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Introdu
tionThe idea underlying the theory of spa
etime perturbations is the same that wehave in any perturbative formalism: we try to �nd approximate solutions ofsome �eld equations (Einstein Equations), 
onsidering them as "small" devi-ations from a known exa
t solution (the ba
kground: usually the Friedmann-Robertson-Walker (FRW) metri
).The 
ompli
ations in General Relativity, as in any other spa
etime theory, arisefrom the fa
t that we have to perturbe not only the �elds in a given geometry-�elds des
ribing the matter 
ontent in literal sense or s
alar �elds as the in�a-ton for the In�ation or the quintessen
e for the Dark Energy-, but the geometryitself, that is the metri
.The ne
essity for the development of su
h a formalism resides in the di�
ultyof Einstein Equations resolution, and in the fa
t that relatively few physi
allyinteresting exa
t solutions of the Einstein Equations are known. From the pointof view of Cosmology, the ultimate aim of perturbation theory is to provide anappropriate tool for understanding the large-s
ale 
lustering of matter in galax-ies and 
lusters of galaxies, its properties and its origin.In this thesis we limit ourselves to the study of universes dominated by a perfe
tpressureless �uid, 
alled dust or simply matter, that we assume to be irrotationalas well. In the syn
hronous and 
omoving gauge, we present the 
al
ulation at�rst and se
ond order of the perturbative fun
tions of the so-
alled gradientexpansion te
hnique, and 
ompare su
h a te
hnique with the standard pertur-bation approa
h: our approa
h is analyti
al and the analysis fully relativisti
.The standard theory is based on the perturbations of a homogenous and isotropi
FRW ba
kground metri
 
onsidering the (small) �u
tuations of that metri
, de-viations in
luding a priori all the three perturbation modes: s
alar, ve
tor andtensor modes. In other words, we assume FRW as a good zeroth order approx-imation for des
ribing our universe. Observations tell us that the universe isfar from being homogenous and isotropi
 at small s
ales. To take into a

ountof these inhomogeneities, the perturbative expansion is needed, and it is imple-mented through spa
e and time fun
tions, whose form in terms of the so-
alledpe
uliar gravitational potential is determined at di�erent orders solving itera-tively Einstein Equations (the linear or �rst order approa
h is the most 
ommonbut in the last de
ade some 
osmologists have begun stopping at se
ond order).In the thesis the starting point is exa
tly the standard one: two physi
al vari-ables are introdu
ed, the "volume expansion" and the "shear", and the EinsteinEquations are written in the ADM formalism. The perturbation pro
edure, onthe other hand, is di�erent. We start with a spatial metri
 
ontaining the per-turbative fun
tions Ψ and χij of the standard theory, 
ontaining in turn all theorders of this expansion: at the initial time we deal with a "seed" metri
 
on-



2 Introdu
tionformally related to FRW by an exponential spa
e-dependent fa
tor. Then we
onsider as perturbation parameter not the magnitude of the deviation from theba
kground, but the spatial gradients 
ontent, so that the zeroth order metri
(or the zeroth order of any other �eld) is the one not 
ontaining spatial deriva-tives.Counting the gradients 
ontent at di�erent orders means 
onsidering the typ-i
al s
ale lengths on whi
h the metri
 (and other �elds) varies spatially beinglarger, in di�erent approximation, than the 
hara
teristi
 times on whi
h thesame quantities vary in time: the result is a non-linear approximation methodwhi
h allows us to study how 
osmologi
al inhomogeneities grow from initialperturbations, our "seed" (generated by in�ationary �u
tuations).Therefore, in this thesis, after des
ribing irrotational dust dynami
s (Chapter1), 
ommenting our gauge 
hoi
e (Chapter 2) and summarizing basi
 ideas of
osmologi
al perturbations theory (Chapter 3), we get Ψ and χij up to the se
-ond order (the order with four spatial gradients) solving respe
tively expansionand shear evolution equations. We 
he
k energy and momentum 
onstraints(Chapter 4), we 
arry on 
omparing our result with the standard ones by asuitable pro
edure, and �nally we show the form that the magneti
 part of theWeyl Tensor assumes within this approa
h (Chapter 5).



Chapter 1Des
ribing our UniverseThis thesis deals with departures from an ideal homogenous and isotropi
 FRW(Friedmann-Robertson-Walker) 
osmologi
al model. Before going into the te
h-ni
alities of the 
osmologi
al perturbations, we want in this 
hapter to outlinethe state of the art of the present 
osmology, pointing out the ideas and te
h-inques underlying the standard des
ription of the universe in di�erent 
ontextsand phases of its history.In parti
ular, from a qualitative point of view, we present the 
osmologi
almodel that is able to give the best �t to the 
omplete set of high-quality dataavailable at present, that is the standard "ΛCDM Hot Big Bang" model; webrie�y show the problems left unsolved by this standard model and the rea-sons whi
h lead us to invoke alternative s
enarios for the early universe, su
has In�ation. Finally, as matter today is 
lustered in galaxies and 
lusters ofgalaxies, a 
omplete des
ription of the universe should in
lude a des
ription ofdeviations from homogeneity: we then resort to In�ation as the simplest viableme
hanism for generating the observed perturbations, and brie�y overview thepossible approa
hes used at present to study the evolution of su
h perturbationsand hen
e the observable large-s
ale mass distribution.The treatment of this Chapter is not meant to be exhaustive and pre
ise as it
ould be [4℄, [3℄, [1℄,...: some subje
ts and the overall formalism are gone on inmu
h more detail in following 
hapters.1.1 The standard 
osmologi
al modelGeneral Relativity, together with symmetry assumptions of the metri
 and as-sumptions about the matter 
ontent of the universe, is one of the foundamentaltools for the study of 
osmology: it indeed has produ
ed in the last de
ades aquite remarkably su

essfull pi
ture of the history of our universe.While General Relativity is in prin
iple 
apable of des
ribing the 
osmology ofany given distribution of matter, it is extremely fortunate that our universeappears to be homogenous and isotropi
 on the largest s
ales. Together, ho-mogeneity and isotropy allow us to extend the Coperni
an Prin
iple to theCosmologi
al Prin
iple, stating that all spatial positions in the universe are es-sentially equivalent.In the past the Cosmologi
al Prin
iple served as a useful tool in keeping the dis-
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ussion fo
used on some well-de�ned and useful problems (homogenous models,their relative merits and possible tests). Nowadays, pre
ise tests have emergedand the results do agree with the idea of the Cosmologi
al Prin
iple at leastas a zeroth order guidelines. If on s
ales & tens of Mp
 we see galaxies andgalaxies 
lusters in one-dimensional and bidimensional stru
tures (�laments andsheets) and va
uum regions without galaxies even up to 50-100 Mp
, three setsof observations -galaxy 
ounting, extragala
ti
 radio sour
es, CMB tempera-ture smoothness- give some eviden
e that matter distribution and motion arequite a

urately isotropi
 on s
ales ≫ 102 Mp
 and 
omparable to our Hubblelength, at least within our visible pat
h [9℄. Flu
tuations from homogeneity andisotropy are thought to be of the order of δρ
ρ ∼ 10−5 [10℄, thus they 
an benegle
ted at a �rst approa
h to the subje
t.FRW 
osmologi
al modelsA purely kinemati
 
onsequen
e of requiring homogeneity and isotropy of ourspatial se
tions 1 is the Friedman-Robertson-Walker (FRW) metri
, whi
h en-ables us to des
ribe the overall geometry and evolution of the universe in termsof two 
osmologi
al parameters a

ounting for the spatial 
urvature and theoverall expansion or 
ontra
tion of the universe:

dS2
FRW = a2(τ) [−dτ2 +

dr2

1− κ r2 + r2dθ2 + r2 sin2 θ dφ2]. (1.1)
τ is the 
onformal time related to the 
osmi
 proper time t by the relation
dt = a(t)dτ . By res
aling the radial 
oordinate, we 
an 
hoose the 
urvature
onstant κ to take only dis
rete values +1, -1 or 0 
orresponding to 
losed,open, or �at spatial geometries. These are lo
al statements, whi
h should beexpe
ted from a lo
al theory su
h as General Relativity: the global topology ofthe spatial se
tions may be that of the 
overing spa
es but it need not be.A 
ombination of high redshift supernova and Large S
ale Stru
ture (LSS) dataand measurements of the 
osmi
 mi
rowave ba
kground (CMB) anisotropiesstrongly favors for a spatially �at model, then we will almost always assumesu
h a 
onstraint.We next turn to 
osmologi
al dynami
s, in the form of di�erential equa-tions governing the evolution of the s
ale fa
tor a(t); these 
ome from applyingEinstein Equations (E.E.):

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (1.2)where it is 
ommon to assume that the matter 
ontent of the universe is a perfe
t�uid, for whi
h

T µν = (ρ+ p)uµuν + pgµν . (1.3)The pressure p is ne
essarily isotropi
, for 
onsisten
y with the FRW metri
; ρis the energy density in the rest frame of the �uid, and uµ is the 4-velo
ity in1In this Chapter we are supposing a (1+3)-dimensional spa
etime and spatial se
tions haveto be intended as sli
es at 
onstant time: see later Se
tion 2.1.
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omoving 
oordinate (see later Se
tion 2.2).The 
osmologi
al 
onstant Λ term 
an be interpreted as parti
le physi
s pro-
esses yielding an e�e
tive stress-energy tensor for the va
uum of Λgµν/8πG, andwe have introdu
ed it in E.E. be
ause re
ent observations (luminosity-redshiftof SNIA and the CMB anisotropies measurements) suggest an a

eleration ofthe universe expansion and thus the requirement of a non standard �uid, 
alledDark Energy. With Λ we mean the simplest form of Dark Energy, that is an en-ergy 
omponent indipedent of time, spatially homogenous and with an equationof state:
pΛ = −ρΛ = − Λ

8πG
. (1.4)Thus, for brevity, from now on we will not expli
it it in the equations but treatit as any other (even if parti
ular) energy 
omponent.With this simpli�ed des
ription for matter, equations (1.2) 
an be rewrittenas follows

H2 ≡
(

ȧ

a

)2

=
8πG

3

∑

i

ρi −
κ

a2
(1.5a)

ä

a
= −4πG

3

∑

i

(ρi + 3pi), (1.5b)where H(t) is the Hubble parameter, overdots denote derivatives with respe
t totime t and the index i labels all di�erent possible types of energy 
omponentsin the universe. The �rst equation is often 
alled Friedmann equation andis a 
onstraint equation, the se
ond one is sometime referred to as a

elerationequation and is an evolution equation. A third useful equation -not independentof these last two- is the 
ontinuity equation T µν
;µ. With our assumptions it reads

ρ̇ = −3H(ρ+ p) (1.6)whi
h implies that the expansion of the universe (as spe
i�ed by H) 
an leadto lo
al 
hanges in the energy density. Let us note that there is no notion of
onservation of "total energy", as energy 
an be inter
hanged between matterand the spa
etime geometry.The FRW equations 
an be solved quite easily supposing that one single energy
omponent dominates. Within a �uid approximation, de�ning an equation ofstate parameterw whi
h relates the pressure p to the energy density ρ by p = wρ,the ordinary energy 
ontributions of our universe su
h as dust and radiationare distinguished by, respe
tively, w = 0 and w = 1/3. On the 
ontrary, a
osmologi
al 
onstant is 
hara
terized by w = −1 (equation (1.4)).Equation (1.6) is easily integrated to yield
ρ ∝ a−3(1+w). (1.7)Then Friedmann equation (1.5a) with κ = 0 and w 6= −1 is solved by

a(t) ∝ t2/[3(1+w)]. (1.8)General qualitative features of the future evolution of FRW universe 
an now beseen. If κ = 0 or -1, Friedmann equation (1.5a) shows that ȧ 
an never be
ome



6 Des
ribing our Universezero (apart from t = 0): thus, if the universe is presently expanding, it must
ontinue to expand forever. Indeed, for any energy 
ontent with p ≥ 0, ρ mustde
rease as a in
reases at least as rapidly as a−3, the value for dust. Thus,
ρa2 → 0 as a → ∞. Hen
e for κ = 0 the expansion velo
ity ȧ asymptoti
allyapproa
hes zero as t→∞, while if κ = −1 we have ȧ→ 1 as t→∞. Otherwise,if κ = +1, the universe 
annot expand forever but there is a 
riti
al value acsu
h that a ≤ ac: at a �nite time after t = 0 the universe a
hieves a maximumsize ac and then begins to re
ontra
t.The presen
e of a va
uum energy alters the fate of the universe and the abovesimple 
on
lusions: if Λ < 0, the universe will eventually re
ollapse independentof the sign of κ. For large values of Λ even a 
losed universe will expand forever.Table 1.1 summarizes the behaviour of the most important sour
es of energydensity in 
osmology in the 
ase of a �at universe.Type of Energy w ρ(a) a(t) H(t)Dust 0 a−3 t2/3 2

3tRadiation 1
3 a−4 t1/2 1

2tCosmologi
al Constant -1 const eHt
√

Λ
3Table 1.1: The behaviour of the s
ale fa
tor and Hubble 
onstant applie to the 
aseof a �at universe; behaviours of energy density are perfe
tly general.There are three foundamental features of FRW spa
etimes whi
h we aregoing to dis
uss:

• expansion (or 
ontra
tion) =⇒ gravitational redshift (or blueshift);
• existen
e of an initial singularity, the Big Bang;
• existen
e of parti
le horizons.Expansion and Redshift The �rst striking result of FRW models is thatuniverse 
annot be stati
 but must be expanding or 
ontra
ting. This 
on
lusionfollows immediately from equation (1.5b) written in the simple form

ä = −4πG

3
(ρ+ 3p)a. (1.9)(1.9) tells us that ä < 0 if ρ + 3p > 0 and ä > 0 if ρ + 3p < 0: in any 
ase,the universe must always either be expanding (ȧ > 0) or 
ontra
ting (ȧ < 0)(with the possible ex
eption of an instant of time when expansion 
hanges over to
ontra
tion, as in the 
ase κ = +1). Let us 
omment the nature of this expansionor 
ontra
tion: the distan
e s
ale between all isotropi
 observers 
hanges withtime, but there is no preferred 
enter of expansion or 
ontra
tion. Indeed, if thedistan
e (measured on the homogenous sli
e) between two isotropi
 observer attime t is r, the rate of 
hange of r is

v ≡ dr

dt
=
r

a

da

dt
= Hr (1.10)



1.1 The standard 
osmologi
al model 7where H(t) is the well-known Hubble parameter and (1.10) is known as HubbleLaw. Let us still note that the expansion speed 
an be greater than the speedof light without any harmful thought .The expansion of the universe is 
on�rmed in a

ordan
e with equation (1.10):the most dire
t observational eviden
e for that 
omes from the redshift of thespe
tral lines of distant galaxies. The idea is that a lo
al observer dete
tinglight from a distant emitter sees a redshift in frequen
y or, in other words, thewavelength λ of ea
h photon in
reases in proportion to the amount of expansion,as any other physi
al s
ale is stret
hed by expansion. The solution of all redshiftproblems (as illustrated in Figure 1.1) in Spe
ial and General Relativity is gov-erned by the following two fa
ts: �rst, light travels on null geodesi
s; se
ondly,the frequen
y of a light signal of wave ve
tor kµ measured by an observer with4-velo
ity uµ is ν = −kµu
µ. Thus we 
an always �nd the observed frequen
yby 
al
ulating the null geodesi
 determined by the initial value of kµ at theemission point and then 
al
ulating the right hand side of the former expressionat the observation point [1℄. The redshift fa
tor is then given by

z ≡ λ2 − λ1

λ1
=
ν1
ν2
− 1 =

a(t2)

a(t1)
− 1. (1.11)

Σ

Σ

2

1
P  
1

P2

u

u1

2

k

µ

µ

µ

Figure 1.1: A spa
etime diagram showing the emission of a light signal at event P1and its re
eption at event P2It is possible to relate the redshift to the relative velo
ity of the two observersin the 
ase of small s
ales (i.e. less than 
osmologi
al s
ales) su
h that theexpansion velo
ity is non-relativisti
. In this 
ase, for light emitted say bynearby galaxies, we have t2 − t1 ≈ r, where r is the present proper distan
e tothe galaxy; furthermore, a(t2) ≈ a(t1) + (t2 − t1)ȧ. Thus we �nd
znon rel ≈

ȧ

a
r = Hr (1.12)



8 Des
ribing our Universewhi
h is the linear redshift-distan
e relationship dis
overed by Hubble. The red-shifts of distant galaxies will deviate from this linear law depending on exa
tlyhow a(t) varies with t.The redshift z is often used in pla
e of the s
ale fa
tor: to be 
omplete,
z, t, a(t), ρ(t) and the temperature T are all used as variables to refer to di�erentphases of the universe history (Tables 1.1).Big Bang singularity Both matter and radiation dominated �at uni-verses present a singularity at t = 0 in whi
h a = 0. Thus, under the assumptionof homogeneity and isotropy, General Relativity makes the striking predi
tionthat at a time t =

∫ 1

0
da

a H(a) = 2
3(1+w)H0

∼ H−1
0 ago the universe was in asingular state: the distan
e between all "points of spa
e" was zero, the densityof matter and the 
urvature of spa
etime in�nite. This singularity state of theuniverse is referred to as Big Bang, and the quantity H−1

0 , known as the Hubbletime, provides a useful estimate of the time s
ale for whi
h the universe hasbeen around. 2The nature of this singularity is that resulting from a homogenous 
ontra
tionof spa
e down to "zero size". The Big Bang does not represent an explosion ofmatter 
on
entrated at a preexisting point: it does not make sense to ask aboutthe state of the universe "before" the Big Bang be
ause spa
etime stru
tureitself is singular at t = 0; thus General Relativity leads to the viewpoint thatuniverse began at the Big Bang. For many years it was generally believed thatthe predi
tion of a singular origin was due merely to the assumptions of exa
thomogeneity and isotropy, that if these assumptions were relaxed one would geta non-singular "boun
e" at small a rather than a singularity. The SingularityTheorem of General Relativity [1℄ shows that singularities are generi
 features of
osmologi
al solutions. Of 
ourse, at the extreme 
onditions very near the BigBang one expe
ts that quantum e�e
ts will be
ome important, and predi
tionsof 
lassi
al General Relativity are expe
ted to break down.Parti
le horizons We shall demonstrate now the third 
ru
ial point ofFRW spa
etimes: FRW 
osmologi
al models presuppose the existen
e of non-trivial parti
le horizons, where, by this expression, we mean in general theboundary of the observable region at a generi
 time t, or the boundary betweenthe worldlines that 
an be seen by an observer at a 
ertain point of spa
etimeand those one that 
annot be seen (see Figure (1.2)). In General Relativity thequestion about how mu
h of our universe 
an be observed at a given point isdue, and indeed, in spite of the fa
t that the universe was vanishingly smallat early times, the expansion pre
luded 
ausal 
onta
t from being establishedthroughout the universe.The photons travel on null paths 
hara
terized by dr = dt
a(t) = dτ : thephysi
al distan
e that a photon 
ould have travelled sin
e tha Bang until time

t, the distan
e to the parti
le horizon, is
RH(t) = a(t)

∫ t

0

dt′

a(t′)
(1.13)2The subs
ript "0" means that the quantity is evaluated at t = tNOW .
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r

t

SINGULARITY

r=0

observer

particles already 
seen

particles not
yet seen

Figure 1.2: The 
ausal stru
ture of FRW spa
etime near the Big Bang singularity:parti
le horizons arise when the past light 
one of an observer terminates at a �nitetime t or 
onformal time τ .An observer at a time t is able to re
eive a signal from all other isotropi
observers if and only if the integral of (1.13) diverges : in this 
ase the �atFRW metri
 is 
onformally related to Minkowski spa
etime and there is noparti
le horizon. On the other hand, if the integral 
onverges, FRW model is
onformally related only to a portion of Minkowski spa
etime (the one abovea t = const surfa
e) and parti
le horizon does o

ur. It is not di�
ult to seethat the integral 
onverges in all FRW models with equation of state parameter
w ∈ (0, 1):

RH(t) =

{

2t = H−1(t) ∝ a2 (radiation)
3t = 2H−1(t) ∝ a3/2 (dust). (1.14)As H(t)−1 is the age of the universe, H(t)−1 is 
alled the Hubble Radius, as it isthe distan
e that light 
an travel in a Hubble time H(t). If the parti
le horizonexists then it would 
oin
ide, up to numeri
al fa
tor, with the Hubble radius:for this reason, in the 
ontext of standard 
osmology (when ω > −1/3) horizonand Hubble radius are used inter
hangeably.These 
on
lusions are not true anymore in the 
ase of non standard matter,that is w /∈ (0, 1): in the 
ase of a 
osmologi
al 
onstant (for example, duringIn�ation or in the later time of universe history), parti
le horizon and Hubbleradius are not equal as the horizon distan
e grows exponentially in time relativeto the Hubble radius.A physi
al length s
ale λ is within the horizon if λ < RH ∼ H−1; in terms of the
orresponding 
omoving wavenumber k, λ = 2πa/k, we will have the followingrule:

k

a
≪ H−1 =⇒ s
ale λ outside the horizon and no 
ausality

k

a
≫ H−1 =⇒ s
ale λ within the horizon and 
ausality.Therefore, in a universe des
ribed by FRW with standard matter 
ontent su
has dust or radiation, there will always exist regions not 
ausally 
onne
ted:



10 Des
ribing our Universeany 
omoving length s
ale evolves in time with a power law tα with α < 1(κ = 0), thus its rate of in
rease is always smaller than the rate of in
rease inthe Hubble horizon size, whi
h is linear in time. Thus, for example, the sizeof a 
omoving region 
orresponding at present to a super
luster (say ∼ 30Mpcat t ≈ 109years) was 
omparable to the horizon at epo
h shortly before there
ombination (t ≈ 105years) and was mu
h greater than the horizon at someearlier epo
h.These 
onsiderations about the existen
e of parti
le horizons and of 
ausallydis
onne
ted regions in FRW models lead to very interesting issues. We beginpresenting one of them (known as Horizon problem), postponing a brief dis
us-sions of the short
omings of the standard 
osmologi
al model as des
ribed untilhere to a next paragraph.As mentioned earlier, we have good reasons to believe that the present universeis homogenous and isotropi
 to a very high degree of pre
ision. Now, manyordinary systems, su
h as gas 
on�ned in a box, often are found in extremelyhomogenous and isotropi
 states: the usual explanation of that state is thatthey have had an opportunity to self-intera
t and thermalize, exa
tly as in abox �lled with gas initially in an inhomogenous state, these inhomogeneitiesqui
kly "wash out" on a time s
ale of the order of the transit time a
ross thebox. However this type of explanation 
annot possibly apply to a universewith parti
le horizons, sin
e di�erent portions 
annot even send signals to ea
hother, far less intera
t su�
iently to thermalize ea
h other. Thus, in order toexplain the homogeneity and isotropy of the present universe, one must pos-tulate that either (a) the universe was born in an extremely homogenous andisotropi
 state, or (b) the very early universe di�ered signi�
antly from the FRWmodels so that no horizons were present; the inhomogeneities and anisotropythen "damped out" by some me
hanisms and the universe approa
hed the FRWmodels that �t present observations. Unfortunately, if the �rst point of viewmay appear rather unnatural and a profession of faith, the se
ond one su�ersnot only from the absen
e of a plausible pi
ture of evolution from a 
haoti
 toa FRW state, but for the fa
t that gravity promotes inhomogeneity, not ho-mogeneity. Later we will see how a third way is now a

epted, the one of anin�ationary phase of the very early universe.Brief outline of universe evolutionThe above 
onsiderations should be almost su�
ient to understand and jus-tify the basi
 aspe
ts of the evolution of our universe from the Big Bang tothe present in the standard pi
ture. Two points should be still 
lari�ed for
ompleteness:
• the various parti
les inhabiting the universe 
an be usefully 
hara
terizeda

ording to three 
riteria: in equilibrium vs. out of equilibrium (de
ou-pled), bosoni
 vs. fermioni
, and relativisti
 (velo
ities near to c) vs. nonrelativisti
 (dust);
• mu
h of the history of the standard Big Bang model 
an be easily des
ribedby assuming that one of the 
omponents dominates the total energy den-sity.



1.1 The standard 
osmologi
al model 11As mentioned earlier, the 
osmologi
al energy 
onservation (equation (1.6)) tellsus that the de
rease of the s
ale fa
tor a as one goes ba
k towards the past hasthe same lo
al e�e
t on the matter as if the matter were pla
ed in a box whosewalls 
ontra
t at the same rate. Thus (in agreement with Table 1.1) the 
ontri-bution of radiation 
ompared with ordinary matter in
reases in the past, andthere must be a period in the early times of universe evolution in whi
h this ra-diation should have been the dominant 
ontribution to the energy. The presentradiation energy 
ontribution to the universe energy density is represented bythe CMB energy density, wi
h is about 1000 times smaller than the present massdensity 
ontribution of matter. One would expe
t the radiation-�lled model ofthe universe to be a good approximation for the dynami
s of the universe beforea stage in whi
h the s
ale fa
tor a was more than few 1000 times smaller thanits present value, while the dust �lled model should be a good approximationafterwards. In the 
ontext of this separation, another important issue is whetherthe intera
tions of matter or radiation pro
eed on a rapid enough time s
ale forthermalization to o

ur lo
ally (within the parti
le horizon). A given spe
iesremains in thermal equilibrium with the surrounding thermal plasma as long asits intera
tion rate is larger than the expansion rate of the universe. A parti
lespe
ies for whi
h the intera
tion rates have fallen below the expansion rate issaid to have frozen out or de
oupled. As good rule of thumb, the expansion ratein the early universe is "slow", and parti
les tend to be in thermal equilibrium(unless they are very weakly 
oupled); in our 
urrent universe, no spe
ies are inequilibrium with the ba
kground plasma (represented by the CMB photons).The basi
 pi
ture of the evolution of our universe 
an then be told as fol-lows: the universe began with a singularity state as a hot (T → ∞), dense(ρ→∞) soup of matter and radiation in thermal equilibrium. The energy 
on-tent of early universe was dominated by radiation: at these early times thermalequilibrium held and other spe
i�
 phenomena took pla
e su
h as primordialnu
leosynthesis. However, as the universe evolved, thermal equilibrium was notmaintained and the ordinary matter 
ontribution began to dominate the energy
ontent of the universe (about 4 × 104 years after the Bang): the dynami
s ofthe universe be
ame that of a dust �lled FRW model 
hara
terized by the CMBphotons ba
kground, matter-antimatter asymmetry and 
osmologi
al stru
tureformation.There is no room in this thesis to �ll the details of this s
hemati
 and fullof gaps evolutionary history, and to dis
uss for example the very 
omplex �rstfew minutes of universe life 
hara
terized by symmetry breakings and phasetransitions, and other [4℄: more interesting, even in relation to the following de-velopments, is to underline the good predi
tions of the Hot Big Bang model andto understand how it fa
es re
ent observations and some theorethi
al questions.Parametrizing the universe: short
omings of the standard modelEarlier we introdu
ed global parameters su
h as expansion fa
tor a(t), spatial
urvature κ and Hubble parameterH(t), the latter de�ned by
H(t) +

ȧ

a
=
a′

a2
or H(τ) +

a′

a
(1.15)



12 Des
ribing our Universewhere the dot denotes di�erentiation with respe
t to t and the prime di�erentia-tion with respe
t to τ . In addition, it is useful to de�ne several other measurable
osmologi
al parameters.The Friedmann equation (1.5a) suggests to de�ne a 
riti
al density ρc and a
osmologi
al density parameter Ωtot

ρc +
3H2

8πG
and Ωtot +

ρ

ρc
(1.16)su
h that it 
an be rewritten as follows

κ

a2
= H2(Ωtot − 1) (1.17)From equation (1.17), one 
an distinguish the di�erent 
ases

ρ < ρc ↔ Ωtot < 1 ↔ κ = −1 ↔ open
ρ = ρc ↔ Ωtot = 1 ↔ κ = 0 ↔ flat
ρ > ρc ↔ Ωtot > 1 ↔ κ = +1 ↔ closed.

(1.18)It is often ne
essary to distinguish di�erent 
ontributions to the density, andtherefore 
onvenient to de�ne present-day density parameters for pressurelessmatter Ωm, relativisti
 parti
les Ωr, and for the va
uum Ωv. This last oneis equal to ΩΛ = Λ/3H2 in models with 
osmologi
al 
onstant, i.e. 
onstantva
uum energy density. Then the Friedmann equation be
omes
κ

a2
0

= H2
0 (Ωm + Ωr + Ωv − 1) (1.19)where the subs
ript 0 indi
ates present-day values.One way to quantify the de
eleration (or a

eleration) of the universe expansionof equation (1.5b) is the de
eleration parameter q0 de�ned as

q0 + −
(

aä

ȧ2

)

0

=
1

2
Ωm + Ωr +

1 + 3w

2
Ωv. (1.20)The expansion a

elerates if q0 < 0 and this equation shows that w < −1/3 forthe va
uum may lead to an a

elerating expansion.It is usual to express the Hubble parameter and hen
e all the previous param-eters in terms of the s
aled Hubble parameter h for whi
h

H ≡ 100h km s−1 Mpc−1. (1.21)The term "
osmologi
al parameters" is in
reasing its s
ope be
ause of the rapidadvan
es in observational 
osmology of the last ten years whi
h are leadingto the establishment of the �rst high pre
ision 
osmologi
al model. The mosta

urate model of the universe requires 
onsideration of a wide range of dif-ferent types of observations, with 
omplementary probes providing 
onsisten
y
he
ks, lifting parameter degenera
ies, and enabling the strongest 
onstraints tobe pla
ed. Hen
e, nowadays, the term "
osmologi
al parameters" not only refersto the original usage of simple numbers as the above ones des
ribing the globaldynami
s and properties of the universe, but also in
ludes the parametrizationof some fun
tions des
ribing the nature of perturbations in the universe, andphysi
al parameters of the state of the universe. Typi
al 
omparison of 
os-mologi
al models with observational data now feature about ten parameters,shown in Table 1.2 (see [36℄ and [11℄).



1.1 The standard 
osmologi
al model 13Parameter Symbol ValueHubble Parameter h 0.73± 0.03Total matter density Ωm Ωmh
2 = 0.134± 0.006Baryon Density Ωb Ωbh
2 = 0.023± 0.001Cosmologi
al Constant ΩΛ Ωv = 0.72± 0.05Radiation Density Ωr Ωrh
2 = 2.47× 10−5Density perturbation amplitude ∆2

R(k∗) see later P(k)Density perturbation spe
tral index n n = 0.97± 0.03Tensor to s
alar ratio r r < 0.53 (95%conf)Ionization opti
al lenght τ τ = 0.15± 0.07Table 1.2: The basi
 set of 
osmologi
al parameters: un
ertainities are one-sigma/68%
on�den
e unless otherwise stated.We have by now most of the ingredients needed to understand the �rsthalf of the shown parameters; the se
ond one will be in part justi�ed in the
ontinuation, while the ionization opti
al depth will not be 
ommented at allin this thesis. The spatial 
urvature does not appear in the list be
ause it 
anbe determined from the other parameters using (1.17) or (1.19), and the totalpresent matter density is indi
ated as usual as a sum of baryoni
 matter and darkmatter densities, namely Ωm = Ωdm + Ωb. With appropriate arguments, theparameter set listed above 
an be redu
ed to seven parameters as the smallestset that 
an usefully be 
ompared to the present 
osmologi
al data set. Of
ourse this is not the unique possible 
hoi
e: one 
ould instead use parametersderived from those basi
 ones su
h as the age of the universe, the present horizondistan
e, the present CMB and neutrino ba
kground temperatures, the epo
hof matter-radiation equality, the epo
h of transition to an a

elerating universe,the baryon to photon ratio, ... Furthermore, di�erent types of observations aresensitive to di�erent subsets of the full 
osmologi
al parameter set.Having in mind the above parametrization and Table 1.2 as mirror of thedisposable observational data, we 
an pro
eed in evaluating the standard 
os-mologi
al model. Among the most notable a
hievements of Hot Big Bang FRWstandard model are
• the predi
tion of 
osmologi
al expansion;
• the predi
tion and explanation of the presen
e of a reli
 ba
kground radi-ation with temperature of order of few K, the CMB;
• the explanations of the 
osmi
 abundan
e of light elements;
• the possibility to insert in this pi
ture the stru
ture formation phenomenon.On the 
ontrary, the most severe problems that it has to fa
e 
an be summarizedin the following interesting issues.
• Horizon problem.Under the term "horizon problem" a wide range of fa
ts is in
luded, allrelated to the existen
e of parti
le horizons in FRW models. We havealready dis
ussed the main point of the question: we want now to delineatesome more quantitative aspe
ts of it.



14 Des
ribing our UniverseA

ording to the standard model, photons and the other 
omponents su
has ele
trons and baryons de
oupled at a temperature of 0.3 eV. Re
allingthe pre
eding dis
ussions, this happened when the rate of intera
tion ofphotons with, say, ele
trons and protons be
ame of the order of the Hubblesize (that is, of the horizon size), and the expansion made not possible thereverse rea
tion of p+e+ → H+γ. The temperature of 0.3 eV 
orrespondsto the so-
alled surfa
e of last-s
attering, posed at a redshift zLS ≈ 1100,after the matter-radiation equivalen
e and hen
e in matter era. Fromthe epo
h of last-s
attering onwards, photons free-stream and now aremeasurable in the well known CMB, whose spe
trum is 
onsistent withthat of a bla
k-body at a temperature of 2.726± 0.01K. Then let us lookat two photons from di�erent parts of the sky: the lengh 
orresponding toour present Hubble radius at the time of last-s
attering was (rememberingthat T ∝ a−1)
λH0(tLS) = RH(t0)

(

a(tLS)

a(t0)

)

= RH(t0)

(

T0

TLS

)During the matter domination H2 ∝ a−3 ∝ T 3, and at last-s
attering
H−1

LS = RH(t0)

(

T0

TLS

)3/2

≪ RH(t0)Being T0 ∼ 2.7K ∼ 10−4 eV ≪ TLS , the length 
orresponding to ourpresent Hubble radius was mu
h mu
h larger that the horizon at thattime. Be
ause CMB experiments like COBE and WMAP tells us that ourtwo photons have nearly the same temperature to a pre
ision of 10−5, weare for
ed to say that those two photons were very similar even if they
ould not talk to ea
h other, and that the universe at last-s
attering washomogenous and isotropi
 in a physi
al region about some order greaterthan the 
ausally 
onne
ted one!Not only the homogeneity of the CMB is able to tell us important things,but nowadays the measured temperature �u
tuations (
onsequen
es ofdensity inhomogeneities) are a mine of information too, and another strik-ing feature of the CMB is that photons at the last-s
attering surfa
e whi
hwere 
ausally dis
onne
ted have the same small anisotropies ([10℄). Thestandard model 
annot say anything with referen
e to this.
• Flatness problem and the pe
uliarity of initial 
onditions.The Friedmann equation tells us that

(Ωtot − 1) = κ/ H2a2therefore (we impli
itly 
onsider from now on Ω ≡ Ωtot) (Ω − 1) → 0 for
t → 0 in both 
ases of radiation and matter domination: in other words,given (Ω(t) − 1) at a given time t, Ω has to depart from 1 both in openand 
losed 
ases. Present observations tell us that (Ω0 − 1) is of orderunity (i.e. ∈ (0,∼ 1)). Let us 
al
ulate the same value at some early timeof universe, say at Plan
k time (at t ≈ 10−43 s or T∼ 1019 GeV):

|Ω− 1|T=TPl

|Ω− 1|T=T0

≈
(

a2(tPl)

a2(t0)

)

≈
(

T 2
0

T 2
Pl

)

≈ O(10−64)



1.1 The standard 
osmologi
al model 15A very problemati
 question arises, be
ause how 
an it be possible that Ωhad been so near the 
riti
al value able to lead to the universe observedtoday? Even small deviations of Ω from 1 at early time would have led tothe 
ollapse or the 
ooling of the universe in few 10−43s, respe
tively inthe 
ase of κ = +1 or κ = −1. In order to get the 
orre
t value (Ω0 − 1)at present, the value (Ω−1) at early times had to be �ned-tuned to valuesamazingly 
lose to zero, but without being exa
tly zero. This is the reasonwhy the �atness problem is also dubbed the "�ne-tuning problem".
• Existen
e of Dark Matter.We have a remarkable 
onvergen
e on the value of the density parameterin matter (w = 0): Ωm = 0.28± 0.05. We 
all baryoni
 matter or simplyordinary matter anything made of atoms and their 
onstituents, and thiswould in
lude all of stars, planets, gas and dust in the universe. Ordinarybaryoni
 matter, it turns out, is not enough to a

ount for the observedmatter density:

Ωb ∼ 0.043± 0.002≪ ΩmThis determination 
omes from a variety of methods: dire
t evaluationof baryons, 
onsisten
y with the CMB power spe
trum, and agreementwith the predi
tions of primordial nu
leosynthetis, whi
h pla
es the 
on-straint Ωb ≤ 0.12. Most of the matter density must therefore be in theform of non-baryoni
 matter, or dark matter. Candidates for dark matterin
lude the lightest supersymmetri
 parti
le, the axion, but in the pastessentially every known parti
le of the Standard Model of parti
le physi
sand predi
ted parti
les of Supersymmetry theories have been ruled outas a 
andidate for it. The things we know are that it has no signi�
antintera
tions with other matter, so as to have es
aped dete
tion thus far,and that its parti
les have negligible velo
ity, i.e. they are "
old".
• Eviden
e of a

elerated expansion.Astonishignly, in re
ent years, it appears that an e�e
t of a

eleratingexpansion (q0 < 0) has been observed in the Supernova Hubble diagram:the 
ommon position in the last years is to invoke the existen
e of anotherenergy 
omponent (di�erent from matter and radiation), and 
omparisonwith the predi
tion of FRW models leads of 
ourse to favor a va
uum-dominated universe. In this pi
ture, 
urrent data indi
ate that the va
uumenergy is indeed the largest 
ontributor to the 
osmologi
al density budget,with Ωv = 0.72±0.05, [11℄. The nature of this dominant term is presentlyun
ertain, but mu
h e�ort is being invested in dynami
al models, underthe 
at
h-all heading of quintessen
e, or Dark Energy.
• The problem of perturbations unknown origin.The �rst issues arise from a 
ombination of observational fa
ts and theoreti
alprin
iples, and together with the last one they �nd the best model solution in theIn�ationary paradigm. The Dark Matter and the Dark Energy problems for
eus to take into a

ount an ampler 
osmologi
al model referred to by variousnames, in
luding "ΛCDM Hot Big Bang" model, the 
on
ordan
e 
osmology, orthe standard 
osmologi
al model. But the sense of a

omplishment at havingmeasured all the numbers above is somewhat tempered by the realization that



16 Des
ribing our Universewe do not understand very well any of them. For instan
e, there are manyproposals for the nature of Dark Matter, but no 
onsensus as to whi
h is 
orre
t.Even the baryon density, now measured to an a

ura
y of a few per
ent, la
ksan underlying theory able to predi
t it even within orders of magnitude. Finallythe nature of the Dark Energy remains a mystery, even if very re
ent works havesuggested viable me
hanisms able to explain the a

eleration without invokingan extra energy 
omponent [37℄.1.2 In�ationThe horizon problem is a relevant problem of the standard 
osmology be
auseat its heart there is simply 
ausality. From the 
onsiderations made so far, itappears that solving the short
omings of the standard model requires at leastan important modi�
ation to how the information 
an propagate in the earlyuniverse, and hen
e that the universe has to go through a primordial periodduring whi
h the physi
al s
ale λ evolves faster than the horizon s
ale H−1.Cosmologi
al In�ation is su
h a me
hanism.The foundamental idea of In�ation is that the universe undergoes a period ofa

elerated expansion, de�ned as a period when ä > 0, at early times. The e�e
tof this a

eleration is to qui
kly expand a small region of spa
e to a huge size,redu
ing the spatial 
urvature in the pro
ess, making the universe extremely
lose to �at. In addition, the horizon size is greatly in
reased, so that distantpoints on the CMB a
tually are in 
ausal 
onta
t.An in�ationary stage is de�ned as a period of the universe during whi
h thelatter a

elerates. From previous se
tions we have learned that
ä > 0⇐⇒ (ρ+ 3p) < 0 (1.22)and that su
h a 
ondition is not satis�ed neither during a radiation-dominatedphase nor in a matter-dominated phase. Even if it is su�
ient that p < −ρ/3, inorder to study the properties of the period of in�ation, we assume the extreme
ondition p = −ρ whi
h 
onsiderably simpli�es the analysis and that we havealready met in terms of a 
osmologi
al 
onstant. We re
all brie�y that in the
ase of su
h an energy 
omponent

ρ ∝ const (1.23)
HI ∝ const (1.24)

a(t) = ai e
HI(t−ti) ∝ eHI t (1.25)

RI
H(t) ∝ H−1

I eHI t (1.26)where the subs
ript (or supers
ript) I indi
ates that we refer to an in�ationquantity and ti denotes the time at whi
h in�ation starts. Contrary to whathappens in FRW dust or radiation �lled universes, a 
omoving length s
alein
reases faster than the parti
le horizon and mu
h faster than the Hubble size.By the way, In�ation is a phase of the history of the universe o

urring beforethe era of nu
leosynthetis (t ≈ 1s, T ≈ 1 MeV) during whi
h the light elementsabundan
es were formed: this is be
ause nu
leosynthetis is the earliest epo
hwe have experimental data from, and as already seen they are in agreement with



1.2 In�ation 17the predi
tions of the Hot Big Bang model. However, the thermal hystory of theuniverse before that stage is almost unknown and many models of In�ation areset to be around the Plank time (tPl ≈ 10−43s). It is 
ommon, even in reponseto other tasks, to think of a period of reheating at the end of In�ation duringwhi
h thermal equilibrium is established and radiation era begins.It is useful to have a general expression to des
ribe how mu
h In�ation o

urson
e it has begun. This is typi
ally quanti�ed by the number of e-folds, de�nedby
N(t) + ln

(

a(tf )

a(t)

) and Ntot = ln

(

a(tf )

a(ti)

) (1.27)Resolution of the horizon problem Thanks to In�ation any 
omovinglength s
ale observable at present has been 
ausally 
onne
ted at some primor-dial stage of the evolution of the universe, removing the horizon problem. This
an be easily seen with the help of Figure 1.3. Let us 
onsider length s
ales λwhi
h are within the horizon today (λ < H−1(t0) ≡ H−1
0 ) but were outside thehorizon for some previous period (λ > H−1(tpast)) during the matter or radia-tion era. If there is a period (in�ation) during whi
h physi
al length s
ales growfaster than H−1, su
h today observable s
ales had a 
han
e to be within thehorizon in that early period again (λ < H−1

I ): in fa
t, during the in�ationaryepo
h the Hubble radius is 
onstant and the 
ondition satis�ed.

log a

le
gt

h 
sc

al
es

λ

H 

H

H const−1

−1

−1

a

a

a 2

3/2

I

(MD)

(RD)

end of
Inflation

H −1λ =

Figure 1.3: Hubble s
ale and a physi
al s
ale as a fun
tion of the s
ale fa
tor a [10℄.Let us see how long In�ation must be sustained in order to solve the horizon



18 Des
ribing our Universeproblem and let the present day largest observable s
ale re-enter the horizonduring In�ation. The largest observable s
ale is of 
ourse the present Hubbleradius H0 and we want it to be redu
ed during In�ation to a value λH0(ti)smaller than the value of the Hubble size H−1
I during In�ation. This gives

λH0(ti) = H−1
0

(

a(tf )

a(t0)

) (

a(ti)

a(tf )

)

= H−1
0

(

T0

Tf)

)

e−Ntot . H−1
I(where we have negle
ted for simpli
ity the short period of matter-domination).Then the 
ondition for solving the horizon problem is

Ntot & ln(
T0

H0
)− ln(

Tf

HI
) ≈ 67 + ln(

Tf

HI
). (1.28)More pre
ise valutations give Ntot & 60.In�ation and �atness problem In�ation solves elegantly the �atnessproblem, thanks to the fa
t that the Hubble s
ale is 
onstant and

Ω− 1 =
k

a2H2
I

∝ 1/a2.We have seen that to reprodu
e a value of (Ω0 − 1) of order unity today theinitial value of (Ω−1) at Plan
k time must be |Ω−1| ∼ 10−60. Sin
e we identifythe beginning of the radiation era with the end of In�ation, and the time s
aleof In�ation is Plan
k time, we require |Ω− 1|t=tf
∼ 10−60.During In�ation

|Ω− 1|t=tf

|Ω− 1|t=ti

=

(

ai

af

)2

= e−2NtotTaking |Ω− 1|t=ti
of order unity, it is enough to require that Ntot ≈ 60 to solvethe �atness problem. From the point of view of the �ne-tuning, In�ation avoidsthe hindran
e of an enormous �ne-tuning, be
ause the density parameter Ω isdriven to 1 with exponential pre
ision. Let us note that if the period of In�ationlasts longer than 60 e-folding the present-day value of Ω0 will be equal to unitywith a great pre
ision. Thus we 
ould say that a generi
 predi
tion of In�ationis Ω0 = 1, and 
urrent data on CMB anisotropies 
on�rm this predi
tion.In�ation as driven by a slowly-rolling s
alar �eldKnowing the various advantages of having a period of a

elarated expansionphase, the next task 
onsists in �nding a model that satis�es the 
onditionsmentioned above. There are many models of In�ation. Today most of them arebased on a new s
alar �eld, the in�aton φ.We 
onsider modelling matter in the early universe by the in�aton, a real s
alar�eld whi
h moves with a potential V (φ). Its Lagrangian then reads

L =
1

2
∂µφ∂νφ+ V (φ) (1.29)and the stress-energy tensor is

Tµν = φ,µφ,ν − gµν

(

1

2
φ,µφ,ν + V (φ)

) (1.30)



1.2 In�ation 19The 
orresponding energy density ρφ and pressure pφ are
T00 = ρφ =

φ̇2

2
+ V (φ) +

(∇φ)
2

2a2
(1.31a)

Tii = pφ =
φ̇2

2
− V (φ)− (∇φ)

2

6a2
(1.31b)where it is evident that if the gradient term were dominant, we would obtain

pφ = − ρφ

3 , not enough to drive In�ation.In the 
ase of an homogenous �eld φ(t, ~x) = φ(t), the in�aton behaves with aperfe
t �uid and expression (1.31) be
ome
T00 = ρφ =

φ̇2

2
+ V (φ) (1.32a)

Tii = pφ =
φ̇2

2
− V (φ) (1.32b)The equation of motion for the homogenous in�aton is

�φ =
dV

dφ
i.e. φ̈+ 3

ȧ

a
φ̇+

dV

dφ
= 0 (1.33)whi
h 
an be thought of as the usual Klein-Gordon equation of motion fora s
alar �eld in Minkowski spa
e, but with a fri
tion term 3Hφ̇ due to theexpansion of the universe. The Friedmann equation with su
h a s
alar �eld asthe sole energy sour
e is

H2 =
8πG

3

(

1

2
φ̇2 + V (φ)

) (1.34)Let us now quantify under whi
h 
ir
umstan
es a s
alar �eld may give rise toa period of In�ation. First of all, let us note that requiring V (φ) ≫ φ̇2 im-plies from expressions (1.32) that the potential energy of the s
alar �eld is thedominant 
ontribution to both the energy density and the pressure, and hen
e
pφ ≃ −ρφ: from this simple 
al
ulation, we realize that a s
alar �eld whoseenergy dominates the universe and whose potential energy dominates over thekineti
 term 
an mimi
 a 
osmologi
al 
onstant dominated universe, and thengives In�ation. In�ation is driven by the va
uum energy of the in�aton �eld.If φ̇2 ≪ V (φ), the s
alar �eld is slowly rolling down its potential and this is thereason why su
h a period is 
alled slow-roll. The so-
alled slow-roll approxima-tion 
onsists in two 
onditions:
• negle
ting the kineti
 term of φ 
ompared to the potential energy;
• assuming a �at potential so that φ̈ is negligible as well in (1.33).In this approximation, the Friedmann equation (1.34) and the �eld equation(1.33) are written

H2 ≃ 8πG

3
V (φ) (1.35)

3Hφ̇ ≃ −V ′(φ) (1.36)where in this 
ontext V ′(φ) = dV
dφ . That is, the fri
tion due to the expansionis balan
ed by the a

eleration due to the slope of the potential. The slow-roll
onditions 
an be rewritten as follows
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ribing our Universe
• φ̇2 ≪ V (φ) =⇒ (V ′)2

V ≪ H2;
• φ̈≪ 3Hφ̇ =⇒ V ′′ ≪ H2.If we de�ne the following slow-roll parameters

ǫ ≡ − Ḣ

H2
= 4πG

φ̇2

H2
=

1

16πG

(

V ′

V

)2 (1.37a)
η ≡ 1

8πG

(

V ′′

V

) (1.37b)the slow-roll 
onditions hold if |ǫ| ≪ 1 and |η| ≪ 1.It is now easy to see in another sense how the slow-roll approximation yieldsin�ation. Let us re
all that In�ation is de�ned by ä > 0, or in other terms
ä

a2
= Ḣ +H2 > 0

Ḣ > 0 
annot be for a s
alar potential (as p 
annot be < −ρ): the a

eleration
ondition 
an be translated to
− Ḣ

H2
= ǫ < 1As soon as this 
ondition fails, In�ation ends: in general, slow-roll in�ation isattained if ǫ ≪ 1 and |η| ≪ 1, where the latter 
ondition helps to ensure thatin�ation will 
ontinue for a su�
ient period.Within this approximation, the total number of e-folds between the beginningand the end of In�ation is

Ntot ≡ ln

(

a(tf )

a(ti)

)

=

∫ tf

ti

Hdt ≃ −8πG

∫ φf

φi

V

V ′
dφ. (1.38)Con
luding, In�ation is 
osmologi
ally attra
tive but serious problems are leftunsolved with it: on the one hand, we 
annot say if the universe in its earlieststages satis�ed the 
onditions for In�ation to light up (i.e. for in�aton to undergoslow rollover); on the other hand, there are no experimental eviden
es even forthe existen
e of a neutral spin zero boson far less for the existen
e of the in�atonin parti
ular.1.3 Foundamental ideas of Stru
ture FormationAs already mentioned, the Cosmologi
al Prin
iple and hen
e the inhomogeneityof the universe have played a 
urious role in the history of modern 
osmology:if the overall properties of the universe are very 
lose to being homogenousand hen
e mu
h of universe dynami
s as a whole 
an be said thanks to the as-sumption of homogeneity and isotropy on the largest s
ales, on the other handteles
opes reveal a wealth of details on s
ales varying from single galaxies tolarge stru
tures of size far ex
eeding 102 Mp
. Understanding the existen
e ofthese stru
ture is one of the prin
ipal task of modern 
osmology, and this studyis usually performed with di�erent te
hniques and approximation s
hemes, de-pending on the spe
i�
 range of s
ales under analysis.



1.3 Foundamental ideas of Stru
ture Formation 21The interest in the large-s
ale mass distribution tra
es ba
k to the Thirthieswith Lemaitre, who pointed out that if the evolving homogenous and isotropi
world model is a reasonable �rst appoximation (we now say zeroth order approx-imation), then the next step is to a

ount for the departures from homogeneitiesin the observed stru
tures. As the Cosmologi
al Prin
iple 
annot be expe
tedfrom general arguments and physi
al prin
iples, nor the existen
e of galaxies
an be dedu
ed from general prin
iples be
ause we do not know how to spe
-ify initial 
onditions: we have been left with Lemaitre' s program 
onsistingin trying to �nd the 
hara
ter of density �u
tuations in the early universe andmodelling the physi
al pro
esses that have operated subsequently to developsu
h �u
tuations into the irregularities we observe today.Mu
h work has been done in the last de
ades and now we 
an follow a greatpart of the evolution of initial perturbations to present stru
tures thanks toa long list of 
osmologi
al s
hemes and methods. But before going into somemore detailed des
ription of the idea of stru
ture formation we want still tostress on the nature of the Cosmologi
al Prin
iple. If it were really a prin
iple,as initially suggested by Milne, the Cosmologi
al Prin
iple should be 
omparedto a law of nature: on the 
ontrary, now it is 
ommon sense to intend it as aphilosophi
al assumption whi
h allows us to 
ir
umevent our inability to obtaininformation about the universe outside our past light-
one by assuming that asymmetry prin
iple exists everywhere. By assuming the Cosmologi
al Prin
iple,we assume that we are able to determine 
onditions many Hubble radii awayfrom us by using observational data within our past light-
one, whose region ofin�uen
e is, by de�nition, limited to one Hubble radius. It is exa
tly this pointthat should lead us to treat the Cosmologi
al Prin
iple as a subtle approa
h.Moreover, homogeneity 
ould only apply on the average over many galaxies: weshould then keep in mind that when we refer to homogeneity and isotropy of theuniverse we ta
itly assume that spatial smoothing over some suitably large �l-tering s
ale has been applied exa
tly with the purpose of letting the �ne-graineddetails to be ignored.A great deal of stru
ture formation theory is based on the study of just ones
alar �eld, namely the density perturbation �eld de�ned as
δ(t, ~x) ≡ ρ(t, ~x)− ρb(t)

ρb(t)
(1.39)where ρb represents the unperturbed mean value of the ba
kground universedensity, in the FRW model. In spe
i�
 
ases, this �eld is related to the Newto-nian pe
uliar gravitational potential ϕ(~x) through the Poisson equation whi
hin an expanding universe reads

∇2ϕ(t, ~x) = 4πG a2(t)ρb(t) δ(t, ~x). (1.40)There are many di�erent notations used to des
ribe the density perturbationsand their evolution, both in terms of the quantities used to des
ribe the pertur-bations as metri
 deviations and of the de�nition of an appropriate statisti
altreatment. The former approa
h will be 
learer only in the following 
haptersand it is the heart of the thesis; for now, we want to give a sket
h of the latter.A 
riti
al feature of the quantity δ is that it inhabits a universe that is isotropi
and homogenous in its large-s
ale properties: this suggest a statisti
al refor-mulation of Cosmologi
al Prin
iple, that is that the statisti
al properties of δ



22 Des
ribing our Universeshould also be statisti
ally homogenous. In other words, δ re�e
ts a stationaryrandom pro
ess: every spatial position ~xi is asso
iated to a sto
hasti
 variable
δ(~xi), with i = 1, 2, ...N and N →∞, and all the probability densities on a �nitenumber of points P~x1,~xN ,...,~xN

(δ1, δ2, ...δN ) are invariant under translations, ro-tations and re�e
tion of the points set ~x1, ~xN , ..., ~xN . The universe we observeis the statisti
al realization of δ(~x) thought as a sto
hasti
 �eld, and in thislanguage the unperturbed density of FRW ba
kground universe 
orresponds tothe average over the statisti
al ensemble, ρb ≡ 〈ρ(~x)〉.Cosmologi
al density �elds are an example of ergodi
 pro
ess, in whi
h the aver-age over a large volume tends to the same answer as the average over a statisti
alensemble.It is usual to des
ribe δ as a Fourier superposition:
δ(~x) =

∑

δ̂(~k) e−i~k~x (1.41)The 
ross-terms vanish when we 
ompute the varian
e in the �eld, whi
h is justa sum over modes of the power spe
trum
〈δ2〉 =

∑

|δ̂(~k)|2 ≡
∑

P (k) (1.42)where the statisti
al isotropi
 nature of the �u
tuations allows us to write P (k)rather than P (~k). Another quantity whi
h des
ribes the statisti
al properties of
δ is the auto
orrelation fun
tion, whi
h is related to the power spe
trum throughFourier transformation and hen
e gives the same des
ription of the density �eld:for this reason, we skip for brevity the introdu
tion of this further 
on
ept.The physi
al meaning of the power spe
trum is the following: P (k) ∝ |δ̂(~k)|2,the latter being the amplitude of plane waves with wavelength λ = 2π/k; thenthe value of the spe
trum at every k tells us how mu
h the 
ontribution of k-s
ale �u
tuations is important in the Fourier sum in order to form the generi
perturbation δ(~x) in 
on�gurations spa
e. In other words, P (k) is a measure ofthe power of the �u
tuations of wavenumber k.A sto
hasti
 �eld is said to be Gaussian if the phases of the Fourier modesdes
ribing �u
tuations at di�erent s
ales λ are un
orrelated, that is if the am-plitudes of waves of di�erent wavenumbers are randomly drawn from a Rayleighdistribution of width given by the power spe
trum. The density perturbation�eld is Gaussian (see later): this means that if we 
ould do a very big numberof statisti
al realizations of the universe, in any point ~x the distribution of theobserved value of δ(~x) in all those universes would be a Gaussian 
entered inzero. In momentum spa
e, be
ause the Fourier transformation of a Gaussian isstill a Gaussian, the same des
ription applies.A Gaussian distribution is univo
ally des
ribed by its average and its varian
e:thus, in our 
ase, what we need for des
ribing the density �u
tuation �eld δ(~x)is just its power spe
trum.Assuming for P (k) a simple fun
tional form allows us doing simple and useful
onsiderations. The most 
onvenient power spe
tra are the so-
alled power-lawpower spe
tra

P (k) ∝ kn−1 (1.43)where the exponential index n is 
alled spe
tral index ; these are often 
alleds
ale-free power spe
tra be
ause their logaritmi
 slopes are the same at every
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ture Formation 23s
ale, and hen
e they are 
hara
terized by no parti
ular physi
al s
ale. Amongthe others, a 
ase of parti
ular interest is the Harrison-Zel'dovi
h spe
trum,whi
h 
orresponds to a power spe
trum with n = 1.In�ation and 
osmologi
al perturbationsIn order for stru
ture formation to o

ur, there must have been small preexisting�u
tuations on physi
al length s
ales when they 
rossed the Hubble radius inthe radiation-dominated or matter-dominated eras. In the standard Big Bangmodel these small perturbations have to be put by hand, be
ause it is impossibleto produ
e �u
tuations on any length s
ale while it is larger than the horizon.Sin
e the goal of 
osmology is to understand the universe on the basis of physi
allaws, this appeal to initial 
ondition is unsatisfa
tory. The 
hallenge is there-fore to give an explanation to the small "seed" perturbations whi
h allow thegravitational growth of the matter perturbations.The simplest me
hanism for generating the observed perturbations is the in-�ationary 
osmology, as mentioned in previous se
tions. Although originallyintrodu
ed as a possible solutions of already seen problems su
h as the horizonand �atness problems, as an unexpe
ted bonus, In�ation has the useful prop-erty to generate spe
tra of both density perturbations and gravitational waves,through the ampli�
ation of quantum �u
tuations: these perturbations extendfrom extremely short s
ales to s
ales 
onsiderably in ex
ess of the size of theobservable universe.In the simplest in�ationary model introdu
ed earlier, In�ation is driven by aslowly-rolling s
alar �eld, the in�aton: this latter 
an be split in
φ(t, ~x) = φ0(t) + δφ(t, ~x), (1.44)where φ0 is the 
lassi
al (in�nite wavelength) �eld, that is the expe
tation valueof the in�aton �eld on the initial isotropi
 and homogenous state, whose stress-energy tensor and equation of motion have been already expressed in (1.32) and(1.33); δφ(t, ~x) represents the quantum �u
tuations around φ0. This separationis justi�ed by the fa
t that quantum �u
tuations are mu
h smaller than the
lassi
al value and therefore negligibile when looking at the 
lassi
al evolution,as done in previous pages. Nevertheless, exa
tly those quantum �u
tuations areresponsible for the 
reation of initial perturbations whose evolution 
an now beseen in the large-s
ale stru
ture of the universe.It is not possible to des
ribe the generation of perturbations of a s
alar �eld inthis 
ontext: the ma
hinery needed fot su
h a task is almost the same formalismdeveloped throughout the thesis, at least a linear theory of 
osmologi
al pertur-bations would be needed. Anyway, we 
an give a heuristi
 explanation of whywe expe
t that during In�ation su
h �u
tuations are indeed present and howthese in�aton �u
tuations will indu
e in turn pertubations of the metri
 [10℄.If we take equation (1.33) adding the non-homogenous term −∇2φ/a2, and splitthe in�aton �eld as in (1.44), the quantum perturbation δφ satis�es the equationof motion

δφ̈+ 3Hδφ̇− ∇
2δφ

a2
+ V ′′δφ = 0. (1.45)Di�erentiating (1.33) with respe
t to time t and taking H 
onstant (we areduring in�ationary phase!) we �nd

(φ0)
... + 3Hφ̈0 + V ′′φ̇0 = 0. (1.46)



24 Des
ribing our UniverseLet us 
onsider for simpli
ity the limit k2/a2 ≪ 1 and let us disregard thegradient term. Under this 
ondition we see that φ̇0 and δφ solve the sameequation. The solutions have therefore to be related to ea
h other by a 
onstantof proportionality whi
h depends upon time, that is
δφ = −φ̇0 δt(~x).This tell us that

φ(t, ~x) = φ0(t− δt(~x), ~x),that is the in�aton �eld does not a
quire the same value at a given time t inall the spa
e. On the 
ontrary, when the in�aton is rolling down its potential,it a
quires di�erent values from one spatial point ~x to the other. Then in�aton�eld is not homogenous and �u
tuations are present.These �u
tuations will indu
e �u
tuations of the metri
: any perturbation in thein�aton �eld means a perturbation of the stress-energy tensor; a perturbationin the stress-energy tensor implies, through E.E., a perturbation of the metri
.On the other hand, a perturbation of the metri
 indu
es a ba
krea
tion on theevolution of the in�aton through the perturbed Klein-Gordon (K.G.) equationof the in�aton �eld: hen
e,
δφ =⇒ δTµν

E.E
=⇒ δgµν

K.G.
=⇒ δφ (1.47)During In�ation the s
ale fa
tor grows exponentially, while the Hubble radiusremains almost 
onstant. Consequently the wavelength of a quantum �u
tua-tion soon ex
eeds the Hubble radius, stret
hed by the in�ationary expansion.The amplitude of the �u
tuations therefore be
ome "frozen in". On
e In�ationhas ended, however, the Hubble radius in
reases faster than the s
ale fa
tor, so-in the way we have already seen- the �u
tuations eventually reenter the Hubbleradius and hen
e the horizon during the radiation- or matter- dominated eras.The number of e-folds whi
h are needed to let our present horizon s
ale of about

104 Mp
 to reenter the horizon during In�ation is about 60, as we have seen inprevious Se
tion: all the �u
tuations whi
h exited the horizon in a very narrowinterval of about 10 e-folds around 60 e-folds of In�ation length have reenteredwith physi
al wavelengths in the range a

essible to 
osmologi
al observationsand of interest for stru
ture formation today, that is the range s
ale between 1and 104 Mp
. These spe
tra provide a distin
tive signature of In�ation.The simplest models generate two types of perturbations: density perturbationswhi
h 
ome from �u
tuations in the in�aton s
alar �eld and the 
orrespondings
alar metri
 perturbations (whi
h we will de�ne better in Chapter 3), andgravitational waves whi
h are tensor metri
 �u
tuations. The former experi-en
e gravitational instability and lead to stru
ture formation, while the latter
an in�uen
e the 
osmi
 mi
rowave ba
kground anisotropies.In terms of the power spe
tra of these perturbations, with the working assump-tion of initial power-law spe
trum for both density perturbations and gravita-tional waves,
P (k) ∝kn−1 s
alar or density perturbations

Pgrav(k) ∝kngrav gravitational waves,the spe
tral indi
es are in some way related to the slow-roll parameters [9℄:
n ≃ 1− 6ǫ+ 2η ngrav ≃ −2ǫ. (1.48)



1.3 Foundamental ideas of Stru
ture Formation 25The simplest In�ation models predi
t adiabati
 �u
tuations and a level of non-Gaussianity whi
h is too small to be dete
ted by any experiment so far 
on-
eived. Adiabati
ity means that all types of material in the universe share a
ommon perturbation, so that if the spa
etime is foliated by 
onstant-densityhypersurfa
es, then all �uids and �elds are homogenous on those sli
es, withthe perturbations 
ompletely des
ribed by the variation of the spatial 
urvatureof the sli
es. The se
ond part of Table 1.2 
an now be understood and used forgetting the values of the perturbations 
reation that give the best agreementbetween models and observations.Standard s
enario of stru
ture formationAfter the perturbations are 
reated in the early universe, they undergo a 
om-plex evolution up until the time they are observed in the present universe. Insummary, the key ingredients for understanding the observed stru
tures in theuniverse within the standard in�ationary s
enario are summarized as follows.
• The universe is 
omposed mainly by non-baryoni
 dark matter. The evi-den
e for this matter being dark (i.e. intera
ting only with gravity) 
omefrom the dynami
s of 
lusters of galaxies and of galaxy haloes.
• Baryons are present in the amount predi
ted by the Big Bang Nu
leosyn-thesis, some per
ent of the density required to 
lose the universe.
• At re
ombination (redshift z ∼ 1000, in the matter era) the universe iswell des
ribed by a FRW metri
. Small deviations from homogeneity andisotropy do exist: δρ/ρ ∼ 10−5. These deviations are 
reated duringan in�ationary period in the early universe: quantum �u
tuations of thein�aton �eld are ex
ited during In�ation and stret
hed to 
osmologi
als
ales. At the same time, the in�aton �u
tuations being 
onne
ted to themetri
 perturbations through E.E., ripples on the metri
 are also ex
itedand stret
hed to 
osmologi
al s
ales.
• Gravity a
ts as a messanger sin
e it 
ommuni
ates to baryons and photonsthe small seed perturbations on
e a given wavelength be
omes smaller thanthe horizon s
ale after In�ation.
• Cosmi
 stru
tures form by gravitational instability (whi
h we will see insome aspe
ts later): this pro
ess is driven by the gravity of the darkmatter 
omponent of the universe, up to the formation of the �rst non-linear systems, the dark matter haloes.
• Galaxies and luminous systems form later by the dissipative 
ollapse ofgas (baryoni
 matter) in the potential wells of dark matter haloes.
• Within this s
enario, the most su

essful model 
oherent with observationsis hierar
hi
al 
lustering, with the dominant dark matter being 
old, thatis non relativisti
, and where the initial density power spe
trum is su
hthat larger systems form later by the assembly of pre-existing smallerunits.



26 Des
ribing our UniverseThe details of this 
omplex pro
ess are determined by the values of 
osmologi-
al parameters. On the other hand, the 
omparison between observations andstru
ture formation models is developed on di�erent fronts: CMB, large-s
ale
lustering properties, pe
uliar motions of galaxies, gravitational lensing, prop-erties of large-s
ale stru
ture, dark matter haloes stru
ture, galaxy 
ounting,....The te
hniques developed for modelling the details of the above des
ribed s
e-nario are various and 
an be divided in three groups: analyti
al te
hniques,numeri
al simulations, and semi-analyti
al methods. If we want to set the ap-proa
h of our thesis against su
h a distin
tion of methods, we should of 
ourseunderline its analyti
al nature.Density �u
tuations δ are 
alled linear until they are mu
h smaller than 1,
δ ≪ 1: within this limit, as we will see, it will be su�
ient to study their evo-lution using a perturbative theory up to �rst order. When gravitational growthleads to δ → 1, we talk about non-linear regime and a �rst order perturbationexpansion is no more appli
able, for
ing us to go at the following orders. In ourthesis the 
al
ulations will be performed up to se
ond order in our perturbativete
hnique.Finally, as stru
ture formation study involves a wide range of s
ales under anal-ysis, let us re
all that General Relativity is of 
ourse the more 
omplete andappropriate tool to handle gravitational intera
tions. However when the s
alesunder analysis do not ex
eed the Hubble radius, the Newtonian approximation
an be applied as a limiting 
ase of the full relativisti
 theory, 
onsisting in per-turbing only the time-time 
omponent of the FRW metri
 tensor by an amount
2ϕ/c2, in 
ontrast with a general metri
 perturbation as the one that we willsee in Chapter 3. Wanting to be able to deal with 
osmologi
al perturbations ofany length s
ale (from super-horizon to small s
ales), in the thesis our analysiswill be fully relativisti
.Gravitational Instability As last task of this Chapter we want brie�y todelineate the simplest model for the generation of 
osmologi
al stru
ture, thatis gravitational instability. The fa
t that a �uid of self-gravitating parti
les isunstable to the growth of small inhomogeneities was �rst pointed out by Jeansin the late Twenties and is known as the Jeans instability.Expanding the perturbation matter density ρ in plane waves as already men-tioned earlier, the growth of small matter inhomogeneities of wavelength smallerthan the Hubble s
ale is governed by a Newtonian equation:

¨̂
δ(~k) + 2H

˙̂
δ(~k) + δ̂(~k)

(

v2
s k

2

a2
− 4πGρb

)

= 0 (1.49)where v2
s = ∂p/∂ρ is the square of the sound speed. Competition betweenthe pressure term and the gravity term in the last term of equations (1.49)determines whether or not pressure 
an 
ountera
t gravity. The Jeans s
ale orthe Jeans wavenumber are s
ale values whi
h arise naturally from the physi
al
ontent of the pro
ess and whi
h distinguishes two di�erent regimes. De�ningthem as

k2
J ≡

1

v2
s

4πGρb and λ2
J ≡ v2

s

π

Gρb
, (1.50)perturbations with wavenumber larger than the Jeans wavenumber are stableand os
illate: the density �u
tuation δ(t, ~x) evolves in time and spa
e as a sound
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ture Formation 27waves; pertubations with smaller wavenumber are Jeans unstable and 
an grow,eventually undergoing in a gravitational 
ollapse:
k > kJ =⇒ OSCILLATION: SOUND WAVE
k < kJ =⇒ GRAVITATIONAL INSTABILITY: STATIONARY WAVE.The solutions of equation (1.49) or the relativisti
 equivalent equation dependson the 
ir
umstan
es: many 
ases 
an be studied a

ording to the time period ofuniverse under analysis (before or later than the matter-radiation equivalen
e),to the length s
ales involved (sub or super horizon), and to the type of energy
omponent dominating (radiation, matter or dark matter) [3℄, [?℄. In a matterdominated universe, be
ause the expansion tends to pull parti
les away fromone another, the growth of matter density perturbations is only a power law.In a radiation-dominated universe, the expansion is so rapid that the matterperturbations grow very slowly, as ln a; if we 
onsider radiation density per-turbations in a radiation-dominated universe, then the situation is di�erent,be
ause perturbations grow as a2. Considering δ as the baryoni
 matter densityperturbation �eld, then

δ(t) ∝
{

ln a(t) (radiation domination)
a(t) (dust domination). (1.51)Therefore, perturbations of baryoni
 matter density whi
h we 
an see in galaxiesand stars may grow only in a matter dominated period. When Dark Energybegins to dominate, that is for z ≤ 1, perturbations stop growing.





Chapter 2Dust Cosmology: frame andformalismIn this thesis we deal with irrotational and pressureless �uid dominated uni-verses, studying the perturbation theory in a syn
hronous and 
omoving systemof 
oordinates.In this Chapter we outline the formalism used throughout the work.We give a pre
ise 
hara
terization of the �uid, de�ne the syn
hronous and 
o-moving gauge 
hoi
e and derive the equations governing the evolution of su
ha �uid. We note that the possibility of making these two gauge 
hoi
es simul-taneously is a pe
uliarity of irrotational dust, that spatial 
oordinates in thisgauge are Lagrangian 
oordinates and that the so-
alled sli
ing and threadingof spa
etime are the same. In this simple frame, we see that E.E. 
an be dividedin 4 
onstraints and 6 evolution equations, the so-
alled energy and momentum
onstraints and evolution equations of the ADM approa
h.2.1 Spa
e-time splittings, gauge 
hoi
es and gen-eral hypothesesWhen we talk about our spa
etime we mean a (1 + n)-dimensional manifold
(M, gµν) with Lorentzian metri
 of signature (-,+,...+) and n = 3, namely a
urved spa
etime des
ribed by metri
 
omponents where the 
urvature is 
reatedby (and rea
ted ba
k on) energy and momentum. Although General Relativitymakes no fundamental distin
tion between time and spa
e, a
tually we do, andin order to obtain �eld equations 
omparable with those of Newtonian gravity(and Ele
trodynami
s) we need indeed a de
omposition pro
edure of EinsteinEquations (E.E.), 
onservation equations and other geometri
al and physi
alquantities.In what follows we will always assume (M, gµν) be a globally hyperboli
 spa
e-time. A spa
etime is globally hyperboli
 if it possesses a Cau
hy surfa
e Σ:for us, it will be su�
ient to think of a Cau
hy surfa
e as an embedded C0submanifold of M, representing an "instant of time" throughout the universe.The fundamental feature of a globally hyperboli
 spa
etime is that the entirefuture and past history of the universe 
an be predi
ted (or retrodi
ted) from
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onditions at the instant of time represented by Σ. In other world, the Cau
hyProblem 
an be solved.A
tually we invoke su
h a feature of our universe not for predi
tability issues,but to de
ompose our spa
etime [1℄:Theorem 1. Let (M, gµν) be a globally hyperboli
 spa
etime. Then a globaltime fun
tion t 
an be 
hosen su
h that ea
h surfa
e of 
onstant t is a Cau
hysurfa
e: thus M 
an be foliated by Cau
hy surfa
es and the topology of M is
R× Σ, where Σ denotes any Cau
hy surfa
e.It is thanks to this theorem that -from a very general point of view- we 
ansli
e our spa
etime in hypersurfa
es at 
onstant t and then implement gauge
hoi
es, or view the spatial metri
 on a three-dimensional hypersurfa
e as thedynami
al variable in General Relativity. But let us pro
ede step by step.Let nµ be the unit normal ve
tor �eld to the hypersurfa
e Σt: the spa
etimemetri
 gµν indu
es a spatial metri
 (i.e. a three-dimensional Riemannian metri
)
hµν on ea
h Σt by the formula

hµν = gµν + nµnν (2.1)This is known as orthogonal de
omposition of the metri
 and we will often referto this sli
ing of spa
etime as (3+1) splitting.(3+1) splitting is 
omplementary to the alternative and more general (1+3) split
alled "threading" (see [7℄): there the fundamental geometri
al obje
ts used for
harting spa
etime are a series of timelike worldlines xµ(λ,q), where λ is ana�ne parameter measuring proper time along the worldline and q gives a uniquelabel (e.g., a spatial Lagrangian position ve
tor) to ea
h di�erent "thread".In prin
iple we will be in
lined to use the splitting in hypersurfa
es and de�neour geometri
al variables in su
h a 
ontext: anyway, it is worth bearing inmind from now on that in the parti
ular frame whi
h we will adopt the twodes
riptions are the same.Gauge 
hoi
esTheorem 1 tells us that a splitting of our spa
etime is possible but does notprovide a pre
ise pro
edure: the di�erent splitting pro
edures deal with 
oordi-nates or gauge 
hoi
es.General Relativity is invariant under di�eomorphisms; di�eomorphisms are 
o-ordinate transformations in some sense and 
hoosing the 
oordinate systemsmeans �xing the 
hart between open subsets of M and open subsets of R
n+1.This invarian
e under di�eomorphisms re�e
ts the redudan
y in the des
riptionof spa
etime geometry by metri
 
omponents gµν and 
an be seen in the inde-termination of E. E. system: it is also known as gauge freedom. In other words,the di�eomorphisms 
omprise the gauge freedom of any theory formulated interms of tensor �elds on a spa
etime manifold: in parti
ular, di�eomorphisms
omprise the gauge freedom of General Relativity [1℄.In what follows we will then refer to a gauge (or gauge 
hoi
e) as a 
oordinates
hoi
e or more loosely to a family of 
oordinates 
hoi
es, and a gauge transfor-mation as equivalent to a 
oordinates transformation.There are two di�erent ways by whi
h we 
an implement a gauge 
hoi
e:
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• we 
an impose a suitable number of relations among gauge-dependent vari-ables: in terms of 
oordinates, 1 + n are the 
oordinates transformationsthen 1 + n are the gauge 
onditions;
• or given a 1 + n spa
etime, we 
an sli
e it in spa
e-like hypersurfa
es att=
onst where we �x spatial 
oordinates, and thread it in time-like lines(orthogonal to hypersurfa
es) along whi
h we make the time 
oordinate�owing.We will use these two re
ipes later to de�ne our spe
ial gauge 
hoi
e: there wewill see in detail how the two approa
hes give the same result.Con
erning the gauge transformation as 
hange of 
oordinates system, we 
anwrite it formally as an (in�nitesimal) traditional 
oordinate transformation:

xµ → x̄µ = xµ + ǫ ξµ (2.2)where ǫ is a (small) parameter and ξµ a 4-dimensional ve
tor. A

ording to thede
omposition of spatial ve
tors on Σ given in Appendix A and having separatedtime and spa
e parts of ξµ = (ξ0, ξi), the latter 
an still be de
omposed in as
alar (irrotational) and a solenoidal 
omponents:
ξ0 + α ξi + ∂iβ + di (with ∂id

i = 0) (2.3)In terms of 
omponents then a gauge transformation is implemented with 2s
alars and 1 transverse ve
tor:
x0 → x̄0 = x0 + ǫ α (2.4)

xi → x̄i = xi + ǫ (∂iβ + di) (2.5)Exstrinsi
 
urvatureAs already mentioned, we may view a globally hyperboli
 spa
etime as repre-senting the time development of a Riemannian metri
 on a �xed 3-dimensionalmanifold. A quantity whi
h expresses a well-de�ned notion of "time derivative"of the spatial metri
 on a hypersurfa
e embedded inM is the extrinsi
 
urva-ture. Having in mind the general orthogonal de
omposition of the metri
 givenin equation (2.1) and adding the unit time-like 
ondition for ve
tors nµnµ = −1,then extrinsi
 
urvature is de�ned as follows
Kµν +

1

2
Lnhµν (2.6)where Ln is the Lie derivative along n. 1As hµν is purely spatial, extrinsi
 
urvature is purely spatial too: then itwould have been preferable writing

Kij +
1

2
Lnhij (2.8)1Expressions of Lie derivative along ξ are:

Lξf = f,µξµ (2.7a)
LξZµ

= Zµ
,νξν

− ξµ
,νZν (2.7b)

LξT µν
= Tµν,σξσ

+ ξσ
,µTσν + ξσ

,νTµσ (2.7
)
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n

q p

nµ µ

ΣFigure 2.1: Notion of the extrinsi
 
urvature of a hypersurfa
e Σ. The failure ofthe parallel transported ve
tor along a geodesi
 from q to p to 
oin
ide with nµ at p
orresponds intuitively to the bending of Σ in the spa
etime in whi
h it is embedded.The formula Kµν =
1

2
Lnhµν = hα

µ nν;α shows that Kµν dire
tly measures this failure.Furthermore, extrinsi
 
urvature is symmetri
, Kij = Kji, and its tra
e is oftendenoted by K:
K + Ka

a = habKab (2.9)We will note later that extrinsi
 
urvature assumes interesting physi
al meaningsa

ording to the gauge 
hoi
e.2.2 Chara
terization of the matter 
ontentThe geometry of spa
etime is determined by its energy 
ontent through thestress-energy tensor. The matter (or radiation) 
ontent of the universe may bedes
ribed in two 
onvenient ways, related to the two eulerian and lagrangianapproa
hes of hydrodynami
s, and stri
tly 
onne
ted to the (3+1) and (1+3)splittings of spa
etime.The eulerian approa
h 
onsists in a �uid approximation: a �uid is a denseset of parti
les treated as a 
ontinuum. This 
ontinuum is des
ribed by a ve
tor�eld (that we assume to be unique) representing the average velo
ity of matterin the neighborhood of ea
h point of spa
etime.The lagrangian approa
h uses a parti
le distribution fun
tion in order tofollow ea
h matter element along its worldline and labeling it with a uniquespatial position ve
tor q.In any 
ase, the matter 4-velo
ity of a parti
le is de�ned to be the unit tangent(as measured by gµν) to its worldline:
uµ =

dxµ

dλ
with dλ2 + −dS2 and su
h that uµuµ = −1 (2.10)In the (3+1) split, spa
etime is naturally des
ribed by Eulerian observers sittingin the spa
e-like hypersurfa
es with 
onstant spatial 
oordinates; in the (1+3)split, spa
etime is des
ribed by Lagrangian observers moving along the world-line whi
h de�ne the threading.Although we prefer a (3+1) splitting, we will have in mind the latter pointof view when de�ning the other kinemati
 quantities of matter 
ontent, even ifde�nitions are 
oeherent in any of the two approa
hes.Stress-energy tensorThe stress-energy tensor in E.E. provides the sour
e for the metri
 variables: asthe FRW metri
 is our zeroth order solution of the universe, the stress-energy
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terization of the matter 
ontent 33tensor of the ba
kground matter is for
ed to take a perfe
t �uid form
T µν = (ρ+ p)uµuν + pgµν (2.11)where with perfe
t �uid we generally mean a pat
h of matter isotropi
 in its restframe and 
hara
terized only by pressure and energy density. We then a prioriex
lude any extra terms 
orresponding to bulk and shear vis
osity (respe
tively,the isotropi
 stress generated when an imperfe
t �uid is rapidily 
ompressed orexpanded, and the stress due to the shear -see below), thermal 
ondu
tion andother physi
al pro
esses.To these restri
tions we add our requirement of matter 
ontent being pressurelessand hen
e 
ollisionless: su
h a pressurless �uid is often 
alled dust or 
old dustand is des
ribed by a very simple stress-energy tensor, namely

T µν = ρuµuν (2.12)Other kinemati
 quantitiesLet V µ be a time-like unit ve
tor �eld, tangent ve
tor to a 
ongruen
e of time-like 
urves; the following quantities are de�ned:PROJECTION TENSOR hµν = gµν + VµVν (2.13a)VECTOR-GRADIENT TENSOR Θµν ≡
1

2
h α

µ h β
ν (Vα;β + Vβ;α) (2.13b)EXPANSION Θ ≡ V µ

;µ (2.13
)SHEAR σµν ≡ Θµν −
1

3
hµν Θ (2.13d)VORTICITY OR TWIST ωµν ≡ h α

µ h β
ν (Vα;β − Vβ;α) (2.13e)ACCELERATION aµ ≡ Vµ;ν V

ν = V̇µ (2.13f)These time-like 
urves 
ould represent the histories of small test parti
les,in whi
h 
ase they would be geodesi
s, or they might represent the �ow linesof a generi
 �uid: hen
e, quantities of (2.13) assume spe
i�
 physi
al meaningsdepending whether the time-like unit ve
tor is the normal ve
tor �eld to a familyof spa
e-like hypersurfa
es nµ, the 4-matter velo
ity uµ or geodesi
s tangents
ξµ of free parti
les.

V µ = nµ) If V µ = nµ then the proje
tion tensor is the well known spatialmetri
 and Θ represents the volume expansion rate of the hypersurfa
es alongthe normal ve
tor.
V µ = uµ) If V µ = uµ, hµν is at ea
h point a proje
tion tensor into the restspa
e of an observer moving with 4-velo
ity uµ; the velo
ity-gradient tensor de-termines the rate of 
hange of distan
e of neighbouring parti
les in the �uid and

Θ its isotropi
 volume expansion. The shear tensor σµν (the tra
e part of Θµν)determines the distorsion arising in the �uid �ow leaving the volume 
onstant:the dire
tion of the prin
ipal axes of shear (its eigenve
tors) are un
hanged bythe distorsion, but all other dire
tions are 
hanged. Finally, the vorti
ity tensor
ωµν determines a rigid rotation of pat
h of �uid with respe
t to a lo
al inertialrest frame leaving one dire
tion (the axis of rotation) �xed (see Figure 2.2).
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Figure 2.2: It is probably easiest to understand the meaning of some of the de�nedquantities by 
onsidering how a sphere of �uid parti
les 
hanges during the elapse ofa small in
rement in proper time, 
hoosing 0 at the 
entre of the sphere: (a) a
tion ofexpansion Θ alone; (b) a
tion of shear σµν alone; (
) a
tion of vorti
ity wµν .As one moves along one of su
h families 
urve, expansion, shear and vorti
ity
hange with pre
ise evolution equations, knowing the Riemann tensor. Amongthe others, we 
on
entrate our attention on the Ray
haudhuri Equation, theequation for the rate of 
hange of the expansion Θ whi
h plays a 
entral rolethroughout the thesis:
dΘ

dS
= −RµνV

µV ν + 2ω2 − 2σ2 − 1

3
Θ2 + ˙V µ

;µ (2.14)(where ω2 = 1
2ωµνω

µν ≥ 0 and σ2 = 1
2σµνσ

µν ≥ 0)From it one sees that vorti
ity indu
es expansion (+ sign) as might be expe
tedby analogy with 
entrifugal for
es, while shear indu
es 
ontra
tion (- sign).We do not derive here equation (2.14) in fully generality but we postpone thetask to a next se
tion, where we will adopt a pre
ise gauge 
hoi
e and hypoth-esis on matter in order to express the Ri

i tensor through E.E. Anyway, let usremark that the Ray
haudhury equation is valid apart from E.E..We re
all that another hypothesis that our matter 
ontent will have to satisfyis to be not only pressureless but also irrotational, that is with ωµν ≡ 0: thereason of su
h a requirement will be manifest in next se
tion.2.3 The syn
rhonous and 
omoving system of 
o-ordinatesDe�ning the syn
hrounous gaugeWe begin following the �rst approa
h outlined in the previous se
tions.Let (M, gµν) be a manifold with metri
 of signature (-,+...+): the syn
hronousgauge is de�ned by the 
onditions
g00 = −1, g0i = 0
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rhonous and 
omoving system of 
oordinates 35In terms of 
oordinates, if dimM = 1 +n then we must spe
ify 1+n 
ondi-tions, be
ause 1 + n are the 
oordinates tranformations: g00 
arries with itselfone degree of freedom and de�nes the temporal 
oordinate (the sli
ing), whilethe n-ve
tor g0i �xes the spatial 
oordinates.In terms of 
omponents under spatial transformations (s
alars, ve
tors and ten-sors -see later Appendix A-), a gauge 
hoi
e is implemented with 2 s
alars and1 transverse ve
tor: 1 s
alar 
omes from g00, 1 s
alar and 1 ve
tor from g0i.Let then see the properties of su
h a 
oordinate system.Fa
t 1. g00 = −1 =⇒ temporal 
oordinate x0 ≡ proper time η.Indeed, between two events at the same spatial 
oordinates, we have
dS2 = gµνdx

µdxν = −c2dη2 = g00dx
0dx0 ⇒ dη = 1

c

√−g00dx0In other words, g00 = −1 implies that the proper-time distan
e between twoneighboring hypersurfa
es along the normal ve
tor 
oin
ides with the 
oordinate-time distan
e de�ning these hypersurfa
es.For this reason, we will even refer to this 
ondition with the expression proper-time sli
ing.Fa
t 2. g0i = 0 =⇒ 6= spa
e-
oordinates 
lo
ks syn
hronization.Indeed, the rate of deviation from simultaneity between two 
lo
ks at di�er-ent spatial 
oordinates measuring the same events is ∆x0
SIM = − g0idxi

g00
(see theusual radar-rangin experiment). In this 
ase, the time 
oordinate of an eventmarked by two 
lo
ks at di�erent spatial 
oordinates 
oin
ide.Another way of de�ning the syn
hronous gauge refers to the se
ond approa
hseen earlier. Let (M, gµν)be a 1 + n-dimensional spa
etime.Syn
hronous gauge: foliation ofM in n-hypersurfa
es at t = const on whi
hwe put spatial 
oordinates su
h that 
lo
ks are syn
hronized, and identi�
ationof normal geodesi
s as time-lines along whi
h we let the time-
oordinate �owing.

Σt ⊥ geodesicsSu
h a geometri
al 
onstru
tion is possible thanks to the next general fea-tures.Lemma 1. Let Σ be a n-dimensional submanifold ofM with Riemannian met-ri
; let nµ the ve
tor normal to Σ in a generi
 point p ∈ Σ. Then nµ has thedire
tion of time (it is inside the light-
one of p).Lemma 2 (Existen
e and uni
ity of geodesi
s). Given p ∈ M and Vp thetangent spa
e at p of M, then for any T µ ∈ Vp there always exists a uniquegeodesi
 through p with tangent T µ.Applied to our situation, these two lemmas allow us to de�ne a sensiblepres
ription for the 
oordinates 
hoi
e. The n-dimensional embeddedsubmanifolds of M are our spa
e-like hypersurfa
es at 
onstant time, whosetangent spa
es 
an be naturally viewed as n-dimensional subspa
es of the tan-gent spa
e ofM. We begin referring to a single hypersurfa
e at 
onstant time,whi
h we 
ould 
all ΣIN : for brevity, we will avoid this spe
i�
ation remember-ing that the possibility of extending the 
onstru
tion to all Σt is not obviousbut feasible and viable. So, let p be a generi
 point of Σ and nµ the unique



36 Dust Cosmology: frame and formalismve
tor ∈ Vp orthogonal to all ve
tors in Vp(Σ): for the lemma 1, this ve
tor doesnot lie in Vp(Σ). Then we 
an 
onstru
t the unique geodesi
 through p withtangent nµ and �x the 
oordinates as follows. We 
hoose arbitrary 
oordinates(x1, ..., xn) on a portion of Σ: then we label ea
h point q in a neighborhoodof that portion of Σ with the parameter t along the geodesi
 on whi
h it liesand with the 
oordinates x1, ..., xn of the point p ∈ Σ from whi
h the geodesi
emanated.In a su�
iently small neighborhood of ea
h p ∈ Σ, the map q → (t, x1, ..., xn)de�nes the 
hart we wished to 
onstru
t.2Moreover, one 
ould demonstrate that the geodesi
s remain orthogonal to allthe hypersurfa
es Σt [1℄, showing that the pres
ription for the 
oordinate 
hoi
e
an be extended to all the spa
etime.

P

Σ

Σ

τ

INFigure 2.3: Constru
tion of Gaussian Normal 
oordinates or syn
hronous gauge.This geometri
al 
onstru
tion, otherwise the �rst one, shows mu
h more di-re
tly the 
onne
tions between the physi
al 
on
ept of system of 
oordinatesand the mathemati
al one of 
hart of a manifold.There is more. The geodesi
s emanating from Σ may eventually 
ross or runinto a singularity. This o

uren
e is harmful in the (3+1) frame be
ause thehypersurfa
es (exa
tly by the de�nition of embedded submanifold) shoul not
ross themselves or the others in order to preserve the 
hart being one to oneand onto: in that 
ase, on the 
ontrary, two di�erent sets of xµ label the samespa
etime event. This is the reason why the threading (1+3) des
ription is moregeneral than the sli
ing one [7℄ and in some 
ases preferable.2We use here the time label t 
onsistently with global iperboli
ity theorem: anyway, t isstill just a time 
oordinate or parametrization, that one we 
alled x0: when later we willassume a syn
hronous gauge then we will be allowed to use t as proper time.
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rhonous and 
omoving system of 
oordinates 37Equivalen
e of the two de�nitionsThe syn
hronous frame in the �rst approa
h presents the following properties.Fa
t 3. g00 = −1, g0i = 0 =⇒ time-lines (with x1 = ... = xn = const) areorthogonal to hypersurfa
es at t = const.In other words, the rate of deviation of a 
onstant spa
e-
oordinate line from aline normal to a 
onstant time hypersurfa
e is null.Indeed, let us write the n-ve
tor tangent to the time-like lines:
ξµ =

dxµ

dλ
with dλ = (−dS2)

1
2 : ξ0 = −1, ξi = 0Let us write the n-ve
tor ⊥ Σt: nµ = ∂t

∂xµ with n0 = 1, ni = 0.Then n0 = g0ρ nρ = −1, ni = ni ⇒ n0 ≡ ξ0 and ni ≡ ξi.�Fa
t 4. g00 = −1, g0i = 0 =⇒ time-like lines are geodesi
s of all spa
etime.Indeed, let ξµ be the tangent n-ve
tor to lines de�ned by the equation x1 =
... = xn = const : ξ0 = −1, ξi = 0. Let us remember the geodesi
 equation:

dxµ2

dt2
+ Γµ

νρ

dxν

dt

dxρ

dt
= 0We 
an easily see that ξµ is solution of the equation. In fa
t

dξ0

dS + Γ0
νρξ

νξρ = 0 + Γ0
00ξ

0ξ0 + Γ0
0jξ

0ξj + Γ0
ijξ

iξj = 0 and dξi

dS + Γi
νρξ

νξρ = 0,being Γ0
00 = Γi

00 = 0.�In other words, if g00 = −1, g0i = 0, ve
tors orthogonal to the hypersurfa
esare (tangent to) time-like lines of 
onstant spa
e-
oordinates and time-like linesare geodesi
s. These features of syn
hronous 
onditions allow to implement thegeometri
al 
onstru
tion of the se
ond way demostrating the equivalen
e of thetwo approa
hes. Yet, they are less general than the two lemmas seen earlier,that is why we preferred to show the two de�nitions separately.Other 
hara
terizations of syn
hronous gauge
• A syn
hronous gauge 
hoi
e is in prin
iple always possible for a spa
etimelike our own, 1+3-dimensional with Lorentzian metri
.
• The syn
hronous gauge 
hoi
e is not unique: gauge-�xing 
onditions or ge-ometri
al 
onstru
tion do not eliminate the gauge freedom, neither in timesli
ing nor in spa
e-
oordinates setting. They leave a so 
alled residualgauge freedom. Infa
t:� 1st approa
h: a metri
 su
h as

dS2 = −dt2 + hij dx
idxjadmits any time-
oordinate transformation and any spa
e-
oordinatestranformation.� 2nd approa
h: although the 
hart is well de�ned, a residual gaugefreedom arises from the freedom to adjust the initial settings of the
lo
ks (to 
hoose the ΣIN ) and to 
hoose the initial spatial 
oordinatelabels (the origin of spa
e-
oordinates).
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• In the syn
hronous gauge, there exists a natural 
hoi
e of referen
e sys-tem, that one of "fundamental observers" who fall freely along the normalgeodesi
s 
arrying 
lo
ks reading time t. Be
ause the spatial 
oordinates
xi of ea
h fundamental observer are held �xed with time, the xi in syn-
hronous gauge are Lagrangian 
oordinates.
• In the syn
hronous gauge, it is not possible to put at rest (~v = 0) allthe matter �lling the spa
e: it is to say that a syn
hronous system is notne
essarily a 
omoving gauge.
• Kµν = 1

2Lξhµν = 1
2

∂hµν

∂t .The 
omoving gaugeThe 
omoving gauge, unlike the syn
hronous one, deals with the 
ontent ofmatter in our spa
etime.Let (M, gµν) be a manifold with metri
 of signature (-,+...+): the 
omovinggauge is de�ned as the frame in whi
h all �lling spa
e matter is at rest:
ui = 0This 
ondition �xes spatial 
oordinates only: ui 
arries with itself only 3 degreesof freedom in terms of 
oordinates and 1 s
alar and 1 solenoidal ve
tor in termsof 
omponents. We then should 
all this 
ondition spa
e-
oordinates 
hoi
erather than gauge. What about the time sli
ing?Following [6℄, we stress that there are several possibilities in asso
iating thisspa
e-
oordinates 
hoi
e to a time-sli
ing: for example, one 
ould take g00 =

ui = 0, in what 
an be 
alled 
omoving proper-time gauge, or g0i = ui = 0 thatis a 
omoving time-orthogonal gauge.Consistently with [16℄ and [17℄, we will think of the latter alternative as our
omoving gauge and we spe
ify the de�nitions as follows: Let (M, gµν) be amanifold with metri
 of signature (-,+...+): the 
omoving gauge is de�nedby the 
onditions:
ui = g0

i = 0The quantity (ui − gi
0) 
an be shown to be a s
alar under gauge transfor-mations ([6℄: it transforms under gauge 
hange only with the α of law (2.4)):the 
ondition ui − gi

0 = 0 �xes a sli
ing su
h that the matter (1 + n)-velo
ityis orthogonal to the 
onstant time hypersurfa
es (velo
ity-orthogonal sli
ing).The 
onditions ui = g0i = 0 impose a spa
e-
oordinates 
hoi
e su
h that the�uid is at rest and 
lo
ks are syn
hronized.In terms of the geometri
al approa
h: Let (M, gµν)be a 1 + n-dimensionalspa
etime. Comoving gauge: foliation ofM in n-hypersurfa
es at t = conston whi
h we put spatial 
oordinates su
h that 
lo
ks are syn
hronized and �uidat rest, and identi�
ation of normal matter worldlines as time-lines along whi
hwe let the time-
oordinate �owing.
Σt ⊥ matter worldlinesFor this 
oordinate system we have the following properties:
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• The "s
alar 
ondition" 
ompletely eliminates the gauge freedom asso
iatedwith initial hypersurfa
e 
hoi
e, while on hypersurfa
es there remains aresidual gauge freedom related to the origin of spatial 
oordinates.
• In the 
omoving gauge, the stress-energy tensor satis�es T 0

i = 0.
• In the 
omoving gauge, there exists a natural 
hoi
e of referen
e system:the one of observers 
omoving with the matter �ow, that is observersseated on parti
les and then moving along their worldlines.
• Kµν = 1

2Luhµν = 1
2

∂hµν

∂tPressureless and irrotational �uid: syn
hronous and 
omoving gaugeAs pointed out earlier, a syn
hronous system is not ne
essarily 
omoving withthe matter. Is there a parti
ular situation in whi
h the two gauge 
hoi
es 
anbe taken simultaneously?Fa
t 5. p = 0 =⇒ a syn
hronous gauge 
an be 
omoving.Let us remember that
• traje
tories of parti
les subje
ted only to gravitational for
es are geodesi
lines
• traje
tories of parti
les subje
ted to pressure for
es (i.e. non-gravitationalfor
es) are not geodesi
 lines.By pressureless �uid (p = 0) we mean non-
ollisional �uid, that is a �uid withno pressure for
es. Then, this �uid traje
tories are geodesi
s: worldlines ≡geodesi
s. If p = 0 there' s no 
ontradi
tion in 
hoosing a syn
hronous gaugewhi
h is 
omoving as well. �A
tually, the 
ondition p = 0 is not the only ne
essary 
ondition for havinga syn
hronous and 
omoving gauge.Let us write the �uid (1 + n)-velo
ity in 
omoving 
oordinates: uµ = (1, 0). Ifwe are in a syn
hronous gauge as well, uµ = (−1, 0).Let us then see the vorti
ity: as shown in previous se
tions,

ωµν = uµ;ν − uν;µ with uµ;ν = uµ,ν − Γα
µνuαThen

ωµν = uµ,ν − uν,µ = 0 for the parti
ular 
hosen frame. (2.15)But (2.15) is a tensor equality whi
h must be veri�ed in any 
oordinates system.We 
an then dedu
e that in a syn
hronous but non 
omoving gauge curl ~v = 0and that
p = 0 and ω = 0 =⇒syn
hronous and 
omoving gauges 
an be taken simultaneouslyThroughout the thesis we will then work in this spe
ial frame, assuming allthe good properties of ea
h two gauges. In parti
ular, our protagonist variable



40 Dust Cosmology: frame and formalism(stressing on its purely spatial nature) will be the velo
ity-gradient tensor orextrinsi
 
urvature:
Θi

j = ui
;j =

1

2
hia ˙haj = Ki

j. (2.16)Our spa
etime will be des
ribed by fundamental observers moving along par-ti
le geodesi
s≡worldlines and we will naturally be led to follow a lagrangianapproa
h. A
tually, be
ause with this 
hoi
e we are taking the threads to 
or-respond to the worldlines of 
omoving observers in the sli
ing framework (linesof �xed ~x), then the two (3+1) and (1+3) des
riptions of Berts
hinger paper[7℄ are the same and it will be possible to swit
h from the eulerian approa
h tothe lagrangian one without problems.2.4 Einstein Equations in ADM formalismThe next goal is to rewrite E.E. taking advantage of the frame �xed earlierand separating the operation of spatial derivatives and time derivative: we aregoing to present the (3+1) spa
etime de
omposition of E.E. into 
onstraints andevolution equations developed in detail by Arnowitt, Deser & Misner in 1962[12℄.Einstein Equations read
Rµν −

1

2
gµν R = k2 Tµν (2.17)(with k2 = 8πG

c4 and c = 1)In our frame, the line-element is dS2 = −dt2 + hij(t, ~x) dx
idxj , extrinsi
 
urva-ture and velo
ity-gradient tensor 
on
ide (2.16) and geometri
al quantities areexpressed as reported in Appendix B. Let's then write down E.E 
omponent by
omponent:0-0) R0

0 −
1

2
δ00 R = k2 T 0

0 and substituting from Appendix B,
− Θ̇ + Θa

b Θb
a −

1

2
((3)R+ 2Θ̇ + Θ2 + Θa

b Θb
a) = k2 T 0

0 i.e.
Θ2 −Θa

b Θb
a + (3)R = −2 k2 T 0

00-j) R0
j −

1

2
δ0j R = k2 T 0

j i.e. Θa
j|a −Θ,j = −k2 T 0

ji-j) Ri
j −

1

2
δi
j R = k2 T i

j with R = −k2 T : then
Ri

j = k2(T i
j −

1

2
δi
j T ) and from Appendix B

(3)Ri
j + Θ̇i

j + Θ Θi
j = k2(T i

j −
1

2
δi
j T )



2.4 Einstein Equations in ADM formalism 41Until now we just used the hypotesis of syn
hronous gauge. Equations ob-tained are 
learly separated in 1+3 
onstraints and 6 evolution equations: infa
t, equations arising form G0
µ involve only a single time derivative of spatialmetri
, while those arising from Gi

µ have one time derivative of extrinsi
 
ur-vature and hen
e two time derivatives of spatial metri
. Equations (2.18a) and(2.18b) are known respe
tively as ADM Energy Constraint and ADM Momen-tum Constraint ; equations (2.18
) are simply 
alled ADM Evolution Equations :
Θ2 −Θa

b Θb
a + (3)R = −2 k2 T 0

0 (2.18a)
Θa

j|a −Θ,j = −k2 T 0
j (2.18b)

Θ̇i
j + Θ Θi

j + (3)Ri
j = k2(T i

j −
1

2
δi
j T ) (2.18
)One 
ould desire to spe
ify those equations a

ordingly to the matter 
ontentof the universe whi
h he is drawing. In our 
ase, Tµν = ρ uµuν with uµ =

(1, 0, 0, 0) be
ause of 
omoving 
oordinates and uµ = (−1, 0, 0, 0) be
ause ofsyn
hronous 
oordinates, then it is straighforward to obtain the ADM EinsteinEquations in dust universes :
Θ2 −Θa

b Θb
a + (3)R = +16πGρ (2.19a)

Θa
j|a = Θ,j (2.19b)

Θ̇i
j + Θ Θi

j + (3)Ri
j = 4πGρ δi

j (2.19
)The main advantage of this formalism is that there is only one dimensionless(tensor) variable in the evolution equations, namely the spatial metri
 tensor
hij , whi
h is present with its partial time derivatives through Θi

j and with itsspatial gradients through the spatial Ri

i 
urvature (3)Ri
j . The only remainingvariable is the density ρ, that one 
ould repla
e from the energy 
onstraint orindeed rewrite in terms of hij by solving the 
ontinuity equation

ρ̇ = −Θ ρ (2.20)The redundan
y of disposable equations is again manifest: whi
h equationsto take? One possibility is to dis
ard equations (2.19a) - (2.19b) and to beleft with exa
tly as many se
ond-order in time equations as unknown �elds:ADM 
onstraint equations would then be regarded as providing initial-value
onstraints on geometri
al and matter variables. If these 
onstraints are satis�edinitially (this is required for a 
onsistent metri
), if equations (2.19
) are usedto evolve the metri
 while matter variables are evolved so as to lo
ally 
onservethe net energy-momentum, then ADM 
onstraints will be in prin
iple ful�lled atall later times, and may eventually be used to 
he
k the qualities of subsequent
al
ulations. (In e�e
t, E.E. have built into themeselves the requirement ofenergy-momentum 
onservation for the matter via Bian
hi Identities.)We will follow exa
tly this road, after having manipulated a little eqs. (2.19
).Ray
haudhuri equationIn (2.14), we reported Ray
haudhuri Equation, the evolution equation alongtime-like 
urves of the expansion rate Θ. Now, ADM evolution equations govern



42 Dust Cosmology: frame and formalismindeed the evolution of the extrinsi
 
urvature tensor Θi
j : being Θ the tra
e partof extrinsi
 
urvature, then the tra
e of (2.18
) or (2.19
) should give exa
tlyRay
haudhuri equation. This is what happens, even if we 
ould rewrite it inseveral ways. One should take infa
t the tra
e dire
tly of (2.19
) or of (2.18
)(remebering that in our 
ase tr T i

j = 0) to obtain
Θ̇ + Θ2 + (3)R = k2((3)T − 3

2
T ) = 12πGρ,and then 
ould use the Energy Constraint (2.19a) in order to substitute (3)R or

ρ. We report here both of possibilities, but we will be in
lined to use the se
ondone to avoid 
al
ulating later the perturbed expression of energy density:
Θ̇ + Θab Θab + 4πG ρ = 0 (2.21a)

Θ̇ +
1

4
Θ2 +

3

4
Θab Θab +

1

4
(3)R = 0 (2.21b)Note that if one takes equation (2.14), expresses Ri

i tensor through E.E.applying the hypotheses of sin
hronous and 
omoving gauge and pressurelessand irrotational perfe
t �uid, he will �nd the Ray
haudhuri Equation in theform given in (2.21a).In fa
t, dΘ

dS
= −RµνV

µV ν + 2w2 − 2σ2 − 1

3
Θ2 + ˙V µ

;µ;we are in the 
ase V µ = uµ and we are following parti
les alongtheir worldlines, then
dΘ

dt
= −Rµνu

µuν + 2w2 − 2σ2 − 1

3
Θ2 + u̇µ

;µ.Now, uµ = (1, 0, 0, 0) and w = 0 so dΘ
dt

= −Rµνu
µuν − 2σ2 − 1

3
Θ2.

Rµνu
µuν = k2(Tµν −

1

2
gµν T ) uµuν =

1

2
k2 ρ and σ2 = Θµν Θµν − 1

3
Θ2

=⇒ Θ̇ + Θµν Θµν + 4πGρ = 0 �This should demostrate in a very spe
i�
 
ase the evolution equation of theexpansion.Conformal res
aling and FRW ba
kground subtra
tionWith the purpose of making the metri
 pertubations of the Einstein-de Sitterba
kground, it is 
onvenient (as suggested in [19℄) to fa
tor out the homogenousand isotropi
 solution of the above evolution equations: to this aim we alsoperform a 
onformal res
aling of the metri
 with 
onformal fa
tor a(t), thes
ale-fa
tor of FRW models, and 
hange the time variable to the 
onformaltime τ , de�ned by dτ = dt
a(t) . The line-element is then written in the form

dS2 = a2(τ) [−dτ2 + γij(τ, ~x)dx
idxj ] (2.22)where a2(τ)γij(τ, ~x) ≡ hij(t(τ), ~x).



2.4 Einstein Equations in ADM formalism 43We re
all here brie�y the properties and solutions of the FRW universe �lledwith a perfe
t �uid of dust (n = 3), that is the properties of the Einstein- deSitter ba
kground:
dS2

FRW = a2(τ) [−dτ2 +
dr2

1− κ r2 + r2dθ2 + r2 sin2 θ dφ2] (2.23a)
(3)Rijkl =κ(γik γjl − γil γjk) (2.23b)

(3)Rij =2κ γij (2.23
)
(3)R =6κ (2.23d)
(
a′

a
)2 =

8π G

3
ρb a

2 − κ (2.23e)
2(
a′′

a
)− (

a′

a
)2 + κ = 0 (2.23f)

ρ̇b = −3
a′

a
ρb (2.23g)where primes denote di�erentiation with respe
t to the 
onformal time τ , κrepresents the 
urvature parameter of FRW models and ρb the energy densityof the ba
kground.By subtra
ting the isotropi
 Hubble-�ow, we introdu
e a pe
uliar velo
ity-gradient tensor or 
onformal extrinsi
 
urvature:

θi
j = a ũi

;j −
a′

a
δi
j =

1

2
γia γ′aj (2.24)( with ũµ = (1/a, 0, 0, 0))su
h that

Θi
j =

1

a
(θi

j +
a′

a
δi
j) and Θ =

1

a
(θ + 3

a′

a
) (2.25)We are ready to rewrite our equations 2.19 in the new formalism: in detail,we want

• to express everything in terms of 
onformal time τ : dt = a(t)dτ

• to repla
e the unknown hij with the 
onformal spatial metri
 γij (see 2.25)
• to subtra
t from the above equations the ba
kground FRW Einstein-deSitter zeroth order solution (see 2.23).We report the results, having introdu
ed the density 
ontrast δ = (ρ − ρb)/ρband renamed the 
onformal Ri

i 
urvature of the three-spa
e Ri

j = (3)Ri
j(γ) =

a2 (3)Ri
j(h): in what follows we will sometimes refer to these equations as ADMres
aled perturbed Einstein Equations.

θ2 − θa
b θ

b
a + 4

a′

a
θ + (R− 6κ) = +16πG a2δρb (2.26a)
θa

j|a = θ,j (2.26b)
θi

j

′
+ 2

a′

a
θi

j + θθi
j +

a′

a
θ δi

j + (Ri
j − 2κδi

j) = (4πG a2 ρbδ)δ
i
j (2.26
)



44 Dust Cosmology: frame and formalismFrom now on the bar denotes 
ovariant derivatives in the three-spa
e withmetri
 γij . The 
al
ulation of (2.26) requires some attention: it's worth remem-bering that if θij =
1

2
γ′ij then θij = −1

2
γ

′ijand that the presen
e of time derivative must always be handle with 
are.�Equation (2.26
) will be the equations through whi
h we will 
al
ulate per-turbed metri
 at �rst and se
ond order. As shown in Chapter 4, our perturbedspatial metri
 will be written down as fun
tion of two perturbative fun
tions,one with tra
e, the other one tra
eless: as last step of the 
hapter, we want tosplit the evolution equations in their tra
e and tra
eless part, so that the Ray-
haudhuri equation governs the evolution of the tra
e of spatial metri
, whilethe tra
eless part of (2.26
) has the tra
eless perturbative fun
tion as ea
h ordersolution of spatial metri
.The former is obtained taking the tra
e of (2.26
) (as already done some pageago), using the Energy Constraint (2.26a) in order to express the matter 
on-tent and remembering expansion and shear (pe
uliar) de�nitions (see (2.13));the latter substituting expression for (pe
uliar) expansion as fun
tion of (pe
u-liar) shear, θi
j = σi

j + 1
3θδ

i
j ; we suppose to deal with spatially �at universes,namely κ = 0:

θ′ + 2
a′

a
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (2.27a)

σi
j

′
+ 2

a′

a
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j) (2.27b)Equations (2.27) are still a system of six indipendent equations: one degree offreedom 
omes from the Ray
haudhuri equation, 5 from the evolution equationof shear.The following Table resumes the formalism introdu
ed in this Chapter andadopted throughout this thesis:FRAME AND FORMALISMmatter 
ontent:IRROTATIONAL (ω = 0) DUST (p = 0)metri
 ba
kground:EINSTEIN-DE SITTER UNIVERSE
dS2

FRW = a2(τ) [−dτ2 + dr2

1−k r2 + r2dθ2 + r2 sin2 θ dφ2]matter ba
kground:
T µν = ρuµuνgauge 
hoi
e:SYNCHRONOUS+COMOVINGevolution equations:tra
e part) θ′ + 2a′

a θ + 1
2θ

2 + 3
4σ

2 = − 1
4Rtra
eless part) σi

j
′
+ 2a′

a σ
i
j + θ σi

j = −(Ri
j − 1

3Rδi
j)



Chapter 3Standard PerturbationTheory at First and Se
ondOrderAs emphasized in the Introdu
tion and in the Chapter 1, the study of the large-s
ale stru
ture of the universe and its origin is usually performed with di�erentte
hniques and approximations, depending on the spe
i�
 range of s
ale underanalysis. The full relativisti
 theory rather than the Newtonian approximationis needed when one of the following three situations o

urs: strong gravitational�elds, relativisti
 motion (v ∼ c) for both sour
es and test parti
les, s
ales largerthan the Hubble radius. In terms of density irregularities or more generally of
osmologi
al perturbations, these situations are expressed as pronoun
ed am-plitudes of irregularities, high lo
al density and perturbation wavelengths largerthan the Hubble horizon size.In this Chapter we lay the essential ideas of full relativisti
 
osmologi
al pertur-bations theory as developed by Lif
hitz, Peebles, Bardeen, Kodama & Sasaki,and others, sin
e the Sixties ([24℄, [25℄, [18℄, [6℄,...). We present the usual 
las-si�
ation of metri
 perturbations, de�ne the notions of gauge 
hoi
e and gaugetransformations in the perturbative 
ontext trying to make it 
lear why su
ha terminology has been adopted in 
onne
tion with the standard 
on
epts ofChapter 2, and brie�y dis
uss the 
onsequen
es of gauge invarian
e. Never-theless we do not dwell upon elegant gauge-invariant formalisms su
h those ofBardeen and Kodama & Sasaki, but we prefer to summarize the standard re-sults in the sy
hronous gauge at �rst and se
ond order, having in mind a further
omparison with the alternative te
hnique worked out in Chapter 4. In whatfollows we will refer to the formalism of this Chapter as Standard PerturbationTheory.3.1 Ideas of the Standard Perturbation TheoryFrom a very general point of view, the idea underlying the theory of 
osmologi
alperturbations is to �nd approximate solutions of some �eld equations regardingthem as small deviations from a known exa
t ba
kground solution. In our 
ase,



46 Standard Perturbation Theory at First and Se
ond Orderwe restri
t the ba
kground spa
etime (or zeroth order solution) to belong to a
ertain 
lass, namely FRW spatially homogenous and isotropi
 spa
etimes; theequations we have to try to solve are of 
ourse E.E..In General Relativity, like in any other spa
etime theory, the di�
ulties arisefrom the fa
t that not only �elds in a given geometry have to be perturbed,but the geometry itself; besides, 
oordinate invarian
e 
ompli
ates General Rel-ativity 
ompared with other gauge theories (like Ele
trodynami
s in Minkowskispa
etime) in whi
h the spa
etime 
oordinates are �xed while other variables
hange under the appropriate gauge transformations.There are two pra
ti
al methods for getting the equations of a perturbedsystem:
• One 
ould derive the Euler-Lagrange perturbed equations from an A
tionPrin
iple: the (r + 1)th order perturbation of the a
tion S of a systemprodu
es rth order Euler-Lagrange equations;
• or one 
ould dire
tly write equations of the system and perturb themaround the ba
kground solution.We will follow exa
tly the se
ond approa
h, as suggested at the beginning.The perturbed spa
etime is often 
alled the physi
al spa
etime (M, gµν), whilewe refer to the unperturbed spa
etime with known solution as the ba
kground(M0, g

FRW
µν ). Being as general as possible, let T be any relevant tensor �eldrepresenting a physi
al or geometri
al quantity in the spa
etime of interest andsatisfying some �eld equations, and let T(0) be the known value that the samequantity has in the given unperturbed ba
kground. If the deviation from theknown exa
t solution T(0) is small, it makes sense to look for an approximatesolution by expanding T in Taylor series in a suitable parameter ǫ.Consider the equation

E(T ) = 0 (3.1)for the unknown fun
tion or, more generally, for a 
olle
tion of fun
tions ortensor �elds T . In the 
ase of interest, T is the spa
etime metri
 gµν (possiblytogether with variables des
ribing the matter 
ontent like the stress-energy ten-sor Tµν), and E are the E.E.The basi
 assumption in perturbation theory is the existen
e of a parametri
family of solutions of the �eld equations, to whi
h the unperturbed ba
kgroundspa
etime belongs [1℄:
E(Tǫ) = 0 su
h that (3.2)

• ǫ is real;
• Tǫ is a di�erentiable fun
tion of ǫ (and Tǫ 
an be written as T (ǫ));
• ǫ = 0 identi�es the ba
kground: Tǫ|ǫ=0 = T(0).In 
osmology and in many other 
ases in general relativity, one deals with a one-parameter family of models (Mǫ, Tǫ). In some appli
ations, ǫ is a dimensionlessparameter arising naturally from the physi
al problem one is dealing with: inthat 
ase one expe
ts the perturbative solution to a

urately approximate theexa
t one for reasonably small ǫ. In other problems, ǫ 
an be introdu
ed as apurely formal parameter, and in the end, for 
onvenien
e, one 
an 
hoose ǫ = 1.



3.2 Implementing the perturbations 47This is exa
tly what we will do: the physi
al spa
etimeMǫ will eventually beidenti�ed by ǫ = 1.In any 
ase, the parameter ǫ is used for Taylor expanding these Tǫ: as in el-ementary analysis, the idea is to evaluate the deviation from the zeroth orderterm by di�erentiation of the fun
tion of interest. In parti
ular ([15℄), the pro-
edure 
onsists in di�erentiating at di�erent orders the equations and at ea
hstep solving them.For example, as �rst step one 
an derive a simpler equation from equation (3.2)by di�erentiating it on
e with respe
t to ǫ and setting ǫ equal to zero: the equa-tion thus obtained is a linear equation for the �rst derivative of T with respe
tto ǫ, namely δT(1) =
(

dT
dǫ

)

ǫ=0
. Sin
e linear equations are generally mu
h easierto solve than nonlinear ones, it may be feasible to solve the former even if (3.2)is intra
table: if this is the 
ase, an expression as T(0) + ǫδT(1) should yeld agood approximation to Tǫ, and the quality of the approximation 
an be im-proved repeating the pro
edure at the following orders. Then at se
ond order,the se
ond derivative with respe
t to ǫ at ǫ = 0 gives an equation whi
h is linearin the se
ond order perturbation δT(2), and where the �rst order perturbationnow appears as known sour
e terms. This 
an obviously be extended to higherorders, giving an iterative pro
edure to 
al
ulate ∆Tǫ = Tǫ−T(0) to the requireda

ura
y.The result 
an be written as follows

Tǫ = T(0) + ǫ

(

∂T

∂ǫ

)

ǫ=0

+
1

2
ǫ2

(

∂2T

∂ǫ2

)

ǫ=0

+ .... or (3.3a)
Tǫ = T(0) + ǫ δT(1) +

1

2
ǫ2 δT(2) + ... (3.3b)where Tǫ lives in the perturbed world, T(0) in the ba
kground, δT(r) =

(

∂rT
∂ǫr

)

ǫ=0represents the rth order 
orre
tion to T with respe
t to the ba
kground value(the rth order perturbation) and ǫ gives a weight of su
h a 
orre
tion.3.2 Implementing the perturbationsHaving delineated the general ideas underlying the making of perturbations, wewant now to spe
ify the pro
edure to the 
ase under study. As dis
ussed before,we set ǫ = 1 to des
ribe our physi
al spa
etime. We will expand the quantitiesof interest up to se
ond order: this is re
ent and due 
hoi
e, for the in
reasingof 
al
ulations 
omplexity as one goes at higher orders.In order to take into a

ount the geometry of spa
etime and the matter 
ontent,two are the relevant quantities to be perturbed: obviously, the spa
etime metri
(and hen
e all the useful geometri
al quantities Γµ
νρ, Rµν , R) and the stress-energy tensor.Classi�
ation of metri
 perturbationsExpression (3.3b) for small perturbations of the metri
 is rewritten as follows:

gµν(t, ~x) = gFRW
µν (t, ~x) + δg(1)

µν (t, ~x) +
1

2
δg(2)

µν (t, ~x) (3.4)A widely 
ommon use (espe
ially when the expansion was stopped at �rst order)is to generi
ally expand the perturbations in Fourier 
oe�
ients or in any other



48 Standard Perturbation Theory at First and Se
ond Orderbasis eigenfun
tions, so that any (Fourier) 
omponent or mode is naturallyasso
iated to a wavenumeber and wavelength. We will not adopt dire
tly thispoint of view, but prefer a more 
ommon approa
h 
onsisting in splitting ofperturbations in di�erent spatial symmetry 
omponents, 
alled modes as well.The 
omponents of a perturbed spatially �at FRW metri
 
an be written as [13℄
g00 =− a2(τ)(1 + 2φ(1) + φ(2)) (3.5a)
g0i =a2(τ)(ω

(1)
i +

1

2
ω

(2)
i ) (3.5b)

gij =a2[(1− 2Ψ(1) −Ψ(2))δij + χ
(1)
ij +

1

2
χ

(2)
ij ] (3.5
)where τ is the 
onformal time and the i-j 
omponents have been split in a tra
epart and a tra
eless one: χ(r)i

i = 0.The perturbation variables or perturbative fun
tions (φ, ψ, ωi, χij) are treatedex
lusively as 3-tensors of rank 0, 1, or 2 a

ording to the number of indi
es:they all live on the 3-dimensional hypersurfa
es Σ of the unperturbed world andtheir 
omponents are raised and lowered using δij and δij by de�nition. Thestandard de
omposition of spatial ve
tors and tensors into s
alar and transverseparts of Appendix A then applies:
• φ, ψ are s
alars by their own;
• ω(r)

i = ∂iω
(r) + ω

(r)⊥
i , with ω(r) a s
alar and ω

(r)⊥
i a solenoidal ve
tor,

∂iω
(r)⊥
i = 0;

• χ(r)
ij = Dijχ

(r) + ∂iχ
(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)⊤
ij , with χ(r) a suitable fun
tion,

χ
(r)⊥
i a solenoidal ve
tor, ∂iχ

(r)⊤
ij = 0; hereafter, Dij = ∂i∂j − 1

3δij∇2.Equations (3.5) are 
ompletely general: gµν has 10 independent 
omponentsand we have introdu
ed 10 independent �elds, 1+1+3+5 for φ + ψ + ~ω + χ.Moreover, as the most general perturbations of the metri
, they 
ontain all thepossible s
alar, ve
tor and tensor modes : four s
alar parts ea
h having 1 degreeof freedom (φ, ψ, ω, χ), two ve
tor parts ea
h having 2 degrees of freedom(ω⊥, χ⊥), and one tensor part having 2 degrees of freedom (χ⊤, whi
h is sym-metri
, tra
eless and transverse). The total number of degrees of freedom isagain 10 as it must be.There are several reasons for having entered in this mathemati
al 
lassi�
ationof perturbations. First of all, let us still note that, being the 
omponents ofthe perturbed metri
 g00, g0i, gij respe
tively a s
alar, a ve
tor and a tensorunder spatial 
oordinate transformations, then a s
alar perturbation only woulda�e
t all the three 
omponents, a ve
tor perturbation only would a�e
t goi, gijleaving g00 unperturbed, and a tensor perturbation would a�e
t ex
usively thespa
e-spa
e 
omponents gij . Furthermore, di�erent perturbations have distin
tphysi
al meanings and represent distin
t physi
al phenomena. In the languageof the (3+1)-formalism, φ is interpreted as the amplitude of perturbation inthe lapse fun
tion, whi
h represents the ratio of the proper-time distan
e tothe 
oordinate-time distan
e between two neighboring 
onstant-time hypersur-fa
es; ω is interpreted as the amplitude of perturbation in the shift ve
tor, whi
hrepresent the rate of deviation of a 
onstant spa
e-
oordinate line from a line



3.2 Implementing the perturbations 49normal to a 
onstant-time hypersurfa
e; ψ 
an be seen as the amplitude of theperturbation of a unit spatial volume, and �nally χ represents the anisotropi
distorsion of ea
h 
onstant-time hypersurfa
e [6℄. The other ve
tor and tensorperturbative fun
tions have no su
h an easy interpretation. From a wider pointof view, ordinary Newtonian gravity is a s
alar phenomenon, i.e. 
orrespondsto the s
alar mode, being the Newtonian potential a 3-s
alar; the ve
tor andtensor modes, on the 
ontrary, represent the relativisti
 e�e
ts of gravitomag-netism and gravitational radiation, whi
h have no 
ounterpart in Newtoniangravity although they are similar to ele
tromagneti
 phenomena. S
alar metri
perturbations are asso
iated to density perturbations, whi
h experien
e gravi-tational instability and lead to stru
ture formation; tensor metri
 �u
tuationsprodu
e gravitational waves, whi
h are not foundamental at all in stru
tureformation but 
an reveal themselves in other phenomena, for example in the
osmi
 mi
rowave ba
kground anisotropies.The spatial de
omposition 
an also be applied to the Einstein and stress-energytensors (see below), allowing us to 
learly see (at least in some 
oordinate sys-tem) the physi
al sour
es for ea
h type of phenomenon. Finally, the 
lassi�
ationwill help us to eliminate unphysi
al gauge degree of freedom, remembering thata gauge 
hoi
e needs two s
alars and one transverse ve
tor 
onditions.Perturbing the matter 
ontentOur ba
kground is the Einstein-de Sitter universe, a FRW matter-dominatedspa
etime. As extensively dis
ussed in the previous Chapter, the matter we
onsider is irrotational dust and the 
orresponding stress-energy tensor is thatof equation (2.12). Let us re
all that this is a very spe
ial and appropriate 
ase,but even other types of stress-energy tensors are largely 
onsidered, as those, forexample, of s
alar �elds. Anyway, we limit the treatment of the perturbationsof the matter 
ontent to the stress-energy tensor of our interest, be
ause if thegeneral idea is always the same the pra
ti
al notations are rather di�erent.Equation (3.3b) is of 
ourse rewritten as follows
Tµν = TDUST

µν + δT (1)
µν +

1

2
δT (2)

µν (3.6)being TDUST
µν = ρuµuν . Therefore we must digress to dis
uss the perturbationsof energy density and 4-velo
ity. Energy density is a s
alar, then it 
an bea�e
ted by s
alar perturbations only; the 4-velo
ity, on the 
ontrary, 
an bea�e
ted by both s
alar and ve
tor perturbations:

ρ = ρ(0)(t) + δ(1)ρ+
1

2
δ(2)ρ (3.7)

uµ =
1

a
(δµ

0 + vµ
(1) +

1

2
vµ
(2)) (3.8)Here, we have already assumed 
omoving 
oordinates in the ba
kground; thevelo
ity perturbation vµ

(r) 
an as usual be split into a s
alar and a ve
tor part,while the time 
omponent v0
(r) is related at any order to the lapse perturbation

φ(r) (see [13℄).We do not linger over writing down the expli
it form of the se
ond-order per-turbed stress-energy tensor even be
ause we will not need it in the 
ontinuation:
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ond Orderanyway, it is interesting to note that, even if the ba
kground T (0)
µν is that of a per-fe
t �uid, a general perturbation leads to the appearan
e of extra terms su
h asisotropi
 stress perturbations (with s
alar perturbations only) and shear stressperturbations, that is anisotropi
 stress perturbations.3.3 Gauge 
hoi
e and gauge dependen
e in per-turbation theoryIn the previous Se
tions, some problems dealing with the 
omparison of quan-tities between the real world and the unperturbed one have been negle
ted andbrought forward. To be honest, it is worthwile to remind that in order to makethe 
omparison of tensors meaningful at all, one has to 
onsider them at thesame point : but T and T(0) of Se
tion 3.1 were de�ned on di�erent manifolds,respe
tivelyM andM0, thus we would be allowed to 
ompare them only aftera pres
ription for identifying points of those di�erent spa
etimes is given.Likewise and for the same reason, perturbations su
h as those of the metri
 andof the stress-energy tensor,

∆gµν = δg(1)
µν +

1

2
δg(2)

µν (3.9)
∆Tµν = δT (1)

µν +
1

2
δT (2)

µν (3.10)of equations (3.4)-(3.6), are well de�ned (univo
ally) only when a 
oordinate
hoi
e has been made.Roughly speaking, a gauge 
hoi
e in 
osmologi
al perturbations theory is aone-to-one 
orresponden
e (a map) between points in the ba
kgroundM0 andpoints in the physi
al spa
etimeM. A 
hange in this 
orresponden
e, keepingthe ba
kground 
oordinates �xed, is then 
alled a gauge transformation, andit 
an be formally expressed in terms of a 
oordinates transformation in theperturbed world à la manière of equations (2.2) or (2.4).The essen
e of the "gauge problem", that has 
reated a great deal of 
onfusionin the past, 
onsists in two stri
tly related points:
• arbitrariness in 
hoosing the map betweenM0 andM;
• gauge dependen
e of the value of perturbations.The se
ond point is probably the most problemati
: the perturbation in somequantity is the di�eren
e between the value it has at a point in the physi
alspa
etime and the value at the 
orresponding point in the ba
kground. A gaugetransformation indu
es a 
oordinate transformation in the physi
al spa
etime,but it also 
hanges the point in the ba
kground 
orresponding to a given pointin the physi
al world. Thus, the value of the perturbation in the quantity willnot be invariant under gauge transformations if the quantity is nonzero andposition dependent in the ba
kground.Two essentially di�erent ways of handling the perturbations have been thendeveloped in the literature:
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• the usual one works with 
oordinates: the gauge is �xed, perturbations ofthe metri
 
omponents are 
onsidered, solutions are written in that gaugeand appropriate relations are used to pass to other gauges and verify the
onsisten
y of the results;
• the other approa
h 
onsists in formulating the problem in terms of gauge-invariant variables and trying to understand the physi
al meaning of su
hvariables.As already anti
ipated, we will adopt the gauge-�xing way.Let us formalize the idea of gauge 
hoi
e as map between the two spa
etimes(see Figure 3.1,[15℄). First of all, let us suppose having �xed a 
oordinate system{xµ} in the ba
kground: any p ∈M0 is labeled by xµ(p). Apart from the way of
onstru
ting the 
orresponden
e, the map a priori depends from the parameter

ǫ: we will later greatly simplify the treatment by taking ǫ = 1 as usual.A �rst way of de�ning the point identi�
ation map 
onsists in 
arrying theba
kground 
oordinate overMǫ:
ψǫ : M0 →Mǫ

p 7→ O = ψǫ(p) with xµ(p) ≡ xµ(O)

O is the point on the physi
al spa
etime 
orresponding to p through the dif-feomorphism ψǫ; ψǫ assigns the same 
oordinate labels between related points,and de�nes in every respe
t a gauge 
hoi
e in the perturbed world: this is thereason why we 
all su
h a map 
hoi
e a gauge 
hoi
e as well. A 
hange in themap ψǫ, keeping the ba
kground 
oordinates �xed, is a gauge transformation.We 
ould as well use a di�erent gauge ϕǫ and think of O as the point of M
orresponding to a di�erent point q in the ba
kground, with 
oordinates xµ(q):
ϕǫ : M0 →Mǫ

q 7→ O = ϕǫ(q) = ψǫ(p) with xµ(q) 6= xµ(O)There is then another reason for 
alling those 
orresponden
es between the dif-ferent spa
etimes with the same terminology of standard gauge fa
ts: the twodi�erent ways of mapping Mǫ through the 
oordinate system of M0 suggesta one-to-one 
orresponden
e between di�erent points in the ba
kground, thatis an a
tive 
oordinate transformation on the unperturbed world. Otherwise astandard gauge transformation (or passive transformation) whi
h 
hanges 
o-ordinate labels to ea
h point keeping the manifold �xed, the 
omposition ofmaps
Φǫ :M0 →Mǫ →M0

p 7→ q = Φǫ(p) = ϕ−1
ǫ (ψǫ(p))is a gauge transformation whi
h does not 
hange the 
oordinate label systembut moves the points on the manifold, and then evaluate the 
oordinates of thenew points: x̄µ(ǫ, q) = Φµ

ǫ (xα(p)).With the same approa
h of Se
tion 3.1, in order to 
ompute at the desiredorder of a

ura
y the e�e
ts of a gauge transformation, we need a Taylor expan-sion. The latter up to 2nd order of the transformation x̄µ(ǫ) = Φµ
ǫ (xα) between
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Figure 3.1: A
tive 
oordinates 
hoi
e on the ba
kground as 
omposition of two gaugesbetween M0 and Mǫthe 
oordinates of any pair of points of the ba
kground 
an be written as follows([15℄,[13℄, ǫ = 1):
x̄µ = xµ + ξµ

(1) +
1

2
(ξµ

(1),ν ξ
ν
(1) + ξµ

(2)) (3.11)where ξ(1) and ξ(2) are two indipendent ve
tor �elds and 
losely related to thatone of equation (2.2). The gauge transformation under (3.11) up to 2nd orderof a generi
al tensor is̄
T = T + Lξ(1)

T +
1

2
(L2

ξ(1)
+ Lξ(2)

)T (3.12)In the light of these new formalism, the generi
 perturbation is rewritten more
arefully as
∆Tǫ = ψ∗

ǫT − T(0) and δT(r) =

(

∂rψ∗
ǫT

∂ǫr

)

ǫ=0

(3.13)and the �rst and se
ond order perturbations of T transform under a gaugetransformation up to se
ond order as
¯δT(1) = δT(1) + Lξ(1)

T(0) (3.14a)
¯δT(2) = δT(2) + 2Lξ(1)

δT(1) + L
2
ξ(1)

T(0) + Lξ(2)
T(0) (3.14b)First order gauge transformationsAs a pra
ti
al appli
ation of all the theory developed in these last few pages,we write down at least the �rst order gauge transformations of the perturbativefun
tions presented earlier; we have in mind the usual de
omposition of gauge
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tor ξ as indi
ated in (2.3):
φ̄(1) = φ(1) + α′

(1) +
a′

a
α(1) (3.15a)

ω̄
(1)
i = ω

(1)
i − α(1)

,i + β
(1)
,i

′
+ d

(1)
i

′ (3.15b)
Ψ̄(1) = Ψ(1) −

1

3
∇2β(1) −

a′

a
α(1) (3.15
)

χ̄
(1)
ij = χ

(1)
ij + 2Dijβ(1) + d

(1)
i,j

′
+ d

(1)
j,i

′ (3.15d)
δ̄ρ

(1)
= δρ(1) + ρ′(0) α(1) (3.15e)

v̄0
(1) = v0

(1) −
a′

a
α(1) − α′

(1) (3.15f)
v̄i
(1) = vi

(1) − β
′,i
(1) − d

′i
(1) (3.15g)Gauge transformations of se
ond order perturbations are mu
h more 
ompli-
ated than these and far ex
eed the ne
essity of this thesis [13℄. The only thingthat is important to point out is the form of su
h transformation rules: forexample, the gauge transformation of the lapse perturbation (3.15a) or of thevelo
ity perturbation time-
omponent (3.15f) are expressed only in terms of α;(3.15d) shows that the tensor modes of χ⊤

ij are gauge invariant at the linear level,as tensor type gauge transformations 
annot exist. In any 
ase, they suggestpra
ti
al methods for gauge �xing.Implementing gauge 
hoi
esHaving demonstrated the meaning of the gauge 
hoi
e in perturbation theory, aslast task of this se
tion we want to give some pra
ti
al pres
riptions for �xingit. The pro
edure we follow is that of the �rst approa
h outlined in Chap-ter 2: analogously to what done earlier, we must impose two relations amongthe gauge-dependent variables, one for �xing the sli
ing and one for the spa
e-
oordinates. The simplest way to spe
ify the time sli
ing is to require one ofthose quantities transforming only with α to vanish; for ea
h time sli
ing thestandard way to eliminate the spatial 
oordinate gauge freedom is to require aquantity whose gauge transformation involves β and di to vanish. Consistentlywith Se
tion 2.3, we thus have the following de�nitions:The syn
hronous gauge in perturbation theory is de�ned by the 
onditions
φ = ωi = 0The 
omoving gauge in perturbation theory is de�ned by the 
onditions
vi = ωi = 0Other possibilities are indi
ated in Table 3.1.
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ond OrderProper-time sli
ing φ = 0Syn
hronous gauge φ = ωi = 0Comoving proper-time gauge φ = vi = 0Velo
ity-orthogonal sil
ing vi = ωiComoving time-orthogonal gauge vi = ωi = 0Velo
ity-orthogonal isotropi
 gauge vi = ωi, χij = 0Longitudinal gauge ωi = χij = 0Poisson gauge ω ,i
i = χ ,j

ij = 0Table 3.1: Examples of possible gauge 
hoi
es in perturbation theory ([6℄, [13℄)3.4 Standard perturbations at 1
st and 2

nd order ofEinstein-de Sitter universe in the syn
hronous-
omoving gaugeWe �nally present the 
al
ulation of the metri
 and matter perturbations upto se
ond order of the Einstein-de Sitter universe in the standard perturbationtheory. The �nal aim is to 
ompare the results of this 
hapter to those onesobtained with the Gradient Expansion Te
hnique presented in the next twoChapters.From now on we will always work in syn
hronous and 
omoving 
oordinates,essentially for a reason of 
onvenien
e in performing 
al
ulations: as a matterof fa
t already se
ond order 
al
ulations are almost invariably a 
omputationaltour de for
e. The simpler form of the gauge-invariant variables often makesit easy to �nd analyti
al solutions and avoids misunderstandings around in
i-dental unphysi
al modes; but a gauge-invariant se
ond order treatment is not
ompletely at hand, and in the 
ase under study there are no parti
ular prob-lems in solving equations. In general, it is not ne
essary to use gauge-invariantvariables during a 
al
ulation, and indeed many 
osmologists 
ontinue su

ess-fully to use the syn
hronous gauge: in the end, when the results are 
onvertedto measurable quantities -spa
etime s
alars- the gauge modes automati
ally get
an
elled. Of 
ourse, some more attention must be paid in numeri
al solutions,where the gauge modes 
an swamp the physi
al ones and the 
onsequent round-o� 
an produ
e signi�
ant numeri
al errors. But this is not our 
ase: yes, we aregoing to get approximate metri
 solutions, but at every order E.E. are analyt-i
ally solved. Unfortunately, the 
omputationally more 
onvenient gauge doesnot ne
essary 
oin
ide with the most interesting one; for example, the Poissongauge, otherwise the syn
hronous one, would allow a more dire
t 
omparisonwith the standard Newtonian and Eulerian approa
hes adopted in Large S
aleStru
ture studies. In any 
ase, one is always free to swit
h to other gaugesmaking good use of the gauge transformation rules mentioned in the previousSe
tion and referen
es therein.Let us then spe
ify the formalism outlined in Chapters 2 and 3 to our task.The 
omponents of a perturbed spatially �at FRW metri
 in the syn
hronous
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omoving gauge are written as follows (see equations (3.5) and the gauge
onditions of the previous page):
g00 =− 1 (3.16a)
g0i =0 (3.16b)
gij =a2[(1 − 2Ψ(1) −Ψ(2))δij + χ

(1)
ij +

1

2
χ

(2)
ij ] (3.16
)Then the res
aled spatial metri
 tensor -the only variable in our equations- reads

γij = (1− 2Ψ(1) −Ψ(2))δij + χ
(1)
ij +

1

2
χ

(2)
ij (3.17)The stress-energy tensor is the usual Tµν = ρuµuν and the Einstein-de Sitterba
kground is des
ribed by a s
ale fa
tor a(τ) ∝ τ2 (as mentioned in Chapter1). The spatial 
urvature is set to zero; the density 
ontrast already introdu
edin Se
tion 2.4 reads in the new formalism δ = ∆ρ/ρ, so that the density 
ontrastexpansion 
orresponding to equation (3.7) is

δ(τ, ~x) = δ(1)(τ, ~x) +
1

2
δ(2)(τ, ~x) (3.18)The ba
kground mass density is ρb ≡ ρ(0): we 
an take its mean value as

ρ(0) = 3/ 2πGa2(τ)τ2. With these notations and hypotheses we 
an rewriteE.E.(2.26) as follows:
θ2 − θa

b θ
b
a +

8

τ
θ +R = +

24

τ2
δ (3.19a)

θa
j|a = θ,j (3.19b)

θi
j
′
+

4

τ
θi

j + θθi
j +

2

τ
θ δi

j +Ri
j =

(

6

τ2
δ

)

δi
j (3.19
)Using the energy 
onstraint (3.19a) and taking the tra
e of the evolution equa-tions (3.19
), the Ray
haudhuri equation takes the �nal form:

θ′ +
2

τ
θ + θa

b θ
b
a +

6

τ2
δ = 0 (3.20)We say that in these equations the really indipendent degree of freedom is γijbe
ause, through the 
ontinuity equation T µν

;ν written in the form (2.20) ofSe
tion 2.4, the exa
t solution for the density 
ontrast is known and 
an bewritten as
δ(τ, ~x) = (1 + δIN (~x))[γ(τ, ~x)/γIN(~x)]−1/2 − 1. (3.21)Here γ = detγij and the subs
ript "IN" denotes the value of quantities at someinitial time [14℄.Cal
ulation s
heme and initial 
onditions The 
al
ulation s
heme 
on-sists in an iterative pro
edure: the unknown spatial metri
 (with its 6 degreesof freedom) is known at the zeroth order and, a

ording to the desired a

ura
y,if r is the expansion order of quantities then r is the number of steps of thiss
heme. We stop our Taylor series at se
ond order, therefore two are the stepswe have to ful�ll. At every order, E.E. in the form given in 3.19 are written in
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ond Orderterms of γij expanded up to the 
orresponding rth order, and they are solvedin the rth order perturbations Ψ(r) and χ(r)
ij : the (r − 1)th order metri
 pertur-bations (
al
ulated at the previous step) appear as known sour
e terms. Thesame pro
edure has to be applied to the expression (3.21) to obtain the density
ontrast.The idea underlying the 
al
ulations should now be almost 
lear: a
tually, thepra
ti
al pro
edure presents many passages and di�
ulties whi
h we are notgoing to 
over and explain, being outside the purpose of the thesis. We will justreport the main results referring to the literature for more details [13℄.Let us now brie�y dis
uss the key issue of the initial 
onditions and otherwell-founded hypotheses. The situation is simpli�ed with the following 
onsid-erations:

• we negle
t linear ve
tor modes sin
e they are not produ
ed in standardme
hanisms for the generation of 
osmologi
al perturbations as In�ation:then ω(1)⊥
i = χ

(1)⊥
i = 0;

• we negle
t linear tensor modes sin
e they play a negligibile role for larges
ale stru
ture formation: then χ(1)⊤
ij = 0.We de
ide to �x the initial 
onditions at the end of In�ation, that is at thetime when the 
osmologi
al perturbations relevant today for the large s
alestru
ture formation are well outside the Hubble radius, i.e. when the 
omovingwavelength aL of a given perturbation mode is su
h that aL ≫ H−1, H =

a′

a2 being the horizon size, as extensively seen in Chapter 1. Information forsu
h a valutation 
ome from the study of 
urvature perturbation ζ evolution-a gauge-invariant variable expressing the 
urvature perturbation on uniformdensity hypersurfa
es (see [14℄). In 
on
lusion, our 
onstraints about the initial
onditions are summarized by
• δIN = 0;
• χ(1)

IN = 0 (for residual gauge �xing).Linear order solutionsAt 1st order the growing-mode 1 solutions for a dust �lled universe in thesyn
hronous-
omoving gauge read
ψ(1)(τ, ~x) =

5

3
ϕ(~x) +

τ2

18
∇2ϕ(~x) (3.22a)

χ
(1)
ij = −τ

2

3

(

ϕ,ij −
1

3
δij∇2ϕ

) (3.22b)
δ(1) =

τ2

6
∇2ϕ (3.22
)where ϕ(~x) is the so-
alled pe
uliar gravitational potential related to δIN throughthe 
osmologi
al Poisson equation (1.40) or (3.22
) itself. A foundamental resultof the standard linear perturbation theory is that at �rst order s
alar, ve
torand tensor modes are de
oupled and evolve indipendently [6℄:1We only 
onsider modes not de
aying with time
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omoving gauge 57Theorem 2. In a FRW spa
etime, s
alar, ve
tor and tensor equations, if theyare 
ovariant with respe
t to the 
oordinate transformation in Σ, linear in theunknown geometri
al quantities and se
ond order at most in the sense of di�er-ential equations, are de
omposed into groups of equations ea
h of whi
h 
ontainsonly 
omponents of one type. Therefore the three types of perturbations 
om-pletely de
ouple from ea
h other dynami
ally.This is of 
ourse true even in the 
ase of Fourier or harmoni
 fun
tions ex-pansions: there, the temporal evolution of expansion 
oe�
ients is determinedby a linear system of di�erential equations, thus there is no 
oupling amongdi�erent wavelenght modes .Let us still note that if we had not negle
ted tensor modes we would haveobtained, by linearizing the tra
eless part of θi
j evolution equation, the equationof the free propagation of gravitational waves in the Einstein-de Sitter universe:

χ
(1)⊤
ij

′′
+

4

τ
χ

(1)⊤
ij

′
−∇2χ

(1)⊤
ij = 0 (3.23)This is why tensor modes are asso
iated to gravitational radiation and peopleoften refer to them as gravitational waves.Se
ond order solutionsAt 2nd order the 
orresponding growing-mode solutions for a dust �lled universein the syn
hronous-
omoving gauge are written, in terms of the gravitationalpotential as well, as follows:

ψ(2) = −50

9
ϕ2 − 5

54
τ2 ϕ,aϕ,a −

τ4

252

(

10

3
ϕ,abϕ,ab − (∇2ϕ)

2
) (3.24a)

χ
(2)
ij =− 10

9
τ2ϕ,iϕ,j +

10

27
τ2ϕ,aϕ,aδij

+
τ4

126

(

19 ϕa
,iϕ,aj −

19

3
ϕ,abϕ,ab δij

− 12 ϕ,ij ∇2ϕ+ 4 (∇2ϕ)
2
δij

)

+△(2)
ij

(3.24b)
δ(2) =

10

9
τ2

(

−1

4
ϕ,aϕ,a + ϕ ∇2ϕ

)

+
τ4

126

(

5(∇2ϕ)
2

+ 2 ϕ,abϕ,ab

) (3.24
)Here△(2)
ij des
ribes se
ond-order tensor modes generated by linear s
alar pertur-bations and possible time-independent terms arising from the initial 
onditionsbut is not ne
essary for our purposes.The prin
ipal and general phenomenon of se
ond-order perturbation theoryis mode mixing. Interesting 
onsequen
es of this fa
t are ([13℄):

• tensor modes χ(2)⊤
ij are no more gauge invariant;

• primordial density �u
tuations a
t as seeds for se
ond-order gravitationalwaves and se
ond-order ve
tor modes;
• density �u
tuations 
an be generated from primordial tensor modes.





Chapter 4
Gradient ExpansionTe
hnique
In this Chapter the 
ore of the thesis is presented, that is the 
al
ulation up tofour spatial gradients of the perturbed spatial metri
 in syn
hronous and 
omov-ing gauge of a matter-dominated universe, within the 
ontext of the GradientExpansion Te
hnique. The latter is a method for expanding and solving E.E. ina series of terms 
ontaining the perturbative fun
tions Ψ and χij , a

ording tothe number of spatial gradients they 
ontain. This is alternative to the standardte
hnique introdu
ed in Chapter 3.The idea of the Gradient Expansion Approximation tra
es ba
k to the Sixtieswith Lif
hitz & Khalatnikov [25℄; later, di�erent approa
hes to this approxima-tion method have been followed a

ording to the �eld of appli
ation and �nalgoal [26℄, [27℄, [30℄, [31℄, [32℄.The formalism worked out in Chapter 2 is assumed: all the work of the fol-lowing two 
hapters has been performed in full relativisti
 approa
h, �xing thegauge, assuming 
onformal time τ and hen
e with all quantities res
aled bythe isotropi
 FRW ba
kground with an expansion fa
tor a(t). The des
riptionapplies to a matter-dominated universe, a universe �lled with pressureless �uidassumed to be irrotational, and E.E. are written in the ADM formalism in theway shown in Se
tion 2.4.Thus, after having introdu
ed our "seed" spatial metri
, explained the natureof our expansion, and presented the iteration s
heme used for getting the so-lutions, we pro
eed in the 
al
ulation of our purely spatial physi
al quantitiesand spatial hypersurfa
es geometri
al quantities in terms of the perturbativefun
tions subsequently up to two derivatives terms (
alled �rst order) and fourderivatives terms (
alled se
ond order).The 
al
ulations and the resolution of the equations have been 
arried out withanalyti
al methods: nevertheless, the 
orre
tness of the results has been veri�edwith internal 
onsisten
y 
he
ks (su
h as Energy and Momentum Constraint ofADM formalism), and at the end 
ontrolled with the help of MATHEMATICA
odes for symboli
 
omputations using EinS pa
kage [23℄.



60 Gradient Expansion Te
hnique4.1 The starting spatial metri
 and ba
kground
omparisonIn the syn
hronous and 
omoving gauge, the line-element is written as in equa-tion (2.22), that is
dS2 = a2(τ) [−dτ2 + γij(τ, ~x)dx

idxj ], (4.1)thus we 
an fo
us only on the quantities lying on 
onstant time hypersurfa
es Σof Chapter 2, starting with the res
aled spatial metri
 tensor γij . Let us writeit in a very general form as follows
γij = e−2Ψ(δij + χij). (4.2)

Ψ and χij are the well-known fun
tions of time and spa
e of the StandardPerturbation Theory of Chapter 3, with χij being a tra
eless tensor 
ontainingthe three modes: s
alar χ, solenoidal ve
tor χ⊥
i and symmetri
 tensor χ⊤

ij .
Ψ and χ 
ontain all the perturbative orders of this te
hnique:

Ψ = Ψ(0) + Ψ(1) +
1

2
Ψ(2) + ... (4.3)

χij = χ
(0)
ij + χ

(1)
ij +

1

2
χ

(2)
ij + ... (4.4)Broadly speaking, if in the Standard Perturbation Theory the expansion pa-rameter of Taylor series is the magnitude of deviations from the ba
kground,in the Gradient Expansion Te
hnique the expansion parameter is the numberof spatial derivatives : in other words, all physi
al and geometri
al quantities ofinterest are expanded in a series on the basis of their spatial gradients 
ontent.Let T be a generi
 �eld, then

T = T(0) + T(1) +
1

2
T(2) + .... (4.5)where

• T(0) 
ontains zero spatial derivatives
• T(1) 
ontains two spatial derivatives...
• T(r) 
ontains 2r spatial derivatives.Our 
hoi
e to asso
iate the �rst order to a 
ontent of two spatial derivativesrather than one, and to 
onsider the se
ond order terms as 
ontaining fourspatial derivatives, and so on with the rth order 
orresponding to 2r spatial gra-dients lies in the form of our equations. In what follows, similarly to what donein Se
tion 3.4, the 
al
ulation pro
edure will 
onsist in an iterative resolutionof E.E. suitable to give the perturbation fun
tions at in
reasing orders: γij willbe the only variable of our equations and will be obtained through an evolutionequation like (2.26
). Now, the spatial gradient 
ontent of equation (2.26
) istwo and these spatial gradients appear in the spatial 
urvature tensors Rij and



4.1 The starting spatial metri
 and ba
kground 
omparison 61s
alar R: therefore the solutions of the metri
 
ontaining zero and one spa-tial derivatives 
an be found in just one iteration negle
ting those terms, whi
hmeans that they solve the same equation. We have to wait for a two-gradientmetri
 for having a non trivial sour
e term of the same gradient 
ontent in Rijand R, that is Rij and R written as fun
tions of a metri
 
ontaining zero gra-dients. The same 
onsiderations apply at following steps, with jumps of twogradients among subsequent solutions for the spatial metri
 γij .The form of the spatial metri
 (4.2) is not a

idental: supposing for a mo-ment that we are allowed to expand the exponential, we write
γij = (1− 2Ψ + ...)δij + χij − 2Ψ χij + ... (4.6)Then, disregarding mixed terms of type Ψ χij , one 
ould see that our spatialmetri
 is formally similar to the one given in the standard theory (3.17) at leastin the aspe
t it assumes at its standard �rst order. Nevertheless, analogies applyonly at a formal level and only want to suggest that a higher order 
omparisonbetween standard results of Chapter 3 and gradient expansion results 
an beengaged in, but with an appropriate pro
edure (see Chapter 5). Many di�er-en
es arise: let us stress that our metri
 as written in (4.2) is not approximated:it 
ontains all the perturbative orders of this te
hnique. Furthermore, if in thestandard te
hnique the zeroth order terms express properties of the FRW ba
k-ground, here the 
omparison with the ba
kground is less obvious.The �at FRW metri
 
ontains no spatial derivatives (nor temporal derivatives)so we should re
over it in the zeroth order terms. But 
utting o� Higher than0 Derivatives Terms (H0DT), the metri
 reads

γ
(0)
ij = e−2Ψ(0)(δij + χ

(0)
ij ). (4.7)with Ψ(0) and χ(0)

ij a priori fun
tions of time and spa
e.From standard linear perturbation results (3.22), admitting here the same initial
onditions set in Se
tion 3.4 at τ = τIN = 0, we know that Ψ 
ontains at leasta zero derivative term, while the tra
eless tensor χij has at least two spatialgradients:
Ψ

(1)
ST (τ, ~x) =

5

3
ϕ(~x) +

τ2

18
∇2ϕ(~x)

χ
(1)
ij ST

(τ, ~x) = −τ
2

3

(

ϕ,ij(~x)−
1

3
δij∇2ϕ(~x)

)where the subs
ript "ST" stands for standard. The Ψ zero derivatives term isthe term not depending on time. In χij there are no time-indipendent nor zeroderivatives terms for χij , neither at standard �rst order nor at the se
ond one(see equation (3.24)). Thus in our formalism we will assume from now on
Ψ(0)(τ, ~x) =

5

3
ϕ(~x) ≡ Ψ(τ = 0, ~x) = ΨIN (4.8a)

χ
(0)
ij (τ, ~x) = χIN

ij = 0 (4.8b)With this initial assumptions, equation (4.7) 
an be rewritten as
γ

(0)
ij = e−2Ψ(0)(~x) δij = e−

10
3 ϕ(~x)δij (4.9)



62 Gradient Expansion Te
hniquewhere ϕ is the so-
alled gravitational potential and the zeroth order metri
is 
onformally related to the �at spa
e metri
 by a spa
e-dependent fa
tor
e−

10
3 ϕ(~x).Therefore, rather than having a FRW ba
kground 
oin
iding with the zeroth or-der approximation, here the idea is to let a seed spatial metri
 γIN

ij ≡ γ
(0)
ij evolvein time with the perturbative fun
tions Ψ and χ from the end of In�ation untilpresent time, produ
ing the ne
essary ingredient for gravitational instability todevelop.Initial 
onditions from In�ation In order to 
ompare the two te
h-niques at least at the lowest orders, we have earlier assumed the same initial
onditions of Se
tion 3.4 to 
ompute the �rst two orders of ΨST and χST
ij : thuswe have spe
ialized our quantities on the basis of those hypotheses. Let usbrie�y linger over this 
hoi
e.Sin
e the 
osmologi
al perturbations are generated during In�ation as widelydis
ussed in Chapter 1, it is physi
ally natural to set initial 
onditions for thegravitational perturbations Ψ and χij at the end of In�ation, e�e
tively 
oin
id-ing with τ = τIN = 0. This way, a gauge-invariant formulation of in�ationaryperturbations theory [14℄ tells us that the spatial perturbation of the metri
 isrelated to ζ, the gauge-invariant 
omoving 
urvature perturbation, and hen
eto the gravitational potential through an expression as hij = a2 e−2ζδij =

a2e−
10
3 ϕ δij . Therefore, even without making any parallelism with the stan-dard gauge-dependent theory of Chapter 3 but only assuming In�ation as thesimplest me
hanism for generating perturbations, we have that the initial 
on-ditions at τ = 0 are ΨIN ≡ 5ϕ/3 and χIN

ij = 0. The initial 
ondition δIN = 0is also assumed. Sin
e 
osmologi
al perturbations generated during single-�eldmodels of In�ation are very nearly Gaussian with a nearly �at power spe
trum(n ≃ 1)[14℄, [11℄, we noti
e by the way that ϕ should be regarded as a nearlys
ale-invariant, quasi-Gaussian random �eld.Thanks to these points, in what follows we will be allowed to write χ ratherthan χij regarding to the 
ontribution of Dijχ of the tra
eless part of the spa-tial metri
.4.2 The expansion s
hemeIn this perturbative te
hnique the expansion parameter is the number of spatialderivatives. We now want to 
omment this rule and understand the physi
almeaning behind it.A �rst rough idea 
an be obtained by a dimensional point of view. The per-turbative fun
tions Ψ and χ are dimensionless: in the natural units system, thedimension of a spatial derivative is the inverse of a length (L−1) or, in otherterms, a wavenumber k. The two gradients 
ontained -say- in the �rst order of
Ψ, Ψ(1), give a 
ontribution ∼ (L−2 = k2) in the dimensions, the four gradientsin ψ(2) give a 
ontribution of ∼ (L−4 = k4), and so on. In order to have at everyorder [ψ(r)] = 1, we need a fa
tor L2r ∼ t2r, whi
h 
an 
ome from a suitablepower of 
onformal time: for every spatial derivative a power of the 
onformaltime appears.Therefore the Gradient Expansion 
onsists in a perturbative expansion in evenpowers of (τk): the lowest (zeroth) order solution 
orresponds to the so-
alled



4.2 The expansion s
heme 63long wavelength approximation ( or separate universe, with (τk)≪ 1 [32℄, [27℄,[28℄); adding the higher order gradients leads to a more a

urate solution, whi
hhopefully 
onverges toward the exa
t one.The long wavelength approximation 
onsists in negle
ting spatial gradients ofthe variables des
ribing the 
osmologi
al models: these spatial gradients haveto be 
onsidered negligible in 
omparison with the time derivatives of the abovevariables, and this should now be 
lear having in mind the expansion parameter
(τk):

τk ≪ 1⇐⇒ k ≪ τ−1 ⇐⇒ ∂

∂x
≪ ∂

∂τSin
e the time-s
ale of variation in 
osmology is given by the lo
al Hubble expan-sion rate, the zeroth order approximation 
onsists in negle
ting inhomogeneitiesvarying over a s
ale smaller that the Hubble horizon, or 
onversely in study-ing inhomogeneities larger than the Hubble radius: adding the following ordersis equivalent to getting information about perturbation s
ales as they be
omesmaller than the Hubble horizon [32℄.For 
ompleteness, we translate what explained until now in terms of our spatialmetri
 γij , following [30℄. The 
onditions ∂
∂x ≪ ∂

∂τ is rewritten as
γij,k ≪ γ′ij .The 
hara
teristi
 
omoving length on whi
h the metri
 varies is L: γij,k ∼

L−1γij . As said, the Hubble time is the 
hara
teristi
 proper time on whi
h themetri
 evolves at a point xk: in 
onformal time, γ′ij ∼ aHγij .Thus we 
an 
on
lude that
(τk)≪ 1⇐⇒ aL≫ H−1, (4.10)whi
h pre
isely means that the 
hara
teristi
 s
ale of spatial variation is biggerthan the Hubble radius.Nevertheless, the a
tual range of validity of the Gradient Expansion Te
hniqueis not only restri
ted to the des
ription of inhomogeneities on super-Hubbles
ales: as we will see later in Chapter 5, it 
an be applied also to sub-horizonwavelength perturbations [37℄.The overall 
omputation pro
edure to obtain Ψ and χij at di�erent ordersis similar to the one des
ribed in Se
tion 3.4. In what follows, we write downall the useful geometri
al quantities as fun
tions of the spatial metri
 de�nedearlier (equation (4.2)) up to �rst and se
ond order in the gradient expansion;we introdu
e the two physi
al variables, the expansion rate θ and the shear

σi
j as de�ned in Chapter 2, and iteratively solve the E.E.. These are writtenorder by order in their spa
e-spa
e 
omponents as the evolution equations for
θ (the Ray
haudhuri equation) and σi

j , namely the equations (2.27). Knowingthe zeroth order solution of Ψ and χ of the equations (4.8), we have in mind aniteration s
heme suitable for getting expli
it expressions of Ψ and χ in terms of
ϕ. In other words:
• Solving the Ray
haudhuri equation up to 1st order (2DT) =⇒ Ψ(1)Solving the shear evolution equation up to 1st order (2DT) =⇒ χ

(1)
ij

• Solving the Ray
haudhuri equation up to 2nd order (4DT) =⇒ Ψ(2)Solving the shear evolution equation up to 2nd order (4DT) =⇒ χ
(2)
ij .



64 Gradient Expansion Te
hnique4.3 Gradient expansion te
hnique at 1
st orderDe�nitions and quantities up to 1

storderSpatial metri
 and inverse spatial metri
Let us begin 
al
ulating the inverse spatial metri
 of the general metri
 of equa-tion (4.2): the expansion pro
edure and the 
utting o� of the Higher than 2Derivative Terms (H2DTs) will be similar in all the following 
omputations upto �rst order.First of all, let us noti
e that the exponential in the spatial metri
 
annot beexpanded in power series of Ψ, be
ause a priori Ψ(0) = 5
3ϕ 
an be large. Thegravitational potential ϕ(~x) 
an in general be splitted in two parts: ϕ = ϕL+ϕS ,where ϕL is the long-wavelengthmode and ϕS short wavelength modes su
h that

ϕS/ϕ ∼ 10−5 from CMB 
onstraints. There are no known upper limits on ϕL:therefore, we will fa
tor out e−10/3ϕ in almost all our following expressions. Bythe way, let us note that the spatial di�erentiation of ϕL is negle
table, as byde�nition spatial gradients see spatial variations on small s
ales and on smalls
ales ϕL is almost 
onstant.The inverse spatial metri
 is given solving the following equation in terms of theunknown γaj :
γia γ

aj = δj
i . (4.11)This 
an be written as

e−2Ψ(δia + χia) [A(δaj + δγaj)] = δj
i where Ψ = Ψ(0) + Ψ(1) and χij = χ

(1)
ij .The fa
tor A is straightforward given by A = e+2Ψ, with Ψ = Ψ(0) + Ψ(1). Forthe tensor 
oe�
ient δγaj we write:

(δia + χia) (δaj + δγaj) = δj
i ;

δia δ
aj + χia δ

aj + δiaδγ
aj + χiaδγ

aj = δj
i , that is

χj
i(1) + δγj

i + χ
(1)
ia (δγaj

(0) + δγaj
(1)) = 0.The term χ

(1)
ia δγaj

(1) is 
ertainly a Higher than 2 Derivative Term (H2DT) so
an be negle
ted: the result is
δγj

i = −χj
i that is δγij = −χij with χij ≡ δimδjnχmn.Then we 
an write the inverse spatial metri
 as follows

γij = e2Ψ(δij − χij) (4.12)(with Ψ = Ψ(0) + Ψ(1) and χij = χij
(1))Velo
ity-gradient tensor and expansion rateAn analogous 
omputation 
an be applied to express the expansion rate in termsof the perturbative fun
tions Ψ and χij . The de�nition of the velo
ity-gradienttensor is given in (2.24):

θi
j =

1

2
γiaγ′aj.



4.3 Gradient expansion te
hnique at 1st order 65Now, γia = e2Ψ(δia − χia) and γaj = e−2Ψ(δaj + χaj).

γ′aj = (−2Ψ′)e−2Ψ(δaj + χaj) + e−2Ψχ′
aj .Then, 1

2
γiaγ′aj = −Ψ′δi

j +
1

2
χi

j
′
+H2DTs,where the H2DTs are terms like Ψ′ χiaχaj or 1

2χ
iaχ′

aj . The resulting velo
ity-gradient tensor and expansion rate up to two spatial gradients are written asfollows
θi

j = −Ψ′δi
j +

1

2
χi

j

′ (4.13)
θ = −3Ψ′ (4.14)(with Ψ = Ψ(0) + Ψ(1) and χij = χ

(1)
ij ).ShearThe shear 
an be 
omputed thanks to the de�nition given in Chapter 2:

σi
j = θi

j −
1

3
δi
j θ.Up to �rst order we obtain

σi
j =

1

2
χi

j

′ (4.15)(with χi
j = χi

j
(1)).Christo�el SymbolsOn 3-dimensional hypersurfa
es Σ, the Chrsito�el Symbols are de�ned

Γi
jk =

1

2
γia(γaj,k + γak,j − γjk,a).Using equations (4.2) and (4.12) for the metri
 and its inverse, and negle
ting allterms like χij,k and Ψ,kχ

ia be
ause they 
ontain at least three spatial gradients,we get
Γi

jk = −Ψ,kδ
i
j −Ψ,jδ

i
k + Ψ,iδjk (4.16)(with Ψ = Ψ(0)).Let us note that Γi

jk 
ontains only one spatial derivative up to our �rst order.Ri

i TensorThe Ri

i tensor is de�ned as the 
ontra
tion of the Riemann tensor, whi
h wewill not expli
it, and reads
Rjm = −Γa

ja,m + Γa
jm,a + Γa

baΓb
jm − Γa

mbΓ
b
ja.Using (4.16), up to two derivative terms, we get

Rjm = Ψ,jm + (∇2Ψ)δjm + Ψ,j Ψ,m − (∇Ψ)2δjm (4.17)(with Ψ = Ψ(0)).Be
ause the zeroth order term of Ψ 
oin
ide with its initial value (4.8a), we 
anwrite R(1)
jm = Rjm(Ψ(0)) = Rjm(ΨIN ) = RIN

jm , as extensively done in AppendixC.



66 Gradient Expansion Te
hniqueS
alar CurvatureTaking the tra
e of Ri

i tensor (4.17), the S
alar Curvature is
R = e2Ψ[4(∇2Ψ)− 2(∇Ψ)2] (4.18)(with Ψ = Ψ(0) and R = R(1) = RIN ).Evolution equations for θ and σi

j at 1
st orderThe evolution equations for θ and σi

j have been dedu
ed in Chapter 2 and readas in (2.27). Considering the ba
kground s
ale fa
tor being a(τ) ∝ τ2, they 
anbe rewritten as follows:
θ′ +

4

τ
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (4.19a)

σi
j
′
+

4

τ
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j), (4.19b)where σ2 ≡ 1
2σab σ

ab.Ray
haudhuri equation UP2DTAs 
leraly shown in Appendix C, θ and σi
j 
ontain at least two spatial gradi-ents: therefore, terms like θ2 and σ2 
ontain more than two derivatives terms.Dropping from equation (4.19a) the H2DTs we obtain

θ′ +
4

τ
θ = −1

4
RIN , (4.20)and hen
e, using the expression at �rst order for θ (4.14), the equation we haveto solve in the unknown Ψ(1) is

Ψ′′
(1) +

4

τ
Ψ′

(1) =
1

12
RIN . (4.21)Writing

sΨ(~x) =
1

12
RIN =

1

12
e2Ψ(0) [4(∇2Ψ(0))− 2(∇Ψ(0))

2], (4.22)the solution is
Ψ(1) =

1

10
τ2sΨ(~x)− 1

3τ3
c1 + c2, (4.23)where c1 and c2 are integration 
onstants. As fun
tion of ϕ the sour
e sΨ(~x)reads

sΨ(~x) =
5

9
e

10
3 ϕ(x)[(∇2ϕ(~x))− 5

6
(∇ϕ(~x))

2
]. (4.24)Then, 
onsidering only the growing mode, we get

Ψ(1) =
1

18
τ2e

10
3 ϕ[(∇2ϕ)− 5

6
(∇ϕ)2] (4.25)



4.4 Gradient expansion te
hnique at 2nd order 67Evolution equation of shear UP2DTDropping from equation (4.19b) the H2DT θ σi
j , we obtain the following equa-tion:

σi
j

′
+

4

τ
σi

j = −(Ri
j −

1

3
Rδi

j)IN (4.26)Substituting in the equation above the expression for σi
j as fun
tion of χ(1)

ij (see(4.15)), we get
χi

j

′′

(1)
+

4

τ
χi

j

′

(1)
= −2(Ri

j −
1

3
Rδi

j)IN . (4.27)Isolating the sour
e term as
sχ(~x) = −2(Ri

j −
1

3
Rδi

j)IN , (4.28)the solution is
χi

j(1)
=

1

10
τ2sχ(~x)− 1

3τ3
c1 + c2. (4.29)Expli
iting the sour
e as fun
tion of ϕ we have

sχ(~x) = −10

3
e

10
3 ϕ[Di

jϕ+
5

3
(ϕ,iϕ,j −

1

3
(∇ϕ)2δi

j)]. (4.30)Then, 
onsidering only the growing mode, the �rst order result for the tra
eless
oe�
ient χ(1)
ij reads

χi
j(1)

= −1

3
τ2e

10
3 ϕ[Di

jϕ+
5

3
(ϕ,iϕ,j −

1

3
(∇ϕ)2δi

j)] (4.31)4.4 Gradient expansion te
hnique at 2
nd orderDe�nitions and quantities up to 2

nd orderBy se
ond order in this te
hnique we mean keeping only quantities whi
h 
ontainat most four spatial derivatives.Spatial metri
 and inverse spatial metri
The spatial metri
 and its inverse read respe
tively up to our se
ond order
γij = e−2Ψ(δij + χij) (4.32)

γij = e2Ψ(δij − χij + χi
a

(1)
χaj

(1)) (4.33)(with Ψ = Ψ(0) + Ψ(1) + 1
2Ψ(2) and χij = χ

(1)
ij + 1

2χ
(2)
ij ).



68 Gradient Expansion Te
hniqueIn fa
t, γia γ
aj = δj

i ,

e−2Ψ(δia + χia) [A(δaj + δγaj)] = δj
i =⇒ A = e2Ψ.

(δia + χia) (δaj + δγaj) = δj
i .Now, χia = χ

(1)
ia +

1

2
χ

(2)
ia

δγaj = δγaj
(0) + δγaj

(1) +
1

2
δγaj

(2).From the �rst order we know that, δγaj
(0) = 0 and δγaj

(1) = −χaj
(1).Then, (χ

(1)
ia +

1

2
χ

(2)
ia ) δaj + (−χaj

(1) +
1

2
δγaj

(2)) δia + (χ
(1)
ia +

1

2
χ

(2)
ia )(−χaj

(1) +
1

2
δγaj

(2)) = 0;

χ
j(1)
i +

1

2
χ

j(2)
i − χj

i(1) +
1

2
δγj

i(2) − χ
(1)
ia χ

aj
(1) +H4DT = 0

=⇒ δγj
i(2) = −χj(2)

i + 2 χ
(1)
ia χaj

(1)�Velo
ity-gradient tensor and expansion ratePerforming the 
al
ulation similarly to what indi
ated earlier for (4.13) and(4.14), and using expressions above (4.32) and (4.33), the velo
ity-gradient ten-sor and the expansion rate read respe
tively
θi

j = −Ψ′δi
j +

1

2
χi

j

′ − 1

2
χia

(1) χ
(1)
aj

′ (4.34)
θ = −3Ψ′ − 1

2
χab

(1)χ
(1)
ab

′ (4.35)(with Ψ = Ψ(0) + Ψ(1) + 1
2Ψ(2) and χi

j = χi
j
(1)

+ 1
2χ

i
j
(2)).ShearThe shear is obtained taking the tra
eless part of the gradient-velo
ity tensor,thus using (4.34) and (4.35) one obtains

σi
j =

1

2
χi

j

′ − 1

2
χia

(1)χ
(1)
aj

′
+

1

6
χab

(1)χ
(1)
ab

′
δi
j (4.36)(with χi

j = χi
j
(1)

+ 1
2χ

i
j
(2)).Christo�el SymbolsLikewise at the �rst order, the Christo�el Symbols 
annot �ll up the number ofgradients 
ontent set by the order, and at the se
ond order they 
ontain onlythree spatial derivatives:

Γi
jk =(−Ψ,kδ

i
j −Ψ,jδ

i
k + Ψ,iδjk)+

+
1

2
(χi

j,k + χi
k,j − χ,i

jk)+

+ (Ψ,i
(0) χ

(1)
jk −Ψ(0)

,a χia
(1) δjk)

(4.37)(with Ψ = Ψ(0) + Ψ(1) and χi
j = χi

j
(1)),



4.4 Gradient expansion te
hnique at 2nd order 69where we have highlighted that the Christo�el Symbols at se
ond order are
omposed of three parts:
Γi

jk = Γi
jk(Ψ) + Γi

jk(χ) + Γi
jk(Ψ · χ)Ri

i TensorWith a straightforward but long 
al
ulation, the other geometri
al quantitiesfollow. The Ri

i tensor with four spatial gradient is written as fun
tion of Ψand χij 
ontaining at most two spatial derivatives:

Rjm =Ψ,jm + (∇2Ψ)δjm + Ψ,jΨ,m − (∇Ψ)2δjm+

+
1

2
(χa

j,ma + χa
m,ja −∇2χjm)+

+ [(∇2Ψ(0))χjm −Ψ
(0)
,ab χ

ab δjm −Ψ(0)
,a χab

,b δjm+

+
1

2
Ψ,a

(0)(−χam,j − χaj,m + χmj,a)− (∇Ψ(0))
2χjm + Ψ(0)

,a Ψ
(0)
,b χab δjm](4.38)(with Ψ = Ψ(0) + Ψ(1) and χi

j = χi
j
(1)),where we note again that

Rjm = Rjm(Ψ) +Rjm(χ) +Rjm(Ψ · χ).S
alar CurvatureThe S
alar Curvature reads
R =e2Ψ[4(∇2Ψ)− 2(∇Ψ)2]+

+ e2Ψ(0) [χab
(1),ab]+

+ e2Ψ(0) [−4χab
(1) Ψ

(0)
,ab − 4χab

(1),b Ψ(0)
,a + 2χab

(1) Ψ(0)
,a Ψ

(0)
,b ]

(4.39)(with Ψ = Ψ(0) + Ψ(1)).Also the S
alar Curvature 
an be divided into three parts a

ording with theargument, and it 
ontains several mixed terms of the kind Ψ χ:
R = R(Ψ) +R(χ) +R(Ψ · χ).In Appendix C the expli
it expressions of every 
ontribution are presented.Ri

i Tensor and S
alar 
urvature in terms of ϕAs we 
an see from expressions (4.38) and (4.39) of the Ri

i tensor and theS
alar Curvature up to four spatial gradients, they are fun
tions of Ψ and χ atmost at �rst order, that is up to two gradient terms. Then, having solved the�rst step of our iteration s
heme and obtained the results (4.25) and (4.31), Rijand R up to 4DTs are 
ompletely known. In the following we write down theresult of a straightforward 
al
ulation that eventually makes use of AppendixC.
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Ri

j = e
10
3 ϕ [

5

3
ϕ,i

,j +
5

3
(∇2ϕ) δi

j +
25

9
ϕ,iϕ,j −

25

9
(∇ϕ)2δi

j ]+

+τ2e
20
3 ϕ[ +

5

18
ϕ,ab ϕ

,ab δi
j −

5

18
ϕ,ai ϕ,aj +

5

9
(∇2ϕ) ϕ,i

,j+

+
25

27
ϕ,a ϕ,b ϕ

,ab δi
j −

25

54
( ϕ,a ϕ,aj ϕ

,i + ϕ,a ϕ
,ai ϕ,j)+

+
25

27
(∇2ϕ) ϕ,i ϕ,j −

25

27
(∇2ϕ) (∇ϕ)2δi

j+

+
125

162
(∇ϕ)2(∇ϕ)2 δi

j −
125

162
(∇ϕ)2 ϕ,i ϕ,j ] (4.40)

R = e
10
3 ϕ [

20

3
(∇2ϕ)− 50

9
(∇ϕ)2]+

+τ2e
20
3 ϕ[ +

5

9
ϕ,ab ϕ

,ab +
5

9
(∇2ϕ)2+

+
50

27
ϕ,a ϕ,b ϕ

,ab − 50

27
(∇2ϕ) (∇ϕ)2+

+
125

81
(∇ϕ)2(∇ϕ)2]

(4.41)
Evolution equations for θ and σi

j at 2
nd orderWe want to solve E.E. in order to get the 
omplete expressions up to four deriva-tives for the metri
 
oe�
ients. For this task we use the evolution equations for

θ and σi
j already met several times:

θ′ +
4

τ
θ +

1

2
θ2 +

3

2
σ2 = −1

4
R (4.42)

σi
j
′
+

4

τ
σi

j + θ σi
j = −(Ri

j −
1

3
Rδi

j) (4.43)In what follows we use all the results at se
ond order given earlier and we havein mind an expansion for θ and σi
j as

θ = θ(0) + θ(1) +
1

2
θ(2)

σi
j = σi

j

(0)
+ σi

j

(1)
+

1

2
σi

j

(2)
,where θ(0) = σi

j
(0)

= 0. We aim to obtain the expressions for Ψ(2) and χi
j(2)in terms of ϕ and its derivatives. As we will see, the pro
edure is the same asthat at the previous order, but is mu
h more 
ompli
ated for the presen
e of agreater number of terms to express �rst of all in terms of Ψ(1) and χi

j(1)
, andthen in terms of ϕ. The result will be two expressions of 4DTs, in whi
h thefour gradients will distributed in one ϕ, or in two ϕ, or in three ϕ, and so on.Among those types of terms a pre
ise hierar
hy exists:
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4grad(ϕ), 4grad(ϕ2), 4grad(ϕ3), ...
−→(subdominan
e)With the symbol 4grad(ϕ) we mean terms like ϕ,abcd, ∇2ϕ,i

,j , or ∇2(∇2ϕ); thesymbol 4grad(ϕ2) means terms like ϕ,ab ϕ
,ab, (∇2ϕ)2 or (∇2ϕ) ϕ,i

,j ; 4grad(ϕ3)indi
ates terms like ϕ,a ϕ,b ϕ
,ab or (∇2ϕ) (∇ϕ)2, and so on.We have already mentioned how the pe
uliar gravitational potential 
an bethought as a sum of a longwavelength mode ϕL and a 
olle
tion of short wave-length modes ϕS : the spatial derivative 
an a�e
t only the latter, whose mag-nitude with respe
t to ϕ is of the order of 10−5. The idea is to 
ompare termslike
∇2ϕ←→ (∇ϕ)2Re
alling earlier notations, ∇2ϕ ∝ (kτ)2ϕS while (∇ϕ)2 ∝ (kτ)2ϕSϕS . Gradi-ents being the same number, the number of ϕS determines the order of magni-tude: hen
e

(∇2ϕ ∝ (kτ)2ϕS) ≫ ((∇ϕ)2 ∝ (kτ)2ϕSϕS)Up to four spatial gradients, we will pro
ede step by step produ
ing at thebeginning only the leading terms 4grad(ϕ), and then turning to the 
ompleteexpressions in terms of 4grad(ϕ2), 4grad(ϕ3), and so on.Ray
haudhuri equation UP4DTDropping H4DTs like θ(1) × θ(2) or σ(1)
ab × σab

(2) from (4.42), we obtain :
θ′ +

4

τ
θ +

1

2
θ2(1) +

3

2
σ2

(1) = −1

4
R. (4.44)Subtra
ting the 
orresponding equation at �rst order (4.20) and taking theknown terms at the right hand side of the equation, it be
omes

1

2
θ′(2) +

4

τ

1

2
θ(2) = −1

4
(R−RIN )− 1

2
θ2(1) −

3

2
σ2

(1). (4.45)Using the expression (4.35) for the se
ond order terms of the expansion rate, andisolating again the known solutions at the previous order for χ(1)
ij , the equationto solve reads

Ψ′′
(2) +

4

τ
Ψ′

(2) = τ2SΨ(~x), (4.46)where the sour
e fun
tion SΨ(τ, ~x) ≡ τ2SΨ(~x) is
SΨ(τ, ~x) =

1

6
(R−RIN )+

1

3
θ2(1)+σ

2
(1)−

1

3
(χia

(1)χ
(1)
ai

′
)′− 4

3τ
(χia

(1)χ
(1)
ai

′
). (4.47)Thus the solution expressed in terms of the sour
e is

Ψ(2) =
1

28
τ4SΨ(~x)− 1

3τ3
c1 + c2. (4.48)
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hniqueFollowing the leading term ∇2(∇2ϕ)Now we go on and look for 
ontributions in SΨ(x) to terms ∼ ∇2(∇2ϕ), re-membering that (up to terms fun
tions of a single ϕ)
• Ψ(0) = 5

3ϕ

• Ψ(1) = 1
18τ

2e
10
3 ϕ(∇2ϕ)

• χi
j(1)

= − 1
3τ

2e
10
3 ϕ[Di

jϕ(x)]

• (R−RIN ) = 1
2R(2)(Ψ) + 1

2R(2)(χ) + 1
2R(2)(Ψ · χ).Then we see with the help of Appendix C that

• 1
2R(2)(Ψ)⇒ e2Ψ(0) 4∇2Ψ(1)

• 1
2R(2)(χ)⇒ e2Ψ(0) χab

(1),ab

• 1
2R(2)(Ψ · χ) ⇒ terms ϕ · ϕ, like every other addendum like Ψ · Ψ, χ · χand Ψ · χ.Making the 
al
ulation, we obtain that there's no leading 
ontribution to Ψ(2)like ∇2(∇2ϕ).Complete expression for SΨ(~x)Then we write down the 
omplete expression for the sour
e of Ψ(2), stressingthat the e�e
tive leading terms are those with four gradients distributed in two

ϕ (that is 4grad(ϕ2)):
SΨ = e

20
3 ϕ 1

9
[− 10

3
ϕ,ab ϕ

,ab +
23

9
(∇2ϕ)2

− 100

9
ϕ,a ϕ,b ϕ

,ab +
35

27
(∇2ϕ) (∇ϕ)2+

− 1675

324
(∇ϕ)2(∇ϕ)2].

(4.49)We 
on
lude that, 
onsidering only the growing mode, Ψ(2) reads
Ψ(2) = τ4 e

20
3 ϕ 1

252
[− 10

3
ϕ,ab ϕ

,ab +
23

9
(∇2ϕ)2

− 100

9
ϕ,a ϕ,b ϕ

,ab +
35

27
(∇2ϕ) (∇ϕ)2+

− 1675

324
(∇ϕ)2(∇ϕ)2].

(4.50)Evolution equation of shear UP4DTDropping H4DTs su
h as θ(1) × σ(2)
ij and θ(2) × σ(2)

ij from (4.43), we write
σi

j
′
+

4

τ
σi

j + θ(1) σ
i(1)
j = −(Ri

j −
1

3
Rδi

j). (4.51)
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ting the 
orrisponding equation at �rst order (4.26) and isolating theknown terms in the right hand side of the equation, we obtain the followingequation
1

2
σi

j

′

(2)
+

4

τ

1

2
σi

j(2)
= −[(Ri

j −Ri
jIN )− 1

3
(R−RIN )δi

j ]− θ(1) σ
i(1)
j . (4.52)Substituting the expression of σi

j(2)
using (4.36), the equation we have to solvein the unknown χ(2)

ij is
χi

j

′′

(2)
+

4

τ
χi

j

′

(2)
= τ2Sχ(~x), (4.53)where the sour
e fun
tion Sχ(τ, ~x) = τ2Sχ(~x) reads

Sχ(τ, ~x) =− 4[(Ri
j −Ri

jIN )− 1

3
(R−RIN )δi

j ]− 4θ(1) σ
i(1)
j +

+ 2(χia
(1)χ

(1)
aj

′
)′ − 2

3
(χab

(1)χ
(1)
ab

′
)′δi

j+

+
8

τ
(χia

(1)χ
(1)
aj

′
)− 8

3τ
(χab

(1)χ
(1)
ab

′
)δi

j .

(4.54)Then the solution is
χi

j(2)
=

1

28
τ4Sχ(~x)− 1

3τ3
c1 + c2. (4.55)Following the leading terms (∇2ϕ)

,i
,j and ∇2(∇2ϕ)δi

jLet us go on and look for 
ontributions in Sχ(~x) to terms like (∇2ϕ)
,i
,j and like

∇2(∇2ϕ)δi
j . For this task we remember that

• χi
j(2)

has to be tra
eless;
• (Ri

j −Ri
jIN ) = 1

2R
i(2)
j (Ψ) + 1

2R
i(2)
j (χ) + 1

2R
i(2)
j (Ψ · χ);

• (R−RIN ) does not 
ontribute (see equation (4.41)).Then we see with the help of Appendix C that
• 1

2R
i(2)
j (Ψ)⇒ e2Ψ(0) [Ψ,i

(1),j +∇2Ψ(1)δ
i
j ];

• 1
2R

i(2)
j (χ)⇒ e2Ψ(0) 1

2 [χia
(1),aj + χa,i

(1)j,a −∇2χi
(1)j ];

• 1
2R

i(2)
j (Ψ ·χ)⇒ terms ϕ ·ϕ (like every other addenda like Ψ ·Ψ, χ ·χ and

Ψ · χ).Making the 
al
ulation, we obtain that there's no dominant 
ontribution to
χi

j(2)
like (∇2ϕ)

,i
,j and ∇2(∇2ϕ)δi

j .



74 Gradient Expansion Te
hniqueComplete expression for Sχ(x)Consequen
e of the previous paragraph is that the e�e
tive leading terms of thesour
e of χ(2) are made of four gradient on two ϕ, namely 4grad(ϕ2). Sχ(~x)reads
Sχ = +

1

9
e

20
3 ϕ [ + 38 (ϕ,aj ϕ

,ai − 1

3
ϕ,ab ϕ

,ab δi
j)+

− 128

3
((∇2ϕ) ϕ,i

,j −
1

3
(∇2ϕ)2 δi

j)+

+
890

27
(∇2ϕ) (∇ϕ)2 δi

j −
250

9
(∇ϕ)2 ϕ,i

,j −
640

9
(∇2ϕ) ϕ,i ϕ,j+

− 380

9
ϕ,a ϕ,b ϕ

,ab δi
j +

190

3
(ϕ,a ϕ,j ϕ

,ai + ϕ,aj ϕ
,a ϕ,i)+

+
1600

27
((∇ϕ)2 ϕ,i ϕ,j −

1

3
(∇ϕ)2 (∇ϕ)2 δi

j)] (4.56)We 
on
lude that, 
onsidering only the growing mode, χ(2)
ij reads

χi
j(2) = τ4 e

20
3 ϕ 1

252
[ + 38 (ϕ,aj ϕ

,ai − 1

3
ϕ,ab ϕ

,ab δi
j)+

− 128

3
((∇2ϕ) ϕ,i

,j −
1

3
(∇2ϕ)2 δi

j)+

+
890

27
(∇2ϕ) (∇ϕ)2 δi

j −
250

9
(∇ϕ)2 ϕ,i

,j −
640

9
(∇2ϕ) ϕ,i ϕ,j+

− 380

9
ϕ,a ϕ,b ϕ

,ab δi
j +

190

3
(ϕ,a ϕ,j ϕ

,ai + ϕ,aj ϕ
,a ϕ,i)+

+
1600

27
((∇ϕ)2 ϕ,i ϕ,j −

1

3
(∇ϕ)2 (∇ϕ)2 δi

j)] (4.57)4.5 Che
k of 
onstraintsExpressions (4.25) and (4.31) up to two spatial gradients, and expressions (4.50)and (4.57) up to four spatial gradients are the solutions we aimed at. A possiblepro
edure to 
he
k the 
oheren
e of these results 
onsists in taking advantageof the ADM Constraint Equations of Chapter 2.Momentum ConstraintWe begin for sempli
ity testing the Momentum Constraint (2.26b):
θa

j|a = θ,j .If we 
he
k the Momentum Constraint for a gradient-velo
ity tensor and anexpansion rate up to two derivatives terms, then we will verify an equality withthree spatial gradients in every addendum be
ause of the simple and 
ovariantdi�erentiation. To 
he
k the Momentum Constraint for a gradient-velo
ity ten-sor and an expansion rate expressed up to four derivatives terms, then we haveto verify an equality with �ve spatial gradients in every addendum.



4.5 Che
k of 
onstraints 75The pro
edure is straightforward and 
an be performed 
al
ulating the rightand left hand sides of the equality in terms of Ψ and χij , and then express-ing everything in terms of the gravitational potential. We do not write all thepassages: the Momentum Constraint is veri�ed to both �rst and se
ond order.Energy ConstraintVerifying the ADM Energy Constraint (2.26a) is less straightforward be
ausethe density 
ontrast δ is involved. Indeed, until now we have always tried toavoid the ne
essity to 
al
ulate the perturbation of the matter density expressingthe equations of interest in terms of the geometri
al quantities with the help ofthe energy 
onstraint equation itself (see Se
tion 2.4).Let us write the Energy Constraint in the following form, referring to equation(3.19a):
2

3
θ2 − 2σ2 +

8

τ
θ +R = +

24

τ2
δ.With the ex
eption of δ, all the quantities in the above equation 
an be expressedin terms of the gravitational potential up to two or four gradients without prob-lems. Let us then stop a little to obtain a useful expression for the density
ontrast.The temporal evolution of the density 
ontrast is governed by the followingequation, whi
h is the analogous of the 
ontinuity equation (2.20) presented inChapter 2:

δ′ = −θ δ. (4.58)Given that θ = 1
2γ

iaγ′aj = ∂
∂τ γ

1/2 [5℄, where γ ≡ det γij , we 
an write thesolution of (4.58) in the form
1 + δ = (1 + δIN )

(

γ

γIN

)−1/2

. (4.59)The determinant of our metri
 
an be 
al
ulated, and at least up to 2DT reads
γ = e−6Ψ. (4.60)Therefore, γIN = e−6Ψ(0) = e−6ΨIN and we 
an express the density 
ontrast upto two spatial gradient.In fa
t, 1 + δ = (1 + δIN )

(

γ

γIN

)−1/2

=

= (1 + δIN )
(

e−6(Ψ−ΨIN )
)−1/2

= (1 + δIN ) e3(Ψ−ΨIN ).Assuming δIN = 0, the �rst order expression for the density 
ontrast is
δ(1) =

τ2

6
e

10
3 ϕ[∇2ϕ− 5

6
(∇ϕ)2]. (4.61)Similarly one 
an pro
eed to obtain the se
ond order term for the density 
on-trast, getting all the helpful tools for verifying the 
onstraint. Thus, the 
al
u-lation is straightforward and the out
ome turned out to be su

essful.





Chapter 5Comparing PerturbativeTe
hniques. Other Results.Having obtained the expressions for the metri
 
oe�
ients Ψ and χij in the pre-vious Chapter, we want now to 
omment them brie�y and show some se
ondaryresults. First of all, we see how the Gradient Expansion results are related tothose of the Standard Perturbation Theory, giving the 
omplete expression ofthe metri
 up to four spatial gradients; then we introdu
e the Weyl tensor andsee the form that its magneti
 part assumes within this expansion method.
5.1 Comparison between standard theory and gra-dient expansionIn order to perform a 
omparison among the results of the two perturbativete
hniques presented in this thesis, we have to write down the 
omplete expres-sion that the spatial metri
 assumes up to the se
ond order in the respe
tiveapproa
hes. In what follows we will label the quantities of the Standard Per-turbation Theory with the supers
ript "ST", trying to avoid any 
onfusion.In the standard theory, the perturbed spatial metri
 in terms of Ψ and χij upto se
ond order reads as in (3.17), that is

γST
ij = δij − 2ΨST

(1)δij −ΨST
(2) δij + χ

(1)ST
ij +

1

2
χ

(2)ST
ij . (5.1)In order to write the spatial metri
 in the gradient method some more attentionmust be paid. As done in Chapter 4, we fa
tor out the term e−2Ψ(0) , and weexpand the exponential in the fun
tion Ψ̃, whi
h here formally 
omprise onlythe �rst and the se
ond order terms: Ψ̃ = Ψ(1) +1/2 Ψ(2). Developing equation



78 Comparing Perturbative Te
hniques. Other Results.(4.2) up to the right number of spatial gradients (four), we write
γij = e−2Ψ(δij + χij) =

= e−2Ψ(0)(1− 2Ψ̃ + 2Ψ̃2 +H4DT ) (δij + χij) =

= e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij + e−2Ψ(0)(1− 2Ψ(1))(χ

(1)
ij +

1

2
χ

(2)
ij ) =

= e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij+

+ e−2Ψ(0)(1 − 2Ψ(1))χ
(1)
ij + e−2Ψ(0)

1

2
χ

(2)
ij +H4DT.Then the spatial metri
 in the gradient approa
h up to four spatial derivativesreads

γij = e−2Ψ(0)(1− 2Ψ(1) −Ψ(2) + 2Ψ2
(1))δij+

+ e−2Ψ(0)(χ
(1)
ij +

1

2
χ

(2)
ij )− e−2Ψ(0)2 Ψ(1) χ

(1)
ij .

(5.2)The following step 
onsists in using expressions got in Chapters 3 and 4 in orderto write the spatial metri
s γST
ij and γij in terms of the pe
uliar gravitationalpotential ϕ. We pro
eed for this task and the following 
al
ulations treatingseparately the tra
e and the tra
eless part of the metri
.Tra
e part of the metri
In the Standard Theory the tra
e part of the spatial metri
 as fun
tion of thegravitational potential 
an be obtained substituting the equations (3.22a) and(3.24a) of ΨST

(1) and ΨST
(2) in
γST

ij (trace)
= δij − 2ΨST

(1) δij −ΨST
(2) δij .The resulting expression is

γST
ij trace

= δij −
10

3
ϕ δij +

50

9
ϕ2δij+

+
τ2

9

(

−∇2ϕ+
5

6
(∇ϕ)2

)

δij+

+
τ4

252

(

10

3
ϕ,abϕ,ab − (∇2ϕ)

2
)

δij ,

(5.3)where we have separated the di�erent 
ontributions a

ording to the number ofgradients (zero the �rst line, two the se
ond one, four the third) and a

ord-ing to the powers of the gravitational potential ϕ (2grad(ϕ) or 2grad(ϕ2), and
4grad(ϕ2)).The tra
e part of the Gradient Te
hnique spatial metri
 is written using equa-tions (4.25) and (4.50) in

γ
(trace)
ij = e−2Ψ(0)(1 − 2Ψ(1) −Ψ(2) + 2Ψ2

(1))δij .Now, let us note that the four spatial gradients 
ontributions to the standardmetri
 (5.3) are of one type only, namely 4grad(ϕ2): with the aim to rewrite
γ

(trace)
ij in terms of ϕ, we 
an limit ourselves to the leading terms of type
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4grad(ϕ2) in the expression (4.50): hen
e the 
omparison up to four spatialderivatives will be able to 
ontrol the 
oheren
e of the two approa
hes only upto those leading terms in gradient expansion.Negle
ting 
ontributions of the kind 4grad(ϕ3) or 4grad(ϕ4), the tra
e of themetri
 is

γ
(trace)
ij = e−

10
3 ϕδij+

+
τ2

9

(

−(∇2ϕ) +
5

6
(∇ϕ)

2

)

δij+

+ e+
10
3 ϕτ4 1

252

(

10

3
ϕ,ab ϕ

,ab − (∇2ϕ)2
)

δij .

(5.4)To see the formal equivalen
e of the two expressions (5.3) and (5.4) it is su�
ientnow to expand the exponential: this pro
edure adds powers of ϕ to the alreadyexisting terms, but not spatial gradients.Tra
eless part of the metri
In the Standard Theory we obtain the tra
eless part of the spatial metri
 sub-stituting the expression for χ(1)ST
ij and χ(2)ST

ij with the help of equations (3.22b)and (3.24b) in
γST

ij (traceless)
= χ

(1)ST
ij +

1

2
χ

(2)ST
ij .The result is

γST
ij (traceless)

= +
τ2

3

(

−ϕ,ij +
1

3
∇2ϕ δij

)

+

+
τ2

9

(

−5ϕ,iϕ,j +
5

3
ϕ,aϕ,a δij

)

+

+
τ4

252

(

19 ϕaiϕ,aj −
19

3
ϕ,abϕ,ab δij

)

+
τ4

252

(

−12 ϕ,ij ∇2ϕ+ 4 (∇2ϕ)
2
δij

)

,

(5.5)
where the expression is manifestly tra
eless, and we 
an note the di�erent 
on-tributions of type 2grad(ϕ), 2grad(ϕ2) and 4grad(ϕ2).For writing the analogous formula in the Gradient Te
hnique, we pro
eed asdone earlier fa
toring out e−2Ψ(0) and formally expanding it only at the end ofthe 
al
ulation. We use (4.31) and (4.57) for χ(1)

ij and χ
(2)
ij respe
tively, and(4.25) for Ψ(1) in

γ
(traceless)
ij = e−2Ψ(0)(χ

(1)
ij +

1

2
χ

(2)
ij )− e−2Ψ(0)2 Ψ(1) χ

(1)
ij .



80 Comparing Perturbative Te
hniques. Other Results.Negle
ting 4grad(ϕ3) and 4grad(ϕ4) terms, we get
γ

(traceless)
ij =

τ2

3

(

−ϕ,ij +
1

3
∇2ϕ δij

)

+

+
τ2

9

(

−5ϕ,iϕ,j +
5

3
ϕ,aϕ,a δij

)

+

+ e+
10
3 ϕτ4 1

252

(

+19 ϕ,aj ϕ
,ai − 19

3
ϕ,ab ϕ

,ab δi
j

)

+ e+
10
3 ϕτ4 1

252

(

−12(∇2ϕ) ϕ,i
,j + 4 (∇2ϕ)2 δi

j

)

.

(5.6)
Again the expansion of the exponential e+ 10

3 ϕ up to its 
onstant term shows theequivalen
e of the results between the two perturbative te
hniques 1.Some observations 
an be proposed: we have seen that the 
omparison 
an be
arried into e�e
t only with an appropriate pro
edure 
onsisting prin
ipally in
utting o� many terms of the Gradient Expansion spatial metri
. This fa
tre�e
ts the property of this te
hnique and the form of the general metri
: evenif Ψ is obtained up to a �nite number of spatial gradients, γij will ne
essary
ontain gradient terms of any order; in other terms, solving for the 
oe�
ients
Ψ and χij up to 2r spatial gradients one obtains terms of any order in the
onventional perturbative expansion 
ontaining up to 2r gradients.Furthermore, having in mind the 
omplete results for Ψ and χij up to fourspatial gradients and the distin
tion in di�erent terms like 4grad(ϕm) , we 
an
he
k that terms of order r in the expansion 
ontain the pe
uliar gravitationalpotential ϕ to power m, with 2r > m > r. We have already seen that a pre
isehierar
hy exists among those terms a

ording with the number of ϕ, that is ϕS :the dominant 
ontribution 
omes from terms of the type (∂2ϕ)r , followed bythose proportional to (∂2ϕ)r−1(∂ϕ)2. We 
an dedu
e that the a
tual limit ofvalidity of our expansion at order r is set by (τk)2rϕr . 1: being ϕS ∼ 10−5,this allows us to 
onsider also perturbations with wavelength 
omparable orsmaller than the Hubble radius.5.2 Weyl tensor and its magneti
 partEinstein Equations are se
ond-order partial di�erential equations for gµν whi
hrelate the spa
etime 
urvature expressed in terms of the Ri

i tensor and theS
alar Curvature to the energy lo
al sour
es des
ribed in the stress-energy ten-sor. The S
alar Curvature is the 
ontra
tion of the Ri

i tensor, whi
h in turn isthe tra
e over the se
ond and fourth (or equivalently, the �rst and third) indi
esof the Riemann tensor Rα

βµν :
Rβν = Rρ

βρν and R = Rρ
ρThe tra
e free part of the Riemann tensor is 
alled the Weyl tensor, Cαβµν ,: ithas many 
hara
terizations and we introdu
e it for its 
osmologi
al impli
ations.1A priori the exponential e+ 10

3
ϕ 
ould not be expanded be
ause ϕ 
an be as large as itwants, for the presen
e of 
ontributes of the kind ϕL. Two are the possibilities to arrangethis situation: one 
ould assume ϕL ≡ 0, or the long-wavelength part of the fa
tor e+ 5

3
ϕ,asso
iated with ea
h spatial gradient, 
an be re-absorbed by a rede�nition of the spatial
oordinates [37℄.



5.2 Weyl tensor and its magneti
 part 81The Riemann tensor satis�es a series of symmetry properties:
Rαβµν = Rµναβ (5.7a)

Rαβµν = −Rβαµν = −Rαβνµ (5.7b)
Rαβµν +Rανβµ +Rαµνβ = 0, (5.7
)to whi
h the Bian
hi Identites (5.9) 
an be added. The set of symmetries (5.7)are su
h that there are 1

12 (1 + n)2((1 + n)2 − 1) algebrai
ally independent 
om-ponents of Rαβµν [2℄, where 1 + n as usual denotes the total dimension of ourspa
etime. 1
2 (1 + n)(n + 2) is the number of indipendent 
omponents of theRiemann tensor that 
an be represented by the 
omponents of the Ri

i tensor.If n = 0, Rαβµν = 0; if n = 1, there is one independent 
omponent of Rαβµν ,whi
h is essentially the fun
tion R. If n = 2, the Ri

i tensor (whi
h is givenalgebrai
ally by the lo
al stress-energy tensor through E.E.) 
ompletely deter-mines the 
urvature tensor. If n ≥ 3, the remaining 
omponents of the Riemanntensor are represented by the Weyl tensor or, in other words, the Weyl tensor isthat part of the Riemann tensor that 
annot be obtained from the Ri

i tensor:it is de�ned by [1℄

Cαβµν ≡ Rαβµν +
2

n− 1
(gαµRνβ − gανRµβ − gαµRνα + gβνRµα)

− 2

n(n− 1)
R (gαµgνβ − gανgµβ) .

(5.8)As the last two terms on the right hand side have the Riemann symmetries(5.7), it follows that Cαβµν has also these symmetries as well as it is tra
e freeon all its indi
es.An alternative 
hara
terization of the Weyl tensor is given by the fa
t that itbehaves in a very simple manner under 
onformal transformations of the metri
(ĝµν = Ω2 gµν), and for this reason is sometimes 
alled the 
onformal tensor,being Ĉαβµν = Cαβµν .As the Ri

i tensor is given by the E.E. and hen
e, physi
ally, it gives the
ontribution to the spa
etime 
urvature from lo
al sour
es, then the Weyl tensoris that part of the 
urvature whi
h is not determined lo
ally by the energydistribution. For example, Newtonian tidal for
es are represented in the Weyltensor. However, the Weyl tensor 
annot be entirely arbitrary: the Riemanntensor must satisfy the already mentioned Bian
hi Identities :
Rαβµν;ρ +Rαβρµ;ν +Rαβνρ;µ = 0. (5.9)Using the de�nition (5.8), these 
an be rewritten as equations of motion of theWeyl tensor as follows ([7℄ or[2℄):

C ;ν
αβµν = Jαβµ, (5.10)where (with from now on n = 3)

Jαβµ ≡ Rµα;β −Rµβ;α +
1

6
gµβR;α −

1

6
gµαR;β . (5.11)These equations are rather similar to Maxwell's equations of Ele
trodynami
s

F ;ν
µν = Jµ, where Fµν is the ele
tromagneti
 �eld tensor and Jµ is the sour
e
urrent. Thus, in some sense, the Bian
hi Identities of the Weyl tensor 
an beregarded as its �eld equations giving that part of the 
urvature at a point thatdepends on the matter distribution at other points.



82 Comparing Perturbative Te
hniques. Other Results.The magneti
 part of the Weyl tensor in the Gradient Te
hniqueOne 
an pro
eed with the analogy of the Ele
trodynami
s splitting the Weyltensor into two se
ond-rank tensors known as the ele
tri
 and magneti
 partsof the Weyl tensor. Likewise in Ele
trodynami
s Fµν is 
omposed of two 
on-tributions, the ele
tri
 and magneti
 �elds Eµ and Hµ whose values and formsdepend on the 
oordinate system, the de
omposition of the Weyl tensor dependson the gauge 
hoi
e, or more generally on the assumed spa
etime splitting.Adopting the usual syn
hronous and 
omoving gauge 
hoi
e with the geodesi
lines 
oin
iding with the worldlines of the parti
les �uid, and with the normalve
tor �eld nµ to the hypersurfa
es Σ 
oin
iding with the geodesi
s tangents ξµand the matter 4-velo
ity �eld uµ, the ele
tri
 and magneti
 parts of the Weyltensor read, respe
tively,[7℄
Eµν ≡ uαuβCµανβ (5.12a)

Hµν ≡
1

2
ηαβρµ uρuδ Cαβ

νδ −
1

2
ηαβρν u

ρuδ Cαβ
µδ, (5.12b)where ηαβµν ≡ (−g)−1/2ǫαβµν , with g being the determinant of the metri


gµν and ǫαβµν being the four dimensional 
ompletely antisymmetri
 Levi-Civitasymbol. It 
an be shown that Eµν and Hµν are both symmetri
, tra
eless, and�ow-orthogonal. Therefore they have ea
h 5 independent 
omponents, half asmany as the Weyl tensor, and thanks to our gauge 
hoi
e they live in the purelyspatial 3-dimensional hypersurfa
es at 
onstant time Σ.
Eµν is also 
alled the tidal for
e �eld, sin
e it 
ontains the part of the gravita-tional �eld whi
h des
ribes tidal intera
tions: tidal for
es a
t on the �uid �owby indu
ing shear distortions, and indeed the evolution equation of the shear
ontains as its sour
e the ele
tri
 part of the Weyl tensor [20℄. The tensor Hµνis related to that part of the gravitational �eld whi
h des
ribes gravitationalwaves, whi
h have no Newtonian 
ounterpart [22℄.The magneti
 part of the Weyl tensor plays an interesting role in the nonlin-ear dynami
s of 
osmologi
al perturbations of an irrotational 
ollisionless �uid.In fa
t, the dynami
s of self-gravitating perfe
t �uid is greatly simpli�ed un-der three assumptions: the �uid is 
ollisionless (p = 0), it has zero vorti
ity,and Hµν = 0. If the former two 
onditions have been used throughout andare wide enough to allow for many 
osmologi
al 
ases, the third assumption ismore problemati
. If the magneti
 
omponent is swit
hed o�, all the equationsfor the dynami
s take a stri
tly lo
al form: the matter and spa
etime 
urva-ture variables evolve independently along di�erent �uid worldlines [20℄. If su
hhypotheses were satis�ed, no information 
ould be ex
hanged among di�erent�uid elements: signal ex
hange 
an o

ur via gravitational radiation and alsovia sound waves, but none of these wave modes is allowed when p = Hµν = 0.Furthermore, the 
ondition Hµν = 0 
annot be taken as an exa
t 
onstraint forthe general 
osmologi
al 
ase, not being suitable to study 
osmologi
al stru
tureformation.Let us then investigate the form that the magneti
 part of the Weyl tensor as-sumes in the 
ontext of the gradient expansion. For this task, we rewrite theequation (5.12b) as follows, in line with the formalism adopted until here:

Hi
j =

1

2
γjm [ηmab

γ θi
a|b + ηiab

γ θm
a|b], (5.13)



5.2 Weyl tensor and its magneti
 part 83where ηabc
γ ≡ γ−1/2ǫabc, the bar denotes 
ovariant derivatives in the 3-spa
ewith metri
 γij , and θij is the 
onformal res
aled velo
ity-gradient tensor.If the geometri
al and physi
al quantities in the de�nition are written up to

2r spatial derivatives terms, then the magneti
 tensor 
ontains 2r + 1 spatialgradients, for the 
ovariant di�erentiation. We have in mind the usual expansion
Hi

j = Hi(0)
j +Hi(1)

j +
1

2
Hi(2)

j .From equation (5.13), we 
an already stand that, in our 
onventions, Hi(0)
j =

Hi(1)
j = 0. In fa
t, the lowest spatial derivative 
ontribution to Hij is of theform

Hi
j ∝

1

2
γ

(0)
jm e3Ψ ǫmab θ

i(1)
a |b,where we have used that the determinant of the spatial metri
 is γ = e−6Ψ. But

θ
i(1)
a |b is at least a 3DT, thus up to two spatial gradients there is no 
ontributionto the magneti
 part of the Weyl tensor.The se
ond order term 
an then be 
al
ulated as usual using the results obtainedin Chapter 4. Up to se
ond order, the term θ

i(1)
a |b 
an 
ontain at most 3 spatialgradients, and reads

θ
i(1)
a|b = τe

10
3 ϕ[− 1

3
ϕ,i

,ab+

+
5

9
ϕ,nϕ,i

,nδab −
5

9
ϕ,iϕ,ab+

− 5

9
ϕ,aϕ

,i
,b +

5

9
ϕ,nϕ,naδ

i
b].

(5.14)Now, the �rst three terms of equation (5.14) are symmetri
 for ex
hange ofindi
es a and b: therefore, be
ause of the presen
e of the Levi-Civita symbol inthe de�nition (5.13) , they do not 
ontribute to the magneti
 tensor Hi
j . Thelatter, up to our se
ond order, is di�erent from being null and reads

Hi
j =

τ

2
e

15
3 ϕδjm[ǫmab(−5

9
ϕ,aϕ

,i
,b+

5

9
ϕ,nϕ,naδ

i
b)+ǫ

iab(−5

9
ϕ,aϕ

,m
,b +

5

9
ϕ,nϕ,naδ

m
b )].(5.15)The magneti
 part of the Weyl tensor does not 
ontain terms with a single ϕ,that is Hi

j(3grad(ϕ)) = 0.





Con
lusionsApproximation methods have been and are very important in General Relativityand its appli
ations to Cosmology and Relativisti
 Astrophysi
s. In this thesiswe have presented the so-
alled Gradient Expansion Te
hnique, 
omputing theexpressions up to four spatial gradients of the perturbative fun
tions Ψ and χijin an irrotational matter-dominated universe.Our gradient expansion approa
h is slightly di�erent from the ones already ex-isting in literature: we have perturbed Einstein Equations in a given pre
isegauge rather than beginning with a relativisti
 a
tion prin
iple; we have writ-ten the spatial metri
 γij with the s
alar perturbative fun
tion Ψ appearingin the argument of an exponential and allowing the FRW ba
kground solutionto have a spatial dependen
e; �nally we have solved Einstein Equations in theform of evolution equations of the ADM formalism, and we have set the initial
onditions as provided by standard In�ation.The Gradient Expansion Te
hnique has shown itself to be mu
h more handythan the standard one, for the simpli
ity and relative brevity of the 
omputa-tions. Furthermore, this approximation methods has shown itself to be non-perturbative in the sense that by solving for the metri
 
oe�
ients Ψ and χijup to 2r spatial gradients one obtains terms of any order in the standard per-turbative expansion 
ontaining up to 2r spatial gradients.Our parti
ular approa
h allowed us to 
ompare quite dire
tly the results ob-tained in the Gradient Expansion with those of the Standard Theory: the 
om-parison has shown the 
oheren
e of the two sets of results, and hen
e the 
on-sisten
y of the method.Thanks to the wide wavelength-range of validity of the Gradient Expansion,this s
heme is suitable to study the large-s
ale stru
ture formation and issuesrelated with it, from the study of perturbations generation during In�ation, tothe problem of the ba
krea
tion, and the derivation of the Zel'dovi
h approxi-mation for General Relativity des
ribing the formation of pan
ake stru
ture inmatter-dominated universes [27℄, [28℄, [29℄, [37℄.A possible further development of the work presented in this thesis 
ould be theexstension of the 
omputations in our approa
h in the 
ase of a universe dom-inated by the 
osmologi
al 
onstant Λ, in line with the standard 
osmologi
almodel of the present universe, or in the 
ase of a s
alar �eld dominated universe.





Appendix ADe
omposition of spatialve
tors and tensorsIn order to study perturbations on the invariant n−spa
e Σ, we �rst 
lassifythem into three groups on the basis of their behaviour under the transformationof spa
e-
oordinate xk: the s
alar type, ve
tor type and tensor type.A ve
tor quantity vi on Σ 
an be de
omposed as
vi = ∂iv + vi

⊥ su
h that ∂i v
i
⊥ = 0. (A.1)

v represents the s
alar (or longitudinal or irrotational) 
omponent of the spa
e-ve
tor vi, while vi
⊥ represents the transverse (divergen
e-free or solenoidal)proper ve
tor part of it.Similarly, a symmetri
 tra
eless se
ond-rank tensor Tij on Σ 
an be de
om-posed into a sum of parts, 
alled longitudinal, solenoidal, and transverse:
Tij = Dij T + (∂iT

⊥
j + ∂jT

⊥
i ) + T⊤

ij (A.2)with (in the 
ase n = 3)
Dij ≡ ∂i∂j −

1

3
δij∇2 (A.3a)

∂iT⊥
i = 0 (A.3b)

∂iT⊤
ij = 0. (A.3
)The longitudinal tensor T is also 
alled the s
alar part of Tij , the solenoidalpart T⊥

j is also 
alled the ve
tor part, and the transverse-tra
eless part T⊤
ij isalso 
alled the tensor part of the spatial-tensor on Σ.For a more general de
omposition of non-tra
eless tensors see [6℄. Let us notethat the de
omposition in s
alar, ve
tor and tensor parts of a spatial tensor isnot unique: T and T⊥

i are de�ned only up to a 
onstant, and additional freedommay appear [7℄.





Appendix BSyn
hronous gauge:geometri
al quantities
FRAME:

dS2 = −dt2 + hij(t, ~x) dx
idxj

Θi
j =

1

2
hia ˙haj

(t− coordinates)Christo�el Symbols
Γ0

00 = Γ0
0j = Γj

00 = 0

Γ0
ij = Θij ; Γi

0j = Θi
j ; Γi

jk = (3)Γi
jkRiemann Tensor

R0
000 = Rj

000 = R0
00j = 0

R0
i0j = Θ̇ij −Θaj Θa

i; Ri
00j = Θ̇i

j + Θi
a Θa

j ; R0
0ij = Θai Θa

j −Θaj Θa
i

R0
ijk = −Θij,k + Θik,j + Θaj

(3)Γa
ik −Θak

(3)Γa
ij

Ri
0jk = −Θi

j,k + Θi
k,j + Θa

k
(3)Γi

aj −Θa
j

(3)Γi
ak

Ri
j0k = −Θi

j,k + (3)Γi
jk,0 + Θi

a
(3)Γa

jk −Θa
j

(3)Γi
ak

Ri
jkl = (3)Ri

jkl + Θi
k Θjl −Θi

l Θjk



90 Syn
hronous gauge: geometri
al quantitiesRi

i Tensor
R00 = −Θ̇−Θa

b Θb
a; R0

0 = −Θ̇ + Θa
b Θb

a

R0i = Θa
i|a −Θ|i

Rij = (3)Rij + Θ̇ij − 2Θaj Θa
i + Θ Θij

Ri
j = (3)Ri

j + Θ̇i
j + Θ Θi

jS
alar Curvature
R = (3)R+ 2Θ̇ + Θ2 + Θa

b Θb
a



Appendix CDi�erent orders 
ontributionsto the 
al
ulated quantitiesIn the text, the geometri
al and physi
al quantities of interests have been ex-pressed in terms of the pertubative fun
tions Ψ and χ and their derivatives.We want in this Appendix to work on them in order to distinguish the di�erent
ontributions to di�erent orders in gradient 
ontent.The results of this pro
edure will be really useful for performing the 
al
ulations.Velo
ity-gradient tensor and expansion rateHaving in mind an expansion for θi
j and θ like

θ = θ(0) + θ(1) +
1

2
θ(2) and θi

j = θi
j
(0)

+ θi
j
(1)

+
1

2
θi

j
(2)
,we 
an expand equations (4.13) and (4.14) as follow

θi
j = −(Ψ(0) + Ψ(1))

′δi
j +

1

2
χ

i(1)
j

′
= θi

j

(0)
+ θi

j

(1)
,

θ = −(Ψ(0) + Ψ(1))
′ = −3Ψ′

(1) = θ(0) + θ(1),where we note that Ψ(0) does not dipend on time and hen
e θi
j
(0) and θ(0) arenull.Up to 2nd order, θi

j and θ are given by (4.34) and (4.35). Analogously, wepro
ede and separate the di�erent order 
ontributions:
θi

j = −(Ψ(0) + Ψ(1) +
1

2
Ψ(2))

′δi
j +

1

2
(χi

j(1) +
1

2
χi

j(2))
′ − 1

2
χia

(1) χ
(1)
aj

′
=

= −Ψ′
(1)δ

i
j −

1

2
Ψ′

(2)δ
i
j +

1

2
χi

j(1)

′
+

1

2

1

2
χi

j(2)

′ − 1

2
χia

(1) χ
(1)
aj

′
=

= (−Ψ′
(1)δ

i
j +

1

2
χi

j(1)

′
) + (−1

2
Ψ′

(2)δ
i
j +

1

2

1

2
χi

j(2)

′ − 1

2
χia

(1) χ
(1)
aj

′
) =

= θi
j

(1)
+

1

2
θi

j

(2)
.
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ontributions to the 
al
ulated quantities
θ = −3Ψ′ − 1

2
χab

(1)χ
(1)
ab

′
= −3(Ψ(1) +

1

2
Ψ(2))

′ − 1

2
χab

(1)χ
(1)
ab

′
=

= −3Ψ′
(1) − 3

1

2
Ψ′

(2) −
1

2
χab

(1)χ
(1)
ab

′
= θ(1) +

1

2
θ(2).So we 
an 
on
lude that the velo
ity-gradient tensor 
an be written as follows

θi
j = θi

j

(1)
+

1

2
θi

j

(2) with (C.1a)
θi

j(1)
= −Ψ′

(1)δ
i
j +

1

2
χi

j(1)

′ (C.1b)
1

2
θi

j
(2)

=
1

2
[−Ψ′

(2)δ
i
j +

1

2
χi

j(2)

′ − χia
(1) χ

(1)
aj

′
]. (C.1
)And the expansion rate reads

θ = θ(1) +
1

2
θ(2) where (C.2a)

θ(1) = −3Ψ′
(1) (C.2b)

1

2
θ(2) =

1

2
[−3Ψ′

(2) − χab
(1)χ

(1)
ab

′
]. (C.2
)ShearFrim 4.15) we see that σi

j = σi
j(1). Up to 2nd order, from (4.36) we write

σi
j =

1

2
(χi

j(1)
+

1

2
χi

j(2)
)′ − 1

2
χia

(1)χ
(1)
aj

′
+

1

6
χab

(1)χ
(1)
ab

′
δi
j =

=
1

2
χi

j
′

(1)
+

1

2
[
1

2
χi

j
′

(2)
− χia

(1)χ
(1)
aj

′
+

1

3
χab

(1)χ
(1)
ab

′
δi
j].Therefore for the shear we 
on
lude

σi
j = σi

j(1) +
1

2
σi

j(2) with (C.3a)
σi

j(1) =
1

2
χi

j

′

(1)
(C.3b)

1

2
σi

j(2) =
1

2
[
1

2
χi

j
′

(2)
− χia

(1)χ
(1)
aj

′
+

1

3
χab

(1)χ
(1)
ab

′
δi
j ]. (C.3
)Ri

i TensorAt 1st order, the Ri

i tensor is given by (4.17) with Ψ = Ψ(0). Be
ause Ψ(0) =

Ψ(τ = 0), then we 
ould even 
all Ψ(0) = ΨIN and write R(1)
jm = RIN

jm .Up to 2nd order we 
an split Rjm in two ways, a

ording with the order ora

ording with the argument:
Rjm = R(0)

jm +R(1)
jm +

1

2
R(2)

jm

Rjm = Rjm(Ψ) +Rjm(χ) +Rjm(Ψ · χ),where the zeroth order term R(0)
jm is null. But (4.38) suggests the gradient
ontent of single addenda:
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• Rjm(Ψ) 
ontains 2DTs and 4DTs
• Rjm(χ) 
ontains 4DTs
• Rjm(Ψ · χ) 
ontains 4DTs.Therefore, a making sense expansion for the Ri

i Tensor is

Rjm = R(1)
jm(Ψ) +

1

2
R(2)

jm(Ψ) +
1

2
R(2)

jm(χ) +
1

2
R(2)

jm(Ψ · χ), (C.4)where
R(1)

jm(Ψ) = Ψ
(0)
,jm + (∇2Ψ(0))δjm + Ψ

(0)
,j Ψ(0)

,m − (∇Ψ(0))
2δjm (C.5a)

1

2
R(2)

jm(Ψ) =Ψ
(1)
,jm + (∇2Ψ(1))δjm + Ψ

(0)
,j Ψ(1)

,m + Ψ
(1)
,j Ψ(0)

,m+

−2(∂aΨ(0))(∂
aΨ(1))δjm

(C.5b)
1

2
R(2)

jm(χ) = +
1

2
(χa

j,ma + χa
m,ja −∇2χjm) withχij = χ

(1)
ij (C.5
)

1

2
R(2)

jm(Ψχ) =(∇2Ψ(0))χjm −Ψ
(0)
,ab χ

ab δjm −Ψ(0)
,a χab

,b δjm

+
1

2
Ψ,a

(0)(−χam,j − χaj,m + χmj,a)+

−(∇Ψ(0))
2χjm + Ψ(0)

,a Ψ
(0)
,b χab δjm.

(C.5d)S
alar CurvatureWe 
an apply the same pro
edure to the S
alar Curvature R. At �rst order(two derivatives), it reads as in (4.18) with Ψ = Ψ(0) = Ψ(τ = 0): then we 
anwrite R(1) = RIN . At se
ond order two di�erent splittings 
an be made:
R = R(0) +R(1) +

1

2
R(2)

R = R(Ψ) +R(χ) +R(Ψ · χ),where the zeroth order term R(0) is null. Similarly to the Ri

i tensor 
ase, the
omplete expression for the s
alar 
urvature (4.39) suggests that
• R(Ψ) 
ontains 2DTs and 4DTs
• R(χ) 
ontains 4DTs
• R(Ψ · χ) 
ontains 4DTs.Thus we 
an write

R = R(1)(Ψ) +
1

2
R(2)(Ψ) +

1

2
R(2)(χ) +

1

2
R(2)(Ψ · χ), (C.6)



94 Di�erent orders 
ontributions to the 
al
ulated quantitieswhere
R(1)(Ψ) = e2Ψ(0) [4∇2Ψ(0) − 2(∇Ψ(0))

2] (C.7a)
1

2
R(2)(Ψ) =e2Ψ(0) [4∇2Ψ(1) − 4(∂aΨ(0) ∂aΨ(1))]+

e2Ψ(0)(2Ψ(1))[4(∇2Ψ(0))− 2(∇Ψ(0))
2]

(C.7b)
1

2
R(2)(χ) = + e2Ψ(0) [χab

(1),ab] (C.7
)
1

2
R(2)(Ψχ) =e2Ψ(0) [−4χab

(1) Ψ
(0)
,ab − 4χab

(1),b Ψ(0)
,a + 2χab

(1) Ψ(0)
,a Ψ

(0)
,b ]. (C.7d)
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