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Introduction

The idea underlying the theory of spacetime perturbations is the same that we
have in any perturbative formalism: we try to find approximate solutions of
some field equations (Einstein Equations), considering them as "small" devi-
ations from a known exact solution (the background: usually the Friedmann-
Robertson-Walker (FRW) metric).

The complications in General Relativity, as in any other spacetime theory, arise
from the fact that we have to perturbe not only the fields in a given geometry
-fields describing the matter content in literal sense or scalar fields as the infla-
ton for the Inflation or the quintessence for the Dark Energy-, but the geometry
itself, that is the metric.

The necessity for the development of such a formalism resides in the difficulty
of Einstein Equations resolution, and in the fact that relatively few physically
interesting exact solutions of the Einstein Equations are known. From the point
of view of Cosmology, the ultimate aim of perturbation theory is to provide an
appropriate tool for understanding the large-scale clustering of matter in galax-
ies and clusters of galaxies, its properties and its origin.

In this thesis we limit ourselves to the study of universes dominated by a perfect
pressureless fluid, called dust or simply matter, that we assume to be irrotational
as well. In the synchronous and comoving gauge, we present the calculation at
first and second order of the perturbative functions of the so-called gradient
expansion technique, and compare such a technique with the standard pertur-
bation approach: our approach is analytical and the analysis fully relativistic.
The standard theory is based on the perturbations of a homogenous and isotropic
FRW background metric considering the (small) fluctuations of that metric, de-
viations including a priori all the three perturbation modes: scalar, vector and
tensor modes. In other words, we assume FRW as a good zeroth order approx-
imation for describing our universe. Observations tell us that the universe is
far from being homogenous and isotropic at small scales. To take into account
of these inhomogeneities, the perturbative expansion is needed, and it is imple-
mented through space and time functions, whose form in terms of the so-called
peculiar gravitational potential is determined at different orders solving itera-
tively Einstein Equations (the linear or first order approach is the most common
but in the last decade some cosmologists have begun stopping at second order).
In the thesis the starting point is exactly the standard one: two physical vari-
ables are introduced, the "volume expansion" and the "shear", and the Einstein
Equations are written in the ADM formalism. The perturbation procedure, on
the other hand, is different. We start with a spatial metric containing the per-
turbative functions ¥ and yx;; of the standard theory, containing in turn all the
orders of this expansion: at the initial time we deal with a "seed" metric con-
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formally related to FRW by an exponential space-dependent factor. Then we
consider as perturbation parameter not the magnitude of the deviation from the
background, but the spatial gradients content, so that the zeroth order metric
(or the zeroth order of any other field) is the one not containing spatial deriva-
tives.

Counting the gradients content at different orders means considering the typ-
ical scale lengths on which the metric (and other fields) varies spatially being
larger, in different approximation, than the characteristic times on which the
same quantities vary in time: the result is a non-linear approximation method
which allows us to study how cosmological inhomogeneities grow from initial
perturbations, our "seed" (generated by inflationary fluctuations).

Therefore, in this thesis, after describing irrotational dust dynamics (Chapter
1), commenting our gauge choice (Chapter 2) and summarizing basic ideas of
cosmological perturbations theory (Chapter 3), we get ¥ and x;; up to the sec-
ond order (the order with four spatial gradients) solving respectively expansion
and shear evolution equations. We check energy and momentum constraints
(Chapter 4), we carry on comparing our result with the standard ones by a
suitable procedure, and finally we show the form that the magnetic part of the
Weyl Tensor assumes within this approach (Chapter 5).



Chapter 1

Describing our Universe

This thesis deals with departures from an ideal homogenous and isotropic FRW
(Friedmann-Robertson-Walker) cosmological model. Before going into the tech-
nicalities of the cosmological perturbations, we want in this chapter to outline
the state of the art of the present cosmology, pointing out the ideas and tech-
inques underlying the standard description of the universe in different contexts
and phases of its history.

In particular, from a qualitative point of view, we present the cosmological
model that is able to give the best fit to the complete set of high-quality data
available at present, that is the standard "ACDM Hot Big Bang" model; we
briefly show the problems left unsolved by this standard model and the rea-
sons which lead us to invoke alternative scenarios for the early universe, such
as Inflation. Finally, as matter today is clustered in galaxies and clusters of
galaxies, a complete description of the universe should include a description of
deviations from homogeneity: we then resort to Inflation as the simplest viable
mechanism for generating the observed perturbations, and briefly overview the
possible approaches used at present to study the evolution of such perturbations
and hence the observable large-scale mass distribution.

The treatment of this Chapter is not meant to be exhaustive and precise as it
could be [4], [3], [1],-..: some subjects and the overall formalism are gone on in

much more detail in following chapters.

1.1 The standard cosmological model

General Relativity, together with symmetry assumptions of the metric and as-
sumptions about the matter content of the universe, is one of the foundamental
tools for the study of cosmology: it indeed has produced in the last decades a
quite remarkably successfull picture of the history of our universe.

While General Relativity is in principle capable of describing the cosmology of
any given distribution of matter, it is extremely fortunate that our universe
appears to be homogenous and isotropic on the largest scales. Together, ho-
mogeneity and isotropy allow us to extend the Copernican Principle to the
Cosmological Principle, stating that all spatial positions in the universe are es-
sentially equivalent.

In the past the Cosmological Principle served as a useful tool in keeping the dis-
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cussion focused on some well-defined and useful problems (homogenous models,
their relative merits and possible tests). Nowadays, precise tests have emerged
and the results do agree with the idea of the Cosmological Principle at least
as a zeroth order guidelines. If on scales 2 tens of Mpc we see galaxies and
galaxies clusters in one-dimensional and bidimensional structures (filaments and
sheets) and vacuum regions without galaxies even up to 50-100 Mpc, three sets
of observations -galaxy counting, extragalactic radio sources, CMB tempera-
ture smoothness- give some evidence that matter distribution and motion are
quite accurately isotropic on scales 3> 102 Mpc and comparable to our Hubble
length, at least within our visible patch [9]. Fluctuations from homogeneity and
isotropy are thought to be of the order of %” ~ 1075 [10], thus they can be
neglected at a first approach to the subject.

FRW cosmological models

A purely kinematic consequence of requiring homogeneity and isotropy of our
spatial sections ! is the Friedman-Robertson-Walker (FRW) metric, which en-
ables us to describe the overall geometry and evolution of the universe in terms
of two cosmological parameters accounting for the spatial curvature and the
overall expansion or contraction of the universe:

dr? 2 112 2 .2 2
772+r df* + r* sin® 6 d¢?]. (1.1)

2 2 g2
dSFRw—a,(T)[ dr +1—[§;

7 is the conformal time related to the cosmic proper time ¢ by the relation
dt = a(t)dr. By rescaling the radial coordinate, we can choose the curvature
constant x to take only discrete values +1, -1 or 0 corresponding to closed,
open, or flat spatial geometries. These are local statements, which should be
expected from a local theory such as General Relativity: the global topology of
the spatial sections may be that of the covering spaces but it need not be.

A combination of high redshift supernova and Large Scale Structure (LSS) data
and measurements of the cosmic microwave background (CMB) anisotropies
strongly favors for a spatially flat model, then we will almost always assume
such a constraint.

We next turn to cosmological dynamics, in the form of differential equa-
tions governing the evolution of the scale factor a(t); these come from applying
Einstein Equations (E.E.):

1
Ruv — §ng =87GTy + Aguw (1.2)

where it is common to assume that the matter content of the universe is a perfect
fluid, for which

™ = (p + p)uru” + pg"”. (1.3)

The pressure p is necessarily isotropic, for consistency with the FRW metric; p
is the energy density in the rest frame of the fluid, and u” is the 4-velocity in

'Tn this Chapter we are supposing a (1+43)-dimensional spacetime and spatial sections have
to be intended as slices at constant time: see later Section 2.1.
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comoving coordinate (see later Section 2.2).

The cosmological constant A term can be interpreted as particle physics pro-
cesses yielding an effective stress-energy tensor for the vacuum of Ag,,, /87G, and
we have introduced it in E.E. because recent observations (luminosity-redshift
of SNJTA and the CMB anisotropies measurements) suggest an acceleration of
the universe expansion and thus the requirement of a non standard fluid, called
Dark Energy. With A we mean the simplest form of Dark Energy, that is an en-
ergy component indipedent of time, spatially homogenous and with an equation
of state:

A

PA= =pA = —om (1.4)

Thus, for brevity, from now on we will not explicit it in the equations but treat
it as any other (even if particular) energy component.

With this simplified description for matter, equations (1.2) can be rewritten
as follows

. 2
2_ (@) _ &G _k
= (a) 3 £ P2 (1.5)
a 47 G
PR (pi + 3pi), (1.5b)

K2

where H (t) is the Hubble parameter, overdots denote derivatives with respect to
time ¢t and the index ¢ labels all different possible types of energy components
in the universe. The first equation is often called Friedmann equation and
is a constraint equation, the second one is sometime referred to as acceleration
equation and is an evolution equation. A third useful equation -not independent
of these last two- is the continuity equation T+7,. With our assumptions it reads

p=—3H(p+p) (1.6)

which implies that the expansion of the universe (as specified by H) can lead
to local changes in the energy density. Let us note that there is no notion of
conservation of "total energy", as energy can be interchanged between matter
and the spacetime geometry.

The FRW equations can be solved quite easily supposing that one single energy
component dominates. Within a fluid approximation, defining an equation of
state parameter w which relates the pressure p to the energy density p by p = wp,
the ordinary energy contributions of our universe such as dust and radiation
are distinguished by, respectively, w = 0 and w = 1/3. On the contrary, a
cosmological constant is characterized by w = —1 (equation (1.4)).

Equation (1.6) is easily integrated to yield

poc a30FW), (1.7)
Then Friedmann equation (1.5a) with k = 0 and w # —1 is solved by
a(t) oc t2/BOFwI, (1.8)

General qualitative features of the future evolution of FRW universe can now be
seen. If K = 0 or -1, Friedmann equation (1.5a) shows that @& can never become
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zero (apart from ¢ = 0): thus, if the universe is presently expanding, it must
continue to expand forever. Indeed, for any energy content with p > 0, p must
decrease as a increases at least as rapidly as a~3, the value for dust. Thus,
pa? — 0 as a — oo. Hence for k = 0 the expansion velocity @ asymptotically
approaches zero as t — oo, while if K = —1 we have @ — 1 as ¢t — co. Otherwise,
if kK = +1, the universe cannot expand forever but there is a critical value a.
such that a < a.: at a finite time after ¢ = 0 the universe achieves a maximum
size a. and then begins to recontract.

The presence of a vacuum energy alters the fate of the universe and the above
simple conclusions: if A < 0, the universe will eventually recollapse independent
of the sign of k. For large values of A even a closed universe will expand forever.
Table 1.1 summarizes the behaviour of the most important sources of energy
density in cosmology in the case of a flat universe.

Type of Energy w | pla) | a(t) | H(t)
Dust 0 a=3 | 33 %
o 1 —4 1/2 1
Radiation 3 a t1/ 57
Cosmological Constant | -1 | const | ef? %

Table 1.1: The behaviour of the scale factor and Hubble constant applie to the case
of a flat universe; behaviours of energy density are perfectly general.

There are three foundamental features of FRW spacetimes which we are
going to discuss:

e expansion (or contraction) = gravitational redshift (or blueshift);
e existence of an initial singularity, the Big Bang;

e existence of particle horizons.

Expansion and Redshift The first striking result of FRW models is that
universe cannot be static but must be expanding or contracting. This conclusion
follows immediately from equation (1.5b) written in the simple form

i = —? (p+ 3p)a. (1.9)
(1.9) tells us that @ < 0if p+3p > 0 and & > 0 if p+ 3p < 0: in any case,
the universe must always either be expanding (@ > 0) or contracting (a < 0)
(with the possible exception of an instant of time when expansion changes over to
contraction, as in the case kK = +1). Let us comment the nature of this expansion
or contraction: the distance scale between all isotropic observers changes with
time, but there is no preferred center of expansion or contraction. Indeed, if the
distance (measured on the homogenous slice) between two isotropic observer at
time t is r, the rate of change of r is

dr r da
_ 7 _ 1.1
i " aa T (1.10)



1.1 The standard cosmological model 7

where H(¢) is the well-known Hubble parameter and (1.10) is known as Hubble
Law. Let us still note that the expansion speed can be greater than the speed
of light without any harmful thought .

The expansion of the universe is confirmed in accordance with equation (1.10):
the most direct observational evidence for that comes from the redshift of the
spectral lines of distant galaxies. The idea is that a local observer detecting
light from a distant emitter sees a redshift in frequency or, in other words, the
wavelength A of each photon increases in proportion to the amount of expansion,
as any other physical scale is stretched by expansion. The solution of all redshift
problems (as illustrated in Figure 1.1) in Special and General Relativity is gov-
erned by the following two facts: first, light travels on null geodesics; secondly,
the frequency of a light signal of wave vector k* measured by an observer with
4-velocity u* is v = —k,u”. Thus we can always find the observed frequency
by calculating the null geodesic determined by the initial value of k* at the
emission point and then calculating the right hand side of the former expression
at the observation point [1]. The redshift factor is then given by

A=A 1 a(t2)

z =— 1=

~1. (1.11)

)\1 Vo a(tl)

Figure 1.1: A spacetime diagram showing the emission of a light signal at event P;
and its reception at event P

It is possible to relate the redshift to the relative velocity of the two observers
in the case of small scales (i.e. less than cosmological scales) such that the
expansion velocity is non-relativistic. In this case, for light emitted say by
nearby galaxies, we have t5 — t; ~ r, where r is the present proper distance to
the galaxy; furthermore, a(t2) =~ a(t1) + (t2 — t1)a. Thus we find

Q-

Znon rel = — 1 = Hr (112)

)
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which is the linear redshift-distance relationship discovered by Hubble. The red-
shifts of distant galaxies will deviate from this linear law depending on exactly
how a(t) varies with ¢.

The redshift z is often used in place of the scale factor: to be complete,
z,t,a(t), p(t) and the temperature T are all used as variables to refer to different
phases of the universe history (Tables 1.1).

Big Bang singularity Both matter and radiation dominated flat uni-
verses present a singularity at ¢t = 0 in which a = 0. Thus, under the assumption
of homogeneity and isotropy, General Relativity makes the striking prediction
that at a time t = fol — g[“(a) = 3(1+3U)H0
singular state: the distance between all "points of space" was zero, the density
of matter and the curvature of spacetime infinite. This singularity state of the
universe is referred to as Big Bang, and the quantity Ho_l7 known as the Hubble
time, provides a useful estimate of the time scale for which the universe has
been around. 2
The nature of this singularity is that resulting from a homogenous contraction
of space down to "zero size". The Big Bang does not represent an explosion of
matter concentrated at a preexisting point: it does not make sense to ask about
the state of the universe "before" the Big Bang because spacetime structure
itself is singular at ¢ = 0; thus General Relativity leads to the viewpoint that
universe began at the Big Bang. For many years it was generally believed that
the prediction of a singular origin was due merely to the assumptions of exact
homogeneity and isotropy, that if these assumptions were relaxed one would get
a non-singular "bounce" at small a rather than a singularity. The Singularity
Theorem of General Relativity [1] shows that singularities are generic features of
cosmological solutions. Of course, at the extreme conditions very near the Big
Bang one expects that quantum effects will become important, and predictions
of classical General Relativity are expected to break down.

~ Hy ' ago the universe was in a

Particle horizons We shall demonstrate now the third crucial point of
FRW spacetimes: FRW cosmological models presuppose the existence of non-
trivial particle horizons, where, by this expression, we mean in general the
boundary of the observable region at a generic time ¢, or the boundary between
the worldlines that can be seen by an observer at a certain point of spacetime
and those one that cannot be seen (see Figure (1.2)). In General Relativity the
question about how much of our universe can be observed at a given point is
due, and indeed, in spite of the fact that the universe was vanishingly small
at early times, the expansion precluded causal contact from being established
throughout the universe.

The photons travel on null paths characterized by dr = % = dr: the
physical distance that a photon could have travelled since tha Bang until time
t, the distance to the particle horizon, is

RH(t):a(t)/O A (1.13)

a(t’)

2The subscript "0" means that the quantity is evaluated at t = txyow .
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t
particles already
seen
observer particles not
/’ yet seen
r=0

Figure 1.2: The causal structure of FRW spacetime near the Big Bang singularity:
particle horizons arise when the past light cone of an observer terminates at a finite
time ¢ or conformal time 7.

An observer at a time t is able to receive a signal from all other isotropic
observers if and only if the integral of (1.13) diverges : in this case the flat
FRW metric is conformally related to Minkowski spacetime and there is no
particle horizon. On the other hand, if the integral converges, FRW model is
conformally related only to a portion of Minkowski spacetime (the one above
a t = const surface) and particle horizon does occur. It is not difficult to see
that the integral converges in all FRW models with equation of state parameter
w € (0,1):

Ry (t) = (1.14)

3t =2H"'(t) x a®? (dust).
As H(t)7! is the age of the universe, H(¢)™! is called the Hubble Radius, as it is
the distance that light can travel in a Hubble time H (¢). If the particle horizon
exists then it would coincide, up to numerical factor, with the Hubble radius:
for this reason, in the context of standard cosmology (when w > —1/3) horizon
and Hubble radius are used interchangeably.

These conclusions are not true anymore in the case of non standard matter,
that is w ¢ (0,1): in the case of a cosmological constant (for example, during
Inflation or in the later time of universe history), particle horizon and Hubble
radius are not equal as the horizon distance grows exponentially in time relative
to the Hubble radius.

A physical length scale X is within the horizon if A\ < Rz ~ H~!; in terms of the
corresponding comoving wavenumber k, A = 27a/k, we will have the following
rule:

{215 = H7(t)  a? (radiation)

k
< H'!'= scale X outside the horizon and no causality
a

k
->H'!'= scale A\ within the horizon and causality.
a

Therefore, in a universe described by FRW with standard matter content such
as dust or radiation, there will always exist regions not causally connected:
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any comoving length scale evolves in time with a power law t* with o < 1
(k = 0), thus its rate of increase is always smaller than the rate of increase in
the Hubble horizon size, which is linear in time. Thus, for example, the size
of a comoving region corresponding at present to a supercluster (say ~ 30M pc
at t ~ 10%ears) was comparable to the horizon at epoch shortly before the
recombination (¢ ~ 10%years) and was much greater than the horizon at some
earlier epoch.

These considerations about the existence of particle horizons and of causally

disconnected regions in FRW models lead to very interesting issues. We begin
presenting one of them (known as Horizon problem), postponing a brief discus-
sions of the shortcomings of the standard cosmological model as described until
here to a next paragraph.
As mentioned earlier, we have good reasons to believe that the present universe
is homogenous and isotropic to a very high degree of precision. Now, many
ordinary systems, such as gas confined in a box, often are found in extremely
homogenous and isotropic states: the usual explanation of that state is that
they have had an opportunity to self-interact and thermalize, exactly as in a
box filled with gas initially in an inhomogenous state, these inhomogeneities
quickly "wash out" on a time scale of the order of the transit time across the
box. However this type of explanation cannot possibly apply to a universe
with particle horizons, since different portions cannot even send signals to each
other, far less interact sufficiently to thermalize each other. Thus, in order to
explain the homogeneity and isotropy of the present universe, one must pos-
tulate that either (a) the universe was born in an extremely homogenous and
isotropic state, or (b) the very early universe differed significantly from the FRW
models so that no horizons were present; the inhomogeneities and anisotropy
then "damped out" by some mechanisms and the universe approached the FRW
models that fit present observations. Unfortunately, if the first point of view
may appear rather unnatural and a profession of faith, the second one suffers
not only from the absence of a plausible picture of evolution from a chaotic to
a FRW state, but for the fact that gravity promotes inhomogeneity, not ho-
mogeneity. Later we will see how a third way is now accepted, the one of an
inflationary phase of the very early universe.

Brief outline of universe evolution

The above considerations should be almost sufficient to understand and jus-
tify the basic aspects of the evolution of our universe from the Big Bang to
the present in the standard picture. Two points should be still clarified for
completeness:

e the various particles inhabiting the universe can be usefully characterized
according to three criteria: in equilibrium vs. out of equilibrium (decou-
pled), bosonic vs. fermionic, and relativistic (velocities near to ¢) vs. non
relativistic (dust);

e much of the history of the standard Big Bang model can be easily described
by assuming that one of the components dominates the total energy den-
sity.
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As mentioned earlier, the cosmological energy conservation (equation (1.6)) tells
us that the decrease of the scale factor a as one goes back towards the past has
the same local effect on the matter as if the matter were placed in a box whose
walls contract at the same rate. Thus (in agreement with Table 1.1) the contri-
bution of radiation compared with ordinary matter increases in the past, and
there must be a period in the early times of universe evolution in which this ra-
diation should have been the dominant contribution to the energy. The present
radiation energy contribution to the universe energy density is represented by
the CMB energy density, wich is about 1000 times smaller than the present mass
density contribution of matter. One would expect the radiation-filled model of
the universe to be a good approximation for the dynamics of the universe before
a stage in which the scale factor @ was more than few 1000 times smaller than
its present value, while the dust filled model should be a good approximation
afterwards. In the context of this separation, another important issue is whether
the interactions of matter or radiation proceed on a rapid enough time scale for
thermalization to occur locally (within the particle horizon). A given species
remains in thermal equilibrium with the surrounding thermal plasma as long as
its interaction rate is larger than the expansion rate of the universe. A particle
species for which the interaction rates have fallen below the expansion rate is
said to have frozen out or decoupled. As good rule of thumb, the expansion rate
in the early universe is "slow", and particles tend to be in thermal equilibrium
(unless they are very weakly coupled); in our current universe, no species are in
equilibrium with the background plasma (represented by the CMB photons).

The basic picture of the evolution of our universe can then be told as fol-
lows: the universe began with a singularity state as a hot (T — o0), dense
(p — o0) soup of matter and radiation in thermal equilibrium. The energy con-
tent of early universe was dominated by radiation: at these early times thermal
equilibrium held and other specific phenomena took place such as primordial
nucleosynthesis. However, as the universe evolved, thermal equilibrium was not
maintained and the ordinary matter contribution began to dominate the energy
content of the universe (about 4 x 10* years after the Bang): the dynamics of
the universe became that of a dust filled FRW model characterized by the CMB
photons background, matter-antimatter asymmetry and cosmological structure
formation.

There is no room in this thesis to fill the details of this schematic and full
of gaps evolutionary history, and to discuss for example the very complex first
few minutes of universe life characterized by symmetry breakings and phase
transitions, and other [4]: more interesting, even in relation to the following de-
velopments, is to underline the good predictions of the Hot Big Bang model and
to understand how it faces recent observations and some theorethical questions.

Parametrizing the universe: shortcomings of the standard model

Earlier we introduced global parameters such as expansion factor a(t), spatial
curvature k and Hubble parameter H (t), the latter defined by

/ /

H(t) = g - % or H(r) = % (1.15)
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where the dot denotes differentiation with respect to ¢ and the prime differentia-
tion with respect to 7. In addition, it is useful to define several other measurable
cosmological parameters.

The Friedmann equation (1.5a) suggests to define a critical density p. and a
cosmological density parameter o4

3H? p
e=— and Qo = — 1.16
P nCd and 3ot Py ( )
such that it can be rewritten as follows
K
- = H*(Quor = 1) (1.17)

From equation (1.17), one can distinguish the different cases

P<pe < <l < kK=-1 < open
p=pc < Q=1 < k=0 <  flat (1.18)
p>pe o Qor>1 < k=41 < closed.

It is often necessary to distinguish different contributions to the density, and
therefore convenient to define present-day density parameters for pressureless
matter (),,, relativistic particles 2,., and for the vacuum 2,. This last one
is equal to 24 = A/3H? in models with cosmological constant, i.e. constant
vacuum energy density. Then the Friedmann equation becomes

K

E:HS(Qm+QT+QU—1) (1.19)

0
where the subscript 0 indicates present-day values.
One way to quantify the deceleration (or acceleration) of the universe expansion
of equation (1.5b) is the deceleration parameter qo defined as

) ) .
G = — (aa) ~ Lo, 40+ 153, (1.20)
. 2 2

a2
The expansion accelerates if gy < 0 and this equation shows that w < —1/3 for
the vacuum may lead to an accelerating expansion.
It is usual to express the Hubble parameter and hence all the previous param-
eters in terms of the scaled Hubble parameter h for which

H =100h km s~ Mpc™t. (1.21)

The term "cosmological parameters" is increasing its scope because of the rapid
advances in observational cosmology of the last ten years which are leading
to the establishment of the first high precision cosmological model. The most
accurate model of the universe requires consideration of a wide range of dif-
ferent types of observations, with complementary probes providing consistency
checks, lifting parameter degeneracies, and enabling the strongest constraints to
be placed. Hence, nowadays, the term "cosmological parameters" not only refers
to the original usage of simple numbers as the above ones describing the global
dynamics and properties of the universe, but also includes the parametrization
of some functions describing the nature of perturbations in the universe, and
physical parameters of the state of the universe. Typical comparison of cos-
mological models with observational data now feature about ten parameters,
shown in Table 1.2 (see [36] and [11]).
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| Parameter Symbol Value
Hubble Parameter h 0.73£0.03
Total matter density Qe Q. h? = 0.134 + 0.006
Baryon Density Qp Qh? = 0.023 £ 0.001
Cosmological Constant Qp Q, =0.72+0.05
Radiation Density Q, Q,h%? =247 x107°
Density perturbation amplitude A% (k) see later P (k)
Density perturbation spectral index n n =0.97+0.03
Tensor to scalar ratio r r < 0.53 (95%conf)
Tonization optical lenght T 7 =0.15+0.07

Table 1.2: The basic set of cosmological parameters: uncertainities are one-sigma/68%
confidence unless otherwise stated.

We have by now most of the ingredients needed to understand the first
half of the shown parameters; the second one will be in part justified in the
continuation, while the ionization optical depth will not be commented at all
in this thesis. The spatial curvature does not appear in the list because it can
be determined from the other parameters using (1.17) or (1.19), and the total
present matter density is indicated as usual as a sum of baryonic matter and dark
matter densities, namely Q,, = Qg + Q. With appropriate arguments, the
parameter set listed above can be reduced to seven parameters as the smallest
set that can usefully be compared to the present cosmological data set. Of
course this is not the unique possible choice: one could instead use parameters
derived from those basic ones such as the age of the universe, the present horizon
distance, the present CMB and neutrino background temperatures, the epoch
of matter-radiation equality, the epoch of transition to an accelerating universe,
the baryon to photon ratio, ... Furthermore, different types of observations are
sensitive to different subsets of the full cosmological parameter set.

Having in mind the above parametrization and Table 1.2 as mirror of the
disposable observational data, we can proceed in evaluating the standard cos-
mological model. Among the most notable achievements of Hot Big Bang FRW
standard model are

e the prediction of cosmological expansion;

e the prediction and explanation of the presence of a relic background radi-
ation with temperature of order of few K, the CMB;

e the explanations of the cosmic abundance of light elements;
e the possibility to insert in this picture the structure formation phenomenon.

On the contrary, the most severe problems that it has to face can be summarized
in the following interesting issues.

e Horizon problem.
Under the term "horizon problem" a wide range of facts is included, all
related to the existence of particle horizons in FRW models. We have
already discussed the main point of the question: we want now to delineate
some more quantitative aspects of it.
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According to the standard model, photons and the other components such
as electrons and baryons decoupled at a temperature of 0.3 eV. Recalling
the preceding discussions, this happened when the rate of interaction of
photons with, say, electrons and protons became of the order of the Hubble
size (that is, of the horizon size), and the expansion made not possible the
reverse reaction of p+et — H+~. The temperature of 0.3 eV corresponds
to the so-called surface of last-scattering, posed at a redshift zyg ~ 1100,
after the matter-radiation equivalence and hence in matter era. From
the epoch of last-scattering onwards, photons free-stream and now are
measurable in the well known CMB, whose spectrum is consistent with
that of a black-body at a temperature of 2.726 + 0.01K. Then let us look
at two photons from different parts of the sky: the lengh corresponding to
our present Hubble radius at the time of last-scattering was (remembering
that T oc a™ 1)

A () = Ria(to) (a(tLS)) = Ry (to) (&)

a(to) Trs

During the matter domination H? oc a3 oc T3, and at last-scattering

—1 TO 32
HLS :RH(to) (T—) < RH(to)
LS

Being Ty ~ 2.7K ~ 10~* eV <« TLg, the length corresponding to our
present Hubble radius was much much larger that the horizon at that
time. Because CMB experiments like COBE and WMAP tells us that our
two photons have nearly the same temperature to a precision of 107°, we
are forced to say that those two photons were very similar even if they
could not talk to each other, and that the universe at last-scattering was
homogenous and isotropic in a physical region about some order greater
than the causally connected one!

Not only the homogeneity of the CMB is able to tell us important things,
but nowadays the measured temperature fluctuations (consequences of
density inhomogeneities) are a mine of information too, and another strik-
ing feature of the CMB is that photons at the last-scattering surface which
were causally disconnected have the same small anisotropies ([10]). The
standard model cannot say anything with reference to this.

Flatness problem and the peculiarity of initial conditions.
The Friedmann equation tells us that

(Qtot — 1) = K,/ H2a2

therefore (we implicitly consider from now on € = Q) (2 — 1) — 0 for
t — 0 in both cases of radiation and matter domination: in other words,
given (2(t) — 1) at a given time ¢, 2 has to depart from 1 both in open
and closed cases. Present observations tell us that (9 — 1) is of order
unity (i.e. € (0,~ 1)). Let us calculate the same value at some early time
of universe, say at Planck time (at t ~ 10743 s or T~ 10'° GeV):

0~ trery, <a2(tpz)) N <T02) ~ 0(10-%Y)

9 — 1|7r—g, a2(to) T%,
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A very problematic question arises, because how can it be possible that
had been so near the critical value able to lead to the universe observed
today? Even small deviations of € from 1 at early time would have led to
the collapse or the cooling of the universe in few 10~%3s, respectively in
the case of Kk = 4+1 or kK = —1. In order to get the correct value (€ — 1)
at present, the value (2 —1) at early times had to be fined-tuned to values
amazingly close to zero, but without being exactly zero. This is the reason
why the flatness problem is also dubbed the "fine-tuning problem".

e Existence of Dark Matter.
We have a remarkable convergence on the value of the density parameter
in matter (w = 0): Q,, = 0.28 £ 0.05. We call baryonic matter or simply
ordinary matter anything made of atoms and their constituents, and this
would include all of stars, planets, gas and dust in the universe. Ordinary
baryonic matter, it turns out, is not enough to account for the observed
matter density:
Qp ~0.043 £ 0.002 < Q,,

This determination comes from a variety of methods: direct evaluation
of baryons, consistency with the CMB power spectrum, and agreement
with the predictions of primordial nucleosynthetis, which places the con-
straint 2, < 0.12. Most of the matter density must therefore be in the
form of non-baryonic matter, or dark matter. Candidates for dark matter
include the lightest supersymmetric particle, the axion, but in the past
essentially every known particle of the Standard Model of particle physics
and predicted particles of Supersymmetry theories have been ruled out
as a candidate for it. The things we know are that it has no significant
interactions with other matter, so as to have escaped detection thus far,
and that its particles have negligible velocity, i.e. they are "cold".

e Evidence of accelerated expansion.

Astonishignly, in recent years, it appears that an effect of accelerating
expansion (go < 0) has been observed in the Supernova Hubble diagram:
the common position in the last years is to invoke the existence of another
energy component (different from matter and radiation), and comparison
with the prediction of FRW models leads of course to favor a vacuum-
dominated universe. In this picture, current data indicate that the vacuum
energy is indeed the largest contributor to the cosmological density budget,
with £, = 0.7240.05, [11]. The nature of this dominant term is presently
uncertain, but much effort is being invested in dynamical models, under
the catch-all heading of quintessence, or Dark Energy.

e The problem of perturbations unknown origin.

The first issues arise from a combination of observational facts and theoretical
principles, and together with the last one they find the best model solution in the
Inflationary paradigm. The Dark Matter and the Dark Energy problems force
us to take into account an ampler cosmological model referred to by various
names, including "ACDM Hot Big Bang" model, the concordance cosmology, or
the standard cosmological model. But the sense of accomplishment at having
measured all the numbers above is somewhat tempered by the realization that
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we do not understand very well any of them. For instance, there are many
proposals for the nature of Dark Matter, but no consensus as to which is correct.
Even the baryon density, now measured to an accuracy of a few percent, lacks
an underlying theory able to predict it even within orders of magnitude. Finally
the nature of the Dark Energy remains a mystery, even if very recent works have
suggested viable mechanisms able to explain the acceleration without invoking
an extra energy component [37].

1.2 Inflation

The horizon problem is a relevant problem of the standard cosmology because
at its heart there is simply causality. From the considerations made so far, it
appears that solving the shortcomings of the standard model requires at least
an important modification to how the information can propagate in the early
universe, and hence that the universe has to go through a primordial period
during which the physical scale A\ evolves faster than the horizon scale H 1.
Cosmological Inflation is such a mechanism.

The foundamental idea of Inflation is that the universe undergoes a period of
accelerated expansion, defined as a period when d > 0, at early times. The effect
of this acceleration is to quickly expand a small region of space to a huge size,
reducing the spatial curvature in the process, making the universe extremely
close to flat. In addition, the horizon size is greatly increased, so that distant
points on the CMB actually are in causal contact.

An inflationary stage is defined as a period of the universe during which the
latter accelerates. From previous sections we have learned that

i>0<=(p+3p) <0 (1.22)

and that such a condition is not satisfied neither during a radiation-dominated
phase nor in a matter-dominated phase. Even if it is sufficient that p < —p/3, in
order to study the properties of the period of inflation, we assume the extreme
condition p = —p which considerably simplifies the analysis and that we have
already met in terms of a cosmological constant. We recall briefly that in the
case of such an energy component

p X const

(1.23)

Hj x const (1.24)

at) = a; eH171) o Hrt (1.25)
Rly(t) o Hyb et (1.26)

where the subscript (or superscript) I indicates that we refer to an inflation
quantity and ¢; denotes the time at which inflation starts. Contrary to what
happens in FRW dust or radiation filled universes, a comoving length scale
increases faster than the particle horizon and much faster than the Hubble size.
By the way, Inflation is a phase of the history of the universe occurring before
the era of nucleosynthetis (¢ ~ 1s, T ~ 1 MeV) during which the light elements
abundances were formed: this is because nucleosynthetis is the earliest epoch
we have experimental data from, and as already seen they are in agreement with
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the predictions of the Hot Big Bang model. However, the thermal hystory of the
universe before that stage is almost unknown and many models of Inflation are
set to be around the Plank time (tp; ~ 10~%3s). It is common, even in reponse
to other tasks, to think of a period of reheating at the end of Inflation during
which thermal equilibrium is established and radiation era begins.

It is useful to have a general expression to describe how much Inflation occurs
once it has begun. This is typically quantified by the number of e-folds, defined

: N(t) = In <“a((ttf))> and Ny = In <Z((ttf))> (1.27)

Resolution of the horizon problem Thanks to Inflation any comoving
length scale observable at present has been causally connected at some primor-
dial stage of the evolution of the universe, removing the horizon problem. This
can be easily seen with the help of Figure 1.3. Let us consider length scales A
which are within the horizon today (A < H~'(to) = H; ') but were outside the
horizon for some previous period (A > H ™ !(tp4st)) during the matter or radia-
tion era. If there is a period (inflation) during which physical length scales grow
faster than H~!, such today observable scales had a chance to be within the
horizon in that early period again (A < H;l): in fact, during the inflationary
epoch the Hubble radius is constant and the condition satisfied.

/O< a
)\:H_l/_\

H '« a® (RD)
H 1« a¥2 (MD)

legth scales

Hl_1 o< corist

end of log a
Inflation

Figure 1.3: Hubble scale and a physical scale as a function of the scale factor a [10].

Let us see how long Inflation must be sustained in order to solve the horizon
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problem and let the present day largest observable scale re-enter the horizon
during Inflation. The largest observable scale is of course the present Hubble
radius Hy and we want it to be reduced during Inflation to a value A, (¢;)
smaller than the value of the Hubble size HI_1 during Inflation. This gives

) = () (o) =10 ()

(where we have neglected for simplicity the short period of matter-domination).
Then the condition for solving the horizon problem is

T T T
mmzm@%yAMﬁ?xarumﬁ@. (1.28)

More precise valutations give Ny = 60.

Inflation and flatness problem Inflation solves elegantly the flatness
problem, thanks to the fact that the Hubble scale is constant and
k

_ 2
Q—I—GQHIQOCl/a.

We have seen that to reproduce a value of (¢ — 1) of order unity today the
initial value of (2—1) at Planck time must be |2 —1| ~ 107%. Since we identify
the beginning of the radiation era with the end of Inflation, and the time scale
of Inflation is Planck time, we require [Q — 14—, ~ 107

During Inflation
2
12— Ui=s, _ (&) — ¢~ 2Ntor
€2 = 1fe=s, ay

Taking |Q — 1=, of order unity, it is enough to require that N, =~ 60 to solve
the flatness problem. From the point of view of the fine-tuning, Inflation avoids
the hindrance of an enormous fine-tuning, because the density parameter {2 is
driven to 1 with exponential precision. Let us note that if the period of Inflation
lasts longer than 60 e-folding the present-day value of Q4 will be equal to unity
with a great precision. Thus we could say that a generic prediction of Inflation
is Qg = 1, and current data on CMB anisotropies confirm this prediction.

Inflation as driven by a slowly-rolling scalar field

Knowing the various advantages of having a period of accelarated expansion
phase, the next task consists in finding a model that satisfies the conditions
mentioned above. There are many models of Inflation. Today most of them are
based on a new scalar field, the inflaton ¢.

We consider modelling matter in the early universe by the inflaton, a real scalar
field which moves with a potential V(¢). Its Lagrangian then reads

L:%@@@¢+vw) (1.29)

and the stress-energy tensor is

Tuu = ¢,H¢,V — Guv (%¢,u¢,u + V((b)) (130)
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The corresponding energy density ps and pressure pg are

T = po = &+ v(e) + T2 (1.312)
2 e,
T =po= 2~ vie) - 0 (1.31b)

where it is evident that if the gradient term were dominant, we would obtain
pe = —5¢, not enough to drive Inflation.
In the case of an homogenous field ¢(t,Z) = ¢(t), the inflaton behaves with a

perfect fluid and expression (1.31) become

12

Too = Psp = % + V((b) (1.323)
¢2
Tii = py = 5 V(¢) (1.32b)
The equation of motion for the homogenous inflaton is
av - a., dV
O¢p = — ie. 3- — =0 1.33
6= g ie b+3T0+ T (1:33)

which can be thought of as the usual Klein-Gordon equation of motion for
a scalar field in Minkowski space, but with a friction term 3Hgf) due to the
expansion of the universe. The Friedmann equation with such a scalar field as
the sole energy source is

_ 81G
3

H? <%¢32 + V(¢)) (1.34)

Let us now quantify under which circumstances a scalar field may give rise to
a period of Inflation. First of all, let us note that requiring V(¢) > #? im-
plies from expressions (1.32) that the potential energy of the scalar field is the
dominant contribution to both the energy density and the pressure, and hence
Py = —pg: from this simple calculation, we realize that a scalar field whose
energy dominates the universe and whose potential energy dominates over the
kinetic term can mimic a cosmological constant dominated universe, and then
gives Inflation. Inflation is driven by the vacuum energy of the inflaton field.
If ¢ < V(¢), the scalar field is slowly rolling down its potential and this is the
reason why such a period is called slow-roll. The so-called slow-roll approxima-
tion consists in two conditions:

e neglecting the kinetic term of ¢ compared to the potential energy;

e assuming a flat potential so that ¢ is negligible as well in (1.33).

In this approximation, the Friedmann equation (1.34) and the field equation

(1.33) are written

H? ~ ?V(@ (1.35)

3H¢ ~ —V'(¢) (1.36)
where in this context V'(¢) = %. That is, the friction due to the expansion

is balanced by the acceleration due to the slope of the potential. The slow-roll
conditions can be rewritten as follows
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o * < V(p) = VL <« H,
e $ <3H)— V" < H2.

If we define the following slow-roll parameters

H ¢? 1 (V'\?
=—— 471G = — [ — 1.
==Y 167TG<V) (1.37a)
1 V//
- (= 1.37b
"= 85G < Vv > (1.37b)

the slow-roll conditions hold if |¢] <« 1 and || < 1.
It is now easy to see in another sense how the slow-roll approximation yields
inflation. Let us recall that Inflation is defined by @ > 0, or in other terms

a
H > 0 cannot be for a scalar potential (as p cannot be < —p): the acceleration
condition can be translated to

H
—m =e< 1
As soon as this condition fails, Inflation ends: in general, slow-roll inflation is
attained if € < 1 and |n| < 1, where the latter condition helps to ensure that
inflation will continue for a sufficient period.
Within this approximation, the total number of e-folds between the beginning

and the end of Inflation is
alty) /tf /*"f 14

Nigt =1 = Hdt ~ -8nG —do. 1.38

tot n ( (tl)) " Q y V/ ¢ ( )

a

Concluding, Inflation is cosmologically attractive but serious problems are left
unsolved with it: on the one hand, we cannot say if the universe in its earliest
stages satisfied the conditions for Inflation to light up (i.e. for inflaton to undergo
slow rollover); on the other hand, there are no experimental evidences even for
the existence of a neutral spin zero boson far less for the existence of the inflaton
in particular.

1.3 Foundamental ideas of Structure Formation

As already mentioned, the Cosmological Principle and hence the inhomogeneity
of the universe have played a curious role in the history of modern cosmology:
if the overall properties of the universe are very close to being homogenous
and hence much of universe dynamics as a whole can be said thanks to the as-
sumption of homogeneity and isotropy on the largest scales, on the other hand
telescopes reveal a wealth of details on scales varying from single galaxies to
large structures of size far exceeding 102 Mpc. Understanding the existence of
these structure is one of the principal task of modern cosmology, and this study
is usually performed with different techniques and approximation schemes, de-
pending on the specific range of scales under analysis.
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The interest in the large-scale mass distribution traces back to the Thirthies
with Lemaitre, who pointed out that if the evolving homogenous and isotropic
world model is a reasonable first appoximation (we now say zeroth order approx-
imation), then the next step is to account for the departures from homogeneities
in the observed structures. As the Cosmological Principle cannot be expected
from general arguments and physical principles, nor the existence of galaxies
can be deduced from general principles because we do not know how to spec-
ify initial conditions: we have been left with Lemaitre’ s program consisting
in trying to find the character of density fluctuations in the early universe and
modelling the physical processes that have operated subsequently to develop
such fluctuations into the irregularities we observe today.

Much work has been done in the last decades and now we can follow a great
part of the evolution of initial perturbations to present structures thanks to
a long list of cosmological schemes and methods. But before going into some
more detailed description of the idea of structure formation we want still to
stress on the nature of the Cosmological Principle. If it were really a principle,
as initially suggested by Milne, the Cosmological Principle should be compared
to a law of nature: on the contrary, now it is common sense to intend it as a
philosophical assumption which allows us to circumevent our inability to obtain
information about the universe outside our past light-cone by assuming that a
symmetry principle exists everywhere. By assuming the Cosmological Principle,
we assume that we are able to determine conditions many Hubble radii away
from us by using observational data within our past light-cone, whose region of
influence is, by definition, limited to one Hubble radius. It is exactly this point
that should lead us to treat the Cosmological Principle as a subtle approach.
Moreover, homogeneity could only apply on the average over many galaxies: we
should then keep in mind that when we refer to homogeneity and isotropy of the
universe we tacitly assume that spatial smoothing over some suitably large fil-
tering scale has been applied exactly with the purpose of letting the fine-grained
details to be ignored.

A great deal of structure formation theory is based on the study of just one
scalar field, namely the density perturbation field defined as

Q)
where p, represents the unperturbed mean value of the background universe
density, in the FRW model. In specific cases, this field is related to the Newto-
nian peculiar gravitational potential (&) through the Poisson equation which
in an expanding universe reads

V2(t, %) = 417G a®(t)py(t) O(t, T). (1.40)

(1.39)

There are many different notations used to describe the density perturbations
and their evolution, both in terms of the quantities used to describe the pertur-
bations as metric deviations and of the definition of an appropriate statistical
treatment. The former approach will be clearer only in the following chapters
and it is the heart of the thesis; for now, we want to give a sketch of the latter.
A critical feature of the quantity ¢ is that it inhabits a universe that is isotropic
and homogenous in its large-scale properties: this suggest a statistical refor-
mulation of Cosmological Principle, that is that the statistical properties of §
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should also be statistically homogenous. In other words, ¢ reflects a stationary
random process: every spatial position T; is associated to a stochastic variable
0(%;), withi =1,2,...N and N — oo, and all the probability densities on a finite
number of points Pz, z.....zy(01,02,...0n) are invariant under translations, ro-
tations and reflection of the points set T, Zn,...,Zn. The universe we observe
is the statistical realization of J(#) thought as a stochastic field, and in this
language the unperturbed density of FRW background universe corresponds to
the average over the statistical ensemble, p, = (p(Z)).

Cosmological density fields are an example of ergodic process, in which the aver-
age over a large volume tends to the same answer as the average over a statistical
ensemble.

It is usual to describe § as a Fourier superposition:

() = d(k) e~ ** (1.41)

The cross-terms vanish when we compute the variance in the field, which is just
a sum over modes of the power spectrum

(6% =S 150" =S P(k) (1.42)

where the statistical isotropic nature of the fluctuations allows us to write P(k)

—.

rather than P(k). Another quantity which describes the statistical properties of
¢ is the autocorrelation function, which is related to the power spectrum through
Fourier transformation and hence gives the same description of the density field:
for this reason, we skip for brevity the introduction of this further concept.
The physical meaning of the power spectrum is the following: P(k) o |<§(E)|2
the latter being the amplitude of plane waves with wavelength A = 27/k; then
the value of the spectrum at every k tells us how much the contribution of k-
scale fluctuations is important in the Fourier sum in order to form the generic
perturbation (%) in configurations space. In other words, P(k) is a measure of
the power of the fluctuations of wavenumber k.
A stochastic field is said to be Gaussian if the phases of the Fourier modes
describing fluctuations at different scales A are uncorrelated, that is if the am-
plitudes of waves of different wavenumbers are randomly drawn from a Rayleigh
distribution of width given by the power spectrum. The density perturbation
field is Gaussian (see later): this means that if we could do a very big number
of statistical realizations of the universe, in any point & the distribution of the
observed value of §(Z) in all those universes would be a Gaussian centered in
zero. In momentum space, because the Fourier transformation of a Gaussian is
still a Gaussian, the same description applies.
A Gaussian distribution is univocally described by its average and its variance:
thus, in our case, what we need for describing the density fluctuation field §(Z)
is just its power spectrum.
Assuming for P(k) a simple functional form allows us doing simple and useful
considerations. The most convenient power spectra are the so-called power-law
power spectra

P(k) oc k"1 (1.43)

where the exponential index n is called spectral index; these are often called
scale-free power spectra because their logaritmic slopes are the same at every
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scale, and hence they are characterized by no particular physical scale. Among
the others, a case of particular interest is the Harrison-Zel’dovich spectrum,
which corresponds to a power spectrum with n = 1.

Inflation and cosmological perturbations

In order for structure formation to occur, there must have been small preexisting
fluctuations on physical length scales when they crossed the Hubble radius in
the radiation-dominated or matter-dominated eras. In the standard Big Bang
model these small perturbations have to be put by hand, because it is impossible
to produce fluctuations on any length scale while it is larger than the horizon.
Since the goal of cosmology is to understand the universe on the basis of physical
laws, this appeal to initial condition is unsatisfactory. The challenge is there-
fore to give an explanation to the small "seed" perturbations which allow the
gravitational growth of the matter perturbations.

The simplest mechanism for generating the observed perturbations is the in-
flationary cosmology, as mentioned in previous sections. Although originally
introduced as a possible solutions of already seen problems such as the horizon
and flatness problems, as an unexpected bonus, Inflation has the useful prop-
erty to generate spectra of both density perturbations and gravitational waves,
through the amplification of quantum fluctuations: these perturbations extend
from extremely short scales to scales considerably in excess of the size of the
observable universe.

In the simplest inflationary model introduced earlier, Inflation is driven by a
slowly-rolling scalar field, the inflaton: this latter can be split in

¢(t= f) = ¢O(t) + 6¢(t= f)v (1-44)

where ¢y is the classical (infinite wavelength) field, that is the expectation value
of the inflaton field on the initial isotropic and homogenous state, whose stress-
energy tensor and equation of motion have been already expressed in (1.32) and
(1.33); d¢(t, T) represents the quantum fluctuations around ¢o. This separation
is justified by the fact that quantum fluctuations are much smaller than the
classical value and therefore negligibile when looking at the classical evolution,
as done in previous pages. Nevertheless, exactly those quantum fluctuations are
responsible for the creation of initial perturbations whose evolution can now be
seen in the large-scale structure of the universe.
It is not possible to describe the generation of perturbations of a scalar field in
this context: the machinery needed fot such a task is almost the same formalism
developed throughout the thesis, at least a linear theory of cosmological pertur-
bations would be needed. Anyway, we can give a heuristic explanation of why
we expect that during Inflation such fluctuations are indeed present and how
these inflaton fluctuations will induce in turn pertubations of the metric [10].
If we take equation (1.33) adding the non-homogenous term —V2¢/a?, and split
the inflaton field as in (1.44), the quantum perturbation ¢ satisfies the equation
of motion
V25¢
a2
Differentiating (1.33) with respect to time ¢ and taking H constant (we are
during inflationary phase!) we find

(60)" +3Hgo + V"o = 0. (1.46)

8¢+ 3Hb¢ — + V"84 = 0. (1.45)
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Let us consider for simplicity the limit £%/a? < 1 and let us disregard the
gradient term. Under this condition we see that (;50 and d¢ solve the same
equation. The solutions have therefore to be related to each other by a constant
of proportionality which depends upon time, that is

6¢ = —¢o 6t(7).

This tell us that

¢(t7 f) = ¢O(t - 6t(f)7 j"),
that is the inflaton field does not acquire the same value at a given time ¢ in
all the space. On the contrary, when the inflaton is rolling down its potential,
it acquires different values from one spatial point Z to the other. Then inflaton
field is not homogenous and fluctuations are present.
These fluctuations will induce fluctuations of the metric: any perturbation in the
inflaton field means a perturbation of the stress-energy tensor; a perturbation
in the stress-energy tensor implies, through E.E.; a perturbation of the metric.
On the other hand, a perturbation of the metric induces a backreaction on the

evolution of the inflaton through the perturbed Klein-Gordon (K.G.) equation
of the inflaton field: hence,

5 = 6T, ZZ 6g,, 2 56 (1.47)

During Inflation the scale factor grows exponentially, while the Hubble radius
remains almost constant. Consequently the wavelength of a quantum fluctua-
tion soon exceeds the Hubble radius, stretched by the inflationary expansion.
The amplitude of the fluctuations therefore become "frozen in". Once Inflation
has ended, however, the Hubble radius increases faster than the scale factor, so
-in the way we have already seen- the fluctuations eventually reenter the Hubble
radius and hence the horizon during the radiation- or matter- dominated eras.
The number of e-folds which are needed to let our present horizon scale of about
10* Mpc to reenter the horizon during Inflation is about 60, as we have seen in
previous Section: all the fluctuations which exited the horizon in a very narrow
interval of about 10 e-folds around 60 e-folds of Inflation length have reentered
with physical wavelengths in the range accessible to cosmological observations
and of interest for structure formation today, that is the range scale between 1
and 10* Mpc. These spectra provide a distinctive signature of Inflation.

The simplest models generate two types of perturbations: density perturbations
which come from fluctuations in the inflaton scalar field and the corresponding
scalar metric perturbations (which we will define better in Chapter 3), and
gravitational waves which are tensor metric fluctuations. The former experi-
ence gravitational instability and lead to structure formation, while the latter
can influence the cosmic microwave background anisotropies.

In terms of the power spectra of these perturbations, with the working assump-
tion of initial power-law spectrum for both density perturbations and gravita-
tional waves,

P(k) ock™ ! scalar or density perturbations

Pyrow(k) ock™rav gravitational waves,
the spectral indices are in some way related to the slow-roll parameters [9]:

n~1-6e+2n Ngrav = —2€. (1.48)
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The simplest Inflation models predict adiabatic fluctuations and a level of non-
Gaussianity which is too small to be detected by any experiment so far con-
ceived. Adiabaticity means that all types of material in the universe share a
common perturbation, so that if the spacetime is foliated by constant-density
hypersurfaces, then all fluids and fields are homogenous on those slices, with
the perturbations completely described by the variation of the spatial curvature
of the slices. The second part of Table 1.2 can now be understood and used for
getting the values of the perturbations creation that give the best agreement
between models and observations.

Standard scenario of structure formation

After the perturbations are created in the early universe, they undergo a com-
plex evolution up until the time they are observed in the present universe. In
summary, the key ingredients for understanding the observed structures in the
universe within the standard inflationary scenario are summarized as follows.

e The universe is composed mainly by non-baryonic dark matter. The evi-
dence for this matter being dark (i.e. interacting only with gravity) come
from the dynamics of clusters of galaxies and of galaxy haloes.

e Baryons are present in the amount predicted by the Big Bang Nucleosyn-
thesis, some percent of the density required to close the universe.

e At recombination (redshift z ~ 1000, in the matter era) the universe is
well described by a FRW metric. Small deviations from homogeneity and
isotropy do exist: 6p/p ~ 1075. These deviations are created during
an inflationary period in the early universe: quantum fluctuations of the
inflaton field are excited during Inflation and stretched to cosmological
scales. At the same time, the inflaton fluctuations being connected to the
metric perturbations through E.E.; ripples on the metric are also excited
and stretched to cosmological scales.

e Gravity acts as a messanger since it communicates to baryons and photons
the small seed perturbations once a given wavelength becomes smaller than
the horizon scale after Inflation.

e Cosmic structures form by gravitational instability (which we will see in
some aspects later): this process is driven by the gravity of the dark
matter component of the universe, up to the formation of the first non-
linear systems, the dark matter haloes.

e Galaxies and luminous systems form later by the dissipative collapse of
gas (baryonic matter) in the potential wells of dark matter haloes.

e Within this scenario, the most successful model coherent with observations
is hierarchical clustering, with the dominant dark matter being cold, that
is non relativistic, and where the initial density power spectrum is such
that larger systems form later by the assembly of pre-existing smaller
units.
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The details of this complex process are determined by the values of cosmologi-
cal parameters. On the other hand, the comparison between observations and
structure formation models is developed on different fronts: CMB, large-scale
clustering properties, peculiar motions of galaxies, gravitational lensing, prop-
erties of large-scale structure, dark matter haloes structure, galaxy counting,....
The techniques developed for modelling the details of the above described sce-
nario are various and can be divided in three groups: analytical techniques,
numerical simulations, and semi-analytical methods. If we want to set the ap-
proach of our thesis against such a distinction of methods, we should of course
underline its analytical nature.

Density fluctuations § are called linear until they are much smaller than 1,
0 < 1: within this limit, as we will see, it will be sufficient to study their evo-
lution using a perturbative theory up to first order. When gravitational growth
leads to 0 — 1, we talk about non-linear regime and a first order perturbation
expansion is no more applicable, forcing us to go at the following orders. In our
thesis the calculations will be performed up to second order in our perturbative
technique.

Finally, as structure formation study involves a wide range of scales under anal-
ysis, let us recall that General Relativity is of course the more complete and
appropriate tool to handle gravitational interactions. However when the scales
under analysis do not exceed the Hubble radius, the Newtonian approximation
can be applied as a limiting case of the full relativistic theory, consisting in per-
turbing only the time-time component of the FRW metric tensor by an amount
2¢/c?, in contrast with a general metric perturbation as the one that we will
see in Chapter 3. Wanting to be able to deal with cosmological perturbations of
any length scale (from super-horizon to small scales), in the thesis our analysis
will be fully relativistic.

Gravitational Instability As last task of this Chapter we want briefly to
delineate the simplest model for the generation of cosmological structure, that
is gravitational instability. The fact that a fluid of self-gravitating particles is
unstable to the growth of small inhomogeneities was first pointed out by Jeans
in the late Twenties and is known as the Jeans instability.

Expanding the perturbation matter density p in plane waves as already men-
tioned earlier, the growth of small matter inhomogeneities of wavelength smaller
than the Hubble scale is governed by a Newtonian equation:

%L Lol Ao 2 L2
S(k) + 2H3(K) + 6(k) (”S - 47Tpr) ~0 (1.49)
a
where v2 = 9p/dp is the square of the sound speed. Competition between

the pressure term and the gravity term in the last term of equations (1.49)
determines whether or not pressure can counteract gravity. The Jeans scale or
the Jeans wavenumber are scale values which arise naturally from the physical
content of the process and which distinguishes two different regimes. Defining

them as 1
k% = — 4mGpy and M\ =02 B (1.50)

S

)
Vs Pb

perturbations with wavenumber larger than the Jeans wavenumber are stable
and oscillate: the density fluctuation §(¢, Z) evolves in time and space as a sound



1.3 Foundamental ideas of Structure Formation 27

waves; pertubations with smaller wavenumber are Jeans unstable and can grow,
eventually undergoing in a gravitational collapse:

k > kj; = OSCILLATION: SOUND WAVE
k < ky = GRAVITATIONAL INSTABILITY: STATIONARY WAVE.

The solutions of equation (1.49) or the relativistic equivalent equation depends
on the circumstances: many cases can be studied according to the time period of
universe under analysis (before or later than the matter-radiation equivalence),
to the length scales involved (sub or super horizon), and to the type of energy
component dominating (radiation, matter or dark matter) [3], [?]. In a matter
dominated universe, because the expansion tends to pull particles away from
one another, the growth of matter density perturbations is only a power law.
In a radiation-dominated universe, the expansion is so rapid that the matter
perturbations grow very slowly, as Ina; if we consider radiation density per-
turbations in a radiation-dominated universe, then the situation is different,
because perturbations grow as a?. Considering § as the baryonic matter density
perturbation field, then

5(1) {ln a(t) (radiation domination) (151)

a(t) (dust domination).

Therefore, perturbations of baryonic matter density which we can see in galaxies
and stars may grow only in a matter dominated period. When Dark Energy
begins to dominate, that is for z < 1, perturbations stop growing.






Chapter 2

Dust Cosmology: frame and
formalism

In this thesis we deal with irrotational and pressureless fluid dominated uni-
verses, studying the perturbation theory in a synchronous and comoving system
of coordinates.

In this Chapter we outline the formalism used throughout the work.

We give a precise characterization of the fluid, define the synchronous and co-
moving gauge choice and derive the equations governing the evolution of such
a fluid. We note that the possibility of making these two gauge choices simul-
taneously is a peculiarity of irrotational dust, that spatial coordinates in this
gauge are Lagrangian coordinates and that the so-called slicing and threading
of spacetime are the same. In this simple frame, we see that E.E. can be divided
in 4 constraints and 6 evolution equations, the so-called energy and momentum
constraints and evolution equations of the ADM approach.

2.1 Space-time splittings, gauge choices and gen-
eral hypotheses

When we talk about our spacetime we mean a (1 + n)-dimensional manifold
(M, gu) with Lorentzian metric of signature (-,+,...4) and n = 3, namely a
curved spacetime described by metric components where the curvature is created
by (and reacted back on) energy and momentum. Although General Relativity
makes no fundamental distinction between time and space, actually we do, and
in order to obtain field equations comparable with those of Newtonian gravity
(and Electrodynamics) we need indeed a decomposition procedure of Einstein
Equations (E.E.), conservation equations and other geometrical and physical
quantities.

In what follows we will always assume (M, g,..,) be a globally hyperbolic space-
time. A spacetime is globally hyperbolic if it possesses a Cauchy surface X:
for us, it will be sufficient to think of a Cauchy surface as an embedded C°
submanifold of M, representing an "instant of time" throughout the universe.
The fundamental feature of a globally hyperbolic spacetime is that the entire
future and past history of the universe can be predicted (or retrodicted) from
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conditions at the instant of time represented by X. In other world, the Cauchy
Problem can be solved.

Actually we invoke such a feature of our universe not for predictability issues,
but to decompose our spacetime [1]:

Theorem 1. Let (M, g,.) be a globally hyperbolic spacetime. Then a global
time function t can be chosen such that each surface of constant t is a Cauchy
surface: thus M can be foliated by Cauchy surfaces and the topology of M is
R x X, where ¥ denotes any Cauchy surface.

It is thanks to this theorem that -from a very general point of view- we can
slice our spacetime in hypersurfaces at constant ¢ and then implement gauge
choices, or view the spatial metric on a three-dimensional hypersurface as the
dynamical variable in General Relativity. But let us procede step by step.

Let n* be the unit normal vector field to the hypersurface X;: the spacetime
metric g,,, induces a spatial metric (i.e. a three-dimensional Riemannian metric)
huw on each 3; by the formula

h,uv = Guv +1pny (21)

This is known as orthogonal decomposition of the metric and we will often refer
to this slicing of spacetime as (3+1) splitting.

(3+1) splitting is complementary to the alternative and more general (14-3) split
called "threading" (see [7]): there the fundamental geometrical objects used for
charting spacetime are a series of timelike worldlines 2#(), q), where \ is an
affine parameter measuring proper time along the worldline and q gives a unique
label (e.g., a spatial Lagrangian position vector) to each different "thread".

In principle we will be inclined to use the splitting in hypersurfaces and define
our geometrical variables in such a context: anyway, it is worth bearing in
mind from now on that in the particular frame which we will adopt the two
descriptions are the same.

Gauge choices

Theorem 1 tells us that a splitting of our spacetime is possible but does not
provide a precise procedure: the different splitting procedures deal with coordi-
nates or gauge choices.

General Relativity is invariant under diffeomorphisms; diffeomorphisms are co-
ordinate transformations in some sense and choosing the coordinate systems
means fixing the chart between open subsets of M and open subsets of R"*1,
This invariance under diffeomorphisms reflects the redudancy in the description
of spacetime geometry by metric components g, and can be seen in the inde-
termination of E. E. system: it is also known as gauge freedom. In other words,
the diffeomorphisms comprise the gauge freedom of any theory formulated in
terms of tensor fields on a spacetime manifold: in particular, diffeomorphisms
comprise the gauge freedom of General Relativity [1].

In what follows we will then refer to a gauge (or gauge choice) as a coordinates
choice or more loosely to a family of coordinates choices, and a gauge transfor-
mation as equivalent to a coordinates transformation.

There are two different ways by which we can implement a gauge choice:
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e we can impose a suitable number of relations among gauge-dependent vari-
ables: in terms of coordinates, 1 + n are the coordinates transformations
then 1 + n are the gauge conditions;

e or given a 1 + n spacetime, we can slice it in space-like hypersurfaces at
t=const where we fix spatial coordinates, and thread it in time-like lines
(orthogonal to hypersurfaces) along which we make the time coordinate
flowing.

We will use these two recipes later to define our special gauge choice: there we
will see in detail how the two approaches give the same result.

Concerning the gauge transformation as change of coordinates system, we can
write it formally as an (infinitesimal) traditional coordinate transformation:

at — Tt =t et (2.2)

where ¢ is a (small) parameter and £ a 4-dimensional vector. According to the
decomposition of spatial vectors on ¥ given in Appendix A and having separated
time and space parts of ¢ = (£€°,¢%), the latter can still be decomposed in a
scalar (irrotational) and a solenoidal components:

L =a ¢=0B+d (with 9;d" =0) (2.3)

In terms of components then a gauge transformation is implemented with 2
scalars and 1 transverse vector:

- =24¢€a (2.4

=z =2 e (08 +d) (2.5)

Exstrinsic curvature

As already mentioned, we may view a globally hyperbolic spacetime as repre-
senting the time development of a Riemannian metric on a fixed 3-dimensional
manifold. A quantity which expresses a well-defined notion of "time derivative"
of the spatial metric on a hypersurface embedded in M is the extrinsic curva-
ture. Having in mind the general orthogonal decomposition of the metric given
in equation (2.1) and adding the unit time-like condition for vectors n*n, = —1,
then extrinsic curvature is defined as follows

1
K,ul/ : ggnh’yu (26)

where £, is the Lie derivative along n. !
As h,, is purely spatial, extrinsic curvature is purely spatial too: then it

would have been preferable writing

1
I Expressions of Lie derivative along & are:
Sef = fuc” (2.7)
Le 2t = Zh¢Y — €k z” (2.7b)

LeTH = Ty o€ + €%, Tou + €5, Tpo (2.7¢)
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Figure 2.1: Notion of the extrinsic curvature of a hypersurface ¥. The failure of
the parallel transported vector along a geodesic from ¢ to p to coincide with n* at p
corresponds intuitively to the bending of 3 in the spacetime in which it is embedded.
The formula K,, = %Enh,w = hfj Nu;a shows that K, directly measures this failure.

Furthermore, extrinsic curvature is symmetric, K;; = Kj;, and its trace is often
denoted by K:
K =K® = h*K,, (2.9)

We will note later that extrinsic curvature assumes interesting physical meanings
according to the gauge choice.

2.2 Characterization of the matter content

The geometry of spacetime is determined by its energy content through the
stress-energy tensor. The matter (or radiation) content of the universe may be
described in two convenient ways, related to the two eulerian and lagrangian
approaches of hydrodynamics, and strictly connected to the (3+1) and (1+3)
splittings of spacetime.

The eulerian approach consists in a fluid approximation: a fluid is a dense
set of particles treated as a continuum. This continuum is described by a vector
field (that we assume to be unique) representing the average velocity of matter
in the neighborhood of each point of spacetime.

The lagrangian approach uses a particle distribution function in order to
follow each matter element along its worldline and labeling it with a unique
spatial position vector q.

In any case, the matter 4-velocity of a particle is defined to be the unit tangent
(as measured by g,,) to its worldline:

dxt
ut = ;—/\ with d\? = —dS? and such that utu, = —1 (2.10)

In the (3+1) split, spacetime is naturally described by Eulerian observers sitting
in the space-like hypersurfaces with constant spatial coordinates; in the (1+3)
split, spacetime is described by Lagrangian observers moving along the world-
line which define the threading.

Although we prefer a (3+1) splitting, we will have in mind the latter point
of view when defining the other kinematic quantities of matter content, even if
definitions are coeherent in any of the two approaches.

Stress-energy tensor

The stress-energy tensor in E.E. provides the source for the metric variables: as
the FRW metric is our zeroth order solution of the universe, the stress-energy
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tensor of the background matter is forced to take a perfect fluid form
" = (p + p)uru” + pg"” (2.11)

where with perfect fluid we generally mean a patch of matter isotropic in its rest
frame and characterized only by pressure and energy density. We then a priori
exclude any extra terms corresponding to bulk and shear viscosity (respectively,
the isotropic stress generated when an imperfect fluid is rapidily compressed or
expanded, and the stress due to the shear -see below), thermal conduction and
other physical processes.

To these restrictions we add our requirement of matter content being pressureless
and hence collisionless: such a pressurless fluid is often called dust or cold dust
and is described by a very simple stress-energy tensor, namely

™ = putu” (2.12)

Other kinematic quantities

Let V* be a time-like unit vector field, tangent vector to a congruence of time-
like curves; the following quantities are defined:

PROJECTION TENSOR h,, = g, + V.V, (2.13a)
VECTOR-GRADIENT TENSOR 0, = %h;“ hP(Vas + Vo)  (2.13D)
EXPANSION © = V%, (2.13¢)

SHEAR 0, =0, — % By © (2.13d)

VORTICITY OR TWIST wp, =1, b, (Vaig — Vaia) (2.13e)
ACCELERATION a, =V, V¥ =V, (2.13f)

These time-like curves could represent the histories of small test particles,
in which case they would be geodesics, or they might represent the flow lines
of a generic fluid: hence, quantities of (2.13) assume specific physical meanings
depending whether the time-like unit vector is the normal vector field to a family
of space-like hypersurfaces n*, the 4-matter velocity u* or geodesics tangents
&F of free particles.

V# =nt) If V¥ =nH then the projection tensor is the well known spatial
metric and O represents the volume expansion rate of the hypersurfaces along
the normal vector.

Vi =) IfVHF=uM, h, is at each point a projection tensor into the rest
space of an observer moving with 4-velocity u*; the velocity-gradient tensor de-
termines the rate of change of distance of neighbouring particles in the fluid and
© its isotropic volume expansion. The shear tensor o, (the trace part of ©,,)
determines the distorsion arising in the fluid flow leaving the volume constant:
the direction of the principal axes of shear (its eigenvectors) are unchanged by
the distorsion, but all other directions are changed. Finally, the vorticity tensor
w, determines a rigid rotation of patch of fluid with respect to a local inertial
rest frame leaving one direction (the axis of rotation) fixed (see Figure 2.2).
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Figure 2.2: Tt is probably easiest to understand the meaning of some of the defined
quantities by considering how a sphere of fluid particles changes during the elapse of
a small increment in proper time, choosing 0 at the centre of the sphere: (a) action of
expansion © alone; (b) action of shear o, alone; (c¢) action of vorticity wp..

As one moves along one of such families curve, expansion, shear and vorticity
change with precise evolution equations, knowing the Riemann tensor. Among
the others, we concentrate our attention on the Raychaudhuri Equation, the
equation for the rate of change of the expansion © which plays a central role
throughout the thesis:

doe 1 .
g = “Rw VIV 2 =200 — 202 VR, (2.14)
(where w? = fw,, W' >0 and 02 = 10,0 > 0)

From it one sees that vorticity induces expansion (+ sign) as might be expected
by analogy with centrifugal forces, while shear induces contraction (- sign).
We do not derive here equation (2.14) in fully generality but we postpone the
task to a next section, where we will adopt a precise gauge choice and hypoth-
esis on matter in order to express the Ricci tensor through E.E. Anyway, let us
remark that the Raychaudhury equation is valid apart from E.E..

We recall that another hypothesis that our matter content will have to satisfy
is to be not only pressureless but also irrotational, that is with w,, = 0: the
reason of such a requirement will be manifest in next section.

2.3 The syncrhonous and comoving system of co-
ordinates

Defining the synchrounous gauge

We begin following the first approach outlined in the previous sections.
Let (M, g,..,) be a manifold with metric of signature (-,4...+): the synchronous
gauge is defined by the conditions

goo = —1, goi =0
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In terms of coordinates, if dimM = 1 4+ n then we must specify 1+ n condi-
tions, because 1 + n are the coordinates tranformations: ggg carries with itself
one degree of freedom and defines the temporal coordinate (the slicing), while
the n-vector gg,; fixes the spatial coordinates.

In terms of components under spatial transformations (scalars, vectors and ten-
sors -see later Appendix A-), a gauge choice is implemented with 2 scalars and
1 transverse vector: 1 scalar comes from ggg, 1 scalar and 1 vector from gy;.
Let then see the properties of such a coordinate system.

Fact 1. goo = —1 = temporal coordinate z° = proper time 7.

Indeed, between two events at the same spatial coordinates, we have
dS? = g, datdz” = —cdn* = goodadz® = dn = %\/%d:co
In other words, gopg = —1 implies that the proper-time distance between two
neighboring hypersurfaces along the normal vector coincides with the coordinate-
time distance defining these hypersurfaces.
For this reason, we will even refer to this condition with the expression proper-
time slicing.

Fact 2. go; =0 = # space-coordinates clocks synchronization.

Indeed, the rate of deviation from simultaneity between two clocks at differ-
ent spatial coordinates measuring the same events is Az%,,, = —g";% (see the
usual radar-rangin experiment). In this case, the time coordinate of an event
marked by two clocks at different spatial coordinates coincide.

Another way of defining the synchronous gauge refers to the second approach
seen earlier. Let (M, g, )be a 1 4+ n-dimensional spacetime.
Synchronous gauge: foliation of M in n-hypersurfaces at ¢ = const on which
we put spatial coordinates such that clocks are synchronized, and identification
of normal geodesics as time-lines along which we let the time-coordinate flowing.

3 L geodesics

Such a geometrical construction is possible thanks to the next general fea-
tures.

Lemma 1. Let X be a n-dimensional submanifold of M with Riemannian met-
ric; let n* the vector normal to ¥ in a generic point p € 3. Then n* has the
direction of time (it is inside the light-cone of p).

Lemma 2 (Existence and unicity of geodesics). Given p € M and V, the
tangent space at p of M, then for any TH € V), there always exists a unique
geodesic through p with tangent T*.

Applied to our situation, these two lemmas allow us to define a sensible
prescription for the coordinates choice. The n-dimensional embedded
submanifolds of M are our space-like hypersurfaces at constant time, whose
tangent spaces can be naturally viewed as n-dimensional subspaces of the tan-
gent space of M. We begin referring to a single hypersurface at constant time,
which we could call X;n: for brevity, we will avoid this specification remember-
ing that the possibility of extending the construction to all ¥; is not obvious
but feasible and viable. So, let p be a generic point of ¥ and n* the unique
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vector € V, orthogonal to all vectors in V,,(X): for the lemma 1, this vector does
not lie in V,(X). Then we can construct the unique geodesic through p with
tangent n* and fix the coordinates as follows. We choose arbitrary coordinates
(x',...,2™) on a portion of ¥: then we label each point ¢ in a neighborhood
of that portion of ¥ with the parameter ¢ along the geodesic on which it lies
and with the coordinates ', ..., 2" of the point p € ¥ from which the geodesic
emanated.

In a sufficiently small neighborhood of each p € X, the map q — (¢, 2!, ...,2")
defines the chart we wished to construct.”

Moreover, one could demonstrate that the geodesics remain orthogonal to all
the hypersurfaces 3, [1], showing that the prescription for the coordinate choice
can be extended to all the spacetime.

4N

Figure 2.3: Construction of Gaussian Normal coordinates or synchronous gauge.

This geometrical construction, otherwise the first one, shows much more di-

rectly the connections between the physical concept of system of coordinates
and the mathematical one of chart of a manifold.
There is more. The geodesics emanating from ¥ may eventually cross or run
into a singularity. This occurence is harmful in the (3+1) frame because the
hypersurfaces (exactly by the definition of embedded submanifold) shoul not
cross themselves or the others in order to preserve the chart being one to one
and onto: in that case, on the contrary, two different sets of x* label the same
spacetime event. This is the reason why the threading (1+3) description is more
general than the slicing one [7] and in some cases preferable.

2We use here the time label ¢ consistently with global iperbolicity theorem: anyway, t is
still just a time coordinate or parametrization, that one we called z°: when later we will
assume a synchronous gauge then we will be allowed to use t as proper time.
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Equivalence of the two definitions
The synchronous frame in the first approach presents the following properties.

Fact 3. goo = —1, go; = 0 = time-lines (with x* = ... = 2™ = const) are
orthogonal to hypersurfaces at t = const.
In other words, the rate of deviation of a constant space-coordinate line from a

line normal to a constant time hypersurface is null.
Indeed, let us write the n-vector tangent to the time-like lines:

dat 23 . 0 i
§“zﬁw1thd/\:(—d8)2: &=-1,&=0

Let us write the n-vector L ¥;: n, = (f)z—tu with ng =1, n; =0.

Then n® = ¢% n, =-1,n"=n;, = n’=¢" and n* = ¢'.0
Fact 4. goo = —1, go; =0 = time-like lines are geodesics of all spacetime.
Indeed, let £# be the tangent n-vector to lines defined by the equation 2! =
.. =a" = const : £ = —1, ¢ = 0. Let us remember the geodesic equation:
dxH? dz dz”
+ Iy — =0
dt? Podt dt

We can easily see that £* is solution of the equation. In fact

0 . L i .
g T 10,6767 = 04+ THE%0 + T, + TY,6°¢ = 0 and G5 +T1,€7€7 = 0,
being I'), =T}, = 0.0

In other words, if goo = —1, go; = 0, vectors orthogonal to the hypersurfaces
are (tangent to) time-like lines of constant space-coordinates and time-like lines
are geodesics. These features of synchronous conditions allow to implement the
geometrical construction of the second way demostrating the equivalence of the
two approaches. Yet, they are less general than the two lemmas seen earlier,
that is why we preferred to show the two definitions separately.

Other characterizations of synchronous gauge

e A synchronous gauge choice is in principle always possible for a spacetime
like our own, 14-3-dimensional with Lorentzian metric.

e The synchronous gauge choice is not unique: gauge-fixing conditions or ge-
ometrical construction do not eliminate the gauge freedom, neither in time
slicing nor in space-coordinates setting. They leave a so called residual
gauge freedom. Infact:

— 1%t approach: a metric such as
dS? = —dt* + hyj dx'da’

admits any time-coordinate transformation and any space-coordinates
tranformation.

— 2" approach: although the chart is well defined, a residual gauge
freedom arises from the freedom to adjust the initial settings of the
clocks (to choose the ;5 ) and to choose the initial spatial coordinate
labels (the origin of space-coordinates).
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e In the synchronous gauge, there exists a natural choice of reference sys-
tem, that one of "fundamental observers" who fall freely along the normal
geodesics carrying clocks reading time ¢t. Because the spatial coordinates
x' of each fundamental observer are held fixed with time, the 2% in syn-
chronous gauge are Lagrangian coordinates.

e In the synchronous gauge, it is not possible to put at rest (7 = 0) all
the matter filling the space: it is to say that a synchronous system is not
necessarily a comoving gauge.

e K, =

The comoving gauge

The comoving gauge, unlike the synchronous one, deals with the content of
matter in our spacetime.

Let (M, gu) be a manifold with metric of signature (-,+...4): the comoving
gauge is defined as the frame in which all filling space matter is at rest:

=0

This condition fixes spatial coordinates only: u? carries with itself only 3 degrees
of freedom in terms of coordinates and 1 scalar and 1 solenoidal vector in terms
of components. We then should call this condition space-coordinates choice
rather than gauge. What about the time slicing?
Following [6], we stress that there are several possibilities in associating this
space-coordinates choice to a time-slicing: for example, one could take ggp =
v’ =0, in what can be called comoving proper-time gauge, or go; = u* = 0 that
is a comoving time-orthogonal gauge.
Counsistently with [16] and [17], we will think of the latter alternative as our
comoving gauge and we specify the definitions as follows: Let (M, g,.) be a
manifold with metric of signature (-,+...+): the comoving gauge is defined
by the conditions:
u'=g) =0

The quantity (u® — g¢) can be shown to be a scalar under gauge transfor-
mations ([6]: it transforms under gauge change only with the « of law (2.4)):
the condition u’ — g = 0 fixes a slicing such that the matter (1 + n)-velocity
is orthogonal to the constant time hypersurfaces (velocity-orthogonal slicing).
The conditions u? = go; = 0 impose a space-coordinates choice such that the
fluid is at rest and clocks are synchronized.

In terms of the geometrical approach: Let (M, g,,)be a 1 4+ n-dimensional
spacetime. Comoving gauge: foliation of M in n-hypersurfaces at ¢t = const
on which we put spatial coordinates such that clocks are synchronized and fluid
at rest, and identification of normal matter worldlines as time-lines along which
we let the time-coordinate flowing.

¥ L matter worldlines

For this coordinate system we have the following properties:
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e The "scalar condition" completely eliminates the gauge freedom associated
with initial hypersurface choice, while on hypersurfaces there remains a
residual gauge freedom related to the origin of spatial coordinates.

e In the comoving gauge, the stress-energy tensor satisfies TiO =0.

e In the comoving gauge, there exists a natural choice of reference system:
the one of observers comoving with the matter flow, that is observers
seated on particles and then moving along their worldlines.

1 _ 1 Ohuy
o Ky = 538l = 5 =5

Pressureless and irrotational fluid: synchronous and comoving gauge

As pointed out earlier; a synchronous system is not necessarily comoving with
the matter. Is there a particular situation in which the two gauge choices can
be taken simultaneously?

Fact 5. p = 0 = a synchronous gauge can be comoving.
Let us remember that

e trajectories of particles subjected only to gravitational forces are geodesic
lines

e trajectories of particles subjected to pressure forces (i.e. non-gravitational
forces) are not geodesic lines.

By pressureless fluid (p = 0) we mean non-collisional fluid, that is a fluid with
no pressure forces. Then, this fluid trajectories are geodesics: worldlines =
geodesics. If p = 0 there’ s no contradiction in choosing a synchronous gauge
which is comoving as well. [J

Actually, the condition p = 0 is not the only necessary condition for having
a synchronous and comoving gauge.
Let us write the fluid (1 4 n)-velocity in comoving coordinates: u* = (1,0). If
we are in a synchronous gauge as well, u, = (—1,0).
Let us then see the vorticity: as shown in previous sections,

p— M - o
Wyy = Upsy — Uy With w = uy, — qua
Then
Wy = Uy, — Uy, = 0 for the particular chosen frame. (2.15)

But (2.15) is a tensor equality which must be verified in any coordinates system.
We can then deduce that in a synchronous but non comoving gauge curl ¢ =0
and that

p=0AND w=0=—=
SYNCHRONOUS AND COMOVING GAUGES CAN BE TAKEN SIMULTANEOUSLY

Throughout the thesis we will then work in this special frame, assuming all
the good properties of each two gauges. In particular, our protagonist variable
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(stressing on its purely spatial nature) will be the velocity-gradient tensor or
extrinsic curvature:

O, =u'; = %hia haj = K. (2.16)
Our spacetime will be described by fundamental observers moving along par-
ticle geodesics=worldlines and we will naturally be led to follow a lagrangian
approach. Actually, because with this choice we are taking the threads to cor-
respond to the worldlines of comoving observers in the slicing framework (lines
of fixed Z), then the two (3+1) and (1+3) descriptions of Bertschinger paper
[7] are the same and it will be possible to switch from the eulerian approach to
the lagrangian one without problems.

2.4 Einstein Equations in ADM formalism

The next goal is to rewrite E.E. taking advantage of the frame fixed earlier
and separating the operation of spatial derivatives and time derivative: we are
going to present the (3+1) spacetime decomposition of E.E. into constraints and
evolution equations developed in detail by Arnowitt, Deser & Misner in 1962
[12].

Einstein Equations read

1
Ryw = 59w R = k? Ty (2.17)

(with k? = 8(’;—4G and c=1)
In our frame, the line-element is dS? = —dt® + h;;(t, ) daz'dz?, extrinsic curva-
ture and velocity-gradient tensor concide (2.16) and geometrical quantities are

expressed as reported in Appendix B. Let’s then write down E.E component by
component:

1
0-0) RY, — 5(58 R = k% T% and substituting from Appendix B,
. 1 .
-0+0%9 6" - 5(<3>R +20+02+0% 0°) =k T ie.
02-0% 0%, + R =2 k2T

: 1
0-j) Rj =50 R=FK T ie 0%, —0,;=—k T

.. ) 1 .. .
i-j) R = 50; R =k T'; with R = —k> T : then
, 1.
R; = k> (1" — 55; T) and from Appendix B

. .. ) . 1 .
DR +0+6 6 = k(T — 50, T)
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Until now we just used the hypotesis of synchronous gauge. Equations ob-
tained are clearly separated in 1+3 constraints and 6 evolution equations: in
fact, equations arising form GO# involve only a single time derivative of spatial
metric, while those arising from Gi# have one time derivative of extrinsic cur-
vature and hence two time derivatives of spatial metric. Equations (2.18a) and
(2.18b) are known respectively as ADM Energy Constraint and ADM Momen-
tum Constraint; equations (2.18c) are simply called ADM Fvolution Equations:

0?-0% 6" + R =2k T (2.18a)
0%, — 0, =k T (2.18b)
. . ) ) 1 .
2 ) 3 T 1.2 7 )
O, +0 60 + IR = KT — 55, T) (2.18¢)

One could desire to specify those equations accordingly to the matter content
of the universe which he is drawing. In our case, T, = p u,u, with u* =
(1,0,0,0) because of comoving coordinates and u, = (—1,0,0,0) because of
synchronous coordinates, then it is straighforward to obtain the ADM FEinstein
Equations in dust universes:

0% -0 6 + BIR = +167Gp (2.19a)
0%, =0, (2.19b)

Y] 7 3 T 7

0, +0 0", + IR =4rGp 4! (2.19¢)

The main advantage of this formalism is that there is only one dimensionless
(tensor) variable in the evolution equations, namely the spatial metric tensor
hi;, which is present with its partial time derivatives through ®1j and with its

spatial gradients through the spatial Ricci curvature (3)R§-. The only remaining
variable is the density p, that one could replace from the energy constraint or
indeed rewrite in terms of h;; by solving the continuity equation

p=-0p (2.20)

The redundancy of disposable equations is again manifest: which equations
to take? One possibility is to discard equations (2.19a) - (2.19b) and to be
left with exactly as many second-order in time equations as unknown fields:
ADM constraint equations would then be regarded as providing initial-value
constraints on geometrical and matter variables. If these constraints are satisfied
initially (this is required for a consistent metric), if equations (2.19¢) are used
to evolve the metric while matter variables are evolved so as to locally conserve
the net energy-momentum, then ADM constraints will be in principle fulfilled at
all later times, and may eventually be used to check the qualities of subsequent
calculations. (In effect, E.E. have built into themeselves the requirement of
energy-momentum conservation for the matter via Bianchi Identities.)

We will follow exactly this road, after having manipulated a little egs. (2.19c¢).

Raychaudhuri equation

In (2.14), we reported Raychaudhuri Equation, the evolution equation along

3

time-like curves of the expansion rate ©. Now, ADM evolution equations govern
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indeed the evolution of the extrinsic curvature tensor @ij: being O the trace part
of extrinsic curvature, then the trace of (2.18¢c) or (2.19c) should give exactly
Raychaudhuri equation. This is what happens, even if we could rewrite it in
several ways. One should take infact the trace directly of (2.19¢) or of (2.18c¢)
(remebering that in our case tr T} = 0) to obtain

. 3
©+6+ OR = k(T — = T) = 122G,

and then could use the Energy Constraint (2.19a) in order to substitute ®)R or
p. We report here both of possibilities, but we will be inclined to use the second
one to avoid calculating later the perturbed expression of energy density:

O+0" O +47G p=0 (2.21a)
o1 1
o+ 162 + g@‘“’ Oup + 1(3)7% =0 (2.21h)

Note that if one takes equation (2.14), expresses Ricci tensor through E.E.
applying the hypotheses of sinchronous and comoving gauge and pressureless
and irrotational perfect fluid, he will find the Raychaudhuri Equation in the
form given in (2.21a).

do 1 .
In faCt7 E = _RMVVMVV + 2’LU2 — 20’2 — 592 + Ve e

we are in the case V# = u" and we are following particles along

their worldlines, then

de 1 .
i —Ruutu” + 2uw? — 202 — 562 +ur .

de 5 9o 1 4
Now, v* = (1,0,0,0) and w = 0 so i -Ruutu” —20° — §@ .

1 1 1
Ruutu” = kQ(TW — 59#1’ T) u'u” = 5]62 p and o2 = O, 0" — 562

— 0+0,, 0" +4rGp=0 O

This should demostrate in a very specific case the evolution equation of the
expansion.

Conformal rescaling and FRW background subtraction

With the purpose of making the metric pertubations of the Einstein-de Sitter
background, it is convenient (as suggested in [19]) to factor out the homogenous
and isotropic solution of the above evolution equations: to this aim we also
perform a conformal rescaling of the metric with conformal factor a(t), the
scale-factor of FRW models, and change the time variable to the conformal

time 7, defined by dr = %. The line-element is then written in the form

dS? = a*(1) [—dr? + i (1, &) dx'da’] (2.22)

where a?(7)v;; (1, ) = hy;(t(1), T).
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We recall here briefly the properties and solutions of the FRW universe filled
with a perfect fluid of dust (n = 3), that is the properties of the Einstein- de
Sitter background:

d 2

dStpw = a*(1) [—dr? + ﬁ +7r2d62 + r? sin 0 d¢?] (2.23a)
O Rijre =k ik Vit — Yt Vi) (2.23Db)
GR; =2k v (2.23c)
®R =6x (2.23d)

! 8t G
(%)2 = WT py a® =k (2.23¢)

a// a/
20—=)— (=) +r=0 2.23f
() (L) 4 (2.236)
a/

Po=—3— Py (2.23g)

where primes denote differentiation with respect to the conformal time 7, &
represents the curvature parameter of FRW models and p; the energy density
of the background.

By subtracting the isotropic Hubble-flow, we introduce a peculiar velocity-
gradient tensor or conformal extrinsic curvature:
1

!/

( with @ = (1/a,0,0,0))

such that

/

i 1, a 1 a
Oy = —(0';+—0)) and © = — (¢ + 3—) (2.25)

J

We are ready to rewrite our equations 2.19 in the new formalism: in detail,
we want

e to express everything in terms of conformal time 7: dt = a(t)dr
o to replace the unknown h;; with the conformal spatial metric ;; (see 2.25)

e to subtract from the above equations the background FRW Einstein-de
Sitter zeroth order solution (see 2.23).

We report the results, having introduced the density contrast 6 = (p — py)/po
and renamed the conformal Ricci curvature of the three-space R; = (3)7%;- (v) =
a? (3)Rij(h): in what follows we will sometimes refer to these equations as ADM
rescaled perturbed Finstein Fquations.

/
62 — 0% 0", + 4%9 + (R = 6K) = +167G a*5py (2.26a)
6%, =0, (2.26h)

i/ a i a i i i
o', +239j+99j+ g9 8+ (R, — 266";) = (4nG a® py6)6;  (2.26¢)
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From now on the bar denotes covariant derivatives in the three-space with
metric ;5. The calculation of (2.26) requires some attention: it’s worth remem-

bering that

. 1 g 1 7,
if 0,5 = 57&- then 0% = —57 K
and that the presence of time derivative must always be handle with care.[]

Equation (2.26¢) will be the equations through which we will calculate per-

turbed metric at first and second order. As shown in Chapter 4, our perturbed
spatial metric will be written down as function of two perturbative functions,
one with trace, the other one traceless: as last step of the chapter, we want to
split the evolution equations in their trace and traceless part, so that the Ray-
chaudhuri equation governs the evolution of the trace of spatial metric, while
the traceless part of (2.26¢) has the traceless perturbative function as each order
solution of spatial metric.
The former is obtained taking the trace of (2.26c) (as already done some page
ago), using the Energy Constraint (2.26a) in order to express the matter con-
tent and remembering expansion and shear (peculiar) definitions (see (2.13));
the latter substituting expression for (peculiar) expansion as function of (pecu-
liar) shear, 0°; = o', 4+ £06%; we suppose to deal with spatially flat universes,
namely k£ = 0:

! 1 3 1
0 +2504 202+ 262 = = 2.9
+ . + 5 + 20’ 4R (2.27a)
i’ a i i 1

Equations (2.27) are still a system of six indipendent equations: one degree of
freedom comes from the Raychaudhuri equation, 5 from the evolution equation
of shear.

The following Table resumes the formalism introduced in this Chapter and
adopted throughout this thesis:

[ FRAME AND FORMALISM ]

matter content:
TIRROTATIONAL (w =0) DUST (p =0)
metric background:
EINSTEIN-DE SITTER UNIVERSE

dS2 pyy = a2(7) [~dr® + 2425 1 12d62 + 12 sin? 0 dg?)

matter background:
T = putu?
gauge choice:

SYNCHRONOUS+COMOVING
evolution equations:
trace part) 0 + 2%9 + 3602+ 302 =—IR
traceless part) oijl +2%0' 400", = —(R', — +Rd})




Chapter 3

Standard Perturbation
Theory at First and Second
Order

As emphasized in the Introduction and in the Chapter 1, the study of the large-
scale structure of the universe and its origin is usually performed with different
techniques and approximations, depending on the specific range of scale under
analysis. The full relativistic theory rather than the Newtonian approximation
is needed when one of the following three situations occurs: strong gravitational
fields, relativistic motion (v ~ ¢) for both sources and test particles, scales larger
than the Hubble radius. In terms of density irregularities or more generally of
cosmological perturbations, these situations are expressed as pronounced am-
plitudes of irregularities, high local density and perturbation wavelengths larger
than the Hubble horizon size.

In this Chapter we lay the essential ideas of full relativistic cosmological pertur-
bations theory as developed by Lifchitz, Peebles, Bardeen, Kodama & Sasaki,
and others, since the Sixties ([24], [25], [18], [6],...). We present the usual clas-
sification of metric perturbations, define the notions of gauge choice and gauge
transformations in the perturbative context trying to make it clear why such
a terminology has been adopted in connection with the standard concepts of
Chapter 2, and briefly discuss the consequences of gauge invariance. Never-
theless we do not dwell upon elegant gauge-invariant formalisms such those of
Bardeen and Kodama & Sasaki, but we prefer to summarize the standard re-
sults in the sychronous gauge at first and second order, having in mind a further
comparison with the alternative technique worked out in Chapter 4. In what
follows we will refer to the formalism of this Chapter as Standard Perturbation
Theory.

3.1 Ideas of the Standard Perturbation Theory

From a very general point of view, the idea underlying the theory of cosmological
perturbations is to find approximate solutions of some field equations regarding
them as small deviations from a known exact background solution. In our case,



46 Standard Perturbation Theory at First and Second Order

we restrict the background spacetime (or zeroth order solution) to belong to a
certain class, namely FRW spatially homogenous and isotropic spacetimes; the
equations we have to try to solve are of course E.E..

In General Relativity, like in any other spacetime theory, the difficulties arise
from the fact that not only fields in a given geometry have to be perturbed,
but the geometry itself; besides, coordinate invariance complicates General Rel-
ativity compared with other gauge theories (like Electrodynamics in Minkowski
spacetime) in which the spacetime coordinates are fixed while other variables
change under the appropriate gauge transformations.

There are two practical methods for getting the equations of a perturbed
system:

e One could derive the Euler-Lagrange perturbed equations from an Action
Principle: the (r + 1) order perturbation of the action S of a system
produces r*" order Euler-Lagrange equations;

e or one could directly write equations of the system and perturb them
around the background solution.

We will follow exactly the second approach, as suggested at the beginning.
The perturbed spacetime is often called the physical spacetime (M, g,, ), while
we refer to the unperturbed spacetime with known solution as the background
(Mo,gifw). Being as general as possible, let T' be any relevant tensor field
representing a physical or geometrical quantity in the spacetime of interest and
satisfying some field equations, and let T(g) be the known value that the same
quantity has in the given unperturbed background. If the deviation from the
known exact solution T{g) is small, it makes sense to look for an approximate
solution by expanding T in Taylor series in a suitable parameter €.
Consider the equation

E(T)=0 (3.1)

for the unknown function or, more generally, for a collection of functions or
tensor fields 7. In the case of interest, T" is the spacetime metric g, (possibly
together with variables describing the matter content like the stress-energy ten-
sor T},,), and £ are the E.E.
The basic assumption in perturbation theory is the existence of a parametric
family of solutions of the field equations, to which the unperturbed background
spacetime belongs [1]:

E(T)=0 such that (3.2)

e ¢ is real;
e T, is a differentiable function of ¢ (and 7, can be written as T'(¢));
e ¢ = 0 identifies the background: T¢|c=o = T\().

In cosmology and in many other cases in general relativity, one deals with a one-
parameter family of models (M., T,). In some applications, ¢ is a dimensionless
parameter arising naturally from the physical problem one is dealing with: in
that case one expects the perturbative solution to accurately approximate the
exact one for reasonably small €. In other problems, ¢ can be introduced as a
purely formal parameter, and in the end, for convenience, one can choose € = 1.
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This is exactly what we will do: the physical spacetime M, will eventually be
identified by e = 1.

In any case, the parameter € is used for Taylor expanding these T.: as in el-
ementary analysis, the idea is to evaluate the deviation from the zeroth order
term by differentiation of the function of interest. In particular ([15]), the pro-
cedure consists in differentiating at different orders the equations and at each
step solving them.

For example, as first step one can derive a simpler equation from equation (3.2)
by differentiating it once with respect to € and setting € equal to zero: the equa-
tion thus obtained is a linear equation for the first derivative of 7" with respect
to €, namely 6T(;) = (‘fi—f)ezo. Since linear equations are generally much easier
to solve than nonlinear ones, it may be feasible to solve the former even if (3.2)
is intractable: if this is the case, an expression as T(qg) + €571y should yeld a
good approximation to T., and the quality of the approximation can be im-
proved repeating the procedure at the following orders. Then at second order,
the second derivative with respect to € at € = 0 gives an equation which is linear
in the second order perturbation §7(), and where the first order perturbation
now appears as known source terms. This can obviously be extended to higher
orders, giving an iterative procedure to calculate AT, = T, —T g to the required

accuracy.
The result can be written as follows
oT 1 9T
T. =T, — e | — 3.3
© F€ (86>E_0+26 (862>€_0+ . (3.52)
1

where T, lives in the perturbed world, T{) in the background, 67{,) = (%TTF;F)e:O

represents the r*" order correction to T' with respect to the background value
(the 7*" order perturbation) and e gives a weight of such a correction.

3.2 Implementing the perturbations

Having delineated the general ideas underlying the making of perturbations, we
want now to specify the procedure to the case under study. As discussed before,
we set € = 1 to describe our physical spacetime. We will expand the quantities
of interest up to second order: this is recent and due choice, for the increasing
of calculations complexity as one goes at higher orders.

In order to take into account the geometry of spacetime and the matter content,
two are the relevant quantities to be perturbed: obviously, the spacetime metric
(and hence all the useful geometrical quantities I'} ), R, R) and the stress-
energy tensor.

Classification of metric perturbations

Expression (3.3b) for small perturbations of the metric is rewritten as follows:
" " o 1 "
g (8, 8) = g™ (£, 7) + 0g13) (8, ) + 093 (1, T) (3.4)

A widely common use (especially when the expansion was stopped at first order)
is to generically expand the perturbations in Fourier coefficients or in any other
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basis eigenfunctions, so that any (Fourier) component or mode is naturally
associated to a wavenumeber and wavelength. We will not adopt directly this
point of view, but prefer a more common approach consisting in splitting of
perturbations in different spatial symmetry components, called modes as well.

The components of a perturbed spatially flat FRW metric can be written as [13]

goo = — a*(T)(1 + 2¢(1) + () (3.5a)
1
goi =a* (1) (w(" + 5w?) (3.5b)
1
Gij :aQ[(l — 2‘1/(1) - \11(2))5ij + XZ(-;) + 5)(1(]2)] (3.5¢)

where 7 is the conformal time and the i-j components have been split in a trace
part and a traceless one: XET)Z =0.

The perturbation variables or perturbative functions (¢, ¥, w;, xi;) are treated
exclusively as 3-tensors of rank 0, 1, or 2 according to the number of indices:
they all live on the 3-dimensional hypersurfaces ¥ of the unperturbed world and
their components are raised and lowered using d;; and §% by definition. The
standard decomposition of spatial vectors and tensors into scalar and transverse

parts of Appendix A then applies:

e ¢, 1 are scalars by their own;

o wlm = Jw™ + wlmj‘, with w( a scalar and ng)J‘ a solenoidal vector,
diwt = 0;
. XE;) = Din(T) + (%Xy)l + anET” + XE;)T7 with x(") a suitable function,

XET)J' a solenoidal vector, 8ixz(.;)—r = 0; hereafter, D;; = 0;0; — %&jvz.

Equations (3.5) are completely general: g,, has 10 independent components
and we have introduced 10 independent fields, 1+1+43+5 for ¢ + ¢ + J + x.
Moreover, as the most general perturbations of the metric, they contain all the
possible scalar, vector and tensor modes: four scalar parts each having 1 degree
of freedom (¢, ¥, w, x), two vector parts each having 2 degrees of freedom
(wh, xt), and one tensor part having 2 degrees of freedom (x ", which is sym-
metric, traceless and transverse). The total number of degrees of freedom is
again 10 as it must be.

There are several reasons for having entered in this mathematical classification
of perturbations. First of all, let us still note that, being the components of
the perturbed metric goo, goi, gi; respectively a scalar, a vector and a tensor
under spatial coordinate transformations, then a scalar perturbation only would
affect all the three components, a vector perturbation only would affect go;, gi;
leaving gop unperturbed, and a tensor perturbation would affect excusively the
space-space components g;;. Furthermore, different perturbations have distinct
physical meanings and represent distinct physical phenomena. In the language
of the (3+1)-formalism, ¢ is interpreted as the amplitude of perturbation in
the lapse function, which represents the ratio of the proper-time distance to
the coordinate-time distance between two neighboring constant-time hypersur-
faces; w is interpreted as the amplitude of perturbation in the shift vector, which
represent, the rate of deviation of a constant space-coordinate line from a line
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normal to a constant-time hypersurface; ) can be seen as the amplitude of the
perturbation of a unit spatial volume, and finally x represents the anisotropic
distorsion of each constant-time hypersurface [6]. The other vector and tensor
perturbative functions have no such an easy interpretation. From a wider point
of view, ordinary Newtonian gravity is a scalar phenomenon, i.e. corresponds
to the scalar mode, being the Newtonian potential a 3-scalar; the vector and
tensor modes, on the contrary, represent the relativistic effects of gravitomag-
netism and gravitational radiation, which have no counterpart in Newtonian
gravity although they are similar to electromagnetic phenomena. Scalar metric
perturbations are associated to density perturbations, which experience gravi-
tational instability and lead to structure formation; tensor metric fluctuations
produce gravitational waves, which are not foundamental at all in structure
formation but can reveal themselves in other phenomena, for example in the
cosmic microwave background anisotropies.

The spatial decomposition can also be applied to the Einstein and stress-energy
tensors (see below), allowing us to clearly see (at least in some coordinate sys-
tem) the physical sources for each type of phenomenon. Finally, the classification
will help us to eliminate unphysical gauge degree of freedom, remembering that
a gauge choice needs two scalars and one transverse vector conditions.

Perturbing the matter content

Our background is the Einstein-de Sitter universe, a FRW matter-dominated
spacetime. As extensively discussed in the previous Chapter, the matter we
consider is irrotational dust and the corresponding stress-energy tensor is that
of equation (2.12). Let us recall that this is a very special and appropriate case,
but even other types of stress-energy tensors are largely considered, as those, for
example, of scalar fields. Anyway, we limit the treatment of the perturbations
of the matter content to the stress-energy tensor of our interest, because if the
general idea is always the same the practical notations are rather different.
Equation (3.3b) is of course rewritten as follows

1

s

Ty =TT +6T1) + ST (3.6)
being TﬁUST = putu”. Therefore we must digress to discuss the perturbations
of energy density and 4-velocity. Energy density is a scalar, then it can be

affected by scalar perturbations only; the 4-velocity, on the contrary, can be
affected by both scalar and vector perturbations:

1
p=poy(t) +0Mp+ 56 (3.7)
u“—l(é“—i-v“ +lv“ ) (3.8)
= 5o tug) + 50 :

Here, we have already assumed comoving coordinates in the background; the
velocity perturbation ’UELT) can as usual be split into a scalar and a vector part,

while the time component v?r) is related at any order to the lapse perturbation
by (see [13]).

We do not linger over writing down the explicit form of the second-order per-
turbed stress-energy tensor even because we will not need it in the continuation:



50 Standard Perturbation Theory at First and Second Order

anyway, it is interesting to note that, even if the background TP(LB) is that of a per-

fect fluid, a general perturbation leads to the appearance of extra terms such as
isotropic stress perturbations (with scalar perturbations only) and shear stress
perturbations, that is anisotropic stress perturbations.

3.3 Gauge choice and gauge dependence in per-
turbation theory

In the previous Sections, some problems dealing with the comparison of quan-
tities between the real world and the unperturbed one have been neglected and
brought forward. To be honest, it is worthwile to remind that in order to make
the comparison of tensors meaningful at all, one has to consider them at the
same point : but 7" and T{g) of Section 3.1 were defined on different manifolds,
respectively M and My, thus we would be allowed to compare them only after
a prescription for identifying points of those different spacetimes is given.
Likewise and for the same reason, perturbations such as those of the metric and
of the stress-energy tensor,

1

Agu, = 691811,) + 569,(5,) (3.9)
1

AT, = 0Ty) + 50T, (3.10)

of equations (3.4)-(3.6), are well defined (univocally) only when a coordinate

choice has been made.

Roughly speaking, a gauge choice in cosmological perturbations theory is a
one-to-one correspondence (a map) between points in the background M, and
points in the physical spacetime M. A change in this correspondence, keeping
the background coordinates fixed, is then called a gauge transformation, and
it can be formally expressed in terms of a coordinates transformation in the
perturbed world a la maniére of equations (2.2) or (2.4).

The essence of the "gauge problem", that has created a great deal of confusion
in the past, consists in two strictly related points:

e arbitrariness in choosing the map between My and M;
e gauge dependence of the value of perturbations.

The second point is probably the most problematic: the perturbation in some
quantity is the difference between the value it has at a point in the physical
spacetime and the value at the corresponding point in the background. A gauge
transformation induces a coordinate transformation in the physical spacetime,
but it also changes the point in the background corresponding to a given point
in the physical world. Thus, the value of the perturbation in the quantity will
not be invariant under gauge transformations if the quantity is nonzero and
position dependent in the background.

Two essentially different ways of handling the perturbations have been then
developed in the literature:
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e the usual one works with coordinates: the gauge is fixed, perturbations of
the metric components are considered, solutions are written in that gauge
and appropriate relations are used to pass to other gauges and verify the
consistency of the results;

e the other approach consists in formulating the problem in terms of gauge-
invariant variables and trying to understand the physical meaning of such
variables.

As already anticipated, we will adopt the gauge-fixing way.

Let us formalize the idea of gauge choice as map between the two spacetimes
(see Figure 3.1,[15]). First of all, let us suppose having fixed a coordinate system
{z*} in the background: any p € My is labeled by x*(p). Apart from the way of
constructing the correspondence, the map a priori depends from the parameter
e: we will later greatly simplify the treatment by taking e = 1 as usual.

A first way of defining the point identification map consists in carrying the
background coordinate over M.:

we : MO i Me
p—O=1(p)  with  2"(p)=2"(0)

O is the point on the physical spacetime corresponding to p through the dif-
feomorphism t.; 1. assigns the same coordinate labels between related points,
and defines in every respect a gauge choice in the perturbed world: this is the
reason why we call such a map choice a gauge choice as well. A change in the
map 1, keeping the background coordinates fixed, is a gauge transformation.

We could as well use a different gauge ¢, and think of O as the point of M
corresponding to a different point ¢ in the background, with coordinates z*(q):

Ve : Mo — M,
q— 0 =9(q) =v(p)  with  z"(q) #2"(0)

There is then another reason for calling those correspondences between the dif-
ferent spacetimes with the same terminology of standard gauge facts: the two
different ways of mapping M., through the coordinate system of M, suggest
a one-to-one correspondence between different points in the background, that
is an active coordinate transformation on the unperturbed world. Otherwise a
standard gauge transformation (or passive transformation) which changes co-
ordinate labels to each point keeping the manifold fixed, the composition of
maps

(1)6 : MO - Me - MO
pra=2(p) = o (1he(p))

is a gauge transformation which does not change the coordinate label system
but moves the points on the manifold, and then evaluate the coordinates of the
new points: (e, q) = P¥(z%(p)).

With the same approach of Section 3.1, in order to compute at the desired
order of accuracy the effects of a gauge transformation, we need a Taylor expan-
sion. The latter up to 2"¢ order of the transformation z*(e) = ®#(z®) between
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U %

7 \

R

/ : ax* (@)

M, p(x"(p))

Figure 3.1: Active coordinates choice on the background as composition of two gauges
between Mgy and M.

the coordinates of any pair of points of the background can be written as follows
(115131, € = 1):

_ 1 v

T =t + )+ 5(5{‘1)” &) +&(z) (3.11)

where (1) and () are two indipendent vector fields and closely related to that
one of equation (2.2). The gauge transformation under (3.11) up to 2"¢ order
of a generical tensor is

. 1
T =T+ L, T+ 5(8,, + Lee,) )T (3.12)

In the light of these new formalism, the generic perturbation is rewritten more
carefully as

ATE = 1/):T - T(O) and 5T(r) = (a wéT)
e=0

5o (3.13)

and the first and second order perturbations of T transform under a gauge
transformation up to second order as

8Ty = 6Ty + ey To) (3.14a)
0T(2) = 0T (2) + 2L¢,, 0T (1) + L2 T(0) + Leoy T(0) (3.14b)

First order gauge transformations

As a practical application of all the theory developed in these last few pages,
we write down at least the first order gauge transformations of the perturbative
functions presented earlier; we have in mind the usual decomposition of gauge
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vector € as indicated in (2.3):

/

n a

o) = da) +afyy + paeleh (3.15a)
o = w® —al) + g0+ (3.15b)
- 1, a

Wy =¥q) - gV Bay — oW (3.15¢)

/ /

Xﬁ;) = Z(Jl) + 2D By + df-,lj) + d;}i) (3.15d)
= (1
sp™ = 6p™ + ol aq (3.15¢)
_ a

oy = vy ~ —aw) ~ (3.15f)
oty = vy — B —dy (3.15g)

Gauge transformations of second order perturbations are much more compli-
cated than these and far exceed the necessity of this thesis [13]. The only thing
that is important to point out is the form of such transformation rules: for
example, the gauge transformation of the lapse perturbation (3.15a) or of the
velocity perturbation time-component (3.15f) are expressed only in terms of «;
(3.15d) shows that the tensor modes of x;-'—j are gauge invariant at the linear level,
as tensor type gauge transformations cannot exist. In any case, they suggest
practical methods for gauge fixing.

Implementing gauge choices

Having demonstrated the meaning of the gauge choice in perturbation theory, as
last task of this section we want to give some practical prescriptions for fixing
it. The procedure we follow is that of the first approach outlined in Chap-
ter 2: analogously to what done earlier, we must impose two relations among
the gauge-dependent variables, one for fixing the slicing and one for the space-
coordinates. The simplest way to specify the time slicing is to require one of
those quantities transforming only with a to vanish; for each time slicing the
standard way to eliminate the spatial coordinate gauge freedom is to require a
quantity whose gauge transformation involves § and d; to vanish. Consistently
with Section 2.3, we thus have the following definitions:

The synchronous gauge in perturbation theory is defined by the conditions
¢p=w; =0

The comoving gauge in perturbation theory is defined by the conditions
vi=w; =0

Other possibilities are indicated in Table 3.1.
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Proper-time slicing o=0
Synchronous gauge ¢d=w; =0
Comoving proper-time gauge p=v;=0
Velocity-orthogonal silcing v = w;
Comoving time-orthogonal gauge v =w; =0
Velocity-orthogonal isotropic gauge | v; = w;, Xxi; =0
Longitudinal gauge w; = X5 =0
Poisson gauge w," = Xi_jJ =

Table 3.1: Examples of possible gauge choices in perturbation theory (6], [13])

3.4 Standard perturbations at 1** and 2"¢ order of
Einstein-de Sitter universe in the synchronous-
comoving gauge

We finally present the calculation of the metric and matter perturbations up
to second order of the Einstein-de Sitter universe in the standard perturbation
theory. The final aim is to compare the results of this chapter to those ones
obtained with the Gradient Expansion Technique presented in the next two
Chapters.

From now on we will always work in synchronous and comoving coordinates,
essentially for a reason of convenience in performing calculations: as a matter
of fact already second order calculations are almost invariably a computational
tour de force. The simpler form of the gauge-invariant variables often makes
it easy to find analytical solutions and avoids misunderstandings around inci-
dental unphysical modes; but a gauge-invariant second order treatment is not
completely at hand, and in the case under study there are no particular prob-
lems in solving equations. In general, it is not necessary to use gauge-invariant
variables during a calculation, and indeed many cosmologists continue success-
fully to use the synchronous gauge: in the end, when the results are converted
to measurable quantities -spacetime scalars- the gauge modes automatically get
cancelled. Of course, some more attention must be paid in numerical solutions,
where the gauge modes can swamp the physical ones and the consequent round-
off can produce significant numerical errors. But this is not our case: yes, we are
going to get approximate metric solutions, but at every order E.E. are analyt-
ically solved. Unfortunately, the computationally more convenient gauge does
not necessary coincide with the most interesting one; for example, the Poisson
gauge, otherwise the synchronous one, would allow a more direct comparison
with the standard Newtonian and Eulerian approaches adopted in Large Scale
Structure studies. In any case, one is always free to switch to other gauges
making good use of the gauge transformation rules mentioned in the previous
Section and references therein.

Let us then specify the formalism outlined in Chapters 2 and 3 to our task.
The components of a perturbed spatially flat FRW metric in the synchronous
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and comoving gauge are written as follows (see equations (3.5) and the gauge
conditions of the previous page):

goo =—1 (3.16a)

g0i =0 (3.16Db)
n, 1 @

gij =a*[(1 — 2W () — W(g))0i5 + Xl(-j) + §X§j)] (3.16¢)

Then the rescaled spatial metric tensor -the only variable in our equations- reads

1
Yij = (1 =21y — W(g)di5 + Xl(l») + _X(?) (3.17)

J g Aig
The stress-energy tensor is the usual 7, = pu,u, and the Einstein-de Sitter
background is described by a scale factor a(7) o< 72 (as mentioned in Chapter
1). The spatial curvature is set to zero; the density contrast already introduced
in Section 2.4 reads in the new formalism § = Ap/p, so that the density contrast
expansion corresponding to equation (3.7) is

1
6(r, @) = oW (7, &) + 55@ (1, ) (3.18)
The background mass density is p, = pp): we can take its mean value as

Py = 3/ 27Ga?(t)T2. With these notations and hypotheses we can rewrite
E.E.(2.26) as follows:

8 24
02— 0% 0" + =0+ R =+ (3.19a)
T T
9aj|a =0, (3.19b)
i 4 i 2 i 6 i

Using the energy constraint (3.19a) and taking the trace of the evolution equa-
tions (3.19c¢), the Raychaudhuri equation takes the final form:

2 6
/ a nb

We say that in these equations the really indipendent degree of freedom is ~;;
because, through the continuity equation 74" written in the form (2.20) of
Section 2.4, the exact solution for the density contrast is known and can be
written as

3(r, @) = (1+8;n(8) Iy (7, @) [yrn ()] 712 1. (3.21)

Here v = det;; and the subscript "IN" denotes the value of quantities at some
initial time [14].

Calculation scheme and initial conditions The calculation scheme con-
sists in an iterative procedure: the unknown spatial metric (with its 6 degrees
of freedom) is known at the zeroth order and, according to the desired accuracy,
if r is the expansion order of quantities then r is the number of steps of this
scheme. We stop our Taylor series at second order, therefore two are the steps
we have to fulfill. At every order, E.E. in the form given in 3.19 are written in
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terms of v;; expanded up to the corresponding r*" order, and they are solved
in the r** order perturbations U,y and xl(-;): the (r — 1)th order metric pertur-
bations (calculated at the previous step) appear as known source terms. The
same procedure has to be applied to the expression (3.21) to obtain the density
contrast.

The idea underlying the calculations should now be almost clear: actually, the
practical procedure presents many passages and difficulties which we are not
going to cover and explain, being outside the purpose of the thesis. We will just
report the main results referring to the literature for more details [13].

Let us now briefly discuss the key issue of the initial conditions and other
well-founded hypotheses. The situation is simplified with the following consid-
erations:

e we neglect linear vector modes since they are not produced in standard
mechanisms for the generation of cosmological perturbations as Inflation:

then wilu = xz(-l)L =0;

e we neglect linear tensor modes since they play a negligibile role for large

scale structure formation: then Xl(-;)—r =0.

We decide to fix the initial conditions at the end of Inflation, that is at the
time when the cosmological perturbations relevant today for the large scale
structure formation are well outside the Hubble radius, i.e. when the comoving
wavelength aL of a given perturbation mode is such that oL > H™!, H =
Z—; being the horizon size, as extensively seen in Chapter 1. Information for
such a valutation come from the study of curvature perturbation ¢ evolution
-a gauge-invariant variable expressing the curvature perturbation on uniform
density hypersurfaces (see [14]). In conclusion, our constraints about the initial
conditions are summarized by

[ ] 51N = O’
o Xglz\), = 0 (for residual gauge fixing).
Linear order solutions

1

At 1% order the growing-mode ' solutions for a dust filled universe in the

synchronous-comoving gauge read

b T .
P (7,2) = S9(@) + g V(@) (3.22a)
72 1
Xz('jl') =773 (%z‘j 3 85V (3.22b)
2
s — %v% (3.22¢)

where (%) is the so-called peculiar gravitational potential related to d;y through
the cosmological Poisson equation (1.40) or (3.22c) itself. A foundamental result
of the standard linear perturbation theory is that at first order scalar, vector
and tensor modes are decoupled and evolve indipendently [6]:

We only consider modes not decaying with time
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Theorem 2. In a FRW spacetime, scalar, vector and tensor equations, if they
are covariant with respect to the coordinate transformation in %, linear in the
unknown geometrical quantities and second order at most in the sense of differ-
ential equations, are decomposed into groups of equations each of which contains
only components of one type. Therefore the three types of perturbations com-
pletely decouple from each other dynamically.

This is of course true even in the case of Fourier or harmonic functions ex-
pansions: there, the temporal evolution of expansion coefficients is determined
by a linear system of differential equations, thus there is no coupling among
different wavelenght modes .

Let us still note that if we had not neglected tensor modes we would have
obtained, by linearizing the traceless part of 6°; evolution equation, the equation
of the free propagation of gravitational waves in the Einstein-de Sitter universe:

T4 (T T
NN 323

This is why tensor modes are associated to gravitational radiation and people
often refer to them as gravitational waves.
Second order solutions

At 274 order the corresponding growing-mode solutions for a dust filled universe
in the synchronous-comoving gauge are written, in terms of the gravitational
potential as well, as follows:

50 ) o ™ /10 2
¢(2) =——¢ - =12y O <—gp’ b(pyab — (V2<p) ) (3.24a)

9 54 252\ 3
) 10 0 ,
X == TR+ T 0 pabi
7 19 4b
— (19 a i — — ,ab u 51 (32 )
+ 755 (19 9905 — 59 b Iy
—12 pi; Vo +4 (V290)25ij) + Ag)
(2) 10 , L 2 7t 2 12 ab
o\ = ?T 1 loa+e Vip | + 126 (5(V ©) +2¢ gpﬁab) (3.24c)

Here AZ(-?) describes second-order tensor modes generated by linear scalar pertur-
bations and possible time-independent terms arising from the initial conditions
but is not necessary for our purposes.

The principal and general phenomenon of second-order perturbation theory
is mode mizing. Interesting consequences of this fact are ([13]):
T

e tensor modes x;;° are no more gauge invariant;

e primordial density fluctuations act as seeds for second-order gravitational
waves and second-order vector modes;

e density fluctuations can be generated from primordial tensor modes.






Chapter 4

Gradient Expansion
Technique

In this Chapter the core of the thesis is presented, that is the calculation up to
four spatial gradients of the perturbed spatial metric in synchronous and comov-
ing gauge of a matter-dominated universe, within the context of the Gradient
Expansion Technique. The latter is a method for expanding and solving E.E. in
a series of terms containing the perturbative functions ¥ and x;;, according to
the number of spatial gradients they contain. This is alternative to the standard
technique introduced in Chapter 3.

The idea of the Gradient Expansion Approximation traces back to the Sixties
with Lifchitz & Khalatnikov [25]; later, different approaches to this approxima-
tion method have been followed according to the field of application and final
goal [26], [27], [30], [31], [32].

The formalism worked out in Chapter 2 is assumed: all the work of the fol-
lowing two chapters has been performed in full relativistic approach, fixing the
gauge, assuming conformal time 7 and hence with all quantities rescaled by
the isotropic FRW background with an expansion factor a(t). The description
applies to a matter-dominated universe, a universe filled with pressureless fluid
assumed to be irrotational, and E.E. are written in the ADM formalism in the
way shown in Section 2.4.

Thus, after having introduced our "seed" spatial metric, explained the nature
of our expansion, and presented the iteration scheme used for getting the so-
lutions, we proceed in the calculation of our purely spatial physical quantities
and spatial hypersurfaces geometrical quantities in terms of the perturbative
functions subsequently up to two derivatives terms (called first order) and four
derivatives terms (called second order).

The calculations and the resolution of the equations have been carried out with
analytical methods: nevertheless, the correctness of the results has been verified
with internal consistency checks (such as Energy and Momentum Constraint of
ADM formalism), and at the end controlled with the help of MATHEMATICA
codes for symbolic computations using EinS package [23].
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4.1 The starting spatial metric and background
comparison

In the synchronous and comoving gauge, the line-element is written as in equa-
tion (2.22), that is

dS? = a*(1) [—d7? + v (7, ¥)dx' dz?], (4.1)

thus we can focus only on the quantities lying on constant time hypersurfaces X
of Chapter 2, starting with the rescaled spatial metric tensor +;;. Let us write
it in a very general form as follows

vig = e 2 (855 + Xij)- (4.2)

¥ and x;; are the well-known functions of time and space of the Standard
Perturbation Theory of Chapter 3, with x;; being a traceless tensor containing
the three modes: scalar y, solenoidal vector x; and symmetric tensor Xg

¥ and x contain all the perturbative orders of this technique:

1

U= \If(o) + \I/(l) + 5\1’(2) + ... (4.3)
1

Xig = XYy + X4 + 5)(5]2») + (4.4)

Broadly speaking, if in the Standard Perturbation Theory the expansion pa-
rameter of Taylor series is the magnitude of deviations from the background,
in the Gradient Expansion Technique the expansion parameter is the number
of spatial derivatives: in other words, all physical and geometrical quantities of
interest are expanded in a series on the basis of their spatial gradients content.
Let T be a generic field, then

1
T = T(O) + T(l) + §T(2) + ... (4.5)

where
e o) contains zero spatial derivatives

e T{1) contains two spatial derivatives

e T{;) contains 27 spatial derivatives.

Our choice to associate the first order to a content of two spatial derivatives
rather than one, and to consider the second order terms as containing four
spatial derivatives, and so on with the r*"* order corresponding to 2r spatial gra-
dients lies in the form of our equations. In what follows, similarly to what done
in Section 3.4, the calculation procedure will consist in an iterative resolution
of E.E. suitable to give the perturbation functions at increasing orders: ~;; will
be the only variable of our equations and will be obtained through an evolution
equation like (2.26¢). Now, the spatial gradient content of equation (2.26¢) is
two and these spatial gradients appear in the spatial curvature tensors R;; and
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scalar R: therefore the solutions of the metric containing zero and one spa-
tial derivatives can be found in just one iteration neglecting those terms, which
means that they solve the same equation. We have to wait for a two-gradient
metric for having a non trivial source term of the same gradient content in R;;
and R, that is R;; and R written as functions of a metric containing zero gra-
dients. The same considerations apply at following steps, with jumps of two
gradients among subsequent solutions for the spatial metric ;;.

The form of the spatial metric (4.2) is not accidental: supposing for a mo-
ment that we are allowed to expand the exponential, we write

Yij = (1-2¥+ )513 + X5 — 2% x5 + .. (4.6)

Then, disregarding mixed terms of type ¥ x;;, one could see that our spatial
metric is formally similar to the one given in the standard theory (3.17) at least
in the aspect it assumes at its standard first order. Nevertheless, analogies apply
only at a formal level and only want to suggest that a higher order comparison
between standard results of Chapter 3 and gradient expansion results can be
engaged in, but with an appropriate procedure (see Chapter 5). Many differ-
ences arise: let us stress that our metric as written in (4.2) is not approximated:
it contains all the perturbative orders of this technique. Furthermore, if in the
standard technique the zeroth order terms express properties of the FRW back-
ground, here the comparison with the background is less obvious.
The flat FRW metric contains no spatial derivatives (nor temporal derivatives)
so we should recover it in the zeroth order terms. But cutting off Higher than
0 Derivatives Terms (HODT), the metric reads

Ty = e 2O 6+ x17). (4.7)

with ¥ gy and X(,Q)

;; a priori functions of time and space.
From standard linear perturbation results (3.22), admitting here the same initial
conditions set in Section 3.4 at 7 = 775 = 0, we know that ¥ contains at least
a zero derivative term, while the traceless tensor x;; has at least two spatial
gradients:
) 72
Vi (r.®) = 50(@) + 1 V0(@)
1) N T O
Xij gp(T &) = —5 (%z‘j(w) — 304V 80(90))

where the subscript "ST" stands for standard. The ¥ zero derivatives term is
the term not depending on time. In y;; there are no time-indipendent nor zero
derivatives terms for x;;, neither at standard first order nor at the second one
(see equation (3.24)). Thus in our formalism we will assume from now on

N R .
Vio)(7,7) = 3(T) = ¥(7 = 0,7) = V1w (4.8a)
0), =
With this initial assumptions, equation (4.7) can be rewritten as

’}/Z(]O) = 672\1/(0)(5) 5ij = 67%@(5)5@ (49)
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where ¢ is the so-called gravitational potential and the zeroth order metric

is conformally related to the flat space metric by a space-dependent factor
10 7

e_?sa(w)_

Therefore, rather than having a FRW background coinciding with the zeroth or-

der approximation, here the idea is to let a seed spatial metric ”y-IjN = *yi(]Q)

f evolve
in time with the perturbative functions ¥ and x from the end of Inflation until
present time, producing the necessary ingredient for gravitational instability to

develop.

Initial conditions from Inflation In order to compare the two tech-
niques at least at the lowest orders, we have earlier assumed the same initial
conditions of Section 3.4 to compute the first two orders of ¥gr and ijT: thus
we have specialized our quantities on the basis of those hypotheses. Let us
briefly linger over this choice.

Since the cosmological perturbations are generated during Inflation as widely
discussed in Chapter 1, it is physically natural to set initial conditions for the
gravitational perturbations W and x;; at the end of Inflation, effectively coincid-
ing with 7 = 77y = 0. This way, a gauge-invariant formulation of inflationary
perturbations theory [14] tells us that the spatial perturbation of the metric is
related to (, the gauge-invariant comoving curvature perturbation, and hence
to the gravitational potential through an expression as h;; = a? e~%4;; =
aZe= 5% d;j. Therefore, even without making any parallelism with the stan-
dard gauge-dependent theory of Chapter 3 but only assuming Inflation as the
simplest mechanism for generating perturbations, we have that the initial con-
ditions at 7 = 0 are ¥ ;y = 5¢/3 and ijN = 0. The initial condition d;y = 0
is also assumed. Since cosmological perturbations generated during single-field
models of Inflation are very nearly Gaussian with a nearly flat power spectrum
(n ~ 1)[14], [11], we notice by the way that ¢ should be regarded as a nearly
scale-invariant, quasi-Gaussian random field.

Thanks to these points, in what follows we will be allowed to write y rather
than x;; regarding to the contribution of D;;x of the traceless part of the spa-
tial metric.

4.2 The expansion scheme

In this perturbative technique the expansion parameter is the number of spatial
derivatives. We now want to comment this rule and understand the physical
meaning behind it.

A first rough idea can be obtained by a dimensional point of view. The per-
turbative functions ¥ and x are dimensionless: in the natural units system, the
dimension of a spatial derivative is the inverse of a length (L~!) or, in other
terms, a wavenumber k. The two gradients contained -say- in the first order of
U, ¥y, give a contribution ~ (L=2 = k?) in the dimensions, the four gradients
in 1(? give a contribution of ~ (L~* = k%), and so on. In order to have at every
order [(M] = 1, we need a factor L*" ~ 3", which can come from a suitable
power of conformal time: for every spatial derivative a power of the conformal
time appears.

Therefore the Gradient Expansion consists in a perturbative expansion in even
powers of (7k): the lowest (zeroth) order solution corresponds to the so-called
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long wavelength approzimation ( or separate universe, with (7k) < 1 [32], [27],
[28]); adding the higher order gradients leads to a more accurate solution, which
hopefully converges toward the exact one.
The long wavelength approximation consists in neglecting spatial gradients of
the variables describing the cosmological models: these spatial gradients have
to be considered negligible in comparison with the time derivatives of the above
variables, and this should now be clear having in mind the expansion parameter
(7k):
1 2 < 9

ox or
Since the time-scale of variation in cosmology is given by the local Hubble expan-
sion rate, the zeroth order approximation consists in neglecting inhomogeneities
varying over a scale smaller that the Hubble horizon, or conversely in study-
ing inhomogeneities larger than the Hubble radius: adding the following orders
is equivalent to getting information about perturbation scales as they become
smaller than the Hubble horizon [32].
For completeness, we translate what explained un{;cil now in terms of our spatial

metric 7;;, following [30]. The conditions % < 5. is rewritten as

Tkl k<1

Vij, e K /71{3"

The characteristic comoving length on which the metric varies is L: 7 ~
L~1v;;. As said, the Hubble time is the characteristic proper time on which the
metric evolves at a point #*: in conformal time, Yi; ~ aHij.

Thus we can conclude that

(k) < 1 <= al > H ', (4.10)

which precisely means that the characteristic scale of spatial variation is bigger
than the Hubble radius.

Nevertheless, the actual range of validity of the Gradient Expansion Technique
is not only restricted to the description of inhomogeneities on super-Hubble
scales: as we will see later in Chapter 5, it can be applied also to sub-horizon
wavelength perturbations [37].

The overall computation procedure to obtain ¥ and x;; at different orders
is similar to the one described in Section 3.4. In what follows, we write down
all the useful geometrical quantities as functions of the spatial metric defined
earlier (equation (4.2)) up to first and second order in the gradient expansion;
we introduce the two physical variables, the expansion rate # and the shear
02— as defined in Chapter 2, and iteratively solve the E.E.. These are written
order by order in their space-space components as the evolution equations for
6 (the Raychaudhuri equation) and aj-, namely the equations (2.27). Knowing
the zeroth order solution of ¥ and x of the equations (4.8), we have in mind an
iteration scheme suitable for getting explicit expressions of ¥ and x in terms of
. In other words:

e Solving the Raychaudhuri equation up to 1% order (2DT) = ¥y
Solving the shear evolution equation up to 15 order (2DT) = XE;‘)
e Solving the Raychaudhuri equation up to 2"¢ order (4DT) = 2%

Solving the shear evolution equation up to 2"¢ order (4DT) = Xz('?)-
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4.3 Gradient expansion technique at 1% order

Definitions and quantities up to 1*order
Spatial metric and inverse spatial metric

Let us begin calculating the inverse spatial metric of the general metric of equa-
tion (4.2): the expansion procedure and the cutting off of the Higher than 2
Derivative Terms (H2DTs) will be similar in all the following computations up
to first order.
First of all, let us notice that the exponential in the spatial metric cannot be
expanded in power series of ¥, because a priori V) = %gp can be large. The
gravitational potential o(Z) can in general be splitted in two parts: ¢ = ¢ +@g,
where ¢, is the long-wavelength mode and ¢g short wavelength modes such that
¢s/p ~ 1075 from CMB constraints. There are no known upper limits on ¢
therefore, we will factor out e ~1%/3% in almost all our following expressions. By
the way, let us note that the spatial differentiation of ¢, is neglectable, as by
definition spatial gradients see spatial variations on small scales and on small
scales ¢ is almost constant.
The inverse spatial metric is given solving the following equation in terms of the
unknown % : ‘

Yia 79 =07, (4.11)

This can be written as
672‘11(51'(1 + Xia) [A(6% + 67" = 5{ where U = W) + () and y;; = xz(-;).

The factor A is straightforward given by A = ¢*2¥, with ¥ = W) + ¥(q). For
the tensor coefficient §v% we write:

(61'11 + Xia) (6aj + 5,7aj) = 627

Sia 0% + Xia 0% + 6007 + Xia0y™ = &1, that is
j j (1) aj aj\ __

Xl + 07+ xia (675 + 0(dy) = 0.

The term Xl(-(ll) 57215) is certainly a Higher than 2 Derivative Term (H2DT) so
can be neglected: the result is

57? = —xf that is 679 = —x¥ with x¥ = §" 67" y,n.
Then we can write the inverse spatial metric as follows
7 = V(S — ) (1.12)
(with ¥ = ¥ gy + ¥(y) and X9 = XE{))

Velocity-gradient tensor and expansion rate

An analogous computation can be applied to express the expansion rate in terms
of the perturbative functions ¥ and x;;. The definition of the velocity-gradient
tensor is given in (2.24):

ia !

;1
9] = 57 ’Yaj'
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Now, 7% = €2V (5" — x™) and v4; = ¢ 2Y(Jaj + Xaj)-

=e
Vaj = (=29")e™*¥ (baj + Xaz) + €~V X0
L ia i 1o
Then, 37 "y('lj = —\I//5j + 2Xi + H2DT's,
where the H2DTs are terms like ¥/ x%y,; or %xi“X;j. The resulting velocity-

gradient tensor and expansion rate up to two spatial gradients are written as
follows

i i 1 il
0; = —V'6; + 5X; (4.13)

6 = 30 (4.14)
(with ¥ = W) + () and x5 = x\).

Shear

The shear can be computed thanks to the definition given in Chapter 2:
_ 1
;=10 — 55; 0.

Up to first order we obtain
!/

1.
75 = 5%

5 (4.15)

. ; i (1
(with X = X}( )).

Christoffel Symbols

On 3-dimensional hypersurfaces ¥, the Chrsitoffel Symbols are defined

_ 1 .
;‘k - 57“1(%%16 + Yak,j — Vik,a)-

Using equations (4.2) and (4.12) for the metric and its inverse, and neglecting all

terms like x;;.% and ¥ ;x** because they contain at least three spatial gradients,

we get _ _ _ _

Ui = =W 105 — W ;6 + W05 (4.16)
(with ¥ = ‘IJ(Q))

Let us note that I‘ék contains only one spatial derivative up to our first order.

Ricci Tensor

The Ricci tensor is defined as the contraction of the Riemann tensor, which we
will not explicit, and reads

Rjm = —T¢

a a b a b
ja,m +T + 1—‘ba:[‘jm - I‘mbbrja'

jm.a
Using (4.16), up to two derivative terms, we get
Rjm =V jm + (V20§ + W ; U, — (V)55 (4.17)
(with ¥ = ¥ ).
Because the zeroth order term of ¥ coincide with its initial value (4.8a), we can

write R;l) Rjm(¥(0)) = Rjm(¥in) = REN, as extensively done in Appendix
C.

m gm>
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Scalar Curvature

Taking the trace of Ricci tensor (4.17), the Scalar Curvature is
R = 2V [4(V2T) — 2(VT)F] (4.18)

(with ¥ = ¥(g) and R = RV = Ry).

Evolution equations for ¢ and a; at 1" order

The evolution equations for 6 and U;— have been deduced in Chapter 2 and read
as in (2.27). Considering the background scale factor being a(7) oc 72, they can
be rewritten as follows:

4 1 3 1
/ - - 2 _ 2 - __ 41
9-1-79—1—29 +2U 4R (4.19a)
i 4 i i i 1 i
where 02 = 15, 0.

2

Raychaudhuri equation UP2DT

As cleraly shown in Appendix C, € and 0; contain at least two spatial gradi-
ents: therefore, terms like 62 and ¢2 contain more than two derivatives terms.
Dropping from equation (4.19a) the H2DTs we obtain

4 1

and hence, using the expression at first order for 6 (4.14), the equation we have
to solve in the unknown W) is

W+ 20, = R (4.21)
Writing
su(#) = SRy = T OUTVIU ) ~ AV, (422)
the solution is
Yy = iTQwau(f) - Lot (4.23)

10 373

where ¢; and cg are integration constants. As function of ¢ the source sy (%)

reads

50 (#) = DeFeR[(V(a) — (V@) (.24

Then, considering only the growing mode, we get

1 10 )
V) = g7 Ul(VP) — 2(Ve)’] (4.25)
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Evolution equation of shear UP2DT

Dropping from equation (4.19b) the H2DT 6 03, we obtain the following equa-
tion:

L4 1
ol + —o = ~(Rj — 3R)1w (4.26)
Substituting in the equation above the expression for a;- as function of XE;) (see
(4.15)), we get
,L'// 4 ,L'/ i 1 i
Xjy T =Xi) = ~2(Rj = 3R iw- (4.27)
Isolating the source term as
= i Lo
sx(Z) = —2(R} — gR(Sj)INa (4.28)
the solution is
p 1 5 1
Xia) = 197 5y (Z) — 3301 + ca. (4.29)
Expliciting the source as function of ¢ we have
- 10 10, 5, , 1 i
sx (&) = =53 P Djp+ 2 (970, = (Vo) 0. (4.30)
Then, considering only the growing mode, the first order result for the traceless
coefficient ngl') reads
i 1 o i 5. i 1 i
Xjay = —37 € “IDjp + 2 (00, — 5(Ve)*6))] (4.31)

4.4 Gradient expansion technique at 2"¢ order

2nd

Definitions and quantities up to order

By second order in this technique we mean keeping only quantities which contain
at most four spatial derivatives.
Spatial metric and inverse spatial metric

The spatial metric and its inverse read respectively up to our second order
ij = e~ 2 (8ij + xij) (4.32)

ij ij ij i (1) aj
A = 62\P(5J — XY +Xa( )X(i])) (4.33)

(with W = W (o) + U + 5V and xi; = x5+ 335 )

ij
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In fact, yiq Y% = 07,
e (81 + Xia) [A(0Y +57Y)] = 6] = A =Y.
(i + Xia) (6% + 87%7) = 5.

1
Now, Xiaq X§i)+2x§§)

57‘”—67 —1—67 L+ 572)

From the first order we know that, 57(({) =0 and 5Fyalj) = —X‘(lf).

aj aj 1 aj
Thml<x$”+2x95(5J+<—xdy+5&vg>&a+«x$*+2x$h< X&) + 57@) 0;

i, L@ Lo i 1), a _
Xi O+ ox ) = Xy + 507 — X X() + HADT =0
== 575(2) =—x? +2 XEa) X(l)D

Velocity-gradient tensor and expansion rate

Performing the calculation similarly to what indicated earlier for (4.13) and
(4.14), and using expressions above (4.32) and (4.33), the velocity-gradient ten-
sor and the expansion rate read respectively

1 1

A XJ - X xfjj (4.34)
_ p 1 NGOl

0 =30 — P} (4.35)

CIEWION

(with W =W g) + ¥ (1) + %‘I’@) and X} = X} + 3x

Shear

The shear is obtained taking the traceless part of the gradient-velocity tensor,
thus using (4.34) and (4.35) one obtains

. 1
2XJ - _X(I)Xt(zlg) + 6X(1)X$;) 5 (4.36)

. i i 1 i 2
(with Xj = Xj( )—|— éxj( )).

Christoffel Symbols
Likewise at the first order, the Christoffel Symbols cannot fill up the number of

gradients content set by the order, and at the second order they contain only
three spatial derivatives:
e =(—W 00— W6k + W)+
+ l(xﬁ»,k + Xk — Xje)+ (4.37)
+ (W) X5 = 0D ) 0)

SN

[\)

(with U = W gy + V() and X; = X;
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where we have highlighted that the Christoffel Symbols at second order are
composed of three parts:

Fék = F;k(‘lj) + Fé‘k(X) + Fék(‘ll “X)

Ricci Tensor

With a straightforward but long calculation, the other geometrical quantities
follow. The Ricci tensor with four spatial gradient is written as function of ¥
and Y;; containing at most two spatial derivatives:

Rjm =V j + (V20) 6 + U ;T — (V)25 +

1
+ E(X_(jl,ma + X;ln,ja - V2XJm)+

+ (VT (0))Xjm — \If(fj?, X S — ‘I’,(g) Xflbb Ojm~+
1_. a

+ 5\11)(0)(_Xam,j — Xaj,m T ij@) - (V\IJ(O))2ij + \117(2) ‘117(1?) X b 6j7TL]

(4.38)

(with W = W(g) + W(y) and ) = ;).

where we note again that

Scalar Curvature
The Scalar Curvature reads
R =2V [4(V2T) — 2(VT)?]+
+ YO (4.39)
+ 2O [—ax ) \11(21), —4x{ e Y +2x(h v ‘I’,(z?)]

(with & = Uy + \If(l)).

Also the Scalar Curvature can be divided into three parts according with the
argument, and it contains several mixed terms of the kind ¥ x:

R=R(¥)+ R(x) + R(T - x).

In Appendix C the explicit expressions of every contribution are presented.

Ricci Tensor and Scalar curvature in terms of ¢

As we can see from expressions (4.38) and (4.39) of the Ricci tensor and the
Scalar Curvature up to four spatial gradients, they are functions of ¥ and x at
most at first order, that is up to two gradient terms. Then, having solved the
first step of our iteration scheme and obtained the results (4.25) and (4.31), R;;
and R up to 4DTs are completely known. In the following we write down the
result of a straightforward calculation that eventually makes use of Appendix

C.
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54
2 . 2 .
+ = (V20) ¢* 0 — =(V?p) (Vp)?0'+

(4.40)

0. .20 50
R =e5¥ [g(v%) - g(vw)z]‘f‘

5 5
+77e 5[+ 5 o @™ + 5 (
9 9
. - (4.41)
+ 3 P P e — — (V%) (Vo) +
125

+ 57 (Vo) (Ve)’]

Evolution equations for ¢ and ¢/ at 2"¢ order

We want to solve E.E. in order to get the complete expressions up to four deriva-
tives for the metric coefficients. For this task we use the evolution equations for
¢ and o} already met several times:

32— 1p (4.42)

4, 1
0+ -0+ -6
HERE YR 4

it 4 i i Lo
In what follows we use all the results at second order given earlier and we have

in mind an expansion for ¢ and o7} as

1
0= 9(0) + 9(1) + —6‘(2)

j z(l) i(2)
i =9 +§j )

where 0y = a;(o) = 0. We aim to obtain the expressions for ¥ () and X§(2)

in terms of ¢ and its derivatives. As we will see, the procedure is the same as
that at the previous order, but is much more complicated for the presence of a
greater number of terms to express first of all in terms of ¥y and X;(l)’ and
then in terms of ¢. The result will be two expressions of 4DTs, in which the
four gradients will distributed in one @, or in two ¢, or in three ¢, and so on.
Among those types of terms a precise hierarchy exists:
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dgrad(p), 4grad(p?), 4grad(p?), ..

(subdominance)

With the symbol 4grad(¢) we mean terms like ¢ qped, Vzgp:;, or V3(VZ2p); the
symbol 4grad(p?) means terms like ¢ o, @, (V2p)? or (V2p) <p3, 4grad(p?)
indicates terms like ¢ , 0 ¢ or (V2¢) (Vp)2, and so on.

We have already mentioned how the peculiar gravitational potential can be
thought as a sum of a longwavelength mode ¢, and a collection of short wave-
length modes ¢g: the spatial derivative can affect only the latter, whose mag-
nitude with respect to ¢ is of the order of 1075, The idea is to compare terms
like

Vip e— (Vi)

Recalling earlier notations, VZ¢ o (k7)%¢g while (Vp)? o< (k7)%¢sps. Gradi-
ents being the same number, the number of ¢g determines the order of magni-
tude: hence

(V2 o (kT)*ps) > ((V)? o (k) *psps)

Up to four spatial gradients, we will procede step by step producing at the
beginning only the leading terms 4grad(y), and then turning to the complete
expressions in terms of 4grad(p?), 4grad(¢?), and so on.

Raychaudhuri equation UP4DT

Dropping H4DTs like 61y x 62y or UL(I})) X ag’) from (4.42), we obtain :

/ 2 2

Subtracting the corresponding equation at first order (4.20) and taking the
known terms at the right hand side of the equation, it becomes

1 15 3 5
Using the expression (4.35) for the second order terms of the expansion rate, and
(1
j

isolating again the known solutions at the previous order for x ), the equation

to solve reads

4
Wiy + ;\If’@) = 728y (7), (4.46)

where the source function Sy (7, %) = 72Sy (T) is

— 1 1 1 ia 1)/ 4 ia 1)’
Su(r @) = c(R=Rin)+ 300+t~ 3 apxa ) = 5- 0 xa ). (447)
Thus the solution expressed in terms of the source is
1 4 . 1
\I/(Q) = —7 S\p(:E) — ——=cC1 + Ca. (4.48)

28 373
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Following the leading term V?(V2y)
Now we go on and look for contributions in Sy () to terms ~ V?(VZ2yp), re-
membering that (up to terms functions of a single ¢)

o Vi) =3y
L] \If(l) = %TQG%w(VQQp)

o (R=Rax) = 5RE@) + 5RO () + JRA (@ ).
Then we see with the help of Appendix C that
o IRD(V) = €2V © 4V2U 4

o 3R () = 2O X{)
. %R(Q)(\I/ - X) = terms ¢ - ¢, like every other addendum like ¥ - ¥, y - x
and U - y.

Making the calculation, we obtain that there’s no leading contribution to ¥z
like V2(VZ2p).

Complete expression for Sy ()

Then we write down the complete expression for the source of W(y), stressing
that the effective leading terms are those with four gradients distributed in two
¢ (that is 4grad(y?)):

o, 1 10 23
Sy =e3 5[—§<ﬂab@’ab+ (V2 )?
100 ab 2 2
5 Pa b ¢ + (V v) (V) + (4.49)
1675 )
- @(Vso) (Vo).

We conclude that, considering only the growing mode, ¥ (5 reads

1 10 23
\j — 4 @Ap i e u 2
@=7"e"" gl=F a0+ T (Vi)
100 35
T g PP @ + 27(V2<P) (Ve)*+ (4.50)
1675 — 5o
- @(V@ (V)]

Evolution equation of shear UP4DT

Dropping H4DTs such as 61y x 0(?) and 62y x Ug) from (4.43), we write

.

4 i 1
ol + ~} +91)a<1>_—(7z;—§735;). (4.51)
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Subtracting the corrisponding equation at first order (4.26) and isolating the
known terms in the right hand side of the equation, we obtain the following
equation

1 il 41 p i i)
()"";5 J()__[(Rj_RjIN) 3(R RIN)5]—9(1U . (4.52)

Substituting the expression of o% _ using (4.36), the equation we have to solve

7(2)
(2) +

in the unknown x;>” is

il 4 il -
Xia) + =Xi(a) = T Sx(@), (4.53)

where the source function 8, (7, 7) = 728, (%) reads

Sy(1.7) = —A[(R} = Rijy) — 3(R Rin)H — 40y ofV+

. 2
+2(Xm(1)X$) ) = g(X o) o )5; (4.54)
8 ia (W _ 8 ap  _(W)\si
+;(X WXaj ) — ;(x (1)Xab )05
Then the solution is
. 1,0 . 1
Xj(2) = %T SX(.I) 37 301 + co. (455)

Following the leading terms (V2<p):; and V?*(V?¢)d}
Let us go on and look for contributions in S, (Z) to terms like (V2gp):; and like
V?(V?@)dt. For this task we remember that

o X§(2) has to be traceless;
i i i(2 i(2 i(2
e (R, —Rjn) = %Rj( )(‘I’) + %Rj( )(X) + %Rj( )(‘I’ “X);
e (R — Rin) does not contribute (see equation (4.41)).
Then we see with the help of Appendix C that

. %R;(Z)(\If) = 2% [\II(Zl)J + VQ‘I’(1)5§];

i(2) i .
o 3RV (X) = YOI 4+ X(l) = V2x{y;ls
° %R;(j)(\lf -X) = terms ¢ - ¢ (like every other addenda like ¥ - ¥, x -y and
U - x).

Making the calculation, we obtain that there’s no dominant contribution to

X§(2) like (V2p)" and V2(V2p)di.
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Complete expression for S, (x)

Consequence of the previous paragraph is that the effective leading terms of the
source of (2 are made of four gradient on two ¢, namely 4grad(¢?). Sy (&)
reads

1 o1 .
Sx = 9 TP [+38 (90 9 — 3 P.ab @ 51+
-5 (V%) ¢ — 3 (VP9)? 9))+
890

. 250 . 640 .
+ W(V%) (Vp)? 85 — 7(V<p)2 @ — 7(V2<ﬂ) ©* o+

380 ab gi 190 ai a i
g Pa s P 0+ (a9 ¢ e 9 @)
1600 i 1 i
T (Vo)? ¢ ¢ — g(mp)2 (Vp)? 6%)]
(4.56)
We conclude that, considering only the growing mode, xl(-f-) reads
i _ 4 Yo 1 [—|—38( o Lai 1 ,ab5i)+
Xji2) =T € 252 Paj Y — 3 P,ab P j
128 1 .
T3 ((V?¢) P73 (VZp)? 6%)+
890 . 250 ;640 p
+ 5 (V2) (Vo)* 0 — == (Ve)® 95 — = (V?0) ¢ o+
380 ab gi 190 ai a i
— g Pa s 90+ = (a0 ¢ pa 0 @)
1600 i 1 ’
+ o (Vo) ¢ 05 = 2(Ve)? (V) 6))]

(4.57)

4.5 Check of constraints

Expressions (4.25) and (4.31) up to two spatial gradients, and expressions (4.50)
and (4.57) up to four spatial gradients are the solutions we aimed at. A possible
procedure to check the coherence of these results consists in taking advantage
of the ADM Constraint Equations of Chapter 2.

Momentum Constraint

We begin for semplicity testing the Momentum Constraint (2.26b):
9“j|a =0;.
If we check the Momentum Constraint for a gradient-velocity tensor and an
expansion rate up to two derivatives terms, then we will verify an equality with
three spatial gradients in every addendum because of the simple and covariant
differentiation. To check the Momentum Constraint for a gradient-velocity ten-
sor and an expansion rate expressed up to four derivatives terms, then we have
to verify an equality with five spatial gradients in every addendum.
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The procedure is straightforward and can be performed calculating the right
and left hand sides of the equality in terms of ¥ and y;;, and then express-
ing everything in terms of the gravitational potential. We do not write all the
passages: the Momentum Constraint is verified to both first and second order.

Energy Constraint

Verifying the ADM Energy Constraint (2.26a) is less straightforward because
the density contrast § is involved. Indeed, until now we have always tried to
avoid the necessity to calculate the perturbation of the matter density expressing
the equations of interest in terms of the geometrical quantities with the help of
the energy constraint equation itself (see Section 2.4).
Let us write the Energy Constraint in the following form, referring to equation
(3.19a):

2g2 _ 9,2 + 8 +R = +%5.

3 T 72
With the exception of 4, all the quantities in the above equation can be expressed
in terms of the gravitational potential up to two or four gradients without prob-
lems. Let us then stop a little to obtain a useful expression for the density
contrast.
The temporal evolution of the density contrast is governed by the following
equation, which is the analogous of the continuity equation (2.20) presented in
Chapter 2:

8 =—60. (4.58)

Given that § = 1'%y, = Z~'/2 [5], where v = det v;;, we can write the

solution of (4.58) in the form

-1/2
1+0= (1+61N)(l> : (4.59)
YIN

The determinant of our metric can be calculated, and at least up to 2DT reads
y=e57, (4.60)

Therefore, y7y = ¢ 5% = 7%/~ and we can express the density contrast up
to two spatial gradient.

—1/2
In fact, 1 + 6 = (1+5,N)<L> -
YIN

—1/2
=1+ 5IN)(€_6(\I’_‘DIN)> = (1 +67y) 377,

Assuming d;ny = 0, the first order expression for the density contrast is

72

5
by =5 Ve 5(V9)]. (4.61)
Similarly one can proceed to obtain the second order term for the density con-
trast, getting all the helpful tools for verifying the constraint. Thus, the calcu-
lation is straightforward and the outcome turned out to be successful.






Chapter 5

Comparing Perturbative
Techniques. Other Results.

Having obtained the expressions for the metric coefficients ¥ and x;; in the pre-
vious Chapter, we want now to comment them briefly and show some secondary
results. First of all, we see how the Gradient Expansion results are related to
those of the Standard Perturbation Theory, giving the complete expression of
the metric up to four spatial gradients; then we introduce the Weyl tensor and
see the form that its magnetic part assumes within this expansion method.

5.1 Comparison between standard theory and gra-
dient expansion

In order to perform a comparison among the results of the two perturbative
techniques presented in this thesis, we have to write down the complete expres-
sion that the spatial metric assumes up to the second order in the respective
approaches. In what follows we will label the quantities of the Standard Per-
turbation Theory with the superscript "ST", trying to avoid any confusion.

In the standard theory, the perturbed spatial metric in terms of ¥ and x;; up
to second order reads as in (3.17), that is

(l)ST_"_l (2)ST

vl = 0i — 22U 6 — Ui 6 + xi; SN (5.1)

In order to write the spatial metric in the gradient method some more attention
must be paid. As done in Chapter 4, we factor out the term e=2Y©  and we
expand the exponential in the function ¥, which here formally comprise only
the first and the second order terms: ¥ = U1y +1/2 ¥(yy. Developing equation
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(4.2) up to the right number of spatial gradients (four), we write

Yij = e 2 (65 + xij) =

e 2V (1 = 20 + 202 + HADT) (855 + xij) =

_ 1 2
eV (1= 20y — W) +207))6;5 + e 2V O (1 - 204 (x| + 2x( )y =

e~2%0) (1- 2V ) — Vo) + 2‘1’%1 )dii+

Fe o 2 +e Mo b e
Then the spatial metric in the gradient approach up to four spatial derivatives
reads

Yij = e 2V O (1= 2W () — Wy) + 20F)d;+

(5.2)
_ 1 2 _

Te Q\IJ(O)(XZ(]) + 2X( )) 2‘11(0)2 \IJ( 1 XZ(])

The following step consists in using expressions got in Chapters 3 and 4 in order
to write the spatial metrics ”yiSjT and y;; in terms of the peculiar gravitational
potential ¢. We proceed for this task and the following calculations treating
separately the trace and the traceless part of the metric.

Trace part of the metric

In the Standard Theory the trace part of the spatial metric as function of the
gravitational potential can be obtained substituting the equations (3.22a) and
(3.24a) of \I/ZQ’S and \11(52)

" = 015 — 22U 05 — Wi 6y

trace)

The resulting expression is

10 50
Vi trace = 0 — 3¢ dij + 38025@“"
7 2 5 2
t3g —Vip + 5 (V)™ | dij+ (5.3)

T4 10 ab 2 2
+2—52<380 v.a — (Vi) )51‘3‘,

where we have separated the different contributions according to the number of
gradients (zero the first line, two the second one, four the third) and accord-
ing to the powers of the gravitational potential ¢ (2grad(y) or 2grad(¢?), and
igrad(?)).

The trace part of the Gradient Technique spatial metric is written using equa-
tions (4.25) and (4.50) in

Fygw?race) — 2% (1 _ 2\11(1) _ \11(2) + 2\11?1))5U

]

Now, let us note that the four spatial gradients contributions to the standard

metric (5.3) are of one type only, namely 4grad(¢?): with the aim to rewrite
(trace)

i in terms of ¢, we can limit ourselves to the leading terms of type
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4grad(¢?) in the expression (4.50): hence the comparison up to four spatial
derivatives will be able to control the coherence of the two approaches only up
to those leading terms in gradient expansion.

Neglecting contributions of the kind 4grad(p?) or 4grad(¢?*), the trace of the
metric is

i(;raCE) — 67%¢5ij+
T2 5 2
w, 4 1 (10 .
+ets “’7'4@ (; ©.ap % — (V2<p)2> dij.

To see the formal equivalence of the two expressions (5.3) and (5.4) it is sufficient
now to expand the exponential: this procedure adds powers of ¢ to the already
existing terms, but not spatial gradients.

Traceless part of the metric

In the Standard Theory we obtain the traceless part of the spatial metric sub-

Z(.;)ST and X(-2)ST with the help of equations (3.22b)

stituting the expression for x i

and (3.24b) in

ST st , 1 (@sT
Vij (traceless) = Xij +§ ij

The result is

ST _ T2 1 2 5
Vij (traceless) ~ +§ —¥ij T+ gv © 0i5 | +

2

T 5 .
+ o | =5%p; + 29%Pa 0ij | +
9 3
. " (5.5)
7' .
— (19 ai i — — ,ab N 51
+252< Y Paj 3<P ¥,ab J>
L (=12 05 V20 +4 (V2)76;5)
259 P,ij ' ®) Oij |,

where the expression is manifestly traceless, and we can note the different con-
tributions of type 2grad(yp), 2grad(?) and 4grad(e?).

For writing the analogous formula in the Gradient Technique, we proceed as
done earlier factoring out e~ 2% and formally expanding it only at the end of
the calculation. We use (4.31) and (4.57) for XE;) and XEJZ-) respectively, and
(4.25) for ¥(y) in

raceless — 1 _
" V= e o (D + §x§f—)) — e V02 ¥\
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Neglecting 4grad(¢?®) and 4grad(¢*) terms, we get

2
(traceless) T o 1 2 .
Yij =73 <—80,zg + gv ® 513) +
72 5
+y (—590,1'90,j T3¢ %a 5ij> +

(5.6)

10 1 at 19 a 7
+ets “074@ <+19 Paj P — 3 Pab @ 5j)

10 1 ; .
+er¥ort—— (-12(V2) o +4 (V29)? 6))
Again the expansion of the exponential etse up to its constant term shows the
equivalence of the results between the two perturbative techniques !.

Some observations can be proposed: we have seen that the comparison can be
carried into effect only with an appropriate procedure consisting principally in
cutting off many terms of the Gradient Expansion spatial metric. This fact
reflects the property of this technique and the form of the general metric: even
if ¥ is obtained up to a finite number of spatial gradients, v;; will necessary
contain gradient terms of any order; in other terms, solving for the coefficients
¥ and x;; up to 2r spatial gradients one obtains terms of any order in the
conventional perturbative expansion containing up to 2r gradients.
Furthermore, having in mind the complete results for ¥ and x;; up to four
spatial gradients and the distinction in different terms like 4grad(¢™) , we can
check that terms of order r in the expansion contain the peculiar gravitational
potential ¢ to power m, with 2r > m > r. We have already seen that a precise
hierarchy exists among those terms according with the number of ¢, that is ¢g:
the dominant contribution comes from terms of the type (9%¢)", followed by
those proportional to (92¢)"~1(dp)?. We can deduce that the actual limit of
validity of our expansion at order r is set by (7k)*"¢" < 1: being g ~ 1072,
this allows us to consider also perturbations with wavelength comparable or
smaller than the Hubble radius.

5.2 Weyl tensor and its magnetic part

Einstein Equations are second-order partial differential equations for g, which
relate the spacetime curvature expressed in terms of the Ricci tensor and the
Scalar Curvature to the energy local sources described in the stress-energy ten-
sor. The Scalar Curvature is the contraction of the Ricci tensor, which in turn is
the trace over the second and fourth (or equivalently, the first and third) indices
of the Riemann tensor R

R, = RS, and R = R”,

The trace free part of the Riemann tensor is called the Weyl tensor, Coguy,: it
has many characterizations and we introduce it for its cosmological implications.

10
LA priori the exponential e? 3 ? could not be expanded because @ can be as large as it
wants, for the presence of contributes of the kind ¢j. Two are the possibilities to arrange
5
this situation: one could assume 7, = 0, or the long-wavelength part of the factor et3%,
associated with each spatial gradient, can be re-absorbed by a redefinition of the spatial

coordinates [37].
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The Riemann tensor satisfies a series of symmetry properties:

Raﬁ;u/ = R,uvaﬁ (57&)

Rapur = =Rpapw = —Rapup (5.7b)

Raﬁuu + Rauﬁu + Rauuﬁ =0, (570)

to which the Bianchi Identites (5.9) can be added. The set of symmetries (5.7)

are such that there are (14 n)?((1+n)? — 1) algebraically independent com-
ponents of Rapguy [2], where 1+ n as usual denotes the total dimension of our
spacetime. %(1 + n)(n + 2) is the number of indipendent components of the
Riemann tensor that can be represented by the components of the Ricci tensor.
If n =0, Ragu = 0; if n = 1, there is one independent component of Raoguw,
which is essentially the function R. If n = 2, the Ricci tensor (which is given
algebraically by the local stress-energy tensor through E.E.) completely deter-
mines the curvature tensor. If n > 3, the remaining components of the Riemann
tensor are represented by the Weyl tensor or, in other words, the Weyl tensor is
that part of the Riemann tensor that cannot be obtained from the Ricci tensor:
it is defined by [1]

2
— (9auRup = GowRup = GanRva + 950 Rpua)
) (5.8)

_77?/ [e% v — Yav .
Y p— (Jangvp — Javgus)

Cappw = Rapuw +

As the last two terms on the right hand side have the Riemann symmetries
(5.7), it follows that Copg,, has also these symmetries as well as it is trace free
on all its indices.

An alternative characterization of the Weyl tensor is given by the fact that it
behaves in a very simple manner under conformal transformations of the metric
(G = 92 guw), and for this reason is sometimes called the conformal tensor,
being Cogur = Capgur-

As the Ricci tensor is given by the E.E. and hence, physically, it gives the
contribution to the spacetime curvature from local sources, then the Weyl tensor
is that part of the curvature which is not determined locally by the energy
distribution. For example, Newtonian tidal forces are represented in the Weyl
tensor. However, the Weyl tensor cannot be entirely arbitrary: the Riemann
tensor must satisfy the already mentioned Bianchi Identities:

Rapuvip + Rappusy + Raprpp = 0. (5.9)

Using the definition (5.8), these can be rewritten as equations of motion of the
Weyl tensor as follows ([7] or[2]):

Co” = o (.10
where (with from now on n = 3)
1 1
Japu = Ruaip — Rupsa + EQMBR;a - gguaR;B' (5.11)

These equations are rather similar to Maxwell’s equations of Electrodynamics
F,, " =J,, where F),, is the electromagnetic field tensor and .J, is the source
current. Thus, in some sense, the Bianchi Identities of the Weyl tensor can be
regarded as its field equations giving that part of the curvature at a point that

depends on the matter distribution at other points.
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The magnetic part of the Weyl tensor in the Gradient Technique

One can proceed with the analogy of the Electrodynamics splitting the Weyl
tensor into two second-rank tensors known as the electric and magnetic parts
of the Weyl tensor. Likewise in Electrodynamics F),, is composed of two con-
tributions, the electric and magnetic fields F), and H, whose values and forms
depend on the coordinate system, the decomposition of the Weyl tensor depends
on the gauge choice, or more generally on the assumed spacetime splitting.
Adopting the usual synchronous and comoving gauge choice with the geodesic
lines coinciding with the worldlines of the particles fluid, and with the normal
vector field n* to the hypersurfaces ¥ coinciding with the geodesics tangents £
and the matter 4-velocity field u*, the electric and magnetic parts of the Weyl
tensor read, respectively,[7]

Eu = uu’Chonp (5.12a)
1 1
H,, = 3 Mabon uPul CO‘BW; = Sllappy uPul Caﬁw, (5.12b)
where 7o, = (—9)""/?€apuw, with g being the determinant of the metric

guv and €qg,, being the four dimensional completely antisymmetric Levi-Civita
symbol. It can be shown that E,, and H,, are both symmetric, traceless, and
flow-orthogonal. Therefore they have each 5 independent components, half as
many as the Weyl tensor, and thanks to our gauge choice they live in the purely
spatial 3-dimensional hypersurfaces at constant time .

E,, is also called the tidal force field, since it contains the part of the gravita-
tional field which describes tidal interactions: tidal forces act on the fluid flow
by inducing shear distortions, and indeed the evolution equation of the shear
contains as its source the electric part of the Weyl tensor [20]. The tensor H,,
is related to that part of the gravitational field which describes gravitational
waves, which have no Newtonian counterpart [22].

The magnetic part of the Weyl tensor plays an interesting role in the nonlin-
ear dynamics of cosmological perturbations of an irrotational collisionless fluid.
In fact, the dynamics of self-gravitating perfect fluid is greatly simplified un-
der three assumptions: the fluid is collisionless (p = 0), it has zero vorticity,
and H,, = 0. If the former two conditions have been used throughout and
are wide enough to allow for many cosmological cases, the third assumption is
more problematic. If the magnetic component is switched off, all the equations
for the dynamics take a strictly local form: the matter and spacetime curva-
ture variables evolve independently along different fluid worldlines [20]. If such
hypotheses were satisfied, no information could be exchanged among different
fluid elements: signal exchange can occur via gravitational radiation and also
via sound waves, but none of these wave modes is allowed when p = H,,, = 0.
Furthermore, the condition H,, = 0 cannot be taken as an exact constraint for
the general cosmological case, not being suitable to study cosmological structure
formation.

Let us then investigate the form that the magnetic part of the Weyl tensor as-
sumes in the context of the gradient expansion. For this task, we rewrite the
equation (5.12b) as follows, in line with the formalism adopted until here:

i 1 ma % ia m
H'; = 5 Yim [y b alp T 1y b alb)> (5.13)
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where net¢ = y71/2¢%¢ | the bar denotes covariant derivatives in the 3-space

with metric 7;;, and 0;; is the conformal rescaled velocity-gradient tensor.

If the geometrical and physical quantities in the definition are written up to
2r spatial derivatives terms, then the magnetic tensor contains 2r + 1 spatial
gradients, for the covariant differentiation. We have in mind the usual expansion

i a,i(0) i), L2
HYy =15+ H + SR

J J

From equation (5.13), we can already stand that, in our conventions, Hig-o) =

Higl) = 0. In fact, the lowest spatial derivative contribution to H;; is of the
form

Hi o ol Y e g0
where we have used that the determinant of the spatial metric is v = ¢ 5%, But
91‘511) b is at least a 3DT, thus up to two spatial gradients there is no contribution
to the magnetic part of the Weyl tensor.
The second order term can then be calculated as usual using the results obtained
in Chapter 4. Up to second order, the term HiSIl) b Can contain at most 3 spatial

gradients, and reads

i 10 I
93@::76?@[—'§¢@3+
5 : 5
+ 59" Pndas = g# " Pavt (5.14)

5 ;D ;
— §¥aPh T g¥" Pnadi]-
Now, the first three terms of equation (5.14) are symmetric for exchange of
indices a and b: therefore, because of the presence of the Levi-Civita symbol in
the definition (5.13) , they do not contribute to the magnetic tensor H’;. The
latter, up to our second order, is different from being null and reads

wl”
|

HE =

j e

5 ; b ; ; 5 5
Poimle ™ (= 5.0l 5" Pinaly) +E T (= 50y 5" P inad} )]
(5.15)
The magnetic part of the Weyl tensor does not contain terms with a single ¢,

that is H';(3grad(p)) = 0.

NS






Conclusions

Approximation methods have been and are very important in General Relativity
and its applications to Cosmology and Relativistic Astrophysics. In this thesis
we have presented the so-called Gradient Expansion Technique, computing the
expressions up to four spatial gradients of the perturbative functions ¥ and x;;
in an irrotational matter-dominated universe.

Our gradient expansion approach is slightly different from the ones already ex-
isting in literature: we have perturbed Einstein Equations in a given precise
gauge rather than beginning with a relativistic action principle; we have writ-
ten the spatial metric v;; with the scalar perturbative function ¥ appearing
in the argument of an exponential and allowing the FRW background solution
to have a spatial dependence; finally we have solved Einstein Equations in the
form of evolution equations of the ADM formalism, and we have set the initial
conditions as provided by standard Inflation.

The Gradient Expansion Technique has shown itself to be much more handy
than the standard one, for the simplicity and relative brevity of the computa-
tions. Furthermore, this approximation methods has shown itself to be non-
perturbative in the sense that by solving for the metric coefficients ¥ and x;;
up to 2r spatial gradients one obtains terms of any order in the standard per-
turbative expansion containing up to 2r spatial gradients.

Our particular approach allowed us to compare quite directly the results ob-
tained in the Gradient Expansion with those of the Standard Theory: the com-
parison has shown the coherence of the two sets of results, and hence the con-
sistency of the method.

Thanks to the wide wavelength-range of validity of the Gradient Expansion,
this scheme is suitable to study the large-scale structure formation and issues
related with it, from the study of perturbations generation during Inflation, to
the problem of the backreaction, and the derivation of the Zel’dovich approxi-
mation for General Relativity describing the formation of pancake structure in
matter-dominated universes [27], [28], [29], [37].

A possible further development of the work presented in this thesis could be the
exstension of the computations in our approach in the case of a universe dom-
inated by the cosmological constant A, in line with the standard cosmological
model of the present universe, or in the case of a scalar field dominated universe.






Appendix A

Decomposition of spatial
vectors and tensors

In order to study perturbations on the invariant n—space X, we first classify
them into three groups on the basis of their behaviour under the transformation
of space-coordinate z*: the scalar type, vector type and tensor type.

A vector quantity v* on ¥ can be decomposed as
v' = 0'v + v’ such that 9; v = 0. (A1)

v represents the scalar (or longitudinal or irrotational) component of the space-
vector v*, while v’ represents the transverse (divergence-free or solenoidal)
proper vector part of it.

Similarly, a symmetric traceless second-rank tensor T;; on ¥ can be decom-
posed into a sum of parts, called longitudinal, solenoidal, and transverse:

Ty = Diy T+ (0T + 0,T;") + T} (A.2)

with (in the case n = 3)

Dij = 81(% — %6UV2 (A3a)
O'TE =0 (A.3b)
81'T; =0. (A.3¢)

The longitudinal tensor 7T is also called the scalar part of Tj;, the solenoidal
part TjL is also called the vector part, and the transverse-traceless part TJ is
also called the tensor part of the spatial-tensor on X.

For a more general decomposition of non-traceless tensors see [6]. Let us note
that the decomposition in scalar, vector and tensor parts of a spatial tensor is
not unique: 7 and T;- are defined only up to a constant, and additional freedom
may appear [7].






Appendix B

Synchronous gauge:
geometrical quantities

FRAME:
dS? = —dt* + hy;(t, %) da'da’
4 1 ia 1"

(t — coordinates)

Christoffel Symbols
1"80 = ng = 1—%0 =0

0 _ . e Y i (3)i

Riemann Tensor
0 _pJj _ p0 _
Ro0o = Rooo = Rooj =0

RO = Oij — Oqj 0% Riy; =0, +0°, 0% R =0, 0% — 0,4, O
R = =Oujk + Oy + Oa; TG, — Oup OTY
Rijr=—0", + 0%, +0% i —e O,

iok = =0 + Ol 0 + 07, BT — 0% Ty,

R;‘kl = (3)733'1@1 +0', 0, — 0", 0
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Ricci Tensor
Rop = -0 — 0% 0°,; R’ =-0+0% 6",
Roi = 0%, — Oy
Rij = PRy + 0y — 20, 0% + 0 0
R, =OR 46, 406,

Scalar Curvature

R:(3)R+2®+®2+@ab eba



Appendix C

Different orders contributions
to the calculated quantities

In the text, the geometrical and physical quantities of interests have been ex-
pressed in terms of the pertubative functions ¥ and x and their derivatives.
We want in this Appendix to work on them in order to distinguish the different
contributions to different orders in gradient content.

The results of this procedure will be really useful for performing the calculations.

Velocity-gradient tensor and expansion rate

Having in mind an expansion for ¢ and 6 like
=0(0) +00) + 50(2) and 05 = 057 + 657" + 5057,

we can expand equations (4.13) and (4.14) as follow

i i L) i) (D)
b; =W +Y@)G+5x; =0 +6;7,

0=—()+¥q) =3V =00 +0),

where we note that ¥ does not dipend on time and hence 9§(0) and g are
null.

Up to 2"% order, 0} and 6 are given by (4.34) and (4.35). Analogously, we
procede and separate the different order contributions:

i 1 rsio Lo Lo v 1w
0= (Y + ¥y + 5¥) 0 + 50G0) + 3X2) — 5X0) Xej =

o1 .1 . . 11 . 4, 1 . ’
o / i / i i i ia _
= —Y0)0; — 50 T 35X T 55X@ T XD Xef =

A 1 11 1 (1’
_ / i % / i 7 ia _
= (V0o + 56w )+ (5% @85 + 55X — 5X0) Xey ) =

1@
=0 +§9j .
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1 1 1 1
0 =—-30 — X (1)X¢(zb) = =3(Vy + 5‘1’(2))/ - (1)Xz(zb) =

1 b (1) 1
=3y — 35‘1’/(2) —3X(WXay =0t 50

So we can conclude that the velocity-gradient tensor can be written as follows

i _ g 1y@ .

0; =0+ §9j with (C.1a)

i i L
9](1) - 21)53‘ + 2 Xi(1) (C.1b)

191'(2)7 1 U5 Lo ia (1) Ci1
5% = 5[— @9% T 5X;(2) = X(1) Xaj J- (C.1c)
And the ezpansion rate reads
1

0 =00+ 59(2) where (C.2a)
01y = —3\11'(1) (C.2b)

L L / ab (1)’
S0 = 5[_3‘1’(2) — X1 Xab 1- (C.2¢)

Shear
Frim 4.15) we see that U;» = 0;(1). Up to 2" order, from (4.36) we write

7 1 1 1 7 1 uz () 7
75 = g(Xj(lﬁ‘Xj(z)) S X(1)Xaj T X(l) o 5]

1, 1.1 ./ 1’ )
§XJ( 1) 2[2Xg(2) X(l)XaJ + X 1)Xab 6]]

Therefore for the shear we conclude

i i L, :
i 1 .
L, Ll g \ia m’ i
5% = 2[2X](2) X(1)Xaj T 3X 1)Xab 53] (C.3¢)

Ricci Tensor

At 1% order, the Ricci tensor is given by (4.17) with ¥ = U ). Because ¥y =
V(7 =0), then we could even call ¥ (5 = ¥y and write Rﬁi =R\

Up to 2"? order we can split Rjm in two ways, according with the order or
according with the argument:

Rjm =R\ + R4 + R( )

Rijm = Rjm(¥) + Rjm(x) + ij(‘lf “X),
where the zeroth order term Rg%

content of single addenda:

is null. But (4.38) suggests the gradient
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® R;m(¥) contains 2DTs and 4DTs
® Rjm(x) contains 4DTs
® Rjm (V- x) contains 4DTs.

Therefore, a making sense expansion for the Ricci Tensor is

1
Rym = RIMW) + 5RELW) + 5RE00+ 5ROW-0, ()
where

RST)L(\I/) = \I/(O) + (VQ\I/(O))(Sjm + ‘IJ(O)\I/(O) — (V\I/(O))zdjm (C5a)
L@ a 2 Og1) 4 gDy
SRim(Y) =V o+ (VU ))0jm + 0 7 vv

—2(92¥(0)) (0" ¥ (1))
1 1, ., o .
57?’;37)10() =+ Q(Xj,ma + Xm,ja — VQij) WlthXij = XZ(JI) (C5C)
1
§R§2( ) Z(VQ\I/ 0))ij \I](ab Xab 5 2) Xflbb 5jm

+3 \I](O)( Xam,j — Xaj,m + ij,a)+ (C5d)

~ (V)2 xjm + TQ W)y 6,

Scalar Curvature

We can apply the same procedure to the Scalar Curvature R. At first order
(two derivatives), it reads as in (4.18) with ¥ = W) = ¥(7 = 0): then we can
write R(1) = Rza. At second order two different splittings can be made:

R—RO LM 4 Lpe
2

R =R(¥)+R(x) +R(¥-x),

where the zeroth order term R(% is null. Similarly to the Ricci tensor case, the
complete expression for the scalar curvature (4.39) suggests that

e R(¥) contains 2DTs and 4DTs
e R(x) contains 4DTs
e R(¥ - x) contains 4DTs.

Thus we can write

R = RU(W) + %R@(\y) + %R@)(x) + %R@)(qf ), (C.6)



94 Different orders contributions to the calculated quantities

where
RW(W) = VOV () = 2(VT(g))?] (C.7a)
1
—RA W) =e2YO0 [4V2T ;) — 4(0°V oy 0,V +
SROW) =P OUV () — 49"V (0) Da¥(y))] (C.7h)
€210 (20 1) AT () — 2V (0))?]
1
gR(Q)(X) =+ O[] o) (C.17¢)

1

SR (W) =¥ [—ax(hy W) —axgh , v+ 2 v v ()
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