilon}) \to D(U_T, \widetilde{\mathcal{C}}^3) + \sum_{q \in \mathbb{Z}} q \pi M(\mathbb{L}_q),$$

da cui $D(\widetilde{T}_{\varepsilon}) \to D(\widetilde{T})$. Inoltre, poiché i supporti delle \mathbb{L}_q erano disgiunti possiamo prendere P_q^{ε} in modo che per $\varepsilon > 0$ piccolo abbiano anch'esse supporti disgiunti.

Per quanto visto possiamo quindi supporre

$$T := G_{u_T} + \sum_{q \in \mathbb{Z}} P_q \times q[S^1]$$

$$(4.5)$$

dove P_q sono 1-catene poliedrali con supporti disgiunti e spt $P_q \subset \overline{B}^2$, e $u_T \in R^{\infty}_{1/2,\varphi}(\widetilde{B}^2, S^1)$ è localmente lipschitziana su $\widetilde{B}^2 \setminus \bigcup_q \operatorname{spt} \partial P_q$. Inoltre, dividendo i segmenti delle catene P_q , si può supporte che ognuna sia un'unione finita di segmenti S_i che si intersecano solo nei punti di bordo.

Se S_i è uno dei segmenti di P_q , e $S_i := [(n_i, p_i)]$, con un cambiamento di variabili possiamo assumere $n_i = a_-$ e $p_i = a_+$, ed applicare la proposizione 16 prendendo m_0 e δ_0 piccoli in modo che gli intorni $\Omega_{\delta_0}^{m_0}$ corrispondenti a segmenti distinti siano disgiunti. In tal modo troviamo una successione U_{ε} tale che le tracce $u_{\varepsilon} := T(U_{\varepsilon}) \in R_{1/2,\varphi}^{\infty}(\widetilde{B}^2, S^1)$ e $G_{u_{\varepsilon}} \to T$ con $\varepsilon_{1/2}(G_{u_{\varepsilon}}) \to$ $\varepsilon_{1/2}(T)$; però in tal modo le u_{ε} sono regolari ovunque eccetto che su un insieme formato dai punti di bordo dei vari segmenti S_i che sono singolarità omologicamente banali che possiamo rimuovere grazie alla proposizione 17

Capitolo 5

Caso generale

Vogliamo ora considerare il caso generale e vedere che il risultato di densità visto nei casi 1 e 2-dimensionali è valido anche in dimensione maggiore. Per fare ciò, come fatto nel caso 2-dimensionale, dobbiamo prima provvedere all'approssimazione dei dipoli, che nel caso generale saranno delle concentrazioni (n-1)-dimensionali.

5.1 Costruzione del dipolo

Sia $\widetilde{\mathcal{C}}^{n+1} := \widetilde{B}^n \times I$, I = [0,1] ed (e_1, \ldots, e_n) la base canonica di \mathbb{R}^n ; chiameremo quindi con Δ il (n-1)-simplesso in B^n dato dall'inviluppo convesso

$$\Delta := coh(\{0_{\mathbb{R}^n}, le_1, le_2, \dots, le_{n-1}\}), \quad 0 < l < 1.$$

Indicheremo inoltre con

$$z = (x,t) = (\widetilde{x}, x_n, t), \quad \widetilde{x} = (x_1, \dots, x_{n-1}),$$

un generico punto $z \in \widetilde{\mathcal{C}}^{n+1}$. In
oltre, per $\delta > 0$ e $0 < m \ll 1$, poniamo

$$\varphi_{\delta}^m(y) := \min\{my, \delta\}, \ y \ge 0,$$

e indichiamo con

$$y(\widetilde{x}) := dist(\widetilde{x}, \partial \Delta)$$

la distanza di \widetilde{x} dal bordo di $\Delta,$ e sia

$$\phi_{\delta}^{m}(z) := (\widetilde{x}, \varphi_{\delta}^{m}(y(\widetilde{x}))x_{n}, \varphi_{\delta}^{m}(y(\widetilde{x}))t)$$

 $\operatorname{cosicch\acute{e}}$ se

$$\Omega^m_{\delta} := \phi^m_{\delta}(\Delta \times B^+), \quad B^+ := \{ (x_n, t) \in B^2 | t > 0 \},\$$

allora Ω^m_{δ} è un intorno in $\widetilde{\mathcal{C}}^{n+1}$ del simplesso Δ .

Lemma 2 Sia $V : \Delta \times B^+ \to \mathbb{R}^2$ una funzione in $W^{1,2}$, e sia

$$V_{\delta}^{m}(z) := V \circ (\phi_{\delta}^{m})^{-1}(z), \quad z \in \Omega_{\delta}^{m}.$$

Allora esiste una costante assoluta c > 0 tale che

$$\int_{\Omega_{\delta}^{m}} |DV_{\delta}^{m}|^{2} dz \leq \int_{\Delta \times B^{+}} |D_{(x_{n},t)}V|^{2} dz + c\delta^{2} \int_{\Delta \times B^{+}} |D_{\widetilde{x}}V|^{2} dz + cm^{2} \int_{\{\widetilde{x} \in \Delta | y(\widetilde{x}) \le \delta/m\} \times B^{+}} |D_{(x_{n},t)}V|^{2}.$$
(5.1)

Dimostrazione: Dalla definizione di V_{δ}^{m} abbiamo

$$\int_{\Omega_{\delta}^{m}} |DV_{\delta}^{m}|^{2} dz = \int_{\Delta \times B^{+}} |DV(z)D(\phi_{\delta}^{m})^{-1}(\phi_{\delta}^{m}(z))|^{2} |\det D\phi_{\delta}^{m}(z)| dz.$$

Essendo $|\det D\phi^m_\delta(z)|=(\varphi^m_\delta)^2$ e dal calcolo di $DV(z)D(\phi^m_\delta)^{-1}(\phi^m_\delta(z)),$ otteniamo

$$\int_{\Omega_{\delta}^{m}} |DV_{\delta}^{m}|^{2} dz \leq \int_{\Delta \times B^{+}} |D_{(x_{n},t)}V|^{2} dx + c \int_{\Delta \times B^{+}} |D_{\widetilde{x}}V|^{2} |\varphi_{\delta}^{m}|^{2} dx$$

$$+ c \int_{\Delta \times B^{+}} |z|^{2} |D_{(x_{n},t)}V| |(\varphi_{\delta}^{m})'|^{2} dz$$

$$\leq \int_{\Delta \times B^{+}} |D_{(x_{n},t)}V|^{2} dx + c\delta^{2} \int_{\Delta \times B^{+}} |D_{\widetilde{x}}V|^{2}$$

$$+ cm^{2} \int_{\{\widetilde{x} \in \Delta | y(\widetilde{x}) \leq \delta/m\} \times B^{+}} |D_{(x_{n},t)}V|^{2}.$$

Quindi, vogliamo trovare innnanzi tutto una successione di funzioni che approssimi il dipolo Δ , e per fare ciò è sufficiente provare la seguente generalizzazione del risultato visto nel caso 2-dimensionale.

Proposizione 19 Sia $U : \widetilde{\mathcal{C}}^{n+1} \to \mathbb{R}^2$ una funzione in $W^{1,2}$ regolare all'interno di $\Omega_{\delta_0}^{m_0}$, per qualche m_0 , $\delta_0 > 0$, e tale che la sua traccia $u := T(U) \in W_{\varphi}^{1/2}(\widetilde{B}^n, S^1)$. Allora dato $q \in \mathbb{Z} \setminus \{0\}$, per ogni $\varepsilon > 0$, $0 < \delta < \delta_0$ e $0 < m < m_0$ esiste una funzione $U_{\varepsilon} : \widetilde{\mathcal{C}}^{n+1} \to \mathbb{R}^2$ con traccia $T(U_{\varepsilon}) \in W_{\varphi}^{1/2}(B^n, S^1)$ tale che U_{ε} è regolare su tutto $\overline{\Omega}_{\delta}^m$, tranne che sul bordo di Δ . Inoltre $G_{U_{\varepsilon}} \to G_U + \llbracket \Delta \rrbracket \times q \llbracket B^2 \rrbracket$ debolmente in $\mathcal{D}_{n+1}(\widetilde{\mathcal{C}}^{n+1} \times \mathbb{R}^2)$ per $\varepsilon \to 0$ e

$$D(U_{\varepsilon}, \widetilde{\mathcal{C}}^{n+1}) \le D(U, \widetilde{\mathcal{C}}^{n+1}) + \mathcal{H}^{n-1}(\Delta) \cdot |q|\pi + \varepsilon$$
(5.2)

Dimostrazione: Introduciamo le coordinate cilindriche

$$z = (\widetilde{x}, x_n, t) = F(\rho, \theta, \widetilde{x}) := (\widetilde{x}, \rho \cos \theta, \rho \sin \theta), \quad \rho > 0, \ \theta \in [0, \pi],$$

in modo che $\rho = \sqrt{x_n^2 + t^2}$; ed indicheremo $\widehat{W}(\rho, \theta, \widetilde{x}) := W(F(\rho, \theta, \widetilde{x}))$ una funzione in coordinate cilindriche.

Si
a $\psi:B^2\to B^2$ un omeorfismo bilipschitziano che mappi il simpless
o Δ sul (n-1)-disco~Ddi diametro
 l

$$D := \{ x = (\tilde{x}, x_n) \in B^n : |x| \le l/2, \ x_n = 0 \},\$$

con costante di Lipschitz $Lip \ \psi$, $Lip \ \psi^{-1} \leq K$, dove K = K(n) dipende dalla distanza di Δ da ∂B^n . Inoltre, sia $V : \widetilde{\mathcal{C}}^{n+1} \to \mathbb{R}^2$ data da

$$V(z) := U \circ \Psi^{-1}(z), \quad \Psi(z) = \Psi(x,t) = (\psi(x),t).$$

Infine detti

$$W_{\rho} := \{ z \in \widetilde{\mathcal{C}}^{n+1} | dist(z, \partial D) < \rho \}$$

$$\partial^{+} W_{\rho} := \{ z \in \widetilde{\mathcal{C}}^{n+1} | dist(z, \partial D) = \rho \},$$

fissiam
o0 < R < l/2e sia $p: W_R \to \partial D$ la proiezione, in modo che per ogn
i $z \in W_R$

$$p(z) \in \partial D$$
 e $|z - p(z)| = dist(z, \partial D).$

Applicando la formula di coarea, otteniamo

$$\int_{W_R} |DV|^2 dz = \int_0^R d\rho \int_{\partial^+ W_\rho} |DV|^2 d\mathcal{H}^n < +\infty$$

e quindi

$$\liminf_{\rho \to 0} \rho \int_{\partial^+ W_{\rho}} |DV|^2 d\mathcal{H}^n = 0.$$

Possiamo perciò scegliere r>0abbastanza piccolo e sostituire su $W_r \; V$ con la mappa

$$V_r(z) := V\left(p(z) + r \frac{z - p(z)}{|z - p(z)|}\right),$$
(5.3)

così che

$$D(V_r, W_r) \le c(n) \cdot r \int_{\partial^+ W_r} |DV|^2 d\mathcal{H}^n = O(r),$$

con $O(r_j) \to 0$ per una successione $r_j \to 0$. Poniamo

$$\widetilde{y}(\widetilde{x}) := dist(\widetilde{x}, \partial D),$$

$$\widetilde{\phi}_{\delta}^{m}(z) := (\widetilde{x}, \varphi_{\delta}^{m}(\widetilde{y}(\widetilde{x}))x_{n}, \varphi_{\delta}^{m}(\widetilde{y}(\widetilde{x}))t),$$
$$\widetilde{\Omega}_{\delta}^{m} := \widetilde{\phi}_{\delta}^{m}(D \times B^{+})$$

ed infine

$$\begin{split} K^m_{\delta} &:= \{ z \in \widetilde{\mathcal{C}}^{n+1} \quad | \quad 0 < dist(z, \partial D) < r_{\delta, m}, \\ & 0 < dist(\widetilde{x}, \partial D) < \delta/m, \sqrt{x_n^2 + t^2} < m \cdot dist(\widetilde{x}, \partial D) \} \end{split}$$

dove $r_{\delta,m} := \delta \sqrt{1 + m^2}/m$, in modo che se $r_{\delta,m} < r$ allora da (5.3) otteniamo che su $K_{\delta}^m V$ non dipende dalla distanza di z da ∂D .

Possiamo ora supporre che siano verificate le seguenti condizioni:

- (i) V mandi K^m_{δ} in un insieme di diametro ε ;
- (ii) V mandi $\widetilde{\Omega}^m_{\delta}$ in un insieme di diametro ε .

Se tali condizioni non sono soddisfatte, consideriamo una suddivisione baricentrica $\{\Delta_i\}_i$ del simplesso Δ in simplessi più piccoli di lato l/2; e senza perdita di generalità, a meno di muovere leggermente i centri delle facce dei simplessi, possiamo supporre che V abbia energia finita sul bordo dei simplessi Δ_i per ogni *i*. Applichiamo perciò la costruzione precedentemente fatta per Δ ad ogni Δ_i , dove ora K è un estremo superiore per gli omeomorfismi di B^n che mappano Δ_i su D_i , gli (n-1)-dischi di diametro l/2.

Se V non soddisfa le condizioni (i) e (ii) sugli insiemi $K_{\delta,i}^m$ e $\Omega_{\delta,i}^m$ corrispondenti a D_i , ripetiamo il procedimento precedente prendendo ora una suddivisione di Δ_i . Per ipotesi abbiamo che V regolare su Ω_{δ}^m , per m, δ sufficientemente piccoli, e possiamo inoltre supporte che V non dipenda dalla distanza di z da ∂D_i su $K_{\delta,i}^m$; allora abbiamo che le condizioni (i) e (ii) devono essere soddisfatte dopo un numero finito di suddivisioni del simplesso Δ in simplessi Δ_i , ed in seguito per semplicità ometteremo gli indici i relativi a tali simplessi Δ_i .

Sia ora $W_{\varepsilon}: D \times B^+ \to \mathbb{R}^2$ data da

$$W_{\varepsilon}(\widetilde{x}, x_n, t) := f_{\varepsilon}^{P(\widetilde{x})}(x_n, t)$$

dove $f_{\varepsilon}^{P(\widetilde{x})}$ è data dalla Proposizione 15 in corrispondenza del punto $P(\widetilde{x}) := U(\widetilde{x}, 0, 0)$. Ponendo

$$\Phi_{\varepsilon}(z) := W_{\varepsilon} \circ (\widetilde{\phi}_{\delta}^m)^{-1}(z), \quad z \in \widetilde{\Omega}_{\delta}^m,$$

dal Lemma 2 otteniamo quindi la seguente stima

$$D(\Phi_{\varepsilon}, \widetilde{\Omega}^{m}_{\delta}) \leq \mathcal{H}^{n-1}(\Delta) \cdot D(f_{\varepsilon}^{P(\widetilde{x})}, B^{+}) + \frac{\varepsilon}{2K^{2}\mu}$$

se prendiamo $\delta = \delta(W_{\varepsilon}, m, \varepsilon, K, \mu)$ sufficientemente piccolo; dove μ è il numero di simplessi Δ_i nella suddivisione di Δ . Definiamo $V_{\varepsilon} : \widetilde{\Omega}_{\delta}^m \to \mathbb{R}^2$ tramite

$$\widehat{V}_{\varepsilon}(\rho,\theta,\widetilde{x}) := \begin{cases} \widehat{\Phi}_{\varepsilon}(2\rho,\theta,\widetilde{y}) & \text{se} \quad 0 \le \rho < \varphi_{\delta}^{m}(\widetilde{y})/2\\ \widehat{\Psi}_{\delta}^{m}(\rho,\theta,\widetilde{y}) & \text{se} \quad \varphi_{\delta}^{m}(\widetilde{y})/2 \le \rho < \varphi_{\delta}^{m}(\widetilde{y}) \end{cases}$$

dove $\theta \in [0,\pi], \, \widetilde{x} \in int(\Delta), \, \widetilde{y} = \widetilde{y}(\widetilde{x}) := dist(\widetilde{x},\partial D)$ e

$$\widehat{\Psi}(\rho,\theta,\widetilde{y}) := \left(\frac{2\rho}{\varphi_{\delta}^{m}(\widetilde{y})} - 1\right) \cdot \widehat{V}(\varphi_{\delta}^{m}(\widetilde{y}),\theta,\widetilde{y}) + \left(2 - \frac{2\rho}{\varphi_{\delta}^{m}(\widetilde{y})}\right) \cdot P(\widetilde{x}).$$

Estendiamo inoltre $V_{\varepsilon} \equiv V$ fuori da $\widetilde{\Omega}_{\delta}^m$. Possiamo quindi stimare l'energia di V_{ε} ottenendo

$$D(V_{\varepsilon}, \{0 \le \rho \le \varphi_{\delta}^{m}/2, \widetilde{x} \in \Delta, \theta \in [0, \pi]\}) = D(\Phi_{\varepsilon}, \Omega_{\delta}^{m})$$
$$D(V_{\varepsilon}, \{\varphi_{\delta}^{m}/2 \le \rho \le \varphi_{\delta}^{m}, \theta \in [0, \theta], \widetilde{x} \in \Delta\}) \ll \varepsilon,$$

dove la seconda relazione è ottenuta dalle condizioni (i) e (ii) e dalla (5.3) con stime analoghe a quelle viste per il caso 2-dimensionale. Otteniamo perciò

$$D(V_{\varepsilon}, \widetilde{\Omega}_{\delta}^{m}) \leq \mathcal{H}^{n-1}(\Delta) \cdot (|q|\pi + 4\varepsilon^{2}) + \frac{\varepsilon}{2K^{2}\mu}.$$
(5.4)

Quindi ponendo $U_{\varepsilon} := V_{\varepsilon} \circ \Psi(z)$, e ripetendo il ragionamento appena fatto ad ognuno dei simplessi Δ_i , dalla stima (5.4) e dall'ipotesi sulle costanti di Lipschitz di Ψ abbiamo

$$D(U_{\varepsilon}, \widetilde{\mathcal{C}}^{n+1}) \le D(U, \widetilde{\mathcal{C}}^{n+1}) + \mathcal{H}^{n-1}(\Delta) \cdot (|q|\pi + 4K^2 \varepsilon^2) + \frac{\varepsilon}{2},$$

e quindi la tesi segue per ε piccolo.

Teorema 10 Sia $\varphi : \widetilde{B}^n \to S^1$ una funzione regolare in $W^{1/2}$; per ogni $T \in cart^{1/2}(B^n \times S^1)$, rispettivamente $T \in cart_{\varphi}^{1/2}(\widetilde{B}^n \times S^1)$, esiste una successione $\{u_k\}$ di mappe in $C^{\infty}(B^n, S^1)$, rispettivamente in $C_{\varphi}^{\infty}(\widetilde{B}^n, S^1)$, tale che $G_{u_k} \to T$ debolmente in cart^{1/2} e

$$\lim_{k \to +\infty} \varepsilon_{1/2}(u_k) = \varepsilon_{1/2}(T)$$

Dimostrazione: Possiamo supporre, per semplicità, $T \in cart_{\varphi}^{1/2}(\widetilde{B}^n, S^1)$ (il caso $T \in cart^{1/2}(B^n, S^1)$ è del tutto analogo), allora T può essere scomposta come segue

$$T = G_{u_T} + \mathbb{L}(T) \times \llbracket S^1 \rrbracket$$

con $u_T \in W^{1/2}_{\varphi}(\widetilde{B}^n, S^1) \in \mathbb{L}(T) \in \mathcal{R}_{n-1}(\widetilde{B}^n)$, con spt $\mathbb{L}(T) \subset \overline{B}^n$; applicando quindi la Proposizione 18, abbiamo

$$T = G_{u_T} + \sum_{q \in \mathbb{Z}} \mathbb{L}_q \times q \llbracket S^1 \rrbracket, \quad \widetilde{T} := Ext(T) = (-1)^{n-1} (G_{U_T} + \sum_{q \in \mathbb{Z}} \mathbb{L}_q \times q \llbracket B^2 \rrbracket),$$

dove $U_T := Ext(u_T)$, \mathbb{L}_q sono (n-1)-correnti intere rettificabili con molteplicità 1, con supporti disgiunti contenuti in \overline{B}^n e con massa del bordo finita, $\sum_q M(\partial \mathbb{L}_q) < \infty$. Usando allora il teorema di approsssimazione di Federer, per ogni $q \in \mathbb{Z}$ troviamo una (n-1)-catena poliedrale P_q^{ε} il cui supporto è contenuto in un intorno di raggio $c\varepsilon$ del supporto della corrente \mathbb{L}_q ed una funzione $U_{\varepsilon} \in C^{\infty}(\widetilde{C}^{n+1}, B^2)$ con traccia $u_{\varepsilon} := T(U_{\varepsilon}) \in R^{\infty}_{1/2,\varphi}(\widetilde{B}^n, S^1)$, tale che detta

$$\widetilde{T}_{\varepsilon} := G_{U_{\varepsilon}} + \sum_{q \in \mathbb{Z}} P_q^{\varepsilon} \times q[B^2],$$

allora $\widetilde{T}_{\varepsilon} \rightharpoonup \widetilde{T}$ debolmente in $\mathcal{D}_{n+1}(\widetilde{\mathcal{C}}^{n+1} \times \mathbb{R}^2)$ e

$$D(U_{\varepsilon}, \widetilde{\mathcal{C}}^{n+1}) + \sum_{q \in \mathbb{Z}} q \pi M(P_q^{\varepsilon}) \to D(U_T, \widetilde{\mathcal{C}}^{n+1}) + \sum_{q \in \mathbb{Z}} q \pi M(\mathbb{L}_q),$$

da cui $D(\widetilde{T}_{\varepsilon}) \to D(\widetilde{T})$. Inoltre, poiché i supporti delle \mathbb{L}_q erano disgiunti possiamo prendere P_q^{ε} in modo che per $\varepsilon > 0$ piccolo abbiano anch'esse supporti disgiunti.

Per tale motivo possiamo allora supporre

$$T := G_{u_T} + \sum_{q \in \mathbb{Z}} P_q \times q \llbracket S^1 \rrbracket,$$
(5.5)

dove P_q sono (n-1)-catene poliedrali di molteplicità 1 e con supporti disgiunti contenuti in \overline{B}^n e $u_T \in R^{\infty}_{1/2, \varphi}(\widetilde{B}^n, S^1)$ è localmente lipschitziana su $\widetilde{B}^n \setminus \bigcup_q \operatorname{spt} \partial P_q$. Inoltre si può supporte che ogni P_q sia unione di un numero finito di (n-1)-simplessi Δ che si intersecano solo sui punti di bordo.

Approssimeremo allora i dipoli $\Delta \times q[S^1]$ per mezzo della proposizione precedente. Infatti, prendendo $m_0 \in \delta_0$ sufficientemenete piccoli potremo assumere che intorni $\Omega_{\delta_0}^{m_0}$ relativi a simplessi Δ distinti siano a due a due disgiunti, e quindi approssimare separatamente ognuno di tali dipoli. Possiamo allora, tramite ad un procedimento diagonale, trovare una successione $\{U_{\varepsilon}\}$ tale che $u_{\varepsilon} := T(U_{\varepsilon}) \in R^{\infty}_{1/2,\varphi}(\widetilde{B}^n, S^1)$ e i grafici $G_{u_{\varepsilon}}$ convergono debolmente a T con $\varepsilon_{1/2}(G_{u_{\varepsilon}}) \to \varepsilon_{1/2}(T)$. Le funzioni u_{ε} date da tale successione non sono però regolari ovunque, infatti la proposizione precedente ci assicurava la regolarità tranne che sul bordo del dipolo Δ , e quindi le u_{ε} sono regolari tranne che sull'insieme Σ_{ε} dato dal (n-2)-scheletro dato dall'unione delle (n-1)-catene poliedrali P_q . Ci resta quindi da rimuovere tale insieme Σ e per fare ciò è sufficiente provare il seguente risultato

Proposizione 20 Nelle ipotesi precedenti, per $\varepsilon > 0$ sufficientemente piccolo esiste una successione di funzioni regolari $\{u_m^{(\varepsilon)}\} \subset C^{\infty}_{\varphi}(\widetilde{B}^n, S^1_{\varepsilon})$ che converge ad u_{ε} forte in $W^{1/2}$ per $m \to +\infty$

Dimostrazione: Sia U_{ε} l'estensione di u_{ε} a $\widetilde{B}^n \times (-1, 1)$ tale che $T(U_{\varepsilon}) = u_{\varepsilon}$. Dato $m \in \mathbb{N}$ e $a = (a_1, \ldots, a_{n+1}) \in [1/4m, 3/4m]^{n+1}$ indicheremo con \mathcal{L}_m la griglia

$$\mathcal{L}_m := \bigcup_{i=1}^{n+1} \bigcup_{j=0}^m P(a_i + j/m, i)$$

dove $P(\lambda, i)$ è l'iperpiano passante per λe_i ed ortogonale a e_i ed (e_1, \ldots, e_{n+1}) la base canonica di \mathbb{R}^{n+1} ; sia quindi $\mathcal{L}_m^{(n+1)}$ la famiglia degli (n + 1)-cubi generati dalla griglia \mathcal{L}_m che intersecano $B^n \times \{0\}$, e sia $\mathcal{L}_m^{(k+1)}$ la famiglia delle (k + 1)-facce Q degli (n + 1)-cubi appartenenti a $\mathcal{L}_m^{(n+1)}$. Inoltre sia $\mathcal{F}_m^{(k)}$ la famiglia delle k-facce F ottenute intersecando le facce di $\mathcal{L}_m^{(k+1)}$ con $\widetilde{B}^n \times \{0\}$

$$F = Q \cap (\widetilde{B}^n \times \{0\}); \tag{5.6}$$

infine sia

$$G_m := \tilde{B}^n \times (-10/m, 10/m)$$

Possiamo scegliere $a = a(m, U_{\varepsilon})$ in modo che le seguenti condizioni siano soddisfatte:

(i) per ogni k = 1, ..., n-1 la restrizione di U_{ε} ad ogni (k+1)-faccia $Q \in \mathcal{L}_m^{(k+1)}$ è una funzione in $W^{1,2}(Q, \mathbb{R}^2)$;

(ii) esiste una costante assoluta c > 0 tale che

$$D(U_{\varepsilon}, \cup \mathcal{L}_{m}^{(k+1)}) \le cm^{n-k} D(U_{\varepsilon}, G_{m}) \quad \forall \ k = 1, \dots, n-1$$
(5.7)

Inoltre, essendo Σ_{ε} il (n-2)-scheletro dato dalla triangolazione di P_q , con un argomento di slicing possiamo richiedere che per m sufficientemente grande valgano anche

- (iii) Σ_{ε} non interseca le 1-facce $\mathcal{F}_m^{(1)}$;
- (iv) data una 2-faccia $F \in \mathcal{F}_m^{(2)}$, allora essa interseca Σ_{ε} in al più un punto interno p_F , e tale punto non appartiene al (n-3)-scheletro della triangolazione di P_q ;
- (v) la restrizione $u_{\varepsilon|F}$ di u_{ε} ad ogni 2-faccia F è continua, tranne al più nel punto p_F , in tal caso, se $p_F \in \operatorname{spt} P_q$, abbiamo

$$\partial G_{u_{\varepsilon|F}} \sqcup F \times S^1 = \delta_{p_F} \times q[S^1].$$
(5.8)

Osserviamo che la seconda parte dell'ultima condizione segue dal fatto che u_{ε} ristretta a F si comporta in modo analogo al problema del dipolo nel caso 2-dimensionale; di conseguenza ragionando come fatto in tale caso abbiamo che

$$\{w \in W^{1/2}(F, \mathbb{R}^2) \cap C^0(F, S^1) | w_{|\partial F} = u_{\varepsilon|\partial F}\} \neq \emptyset$$
(5.9)

risulta verificata per ogni 2-faccia F.

Per rimuovere la singolarità di u_{ε} su Σ_{ε} ragioneremo per induzione. Come primo passo porremo $U_m^{(\varepsilon)} \equiv U_{\varepsilon}$ su $\cup \mathcal{L}_m^{(2)}$ e su ogni $Q \in \mathcal{L}_m^{(k+1)}$ che non interseca $\widetilde{B}^n \times \{0\}$. Per $k = 2, \ldots, n$, al k-esimo passo definiremo $U_m^{(\varepsilon)}$ su ogni $Q \in \mathcal{L}_m^{(k+1)}$ partendo dalla restrizione $U_{m|\partial Q}^{(\varepsilon)}$ di $U_m^{(\varepsilon)}$. Per fare ciò, se $F \in \mathcal{F}_m^{(k)}$ è data da (5.6), è sufficiente richiedere che la traccia $\varphi_F := T(U_{m|\partial Q}^{(\varepsilon)})$ di $U_{m|\partial Q}^{(\varepsilon)}$ sul bordo di F abbia un'estensione continua $\Phi_F \in W^{1/2}(F, S^1)$, ed osserviamo che al secondo passo tale condizione è data dalla (5.9), dobbiamo quindi estendere tale condizione al caso $k \geq 3$, e ciò ci sarà sufficiente. Infatti, trovata l'estensione continua Φ_F , possiamo definire la funzione $v_Q : Q \to \mathbb{R}^2$ definita da $v_Q(z) = v_Q^{\pm}(z)$ se $z \in Q^{\pm} := \{z = (x, t) \in Q \mid \pm t \geq 0\}$, dove v_Q^{\pm} è soluzione del problema di Dirichlet su Q^{\pm} con le seguenti condizioni al bordo

$$\left\{ \begin{array}{ll} v_Q^{\pm} = U_m^{(\varepsilon)} & \mathrm{su} & \partial Q^{\pm} \cap \{(x,t) | \pm t > 0\} \\ v_Q^{\pm} = \Phi_F & \mathrm{su} & F \end{array} \right.$$

Una volta definita v_Q , supponendo che il centro di Q sia, a meno di traslazioni, l'origine $0_{\mathbb{R}^{n+1}}$, definiamo $U_m^{(\varepsilon)}$ su Q ponendo, per $0 < \delta \ll 1/2m$,

$$U_m^{(\varepsilon)}(z) := \begin{cases} v_Q\left(\frac{z}{2m\delta}\right) & \text{se } \|z\| \le \delta\\ U_m^{(\varepsilon)}\left(\frac{z}{2m\|z\|}\right) & \text{se } \delta \le \|z\| \le \frac{1}{2m} \end{cases} z \in Q$$

dove $||z|| := \sup |z_i|$ se $z = (z_1, \ldots, z_{n+1})$. In tal modo otteniamo la seguente disuguaglianza

$$D(U_m^{(\varepsilon)}, Q) \le \frac{c}{m} D(U_{\varepsilon}, \partial Q)$$
 (5.10)

ed abbiamo che $U_m^{(\varepsilon)}$ è continua su Q e la sua traccia $T(U_m^{(\varepsilon)}) \in W^{1/2}(F, S^1)$. Ripetendo questo ragionamento per ogni $k = 2, \ldots, n$ dalla disuguaglianza precedente otteniamo

$$D(U_m^{(\varepsilon)}, \cup \mathcal{L}_m^{(n+1)}) \le C(n) \sum_{k=1}^{n-1} \frac{1}{m^{n-k}} D(U_{\varepsilon}, \mathcal{L}_m^{(k+1)})$$

e quindi dalla condizione (ii) si ha

$$D(U_m^{(\varepsilon)}, \cup \mathcal{L}_m^{(n+1)}) \le cD(U_{\varepsilon}, G_m),$$

e poiché $|G_m| \to 0$ per $m \to +\infty$ abbiamo $D(U_m^{(\varepsilon)}, \cup \mathcal{L}_m^{(n+1)}) \to 0$. Ponendo allora $U_m^{(\varepsilon)} \equiv U_{\varepsilon}$ su $\mathcal{C}^{n+1} \setminus \cup \mathcal{L}_m^{(n+1)}$, otteniamo $U_m^{(\varepsilon)} \to U_{\varepsilon}$ e quindi $u_m^{(\varepsilon)} :=$ $T(U_m^{(\varepsilon)}) \to u_{\varepsilon}$ in $W^{1/2}$. Inoltre, poiché le tracce $u_m^{(\varepsilon)} \in W^{1/2}$ sono continue, tramite un procedimento standard le possiamo approssimare con funzioni regolari e quindi la tesi.

Bibliografia

- [1] Adams. Sobolev spaces, Academic Press, New York 1975.
- [2] Bourgain, Brezis, Mironescu. On the structure of the Sobolev space H^{1/2} with values into the circle, C.R. Acad. Sci. Paris 331 (2000).
- [3] Bourgain, Brezis, Mironescu. Lifting in Sobolev spaces, J. Anal. Math 80 (2000).
- [4] Bourgain, Brezis, Mironescu. H^{1/2} maps with values into the circle: minimal connections, lifting, and the Ginzburg Landau equation, Publ. Math. Ist. HES 99 (2004).
- [5] Federer. *Real flat chains, cochains and variational problems*, Indiana Univ. Math. J. 24 (1974).
- [6] Giaquinta, Modica. On sequences of maps with equibounded energies, Calc. Variat. 12 (2001).
- [7] Giaquinta, Modica, Souček. On sequences of maps into S^1 with equibounded $W^{1/2}$ energies, Selecta Math. 10 (2004).
- [8] Giaquinta, Modica, Souček. Cartesian currents in the calculus of variations, I, II, Springer, Berlin 1998.
- [9] White. *Rectificability of flat chains*, Ann. Math. 150 (1999).
- [10] Bethuel, Zheng. Density of smooth functions between two manifolds in Sobolev spaces, Journal of functional analysis 80 (1988).
- [11] Bethuel. The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1992)
- [12] Bethuel. Approximation in the trace spaces defined between manifolds, Nonlinear Analysis 24 (1995)

- [13] Schoen, Uhlenbeck. Boundary regularity and the Dirichlet problem for harmonic maps, Journal of differential geometry 18 (1983)
- [14] Federer. Geometric measure theory, Grundleheren math. Wissen 153 Springer, Berlin (1969)
- [15] Demengel. Une caracterisation des applications de $W^{1,p}(B^n, S^1)$ qui peuvent etre approchees par des fonctions regulaeres, C.R. Acad. Sci. Paris 310 (1990)
- [16] Corbon. Application harmoniques a valours dans une cercle, C.R. Acad. Sci. Paris 314 (1992)