
Università degli Studi di PisaFaoltà di Sienze Matematihe Fisihe e NaturaliCorso di Laurea Speialistia in Sienze Fisihe e AstrofisiheA. A. 2004-05
Tesi di Laurea Speialistia
CosmologialPerturbation Theory in aMatter DominatedUniverse: the GradientExpansion

Candidato RelatoreAnnalisa Pillepih Prof. Sabino Matarrese





Contents
Introdution 11 Desribing our Universe 31.1 The standard osmologial model . . . . . . . . . . . . . . . . . . 31.2 In�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.3 Foundamental ideas of Struture Formation . . . . . . . . . . . . 202 Dust Cosmology: frame and formalism 292.1 Spae-time splittings, gauge hoies and general hypotheses . . . 292.2 Charaterization of the matter ontent . . . . . . . . . . . . . . . 322.3 The synrhonous and omoving system of oordinates . . . . . . 342.4 Einstein Equations in ADM formalism . . . . . . . . . . . . . . . 403 Standard Perturbation Theory at First and Seond Order 453.1 Ideas of the Standard Perturbation Theory . . . . . . . . . . . . 453.2 Implementing the perturbations . . . . . . . . . . . . . . . . . . . 473.3 Gauge hoie and gauge dependene in perturbation theory . . . 503.4 Standard perturbations at 1st and 2nd order of Einstein-de Sitteruniverse in the synhronous-omoving gauge . . . . . . . . . . . . 544 Gradient Expansion Tehnique 594.1 The starting spatial metri and bakground omparison . . . . . 604.2 The expansion sheme . . . . . . . . . . . . . . . . . . . . . . . . 624.3 Gradient expansion tehnique at 1st order . . . . . . . . . . . . . 644.4 Gradient expansion tehnique at 2nd order . . . . . . . . . . . . . 674.5 Chek of onstraints . . . . . . . . . . . . . . . . . . . . . . . . . 745 Comparing Perturbative Tehniques. Other Results. 775.1 Comparison between standard theory and gradient expansion . . 775.2 Weyl tensor and its magneti part . . . . . . . . . . . . . . . . . 80Conlusions 85A Deomposition of spatial vetors and tensors 87B Synhronous gauge: geometrial quantities 89C Di�erent orders ontributions to the alulated quantities 91Bibliography 95





IntrodutionThe idea underlying the theory of spaetime perturbations is the same that wehave in any perturbative formalism: we try to �nd approximate solutions ofsome �eld equations (Einstein Equations), onsidering them as "small" devi-ations from a known exat solution (the bakground: usually the Friedmann-Robertson-Walker (FRW) metri).The ompliations in General Relativity, as in any other spaetime theory, arisefrom the fat that we have to perturbe not only the �elds in a given geometry-�elds desribing the matter ontent in literal sense or salar �elds as the in�a-ton for the In�ation or the quintessene for the Dark Energy-, but the geometryitself, that is the metri.The neessity for the development of suh a formalism resides in the di�ultyof Einstein Equations resolution, and in the fat that relatively few physiallyinteresting exat solutions of the Einstein Equations are known. From the pointof view of Cosmology, the ultimate aim of perturbation theory is to provide anappropriate tool for understanding the large-sale lustering of matter in galax-ies and lusters of galaxies, its properties and its origin.In this thesis we limit ourselves to the study of universes dominated by a perfetpressureless �uid, alled dust or simply matter, that we assume to be irrotationalas well. In the synhronous and omoving gauge, we present the alulation at�rst and seond order of the perturbative funtions of the so-alled gradientexpansion tehnique, and ompare suh a tehnique with the standard pertur-bation approah: our approah is analytial and the analysis fully relativisti.The standard theory is based on the perturbations of a homogenous and isotropiFRW bakground metri onsidering the (small) �utuations of that metri, de-viations inluding a priori all the three perturbation modes: salar, vetor andtensor modes. In other words, we assume FRW as a good zeroth order approx-imation for desribing our universe. Observations tell us that the universe isfar from being homogenous and isotropi at small sales. To take into aountof these inhomogeneities, the perturbative expansion is needed, and it is imple-mented through spae and time funtions, whose form in terms of the so-alledpeuliar gravitational potential is determined at di�erent orders solving itera-tively Einstein Equations (the linear or �rst order approah is the most ommonbut in the last deade some osmologists have begun stopping at seond order).In the thesis the starting point is exatly the standard one: two physial vari-ables are introdued, the "volume expansion" and the "shear", and the EinsteinEquations are written in the ADM formalism. The perturbation proedure, onthe other hand, is di�erent. We start with a spatial metri ontaining the per-turbative funtions Ψ and χij of the standard theory, ontaining in turn all theorders of this expansion: at the initial time we deal with a "seed" metri on-



2 Introdutionformally related to FRW by an exponential spae-dependent fator. Then weonsider as perturbation parameter not the magnitude of the deviation from thebakground, but the spatial gradients ontent, so that the zeroth order metri(or the zeroth order of any other �eld) is the one not ontaining spatial deriva-tives.Counting the gradients ontent at di�erent orders means onsidering the typ-ial sale lengths on whih the metri (and other �elds) varies spatially beinglarger, in di�erent approximation, than the harateristi times on whih thesame quantities vary in time: the result is a non-linear approximation methodwhih allows us to study how osmologial inhomogeneities grow from initialperturbations, our "seed" (generated by in�ationary �utuations).Therefore, in this thesis, after desribing irrotational dust dynamis (Chapter1), ommenting our gauge hoie (Chapter 2) and summarizing basi ideas ofosmologial perturbations theory (Chapter 3), we get Ψ and χij up to the se-ond order (the order with four spatial gradients) solving respetively expansionand shear evolution equations. We hek energy and momentum onstraints(Chapter 4), we arry on omparing our result with the standard ones by asuitable proedure, and �nally we show the form that the magneti part of theWeyl Tensor assumes within this approah (Chapter 5).



Chapter 1Desribing our UniverseThis thesis deals with departures from an ideal homogenous and isotropi FRW(Friedmann-Robertson-Walker) osmologial model. Before going into the teh-nialities of the osmologial perturbations, we want in this hapter to outlinethe state of the art of the present osmology, pointing out the ideas and teh-inques underlying the standard desription of the universe in di�erent ontextsand phases of its history.In partiular, from a qualitative point of view, we present the osmologialmodel that is able to give the best �t to the omplete set of high-quality dataavailable at present, that is the standard "ΛCDM Hot Big Bang" model; webrie�y show the problems left unsolved by this standard model and the rea-sons whih lead us to invoke alternative senarios for the early universe, suhas In�ation. Finally, as matter today is lustered in galaxies and lusters ofgalaxies, a omplete desription of the universe should inlude a desription ofdeviations from homogeneity: we then resort to In�ation as the simplest viablemehanism for generating the observed perturbations, and brie�y overview thepossible approahes used at present to study the evolution of suh perturbationsand hene the observable large-sale mass distribution.The treatment of this Chapter is not meant to be exhaustive and preise as itould be [4℄, [3℄, [1℄,...: some subjets and the overall formalism are gone on inmuh more detail in following hapters.1.1 The standard osmologial modelGeneral Relativity, together with symmetry assumptions of the metri and as-sumptions about the matter ontent of the universe, is one of the foundamentaltools for the study of osmology: it indeed has produed in the last deades aquite remarkably suessfull piture of the history of our universe.While General Relativity is in priniple apable of desribing the osmology ofany given distribution of matter, it is extremely fortunate that our universeappears to be homogenous and isotropi on the largest sales. Together, ho-mogeneity and isotropy allow us to extend the Copernian Priniple to theCosmologial Priniple, stating that all spatial positions in the universe are es-sentially equivalent.In the past the Cosmologial Priniple served as a useful tool in keeping the dis-



4 Desribing our Universeussion foused on some well-de�ned and useful problems (homogenous models,their relative merits and possible tests). Nowadays, preise tests have emergedand the results do agree with the idea of the Cosmologial Priniple at leastas a zeroth order guidelines. If on sales & tens of Mp we see galaxies andgalaxies lusters in one-dimensional and bidimensional strutures (�laments andsheets) and vauum regions without galaxies even up to 50-100 Mp, three setsof observations -galaxy ounting, extragalati radio soures, CMB tempera-ture smoothness- give some evidene that matter distribution and motion arequite aurately isotropi on sales ≫ 102 Mp and omparable to our Hubblelength, at least within our visible path [9℄. Flutuations from homogeneity andisotropy are thought to be of the order of δρ
ρ ∼ 10−5 [10℄, thus they an benegleted at a �rst approah to the subjet.FRW osmologial modelsA purely kinemati onsequene of requiring homogeneity and isotropy of ourspatial setions 1 is the Friedman-Robertson-Walker (FRW) metri, whih en-ables us to desribe the overall geometry and evolution of the universe in termsof two osmologial parameters aounting for the spatial urvature and theoverall expansion or ontration of the universe:

dS2
FRW = a2(τ) [−dτ2 +

dr2

1− κ r2 + r2dθ2 + r2 sin2 θ dφ2]. (1.1)
τ is the onformal time related to the osmi proper time t by the relation
dt = a(t)dτ . By resaling the radial oordinate, we an hoose the urvatureonstant κ to take only disrete values +1, -1 or 0 orresponding to losed,open, or �at spatial geometries. These are loal statements, whih should beexpeted from a loal theory suh as General Relativity: the global topology ofthe spatial setions may be that of the overing spaes but it need not be.A ombination of high redshift supernova and Large Sale Struture (LSS) dataand measurements of the osmi mirowave bakground (CMB) anisotropiesstrongly favors for a spatially �at model, then we will almost always assumesuh a onstraint.We next turn to osmologial dynamis, in the form of di�erential equa-tions governing the evolution of the sale fator a(t); these ome from applyingEinstein Equations (E.E.):

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (1.2)where it is ommon to assume that the matter ontent of the universe is a perfet�uid, for whih

T µν = (ρ+ p)uµuν + pgµν . (1.3)The pressure p is neessarily isotropi, for onsisteny with the FRW metri; ρis the energy density in the rest frame of the �uid, and uµ is the 4-veloity in1In this Chapter we are supposing a (1+3)-dimensional spaetime and spatial setions haveto be intended as slies at onstant time: see later Setion 2.1.



1.1 The standard osmologial model 5omoving oordinate (see later Setion 2.2).The osmologial onstant Λ term an be interpreted as partile physis pro-esses yielding an e�etive stress-energy tensor for the vauum of Λgµν/8πG, andwe have introdued it in E.E. beause reent observations (luminosity-redshiftof SNIA and the CMB anisotropies measurements) suggest an aeleration ofthe universe expansion and thus the requirement of a non standard �uid, alledDark Energy. With Λ we mean the simplest form of Dark Energy, that is an en-ergy omponent indipedent of time, spatially homogenous and with an equationof state:
pΛ = −ρΛ = − Λ

8πG
. (1.4)Thus, for brevity, from now on we will not expliit it in the equations but treatit as any other (even if partiular) energy omponent.With this simpli�ed desription for matter, equations (1.2) an be rewrittenas follows

H2 ≡
(

ȧ

a

)2

=
8πG

3

∑

i

ρi −
κ

a2
(1.5a)

ä

a
= −4πG

3

∑

i

(ρi + 3pi), (1.5b)where H(t) is the Hubble parameter, overdots denote derivatives with respet totime t and the index i labels all di�erent possible types of energy omponentsin the universe. The �rst equation is often alled Friedmann equation andis a onstraint equation, the seond one is sometime referred to as aelerationequation and is an evolution equation. A third useful equation -not independentof these last two- is the ontinuity equation T µν
;µ. With our assumptions it reads

ρ̇ = −3H(ρ+ p) (1.6)whih implies that the expansion of the universe (as spei�ed by H) an leadto loal hanges in the energy density. Let us note that there is no notion ofonservation of "total energy", as energy an be interhanged between matterand the spaetime geometry.The FRW equations an be solved quite easily supposing that one single energyomponent dominates. Within a �uid approximation, de�ning an equation ofstate parameterw whih relates the pressure p to the energy density ρ by p = wρ,the ordinary energy ontributions of our universe suh as dust and radiationare distinguished by, respetively, w = 0 and w = 1/3. On the ontrary, aosmologial onstant is haraterized by w = −1 (equation (1.4)).Equation (1.6) is easily integrated to yield
ρ ∝ a−3(1+w). (1.7)Then Friedmann equation (1.5a) with κ = 0 and w 6= −1 is solved by

a(t) ∝ t2/[3(1+w)]. (1.8)General qualitative features of the future evolution of FRW universe an now beseen. If κ = 0 or -1, Friedmann equation (1.5a) shows that ȧ an never beome



6 Desribing our Universezero (apart from t = 0): thus, if the universe is presently expanding, it mustontinue to expand forever. Indeed, for any energy ontent with p ≥ 0, ρ mustderease as a inreases at least as rapidly as a−3, the value for dust. Thus,
ρa2 → 0 as a → ∞. Hene for κ = 0 the expansion veloity ȧ asymptotiallyapproahes zero as t→∞, while if κ = −1 we have ȧ→ 1 as t→∞. Otherwise,if κ = +1, the universe annot expand forever but there is a ritial value acsuh that a ≤ ac: at a �nite time after t = 0 the universe ahieves a maximumsize ac and then begins to reontrat.The presene of a vauum energy alters the fate of the universe and the abovesimple onlusions: if Λ < 0, the universe will eventually reollapse independentof the sign of κ. For large values of Λ even a losed universe will expand forever.Table 1.1 summarizes the behaviour of the most important soures of energydensity in osmology in the ase of a �at universe.Type of Energy w ρ(a) a(t) H(t)Dust 0 a−3 t2/3 2

3tRadiation 1
3 a−4 t1/2 1

2tCosmologial Constant -1 const eHt
√

Λ
3Table 1.1: The behaviour of the sale fator and Hubble onstant applie to the aseof a �at universe; behaviours of energy density are perfetly general.There are three foundamental features of FRW spaetimes whih we aregoing to disuss:

• expansion (or ontration) =⇒ gravitational redshift (or blueshift);
• existene of an initial singularity, the Big Bang;
• existene of partile horizons.Expansion and Redshift The �rst striking result of FRW models is thatuniverse annot be stati but must be expanding or ontrating. This onlusionfollows immediately from equation (1.5b) written in the simple form

ä = −4πG

3
(ρ+ 3p)a. (1.9)(1.9) tells us that ä < 0 if ρ + 3p > 0 and ä > 0 if ρ + 3p < 0: in any ase,the universe must always either be expanding (ȧ > 0) or ontrating (ȧ < 0)(with the possible exeption of an instant of time when expansion hanges over toontration, as in the ase κ = +1). Let us omment the nature of this expansionor ontration: the distane sale between all isotropi observers hanges withtime, but there is no preferred enter of expansion or ontration. Indeed, if thedistane (measured on the homogenous slie) between two isotropi observer attime t is r, the rate of hange of r is

v ≡ dr

dt
=
r

a

da

dt
= Hr (1.10)



1.1 The standard osmologial model 7where H(t) is the well-known Hubble parameter and (1.10) is known as HubbleLaw. Let us still note that the expansion speed an be greater than the speedof light without any harmful thought .The expansion of the universe is on�rmed in aordane with equation (1.10):the most diret observational evidene for that omes from the redshift of thespetral lines of distant galaxies. The idea is that a loal observer detetinglight from a distant emitter sees a redshift in frequeny or, in other words, thewavelength λ of eah photon inreases in proportion to the amount of expansion,as any other physial sale is strethed by expansion. The solution of all redshiftproblems (as illustrated in Figure 1.1) in Speial and General Relativity is gov-erned by the following two fats: �rst, light travels on null geodesis; seondly,the frequeny of a light signal of wave vetor kµ measured by an observer with4-veloity uµ is ν = −kµu
µ. Thus we an always �nd the observed frequenyby alulating the null geodesi determined by the initial value of kµ at theemission point and then alulating the right hand side of the former expressionat the observation point [1℄. The redshift fator is then given by

z ≡ λ2 − λ1

λ1
=
ν1
ν2
− 1 =

a(t2)

a(t1)
− 1. (1.11)
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Figure 1.1: A spaetime diagram showing the emission of a light signal at event P1and its reeption at event P2It is possible to relate the redshift to the relative veloity of the two observersin the ase of small sales (i.e. less than osmologial sales) suh that theexpansion veloity is non-relativisti. In this ase, for light emitted say bynearby galaxies, we have t2 − t1 ≈ r, where r is the present proper distane tothe galaxy; furthermore, a(t2) ≈ a(t1) + (t2 − t1)ȧ. Thus we �nd
znon rel ≈

ȧ

a
r = Hr (1.12)



8 Desribing our Universewhih is the linear redshift-distane relationship disovered by Hubble. The red-shifts of distant galaxies will deviate from this linear law depending on exatlyhow a(t) varies with t.The redshift z is often used in plae of the sale fator: to be omplete,
z, t, a(t), ρ(t) and the temperature T are all used as variables to refer to di�erentphases of the universe history (Tables 1.1).Big Bang singularity Both matter and radiation dominated �at uni-verses present a singularity at t = 0 in whih a = 0. Thus, under the assumptionof homogeneity and isotropy, General Relativity makes the striking preditionthat at a time t =

∫ 1

0
da

a H(a) = 2
3(1+w)H0

∼ H−1
0 ago the universe was in asingular state: the distane between all "points of spae" was zero, the densityof matter and the urvature of spaetime in�nite. This singularity state of theuniverse is referred to as Big Bang, and the quantity H−1

0 , known as the Hubbletime, provides a useful estimate of the time sale for whih the universe hasbeen around. 2The nature of this singularity is that resulting from a homogenous ontrationof spae down to "zero size". The Big Bang does not represent an explosion ofmatter onentrated at a preexisting point: it does not make sense to ask aboutthe state of the universe "before" the Big Bang beause spaetime strutureitself is singular at t = 0; thus General Relativity leads to the viewpoint thatuniverse began at the Big Bang. For many years it was generally believed thatthe predition of a singular origin was due merely to the assumptions of exathomogeneity and isotropy, that if these assumptions were relaxed one would geta non-singular "boune" at small a rather than a singularity. The SingularityTheorem of General Relativity [1℄ shows that singularities are generi features ofosmologial solutions. Of ourse, at the extreme onditions very near the BigBang one expets that quantum e�ets will beome important, and preditionsof lassial General Relativity are expeted to break down.Partile horizons We shall demonstrate now the third ruial point ofFRW spaetimes: FRW osmologial models presuppose the existene of non-trivial partile horizons, where, by this expression, we mean in general theboundary of the observable region at a generi time t, or the boundary betweenthe worldlines that an be seen by an observer at a ertain point of spaetimeand those one that annot be seen (see Figure (1.2)). In General Relativity thequestion about how muh of our universe an be observed at a given point isdue, and indeed, in spite of the fat that the universe was vanishingly smallat early times, the expansion preluded ausal ontat from being establishedthroughout the universe.The photons travel on null paths haraterized by dr = dt
a(t) = dτ : thephysial distane that a photon ould have travelled sine tha Bang until time

t, the distane to the partile horizon, is
RH(t) = a(t)

∫ t

0

dt′

a(t′)
(1.13)2The subsript "0" means that the quantity is evaluated at t = tNOW .



1.1 The standard osmologial model 9
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Figure 1.2: The ausal struture of FRW spaetime near the Big Bang singularity:partile horizons arise when the past light one of an observer terminates at a �nitetime t or onformal time τ .An observer at a time t is able to reeive a signal from all other isotropiobservers if and only if the integral of (1.13) diverges : in this ase the �atFRW metri is onformally related to Minkowski spaetime and there is nopartile horizon. On the other hand, if the integral onverges, FRW model isonformally related only to a portion of Minkowski spaetime (the one abovea t = const surfae) and partile horizon does our. It is not di�ult to seethat the integral onverges in all FRW models with equation of state parameter
w ∈ (0, 1):

RH(t) =

{

2t = H−1(t) ∝ a2 (radiation)
3t = 2H−1(t) ∝ a3/2 (dust). (1.14)As H(t)−1 is the age of the universe, H(t)−1 is alled the Hubble Radius, as it isthe distane that light an travel in a Hubble time H(t). If the partile horizonexists then it would oinide, up to numerial fator, with the Hubble radius:for this reason, in the ontext of standard osmology (when ω > −1/3) horizonand Hubble radius are used interhangeably.These onlusions are not true anymore in the ase of non standard matter,that is w /∈ (0, 1): in the ase of a osmologial onstant (for example, duringIn�ation or in the later time of universe history), partile horizon and Hubbleradius are not equal as the horizon distane grows exponentially in time relativeto the Hubble radius.A physial length sale λ is within the horizon if λ < RH ∼ H−1; in terms of theorresponding omoving wavenumber k, λ = 2πa/k, we will have the followingrule:

k

a
≪ H−1 =⇒ sale λ outside the horizon and no ausality

k

a
≫ H−1 =⇒ sale λ within the horizon and ausality.Therefore, in a universe desribed by FRW with standard matter ontent suhas dust or radiation, there will always exist regions not ausally onneted:



10 Desribing our Universeany omoving length sale evolves in time with a power law tα with α < 1(κ = 0), thus its rate of inrease is always smaller than the rate of inrease inthe Hubble horizon size, whih is linear in time. Thus, for example, the sizeof a omoving region orresponding at present to a superluster (say ∼ 30Mpcat t ≈ 109years) was omparable to the horizon at epoh shortly before thereombination (t ≈ 105years) and was muh greater than the horizon at someearlier epoh.These onsiderations about the existene of partile horizons and of ausallydisonneted regions in FRW models lead to very interesting issues. We beginpresenting one of them (known as Horizon problem), postponing a brief disus-sions of the shortomings of the standard osmologial model as desribed untilhere to a next paragraph.As mentioned earlier, we have good reasons to believe that the present universeis homogenous and isotropi to a very high degree of preision. Now, manyordinary systems, suh as gas on�ned in a box, often are found in extremelyhomogenous and isotropi states: the usual explanation of that state is thatthey have had an opportunity to self-interat and thermalize, exatly as in abox �lled with gas initially in an inhomogenous state, these inhomogeneitiesquikly "wash out" on a time sale of the order of the transit time aross thebox. However this type of explanation annot possibly apply to a universewith partile horizons, sine di�erent portions annot even send signals to eahother, far less interat su�iently to thermalize eah other. Thus, in order toexplain the homogeneity and isotropy of the present universe, one must pos-tulate that either (a) the universe was born in an extremely homogenous andisotropi state, or (b) the very early universe di�ered signi�antly from the FRWmodels so that no horizons were present; the inhomogeneities and anisotropythen "damped out" by some mehanisms and the universe approahed the FRWmodels that �t present observations. Unfortunately, if the �rst point of viewmay appear rather unnatural and a profession of faith, the seond one su�ersnot only from the absene of a plausible piture of evolution from a haoti toa FRW state, but for the fat that gravity promotes inhomogeneity, not ho-mogeneity. Later we will see how a third way is now aepted, the one of anin�ationary phase of the very early universe.Brief outline of universe evolutionThe above onsiderations should be almost su�ient to understand and jus-tify the basi aspets of the evolution of our universe from the Big Bang tothe present in the standard piture. Two points should be still lari�ed forompleteness:
• the various partiles inhabiting the universe an be usefully haraterizedaording to three riteria: in equilibrium vs. out of equilibrium (deou-pled), bosoni vs. fermioni, and relativisti (veloities near to c) vs. nonrelativisti (dust);
• muh of the history of the standard Big Bang model an be easily desribedby assuming that one of the omponents dominates the total energy den-sity.



1.1 The standard osmologial model 11As mentioned earlier, the osmologial energy onservation (equation (1.6)) tellsus that the derease of the sale fator a as one goes bak towards the past hasthe same loal e�et on the matter as if the matter were plaed in a box whosewalls ontrat at the same rate. Thus (in agreement with Table 1.1) the ontri-bution of radiation ompared with ordinary matter inreases in the past, andthere must be a period in the early times of universe evolution in whih this ra-diation should have been the dominant ontribution to the energy. The presentradiation energy ontribution to the universe energy density is represented bythe CMB energy density, wih is about 1000 times smaller than the present massdensity ontribution of matter. One would expet the radiation-�lled model ofthe universe to be a good approximation for the dynamis of the universe beforea stage in whih the sale fator a was more than few 1000 times smaller thanits present value, while the dust �lled model should be a good approximationafterwards. In the ontext of this separation, another important issue is whetherthe interations of matter or radiation proeed on a rapid enough time sale forthermalization to our loally (within the partile horizon). A given speiesremains in thermal equilibrium with the surrounding thermal plasma as long asits interation rate is larger than the expansion rate of the universe. A partilespeies for whih the interation rates have fallen below the expansion rate issaid to have frozen out or deoupled. As good rule of thumb, the expansion ratein the early universe is "slow", and partiles tend to be in thermal equilibrium(unless they are very weakly oupled); in our urrent universe, no speies are inequilibrium with the bakground plasma (represented by the CMB photons).The basi piture of the evolution of our universe an then be told as fol-lows: the universe began with a singularity state as a hot (T → ∞), dense(ρ→∞) soup of matter and radiation in thermal equilibrium. The energy on-tent of early universe was dominated by radiation: at these early times thermalequilibrium held and other spei� phenomena took plae suh as primordialnuleosynthesis. However, as the universe evolved, thermal equilibrium was notmaintained and the ordinary matter ontribution began to dominate the energyontent of the universe (about 4 × 104 years after the Bang): the dynamis ofthe universe beame that of a dust �lled FRW model haraterized by the CMBphotons bakground, matter-antimatter asymmetry and osmologial strutureformation.There is no room in this thesis to �ll the details of this shemati and fullof gaps evolutionary history, and to disuss for example the very omplex �rstfew minutes of universe life haraterized by symmetry breakings and phasetransitions, and other [4℄: more interesting, even in relation to the following de-velopments, is to underline the good preditions of the Hot Big Bang model andto understand how it faes reent observations and some theorethial questions.Parametrizing the universe: shortomings of the standard modelEarlier we introdued global parameters suh as expansion fator a(t), spatialurvature κ and Hubble parameterH(t), the latter de�ned by
H(t) +

ȧ

a
=
a′

a2
or H(τ) +

a′

a
(1.15)



12 Desribing our Universewhere the dot denotes di�erentiation with respet to t and the prime di�erentia-tion with respet to τ . In addition, it is useful to de�ne several other measurableosmologial parameters.The Friedmann equation (1.5a) suggests to de�ne a ritial density ρc and aosmologial density parameter Ωtot

ρc +
3H2

8πG
and Ωtot +

ρ

ρc
(1.16)suh that it an be rewritten as follows

κ

a2
= H2(Ωtot − 1) (1.17)From equation (1.17), one an distinguish the di�erent ases

ρ < ρc ↔ Ωtot < 1 ↔ κ = −1 ↔ open
ρ = ρc ↔ Ωtot = 1 ↔ κ = 0 ↔ flat
ρ > ρc ↔ Ωtot > 1 ↔ κ = +1 ↔ closed.

(1.18)It is often neessary to distinguish di�erent ontributions to the density, andtherefore onvenient to de�ne present-day density parameters for pressurelessmatter Ωm, relativisti partiles Ωr, and for the vauum Ωv. This last oneis equal to ΩΛ = Λ/3H2 in models with osmologial onstant, i.e. onstantvauum energy density. Then the Friedmann equation beomes
κ

a2
0

= H2
0 (Ωm + Ωr + Ωv − 1) (1.19)where the subsript 0 indiates present-day values.One way to quantify the deeleration (or aeleration) of the universe expansionof equation (1.5b) is the deeleration parameter q0 de�ned as

q0 + −
(

aä

ȧ2

)

0

=
1

2
Ωm + Ωr +

1 + 3w

2
Ωv. (1.20)The expansion aelerates if q0 < 0 and this equation shows that w < −1/3 forthe vauum may lead to an aelerating expansion.It is usual to express the Hubble parameter and hene all the previous param-eters in terms of the saled Hubble parameter h for whih

H ≡ 100h km s−1 Mpc−1. (1.21)The term "osmologial parameters" is inreasing its sope beause of the rapidadvanes in observational osmology of the last ten years whih are leadingto the establishment of the �rst high preision osmologial model. The mostaurate model of the universe requires onsideration of a wide range of dif-ferent types of observations, with omplementary probes providing onsistenyheks, lifting parameter degeneraies, and enabling the strongest onstraints tobe plaed. Hene, nowadays, the term "osmologial parameters" not only refersto the original usage of simple numbers as the above ones desribing the globaldynamis and properties of the universe, but also inludes the parametrizationof some funtions desribing the nature of perturbations in the universe, andphysial parameters of the state of the universe. Typial omparison of os-mologial models with observational data now feature about ten parameters,shown in Table 1.2 (see [36℄ and [11℄).



1.1 The standard osmologial model 13Parameter Symbol ValueHubble Parameter h 0.73± 0.03Total matter density Ωm Ωmh
2 = 0.134± 0.006Baryon Density Ωb Ωbh
2 = 0.023± 0.001Cosmologial Constant ΩΛ Ωv = 0.72± 0.05Radiation Density Ωr Ωrh
2 = 2.47× 10−5Density perturbation amplitude ∆2

R(k∗) see later P(k)Density perturbation spetral index n n = 0.97± 0.03Tensor to salar ratio r r < 0.53 (95%conf)Ionization optial lenght τ τ = 0.15± 0.07Table 1.2: The basi set of osmologial parameters: unertainities are one-sigma/68%on�dene unless otherwise stated.We have by now most of the ingredients needed to understand the �rsthalf of the shown parameters; the seond one will be in part justi�ed in theontinuation, while the ionization optial depth will not be ommented at allin this thesis. The spatial urvature does not appear in the list beause it anbe determined from the other parameters using (1.17) or (1.19), and the totalpresent matter density is indiated as usual as a sum of baryoni matter and darkmatter densities, namely Ωm = Ωdm + Ωb. With appropriate arguments, theparameter set listed above an be redued to seven parameters as the smallestset that an usefully be ompared to the present osmologial data set. Ofourse this is not the unique possible hoie: one ould instead use parametersderived from those basi ones suh as the age of the universe, the present horizondistane, the present CMB and neutrino bakground temperatures, the epohof matter-radiation equality, the epoh of transition to an aelerating universe,the baryon to photon ratio, ... Furthermore, di�erent types of observations aresensitive to di�erent subsets of the full osmologial parameter set.Having in mind the above parametrization and Table 1.2 as mirror of thedisposable observational data, we an proeed in evaluating the standard os-mologial model. Among the most notable ahievements of Hot Big Bang FRWstandard model are
• the predition of osmologial expansion;
• the predition and explanation of the presene of a reli bakground radi-ation with temperature of order of few K, the CMB;
• the explanations of the osmi abundane of light elements;
• the possibility to insert in this piture the struture formation phenomenon.On the ontrary, the most severe problems that it has to fae an be summarizedin the following interesting issues.
• Horizon problem.Under the term "horizon problem" a wide range of fats is inluded, allrelated to the existene of partile horizons in FRW models. We havealready disussed the main point of the question: we want now to delineatesome more quantitative aspets of it.



14 Desribing our UniverseAording to the standard model, photons and the other omponents suhas eletrons and baryons deoupled at a temperature of 0.3 eV. Reallingthe preeding disussions, this happened when the rate of interation ofphotons with, say, eletrons and protons beame of the order of the Hubblesize (that is, of the horizon size), and the expansion made not possible thereverse reation of p+e+ → H+γ. The temperature of 0.3 eV orrespondsto the so-alled surfae of last-sattering, posed at a redshift zLS ≈ 1100,after the matter-radiation equivalene and hene in matter era. Fromthe epoh of last-sattering onwards, photons free-stream and now aremeasurable in the well known CMB, whose spetrum is onsistent withthat of a blak-body at a temperature of 2.726± 0.01K. Then let us lookat two photons from di�erent parts of the sky: the lengh orresponding toour present Hubble radius at the time of last-sattering was (rememberingthat T ∝ a−1)
λH0(tLS) = RH(t0)

(

a(tLS)

a(t0)

)

= RH(t0)

(

T0

TLS

)During the matter domination H2 ∝ a−3 ∝ T 3, and at last-sattering
H−1

LS = RH(t0)

(

T0

TLS

)3/2

≪ RH(t0)Being T0 ∼ 2.7K ∼ 10−4 eV ≪ TLS , the length orresponding to ourpresent Hubble radius was muh muh larger that the horizon at thattime. Beause CMB experiments like COBE and WMAP tells us that ourtwo photons have nearly the same temperature to a preision of 10−5, weare fored to say that those two photons were very similar even if theyould not talk to eah other, and that the universe at last-sattering washomogenous and isotropi in a physial region about some order greaterthan the ausally onneted one!Not only the homogeneity of the CMB is able to tell us important things,but nowadays the measured temperature �utuations (onsequenes ofdensity inhomogeneities) are a mine of information too, and another strik-ing feature of the CMB is that photons at the last-sattering surfae whihwere ausally disonneted have the same small anisotropies ([10℄). Thestandard model annot say anything with referene to this.
• Flatness problem and the peuliarity of initial onditions.The Friedmann equation tells us that

(Ωtot − 1) = κ/ H2a2therefore (we impliitly onsider from now on Ω ≡ Ωtot) (Ω − 1) → 0 for
t → 0 in both ases of radiation and matter domination: in other words,given (Ω(t) − 1) at a given time t, Ω has to depart from 1 both in openand losed ases. Present observations tell us that (Ω0 − 1) is of orderunity (i.e. ∈ (0,∼ 1)). Let us alulate the same value at some early timeof universe, say at Plank time (at t ≈ 10−43 s or T∼ 1019 GeV):

|Ω− 1|T=TPl

|Ω− 1|T=T0

≈
(

a2(tPl)

a2(t0)

)

≈
(

T 2
0

T 2
Pl

)

≈ O(10−64)



1.1 The standard osmologial model 15A very problemati question arises, beause how an it be possible that Ωhad been so near the ritial value able to lead to the universe observedtoday? Even small deviations of Ω from 1 at early time would have led tothe ollapse or the ooling of the universe in few 10−43s, respetively inthe ase of κ = +1 or κ = −1. In order to get the orret value (Ω0 − 1)at present, the value (Ω−1) at early times had to be �ned-tuned to valuesamazingly lose to zero, but without being exatly zero. This is the reasonwhy the �atness problem is also dubbed the "�ne-tuning problem".
• Existene of Dark Matter.We have a remarkable onvergene on the value of the density parameterin matter (w = 0): Ωm = 0.28± 0.05. We all baryoni matter or simplyordinary matter anything made of atoms and their onstituents, and thiswould inlude all of stars, planets, gas and dust in the universe. Ordinarybaryoni matter, it turns out, is not enough to aount for the observedmatter density:

Ωb ∼ 0.043± 0.002≪ ΩmThis determination omes from a variety of methods: diret evaluationof baryons, onsisteny with the CMB power spetrum, and agreementwith the preditions of primordial nuleosynthetis, whih plaes the on-straint Ωb ≤ 0.12. Most of the matter density must therefore be in theform of non-baryoni matter, or dark matter. Candidates for dark matterinlude the lightest supersymmetri partile, the axion, but in the pastessentially every known partile of the Standard Model of partile physisand predited partiles of Supersymmetry theories have been ruled outas a andidate for it. The things we know are that it has no signi�antinterations with other matter, so as to have esaped detetion thus far,and that its partiles have negligible veloity, i.e. they are "old".
• Evidene of aelerated expansion.Astonishignly, in reent years, it appears that an e�et of aeleratingexpansion (q0 < 0) has been observed in the Supernova Hubble diagram:the ommon position in the last years is to invoke the existene of anotherenergy omponent (di�erent from matter and radiation), and omparisonwith the predition of FRW models leads of ourse to favor a vauum-dominated universe. In this piture, urrent data indiate that the vauumenergy is indeed the largest ontributor to the osmologial density budget,with Ωv = 0.72±0.05, [11℄. The nature of this dominant term is presentlyunertain, but muh e�ort is being invested in dynamial models, underthe ath-all heading of quintessene, or Dark Energy.
• The problem of perturbations unknown origin.The �rst issues arise from a ombination of observational fats and theoretialpriniples, and together with the last one they �nd the best model solution in theIn�ationary paradigm. The Dark Matter and the Dark Energy problems foreus to take into aount an ampler osmologial model referred to by variousnames, inluding "ΛCDM Hot Big Bang" model, the onordane osmology, orthe standard osmologial model. But the sense of aomplishment at havingmeasured all the numbers above is somewhat tempered by the realization that



16 Desribing our Universewe do not understand very well any of them. For instane, there are manyproposals for the nature of Dark Matter, but no onsensus as to whih is orret.Even the baryon density, now measured to an auray of a few perent, laksan underlying theory able to predit it even within orders of magnitude. Finallythe nature of the Dark Energy remains a mystery, even if very reent works havesuggested viable mehanisms able to explain the aeleration without invokingan extra energy omponent [37℄.1.2 In�ationThe horizon problem is a relevant problem of the standard osmology beauseat its heart there is simply ausality. From the onsiderations made so far, itappears that solving the shortomings of the standard model requires at leastan important modi�ation to how the information an propagate in the earlyuniverse, and hene that the universe has to go through a primordial periodduring whih the physial sale λ evolves faster than the horizon sale H−1.Cosmologial In�ation is suh a mehanism.The foundamental idea of In�ation is that the universe undergoes a period ofaelerated expansion, de�ned as a period when ä > 0, at early times. The e�etof this aeleration is to quikly expand a small region of spae to a huge size,reduing the spatial urvature in the proess, making the universe extremelylose to �at. In addition, the horizon size is greatly inreased, so that distantpoints on the CMB atually are in ausal ontat.An in�ationary stage is de�ned as a period of the universe during whih thelatter aelerates. From previous setions we have learned that
ä > 0⇐⇒ (ρ+ 3p) < 0 (1.22)and that suh a ondition is not satis�ed neither during a radiation-dominatedphase nor in a matter-dominated phase. Even if it is su�ient that p < −ρ/3, inorder to study the properties of the period of in�ation, we assume the extremeondition p = −ρ whih onsiderably simpli�es the analysis and that we havealready met in terms of a osmologial onstant. We reall brie�y that in thease of suh an energy omponent

ρ ∝ const (1.23)
HI ∝ const (1.24)

a(t) = ai e
HI(t−ti) ∝ eHI t (1.25)

RI
H(t) ∝ H−1

I eHI t (1.26)where the subsript (or supersript) I indiates that we refer to an in�ationquantity and ti denotes the time at whih in�ation starts. Contrary to whathappens in FRW dust or radiation �lled universes, a omoving length saleinreases faster than the partile horizon and muh faster than the Hubble size.By the way, In�ation is a phase of the history of the universe ourring beforethe era of nuleosynthetis (t ≈ 1s, T ≈ 1 MeV) during whih the light elementsabundanes were formed: this is beause nuleosynthetis is the earliest epohwe have experimental data from, and as already seen they are in agreement with



1.2 In�ation 17the preditions of the Hot Big Bang model. However, the thermal hystory of theuniverse before that stage is almost unknown and many models of In�ation areset to be around the Plank time (tPl ≈ 10−43s). It is ommon, even in reponseto other tasks, to think of a period of reheating at the end of In�ation duringwhih thermal equilibrium is established and radiation era begins.It is useful to have a general expression to desribe how muh In�ation oursone it has begun. This is typially quanti�ed by the number of e-folds, de�nedby
N(t) + ln

(

a(tf )

a(t)

) and Ntot = ln

(

a(tf )

a(ti)

) (1.27)Resolution of the horizon problem Thanks to In�ation any omovinglength sale observable at present has been ausally onneted at some primor-dial stage of the evolution of the universe, removing the horizon problem. Thisan be easily seen with the help of Figure 1.3. Let us onsider length sales λwhih are within the horizon today (λ < H−1(t0) ≡ H−1
0 ) but were outside thehorizon for some previous period (λ > H−1(tpast)) during the matter or radia-tion era. If there is a period (in�ation) during whih physial length sales growfaster than H−1, suh today observable sales had a hane to be within thehorizon in that early period again (λ < H−1

I ): in fat, during the in�ationaryepoh the Hubble radius is onstant and the ondition satis�ed.
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Figure 1.3: Hubble sale and a physial sale as a funtion of the sale fator a [10℄.Let us see how long In�ation must be sustained in order to solve the horizon



18 Desribing our Universeproblem and let the present day largest observable sale re-enter the horizonduring In�ation. The largest observable sale is of ourse the present Hubbleradius H0 and we want it to be redued during In�ation to a value λH0(ti)smaller than the value of the Hubble size H−1
I during In�ation. This gives

λH0(ti) = H−1
0

(

a(tf )

a(t0)

) (

a(ti)

a(tf )

)

= H−1
0

(

T0

Tf)

)

e−Ntot . H−1
I(where we have negleted for simpliity the short period of matter-domination).Then the ondition for solving the horizon problem is

Ntot & ln(
T0

H0
)− ln(

Tf

HI
) ≈ 67 + ln(

Tf

HI
). (1.28)More preise valutations give Ntot & 60.In�ation and �atness problem In�ation solves elegantly the �atnessproblem, thanks to the fat that the Hubble sale is onstant and

Ω− 1 =
k

a2H2
I

∝ 1/a2.We have seen that to reprodue a value of (Ω0 − 1) of order unity today theinitial value of (Ω−1) at Plank time must be |Ω−1| ∼ 10−60. Sine we identifythe beginning of the radiation era with the end of In�ation, and the time saleof In�ation is Plank time, we require |Ω− 1|t=tf
∼ 10−60.During In�ation

|Ω− 1|t=tf

|Ω− 1|t=ti

=

(

ai

af

)2

= e−2NtotTaking |Ω− 1|t=ti
of order unity, it is enough to require that Ntot ≈ 60 to solvethe �atness problem. From the point of view of the �ne-tuning, In�ation avoidsthe hindrane of an enormous �ne-tuning, beause the density parameter Ω isdriven to 1 with exponential preision. Let us note that if the period of In�ationlasts longer than 60 e-folding the present-day value of Ω0 will be equal to unitywith a great preision. Thus we ould say that a generi predition of In�ationis Ω0 = 1, and urrent data on CMB anisotropies on�rm this predition.In�ation as driven by a slowly-rolling salar �eldKnowing the various advantages of having a period of aelarated expansionphase, the next task onsists in �nding a model that satis�es the onditionsmentioned above. There are many models of In�ation. Today most of them arebased on a new salar �eld, the in�aton φ.We onsider modelling matter in the early universe by the in�aton, a real salar�eld whih moves with a potential V (φ). Its Lagrangian then reads

L =
1

2
∂µφ∂νφ+ V (φ) (1.29)and the stress-energy tensor is

Tµν = φ,µφ,ν − gµν

(

1

2
φ,µφ,ν + V (φ)

) (1.30)



1.2 In�ation 19The orresponding energy density ρφ and pressure pφ are
T00 = ρφ =

φ̇2

2
+ V (φ) +

(∇φ)
2

2a2
(1.31a)

Tii = pφ =
φ̇2

2
− V (φ)− (∇φ)

2

6a2
(1.31b)where it is evident that if the gradient term were dominant, we would obtain

pφ = − ρφ

3 , not enough to drive In�ation.In the ase of an homogenous �eld φ(t, ~x) = φ(t), the in�aton behaves with aperfet �uid and expression (1.31) beome
T00 = ρφ =

φ̇2

2
+ V (φ) (1.32a)

Tii = pφ =
φ̇2

2
− V (φ) (1.32b)The equation of motion for the homogenous in�aton is

�φ =
dV

dφ
i.e. φ̈+ 3

ȧ

a
φ̇+

dV

dφ
= 0 (1.33)whih an be thought of as the usual Klein-Gordon equation of motion fora salar �eld in Minkowski spae, but with a frition term 3Hφ̇ due to theexpansion of the universe. The Friedmann equation with suh a salar �eld asthe sole energy soure is

H2 =
8πG

3

(

1

2
φ̇2 + V (φ)

) (1.34)Let us now quantify under whih irumstanes a salar �eld may give rise toa period of In�ation. First of all, let us note that requiring V (φ) ≫ φ̇2 im-plies from expressions (1.32) that the potential energy of the salar �eld is thedominant ontribution to both the energy density and the pressure, and hene
pφ ≃ −ρφ: from this simple alulation, we realize that a salar �eld whoseenergy dominates the universe and whose potential energy dominates over thekineti term an mimi a osmologial onstant dominated universe, and thengives In�ation. In�ation is driven by the vauum energy of the in�aton �eld.If φ̇2 ≪ V (φ), the salar �eld is slowly rolling down its potential and this is thereason why suh a period is alled slow-roll. The so-alled slow-roll approxima-tion onsists in two onditions:
• negleting the kineti term of φ ompared to the potential energy;
• assuming a �at potential so that φ̈ is negligible as well in (1.33).In this approximation, the Friedmann equation (1.34) and the �eld equation(1.33) are written

H2 ≃ 8πG

3
V (φ) (1.35)

3Hφ̇ ≃ −V ′(φ) (1.36)where in this ontext V ′(φ) = dV
dφ . That is, the frition due to the expansionis balaned by the aeleration due to the slope of the potential. The slow-rollonditions an be rewritten as follows



20 Desribing our Universe
• φ̇2 ≪ V (φ) =⇒ (V ′)2

V ≪ H2;
• φ̈≪ 3Hφ̇ =⇒ V ′′ ≪ H2.If we de�ne the following slow-roll parameters

ǫ ≡ − Ḣ

H2
= 4πG

φ̇2

H2
=

1

16πG

(

V ′

V

)2 (1.37a)
η ≡ 1

8πG

(

V ′′

V

) (1.37b)the slow-roll onditions hold if |ǫ| ≪ 1 and |η| ≪ 1.It is now easy to see in another sense how the slow-roll approximation yieldsin�ation. Let us reall that In�ation is de�ned by ä > 0, or in other terms
ä

a2
= Ḣ +H2 > 0

Ḣ > 0 annot be for a salar potential (as p annot be < −ρ): the aelerationondition an be translated to
− Ḣ

H2
= ǫ < 1As soon as this ondition fails, In�ation ends: in general, slow-roll in�ation isattained if ǫ ≪ 1 and |η| ≪ 1, where the latter ondition helps to ensure thatin�ation will ontinue for a su�ient period.Within this approximation, the total number of e-folds between the beginningand the end of In�ation is

Ntot ≡ ln

(

a(tf )

a(ti)

)

=

∫ tf

ti

Hdt ≃ −8πG

∫ φf

φi

V

V ′
dφ. (1.38)Conluding, In�ation is osmologially attrative but serious problems are leftunsolved with it: on the one hand, we annot say if the universe in its earlieststages satis�ed the onditions for In�ation to light up (i.e. for in�aton to undergoslow rollover); on the other hand, there are no experimental evidenes even forthe existene of a neutral spin zero boson far less for the existene of the in�atonin partiular.1.3 Foundamental ideas of Struture FormationAs already mentioned, the Cosmologial Priniple and hene the inhomogeneityof the universe have played a urious role in the history of modern osmology:if the overall properties of the universe are very lose to being homogenousand hene muh of universe dynamis as a whole an be said thanks to the as-sumption of homogeneity and isotropy on the largest sales, on the other handtelesopes reveal a wealth of details on sales varying from single galaxies tolarge strutures of size far exeeding 102 Mp. Understanding the existene ofthese struture is one of the prinipal task of modern osmology, and this studyis usually performed with di�erent tehniques and approximation shemes, de-pending on the spei� range of sales under analysis.



1.3 Foundamental ideas of Struture Formation 21The interest in the large-sale mass distribution traes bak to the Thirthieswith Lemaitre, who pointed out that if the evolving homogenous and isotropiworld model is a reasonable �rst appoximation (we now say zeroth order approx-imation), then the next step is to aount for the departures from homogeneitiesin the observed strutures. As the Cosmologial Priniple annot be expetedfrom general arguments and physial priniples, nor the existene of galaxiesan be dedued from general priniples beause we do not know how to spe-ify initial onditions: we have been left with Lemaitre' s program onsistingin trying to �nd the harater of density �utuations in the early universe andmodelling the physial proesses that have operated subsequently to developsuh �utuations into the irregularities we observe today.Muh work has been done in the last deades and now we an follow a greatpart of the evolution of initial perturbations to present strutures thanks toa long list of osmologial shemes and methods. But before going into somemore detailed desription of the idea of struture formation we want still tostress on the nature of the Cosmologial Priniple. If it were really a priniple,as initially suggested by Milne, the Cosmologial Priniple should be omparedto a law of nature: on the ontrary, now it is ommon sense to intend it as aphilosophial assumption whih allows us to irumevent our inability to obtaininformation about the universe outside our past light-one by assuming that asymmetry priniple exists everywhere. By assuming the Cosmologial Priniple,we assume that we are able to determine onditions many Hubble radii awayfrom us by using observational data within our past light-one, whose region ofin�uene is, by de�nition, limited to one Hubble radius. It is exatly this pointthat should lead us to treat the Cosmologial Priniple as a subtle approah.Moreover, homogeneity ould only apply on the average over many galaxies: weshould then keep in mind that when we refer to homogeneity and isotropy of theuniverse we taitly assume that spatial smoothing over some suitably large �l-tering sale has been applied exatly with the purpose of letting the �ne-graineddetails to be ignored.A great deal of struture formation theory is based on the study of just onesalar �eld, namely the density perturbation �eld de�ned as
δ(t, ~x) ≡ ρ(t, ~x)− ρb(t)

ρb(t)
(1.39)where ρb represents the unperturbed mean value of the bakground universedensity, in the FRW model. In spei� ases, this �eld is related to the Newto-nian peuliar gravitational potential ϕ(~x) through the Poisson equation whihin an expanding universe reads

∇2ϕ(t, ~x) = 4πG a2(t)ρb(t) δ(t, ~x). (1.40)There are many di�erent notations used to desribe the density perturbationsand their evolution, both in terms of the quantities used to desribe the pertur-bations as metri deviations and of the de�nition of an appropriate statistialtreatment. The former approah will be learer only in the following haptersand it is the heart of the thesis; for now, we want to give a sketh of the latter.A ritial feature of the quantity δ is that it inhabits a universe that is isotropiand homogenous in its large-sale properties: this suggest a statistial refor-mulation of Cosmologial Priniple, that is that the statistial properties of δ



22 Desribing our Universeshould also be statistially homogenous. In other words, δ re�ets a stationaryrandom proess: every spatial position ~xi is assoiated to a stohasti variable
δ(~xi), with i = 1, 2, ...N and N →∞, and all the probability densities on a �nitenumber of points P~x1,~xN ,...,~xN

(δ1, δ2, ...δN ) are invariant under translations, ro-tations and re�etion of the points set ~x1, ~xN , ..., ~xN . The universe we observeis the statistial realization of δ(~x) thought as a stohasti �eld, and in thislanguage the unperturbed density of FRW bakground universe orresponds tothe average over the statistial ensemble, ρb ≡ 〈ρ(~x)〉.Cosmologial density �elds are an example of ergodi proess, in whih the aver-age over a large volume tends to the same answer as the average over a statistialensemble.It is usual to desribe δ as a Fourier superposition:
δ(~x) =

∑

δ̂(~k) e−i~k~x (1.41)The ross-terms vanish when we ompute the variane in the �eld, whih is justa sum over modes of the power spetrum
〈δ2〉 =

∑

|δ̂(~k)|2 ≡
∑

P (k) (1.42)where the statistial isotropi nature of the �utuations allows us to write P (k)rather than P (~k). Another quantity whih desribes the statistial properties of
δ is the autoorrelation funtion, whih is related to the power spetrum throughFourier transformation and hene gives the same desription of the density �eld:for this reason, we skip for brevity the introdution of this further onept.The physial meaning of the power spetrum is the following: P (k) ∝ |δ̂(~k)|2,the latter being the amplitude of plane waves with wavelength λ = 2π/k; thenthe value of the spetrum at every k tells us how muh the ontribution of k-sale �utuations is important in the Fourier sum in order to form the generiperturbation δ(~x) in on�gurations spae. In other words, P (k) is a measure ofthe power of the �utuations of wavenumber k.A stohasti �eld is said to be Gaussian if the phases of the Fourier modesdesribing �utuations at di�erent sales λ are unorrelated, that is if the am-plitudes of waves of di�erent wavenumbers are randomly drawn from a Rayleighdistribution of width given by the power spetrum. The density perturbation�eld is Gaussian (see later): this means that if we ould do a very big numberof statistial realizations of the universe, in any point ~x the distribution of theobserved value of δ(~x) in all those universes would be a Gaussian entered inzero. In momentum spae, beause the Fourier transformation of a Gaussian isstill a Gaussian, the same desription applies.A Gaussian distribution is univoally desribed by its average and its variane:thus, in our ase, what we need for desribing the density �utuation �eld δ(~x)is just its power spetrum.Assuming for P (k) a simple funtional form allows us doing simple and usefulonsiderations. The most onvenient power spetra are the so-alled power-lawpower spetra

P (k) ∝ kn−1 (1.43)where the exponential index n is alled spetral index ; these are often alledsale-free power spetra beause their logaritmi slopes are the same at every



1.3 Foundamental ideas of Struture Formation 23sale, and hene they are haraterized by no partiular physial sale. Amongthe others, a ase of partiular interest is the Harrison-Zel'dovih spetrum,whih orresponds to a power spetrum with n = 1.In�ation and osmologial perturbationsIn order for struture formation to our, there must have been small preexisting�utuations on physial length sales when they rossed the Hubble radius inthe radiation-dominated or matter-dominated eras. In the standard Big Bangmodel these small perturbations have to be put by hand, beause it is impossibleto produe �utuations on any length sale while it is larger than the horizon.Sine the goal of osmology is to understand the universe on the basis of physiallaws, this appeal to initial ondition is unsatisfatory. The hallenge is there-fore to give an explanation to the small "seed" perturbations whih allow thegravitational growth of the matter perturbations.The simplest mehanism for generating the observed perturbations is the in-�ationary osmology, as mentioned in previous setions. Although originallyintrodued as a possible solutions of already seen problems suh as the horizonand �atness problems, as an unexpeted bonus, In�ation has the useful prop-erty to generate spetra of both density perturbations and gravitational waves,through the ampli�ation of quantum �utuations: these perturbations extendfrom extremely short sales to sales onsiderably in exess of the size of theobservable universe.In the simplest in�ationary model introdued earlier, In�ation is driven by aslowly-rolling salar �eld, the in�aton: this latter an be split in
φ(t, ~x) = φ0(t) + δφ(t, ~x), (1.44)where φ0 is the lassial (in�nite wavelength) �eld, that is the expetation valueof the in�aton �eld on the initial isotropi and homogenous state, whose stress-energy tensor and equation of motion have been already expressed in (1.32) and(1.33); δφ(t, ~x) represents the quantum �utuations around φ0. This separationis justi�ed by the fat that quantum �utuations are muh smaller than thelassial value and therefore negligibile when looking at the lassial evolution,as done in previous pages. Nevertheless, exatly those quantum �utuations areresponsible for the reation of initial perturbations whose evolution an now beseen in the large-sale struture of the universe.It is not possible to desribe the generation of perturbations of a salar �eld inthis ontext: the mahinery needed fot suh a task is almost the same formalismdeveloped throughout the thesis, at least a linear theory of osmologial pertur-bations would be needed. Anyway, we an give a heuristi explanation of whywe expet that during In�ation suh �utuations are indeed present and howthese in�aton �utuations will indue in turn pertubations of the metri [10℄.If we take equation (1.33) adding the non-homogenous term −∇2φ/a2, and splitthe in�aton �eld as in (1.44), the quantum perturbation δφ satis�es the equationof motion

δφ̈+ 3Hδφ̇− ∇
2δφ

a2
+ V ′′δφ = 0. (1.45)Di�erentiating (1.33) with respet to time t and taking H onstant (we areduring in�ationary phase!) we �nd

(φ0)
... + 3Hφ̈0 + V ′′φ̇0 = 0. (1.46)



24 Desribing our UniverseLet us onsider for simpliity the limit k2/a2 ≪ 1 and let us disregard thegradient term. Under this ondition we see that φ̇0 and δφ solve the sameequation. The solutions have therefore to be related to eah other by a onstantof proportionality whih depends upon time, that is
δφ = −φ̇0 δt(~x).This tell us that

φ(t, ~x) = φ0(t− δt(~x), ~x),that is the in�aton �eld does not aquire the same value at a given time t inall the spae. On the ontrary, when the in�aton is rolling down its potential,it aquires di�erent values from one spatial point ~x to the other. Then in�aton�eld is not homogenous and �utuations are present.These �utuations will indue �utuations of the metri: any perturbation in thein�aton �eld means a perturbation of the stress-energy tensor; a perturbationin the stress-energy tensor implies, through E.E., a perturbation of the metri.On the other hand, a perturbation of the metri indues a bakreation on theevolution of the in�aton through the perturbed Klein-Gordon (K.G.) equationof the in�aton �eld: hene,
δφ =⇒ δTµν

E.E
=⇒ δgµν

K.G.
=⇒ δφ (1.47)During In�ation the sale fator grows exponentially, while the Hubble radiusremains almost onstant. Consequently the wavelength of a quantum �utua-tion soon exeeds the Hubble radius, strethed by the in�ationary expansion.The amplitude of the �utuations therefore beome "frozen in". One In�ationhas ended, however, the Hubble radius inreases faster than the sale fator, so-in the way we have already seen- the �utuations eventually reenter the Hubbleradius and hene the horizon during the radiation- or matter- dominated eras.The number of e-folds whih are needed to let our present horizon sale of about

104 Mp to reenter the horizon during In�ation is about 60, as we have seen inprevious Setion: all the �utuations whih exited the horizon in a very narrowinterval of about 10 e-folds around 60 e-folds of In�ation length have reenteredwith physial wavelengths in the range aessible to osmologial observationsand of interest for struture formation today, that is the range sale between 1and 104 Mp. These spetra provide a distintive signature of In�ation.The simplest models generate two types of perturbations: density perturbationswhih ome from �utuations in the in�aton salar �eld and the orrespondingsalar metri perturbations (whih we will de�ne better in Chapter 3), andgravitational waves whih are tensor metri �utuations. The former experi-ene gravitational instability and lead to struture formation, while the latteran in�uene the osmi mirowave bakground anisotropies.In terms of the power spetra of these perturbations, with the working assump-tion of initial power-law spetrum for both density perturbations and gravita-tional waves,
P (k) ∝kn−1 salar or density perturbations

Pgrav(k) ∝kngrav gravitational waves,the spetral indies are in some way related to the slow-roll parameters [9℄:
n ≃ 1− 6ǫ+ 2η ngrav ≃ −2ǫ. (1.48)



1.3 Foundamental ideas of Struture Formation 25The simplest In�ation models predit adiabati �utuations and a level of non-Gaussianity whih is too small to be deteted by any experiment so far on-eived. Adiabatiity means that all types of material in the universe share aommon perturbation, so that if the spaetime is foliated by onstant-densityhypersurfaes, then all �uids and �elds are homogenous on those slies, withthe perturbations ompletely desribed by the variation of the spatial urvatureof the slies. The seond part of Table 1.2 an now be understood and used forgetting the values of the perturbations reation that give the best agreementbetween models and observations.Standard senario of struture formationAfter the perturbations are reated in the early universe, they undergo a om-plex evolution up until the time they are observed in the present universe. Insummary, the key ingredients for understanding the observed strutures in theuniverse within the standard in�ationary senario are summarized as follows.
• The universe is omposed mainly by non-baryoni dark matter. The evi-dene for this matter being dark (i.e. interating only with gravity) omefrom the dynamis of lusters of galaxies and of galaxy haloes.
• Baryons are present in the amount predited by the Big Bang Nuleosyn-thesis, some perent of the density required to lose the universe.
• At reombination (redshift z ∼ 1000, in the matter era) the universe iswell desribed by a FRW metri. Small deviations from homogeneity andisotropy do exist: δρ/ρ ∼ 10−5. These deviations are reated duringan in�ationary period in the early universe: quantum �utuations of thein�aton �eld are exited during In�ation and strethed to osmologialsales. At the same time, the in�aton �utuations being onneted to themetri perturbations through E.E., ripples on the metri are also exitedand strethed to osmologial sales.
• Gravity ats as a messanger sine it ommuniates to baryons and photonsthe small seed perturbations one a given wavelength beomes smaller thanthe horizon sale after In�ation.
• Cosmi strutures form by gravitational instability (whih we will see insome aspets later): this proess is driven by the gravity of the darkmatter omponent of the universe, up to the formation of the �rst non-linear systems, the dark matter haloes.
• Galaxies and luminous systems form later by the dissipative ollapse ofgas (baryoni matter) in the potential wells of dark matter haloes.
• Within this senario, the most suessful model oherent with observationsis hierarhial lustering, with the dominant dark matter being old, thatis non relativisti, and where the initial density power spetrum is suhthat larger systems form later by the assembly of pre-existing smallerunits.



26 Desribing our UniverseThe details of this omplex proess are determined by the values of osmologi-al parameters. On the other hand, the omparison between observations andstruture formation models is developed on di�erent fronts: CMB, large-salelustering properties, peuliar motions of galaxies, gravitational lensing, prop-erties of large-sale struture, dark matter haloes struture, galaxy ounting,....The tehniques developed for modelling the details of the above desribed se-nario are various and an be divided in three groups: analytial tehniques,numerial simulations, and semi-analytial methods. If we want to set the ap-proah of our thesis against suh a distintion of methods, we should of ourseunderline its analytial nature.Density �utuations δ are alled linear until they are muh smaller than 1,
δ ≪ 1: within this limit, as we will see, it will be su�ient to study their evo-lution using a perturbative theory up to �rst order. When gravitational growthleads to δ → 1, we talk about non-linear regime and a �rst order perturbationexpansion is no more appliable, foring us to go at the following orders. In ourthesis the alulations will be performed up to seond order in our perturbativetehnique.Finally, as struture formation study involves a wide range of sales under anal-ysis, let us reall that General Relativity is of ourse the more omplete andappropriate tool to handle gravitational interations. However when the salesunder analysis do not exeed the Hubble radius, the Newtonian approximationan be applied as a limiting ase of the full relativisti theory, onsisting in per-turbing only the time-time omponent of the FRW metri tensor by an amount
2ϕ/c2, in ontrast with a general metri perturbation as the one that we willsee in Chapter 3. Wanting to be able to deal with osmologial perturbations ofany length sale (from super-horizon to small sales), in the thesis our analysiswill be fully relativisti.Gravitational Instability As last task of this Chapter we want brie�y todelineate the simplest model for the generation of osmologial struture, thatis gravitational instability. The fat that a �uid of self-gravitating partiles isunstable to the growth of small inhomogeneities was �rst pointed out by Jeansin the late Twenties and is known as the Jeans instability.Expanding the perturbation matter density ρ in plane waves as already men-tioned earlier, the growth of small matter inhomogeneities of wavelength smallerthan the Hubble sale is governed by a Newtonian equation:

¨̂
δ(~k) + 2H

˙̂
δ(~k) + δ̂(~k)

(

v2
s k

2

a2
− 4πGρb

)

= 0 (1.49)where v2
s = ∂p/∂ρ is the square of the sound speed. Competition betweenthe pressure term and the gravity term in the last term of equations (1.49)determines whether or not pressure an ounterat gravity. The Jeans sale orthe Jeans wavenumber are sale values whih arise naturally from the physialontent of the proess and whih distinguishes two di�erent regimes. De�ningthem as

k2
J ≡

1

v2
s

4πGρb and λ2
J ≡ v2

s

π

Gρb
, (1.50)perturbations with wavenumber larger than the Jeans wavenumber are stableand osillate: the density �utuation δ(t, ~x) evolves in time and spae as a sound



1.3 Foundamental ideas of Struture Formation 27waves; pertubations with smaller wavenumber are Jeans unstable and an grow,eventually undergoing in a gravitational ollapse:
k > kJ =⇒ OSCILLATION: SOUND WAVE
k < kJ =⇒ GRAVITATIONAL INSTABILITY: STATIONARY WAVE.The solutions of equation (1.49) or the relativisti equivalent equation dependson the irumstanes: many ases an be studied aording to the time period ofuniverse under analysis (before or later than the matter-radiation equivalene),to the length sales involved (sub or super horizon), and to the type of energyomponent dominating (radiation, matter or dark matter) [3℄, [?℄. In a matterdominated universe, beause the expansion tends to pull partiles away fromone another, the growth of matter density perturbations is only a power law.In a radiation-dominated universe, the expansion is so rapid that the matterperturbations grow very slowly, as ln a; if we onsider radiation density per-turbations in a radiation-dominated universe, then the situation is di�erent,beause perturbations grow as a2. Considering δ as the baryoni matter densityperturbation �eld, then

δ(t) ∝
{

ln a(t) (radiation domination)
a(t) (dust domination). (1.51)Therefore, perturbations of baryoni matter density whih we an see in galaxiesand stars may grow only in a matter dominated period. When Dark Energybegins to dominate, that is for z ≤ 1, perturbations stop growing.





Chapter 2Dust Cosmology: frame andformalismIn this thesis we deal with irrotational and pressureless �uid dominated uni-verses, studying the perturbation theory in a synhronous and omoving systemof oordinates.In this Chapter we outline the formalism used throughout the work.We give a preise haraterization of the �uid, de�ne the synhronous and o-moving gauge hoie and derive the equations governing the evolution of suha �uid. We note that the possibility of making these two gauge hoies simul-taneously is a peuliarity of irrotational dust, that spatial oordinates in thisgauge are Lagrangian oordinates and that the so-alled sliing and threadingof spaetime are the same. In this simple frame, we see that E.E. an be dividedin 4 onstraints and 6 evolution equations, the so-alled energy and momentumonstraints and evolution equations of the ADM approah.2.1 Spae-time splittings, gauge hoies and gen-eral hypothesesWhen we talk about our spaetime we mean a (1 + n)-dimensional manifold
(M, gµν) with Lorentzian metri of signature (-,+,...+) and n = 3, namely aurved spaetime desribed by metri omponents where the urvature is reatedby (and reated bak on) energy and momentum. Although General Relativitymakes no fundamental distintion between time and spae, atually we do, andin order to obtain �eld equations omparable with those of Newtonian gravity(and Eletrodynamis) we need indeed a deomposition proedure of EinsteinEquations (E.E.), onservation equations and other geometrial and physialquantities.In what follows we will always assume (M, gµν) be a globally hyperboli spae-time. A spaetime is globally hyperboli if it possesses a Cauhy surfae Σ:for us, it will be su�ient to think of a Cauhy surfae as an embedded C0submanifold of M, representing an "instant of time" throughout the universe.The fundamental feature of a globally hyperboli spaetime is that the entirefuture and past history of the universe an be predited (or retrodited) from



30 Dust Cosmology: frame and formalismonditions at the instant of time represented by Σ. In other world, the CauhyProblem an be solved.Atually we invoke suh a feature of our universe not for preditability issues,but to deompose our spaetime [1℄:Theorem 1. Let (M, gµν) be a globally hyperboli spaetime. Then a globaltime funtion t an be hosen suh that eah surfae of onstant t is a Cauhysurfae: thus M an be foliated by Cauhy surfaes and the topology of M is
R× Σ, where Σ denotes any Cauhy surfae.It is thanks to this theorem that -from a very general point of view- we anslie our spaetime in hypersurfaes at onstant t and then implement gaugehoies, or view the spatial metri on a three-dimensional hypersurfae as thedynamial variable in General Relativity. But let us proede step by step.Let nµ be the unit normal vetor �eld to the hypersurfae Σt: the spaetimemetri gµν indues a spatial metri (i.e. a three-dimensional Riemannian metri)
hµν on eah Σt by the formula

hµν = gµν + nµnν (2.1)This is known as orthogonal deomposition of the metri and we will often referto this sliing of spaetime as (3+1) splitting.(3+1) splitting is omplementary to the alternative and more general (1+3) splitalled "threading" (see [7℄): there the fundamental geometrial objets used forharting spaetime are a series of timelike worldlines xµ(λ,q), where λ is ana�ne parameter measuring proper time along the worldline and q gives a uniquelabel (e.g., a spatial Lagrangian position vetor) to eah di�erent "thread".In priniple we will be inlined to use the splitting in hypersurfaes and de�neour geometrial variables in suh a ontext: anyway, it is worth bearing inmind from now on that in the partiular frame whih we will adopt the twodesriptions are the same.Gauge hoiesTheorem 1 tells us that a splitting of our spaetime is possible but does notprovide a preise proedure: the di�erent splitting proedures deal with oordi-nates or gauge hoies.General Relativity is invariant under di�eomorphisms; di�eomorphisms are o-ordinate transformations in some sense and hoosing the oordinate systemsmeans �xing the hart between open subsets of M and open subsets of R
n+1.This invariane under di�eomorphisms re�ets the redudany in the desriptionof spaetime geometry by metri omponents gµν and an be seen in the inde-termination of E. E. system: it is also known as gauge freedom. In other words,the di�eomorphisms omprise the gauge freedom of any theory formulated interms of tensor �elds on a spaetime manifold: in partiular, di�eomorphismsomprise the gauge freedom of General Relativity [1℄.In what follows we will then refer to a gauge (or gauge hoie) as a oordinateshoie or more loosely to a family of oordinates hoies, and a gauge transfor-mation as equivalent to a oordinates transformation.There are two di�erent ways by whih we an implement a gauge hoie:



2.1 Spae-time splittings, gauge hoies and general hypotheses 31
• we an impose a suitable number of relations among gauge-dependent vari-ables: in terms of oordinates, 1 + n are the oordinates transformationsthen 1 + n are the gauge onditions;
• or given a 1 + n spaetime, we an slie it in spae-like hypersurfaes att=onst where we �x spatial oordinates, and thread it in time-like lines(orthogonal to hypersurfaes) along whih we make the time oordinate�owing.We will use these two reipes later to de�ne our speial gauge hoie: there wewill see in detail how the two approahes give the same result.Conerning the gauge transformation as hange of oordinates system, we anwrite it formally as an (in�nitesimal) traditional oordinate transformation:

xµ → x̄µ = xµ + ǫ ξµ (2.2)where ǫ is a (small) parameter and ξµ a 4-dimensional vetor. Aording to thedeomposition of spatial vetors on Σ given in Appendix A and having separatedtime and spae parts of ξµ = (ξ0, ξi), the latter an still be deomposed in asalar (irrotational) and a solenoidal omponents:
ξ0 + α ξi + ∂iβ + di (with ∂id

i = 0) (2.3)In terms of omponents then a gauge transformation is implemented with 2salars and 1 transverse vetor:
x0 → x̄0 = x0 + ǫ α (2.4)

xi → x̄i = xi + ǫ (∂iβ + di) (2.5)Exstrinsi urvatureAs already mentioned, we may view a globally hyperboli spaetime as repre-senting the time development of a Riemannian metri on a �xed 3-dimensionalmanifold. A quantity whih expresses a well-de�ned notion of "time derivative"of the spatial metri on a hypersurfae embedded inM is the extrinsi urva-ture. Having in mind the general orthogonal deomposition of the metri givenin equation (2.1) and adding the unit time-like ondition for vetors nµnµ = −1,then extrinsi urvature is de�ned as follows
Kµν +

1

2
Lnhµν (2.6)where Ln is the Lie derivative along n. 1As hµν is purely spatial, extrinsi urvature is purely spatial too: then itwould have been preferable writing

Kij +
1

2
Lnhij (2.8)1Expressions of Lie derivative along ξ are:

Lξf = f,µξµ (2.7a)
LξZµ

= Zµ
,νξν

− ξµ
,νZν (2.7b)

LξT µν
= Tµν,σξσ

+ ξσ
,µTσν + ξσ

,νTµσ (2.7)



32 Dust Cosmology: frame and formalism
n

q p

nµ µ

ΣFigure 2.1: Notion of the extrinsi urvature of a hypersurfae Σ. The failure ofthe parallel transported vetor along a geodesi from q to p to oinide with nµ at porresponds intuitively to the bending of Σ in the spaetime in whih it is embedded.The formula Kµν =
1

2
Lnhµν = hα

µ nν;α shows that Kµν diretly measures this failure.Furthermore, extrinsi urvature is symmetri, Kij = Kji, and its trae is oftendenoted by K:
K + Ka

a = habKab (2.9)We will note later that extrinsi urvature assumes interesting physial meaningsaording to the gauge hoie.2.2 Charaterization of the matter ontentThe geometry of spaetime is determined by its energy ontent through thestress-energy tensor. The matter (or radiation) ontent of the universe may bedesribed in two onvenient ways, related to the two eulerian and lagrangianapproahes of hydrodynamis, and stritly onneted to the (3+1) and (1+3)splittings of spaetime.The eulerian approah onsists in a �uid approximation: a �uid is a denseset of partiles treated as a ontinuum. This ontinuum is desribed by a vetor�eld (that we assume to be unique) representing the average veloity of matterin the neighborhood of eah point of spaetime.The lagrangian approah uses a partile distribution funtion in order tofollow eah matter element along its worldline and labeling it with a uniquespatial position vetor q.In any ase, the matter 4-veloity of a partile is de�ned to be the unit tangent(as measured by gµν) to its worldline:
uµ =

dxµ

dλ
with dλ2 + −dS2 and suh that uµuµ = −1 (2.10)In the (3+1) split, spaetime is naturally desribed by Eulerian observers sittingin the spae-like hypersurfaes with onstant spatial oordinates; in the (1+3)split, spaetime is desribed by Lagrangian observers moving along the world-line whih de�ne the threading.Although we prefer a (3+1) splitting, we will have in mind the latter pointof view when de�ning the other kinemati quantities of matter ontent, even ifde�nitions are oeherent in any of the two approahes.Stress-energy tensorThe stress-energy tensor in E.E. provides the soure for the metri variables: asthe FRW metri is our zeroth order solution of the universe, the stress-energy



2.2 Charaterization of the matter ontent 33tensor of the bakground matter is fored to take a perfet �uid form
T µν = (ρ+ p)uµuν + pgµν (2.11)where with perfet �uid we generally mean a path of matter isotropi in its restframe and haraterized only by pressure and energy density. We then a prioriexlude any extra terms orresponding to bulk and shear visosity (respetively,the isotropi stress generated when an imperfet �uid is rapidily ompressed orexpanded, and the stress due to the shear -see below), thermal ondution andother physial proesses.To these restritions we add our requirement of matter ontent being pressurelessand hene ollisionless: suh a pressurless �uid is often alled dust or old dustand is desribed by a very simple stress-energy tensor, namely

T µν = ρuµuν (2.12)Other kinemati quantitiesLet V µ be a time-like unit vetor �eld, tangent vetor to a ongruene of time-like urves; the following quantities are de�ned:PROJECTION TENSOR hµν = gµν + VµVν (2.13a)VECTOR-GRADIENT TENSOR Θµν ≡
1

2
h α

µ h β
ν (Vα;β + Vβ;α) (2.13b)EXPANSION Θ ≡ V µ

;µ (2.13)SHEAR σµν ≡ Θµν −
1

3
hµν Θ (2.13d)VORTICITY OR TWIST ωµν ≡ h α

µ h β
ν (Vα;β − Vβ;α) (2.13e)ACCELERATION aµ ≡ Vµ;ν V

ν = V̇µ (2.13f)These time-like urves ould represent the histories of small test partiles,in whih ase they would be geodesis, or they might represent the �ow linesof a generi �uid: hene, quantities of (2.13) assume spei� physial meaningsdepending whether the time-like unit vetor is the normal vetor �eld to a familyof spae-like hypersurfaes nµ, the 4-matter veloity uµ or geodesis tangents
ξµ of free partiles.

V µ = nµ) If V µ = nµ then the projetion tensor is the well known spatialmetri and Θ represents the volume expansion rate of the hypersurfaes alongthe normal vetor.
V µ = uµ) If V µ = uµ, hµν is at eah point a projetion tensor into the restspae of an observer moving with 4-veloity uµ; the veloity-gradient tensor de-termines the rate of hange of distane of neighbouring partiles in the �uid and

Θ its isotropi volume expansion. The shear tensor σµν (the trae part of Θµν)determines the distorsion arising in the �uid �ow leaving the volume onstant:the diretion of the prinipal axes of shear (its eigenvetors) are unhanged bythe distorsion, but all other diretions are hanged. Finally, the vortiity tensor
ωµν determines a rigid rotation of path of �uid with respet to a loal inertialrest frame leaving one diretion (the axis of rotation) �xed (see Figure 2.2).
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Figure 2.2: It is probably easiest to understand the meaning of some of the de�nedquantities by onsidering how a sphere of �uid partiles hanges during the elapse ofa small inrement in proper time, hoosing 0 at the entre of the sphere: (a) ation ofexpansion Θ alone; (b) ation of shear σµν alone; () ation of vortiity wµν .As one moves along one of suh families urve, expansion, shear and vortiityhange with preise evolution equations, knowing the Riemann tensor. Amongthe others, we onentrate our attention on the Rayhaudhuri Equation, theequation for the rate of hange of the expansion Θ whih plays a entral rolethroughout the thesis:
dΘ

dS
= −RµνV

µV ν + 2ω2 − 2σ2 − 1

3
Θ2 + ˙V µ

;µ (2.14)(where ω2 = 1
2ωµνω

µν ≥ 0 and σ2 = 1
2σµνσ

µν ≥ 0)From it one sees that vortiity indues expansion (+ sign) as might be expetedby analogy with entrifugal fores, while shear indues ontration (- sign).We do not derive here equation (2.14) in fully generality but we postpone thetask to a next setion, where we will adopt a preise gauge hoie and hypoth-esis on matter in order to express the Rii tensor through E.E. Anyway, let usremark that the Rayhaudhury equation is valid apart from E.E..We reall that another hypothesis that our matter ontent will have to satisfyis to be not only pressureless but also irrotational, that is with ωµν ≡ 0: thereason of suh a requirement will be manifest in next setion.2.3 The synrhonous and omoving system of o-ordinatesDe�ning the synhrounous gaugeWe begin following the �rst approah outlined in the previous setions.Let (M, gµν) be a manifold with metri of signature (-,+...+): the synhronousgauge is de�ned by the onditions
g00 = −1, g0i = 0



2.3 The synrhonous and omoving system of oordinates 35In terms of oordinates, if dimM = 1 +n then we must speify 1+n ondi-tions, beause 1 + n are the oordinates tranformations: g00 arries with itselfone degree of freedom and de�nes the temporal oordinate (the sliing), whilethe n-vetor g0i �xes the spatial oordinates.In terms of omponents under spatial transformations (salars, vetors and ten-sors -see later Appendix A-), a gauge hoie is implemented with 2 salars and1 transverse vetor: 1 salar omes from g00, 1 salar and 1 vetor from g0i.Let then see the properties of suh a oordinate system.Fat 1. g00 = −1 =⇒ temporal oordinate x0 ≡ proper time η.Indeed, between two events at the same spatial oordinates, we have
dS2 = gµνdx

µdxν = −c2dη2 = g00dx
0dx0 ⇒ dη = 1

c

√−g00dx0In other words, g00 = −1 implies that the proper-time distane between twoneighboring hypersurfaes along the normal vetor oinides with the oordinate-time distane de�ning these hypersurfaes.For this reason, we will even refer to this ondition with the expression proper-time sliing.Fat 2. g0i = 0 =⇒ 6= spae-oordinates loks synhronization.Indeed, the rate of deviation from simultaneity between two loks at di�er-ent spatial oordinates measuring the same events is ∆x0
SIM = − g0idxi

g00
(see theusual radar-rangin experiment). In this ase, the time oordinate of an eventmarked by two loks at di�erent spatial oordinates oinide.Another way of de�ning the synhronous gauge refers to the seond approahseen earlier. Let (M, gµν)be a 1 + n-dimensional spaetime.Synhronous gauge: foliation ofM in n-hypersurfaes at t = const on whihwe put spatial oordinates suh that loks are synhronized, and identi�ationof normal geodesis as time-lines along whih we let the time-oordinate �owing.

Σt ⊥ geodesicsSuh a geometrial onstrution is possible thanks to the next general fea-tures.Lemma 1. Let Σ be a n-dimensional submanifold ofM with Riemannian met-ri; let nµ the vetor normal to Σ in a generi point p ∈ Σ. Then nµ has thediretion of time (it is inside the light-one of p).Lemma 2 (Existene and uniity of geodesis). Given p ∈ M and Vp thetangent spae at p of M, then for any T µ ∈ Vp there always exists a uniquegeodesi through p with tangent T µ.Applied to our situation, these two lemmas allow us to de�ne a sensiblepresription for the oordinates hoie. The n-dimensional embeddedsubmanifolds of M are our spae-like hypersurfaes at onstant time, whosetangent spaes an be naturally viewed as n-dimensional subspaes of the tan-gent spae ofM. We begin referring to a single hypersurfae at onstant time,whih we ould all ΣIN : for brevity, we will avoid this spei�ation remember-ing that the possibility of extending the onstrution to all Σt is not obviousbut feasible and viable. So, let p be a generi point of Σ and nµ the unique



36 Dust Cosmology: frame and formalismvetor ∈ Vp orthogonal to all vetors in Vp(Σ): for the lemma 1, this vetor doesnot lie in Vp(Σ). Then we an onstrut the unique geodesi through p withtangent nµ and �x the oordinates as follows. We hoose arbitrary oordinates(x1, ..., xn) on a portion of Σ: then we label eah point q in a neighborhoodof that portion of Σ with the parameter t along the geodesi on whih it liesand with the oordinates x1, ..., xn of the point p ∈ Σ from whih the geodesiemanated.In a su�iently small neighborhood of eah p ∈ Σ, the map q → (t, x1, ..., xn)de�nes the hart we wished to onstrut.2Moreover, one ould demonstrate that the geodesis remain orthogonal to allthe hypersurfaes Σt [1℄, showing that the presription for the oordinate hoiean be extended to all the spaetime.

P

Σ

Σ

τ

INFigure 2.3: Constrution of Gaussian Normal oordinates or synhronous gauge.This geometrial onstrution, otherwise the �rst one, shows muh more di-retly the onnetions between the physial onept of system of oordinatesand the mathematial one of hart of a manifold.There is more. The geodesis emanating from Σ may eventually ross or runinto a singularity. This ourene is harmful in the (3+1) frame beause thehypersurfaes (exatly by the de�nition of embedded submanifold) shoul notross themselves or the others in order to preserve the hart being one to oneand onto: in that ase, on the ontrary, two di�erent sets of xµ label the samespaetime event. This is the reason why the threading (1+3) desription is moregeneral than the sliing one [7℄ and in some ases preferable.2We use here the time label t onsistently with global iperboliity theorem: anyway, t isstill just a time oordinate or parametrization, that one we alled x0: when later we willassume a synhronous gauge then we will be allowed to use t as proper time.



2.3 The synrhonous and omoving system of oordinates 37Equivalene of the two de�nitionsThe synhronous frame in the �rst approah presents the following properties.Fat 3. g00 = −1, g0i = 0 =⇒ time-lines (with x1 = ... = xn = const) areorthogonal to hypersurfaes at t = const.In other words, the rate of deviation of a onstant spae-oordinate line from aline normal to a onstant time hypersurfae is null.Indeed, let us write the n-vetor tangent to the time-like lines:
ξµ =

dxµ

dλ
with dλ = (−dS2)

1
2 : ξ0 = −1, ξi = 0Let us write the n-vetor ⊥ Σt: nµ = ∂t

∂xµ with n0 = 1, ni = 0.Then n0 = g0ρ nρ = −1, ni = ni ⇒ n0 ≡ ξ0 and ni ≡ ξi.�Fat 4. g00 = −1, g0i = 0 =⇒ time-like lines are geodesis of all spaetime.Indeed, let ξµ be the tangent n-vetor to lines de�ned by the equation x1 =
... = xn = const : ξ0 = −1, ξi = 0. Let us remember the geodesi equation:

dxµ2

dt2
+ Γµ

νρ

dxν

dt

dxρ

dt
= 0We an easily see that ξµ is solution of the equation. In fat

dξ0

dS + Γ0
νρξ

νξρ = 0 + Γ0
00ξ

0ξ0 + Γ0
0jξ

0ξj + Γ0
ijξ

iξj = 0 and dξi

dS + Γi
νρξ

νξρ = 0,being Γ0
00 = Γi

00 = 0.�In other words, if g00 = −1, g0i = 0, vetors orthogonal to the hypersurfaesare (tangent to) time-like lines of onstant spae-oordinates and time-like linesare geodesis. These features of synhronous onditions allow to implement thegeometrial onstrution of the seond way demostrating the equivalene of thetwo approahes. Yet, they are less general than the two lemmas seen earlier,that is why we preferred to show the two de�nitions separately.Other haraterizations of synhronous gauge
• A synhronous gauge hoie is in priniple always possible for a spaetimelike our own, 1+3-dimensional with Lorentzian metri.
• The synhronous gauge hoie is not unique: gauge-�xing onditions or ge-ometrial onstrution do not eliminate the gauge freedom, neither in timesliing nor in spae-oordinates setting. They leave a so alled residualgauge freedom. Infat:� 1st approah: a metri suh as

dS2 = −dt2 + hij dx
idxjadmits any time-oordinate transformation and any spae-oordinatestranformation.� 2nd approah: although the hart is well de�ned, a residual gaugefreedom arises from the freedom to adjust the initial settings of theloks (to hoose the ΣIN ) and to hoose the initial spatial oordinatelabels (the origin of spae-oordinates).



38 Dust Cosmology: frame and formalism
• In the synhronous gauge, there exists a natural hoie of referene sys-tem, that one of "fundamental observers" who fall freely along the normalgeodesis arrying loks reading time t. Beause the spatial oordinates
xi of eah fundamental observer are held �xed with time, the xi in syn-hronous gauge are Lagrangian oordinates.
• In the synhronous gauge, it is not possible to put at rest (~v = 0) allthe matter �lling the spae: it is to say that a synhronous system is notneessarily a omoving gauge.
• Kµν = 1

2Lξhµν = 1
2

∂hµν

∂t .The omoving gaugeThe omoving gauge, unlike the synhronous one, deals with the ontent ofmatter in our spaetime.Let (M, gµν) be a manifold with metri of signature (-,+...+): the omovinggauge is de�ned as the frame in whih all �lling spae matter is at rest:
ui = 0This ondition �xes spatial oordinates only: ui arries with itself only 3 degreesof freedom in terms of oordinates and 1 salar and 1 solenoidal vetor in termsof omponents. We then should all this ondition spae-oordinates hoierather than gauge. What about the time sliing?Following [6℄, we stress that there are several possibilities in assoiating thisspae-oordinates hoie to a time-sliing: for example, one ould take g00 =

ui = 0, in what an be alled omoving proper-time gauge, or g0i = ui = 0 thatis a omoving time-orthogonal gauge.Consistently with [16℄ and [17℄, we will think of the latter alternative as ouromoving gauge and we speify the de�nitions as follows: Let (M, gµν) be amanifold with metri of signature (-,+...+): the omoving gauge is de�nedby the onditions:
ui = g0

i = 0The quantity (ui − gi
0) an be shown to be a salar under gauge transfor-mations ([6℄: it transforms under gauge hange only with the α of law (2.4)):the ondition ui − gi

0 = 0 �xes a sliing suh that the matter (1 + n)-veloityis orthogonal to the onstant time hypersurfaes (veloity-orthogonal sliing).The onditions ui = g0i = 0 impose a spae-oordinates hoie suh that the�uid is at rest and loks are synhronized.In terms of the geometrial approah: Let (M, gµν)be a 1 + n-dimensionalspaetime. Comoving gauge: foliation ofM in n-hypersurfaes at t = conston whih we put spatial oordinates suh that loks are synhronized and �uidat rest, and identi�ation of normal matter worldlines as time-lines along whihwe let the time-oordinate �owing.
Σt ⊥ matter worldlinesFor this oordinate system we have the following properties:



2.3 The synrhonous and omoving system of oordinates 39
• The "salar ondition" ompletely eliminates the gauge freedom assoiatedwith initial hypersurfae hoie, while on hypersurfaes there remains aresidual gauge freedom related to the origin of spatial oordinates.
• In the omoving gauge, the stress-energy tensor satis�es T 0

i = 0.
• In the omoving gauge, there exists a natural hoie of referene system:the one of observers omoving with the matter �ow, that is observersseated on partiles and then moving along their worldlines.
• Kµν = 1

2Luhµν = 1
2

∂hµν

∂tPressureless and irrotational �uid: synhronous and omoving gaugeAs pointed out earlier, a synhronous system is not neessarily omoving withthe matter. Is there a partiular situation in whih the two gauge hoies anbe taken simultaneously?Fat 5. p = 0 =⇒ a synhronous gauge an be omoving.Let us remember that
• trajetories of partiles subjeted only to gravitational fores are geodesilines
• trajetories of partiles subjeted to pressure fores (i.e. non-gravitationalfores) are not geodesi lines.By pressureless �uid (p = 0) we mean non-ollisional �uid, that is a �uid withno pressure fores. Then, this �uid trajetories are geodesis: worldlines ≡geodesis. If p = 0 there' s no ontradition in hoosing a synhronous gaugewhih is omoving as well. �Atually, the ondition p = 0 is not the only neessary ondition for havinga synhronous and omoving gauge.Let us write the �uid (1 + n)-veloity in omoving oordinates: uµ = (1, 0). Ifwe are in a synhronous gauge as well, uµ = (−1, 0).Let us then see the vortiity: as shown in previous setions,

ωµν = uµ;ν − uν;µ with uµ;ν = uµ,ν − Γα
µνuαThen

ωµν = uµ,ν − uν,µ = 0 for the partiular hosen frame. (2.15)But (2.15) is a tensor equality whih must be veri�ed in any oordinates system.We an then dedue that in a synhronous but non omoving gauge curl ~v = 0and that
p = 0 and ω = 0 =⇒synhronous and omoving gauges an be taken simultaneouslyThroughout the thesis we will then work in this speial frame, assuming allthe good properties of eah two gauges. In partiular, our protagonist variable



40 Dust Cosmology: frame and formalism(stressing on its purely spatial nature) will be the veloity-gradient tensor orextrinsi urvature:
Θi

j = ui
;j =

1

2
hia ˙haj = Ki

j. (2.16)Our spaetime will be desribed by fundamental observers moving along par-tile geodesis≡worldlines and we will naturally be led to follow a lagrangianapproah. Atually, beause with this hoie we are taking the threads to or-respond to the worldlines of omoving observers in the sliing framework (linesof �xed ~x), then the two (3+1) and (1+3) desriptions of Bertshinger paper[7℄ are the same and it will be possible to swith from the eulerian approah tothe lagrangian one without problems.2.4 Einstein Equations in ADM formalismThe next goal is to rewrite E.E. taking advantage of the frame �xed earlierand separating the operation of spatial derivatives and time derivative: we aregoing to present the (3+1) spaetime deomposition of E.E. into onstraints andevolution equations developed in detail by Arnowitt, Deser & Misner in 1962[12℄.Einstein Equations read
Rµν −

1

2
gµν R = k2 Tµν (2.17)(with k2 = 8πG

c4 and c = 1)In our frame, the line-element is dS2 = −dt2 + hij(t, ~x) dx
idxj , extrinsi urva-ture and veloity-gradient tensor onide (2.16) and geometrial quantities areexpressed as reported in Appendix B. Let's then write down E.E omponent byomponent:0-0) R0

0 −
1

2
δ00 R = k2 T 0

0 and substituting from Appendix B,
− Θ̇ + Θa

b Θb
a −

1

2
((3)R+ 2Θ̇ + Θ2 + Θa

b Θb
a) = k2 T 0

0 i.e.
Θ2 −Θa

b Θb
a + (3)R = −2 k2 T 0

00-j) R0
j −

1

2
δ0j R = k2 T 0

j i.e. Θa
j|a −Θ,j = −k2 T 0

ji-j) Ri
j −

1

2
δi
j R = k2 T i

j with R = −k2 T : then
Ri

j = k2(T i
j −

1

2
δi
j T ) and from Appendix B

(3)Ri
j + Θ̇i

j + Θ Θi
j = k2(T i

j −
1

2
δi
j T )



2.4 Einstein Equations in ADM formalism 41Until now we just used the hypotesis of synhronous gauge. Equations ob-tained are learly separated in 1+3 onstraints and 6 evolution equations: infat, equations arising form G0
µ involve only a single time derivative of spatialmetri, while those arising from Gi

µ have one time derivative of extrinsi ur-vature and hene two time derivatives of spatial metri. Equations (2.18a) and(2.18b) are known respetively as ADM Energy Constraint and ADM Momen-tum Constraint ; equations (2.18) are simply alled ADM Evolution Equations :
Θ2 −Θa

b Θb
a + (3)R = −2 k2 T 0

0 (2.18a)
Θa

j|a −Θ,j = −k2 T 0
j (2.18b)

Θ̇i
j + Θ Θi

j + (3)Ri
j = k2(T i

j −
1

2
δi
j T ) (2.18)One ould desire to speify those equations aordingly to the matter ontentof the universe whih he is drawing. In our ase, Tµν = ρ uµuν with uµ =

(1, 0, 0, 0) beause of omoving oordinates and uµ = (−1, 0, 0, 0) beause ofsynhronous oordinates, then it is straighforward to obtain the ADM EinsteinEquations in dust universes :
Θ2 −Θa

b Θb
a + (3)R = +16πGρ (2.19a)

Θa
j|a = Θ,j (2.19b)

Θ̇i
j + Θ Θi

j + (3)Ri
j = 4πGρ δi

j (2.19)The main advantage of this formalism is that there is only one dimensionless(tensor) variable in the evolution equations, namely the spatial metri tensor
hij , whih is present with its partial time derivatives through Θi

j and with itsspatial gradients through the spatial Rii urvature (3)Ri
j . The only remainingvariable is the density ρ, that one ould replae from the energy onstraint orindeed rewrite in terms of hij by solving the ontinuity equation

ρ̇ = −Θ ρ (2.20)The redundany of disposable equations is again manifest: whih equationsto take? One possibility is to disard equations (2.19a) - (2.19b) and to beleft with exatly as many seond-order in time equations as unknown �elds:ADM onstraint equations would then be regarded as providing initial-valueonstraints on geometrial and matter variables. If these onstraints are satis�edinitially (this is required for a onsistent metri), if equations (2.19) are usedto evolve the metri while matter variables are evolved so as to loally onservethe net energy-momentum, then ADM onstraints will be in priniple ful�lled atall later times, and may eventually be used to hek the qualities of subsequentalulations. (In e�et, E.E. have built into themeselves the requirement ofenergy-momentum onservation for the matter via Bianhi Identities.)We will follow exatly this road, after having manipulated a little eqs. (2.19).Rayhaudhuri equationIn (2.14), we reported Rayhaudhuri Equation, the evolution equation alongtime-like urves of the expansion rate Θ. Now, ADM evolution equations govern



42 Dust Cosmology: frame and formalismindeed the evolution of the extrinsi urvature tensor Θi
j : being Θ the trae partof extrinsi urvature, then the trae of (2.18) or (2.19) should give exatlyRayhaudhuri equation. This is what happens, even if we ould rewrite it inseveral ways. One should take infat the trae diretly of (2.19) or of (2.18)(remebering that in our ase tr T i

j = 0) to obtain
Θ̇ + Θ2 + (3)R = k2((3)T − 3

2
T ) = 12πGρ,and then ould use the Energy Constraint (2.19a) in order to substitute (3)R or

ρ. We report here both of possibilities, but we will be inlined to use the seondone to avoid alulating later the perturbed expression of energy density:
Θ̇ + Θab Θab + 4πG ρ = 0 (2.21a)

Θ̇ +
1

4
Θ2 +

3

4
Θab Θab +

1

4
(3)R = 0 (2.21b)Note that if one takes equation (2.14), expresses Rii tensor through E.E.applying the hypotheses of sinhronous and omoving gauge and pressurelessand irrotational perfet �uid, he will �nd the Rayhaudhuri Equation in theform given in (2.21a).In fat, dΘ

dS
= −RµνV

µV ν + 2w2 − 2σ2 − 1

3
Θ2 + ˙V µ

;µ;we are in the ase V µ = uµ and we are following partiles alongtheir worldlines, then
dΘ

dt
= −Rµνu

µuν + 2w2 − 2σ2 − 1

3
Θ2 + u̇µ

;µ.Now, uµ = (1, 0, 0, 0) and w = 0 so dΘ
dt

= −Rµνu
µuν − 2σ2 − 1

3
Θ2.

Rµνu
µuν = k2(Tµν −

1

2
gµν T ) uµuν =

1

2
k2 ρ and σ2 = Θµν Θµν − 1

3
Θ2

=⇒ Θ̇ + Θµν Θµν + 4πGρ = 0 �This should demostrate in a very spei� ase the evolution equation of theexpansion.Conformal resaling and FRW bakground subtrationWith the purpose of making the metri pertubations of the Einstein-de Sitterbakground, it is onvenient (as suggested in [19℄) to fator out the homogenousand isotropi solution of the above evolution equations: to this aim we alsoperform a onformal resaling of the metri with onformal fator a(t), thesale-fator of FRW models, and hange the time variable to the onformaltime τ , de�ned by dτ = dt
a(t) . The line-element is then written in the form

dS2 = a2(τ) [−dτ2 + γij(τ, ~x)dx
idxj ] (2.22)where a2(τ)γij(τ, ~x) ≡ hij(t(τ), ~x).



2.4 Einstein Equations in ADM formalism 43We reall here brie�y the properties and solutions of the FRW universe �lledwith a perfet �uid of dust (n = 3), that is the properties of the Einstein- deSitter bakground:
dS2

FRW = a2(τ) [−dτ2 +
dr2

1− κ r2 + r2dθ2 + r2 sin2 θ dφ2] (2.23a)
(3)Rijkl =κ(γik γjl − γil γjk) (2.23b)

(3)Rij =2κ γij (2.23)
(3)R =6κ (2.23d)
(
a′

a
)2 =

8π G

3
ρb a

2 − κ (2.23e)
2(
a′′

a
)− (

a′

a
)2 + κ = 0 (2.23f)

ρ̇b = −3
a′

a
ρb (2.23g)where primes denote di�erentiation with respet to the onformal time τ , κrepresents the urvature parameter of FRW models and ρb the energy densityof the bakground.By subtrating the isotropi Hubble-�ow, we introdue a peuliar veloity-gradient tensor or onformal extrinsi urvature:

θi
j = a ũi

;j −
a′

a
δi
j =

1

2
γia γ′aj (2.24)( with ũµ = (1/a, 0, 0, 0))suh that

Θi
j =

1

a
(θi

j +
a′

a
δi
j) and Θ =

1

a
(θ + 3

a′

a
) (2.25)We are ready to rewrite our equations 2.19 in the new formalism: in detail,we want

• to express everything in terms of onformal time τ : dt = a(t)dτ

• to replae the unknown hij with the onformal spatial metri γij (see 2.25)
• to subtrat from the above equations the bakground FRW Einstein-deSitter zeroth order solution (see 2.23).We report the results, having introdued the density ontrast δ = (ρ − ρb)/ρband renamed the onformal Rii urvature of the three-spae Ri

j = (3)Ri
j(γ) =

a2 (3)Ri
j(h): in what follows we will sometimes refer to these equations as ADMresaled perturbed Einstein Equations.

θ2 − θa
b θ

b
a + 4

a′

a
θ + (R− 6κ) = +16πG a2δρb (2.26a)
θa

j|a = θ,j (2.26b)
θi

j

′
+ 2

a′

a
θi

j + θθi
j +

a′

a
θ δi

j + (Ri
j − 2κδi

j) = (4πG a2 ρbδ)δ
i
j (2.26)



44 Dust Cosmology: frame and formalismFrom now on the bar denotes ovariant derivatives in the three-spae withmetri γij . The alulation of (2.26) requires some attention: it's worth remem-bering that if θij =
1

2
γ′ij then θij = −1

2
γ

′ijand that the presene of time derivative must always be handle with are.�Equation (2.26) will be the equations through whih we will alulate per-turbed metri at �rst and seond order. As shown in Chapter 4, our perturbedspatial metri will be written down as funtion of two perturbative funtions,one with trae, the other one traeless: as last step of the hapter, we want tosplit the evolution equations in their trae and traeless part, so that the Ray-haudhuri equation governs the evolution of the trae of spatial metri, whilethe traeless part of (2.26) has the traeless perturbative funtion as eah ordersolution of spatial metri.The former is obtained taking the trae of (2.26) (as already done some pageago), using the Energy Constraint (2.26a) in order to express the matter on-tent and remembering expansion and shear (peuliar) de�nitions (see (2.13));the latter substituting expression for (peuliar) expansion as funtion of (peu-liar) shear, θi
j = σi

j + 1
3θδ

i
j ; we suppose to deal with spatially �at universes,namely κ = 0:

θ′ + 2
a′

a
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (2.27a)

σi
j

′
+ 2

a′

a
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j) (2.27b)Equations (2.27) are still a system of six indipendent equations: one degree offreedom omes from the Rayhaudhuri equation, 5 from the evolution equationof shear.The following Table resumes the formalism introdued in this Chapter andadopted throughout this thesis:FRAME AND FORMALISMmatter ontent:IRROTATIONAL (ω = 0) DUST (p = 0)metri bakground:EINSTEIN-DE SITTER UNIVERSE
dS2

FRW = a2(τ) [−dτ2 + dr2

1−k r2 + r2dθ2 + r2 sin2 θ dφ2]matter bakground:
T µν = ρuµuνgauge hoie:SYNCHRONOUS+COMOVINGevolution equations:trae part) θ′ + 2a′

a θ + 1
2θ

2 + 3
4σ

2 = − 1
4Rtraeless part) σi

j
′
+ 2a′

a σ
i
j + θ σi

j = −(Ri
j − 1

3Rδi
j)



Chapter 3Standard PerturbationTheory at First and SeondOrderAs emphasized in the Introdution and in the Chapter 1, the study of the large-sale struture of the universe and its origin is usually performed with di�erenttehniques and approximations, depending on the spei� range of sale underanalysis. The full relativisti theory rather than the Newtonian approximationis needed when one of the following three situations ours: strong gravitational�elds, relativisti motion (v ∼ c) for both soures and test partiles, sales largerthan the Hubble radius. In terms of density irregularities or more generally ofosmologial perturbations, these situations are expressed as pronouned am-plitudes of irregularities, high loal density and perturbation wavelengths largerthan the Hubble horizon size.In this Chapter we lay the essential ideas of full relativisti osmologial pertur-bations theory as developed by Lifhitz, Peebles, Bardeen, Kodama & Sasaki,and others, sine the Sixties ([24℄, [25℄, [18℄, [6℄,...). We present the usual las-si�ation of metri perturbations, de�ne the notions of gauge hoie and gaugetransformations in the perturbative ontext trying to make it lear why suha terminology has been adopted in onnetion with the standard onepts ofChapter 2, and brie�y disuss the onsequenes of gauge invariane. Never-theless we do not dwell upon elegant gauge-invariant formalisms suh those ofBardeen and Kodama & Sasaki, but we prefer to summarize the standard re-sults in the syhronous gauge at �rst and seond order, having in mind a furtheromparison with the alternative tehnique worked out in Chapter 4. In whatfollows we will refer to the formalism of this Chapter as Standard PerturbationTheory.3.1 Ideas of the Standard Perturbation TheoryFrom a very general point of view, the idea underlying the theory of osmologialperturbations is to �nd approximate solutions of some �eld equations regardingthem as small deviations from a known exat bakground solution. In our ase,



46 Standard Perturbation Theory at First and Seond Orderwe restrit the bakground spaetime (or zeroth order solution) to belong to aertain lass, namely FRW spatially homogenous and isotropi spaetimes; theequations we have to try to solve are of ourse E.E..In General Relativity, like in any other spaetime theory, the di�ulties arisefrom the fat that not only �elds in a given geometry have to be perturbed,but the geometry itself; besides, oordinate invariane ompliates General Rel-ativity ompared with other gauge theories (like Eletrodynamis in Minkowskispaetime) in whih the spaetime oordinates are �xed while other variableshange under the appropriate gauge transformations.There are two pratial methods for getting the equations of a perturbedsystem:
• One ould derive the Euler-Lagrange perturbed equations from an AtionPriniple: the (r + 1)th order perturbation of the ation S of a systemprodues rth order Euler-Lagrange equations;
• or one ould diretly write equations of the system and perturb themaround the bakground solution.We will follow exatly the seond approah, as suggested at the beginning.The perturbed spaetime is often alled the physial spaetime (M, gµν), whilewe refer to the unperturbed spaetime with known solution as the bakground(M0, g

FRW
µν ). Being as general as possible, let T be any relevant tensor �eldrepresenting a physial or geometrial quantity in the spaetime of interest andsatisfying some �eld equations, and let T(0) be the known value that the samequantity has in the given unperturbed bakground. If the deviation from theknown exat solution T(0) is small, it makes sense to look for an approximatesolution by expanding T in Taylor series in a suitable parameter ǫ.Consider the equation

E(T ) = 0 (3.1)for the unknown funtion or, more generally, for a olletion of funtions ortensor �elds T . In the ase of interest, T is the spaetime metri gµν (possiblytogether with variables desribing the matter ontent like the stress-energy ten-sor Tµν), and E are the E.E.The basi assumption in perturbation theory is the existene of a parametrifamily of solutions of the �eld equations, to whih the unperturbed bakgroundspaetime belongs [1℄:
E(Tǫ) = 0 suh that (3.2)

• ǫ is real;
• Tǫ is a di�erentiable funtion of ǫ (and Tǫ an be written as T (ǫ));
• ǫ = 0 identi�es the bakground: Tǫ|ǫ=0 = T(0).In osmology and in many other ases in general relativity, one deals with a one-parameter family of models (Mǫ, Tǫ). In some appliations, ǫ is a dimensionlessparameter arising naturally from the physial problem one is dealing with: inthat ase one expets the perturbative solution to aurately approximate theexat one for reasonably small ǫ. In other problems, ǫ an be introdued as apurely formal parameter, and in the end, for onveniene, one an hoose ǫ = 1.



3.2 Implementing the perturbations 47This is exatly what we will do: the physial spaetimeMǫ will eventually beidenti�ed by ǫ = 1.In any ase, the parameter ǫ is used for Taylor expanding these Tǫ: as in el-ementary analysis, the idea is to evaluate the deviation from the zeroth orderterm by di�erentiation of the funtion of interest. In partiular ([15℄), the pro-edure onsists in di�erentiating at di�erent orders the equations and at eahstep solving them.For example, as �rst step one an derive a simpler equation from equation (3.2)by di�erentiating it one with respet to ǫ and setting ǫ equal to zero: the equa-tion thus obtained is a linear equation for the �rst derivative of T with respetto ǫ, namely δT(1) =
(

dT
dǫ

)

ǫ=0
. Sine linear equations are generally muh easierto solve than nonlinear ones, it may be feasible to solve the former even if (3.2)is intratable: if this is the ase, an expression as T(0) + ǫδT(1) should yeld agood approximation to Tǫ, and the quality of the approximation an be im-proved repeating the proedure at the following orders. Then at seond order,the seond derivative with respet to ǫ at ǫ = 0 gives an equation whih is linearin the seond order perturbation δT(2), and where the �rst order perturbationnow appears as known soure terms. This an obviously be extended to higherorders, giving an iterative proedure to alulate ∆Tǫ = Tǫ−T(0) to the requiredauray.The result an be written as follows

Tǫ = T(0) + ǫ

(

∂T

∂ǫ

)

ǫ=0

+
1

2
ǫ2

(

∂2T

∂ǫ2

)

ǫ=0

+ .... or (3.3a)
Tǫ = T(0) + ǫ δT(1) +

1

2
ǫ2 δT(2) + ... (3.3b)where Tǫ lives in the perturbed world, T(0) in the bakground, δT(r) =

(

∂rT
∂ǫr

)

ǫ=0represents the rth order orretion to T with respet to the bakground value(the rth order perturbation) and ǫ gives a weight of suh a orretion.3.2 Implementing the perturbationsHaving delineated the general ideas underlying the making of perturbations, wewant now to speify the proedure to the ase under study. As disussed before,we set ǫ = 1 to desribe our physial spaetime. We will expand the quantitiesof interest up to seond order: this is reent and due hoie, for the inreasingof alulations omplexity as one goes at higher orders.In order to take into aount the geometry of spaetime and the matter ontent,two are the relevant quantities to be perturbed: obviously, the spaetime metri(and hene all the useful geometrial quantities Γµ
νρ, Rµν , R) and the stress-energy tensor.Classi�ation of metri perturbationsExpression (3.3b) for small perturbations of the metri is rewritten as follows:

gµν(t, ~x) = gFRW
µν (t, ~x) + δg(1)

µν (t, ~x) +
1

2
δg(2)

µν (t, ~x) (3.4)A widely ommon use (espeially when the expansion was stopped at �rst order)is to generially expand the perturbations in Fourier oe�ients or in any other



48 Standard Perturbation Theory at First and Seond Orderbasis eigenfuntions, so that any (Fourier) omponent or mode is naturallyassoiated to a wavenumeber and wavelength. We will not adopt diretly thispoint of view, but prefer a more ommon approah onsisting in splitting ofperturbations in di�erent spatial symmetry omponents, alled modes as well.The omponents of a perturbed spatially �at FRW metri an be written as [13℄
g00 =− a2(τ)(1 + 2φ(1) + φ(2)) (3.5a)
g0i =a2(τ)(ω

(1)
i +

1

2
ω

(2)
i ) (3.5b)

gij =a2[(1− 2Ψ(1) −Ψ(2))δij + χ
(1)
ij +

1

2
χ

(2)
ij ] (3.5)where τ is the onformal time and the i-j omponents have been split in a traepart and a traeless one: χ(r)i

i = 0.The perturbation variables or perturbative funtions (φ, ψ, ωi, χij) are treatedexlusively as 3-tensors of rank 0, 1, or 2 aording to the number of indies:they all live on the 3-dimensional hypersurfaes Σ of the unperturbed world andtheir omponents are raised and lowered using δij and δij by de�nition. Thestandard deomposition of spatial vetors and tensors into salar and transverseparts of Appendix A then applies:
• φ, ψ are salars by their own;
• ω(r)

i = ∂iω
(r) + ω

(r)⊥
i , with ω(r) a salar and ω

(r)⊥
i a solenoidal vetor,

∂iω
(r)⊥
i = 0;

• χ(r)
ij = Dijχ

(r) + ∂iχ
(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)⊤
ij , with χ(r) a suitable funtion,

χ
(r)⊥
i a solenoidal vetor, ∂iχ

(r)⊤
ij = 0; hereafter, Dij = ∂i∂j − 1

3δij∇2.Equations (3.5) are ompletely general: gµν has 10 independent omponentsand we have introdued 10 independent �elds, 1+1+3+5 for φ + ψ + ~ω + χ.Moreover, as the most general perturbations of the metri, they ontain all thepossible salar, vetor and tensor modes : four salar parts eah having 1 degreeof freedom (φ, ψ, ω, χ), two vetor parts eah having 2 degrees of freedom(ω⊥, χ⊥), and one tensor part having 2 degrees of freedom (χ⊤, whih is sym-metri, traeless and transverse). The total number of degrees of freedom isagain 10 as it must be.There are several reasons for having entered in this mathematial lassi�ationof perturbations. First of all, let us still note that, being the omponents ofthe perturbed metri g00, g0i, gij respetively a salar, a vetor and a tensorunder spatial oordinate transformations, then a salar perturbation only woulda�et all the three omponents, a vetor perturbation only would a�et goi, gijleaving g00 unperturbed, and a tensor perturbation would a�et exusively thespae-spae omponents gij . Furthermore, di�erent perturbations have distintphysial meanings and represent distint physial phenomena. In the languageof the (3+1)-formalism, φ is interpreted as the amplitude of perturbation inthe lapse funtion, whih represents the ratio of the proper-time distane tothe oordinate-time distane between two neighboring onstant-time hypersur-faes; ω is interpreted as the amplitude of perturbation in the shift vetor, whihrepresent the rate of deviation of a onstant spae-oordinate line from a line



3.2 Implementing the perturbations 49normal to a onstant-time hypersurfae; ψ an be seen as the amplitude of theperturbation of a unit spatial volume, and �nally χ represents the anisotropidistorsion of eah onstant-time hypersurfae [6℄. The other vetor and tensorperturbative funtions have no suh an easy interpretation. From a wider pointof view, ordinary Newtonian gravity is a salar phenomenon, i.e. orrespondsto the salar mode, being the Newtonian potential a 3-salar; the vetor andtensor modes, on the ontrary, represent the relativisti e�ets of gravitomag-netism and gravitational radiation, whih have no ounterpart in Newtoniangravity although they are similar to eletromagneti phenomena. Salar metriperturbations are assoiated to density perturbations, whih experiene gravi-tational instability and lead to struture formation; tensor metri �utuationsprodue gravitational waves, whih are not foundamental at all in strutureformation but an reveal themselves in other phenomena, for example in theosmi mirowave bakground anisotropies.The spatial deomposition an also be applied to the Einstein and stress-energytensors (see below), allowing us to learly see (at least in some oordinate sys-tem) the physial soures for eah type of phenomenon. Finally, the lassi�ationwill help us to eliminate unphysial gauge degree of freedom, remembering thata gauge hoie needs two salars and one transverse vetor onditions.Perturbing the matter ontentOur bakground is the Einstein-de Sitter universe, a FRW matter-dominatedspaetime. As extensively disussed in the previous Chapter, the matter weonsider is irrotational dust and the orresponding stress-energy tensor is thatof equation (2.12). Let us reall that this is a very speial and appropriate ase,but even other types of stress-energy tensors are largely onsidered, as those, forexample, of salar �elds. Anyway, we limit the treatment of the perturbationsof the matter ontent to the stress-energy tensor of our interest, beause if thegeneral idea is always the same the pratial notations are rather di�erent.Equation (3.3b) is of ourse rewritten as follows
Tµν = TDUST

µν + δT (1)
µν +

1

2
δT (2)

µν (3.6)being TDUST
µν = ρuµuν . Therefore we must digress to disuss the perturbationsof energy density and 4-veloity. Energy density is a salar, then it an bea�eted by salar perturbations only; the 4-veloity, on the ontrary, an bea�eted by both salar and vetor perturbations:

ρ = ρ(0)(t) + δ(1)ρ+
1

2
δ(2)ρ (3.7)

uµ =
1

a
(δµ

0 + vµ
(1) +

1

2
vµ
(2)) (3.8)Here, we have already assumed omoving oordinates in the bakground; theveloity perturbation vµ

(r) an as usual be split into a salar and a vetor part,while the time omponent v0
(r) is related at any order to the lapse perturbation

φ(r) (see [13℄).We do not linger over writing down the expliit form of the seond-order per-turbed stress-energy tensor even beause we will not need it in the ontinuation:



50 Standard Perturbation Theory at First and Seond Orderanyway, it is interesting to note that, even if the bakground T (0)
µν is that of a per-fet �uid, a general perturbation leads to the appearane of extra terms suh asisotropi stress perturbations (with salar perturbations only) and shear stressperturbations, that is anisotropi stress perturbations.3.3 Gauge hoie and gauge dependene in per-turbation theoryIn the previous Setions, some problems dealing with the omparison of quan-tities between the real world and the unperturbed one have been negleted andbrought forward. To be honest, it is worthwile to remind that in order to makethe omparison of tensors meaningful at all, one has to onsider them at thesame point : but T and T(0) of Setion 3.1 were de�ned on di�erent manifolds,respetivelyM andM0, thus we would be allowed to ompare them only aftera presription for identifying points of those di�erent spaetimes is given.Likewise and for the same reason, perturbations suh as those of the metri andof the stress-energy tensor,

∆gµν = δg(1)
µν +

1

2
δg(2)

µν (3.9)
∆Tµν = δT (1)

µν +
1

2
δT (2)

µν (3.10)of equations (3.4)-(3.6), are well de�ned (univoally) only when a oordinatehoie has been made.Roughly speaking, a gauge hoie in osmologial perturbations theory is aone-to-one orrespondene (a map) between points in the bakgroundM0 andpoints in the physial spaetimeM. A hange in this orrespondene, keepingthe bakground oordinates �xed, is then alled a gauge transformation, andit an be formally expressed in terms of a oordinates transformation in theperturbed world à la manière of equations (2.2) or (2.4).The essene of the "gauge problem", that has reated a great deal of onfusionin the past, onsists in two stritly related points:
• arbitrariness in hoosing the map betweenM0 andM;
• gauge dependene of the value of perturbations.The seond point is probably the most problemati: the perturbation in somequantity is the di�erene between the value it has at a point in the physialspaetime and the value at the orresponding point in the bakground. A gaugetransformation indues a oordinate transformation in the physial spaetime,but it also hanges the point in the bakground orresponding to a given pointin the physial world. Thus, the value of the perturbation in the quantity willnot be invariant under gauge transformations if the quantity is nonzero andposition dependent in the bakground.Two essentially di�erent ways of handling the perturbations have been thendeveloped in the literature:



3.3 Gauge hoie and gauge dependene in perturbation theory 51
• the usual one works with oordinates: the gauge is �xed, perturbations ofthe metri omponents are onsidered, solutions are written in that gaugeand appropriate relations are used to pass to other gauges and verify theonsisteny of the results;
• the other approah onsists in formulating the problem in terms of gauge-invariant variables and trying to understand the physial meaning of suhvariables.As already antiipated, we will adopt the gauge-�xing way.Let us formalize the idea of gauge hoie as map between the two spaetimes(see Figure 3.1,[15℄). First of all, let us suppose having �xed a oordinate system{xµ} in the bakground: any p ∈M0 is labeled by xµ(p). Apart from the way ofonstruting the orrespondene, the map a priori depends from the parameter

ǫ: we will later greatly simplify the treatment by taking ǫ = 1 as usual.A �rst way of de�ning the point identi�ation map onsists in arrying thebakground oordinate overMǫ:
ψǫ : M0 →Mǫ

p 7→ O = ψǫ(p) with xµ(p) ≡ xµ(O)

O is the point on the physial spaetime orresponding to p through the dif-feomorphism ψǫ; ψǫ assigns the same oordinate labels between related points,and de�nes in every respet a gauge hoie in the perturbed world: this is thereason why we all suh a map hoie a gauge hoie as well. A hange in themap ψǫ, keeping the bakground oordinates �xed, is a gauge transformation.We ould as well use a di�erent gauge ϕǫ and think of O as the point of Morresponding to a di�erent point q in the bakground, with oordinates xµ(q):
ϕǫ : M0 →Mǫ

q 7→ O = ϕǫ(q) = ψǫ(p) with xµ(q) 6= xµ(O)There is then another reason for alling those orrespondenes between the dif-ferent spaetimes with the same terminology of standard gauge fats: the twodi�erent ways of mapping Mǫ through the oordinate system of M0 suggesta one-to-one orrespondene between di�erent points in the bakground, thatis an ative oordinate transformation on the unperturbed world. Otherwise astandard gauge transformation (or passive transformation) whih hanges o-ordinate labels to eah point keeping the manifold �xed, the omposition ofmaps
Φǫ :M0 →Mǫ →M0

p 7→ q = Φǫ(p) = ϕ−1
ǫ (ψǫ(p))is a gauge transformation whih does not hange the oordinate label systembut moves the points on the manifold, and then evaluate the oordinates of thenew points: x̄µ(ǫ, q) = Φµ

ǫ (xα(p)).With the same approah of Setion 3.1, in order to ompute at the desiredorder of auray the e�ets of a gauge transformation, we need a Taylor expan-sion. The latter up to 2nd order of the transformation x̄µ(ǫ) = Φµ
ǫ (xα) between



52 Standard Perturbation Theory at First and Seond Order

µq(x  (q))

ϕψ

ο

O

µp(x  (p))

ε

0

εε ϕ−1ψ

ε ε

Φε

M

M

Figure 3.1: Ative oordinates hoie on the bakground as omposition of two gaugesbetween M0 and Mǫthe oordinates of any pair of points of the bakground an be written as follows([15℄,[13℄, ǫ = 1):
x̄µ = xµ + ξµ

(1) +
1

2
(ξµ

(1),ν ξ
ν
(1) + ξµ

(2)) (3.11)where ξ(1) and ξ(2) are two indipendent vetor �elds and losely related to thatone of equation (2.2). The gauge transformation under (3.11) up to 2nd orderof a generial tensor is̄
T = T + Lξ(1)

T +
1

2
(L2

ξ(1)
+ Lξ(2)

)T (3.12)In the light of these new formalism, the generi perturbation is rewritten morearefully as
∆Tǫ = ψ∗

ǫT − T(0) and δT(r) =

(

∂rψ∗
ǫT

∂ǫr

)

ǫ=0

(3.13)and the �rst and seond order perturbations of T transform under a gaugetransformation up to seond order as
¯δT(1) = δT(1) + Lξ(1)

T(0) (3.14a)
¯δT(2) = δT(2) + 2Lξ(1)

δT(1) + L
2
ξ(1)

T(0) + Lξ(2)
T(0) (3.14b)First order gauge transformationsAs a pratial appliation of all the theory developed in these last few pages,we write down at least the �rst order gauge transformations of the perturbativefuntions presented earlier; we have in mind the usual deomposition of gauge



3.3 Gauge hoie and gauge dependene in perturbation theory 53vetor ξ as indiated in (2.3):
φ̄(1) = φ(1) + α′

(1) +
a′

a
α(1) (3.15a)

ω̄
(1)
i = ω

(1)
i − α(1)

,i + β
(1)
,i

′
+ d

(1)
i

′ (3.15b)
Ψ̄(1) = Ψ(1) −

1

3
∇2β(1) −

a′

a
α(1) (3.15)

χ̄
(1)
ij = χ

(1)
ij + 2Dijβ(1) + d

(1)
i,j

′
+ d

(1)
j,i

′ (3.15d)
δ̄ρ

(1)
= δρ(1) + ρ′(0) α(1) (3.15e)

v̄0
(1) = v0

(1) −
a′

a
α(1) − α′

(1) (3.15f)
v̄i
(1) = vi

(1) − β
′,i
(1) − d

′i
(1) (3.15g)Gauge transformations of seond order perturbations are muh more ompli-ated than these and far exeed the neessity of this thesis [13℄. The only thingthat is important to point out is the form of suh transformation rules: forexample, the gauge transformation of the lapse perturbation (3.15a) or of theveloity perturbation time-omponent (3.15f) are expressed only in terms of α;(3.15d) shows that the tensor modes of χ⊤

ij are gauge invariant at the linear level,as tensor type gauge transformations annot exist. In any ase, they suggestpratial methods for gauge �xing.Implementing gauge hoiesHaving demonstrated the meaning of the gauge hoie in perturbation theory, aslast task of this setion we want to give some pratial presriptions for �xingit. The proedure we follow is that of the �rst approah outlined in Chap-ter 2: analogously to what done earlier, we must impose two relations amongthe gauge-dependent variables, one for �xing the sliing and one for the spae-oordinates. The simplest way to speify the time sliing is to require one ofthose quantities transforming only with α to vanish; for eah time sliing thestandard way to eliminate the spatial oordinate gauge freedom is to require aquantity whose gauge transformation involves β and di to vanish. Consistentlywith Setion 2.3, we thus have the following de�nitions:The synhronous gauge in perturbation theory is de�ned by the onditions
φ = ωi = 0The omoving gauge in perturbation theory is de�ned by the onditions
vi = ωi = 0Other possibilities are indiated in Table 3.1.



54 Standard Perturbation Theory at First and Seond OrderProper-time sliing φ = 0Synhronous gauge φ = ωi = 0Comoving proper-time gauge φ = vi = 0Veloity-orthogonal siling vi = ωiComoving time-orthogonal gauge vi = ωi = 0Veloity-orthogonal isotropi gauge vi = ωi, χij = 0Longitudinal gauge ωi = χij = 0Poisson gauge ω ,i
i = χ ,j

ij = 0Table 3.1: Examples of possible gauge hoies in perturbation theory ([6℄, [13℄)3.4 Standard perturbations at 1
st and 2

nd order ofEinstein-de Sitter universe in the synhronous-omoving gaugeWe �nally present the alulation of the metri and matter perturbations upto seond order of the Einstein-de Sitter universe in the standard perturbationtheory. The �nal aim is to ompare the results of this hapter to those onesobtained with the Gradient Expansion Tehnique presented in the next twoChapters.From now on we will always work in synhronous and omoving oordinates,essentially for a reason of onveniene in performing alulations: as a matterof fat already seond order alulations are almost invariably a omputationaltour de fore. The simpler form of the gauge-invariant variables often makesit easy to �nd analytial solutions and avoids misunderstandings around ini-dental unphysial modes; but a gauge-invariant seond order treatment is notompletely at hand, and in the ase under study there are no partiular prob-lems in solving equations. In general, it is not neessary to use gauge-invariantvariables during a alulation, and indeed many osmologists ontinue suess-fully to use the synhronous gauge: in the end, when the results are onvertedto measurable quantities -spaetime salars- the gauge modes automatially getanelled. Of ourse, some more attention must be paid in numerial solutions,where the gauge modes an swamp the physial ones and the onsequent round-o� an produe signi�ant numerial errors. But this is not our ase: yes, we aregoing to get approximate metri solutions, but at every order E.E. are analyt-ially solved. Unfortunately, the omputationally more onvenient gauge doesnot neessary oinide with the most interesting one; for example, the Poissongauge, otherwise the synhronous one, would allow a more diret omparisonwith the standard Newtonian and Eulerian approahes adopted in Large SaleStruture studies. In any ase, one is always free to swith to other gaugesmaking good use of the gauge transformation rules mentioned in the previousSetion and referenes therein.Let us then speify the formalism outlined in Chapters 2 and 3 to our task.The omponents of a perturbed spatially �at FRW metri in the synhronous



3.4 Standard perturbations at 1st and 2nd order of Einstein-deSitter universe in the synhronous-omoving gauge 55and omoving gauge are written as follows (see equations (3.5) and the gaugeonditions of the previous page):
g00 =− 1 (3.16a)
g0i =0 (3.16b)
gij =a2[(1 − 2Ψ(1) −Ψ(2))δij + χ

(1)
ij +

1

2
χ

(2)
ij ] (3.16)Then the resaled spatial metri tensor -the only variable in our equations- reads

γij = (1− 2Ψ(1) −Ψ(2))δij + χ
(1)
ij +

1

2
χ

(2)
ij (3.17)The stress-energy tensor is the usual Tµν = ρuµuν and the Einstein-de Sitterbakground is desribed by a sale fator a(τ) ∝ τ2 (as mentioned in Chapter1). The spatial urvature is set to zero; the density ontrast already introduedin Setion 2.4 reads in the new formalism δ = ∆ρ/ρ, so that the density ontrastexpansion orresponding to equation (3.7) is

δ(τ, ~x) = δ(1)(τ, ~x) +
1

2
δ(2)(τ, ~x) (3.18)The bakground mass density is ρb ≡ ρ(0): we an take its mean value as

ρ(0) = 3/ 2πGa2(τ)τ2. With these notations and hypotheses we an rewriteE.E.(2.26) as follows:
θ2 − θa

b θ
b
a +

8

τ
θ +R = +

24

τ2
δ (3.19a)

θa
j|a = θ,j (3.19b)

θi
j
′
+

4

τ
θi

j + θθi
j +

2

τ
θ δi

j +Ri
j =

(

6

τ2
δ

)

δi
j (3.19)Using the energy onstraint (3.19a) and taking the trae of the evolution equa-tions (3.19), the Rayhaudhuri equation takes the �nal form:

θ′ +
2

τ
θ + θa

b θ
b
a +

6

τ2
δ = 0 (3.20)We say that in these equations the really indipendent degree of freedom is γijbeause, through the ontinuity equation T µν

;ν written in the form (2.20) ofSetion 2.4, the exat solution for the density ontrast is known and an bewritten as
δ(τ, ~x) = (1 + δIN (~x))[γ(τ, ~x)/γIN(~x)]−1/2 − 1. (3.21)Here γ = detγij and the subsript "IN" denotes the value of quantities at someinitial time [14℄.Calulation sheme and initial onditions The alulation sheme on-sists in an iterative proedure: the unknown spatial metri (with its 6 degreesof freedom) is known at the zeroth order and, aording to the desired auray,if r is the expansion order of quantities then r is the number of steps of thissheme. We stop our Taylor series at seond order, therefore two are the stepswe have to ful�ll. At every order, E.E. in the form given in 3.19 are written in



56 Standard Perturbation Theory at First and Seond Orderterms of γij expanded up to the orresponding rth order, and they are solvedin the rth order perturbations Ψ(r) and χ(r)
ij : the (r − 1)th order metri pertur-bations (alulated at the previous step) appear as known soure terms. Thesame proedure has to be applied to the expression (3.21) to obtain the densityontrast.The idea underlying the alulations should now be almost lear: atually, thepratial proedure presents many passages and di�ulties whih we are notgoing to over and explain, being outside the purpose of the thesis. We will justreport the main results referring to the literature for more details [13℄.Let us now brie�y disuss the key issue of the initial onditions and otherwell-founded hypotheses. The situation is simpli�ed with the following onsid-erations:

• we neglet linear vetor modes sine they are not produed in standardmehanisms for the generation of osmologial perturbations as In�ation:then ω(1)⊥
i = χ

(1)⊥
i = 0;

• we neglet linear tensor modes sine they play a negligibile role for largesale struture formation: then χ(1)⊤
ij = 0.We deide to �x the initial onditions at the end of In�ation, that is at thetime when the osmologial perturbations relevant today for the large salestruture formation are well outside the Hubble radius, i.e. when the omovingwavelength aL of a given perturbation mode is suh that aL ≫ H−1, H =

a′

a2 being the horizon size, as extensively seen in Chapter 1. Information forsuh a valutation ome from the study of urvature perturbation ζ evolution-a gauge-invariant variable expressing the urvature perturbation on uniformdensity hypersurfaes (see [14℄). In onlusion, our onstraints about the initialonditions are summarized by
• δIN = 0;
• χ(1)

IN = 0 (for residual gauge �xing).Linear order solutionsAt 1st order the growing-mode 1 solutions for a dust �lled universe in thesynhronous-omoving gauge read
ψ(1)(τ, ~x) =

5

3
ϕ(~x) +

τ2

18
∇2ϕ(~x) (3.22a)

χ
(1)
ij = −τ

2

3

(

ϕ,ij −
1

3
δij∇2ϕ

) (3.22b)
δ(1) =

τ2

6
∇2ϕ (3.22)where ϕ(~x) is the so-alled peuliar gravitational potential related to δIN throughthe osmologial Poisson equation (1.40) or (3.22) itself. A foundamental resultof the standard linear perturbation theory is that at �rst order salar, vetorand tensor modes are deoupled and evolve indipendently [6℄:1We only onsider modes not deaying with time



3.4 Standard perturbations at 1st and 2nd order of Einstein-deSitter universe in the synhronous-omoving gauge 57Theorem 2. In a FRW spaetime, salar, vetor and tensor equations, if theyare ovariant with respet to the oordinate transformation in Σ, linear in theunknown geometrial quantities and seond order at most in the sense of di�er-ential equations, are deomposed into groups of equations eah of whih ontainsonly omponents of one type. Therefore the three types of perturbations om-pletely deouple from eah other dynamially.This is of ourse true even in the ase of Fourier or harmoni funtions ex-pansions: there, the temporal evolution of expansion oe�ients is determinedby a linear system of di�erential equations, thus there is no oupling amongdi�erent wavelenght modes .Let us still note that if we had not negleted tensor modes we would haveobtained, by linearizing the traeless part of θi
j evolution equation, the equationof the free propagation of gravitational waves in the Einstein-de Sitter universe:

χ
(1)⊤
ij

′′
+

4

τ
χ

(1)⊤
ij

′
−∇2χ

(1)⊤
ij = 0 (3.23)This is why tensor modes are assoiated to gravitational radiation and peopleoften refer to them as gravitational waves.Seond order solutionsAt 2nd order the orresponding growing-mode solutions for a dust �lled universein the synhronous-omoving gauge are written, in terms of the gravitationalpotential as well, as follows:

ψ(2) = −50

9
ϕ2 − 5

54
τ2 ϕ,aϕ,a −

τ4

252

(

10

3
ϕ,abϕ,ab − (∇2ϕ)

2
) (3.24a)

χ
(2)
ij =− 10

9
τ2ϕ,iϕ,j +

10

27
τ2ϕ,aϕ,aδij

+
τ4

126

(

19 ϕa
,iϕ,aj −
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3
ϕ,abϕ,ab δij

− 12 ϕ,ij ∇2ϕ+ 4 (∇2ϕ)
2
δij

)

+△(2)
ij

(3.24b)
δ(2) =

10

9
τ2

(

−1

4
ϕ,aϕ,a + ϕ ∇2ϕ

)

+
τ4

126

(

5(∇2ϕ)
2

+ 2 ϕ,abϕ,ab

) (3.24)Here△(2)
ij desribes seond-order tensor modes generated by linear salar pertur-bations and possible time-independent terms arising from the initial onditionsbut is not neessary for our purposes.The prinipal and general phenomenon of seond-order perturbation theoryis mode mixing. Interesting onsequenes of this fat are ([13℄):

• tensor modes χ(2)⊤
ij are no more gauge invariant;

• primordial density �utuations at as seeds for seond-order gravitationalwaves and seond-order vetor modes;
• density �utuations an be generated from primordial tensor modes.





Chapter 4
Gradient ExpansionTehnique
In this Chapter the ore of the thesis is presented, that is the alulation up tofour spatial gradients of the perturbed spatial metri in synhronous and omov-ing gauge of a matter-dominated universe, within the ontext of the GradientExpansion Tehnique. The latter is a method for expanding and solving E.E. ina series of terms ontaining the perturbative funtions Ψ and χij , aording tothe number of spatial gradients they ontain. This is alternative to the standardtehnique introdued in Chapter 3.The idea of the Gradient Expansion Approximation traes bak to the Sixtieswith Lifhitz & Khalatnikov [25℄; later, di�erent approahes to this approxima-tion method have been followed aording to the �eld of appliation and �nalgoal [26℄, [27℄, [30℄, [31℄, [32℄.The formalism worked out in Chapter 2 is assumed: all the work of the fol-lowing two hapters has been performed in full relativisti approah, �xing thegauge, assuming onformal time τ and hene with all quantities resaled bythe isotropi FRW bakground with an expansion fator a(t). The desriptionapplies to a matter-dominated universe, a universe �lled with pressureless �uidassumed to be irrotational, and E.E. are written in the ADM formalism in theway shown in Setion 2.4.Thus, after having introdued our "seed" spatial metri, explained the natureof our expansion, and presented the iteration sheme used for getting the so-lutions, we proeed in the alulation of our purely spatial physial quantitiesand spatial hypersurfaes geometrial quantities in terms of the perturbativefuntions subsequently up to two derivatives terms (alled �rst order) and fourderivatives terms (alled seond order).The alulations and the resolution of the equations have been arried out withanalytial methods: nevertheless, the orretness of the results has been veri�edwith internal onsisteny heks (suh as Energy and Momentum Constraint ofADM formalism), and at the end ontrolled with the help of MATHEMATICAodes for symboli omputations using EinS pakage [23℄.



60 Gradient Expansion Tehnique4.1 The starting spatial metri and bakgroundomparisonIn the synhronous and omoving gauge, the line-element is written as in equa-tion (2.22), that is
dS2 = a2(τ) [−dτ2 + γij(τ, ~x)dx

idxj ], (4.1)thus we an fous only on the quantities lying on onstant time hypersurfaes Σof Chapter 2, starting with the resaled spatial metri tensor γij . Let us writeit in a very general form as follows
γij = e−2Ψ(δij + χij). (4.2)

Ψ and χij are the well-known funtions of time and spae of the StandardPerturbation Theory of Chapter 3, with χij being a traeless tensor ontainingthe three modes: salar χ, solenoidal vetor χ⊥
i and symmetri tensor χ⊤

ij .
Ψ and χ ontain all the perturbative orders of this tehnique:

Ψ = Ψ(0) + Ψ(1) +
1

2
Ψ(2) + ... (4.3)

χij = χ
(0)
ij + χ

(1)
ij +

1

2
χ

(2)
ij + ... (4.4)Broadly speaking, if in the Standard Perturbation Theory the expansion pa-rameter of Taylor series is the magnitude of deviations from the bakground,in the Gradient Expansion Tehnique the expansion parameter is the numberof spatial derivatives : in other words, all physial and geometrial quantities ofinterest are expanded in a series on the basis of their spatial gradients ontent.Let T be a generi �eld, then

T = T(0) + T(1) +
1

2
T(2) + .... (4.5)where

• T(0) ontains zero spatial derivatives
• T(1) ontains two spatial derivatives...
• T(r) ontains 2r spatial derivatives.Our hoie to assoiate the �rst order to a ontent of two spatial derivativesrather than one, and to onsider the seond order terms as ontaining fourspatial derivatives, and so on with the rth order orresponding to 2r spatial gra-dients lies in the form of our equations. In what follows, similarly to what donein Setion 3.4, the alulation proedure will onsist in an iterative resolutionof E.E. suitable to give the perturbation funtions at inreasing orders: γij willbe the only variable of our equations and will be obtained through an evolutionequation like (2.26). Now, the spatial gradient ontent of equation (2.26) istwo and these spatial gradients appear in the spatial urvature tensors Rij and



4.1 The starting spatial metri and bakground omparison 61salar R: therefore the solutions of the metri ontaining zero and one spa-tial derivatives an be found in just one iteration negleting those terms, whihmeans that they solve the same equation. We have to wait for a two-gradientmetri for having a non trivial soure term of the same gradient ontent in Rijand R, that is Rij and R written as funtions of a metri ontaining zero gra-dients. The same onsiderations apply at following steps, with jumps of twogradients among subsequent solutions for the spatial metri γij .The form of the spatial metri (4.2) is not aidental: supposing for a mo-ment that we are allowed to expand the exponential, we write
γij = (1− 2Ψ + ...)δij + χij − 2Ψ χij + ... (4.6)Then, disregarding mixed terms of type Ψ χij , one ould see that our spatialmetri is formally similar to the one given in the standard theory (3.17) at leastin the aspet it assumes at its standard �rst order. Nevertheless, analogies applyonly at a formal level and only want to suggest that a higher order omparisonbetween standard results of Chapter 3 and gradient expansion results an beengaged in, but with an appropriate proedure (see Chapter 5). Many di�er-enes arise: let us stress that our metri as written in (4.2) is not approximated:it ontains all the perturbative orders of this tehnique. Furthermore, if in thestandard tehnique the zeroth order terms express properties of the FRW bak-ground, here the omparison with the bakground is less obvious.The �at FRW metri ontains no spatial derivatives (nor temporal derivatives)so we should reover it in the zeroth order terms. But utting o� Higher than0 Derivatives Terms (H0DT), the metri reads

γ
(0)
ij = e−2Ψ(0)(δij + χ

(0)
ij ). (4.7)with Ψ(0) and χ(0)

ij a priori funtions of time and spae.From standard linear perturbation results (3.22), admitting here the same initialonditions set in Setion 3.4 at τ = τIN = 0, we know that Ψ ontains at leasta zero derivative term, while the traeless tensor χij has at least two spatialgradients:
Ψ

(1)
ST (τ, ~x) =

5

3
ϕ(~x) +

τ2

18
∇2ϕ(~x)

χ
(1)
ij ST

(τ, ~x) = −τ
2

3

(

ϕ,ij(~x)−
1

3
δij∇2ϕ(~x)

)where the subsript "ST" stands for standard. The Ψ zero derivatives term isthe term not depending on time. In χij there are no time-indipendent nor zeroderivatives terms for χij , neither at standard �rst order nor at the seond one(see equation (3.24)). Thus in our formalism we will assume from now on
Ψ(0)(τ, ~x) =

5

3
ϕ(~x) ≡ Ψ(τ = 0, ~x) = ΨIN (4.8a)

χ
(0)
ij (τ, ~x) = χIN

ij = 0 (4.8b)With this initial assumptions, equation (4.7) an be rewritten as
γ

(0)
ij = e−2Ψ(0)(~x) δij = e−

10
3 ϕ(~x)δij (4.9)



62 Gradient Expansion Tehniquewhere ϕ is the so-alled gravitational potential and the zeroth order metriis onformally related to the �at spae metri by a spae-dependent fator
e−

10
3 ϕ(~x).Therefore, rather than having a FRW bakground oiniding with the zeroth or-der approximation, here the idea is to let a seed spatial metri γIN

ij ≡ γ
(0)
ij evolvein time with the perturbative funtions Ψ and χ from the end of In�ation untilpresent time, produing the neessary ingredient for gravitational instability todevelop.Initial onditions from In�ation In order to ompare the two teh-niques at least at the lowest orders, we have earlier assumed the same initialonditions of Setion 3.4 to ompute the �rst two orders of ΨST and χST
ij : thuswe have speialized our quantities on the basis of those hypotheses. Let usbrie�y linger over this hoie.Sine the osmologial perturbations are generated during In�ation as widelydisussed in Chapter 1, it is physially natural to set initial onditions for thegravitational perturbations Ψ and χij at the end of In�ation, e�etively oinid-ing with τ = τIN = 0. This way, a gauge-invariant formulation of in�ationaryperturbations theory [14℄ tells us that the spatial perturbation of the metri isrelated to ζ, the gauge-invariant omoving urvature perturbation, and heneto the gravitational potential through an expression as hij = a2 e−2ζδij =

a2e−
10
3 ϕ δij . Therefore, even without making any parallelism with the stan-dard gauge-dependent theory of Chapter 3 but only assuming In�ation as thesimplest mehanism for generating perturbations, we have that the initial on-ditions at τ = 0 are ΨIN ≡ 5ϕ/3 and χIN

ij = 0. The initial ondition δIN = 0is also assumed. Sine osmologial perturbations generated during single-�eldmodels of In�ation are very nearly Gaussian with a nearly �at power spetrum(n ≃ 1)[14℄, [11℄, we notie by the way that ϕ should be regarded as a nearlysale-invariant, quasi-Gaussian random �eld.Thanks to these points, in what follows we will be allowed to write χ ratherthan χij regarding to the ontribution of Dijχ of the traeless part of the spa-tial metri.4.2 The expansion shemeIn this perturbative tehnique the expansion parameter is the number of spatialderivatives. We now want to omment this rule and understand the physialmeaning behind it.A �rst rough idea an be obtained by a dimensional point of view. The per-turbative funtions Ψ and χ are dimensionless: in the natural units system, thedimension of a spatial derivative is the inverse of a length (L−1) or, in otherterms, a wavenumber k. The two gradients ontained -say- in the �rst order of
Ψ, Ψ(1), give a ontribution ∼ (L−2 = k2) in the dimensions, the four gradientsin ψ(2) give a ontribution of ∼ (L−4 = k4), and so on. In order to have at everyorder [ψ(r)] = 1, we need a fator L2r ∼ t2r, whih an ome from a suitablepower of onformal time: for every spatial derivative a power of the onformaltime appears.Therefore the Gradient Expansion onsists in a perturbative expansion in evenpowers of (τk): the lowest (zeroth) order solution orresponds to the so-alled



4.2 The expansion sheme 63long wavelength approximation ( or separate universe, with (τk)≪ 1 [32℄, [27℄,[28℄); adding the higher order gradients leads to a more aurate solution, whihhopefully onverges toward the exat one.The long wavelength approximation onsists in negleting spatial gradients ofthe variables desribing the osmologial models: these spatial gradients haveto be onsidered negligible in omparison with the time derivatives of the abovevariables, and this should now be lear having in mind the expansion parameter
(τk):

τk ≪ 1⇐⇒ k ≪ τ−1 ⇐⇒ ∂

∂x
≪ ∂

∂τSine the time-sale of variation in osmology is given by the loal Hubble expan-sion rate, the zeroth order approximation onsists in negleting inhomogeneitiesvarying over a sale smaller that the Hubble horizon, or onversely in study-ing inhomogeneities larger than the Hubble radius: adding the following ordersis equivalent to getting information about perturbation sales as they beomesmaller than the Hubble horizon [32℄.For ompleteness, we translate what explained until now in terms of our spatialmetri γij , following [30℄. The onditions ∂
∂x ≪ ∂

∂τ is rewritten as
γij,k ≪ γ′ij .The harateristi omoving length on whih the metri varies is L: γij,k ∼

L−1γij . As said, the Hubble time is the harateristi proper time on whih themetri evolves at a point xk: in onformal time, γ′ij ∼ aHγij .Thus we an onlude that
(τk)≪ 1⇐⇒ aL≫ H−1, (4.10)whih preisely means that the harateristi sale of spatial variation is biggerthan the Hubble radius.Nevertheless, the atual range of validity of the Gradient Expansion Tehniqueis not only restrited to the desription of inhomogeneities on super-Hubblesales: as we will see later in Chapter 5, it an be applied also to sub-horizonwavelength perturbations [37℄.The overall omputation proedure to obtain Ψ and χij at di�erent ordersis similar to the one desribed in Setion 3.4. In what follows, we write downall the useful geometrial quantities as funtions of the spatial metri de�nedearlier (equation (4.2)) up to �rst and seond order in the gradient expansion;we introdue the two physial variables, the expansion rate θ and the shear

σi
j as de�ned in Chapter 2, and iteratively solve the E.E.. These are writtenorder by order in their spae-spae omponents as the evolution equations for
θ (the Rayhaudhuri equation) and σi

j , namely the equations (2.27). Knowingthe zeroth order solution of Ψ and χ of the equations (4.8), we have in mind aniteration sheme suitable for getting expliit expressions of Ψ and χ in terms of
ϕ. In other words:
• Solving the Rayhaudhuri equation up to 1st order (2DT) =⇒ Ψ(1)Solving the shear evolution equation up to 1st order (2DT) =⇒ χ

(1)
ij

• Solving the Rayhaudhuri equation up to 2nd order (4DT) =⇒ Ψ(2)Solving the shear evolution equation up to 2nd order (4DT) =⇒ χ
(2)
ij .



64 Gradient Expansion Tehnique4.3 Gradient expansion tehnique at 1
st orderDe�nitions and quantities up to 1

storderSpatial metri and inverse spatial metriLet us begin alulating the inverse spatial metri of the general metri of equa-tion (4.2): the expansion proedure and the utting o� of the Higher than 2Derivative Terms (H2DTs) will be similar in all the following omputations upto �rst order.First of all, let us notie that the exponential in the spatial metri annot beexpanded in power series of Ψ, beause a priori Ψ(0) = 5
3ϕ an be large. Thegravitational potential ϕ(~x) an in general be splitted in two parts: ϕ = ϕL+ϕS ,where ϕL is the long-wavelengthmode and ϕS short wavelength modes suh that

ϕS/ϕ ∼ 10−5 from CMB onstraints. There are no known upper limits on ϕL:therefore, we will fator out e−10/3ϕ in almost all our following expressions. Bythe way, let us note that the spatial di�erentiation of ϕL is negletable, as byde�nition spatial gradients see spatial variations on small sales and on smallsales ϕL is almost onstant.The inverse spatial metri is given solving the following equation in terms of theunknown γaj :
γia γ

aj = δj
i . (4.11)This an be written as

e−2Ψ(δia + χia) [A(δaj + δγaj)] = δj
i where Ψ = Ψ(0) + Ψ(1) and χij = χ

(1)
ij .The fator A is straightforward given by A = e+2Ψ, with Ψ = Ψ(0) + Ψ(1). Forthe tensor oe�ient δγaj we write:

(δia + χia) (δaj + δγaj) = δj
i ;

δia δ
aj + χia δ

aj + δiaδγ
aj + χiaδγ

aj = δj
i , that is

χj
i(1) + δγj

i + χ
(1)
ia (δγaj

(0) + δγaj
(1)) = 0.The term χ

(1)
ia δγaj

(1) is ertainly a Higher than 2 Derivative Term (H2DT) soan be negleted: the result is
δγj

i = −χj
i that is δγij = −χij with χij ≡ δimδjnχmn.Then we an write the inverse spatial metri as follows

γij = e2Ψ(δij − χij) (4.12)(with Ψ = Ψ(0) + Ψ(1) and χij = χij
(1))Veloity-gradient tensor and expansion rateAn analogous omputation an be applied to express the expansion rate in termsof the perturbative funtions Ψ and χij . The de�nition of the veloity-gradienttensor is given in (2.24):

θi
j =

1

2
γiaγ′aj.



4.3 Gradient expansion tehnique at 1st order 65Now, γia = e2Ψ(δia − χia) and γaj = e−2Ψ(δaj + χaj).

γ′aj = (−2Ψ′)e−2Ψ(δaj + χaj) + e−2Ψχ′
aj .Then, 1

2
γiaγ′aj = −Ψ′δi

j +
1

2
χi

j
′
+H2DTs,where the H2DTs are terms like Ψ′ χiaχaj or 1

2χ
iaχ′

aj . The resulting veloity-gradient tensor and expansion rate up to two spatial gradients are written asfollows
θi

j = −Ψ′δi
j +

1

2
χi

j

′ (4.13)
θ = −3Ψ′ (4.14)(with Ψ = Ψ(0) + Ψ(1) and χij = χ

(1)
ij ).ShearThe shear an be omputed thanks to the de�nition given in Chapter 2:

σi
j = θi

j −
1

3
δi
j θ.Up to �rst order we obtain

σi
j =

1

2
χi

j

′ (4.15)(with χi
j = χi

j
(1)).Christo�el SymbolsOn 3-dimensional hypersurfaes Σ, the Chrsito�el Symbols are de�ned

Γi
jk =

1

2
γia(γaj,k + γak,j − γjk,a).Using equations (4.2) and (4.12) for the metri and its inverse, and negleting allterms like χij,k and Ψ,kχ

ia beause they ontain at least three spatial gradients,we get
Γi

jk = −Ψ,kδ
i
j −Ψ,jδ

i
k + Ψ,iδjk (4.16)(with Ψ = Ψ(0)).Let us note that Γi

jk ontains only one spatial derivative up to our �rst order.Rii TensorThe Rii tensor is de�ned as the ontration of the Riemann tensor, whih wewill not expliit, and reads
Rjm = −Γa

ja,m + Γa
jm,a + Γa

baΓb
jm − Γa

mbΓ
b
ja.Using (4.16), up to two derivative terms, we get

Rjm = Ψ,jm + (∇2Ψ)δjm + Ψ,j Ψ,m − (∇Ψ)2δjm (4.17)(with Ψ = Ψ(0)).Beause the zeroth order term of Ψ oinide with its initial value (4.8a), we anwrite R(1)
jm = Rjm(Ψ(0)) = Rjm(ΨIN ) = RIN

jm , as extensively done in AppendixC.



66 Gradient Expansion TehniqueSalar CurvatureTaking the trae of Rii tensor (4.17), the Salar Curvature is
R = e2Ψ[4(∇2Ψ)− 2(∇Ψ)2] (4.18)(with Ψ = Ψ(0) and R = R(1) = RIN ).Evolution equations for θ and σi

j at 1
st orderThe evolution equations for θ and σi

j have been dedued in Chapter 2 and readas in (2.27). Considering the bakground sale fator being a(τ) ∝ τ2, they anbe rewritten as follows:
θ′ +

4

τ
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (4.19a)

σi
j
′
+

4

τ
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j), (4.19b)where σ2 ≡ 1
2σab σ

ab.Rayhaudhuri equation UP2DTAs leraly shown in Appendix C, θ and σi
j ontain at least two spatial gradi-ents: therefore, terms like θ2 and σ2 ontain more than two derivatives terms.Dropping from equation (4.19a) the H2DTs we obtain

θ′ +
4

τ
θ = −1

4
RIN , (4.20)and hene, using the expression at �rst order for θ (4.14), the equation we haveto solve in the unknown Ψ(1) is

Ψ′′
(1) +

4

τ
Ψ′

(1) =
1

12
RIN . (4.21)Writing

sΨ(~x) =
1

12
RIN =

1

12
e2Ψ(0) [4(∇2Ψ(0))− 2(∇Ψ(0))

2], (4.22)the solution is
Ψ(1) =

1

10
τ2sΨ(~x)− 1

3τ3
c1 + c2, (4.23)where c1 and c2 are integration onstants. As funtion of ϕ the soure sΨ(~x)reads

sΨ(~x) =
5

9
e

10
3 ϕ(x)[(∇2ϕ(~x))− 5

6
(∇ϕ(~x))

2
]. (4.24)Then, onsidering only the growing mode, we get

Ψ(1) =
1

18
τ2e

10
3 ϕ[(∇2ϕ)− 5

6
(∇ϕ)2] (4.25)



4.4 Gradient expansion tehnique at 2nd order 67Evolution equation of shear UP2DTDropping from equation (4.19b) the H2DT θ σi
j , we obtain the following equa-tion:

σi
j

′
+

4

τ
σi

j = −(Ri
j −

1

3
Rδi

j)IN (4.26)Substituting in the equation above the expression for σi
j as funtion of χ(1)

ij (see(4.15)), we get
χi

j

′′

(1)
+

4

τ
χi

j

′

(1)
= −2(Ri

j −
1

3
Rδi

j)IN . (4.27)Isolating the soure term as
sχ(~x) = −2(Ri

j −
1

3
Rδi

j)IN , (4.28)the solution is
χi

j(1)
=

1

10
τ2sχ(~x)− 1

3τ3
c1 + c2. (4.29)Expliiting the soure as funtion of ϕ we have

sχ(~x) = −10

3
e

10
3 ϕ[Di

jϕ+
5

3
(ϕ,iϕ,j −

1

3
(∇ϕ)2δi

j)]. (4.30)Then, onsidering only the growing mode, the �rst order result for the traelessoe�ient χ(1)
ij reads

χi
j(1)

= −1

3
τ2e

10
3 ϕ[Di

jϕ+
5

3
(ϕ,iϕ,j −

1

3
(∇ϕ)2δi

j)] (4.31)4.4 Gradient expansion tehnique at 2
nd orderDe�nitions and quantities up to 2

nd orderBy seond order in this tehnique we mean keeping only quantities whih ontainat most four spatial derivatives.Spatial metri and inverse spatial metriThe spatial metri and its inverse read respetively up to our seond order
γij = e−2Ψ(δij + χij) (4.32)

γij = e2Ψ(δij − χij + χi
a

(1)
χaj

(1)) (4.33)(with Ψ = Ψ(0) + Ψ(1) + 1
2Ψ(2) and χij = χ

(1)
ij + 1

2χ
(2)
ij ).



68 Gradient Expansion TehniqueIn fat, γia γ
aj = δj

i ,

e−2Ψ(δia + χia) [A(δaj + δγaj)] = δj
i =⇒ A = e2Ψ.

(δia + χia) (δaj + δγaj) = δj
i .Now, χia = χ

(1)
ia +

1

2
χ

(2)
ia

δγaj = δγaj
(0) + δγaj

(1) +
1

2
δγaj

(2).From the �rst order we know that, δγaj
(0) = 0 and δγaj

(1) = −χaj
(1).Then, (χ

(1)
ia +

1

2
χ

(2)
ia ) δaj + (−χaj

(1) +
1

2
δγaj

(2)) δia + (χ
(1)
ia +

1

2
χ

(2)
ia )(−χaj

(1) +
1

2
δγaj

(2)) = 0;

χ
j(1)
i +

1

2
χ

j(2)
i − χj

i(1) +
1

2
δγj

i(2) − χ
(1)
ia χ

aj
(1) +H4DT = 0

=⇒ δγj
i(2) = −χj(2)

i + 2 χ
(1)
ia χaj

(1)�Veloity-gradient tensor and expansion ratePerforming the alulation similarly to what indiated earlier for (4.13) and(4.14), and using expressions above (4.32) and (4.33), the veloity-gradient ten-sor and the expansion rate read respetively
θi

j = −Ψ′δi
j +

1

2
χi

j

′ − 1

2
χia

(1) χ
(1)
aj

′ (4.34)
θ = −3Ψ′ − 1

2
χab

(1)χ
(1)
ab

′ (4.35)(with Ψ = Ψ(0) + Ψ(1) + 1
2Ψ(2) and χi

j = χi
j
(1)

+ 1
2χ

i
j
(2)).ShearThe shear is obtained taking the traeless part of the gradient-veloity tensor,thus using (4.34) and (4.35) one obtains

σi
j =

1

2
χi

j

′ − 1

2
χia

(1)χ
(1)
aj

′
+

1

6
χab

(1)χ
(1)
ab

′
δi
j (4.36)(with χi

j = χi
j
(1)

+ 1
2χ

i
j
(2)).Christo�el SymbolsLikewise at the �rst order, the Christo�el Symbols annot �ll up the number ofgradients ontent set by the order, and at the seond order they ontain onlythree spatial derivatives:

Γi
jk =(−Ψ,kδ

i
j −Ψ,jδ

i
k + Ψ,iδjk)+

+
1

2
(χi

j,k + χi
k,j − χ,i

jk)+

+ (Ψ,i
(0) χ

(1)
jk −Ψ(0)

,a χia
(1) δjk)

(4.37)(with Ψ = Ψ(0) + Ψ(1) and χi
j = χi

j
(1)),



4.4 Gradient expansion tehnique at 2nd order 69where we have highlighted that the Christo�el Symbols at seond order areomposed of three parts:
Γi

jk = Γi
jk(Ψ) + Γi

jk(χ) + Γi
jk(Ψ · χ)Rii TensorWith a straightforward but long alulation, the other geometrial quantitiesfollow. The Rii tensor with four spatial gradient is written as funtion of Ψand χij ontaining at most two spatial derivatives:

Rjm =Ψ,jm + (∇2Ψ)δjm + Ψ,jΨ,m − (∇Ψ)2δjm+

+
1

2
(χa

j,ma + χa
m,ja −∇2χjm)+

+ [(∇2Ψ(0))χjm −Ψ
(0)
,ab χ

ab δjm −Ψ(0)
,a χab

,b δjm+

+
1

2
Ψ,a

(0)(−χam,j − χaj,m + χmj,a)− (∇Ψ(0))
2χjm + Ψ(0)

,a Ψ
(0)
,b χab δjm](4.38)(with Ψ = Ψ(0) + Ψ(1) and χi

j = χi
j
(1)),where we note again that

Rjm = Rjm(Ψ) +Rjm(χ) +Rjm(Ψ · χ).Salar CurvatureThe Salar Curvature reads
R =e2Ψ[4(∇2Ψ)− 2(∇Ψ)2]+

+ e2Ψ(0) [χab
(1),ab]+

+ e2Ψ(0) [−4χab
(1) Ψ

(0)
,ab − 4χab

(1),b Ψ(0)
,a + 2χab

(1) Ψ(0)
,a Ψ

(0)
,b ]

(4.39)(with Ψ = Ψ(0) + Ψ(1)).Also the Salar Curvature an be divided into three parts aording with theargument, and it ontains several mixed terms of the kind Ψ χ:
R = R(Ψ) +R(χ) +R(Ψ · χ).In Appendix C the expliit expressions of every ontribution are presented.Rii Tensor and Salar urvature in terms of ϕAs we an see from expressions (4.38) and (4.39) of the Rii tensor and theSalar Curvature up to four spatial gradients, they are funtions of Ψ and χ atmost at �rst order, that is up to two gradient terms. Then, having solved the�rst step of our iteration sheme and obtained the results (4.25) and (4.31), Rijand R up to 4DTs are ompletely known. In the following we write down theresult of a straightforward alulation that eventually makes use of AppendixC.
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Ri

j = e
10
3 ϕ [

5

3
ϕ,i

,j +
5

3
(∇2ϕ) δi

j +
25

9
ϕ,iϕ,j −

25

9
(∇ϕ)2δi

j ]+

+τ2e
20
3 ϕ[ +

5

18
ϕ,ab ϕ

,ab δi
j −

5

18
ϕ,ai ϕ,aj +

5

9
(∇2ϕ) ϕ,i

,j+

+
25

27
ϕ,a ϕ,b ϕ

,ab δi
j −

25

54
( ϕ,a ϕ,aj ϕ

,i + ϕ,a ϕ
,ai ϕ,j)+

+
25

27
(∇2ϕ) ϕ,i ϕ,j −

25

27
(∇2ϕ) (∇ϕ)2δi

j+

+
125

162
(∇ϕ)2(∇ϕ)2 δi

j −
125

162
(∇ϕ)2 ϕ,i ϕ,j ] (4.40)

R = e
10
3 ϕ [

20

3
(∇2ϕ)− 50

9
(∇ϕ)2]+

+τ2e
20
3 ϕ[ +

5

9
ϕ,ab ϕ

,ab +
5

9
(∇2ϕ)2+

+
50

27
ϕ,a ϕ,b ϕ

,ab − 50

27
(∇2ϕ) (∇ϕ)2+

+
125

81
(∇ϕ)2(∇ϕ)2]

(4.41)
Evolution equations for θ and σi

j at 2
nd orderWe want to solve E.E. in order to get the omplete expressions up to four deriva-tives for the metri oe�ients. For this task we use the evolution equations for

θ and σi
j already met several times:

θ′ +
4

τ
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (4.42)

σi
j
′
+

4

τ
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j) (4.43)In what follows we use all the results at seond order given earlier and we havein mind an expansion for θ and σi
j as

θ = θ(0) + θ(1) +
1

2
θ(2)

σi
j = σi

j

(0)
+ σi

j

(1)
+

1

2
σi

j

(2)
,where θ(0) = σi

j
(0)

= 0. We aim to obtain the expressions for Ψ(2) and χi
j(2)in terms of ϕ and its derivatives. As we will see, the proedure is the same asthat at the previous order, but is muh more ompliated for the presene of agreater number of terms to express �rst of all in terms of Ψ(1) and χi

j(1)
, andthen in terms of ϕ. The result will be two expressions of 4DTs, in whih thefour gradients will distributed in one ϕ, or in two ϕ, or in three ϕ, and so on.Among those types of terms a preise hierarhy exists:



4.4 Gradient expansion tehnique at 2nd order 71
4grad(ϕ), 4grad(ϕ2), 4grad(ϕ3), ...
−→(subdominane)With the symbol 4grad(ϕ) we mean terms like ϕ,abcd, ∇2ϕ,i

,j , or ∇2(∇2ϕ); thesymbol 4grad(ϕ2) means terms like ϕ,ab ϕ
,ab, (∇2ϕ)2 or (∇2ϕ) ϕ,i

,j ; 4grad(ϕ3)indiates terms like ϕ,a ϕ,b ϕ
,ab or (∇2ϕ) (∇ϕ)2, and so on.We have already mentioned how the peuliar gravitational potential an bethought as a sum of a longwavelength mode ϕL and a olletion of short wave-length modes ϕS : the spatial derivative an a�et only the latter, whose mag-nitude with respet to ϕ is of the order of 10−5. The idea is to ompare termslike
∇2ϕ←→ (∇ϕ)2Realling earlier notations, ∇2ϕ ∝ (kτ)2ϕS while (∇ϕ)2 ∝ (kτ)2ϕSϕS . Gradi-ents being the same number, the number of ϕS determines the order of magni-tude: hene

(∇2ϕ ∝ (kτ)2ϕS) ≫ ((∇ϕ)2 ∝ (kτ)2ϕSϕS)Up to four spatial gradients, we will proede step by step produing at thebeginning only the leading terms 4grad(ϕ), and then turning to the ompleteexpressions in terms of 4grad(ϕ2), 4grad(ϕ3), and so on.Rayhaudhuri equation UP4DTDropping H4DTs like θ(1) × θ(2) or σ(1)
ab × σab

(2) from (4.42), we obtain :
θ′ +

4

τ
θ +

1

2
θ2(1) +

3

2
σ2

(1) = −1

4
R. (4.44)Subtrating the orresponding equation at �rst order (4.20) and taking theknown terms at the right hand side of the equation, it beomes

1

2
θ′(2) +

4

τ

1

2
θ(2) = −1

4
(R−RIN )− 1

2
θ2(1) −

3

2
σ2

(1). (4.45)Using the expression (4.35) for the seond order terms of the expansion rate, andisolating again the known solutions at the previous order for χ(1)
ij , the equationto solve reads

Ψ′′
(2) +

4

τ
Ψ′

(2) = τ2SΨ(~x), (4.46)where the soure funtion SΨ(τ, ~x) ≡ τ2SΨ(~x) is
SΨ(τ, ~x) =

1

6
(R−RIN )+

1

3
θ2(1)+σ

2
(1)−

1

3
(χia

(1)χ
(1)
ai

′
)′− 4

3τ
(χia

(1)χ
(1)
ai

′
). (4.47)Thus the solution expressed in terms of the soure is

Ψ(2) =
1

28
τ4SΨ(~x)− 1

3τ3
c1 + c2. (4.48)



72 Gradient Expansion TehniqueFollowing the leading term ∇2(∇2ϕ)Now we go on and look for ontributions in SΨ(x) to terms ∼ ∇2(∇2ϕ), re-membering that (up to terms funtions of a single ϕ)
• Ψ(0) = 5

3ϕ

• Ψ(1) = 1
18τ

2e
10
3 ϕ(∇2ϕ)

• χi
j(1)

= − 1
3τ

2e
10
3 ϕ[Di

jϕ(x)]

• (R−RIN ) = 1
2R(2)(Ψ) + 1

2R(2)(χ) + 1
2R(2)(Ψ · χ).Then we see with the help of Appendix C that

• 1
2R(2)(Ψ)⇒ e2Ψ(0) 4∇2Ψ(1)

• 1
2R(2)(χ)⇒ e2Ψ(0) χab

(1),ab

• 1
2R(2)(Ψ · χ) ⇒ terms ϕ · ϕ, like every other addendum like Ψ · Ψ, χ · χand Ψ · χ.Making the alulation, we obtain that there's no leading ontribution to Ψ(2)like ∇2(∇2ϕ).Complete expression for SΨ(~x)Then we write down the omplete expression for the soure of Ψ(2), stressingthat the e�etive leading terms are those with four gradients distributed in two

ϕ (that is 4grad(ϕ2)):
SΨ = e

20
3 ϕ 1

9
[− 10

3
ϕ,ab ϕ

,ab +
23

9
(∇2ϕ)2

− 100

9
ϕ,a ϕ,b ϕ

,ab +
35

27
(∇2ϕ) (∇ϕ)2+

− 1675

324
(∇ϕ)2(∇ϕ)2].

(4.49)We onlude that, onsidering only the growing mode, Ψ(2) reads
Ψ(2) = τ4 e

20
3 ϕ 1

252
[− 10

3
ϕ,ab ϕ

,ab +
23

9
(∇2ϕ)2

− 100

9
ϕ,a ϕ,b ϕ

,ab +
35

27
(∇2ϕ) (∇ϕ)2+

− 1675

324
(∇ϕ)2(∇ϕ)2].

(4.50)Evolution equation of shear UP4DTDropping H4DTs suh as θ(1) × σ(2)
ij and θ(2) × σ(2)

ij from (4.43), we write
σi

j
′
+

4

τ
σi

j + θ(1) σ
i(1)
j = −(Ri

j −
1

3
Rδi

j). (4.51)



4.4 Gradient expansion tehnique at 2nd order 73Subtrating the orrisponding equation at �rst order (4.26) and isolating theknown terms in the right hand side of the equation, we obtain the followingequation
1

2
σi

j

′

(2)
+

4

τ

1

2
σi

j(2)
= −[(Ri

j −Ri
jIN )− 1

3
(R−RIN )δi

j ]− θ(1) σ
i(1)
j . (4.52)Substituting the expression of σi

j(2)
using (4.36), the equation we have to solvein the unknown χ(2)

ij is
χi

j

′′

(2)
+

4

τ
χi

j

′

(2)
= τ2Sχ(~x), (4.53)where the soure funtion Sχ(τ, ~x) = τ2Sχ(~x) reads

Sχ(τ, ~x) =− 4[(Ri
j −Ri

jIN )− 1

3
(R−RIN )δi

j ]− 4θ(1) σ
i(1)
j +

+ 2(χia
(1)χ

(1)
aj

′
)′ − 2

3
(χab

(1)χ
(1)
ab

′
)′δi

j+

+
8

τ
(χia

(1)χ
(1)
aj

′
)− 8

3τ
(χab

(1)χ
(1)
ab

′
)δi

j .

(4.54)Then the solution is
χi

j(2)
=

1

28
τ4Sχ(~x)− 1

3τ3
c1 + c2. (4.55)Following the leading terms (∇2ϕ)

,i
,j and ∇2(∇2ϕ)δi

jLet us go on and look for ontributions in Sχ(~x) to terms like (∇2ϕ)
,i
,j and like

∇2(∇2ϕ)δi
j . For this task we remember that

• χi
j(2)

has to be traeless;
• (Ri

j −Ri
jIN ) = 1

2R
i(2)
j (Ψ) + 1

2R
i(2)
j (χ) + 1

2R
i(2)
j (Ψ · χ);

• (R−RIN ) does not ontribute (see equation (4.41)).Then we see with the help of Appendix C that
• 1

2R
i(2)
j (Ψ)⇒ e2Ψ(0) [Ψ,i

(1),j +∇2Ψ(1)δ
i
j ];

• 1
2R

i(2)
j (χ)⇒ e2Ψ(0) 1

2 [χia
(1),aj + χa,i

(1)j,a −∇2χi
(1)j ];

• 1
2R

i(2)
j (Ψ ·χ)⇒ terms ϕ ·ϕ (like every other addenda like Ψ ·Ψ, χ ·χ and

Ψ · χ).Making the alulation, we obtain that there's no dominant ontribution to
χi

j(2)
like (∇2ϕ)

,i
,j and ∇2(∇2ϕ)δi

j .



74 Gradient Expansion TehniqueComplete expression for Sχ(x)Consequene of the previous paragraph is that the e�etive leading terms of thesoure of χ(2) are made of four gradient on two ϕ, namely 4grad(ϕ2). Sχ(~x)reads
Sχ = +

1

9
e

20
3 ϕ [ + 38 (ϕ,aj ϕ

,ai − 1

3
ϕ,ab ϕ

,ab δi
j)+

− 128

3
((∇2ϕ) ϕ,i

,j −
1

3
(∇2ϕ)2 δi

j)+

+
890

27
(∇2ϕ) (∇ϕ)2 δi

j −
250

9
(∇ϕ)2 ϕ,i

,j −
640

9
(∇2ϕ) ϕ,i ϕ,j+

− 380

9
ϕ,a ϕ,b ϕ

,ab δi
j +

190

3
(ϕ,a ϕ,j ϕ

,ai + ϕ,aj ϕ
,a ϕ,i)+

+
1600

27
((∇ϕ)2 ϕ,i ϕ,j −

1

3
(∇ϕ)2 (∇ϕ)2 δi

j)] (4.56)We onlude that, onsidering only the growing mode, χ(2)
ij reads

χi
j(2) = τ4 e

20
3 ϕ 1

252
[ + 38 (ϕ,aj ϕ

,ai − 1

3
ϕ,ab ϕ

,ab δi
j)+

− 128

3
((∇2ϕ) ϕ,i

,j −
1

3
(∇2ϕ)2 δi

j)+

+
890

27
(∇2ϕ) (∇ϕ)2 δi

j −
250

9
(∇ϕ)2 ϕ,i

,j −
640

9
(∇2ϕ) ϕ,i ϕ,j+

− 380

9
ϕ,a ϕ,b ϕ

,ab δi
j +

190

3
(ϕ,a ϕ,j ϕ

,ai + ϕ,aj ϕ
,a ϕ,i)+

+
1600

27
((∇ϕ)2 ϕ,i ϕ,j −

1

3
(∇ϕ)2 (∇ϕ)2 δi

j)] (4.57)4.5 Chek of onstraintsExpressions (4.25) and (4.31) up to two spatial gradients, and expressions (4.50)and (4.57) up to four spatial gradients are the solutions we aimed at. A possibleproedure to hek the oherene of these results onsists in taking advantageof the ADM Constraint Equations of Chapter 2.Momentum ConstraintWe begin for sempliity testing the Momentum Constraint (2.26b):
θa

j|a = θ,j .If we hek the Momentum Constraint for a gradient-veloity tensor and anexpansion rate up to two derivatives terms, then we will verify an equality withthree spatial gradients in every addendum beause of the simple and ovariantdi�erentiation. To hek the Momentum Constraint for a gradient-veloity ten-sor and an expansion rate expressed up to four derivatives terms, then we haveto verify an equality with �ve spatial gradients in every addendum.



4.5 Chek of onstraints 75The proedure is straightforward and an be performed alulating the rightand left hand sides of the equality in terms of Ψ and χij , and then express-ing everything in terms of the gravitational potential. We do not write all thepassages: the Momentum Constraint is veri�ed to both �rst and seond order.Energy ConstraintVerifying the ADM Energy Constraint (2.26a) is less straightforward beausethe density ontrast δ is involved. Indeed, until now we have always tried toavoid the neessity to alulate the perturbation of the matter density expressingthe equations of interest in terms of the geometrial quantities with the help ofthe energy onstraint equation itself (see Setion 2.4).Let us write the Energy Constraint in the following form, referring to equation(3.19a):
2

3
θ2 − 2σ2 +

8

τ
θ +R = +

24

τ2
δ.With the exeption of δ, all the quantities in the above equation an be expressedin terms of the gravitational potential up to two or four gradients without prob-lems. Let us then stop a little to obtain a useful expression for the densityontrast.The temporal evolution of the density ontrast is governed by the followingequation, whih is the analogous of the ontinuity equation (2.20) presented inChapter 2:

δ′ = −θ δ. (4.58)Given that θ = 1
2γ

iaγ′aj = ∂
∂τ γ

1/2 [5℄, where γ ≡ det γij , we an write thesolution of (4.58) in the form
1 + δ = (1 + δIN )

(

γ

γIN

)−1/2

. (4.59)The determinant of our metri an be alulated, and at least up to 2DT reads
γ = e−6Ψ. (4.60)Therefore, γIN = e−6Ψ(0) = e−6ΨIN and we an express the density ontrast upto two spatial gradient.In fat, 1 + δ = (1 + δIN )

(

γ

γIN

)−1/2

=

= (1 + δIN )
(

e−6(Ψ−ΨIN )
)−1/2

= (1 + δIN ) e3(Ψ−ΨIN ).Assuming δIN = 0, the �rst order expression for the density ontrast is
δ(1) =

τ2

6
e

10
3 ϕ[∇2ϕ− 5

6
(∇ϕ)2]. (4.61)Similarly one an proeed to obtain the seond order term for the density on-trast, getting all the helpful tools for verifying the onstraint. Thus, the alu-lation is straightforward and the outome turned out to be suessful.





Chapter 5Comparing PerturbativeTehniques. Other Results.Having obtained the expressions for the metri oe�ients Ψ and χij in the pre-vious Chapter, we want now to omment them brie�y and show some seondaryresults. First of all, we see how the Gradient Expansion results are related tothose of the Standard Perturbation Theory, giving the omplete expression ofthe metri up to four spatial gradients; then we introdue the Weyl tensor andsee the form that its magneti part assumes within this expansion method.
5.1 Comparison between standard theory and gra-dient expansionIn order to perform a omparison among the results of the two perturbativetehniques presented in this thesis, we have to write down the omplete expres-sion that the spatial metri assumes up to the seond order in the respetiveapproahes. In what follows we will label the quantities of the Standard Per-turbation Theory with the supersript "ST", trying to avoid any onfusion.In the standard theory, the perturbed spatial metri in terms of Ψ and χij upto seond order reads as in (3.17), that is

γST
ij = δij − 2ΨST

(1)δij −ΨST
(2) δij + χ

(1)ST
ij +

1

2
χ

(2)ST
ij . (5.1)In order to write the spatial metri in the gradient method some more attentionmust be paid. As done in Chapter 4, we fator out the term e−2Ψ(0) , and weexpand the exponential in the funtion Ψ̃, whih here formally omprise onlythe �rst and the seond order terms: Ψ̃ = Ψ(1) +1/2 Ψ(2). Developing equation



78 Comparing Perturbative Tehniques. Other Results.(4.2) up to the right number of spatial gradients (four), we write
γij = e−2Ψ(δij + χij) =

= e−2Ψ(0)(1− 2Ψ̃ + 2Ψ̃2 +H4DT ) (δij + χij) =

= e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij + e−2Ψ(0)(1− 2Ψ(1))(χ

(1)
ij +

1

2
χ

(2)
ij ) =

= e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij+

+ e−2Ψ(0)(1 − 2Ψ(1))χ
(1)
ij + e−2Ψ(0)

1

2
χ

(2)
ij +H4DT.Then the spatial metri in the gradient approah up to four spatial derivativesreads

γij = e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij+

+ e−2Ψ(0)(χ
(1)
ij +

1

2
χ

(2)
ij )− e−2Ψ(0)2 Ψ(1) χ

(1)
ij .

(5.2)The following step onsists in using expressions got in Chapters 3 and 4 in orderto write the spatial metris γST
ij and γij in terms of the peuliar gravitationalpotential ϕ. We proeed for this task and the following alulations treatingseparately the trae and the traeless part of the metri.Trae part of the metriIn the Standard Theory the trae part of the spatial metri as funtion of thegravitational potential an be obtained substituting the equations (3.22a) and(3.24a) of ΨST

(1) and ΨST
(2) in
γST

ij (trace)
= δij − 2ΨST

(1) δij −ΨST
(2) δij .The resulting expression is

γST
ij trace

= δij −
10

3
ϕ δij +

50

9
ϕ2δij+

+
τ2

9

(

−∇2ϕ+
5

6
(∇ϕ)2

)

δij+

+
τ4

252

(

10

3
ϕ,abϕ,ab − (∇2ϕ)

2
)

δij ,

(5.3)where we have separated the di�erent ontributions aording to the number ofgradients (zero the �rst line, two the seond one, four the third) and aord-ing to the powers of the gravitational potential ϕ (2grad(ϕ) or 2grad(ϕ2), and
4grad(ϕ2)).The trae part of the Gradient Tehnique spatial metri is written using equa-tions (4.25) and (4.50) in

γ
(trace)
ij = e−2Ψ(0)(1 − 2Ψ(1) −Ψ(2) + 2Ψ2

(1))δij .Now, let us note that the four spatial gradients ontributions to the standardmetri (5.3) are of one type only, namely 4grad(ϕ2): with the aim to rewrite
γ

(trace)
ij in terms of ϕ, we an limit ourselves to the leading terms of type



5.1 Comparison between standard theory and gradient expansion79
4grad(ϕ2) in the expression (4.50): hene the omparison up to four spatialderivatives will be able to ontrol the oherene of the two approahes only upto those leading terms in gradient expansion.Negleting ontributions of the kind 4grad(ϕ3) or 4grad(ϕ4), the trae of themetri is

γ
(trace)
ij = e−

10
3 ϕδij+

+
τ2

9

(

−(∇2ϕ) +
5

6
(∇ϕ)

2

)

δij+

+ e+
10
3 ϕτ4 1

252

(

10

3
ϕ,ab ϕ

,ab − (∇2ϕ)2
)

δij .

(5.4)To see the formal equivalene of the two expressions (5.3) and (5.4) it is su�ientnow to expand the exponential: this proedure adds powers of ϕ to the alreadyexisting terms, but not spatial gradients.Traeless part of the metriIn the Standard Theory we obtain the traeless part of the spatial metri sub-stituting the expression for χ(1)ST
ij and χ(2)ST

ij with the help of equations (3.22b)and (3.24b) in
γST

ij (traceless)
= χ

(1)ST
ij +

1

2
χ

(2)ST
ij .The result is

γST
ij (traceless)

= +
τ2

3

(

−ϕ,ij +
1

3
∇2ϕ δij

)

+

+
τ2

9

(

−5ϕ,iϕ,j +
5

3
ϕ,aϕ,a δij

)

+

+
τ4

252

(

19 ϕaiϕ,aj −
19

3
ϕ,abϕ,ab δij

)

+
τ4

252

(

−12 ϕ,ij ∇2ϕ+ 4 (∇2ϕ)
2
δij

)

,

(5.5)
where the expression is manifestly traeless, and we an note the di�erent on-tributions of type 2grad(ϕ), 2grad(ϕ2) and 4grad(ϕ2).For writing the analogous formula in the Gradient Tehnique, we proeed asdone earlier fatoring out e−2Ψ(0) and formally expanding it only at the end ofthe alulation. We use (4.31) and (4.57) for χ(1)

ij and χ
(2)
ij respetively, and(4.25) for Ψ(1) in

γ
(traceless)
ij = e−2Ψ(0)(χ

(1)
ij +

1

2
χ

(2)
ij )− e−2Ψ(0)2 Ψ(1) χ

(1)
ij .



80 Comparing Perturbative Tehniques. Other Results.Negleting 4grad(ϕ3) and 4grad(ϕ4) terms, we get
γ

(traceless)
ij =

τ2

3

(

−ϕ,ij +
1

3
∇2ϕ δij

)

+

+
τ2

9

(

−5ϕ,iϕ,j +
5

3
ϕ,aϕ,a δij

)

+

+ e+
10
3 ϕτ4 1

252

(

+19 ϕ,aj ϕ
,ai − 19

3
ϕ,ab ϕ

,ab δi
j

)

+ e+
10
3 ϕτ4 1

252

(

−12(∇2ϕ) ϕ,i
,j + 4 (∇2ϕ)2 δi

j

)

.

(5.6)
Again the expansion of the exponential e+ 10

3 ϕ up to its onstant term shows theequivalene of the results between the two perturbative tehniques 1.Some observations an be proposed: we have seen that the omparison an bearried into e�et only with an appropriate proedure onsisting prinipally inutting o� many terms of the Gradient Expansion spatial metri. This fatre�ets the property of this tehnique and the form of the general metri: evenif Ψ is obtained up to a �nite number of spatial gradients, γij will neessaryontain gradient terms of any order; in other terms, solving for the oe�ients
Ψ and χij up to 2r spatial gradients one obtains terms of any order in theonventional perturbative expansion ontaining up to 2r gradients.Furthermore, having in mind the omplete results for Ψ and χij up to fourspatial gradients and the distintion in di�erent terms like 4grad(ϕm) , we anhek that terms of order r in the expansion ontain the peuliar gravitationalpotential ϕ to power m, with 2r > m > r. We have already seen that a preisehierarhy exists among those terms aording with the number of ϕ, that is ϕS :the dominant ontribution omes from terms of the type (∂2ϕ)r , followed bythose proportional to (∂2ϕ)r−1(∂ϕ)2. We an dedue that the atual limit ofvalidity of our expansion at order r is set by (τk)2rϕr . 1: being ϕS ∼ 10−5,this allows us to onsider also perturbations with wavelength omparable orsmaller than the Hubble radius.5.2 Weyl tensor and its magneti partEinstein Equations are seond-order partial di�erential equations for gµν whihrelate the spaetime urvature expressed in terms of the Rii tensor and theSalar Curvature to the energy loal soures desribed in the stress-energy ten-sor. The Salar Curvature is the ontration of the Rii tensor, whih in turn isthe trae over the seond and fourth (or equivalently, the �rst and third) indiesof the Riemann tensor Rα

βµν :
Rβν = Rρ

βρν and R = Rρ
ρThe trae free part of the Riemann tensor is alled the Weyl tensor, Cαβµν ,: ithas many haraterizations and we introdue it for its osmologial impliations.1A priori the exponential e+ 10

3
ϕ ould not be expanded beause ϕ an be as large as itwants, for the presene of ontributes of the kind ϕL. Two are the possibilities to arrangethis situation: one ould assume ϕL ≡ 0, or the long-wavelength part of the fator e+ 5

3
ϕ,assoiated with eah spatial gradient, an be re-absorbed by a rede�nition of the spatialoordinates [37℄.



5.2 Weyl tensor and its magneti part 81The Riemann tensor satis�es a series of symmetry properties:
Rαβµν = Rµναβ (5.7a)

Rαβµν = −Rβαµν = −Rαβνµ (5.7b)
Rαβµν +Rανβµ +Rαµνβ = 0, (5.7)to whih the Bianhi Identites (5.9) an be added. The set of symmetries (5.7)are suh that there are 1

12 (1 + n)2((1 + n)2 − 1) algebraially independent om-ponents of Rαβµν [2℄, where 1 + n as usual denotes the total dimension of ourspaetime. 1
2 (1 + n)(n + 2) is the number of indipendent omponents of theRiemann tensor that an be represented by the omponents of the Rii tensor.If n = 0, Rαβµν = 0; if n = 1, there is one independent omponent of Rαβµν ,whih is essentially the funtion R. If n = 2, the Rii tensor (whih is givenalgebraially by the loal stress-energy tensor through E.E.) ompletely deter-mines the urvature tensor. If n ≥ 3, the remaining omponents of the Riemanntensor are represented by the Weyl tensor or, in other words, the Weyl tensor isthat part of the Riemann tensor that annot be obtained from the Rii tensor:it is de�ned by [1℄

Cαβµν ≡ Rαβµν +
2

n− 1
(gαµRνβ − gανRµβ − gαµRνα + gβνRµα)

− 2

n(n− 1)
R (gαµgνβ − gανgµβ) .

(5.8)As the last two terms on the right hand side have the Riemann symmetries(5.7), it follows that Cαβµν has also these symmetries as well as it is trae freeon all its indies.An alternative haraterization of the Weyl tensor is given by the fat that itbehaves in a very simple manner under onformal transformations of the metri(ĝµν = Ω2 gµν), and for this reason is sometimes alled the onformal tensor,being Ĉαβµν = Cαβµν .As the Rii tensor is given by the E.E. and hene, physially, it gives theontribution to the spaetime urvature from loal soures, then the Weyl tensoris that part of the urvature whih is not determined loally by the energydistribution. For example, Newtonian tidal fores are represented in the Weyltensor. However, the Weyl tensor annot be entirely arbitrary: the Riemanntensor must satisfy the already mentioned Bianhi Identities :
Rαβµν;ρ +Rαβρµ;ν +Rαβνρ;µ = 0. (5.9)Using the de�nition (5.8), these an be rewritten as equations of motion of theWeyl tensor as follows ([7℄ or[2℄):

C ;ν
αβµν = Jαβµ, (5.10)where (with from now on n = 3)

Jαβµ ≡ Rµα;β −Rµβ;α +
1

6
gµβR;α −

1

6
gµαR;β . (5.11)These equations are rather similar to Maxwell's equations of Eletrodynamis

F ;ν
µν = Jµ, where Fµν is the eletromagneti �eld tensor and Jµ is the soureurrent. Thus, in some sense, the Bianhi Identities of the Weyl tensor an beregarded as its �eld equations giving that part of the urvature at a point thatdepends on the matter distribution at other points.



82 Comparing Perturbative Tehniques. Other Results.The magneti part of the Weyl tensor in the Gradient TehniqueOne an proeed with the analogy of the Eletrodynamis splitting the Weyltensor into two seond-rank tensors known as the eletri and magneti partsof the Weyl tensor. Likewise in Eletrodynamis Fµν is omposed of two on-tributions, the eletri and magneti �elds Eµ and Hµ whose values and formsdepend on the oordinate system, the deomposition of the Weyl tensor dependson the gauge hoie, or more generally on the assumed spaetime splitting.Adopting the usual synhronous and omoving gauge hoie with the geodesilines oiniding with the worldlines of the partiles �uid, and with the normalvetor �eld nµ to the hypersurfaes Σ oiniding with the geodesis tangents ξµand the matter 4-veloity �eld uµ, the eletri and magneti parts of the Weyltensor read, respetively,[7℄
Eµν ≡ uαuβCµανβ (5.12a)

Hµν ≡
1

2
ηαβρµ uρuδ Cαβ

νδ −
1

2
ηαβρν u

ρuδ Cαβ
µδ, (5.12b)where ηαβµν ≡ (−g)−1/2ǫαβµν , with g being the determinant of the metri

gµν and ǫαβµν being the four dimensional ompletely antisymmetri Levi-Civitasymbol. It an be shown that Eµν and Hµν are both symmetri, traeless, and�ow-orthogonal. Therefore they have eah 5 independent omponents, half asmany as the Weyl tensor, and thanks to our gauge hoie they live in the purelyspatial 3-dimensional hypersurfaes at onstant time Σ.
Eµν is also alled the tidal fore �eld, sine it ontains the part of the gravita-tional �eld whih desribes tidal interations: tidal fores at on the �uid �owby induing shear distortions, and indeed the evolution equation of the shearontains as its soure the eletri part of the Weyl tensor [20℄. The tensor Hµνis related to that part of the gravitational �eld whih desribes gravitationalwaves, whih have no Newtonian ounterpart [22℄.The magneti part of the Weyl tensor plays an interesting role in the nonlin-ear dynamis of osmologial perturbations of an irrotational ollisionless �uid.In fat, the dynamis of self-gravitating perfet �uid is greatly simpli�ed un-der three assumptions: the �uid is ollisionless (p = 0), it has zero vortiity,and Hµν = 0. If the former two onditions have been used throughout andare wide enough to allow for many osmologial ases, the third assumption ismore problemati. If the magneti omponent is swithed o�, all the equationsfor the dynamis take a stritly loal form: the matter and spaetime urva-ture variables evolve independently along di�erent �uid worldlines [20℄. If suhhypotheses were satis�ed, no information ould be exhanged among di�erent�uid elements: signal exhange an our via gravitational radiation and alsovia sound waves, but none of these wave modes is allowed when p = Hµν = 0.Furthermore, the ondition Hµν = 0 annot be taken as an exat onstraint forthe general osmologial ase, not being suitable to study osmologial strutureformation.Let us then investigate the form that the magneti part of the Weyl tensor as-sumes in the ontext of the gradient expansion. For this task, we rewrite theequation (5.12b) as follows, in line with the formalism adopted until here:

Hi
j =

1

2
γjm [ηmab

γ θi
a|b + ηiab

γ θm
a|b], (5.13)



5.2 Weyl tensor and its magneti part 83where ηabc
γ ≡ γ−1/2ǫabc, the bar denotes ovariant derivatives in the 3-spaewith metri γij , and θij is the onformal resaled veloity-gradient tensor.If the geometrial and physial quantities in the de�nition are written up to

2r spatial derivatives terms, then the magneti tensor ontains 2r + 1 spatialgradients, for the ovariant di�erentiation. We have in mind the usual expansion
Hi

j = Hi(0)
j +Hi(1)

j +
1

2
Hi(2)

j .From equation (5.13), we an already stand that, in our onventions, Hi(0)
j =

Hi(1)
j = 0. In fat, the lowest spatial derivative ontribution to Hij is of theform

Hi
j ∝

1

2
γ

(0)
jm e3Ψ ǫmab θ

i(1)
a |b,where we have used that the determinant of the spatial metri is γ = e−6Ψ. But

θ
i(1)
a |b is at least a 3DT, thus up to two spatial gradients there is no ontributionto the magneti part of the Weyl tensor.The seond order term an then be alulated as usual using the results obtainedin Chapter 4. Up to seond order, the term θ

i(1)
a |b an ontain at most 3 spatialgradients, and reads

θ
i(1)
a|b = τe

10
3 ϕ[− 1

3
ϕ,i

,ab+

+
5

9
ϕ,nϕ,i

,nδab −
5

9
ϕ,iϕ,ab+

− 5

9
ϕ,aϕ

,i
,b +

5

9
ϕ,nϕ,naδ

i
b].

(5.14)Now, the �rst three terms of equation (5.14) are symmetri for exhange ofindies a and b: therefore, beause of the presene of the Levi-Civita symbol inthe de�nition (5.13) , they do not ontribute to the magneti tensor Hi
j . Thelatter, up to our seond order, is di�erent from being null and reads

Hi
j =

τ

2
e

15
3 ϕδjm[ǫmab(−5

9
ϕ,aϕ

,i
,b+

5

9
ϕ,nϕ,naδ

i
b)+ǫ

iab(−5

9
ϕ,aϕ

,m
,b +

5

9
ϕ,nϕ,naδ

m
b )].(5.15)The magneti part of the Weyl tensor does not ontain terms with a single ϕ,that is Hi

j(3grad(ϕ)) = 0.





ConlusionsApproximation methods have been and are very important in General Relativityand its appliations to Cosmology and Relativisti Astrophysis. In this thesiswe have presented the so-alled Gradient Expansion Tehnique, omputing theexpressions up to four spatial gradients of the perturbative funtions Ψ and χijin an irrotational matter-dominated universe.Our gradient expansion approah is slightly di�erent from the ones already ex-isting in literature: we have perturbed Einstein Equations in a given preisegauge rather than beginning with a relativisti ation priniple; we have writ-ten the spatial metri γij with the salar perturbative funtion Ψ appearingin the argument of an exponential and allowing the FRW bakground solutionto have a spatial dependene; �nally we have solved Einstein Equations in theform of evolution equations of the ADM formalism, and we have set the initialonditions as provided by standard In�ation.The Gradient Expansion Tehnique has shown itself to be muh more handythan the standard one, for the simpliity and relative brevity of the omputa-tions. Furthermore, this approximation methods has shown itself to be non-perturbative in the sense that by solving for the metri oe�ients Ψ and χijup to 2r spatial gradients one obtains terms of any order in the standard per-turbative expansion ontaining up to 2r spatial gradients.Our partiular approah allowed us to ompare quite diretly the results ob-tained in the Gradient Expansion with those of the Standard Theory: the om-parison has shown the oherene of the two sets of results, and hene the on-sisteny of the method.Thanks to the wide wavelength-range of validity of the Gradient Expansion,this sheme is suitable to study the large-sale struture formation and issuesrelated with it, from the study of perturbations generation during In�ation, tothe problem of the bakreation, and the derivation of the Zel'dovih approxi-mation for General Relativity desribing the formation of panake struture inmatter-dominated universes [27℄, [28℄, [29℄, [37℄.A possible further development of the work presented in this thesis ould be theexstension of the omputations in our approah in the ase of a universe dom-inated by the osmologial onstant Λ, in line with the standard osmologialmodel of the present universe, or in the ase of a salar �eld dominated universe.





Appendix ADeomposition of spatialvetors and tensorsIn order to study perturbations on the invariant n−spae Σ, we �rst lassifythem into three groups on the basis of their behaviour under the transformationof spae-oordinate xk: the salar type, vetor type and tensor type.A vetor quantity vi on Σ an be deomposed as
vi = ∂iv + vi

⊥ suh that ∂i v
i
⊥ = 0. (A.1)

v represents the salar (or longitudinal or irrotational) omponent of the spae-vetor vi, while vi
⊥ represents the transverse (divergene-free or solenoidal)proper vetor part of it.Similarly, a symmetri traeless seond-rank tensor Tij on Σ an be deom-posed into a sum of parts, alled longitudinal, solenoidal, and transverse:
Tij = Dij T + (∂iT

⊥
j + ∂jT

⊥
i ) + T⊤

ij (A.2)with (in the ase n = 3)
Dij ≡ ∂i∂j −

1

3
δij∇2 (A.3a)

∂iT⊥
i = 0 (A.3b)

∂iT⊤
ij = 0. (A.3)The longitudinal tensor T is also alled the salar part of Tij , the solenoidalpart T⊥

j is also alled the vetor part, and the transverse-traeless part T⊤
ij isalso alled the tensor part of the spatial-tensor on Σ.For a more general deomposition of non-traeless tensors see [6℄. Let us notethat the deomposition in salar, vetor and tensor parts of a spatial tensor isnot unique: T and T⊥

i are de�ned only up to a onstant, and additional freedommay appear [7℄.





Appendix BSynhronous gauge:geometrial quantities
FRAME:

dS2 = −dt2 + hij(t, ~x) dx
idxj

Θi
j =

1

2
hia ˙haj

(t− coordinates)Christo�el Symbols
Γ0

00 = Γ0
0j = Γj

00 = 0

Γ0
ij = Θij ; Γi

0j = Θi
j ; Γi

jk = (3)Γi
jkRiemann Tensor

R0
000 = Rj

000 = R0
00j = 0

R0
i0j = Θ̇ij −Θaj Θa

i; Ri
00j = Θ̇i

j + Θi
a Θa

j ; R0
0ij = Θai Θa

j −Θaj Θa
i

R0
ijk = −Θij,k + Θik,j + Θaj

(3)Γa
ik −Θak

(3)Γa
ij

Ri
0jk = −Θi

j,k + Θi
k,j + Θa

k
(3)Γi

aj −Θa
j

(3)Γi
ak

Ri
j0k = −Θi

j,k + (3)Γi
jk,0 + Θi

a
(3)Γa

jk −Θa
j

(3)Γi
ak

Ri
jkl = (3)Ri

jkl + Θi
k Θjl −Θi

l Θjk



90 Synhronous gauge: geometrial quantitiesRii Tensor
R00 = −Θ̇−Θa

b Θb
a; R0

0 = −Θ̇ + Θa
b Θb

a

R0i = Θa
i|a −Θ|i

Rij = (3)Rij + Θ̇ij − 2Θaj Θa
i + Θ Θij

Ri
j = (3)Ri

j + Θ̇i
j + Θ Θi

jSalar Curvature
R = (3)R+ 2Θ̇ + Θ2 + Θa

b Θb
a



Appendix CDi�erent orders ontributionsto the alulated quantitiesIn the text, the geometrial and physial quantities of interests have been ex-pressed in terms of the pertubative funtions Ψ and χ and their derivatives.We want in this Appendix to work on them in order to distinguish the di�erentontributions to di�erent orders in gradient ontent.The results of this proedure will be really useful for performing the alulations.Veloity-gradient tensor and expansion rateHaving in mind an expansion for θi
j and θ like

θ = θ(0) + θ(1) +
1

2
θ(2) and θi

j = θi
j
(0)

+ θi
j
(1)

+
1

2
θi

j
(2)
,we an expand equations (4.13) and (4.14) as follow

θi
j = −(Ψ(0) + Ψ(1))

′δi
j +

1

2
χ

i(1)
j

′
= θi

j

(0)
+ θi

j

(1)
,

θ = −(Ψ(0) + Ψ(1))
′ = −3Ψ′

(1) = θ(0) + θ(1),where we note that Ψ(0) does not dipend on time and hene θi
j
(0) and θ(0) arenull.Up to 2nd order, θi

j and θ are given by (4.34) and (4.35). Analogously, weproede and separate the di�erent order ontributions:
θi

j = −(Ψ(0) + Ψ(1) +
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.



92 Di�erent orders ontributions to the alulated quantities
θ = −3Ψ′ − 1

2
χab

(1)χ
(1)
ab

′
= −3(Ψ(1) +

1

2
Ψ(2))

′ − 1

2
χab

(1)χ
(1)
ab

′
=

= −3Ψ′
(1) − 3

1

2
Ψ′

(2) −
1

2
χab

(1)χ
(1)
ab

′
= θ(1) +

1

2
θ(2).So we an onlude that the veloity-gradient tensor an be written as follows

θi
j = θi

j

(1)
+

1

2
θi

j

(2) with (C.1a)
θi

j(1)
= −Ψ′

(1)δ
i
j +

1

2
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′ (C.1b)
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2
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j
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2
[−Ψ′

(2)δ
i
j +

1

2
χi

j(2)

′ − χia
(1) χ

(1)
aj

′
]. (C.1)And the expansion rate reads

θ = θ(1) +
1

2
θ(2) where (C.2a)

θ(1) = −3Ψ′
(1) (C.2b)

1

2
θ(2) =

1

2
[−3Ψ′

(2) − χab
(1)χ

(1)
ab

′
]. (C.2)ShearFrim 4.15) we see that σi

j = σi
j(1). Up to 2nd order, from (4.36) we write

σi
j =

1

2
(χi

j(1)
+

1

2
χi

j(2)
)′ − 1

2
χia

(1)χ
(1)
aj

′
+

1

6
χab

(1)χ
(1)
ab

′
δi
j =

=
1

2
χi

j
′

(1)
+

1

2
[
1

2
χi

j
′

(2)
− χia

(1)χ
(1)
aj

′
+

1

3
χab

(1)χ
(1)
ab

′
δi
j].Therefore for the shear we onlude

σi
j = σi

j(1) +
1

2
σi

j(2) with (C.3a)
σi

j(1) =
1

2
χi

j

′

(1)
(C.3b)

1

2
σi

j(2) =
1

2
[
1

2
χi

j
′

(2)
− χia

(1)χ
(1)
aj

′
+

1

3
χab

(1)χ
(1)
ab

′
δi
j ]. (C.3)Rii TensorAt 1st order, the Rii tensor is given by (4.17) with Ψ = Ψ(0). Beause Ψ(0) =

Ψ(τ = 0), then we ould even all Ψ(0) = ΨIN and write R(1)
jm = RIN

jm .Up to 2nd order we an split Rjm in two ways, aording with the order oraording with the argument:
Rjm = R(0)

jm +R(1)
jm +

1

2
R(2)

jm

Rjm = Rjm(Ψ) +Rjm(χ) +Rjm(Ψ · χ),where the zeroth order term R(0)
jm is null. But (4.38) suggests the gradientontent of single addenda:
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• Rjm(Ψ) ontains 2DTs and 4DTs
• Rjm(χ) ontains 4DTs
• Rjm(Ψ · χ) ontains 4DTs.Therefore, a making sense expansion for the Rii Tensor is

Rjm = R(1)
jm(Ψ) +

1

2
R(2)

jm(Ψ) +
1

2
R(2)

jm(χ) +
1

2
R(2)

jm(Ψ · χ), (C.4)where
R(1)

jm(Ψ) = Ψ
(0)
,jm + (∇2Ψ(0))δjm + Ψ

(0)
,j Ψ(0)

,m − (∇Ψ(0))
2δjm (C.5a)

1

2
R(2)

jm(Ψ) =Ψ
(1)
,jm + (∇2Ψ(1))δjm + Ψ

(0)
,j Ψ(1)

,m + Ψ
(1)
,j Ψ(0)

,m+

−2(∂aΨ(0))(∂
aΨ(1))δjm

(C.5b)
1

2
R(2)

jm(χ) = +
1

2
(χa

j,ma + χa
m,ja −∇2χjm) withχij = χ

(1)
ij (C.5)

1

2
R(2)

jm(Ψχ) =(∇2Ψ(0))χjm −Ψ
(0)
,ab χ

ab δjm −Ψ(0)
,a χab

,b δjm

+
1

2
Ψ,a

(0)(−χam,j − χaj,m + χmj,a)+

−(∇Ψ(0))
2χjm + Ψ(0)

,a Ψ
(0)
,b χab δjm.

(C.5d)Salar CurvatureWe an apply the same proedure to the Salar Curvature R. At �rst order(two derivatives), it reads as in (4.18) with Ψ = Ψ(0) = Ψ(τ = 0): then we anwrite R(1) = RIN . At seond order two di�erent splittings an be made:
R = R(0) +R(1) +

1

2
R(2)

R = R(Ψ) +R(χ) +R(Ψ · χ),where the zeroth order term R(0) is null. Similarly to the Rii tensor ase, theomplete expression for the salar urvature (4.39) suggests that
• R(Ψ) ontains 2DTs and 4DTs
• R(χ) ontains 4DTs
• R(Ψ · χ) ontains 4DTs.Thus we an write

R = R(1)(Ψ) +
1

2
R(2)(Ψ) +

1

2
R(2)(χ) +

1

2
R(2)(Ψ · χ), (C.6)



94 Di�erent orders ontributions to the alulated quantitieswhere
R(1)(Ψ) = e2Ψ(0) [4∇2Ψ(0) − 2(∇Ψ(0))

2] (C.7a)
1

2
R(2)(Ψ) =e2Ψ(0) [4∇2Ψ(1) − 4(∂aΨ(0) ∂aΨ(1))]+

e2Ψ(0)(2Ψ(1))[4(∇2Ψ(0))− 2(∇Ψ(0))
2]

(C.7b)
1

2
R(2)(χ) = + e2Ψ(0) [χab

(1),ab] (C.7)
1

2
R(2)(Ψχ) =e2Ψ(0) [−4χab

(1) Ψ
(0)
,ab − 4χab

(1),b Ψ(0)
,a + 2χab

(1) Ψ(0)
,a Ψ

(0)
,b ]. (C.7d)
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