

UNIVERSITÀ DI PISA

Facoltà di Ingegneria

Laurea Specialistica in Ingegneria dell’Automazione

Tesi di laurea

Candidato:

Marco Mammarella __________________

Relatori:

Prof. Mario Innocenti ___________________

Prof. Andrea Caiti ___________________

 Addressing pose estimation issues for
application of machine vision to UAV

Autonomous Aerial Refueling

Tesi di laurea svolta presso Department of Mechanical and Aerospace Engineering
West Virginia University (Morgantown)

Sessione di Laurea del 19/07/2005
Archivio tesi Laurea Specialistica in Ingegneria dell’Automazione

Anno accademico 2004/2005
Consultazione consentita

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14691173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Questo documento è il frutto di un lungo periodo di studio e di vita su cui mi sento in dovere

di ringraziare:
• Prof. Marcello Napolitano e Dr. Giampiero Campa per il supporto tecnico e morale

fornito durante la realizzazione di questo progetto.
• I miei familiari per l’immenso supporto morale e la disponibilità finanziaria fornita.
• Sofia, Matteo, Tore e Gabriele per essermi stati vicini nelle innumerevoli avventure

di questi anni ma anche nei momenti difficili.
• Tutti coloro che hanno contribuito a rendere questo periodo indimenticabile.

 2

ABSTRACT

The purpose of this thesis is to describe the results of an effort on the analysis of the
performance of specific algorithms for the ‘pose estimation’ problem within the context of
applying Machine Vision-based control laws for the problem of Autonomous Aerial Refueling
(AAR) for UAVs. It is assumed that the MV-based AAR approach features several optical
markers installed on specific points of the refueling tanker. However, the approach can be
applied without any loss of generality to the more general case of the use feature extraction
methods to detect specific points and corners of the tanker in lieu of the optical markers. The
document proposes a robust ‘detection and labeling algorithm’ for the correct identification of
the optical markers, which is then provided to the ‘pose estimation’ algorithm. Furthermore, a
detailed study of the performance of two specific ‘pose estimation’ algorithms (the GLSDC and
the LHM algorithms) is performed with special emphasis on required computational effort,
robustness, and error propagation. Extensive simulation studies demonstrate the potential of the
LHM algorithm and also highlight the importance of the robustness of the ‘detection and
labeling’ algorithm. The simulation effort is performed with a detailed modeling of the AAR
maneuver using the USAF refueling method.

SOMMARIO

Lo scopo di questa tesi è descrivere i risultati di uno studio riguardante l’analisi delle
prestazioni di specifici algoritmi per il problema della stima della posizione in un contesto
applicato ad una legge di controllo basata su Machine Vision (MV) per il problema del
rifornimento aereo in modo autonomo (AAR) per veicoli aerei non pilotati (UAVs). Si assume
che l’avvicinamento durante il rifornimento avvenga grazie a diversi markers ottici installati in
punti specifici dell’aeromobile che fornisce il carburante (Tanker). Il metodo può comunque
essere usato senza perdita di generalità in un caso dove si usa il metodo della feature extraction
per trovare dei punti specifici sul contorno del Tanker al posto dei markers ottici. Il documento
propone un algoritmo robusto per la corretta identificazione dei markers ottici, i quali vengono
poi forniti agli algoritmi di stima della posizione. Inoltre si propone uno studio dettagliato di due
specifici algoritmi per la stima della posizione (il GLSDC e LHM) dove si da particolare
importanza al peso computazione, la robustezza e la propagazione dell’errore. Numerose
simulazioni dimostrano il potenziale dell’algoritmo LHM evidenziando l’importanza della
robustezza e dell’algoritmo di identificazione dei markers ottici. Le simulazioni sono state
eseguite con un modello dettagliato della manovra di AAR usando il metodo proposto da USAF.

 3

INDEX

1. THE AUTONOMOUS AERIAL REFUELING PROBLEM8

1.1 REFERENCE FRAME ..11
1.2 PROBLEM FORMULATION ...11

2. THE TANKER ..16

2.1 AIRCRAFT MODEL ..18
2.2 MODEL OF THE BOOM ..18
2.3 MARKERS ..21

3. THE UNMANNED AERIAL VEHICLE..22

3.1 MODEL OF USED UAV ...23
3.2 SENSORS ..25
3.3 CONTROL ...28
3.4 ATMOSPHERIC TURBULENCE AND WAKE EFFECT..29
3.5 ACTUATORS DYNAMICS ...30

4. THE MACHINE VISION SYSTEM...31

4.1 THE PIN HOLE MODEL...31
4.2 THE MACHINE VISION BLOCK..32

4.2.1 Camera and Filter ...32
4.2.2 Scale...33
4.2.3 Rotation markers in camera frame ..33
4.2.4 The Labeling function ..34
4.2.5 Simulated Vision and Real Vision ...36
4.2.6 The Pose estimation algorithm ..38

5. THE GLSDC..40

5.1 3-D – 3-D ESTIMATION ..40
5.2 2-D PERSPECTIVE PROJECTION – 3-D POSE ESTIMATION...43

5.2.1 Iterative least-square solution ...43
5.2.2 Least-squares adjustment by linearization ..45

5.3 THE GLSDC IMPLEMENTATION...47

6. THE LHM..49

6.1 CAMERA MODEL ..49
6.2 THE LHM ALGORITHM ..51

6.2.1 Optimal absolute orientation solution ...51
6.2.3 The algorithm ..52
6.2.4 Global convergence ...53
6.2.5 Initialization and Weak Perspective approximation ...55

6.2.5.1 Weak-perspective model ..55
6.2.5.2 Initial absolute orientation solution ..56

6.3 THE LHM IMPLEMENTATION ...57

7. PERFORMANCE OF GLSDC AND LHM..58

7.1 NUMBER OF FLOPS...58
7.2 SPEED PERFORMANCE ..59

 4

7.3 ESTIMATED DELAY ..59
7.4 DIFFERENCES BETWEEN TRUE VALUES AND ESTIMATED VALUES60
7.5 ROBUSTNESS..71

7.5.1 Noise addition in the markers position with correct labeling71
7.5.2 ROBUSTNESS TO LABELING ERRORS..77

7.5.3 A real case: noise addiction in the markers position with uncertain labeling79
7.5.4 Robustness to errors in initial conditions ..81

7.6 ERROR PROPAGATION ANALYSIS..85

8. CONCLUSION..95

9. REFERENCE ..96

10. APPENDIX ..99

 5

FIGURE INDEX

FIG. 1.1: AERIAL REFUELING USING A BOOM SYSTEM...8
FIG. 1.2: AERIAL REFUELING USING A PROBE AND DROGUE SYSTEM ...9
FIG. 1.3: BOOM OPERATOR ON BOEING KC-135R ...9
FIG. 1.4: AAR SIMULATION..10
FIG. 1.5: REFERENCE FRAMES IN AAR PROBLEM ..11
FIG. 1.6: COORDINATE X OF BR DISTANCE IN MRF...12
FIG. 1.7: COORDINATE Y OF BR DISTANCE IN MRF ..13
FIG. 1.8: COORDINATE Z OF BR DISTANCE IN MRF...13
FIG. 1.9: TRACKING ERROR WITH GLSDC ALGORITHM ...14
FIG. 1.10: TRACKING ERROR WITH LHM ALGORITHM..15
FIG. 2.1: BOEING KC-135R FRONT VIEW ...16
FIG. 2.2: BOEING KC-135R REAR VIEW ...17
FIG. 2.3: AIRCRAFT TANKER MODEL ...18
FIG. 2.4: MODEL OF THE REFUELING BOOM..19
FIG. 2.5: BOOM OPERATOR CONSOLE ...19
FIG. 2.6: BOOM OPERATOR VIEW IN A REAL AND SIMULATED REFUELING MANEUVER..........................20
FIG. 2.7: DEFAULT POSITION OF THE MARKERS AND IDENTIFICATION ..21
FIG. 3.1: PREDATOR (LEFT) AND PIONEER (RIGHT) UAVS ..22
FIG. 3.2: ANGLE OF ATTACK Α AND SIDESLIP ANGLE Β DEFINITION ...23
FIG. 3.3: POSITION OF CONTROL SURFACE ...24
FIG. 3.4: SENSOR BLOCK SCHEME ..25
FIG. 3.5: FUSION BETWEEN GPS AND MV SYSTEMS ..26
FIG. 3.6: CALCULUS OF C

TT ..27
FIG. 3.7: UAV SOFTWARE SCHEME ..27
FIG. 3.8: CONTROLLER SCHEME ..29
FIG. 3.9: AAR TEST TO SEARCH THE COEFFICIENT INCREMENT ...29
FIG. 3.10: ACTUATORS DYNAMICS ..30
FIG. 4.1: GEOMETRY OF IMAGE CONSTRUCTION IN PIN HOLE CAMERA..31
FIG. 4.2: MV SCHEME ...32
FIG. 4.3: IMAGE CAPTURED FROM VRT ® ...33
FIG. 4.4: THE SCALE FUNCTION..33
FIG. 4.5: ROTATION MARKERS IN CAMERA FRAME SCHEME ..34
FIG. 4.6: MATCHING BETWEEN THE LABELED SET OF POINTS P̂ AND THE UNLABELLED SET P34
FIG. 4.7: LABELING METHOD FOR DETECTED MARKERS...36
FIG. 4.8: EXAMPLE OF AVOIDED ERROR IN LABELING FUNCTION..36
FIG. 4.9: BLOCK DIAGRAM OF SIMULATED VISION AND REAL VISION ...37
FIG. 4.10: RV (LEFT) AND SV (RIGHT) DETECTED MARKERS AT THE TIME T = 2.1 SEC37
FIG. 4.11: LHM POSE ESTIMATION OUTPUT IN RV CASE ...38
FIG. 6.1: THE REFERENCE FRAME IN POSE ESTIMATION PROBLEM ..50
FIG. 6.2: OBJECT-SPACE AND IMAGE SPACE COLLINEARITY ERRORS ...51
FIG. 7.1: ESTIMATED DELAY FOR GLSDC (T = 0.3 SEC) ...60
FIG. 7.2: DIFFERENCES BETWEEN REAL X Y Z AND GLSDC X Y Z IN SV CASE61
FIG. 7.3: DIFFERENCE BETWEEN REAL ROLL AND GLSDC ROLL IN SV CASE62
FIG. 7.4: DIFFERENCE BETWEEN REAL PITCH AND GLSDC PITCH IN SV CASE....................................62
FIG. 7.5: DIFFERENCE BETWEEN REAL YAW AND GLSDC YAW IN SV CASE ...63
FIG. 7.6: DIFFERENCES BETWEEN REAL X Y Z AND LHM X Y Z IN SV CASE.....................................64
FIG. 7.7: DIFFERENCE BETWEEN REAL ROLL AND LHM ROLL IN SV CASE64

 6

FIG. 7.8: DIFFERENCE BETWEEN REAL PITCH AND LHM PITCH IN SV CASE65
FIG. 7.9: DIFFERENCE BETWEEN REAL YAW AND LHM YAW IN SV CASE65
FIG. 7.10: DIFFERENCE BETWEEN REAL X Y Z AND GLSDC X Y Z IN RV CASE66
FIG. 7.11: DIFFERENCE BETWEEN REAL ROLL AND GLSDC ROLL IN RV CASE67
FIG. 7.12: DIFFERENCE BETWEEN REAL PITCH AND GLSDC PITCH IN RV CASE67
FIG. 7.13: DIFFERENCE BETWEEN REAL YAW AND GLSDC YAW IN RV CASE.......................................68
FIG. 7.14: DIFFERENCE BETWEEN REAL X Y Z AND LHM X Y Z IN RV CASE..69
FIG. 7.15: DIFFERENCE BETWEEN REAL ROLL AND LHM ROLL IN RV CASE ..69
FIG. 7.16: DIFFERENCE BETWEEN REAL PITCH AND LHM PITCH IN RV CASE70
FIG. 7.17: DIFFERENCE BETWEEN REAL YAW AND LHM YAW IN RV CASE ...70
FIG. 7.18: NOISE ADDING AFTER THE LABELING FUNCTION ...72
FIG. 7.19: SEEN MARKERS FROM T=0 TO T=20 SEC ..73
FIG. 7.20: SEEN MARKERS FROM T=20 TO T=40 SEC ..73
FIG. 7.21: EFFECT OF THE NOISE IN THE GLSDC ALGORITHM ..74
FIG. 7.22: EFFECT OF THE NOISE IN THE LHM ALGORITHM ..75
FIG. 7.23: DIFFERENCES BETWEEN GLSDC AND LHM ALGORITHM FOR A NOISE POWER =4*10-975
FIG. 7.24: GLSDC BEHAVIOR WITH NOISE POWER 5*10-9, DIVERGENCE FOR T=11.7 SEC..................76
FIG. 7.25: LHM BEHAVIOR WITH NOISE POWER 5*10-9...77
FIG. 7.26: NUMBERS AND POSITIONS OF MARKERS ON THE TANKER ...78
FIG. 7.27: LABELING ERROR RESPONSE WITH GLSDC ALGORITHM..78
FIG. 7.28: LABELING ERROR RESPONSE WITH LHM ALGORITHM ..79
FIG. 7.29: GLSDC BEHAVIOR FOR A NOISE POWER OF 3*10-9 AND UNCERTAIN LABELING80
FIG. 7.30: LHM BEHAVIOR FOR A NOISE POWER OF 4*10-9 AND UNCERTAIN LABELING80
FIG. 7.31: GLSDC ALGORITHM IN THE LIMIT OF THE CONVERGENCE AREA FOR THE TRANSLATION

VECTOR ...82
FIG. 7.32: GLSDC ALGORITHM OUT OF THE CONVERGENCE AREA FOR THE TRANSLATION VECTOR82
FIG. 7.33: LHM ALGORITHM BEHAVIOR WITH INITIAL CONDITION WRONG FOR THE TRANSLATION

VECTOR ...83
FIG. 7.34: GLSDC ALGORITHM IN THE LIMIT OF CONVERGENCE AREA FOR THE YAW ANGLE84
FIG. 7.35: GLSDC ALGORITHM OUT OF THE CONVERGENCE AREA FOR THE YAW ANGLE (DIVERGENCE)

...84
FIG. 7.36: LHM ALGORITHM BEHAVIOR WITH INITIAL CONDITION WRONG FOR THE YAW ANGLE85
FIG. 7.37: NOISE INPUT POWER SPECTRAL DENSITY (PSD) FOR NOISE POWER = 1*10-9....................86
FIG. 7.38: NOISE INPUT CUMULATIVE DISTRIBUTION FUNCTION (CDF) FOR NOISE POWER = 1*10-9.87
FIG. 7.39: OUTPUT NOISES PSD OF GLSDC ALGORITHM WITH NOISE INPUT POWER = 1*10-988
FIG. 7.40: OUTPUT NOISES PSD OF LHM ALGORITHM WITH NOISE INPUT POWER = 1*10-988
FIG. 7.41: VERIFICATION OF LINEARITY PROPRIETY FOR GLSDCX SYSTEM...89
FIG. 7.42: VERIFICATION OF LINEARITY PROPRIETY FOR GLSDCY SYSTEM...90
FIG. 7.43: VERIFICATION OF LINEARITY PROPRIETY FOR GLSDCZ SYSTEM...90
FIG. 7.44: VERIFICATION OF LINEARITY PROPRIETY FOR LHMX SYSTEM...91
FIG. 7.45: VERIFICATION OF LINEARITY PROPRIETY FOR LHMY SYSTEM ...91
FIG. 7.46: VERIFICATION OF LINEARITY PROPRIETY FOR LHMZ SYSTEM ...92
FIG. 7.47: PSD OF GLSDCX AND LHMX WITH NOISE 1*10-9...93
FIG. 7.48: PSD OF GLSDCY AND LHMY WITH NOISE 1*10-9 ...93
FIG. 7.49: PSD OF GLSDCZ AND LHMZ WITH NOISE 1*10-9 ...94

 7

TABLE INDEX

TAB. 1.1: 3DW DIMENSION SPECIFICATION ..12
TAB. 1.2: 3DW MEAN DISTANCE AND STD WITH GLSDC AND LHM ALGORITHMS14
TAB. 1.3: MEAN OF TRACKING ERROR ...15
TAB. 2.1: DENAVIT-HARTENBERG BOOM PARAMETER ...20
TAB. 7.1: NUMBER OF FLOPS OF THE TWO ALGORITHMS IN SV CASE AND IN RV CASE58
TAB. 7.2: MEAN TIME OF EXECUTION FOR GLSDC AND LHM ALGORITHMS IN SV AND RV CASE........59
TAB. 7.3: RMS VALUES OF THE ERROR FOR GLSDC AND LHM ALGORITHM IN SV CASE......................66
TAB. 7.4: RMS VALUES OF THE ERROR FOR GLSDC AND LHM ALGORITHM IN RV CASE71
TAB. 7.5: RMS VALUES OF THE ERROR FOR GLSDC AND LHM ALGORITHM IN RV CASE BETWEEN T1=15

SEC AND T2=50 SEC ...71
TAB. 7.6: CONVERGENCE AREA IN THE INITIAL CONDITION TESTS ...81
TAB. 7.7: INPUT DATA NOISE ..86

 8

1. THE AUTONOMOUS AERIAL REFUELING PROBLEM

The strategic and tactical importance of Unmanned Aerial Vehicles (UAVs) for civil and
military purposes has grown in recent years. The deployment of UAVs has been tested in current
and recent overseas conflicts. Reducing costs and risks of human casualties is one immediate
advantage of UAVs. An additional advantage is the possibility of avoiding troop deployment in
enemy territory for dangerous rescue missions as is done currently with manned missions. It is
envisioned that formations of UAV will perform not only intelligence and reconnaissance
missions but provide close air support, precision strike, and suppression of enemy air defenses.

One of the biggest current limitations of deployed military UAVs is their limited aircraft
range. In fact, today UAVs are not capable of overseas flight and need to be flown by ground
troops deployed at limited distances from a combat scenario. Furthermore, terrain and weather
factors can also determine how close to the targets the UAVs can be launched. Therefore, the
acquisition of AAR capabilities for UAVs is a critical goal. To achieve these capabilities
specific technical challenges need to be overcome.

Fig. 1.1: aerial refueling using a boom system

Currently, there are two types of hardware set-ups used for aerial refueling. The first method

is used by the US Air Force and is based on a refueling boom (Fig. 1.1); the second method is
used by the US Navy as well as the armed forces of other NATO nations and is based on a
“probe and drogue” setup, consisting of a refueling flexible hose with a flexible basket at the end
(Fig. 1.2).

In recent years, the AAR problem has attracted the attention of many researchers [1][2][27].
In this effort a key issue is represented by the need of a high accuracy measurement of the
relative Tanker-UAV relative distance and attitude in the final phase of docking and during the
refueling. The use of MV technology has been proposed in addition or as an alternative to more
conventional GPS technology. Particularly, a MV-based system has been proposed for close
proximity operations of aerospace vehicles [37] and for the navigation of UAVs [38]. For the
“probe and drogue” refueling system a MV-based system has been proposed in Refs. [1][2][27].
Within these studies, a fixed or variable number of visible optical markers is assumed to be
available. On the other hand, temporary loss of visibility might occur due to hardware failures
and/or physical interference between the UAV on-board camera and the markers due to the
refueling boom itself and/or different structural components of the Tanker or just simply because
the markers exit the visual range of the on-board camera.

 9

Fig. 1.2: aerial refueling using a probe and drogue system

In this effort the AAR problem is addressed for the “refueling boom” method. In this case,

the objective is to guide the UAV to a defined 3-D Window (3DW) below the Tanker where the
boom operator can then manually proceed to the docking of the refueling boom with the UAV
fuel receptacle followed by the actual refueling phase (Fig.1.3).

Fig. 1.3: boom operator on Boeing KC-135R

 10

A specific docking control scheme featuring a fusion of GPS and MV distance
measurements is proposed in this thesis. The MV estimation algorithms studied are capable of
handling temporary loss of visibility of the markers. A detailed simulation environment has been
designed providing accurate modeling for the drogue flexibility, the wake effects from the
Tanker on the UAV, the atmospheric turbulence, the UAV trajectory constraints, as well as the
GPS and MV measurements errors. Extensive simulations of the various aspects of the proposed
docking scheme are analyzed and discussed; the UAV has been characterized with the
parameters of the ICE-101 aircraft [39][38], the Tanker by a Boeing KC-135R aircraft [37].

A simulation environment for the AAR problem (Fig.1.4) is developed and analyzed, the
simulation uses Virtual Reality Toolbox® (VRT) of Matlab for the image representation, a
simulated camera is included in the simulation, it capture the VRT image and process the image
to extract the position of the points, the MV system uses this data to provide the relative distance
between camera and Tanker. The analysis of the MV system is the main purpose of this effort,
using a particular emphasis for the pose estimation algorithms: Gaussian Least Squares
Differential Correction (GLSDC) and the Lu, Hager and Mjolsness algorithm (LHM). The
differences between the two algorithms will be analyzed, highlighting and the most important
results.

Fig. 1.4: AAR simulation

 11

1.1 Reference frame
The relevant reference frames, the problem formulation, sensors and distance vectors will be

described in this section.
The general scheme of the (Tanker + refueling boom + UAV) system is shown in Fig. 1.5
The study of the AAR problem requires the definition of specific Reference Frames (RFs);

where ERF is the earth fixed reference frame; TRF and URF are the body fixed RF for the
Tanker and the UAV respectively; these RFs are applied in the center of mass of the aircrafts.
Note, CRF refers to a fixed UAV camera RF. To make the docking problem invariant with
respect to the nominal heading of the aircraft, an additional fixed frame MRF is defined; this
frame is rotated of the nominal heading angle ψ0 with respect to the ERF. In this thesis, the
following notation will be used: ER represents a point R expressed within ERF, EAB represents
the vector from point A to point B expressed within ERF, while the matrix E

TT represents the
homogeneous transformation matrix that transform a vector/point expressed within TRF in a
vector/point expressed within ERF.

Fig. 1.5: reference frames in AAR problem

1.2 Problem formulation
The objective is to guide the UAV such that its fuel receptacle (point R in Fig.1.5) tracks the

center of a 3-dimensional window (3DW) under the tanker (point B). Once the UAV fuel
receptacle reaches and remains within this 3DW, the boom operator is assumed to take control of
the refueling operations. It should be underlined that point B is fixed in the TRF with the
dimensions of the 3DW (δx,δy,δz) presented in Tab 1.1 being an important design parameter. It
is assumed that the tanker and the UAV share a data communication link. The UAV is equipped

 12

with a digital camera along with MV algorithms acquiring the images of the tanker and the
point-wise markers (points jP) installed on the tanker itself.

 Desired

(meter)
Limit

(meter)
δx ±0.40 ±2.10

δy ±1.87 ±2.10

δz ±0.90 ±2.56

Tab. 1.1: 3DW dimension specification

Actually the desired parameters δx, δy and δz are respected both from the GLSDC and LHM

algorithms, the result are presented in Fig 1.6 -1.8 and in Tab. 1.2 where a mean and a standard
deviation of the 3DW distance are shown for the two algorithms with a initial position of the
UAV aircraft x0=[-50, -20, 30] within TRF.

50 55 60 65 70 75 80
0.15

0.2

0.25

0.3

BRx distance

t (sec)

x
(m

et
er

s)

BRx GLSDC

BRx LHM

Fig. 1.6: coordinate x of BR distance in MRF

 13

50 55 60 65 70 75 80
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (sec)

y
(m

et
er

s)

BRy distance

BRy GLSDC

BRy LHM

Fig. 1.7: coordinate y of BR distance in MRF

50 55 60 65 70 75 80
0

0.05

0.1

0.15

0.2

0.25

t (sec)

z
(m

et
er

s)

BRz distance

BRz GLSDC

BRz LHM

Fig. 1.8: coordinate z of BR distance in MRF

 14

Mean value (η) Standard Deviation (σ)

 GLSDC
(meter)

LHM
(meter)

GLSDC
(meter)

LHM
(meter)

δx 0.2581 0.2539 0.2160 0.2166

δy 0.0153 0.0034 0.0943 0.0898

δz 0.1100 0.0966 0.0949 0.0875

Tab. 1.2: 3DW mean distance and std with GLSDC and LHM algorithms

An evaluation of the tracking error is provided for the GLSDC and LHM algorithms in

Fig.1.9 - 1.10 and in Tab.1.3, where we consider the tracking error as the difference between the
actual position of the aircraft and the nearest point in the whole trajectory. The trajectory is
considered to be simply a set of points, the time dependency is not considered for the tracking
error calculation. An analysis of the tracking error shows that the aircraft follows the trajectory
without major differences between the two algorithms.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

x
(m

et
er

s)

Tracking error with GLSDC algorithm

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

y
(m

et
er

s)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

z
(m

et
er

s)

Fig. 1.9: tracking error with GLSDC algorithm

 15

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

x
(m

et
er

s)

Tracking error with LHM algorithm

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

y
(m

et
er

s)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

z
(m

et
er

s)

Fig. 1.10: tracking error with LHM algorithm

 GLSDC
(meter)

LHM
(meter)

x 1.3831*10-2 1.4180*10-2

y 1.0154*10-2 0.9996*10-2

z 1.2835*10-2 1.3674*10-2

Tab. 1.3: mean of tracking error

 16

2. THE TANKER

The Tanker used in the AAR simulation is the Boeing KC-135R Stratotanker, this is among
the most common aircraft used for this purpose.

The KC-135 Stratotanker's primary mission is to refuel long-range aircraft. It also provides
aerial refueling support to Air Force, Navy, Marine Corps and allied aircraft. Four turbojets,
mounted under wings swept 35 degrees, power the KC-135. Nearly all internal fuel can be
pumped through the tanker's flying boom, the KC-135's primary fuel transfer method. A special
shuttlecock-shaped drogue, attached to and trailed behind the flying boom, is used to refuel
aircraft fitted with probes. An operator stationed in the rear of the plane controls the boom. A
cargo deck above the refueling system holds passengers or cargo. Depending on fuel storage
configuration, the KC-135 can carry up to 37,350 kilograms of cargo.

The KC-135 tanker fleet made an invaluable contribution to the success of Operation Desert
Storm in the Persian Gulf, flying around-the-clock missions to maintain operability of allied
planes. The KC-135s form the backbone of the Air Force tanker fleet, meeting the aerial
refueling requirements of bomber, fighter, cargo and reconnaissance forces, as well as the needs
of the Navy, Marines and allied nations.

Fig. 2.1: Boeing KC-135R front view

Because the KC-135A's original engines are of 1950s technology, they don't meet modern

standards of increased fuel efficiency, reduced pollution and reduced noise levels. By installing
new, CFM56 engines, performance is enhanced and fuel off-load capability is dramatically
improved. In fact, the modification is so successful that two-re-engined KC-135Rs can do the
work of three KC-135As. This improvement is a result of the KC-135R's lower fuel consumption
and increased performance which allow the tanker to take off with more fuel and carry it farther.
Since the airplane can carry more fuel and burn less of it during a mission, it's possible to
transfer a much greater amount to receiver aircraft.

The quieter, more fuel-efficient CFM56 engines are manufactured by CFM International, a
company jointly owned by SNECMA of France, and General Electric of the U.S. The engine is
an advanced-technology, high-bypass turbofan; the military designation is F108-CF-100. Related
system improvements are incorporated to improve the modified airplane's ability to carry out its

 17

mission, while decreasing overall maintenance and operation costs. The modified airplane is
designated a KC-135R.

Because the KC-135R uses as much as 27 percent less fuel than the KC-135A, the USAF
can expect huge fuel savings by re-engining its fleet of KC-135s - about $1.7 billion over 15
years of operation. That's enough to fill the gas tanks of some 7.7 million American cars each
year for a decade and a half. Annual savings are estimated to be about 2.3 to 3.2 million barrels
of fuel, about three to four percent of the USAF's annual fuel use. This equals the fuel needed to
provide electrical power for 145 days to a city of 350,000 to 400,000.

Re-engining with the CFM56 engines also results in significant noise reductions. Area
surrounding airports exposed to decibel noise levels is reduced from over 240 square miles to
about three square miles. This results in a reduction in the noise impacted area of more than 98
percent. Maximum take-off decibel levels drop from 126 to 99 decibels. This meets the tough
U.S. Federal Air Regulation standards -- a goal for commercial aircraft operated within the U.S.
In addition, smoke and other emission pollutants are reduced dramatically.

Boeing has delivered approximately 400 re-engined KC-135Rs and is under contract for
about 432 re-engine kits. Each kit includes struts, nacelles, 12.2 miles of wiring, and other
system modification components. Engines are purchased directly by the Air Force from CFM
International.

Fig. 2.2: Boeing KC-135R rear view

Boeing has completed work on a program to re-engine all KC-135As in the Air Force

Reserve and Air National Guard fleet - a total of 161 airplanes. In that modification program,
which began in 1981, KC-135As were modified with refurbished JT3D engines taken from used,
commercial 707 airliners. After modification, the airplanes are designated KC-135Es. This
upgrade, like the KC-135R program, boosts performance while decreasing noise and smoke
pollution levels. The modified KC-135E provides 30 percent more powerful engines with a noise
reduction of 85 percent.

 18

The program included acquisition of used 707s, procurement of purchased parts and
equipment, basic engineering, some parts manufacturing, and refurbishment and installation of
the engines, struts and cowling. Kits also included improved brakes, cockpit controls and
instruments.

2.1 Aircraft model
The used model for the Tanker has the dynamic characteristic of the Boeing KC-135R, the

aircraft has to assume for the refueling a steady state equivalent to a rectilinear trajectory, a
constant Mach number of 0.65 and an altitude (H) of 6,000 m. This allows simplifying the
Tanker dynamics as described in section 3.1. The lateral-directional motion is eliminated by the
dynamics inasmuch the aircraft has just a longitudinal motion. The longitudinal motion has a
stable dynamics and the Tanker does not need an internal stability control.

Fig. 2.3: aircraft Tanker model

2.2 Model of the boom
The boom has been modeled using the scheme represented in Fig. 2.4. The boom is

connected to the Tanker at point P and consists of two elements: the first element is connected to
point P by two revolute joints, allowing vertical and lateral relative rotations (θ4 and θ5); the
second element is connected to the first one by a prismatic joint that allows the extension d6.
The dynamic model of the boom has been derived using the Lagrange method:

() (), ,
, 1,...,

∂ ∂
− = =

∂ ∂ i
i i

L q q L q qd F i n
dt q q

 (2.1)

where () () (), ,= −L q q T q q U q is the Lagrangian (difference between the boom kinetic and
potential energy), q is the vector of the Lagrangian coordinates and Fi are the lagrangian forces
on the boom.

 19

TANKER
JOINT Fwx1Fwy1

θ4

θ5

TANKER
C.o.M.

T

P

d1
d2 d3

d6

Fwz1

Fwx2
Fwy2

Fwz2

1st element: lenght 6.1 m, mass 180 kg.
2nd element: lenght 4.6 m, mass 140 kg.

Fig. 2.4: model of the refueling boom

To derive the Lagrangian, reference is made to an inertial frame, the ERF; in this case the

inertial and gravitational forces are implicitly included in the left-hand side of (2.1) and Fi
represent the active forces (wind and control forces). With respect to this frame, the boom has
six degrees of freedom: the three translations d1, d2, and d3 of point P, the rotations θ4 and θ5, and
the extension d6; therefore the Lagrangian coordinates can be chosen as

[]1 2 3 4 5 6, , , , , Tq d d d dθ θ= .

Fig. 2.5: Boom operator console

Furthermore, the first three variables d1, d2, and d3 are expressed in function of the tanker

position as:

() ()
() ()
() () ()

E E E

E E E

E E E E

P t T t TP

P t T t TP

P t T t TP TP

ω

ω ω ω

= +

= + ×

= + × + ∧ ∧

 (2.2)

 20

where ET is the position of the Tanker’s center of gravity, ω is the tanker angular velocity,
E []1 2 3, ,= TP d d d , ETP is the fixed length vector going from ET to EP.

The kinetic and potential energies have be derived referring to the Denavit-Hartenberg
representation of the system:

 ai αi di θi

1 0
2
π d1 0

2 0
2
π d2

2
π

3 0
2
π d3 0

4 0
2
π

−
0 4θ

5 0
2
π

−
0 5θ

6 0
2
π

d6
2
π

Tab. 2.1: Denavit-Hartenberg Boom parameter

In the AAR simulation the boom is controlled using a joystick and there is a camera point of

view that corresponds to the operator point of view during the refueling maneuver (Fig.2.6).

Fig. 2.6: Boom operator view in a real and simulated refueling maneuver

 21

2.3 Markers
The markers are bright red lights placed in the Tanker, they are modeled as spheres with a

radius of 10 cm each. In the AAR simulation the markers are 9 and they have a default
configuration (Fig 2.7), but there is a possible for modify the number until a maximum of 10 and
the position of the markers. In the next chapters we always refer to the default configuration and
we will call the markers with the number that identifies it.

Fig. 2.7: default position of the markers and identification

 22

3. THE UNMANNED AERIAL VEHICLE

Unmanned Aerial Vehicles (UAVs) have been referred to in many ways: RPVs (Remotely
Piloted Vehicle), drones, robot planes, and pilot less aircraft are a few such names. Most often
called UAVs, they are defined by the Department of Defense (DOD) as powered, aerial vehicles
that do not carry a human operator, use aerodynamic forces to provide vehicle lift, can fly
autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or
non-lethal payload. Ballistic or semi-ballistic vehicles, cruise missiles, and artillery projectiles
are not considered UAVs by the DOD definition. UAVs differ from RPVs in that some UAVs
can fly autonomously. UAVs are either described as a single air vehicle (with associated
surveillance sensors), or a UAV system, which usually consists of three to six air vehicles, a
ground control station, and support equipment. UAVs are thought to offer two main advantages
over manned aircraft: they are arguably cheaper to produce, and they eliminate the risk to a
pilot’s life. UAVs protect the lives of pilots by performing the “3-D” missions. Furthermore, for
those certain missions which require a very small aircraft, only a UAV can be deployed because
there is no equivalent manned system small enough for the job. There are a number of reasons
why UAVs have only recently been given a higher priority. Technology is now available that
wasn’t available just a few years ago, included advanced video surveillance and sensing systems
that can be mounted on UAVs.

UAVs range from the size of an insect to that of a commercial airliner. DOD currently
possesses five major UAVs: the Air Force’s Predator and Global Hawk, the Navy and Marine
Corps’s Pioneer, and the Army’s Hunter and Shadow.

Fig. 3.1: Predator (left) and Pioneer (right) UAVs

The non-military use of UAVs is expected to increase in the future as technologies evolve

that allow the safe, reliable flight of UAVs over populated areas. One emerging application is the
use of less sophisticated UAVs as aerial camera platforms for the movie-making and
entertainment industries. A similar market is growing rapidly in the television news reporting
and coverage arenas also. As demand in these markets grows, aircraft such as the IUAS will
become a more desirable aerial platform than less-capable hobbyist aircraft, as safety, reliability,
ease-of-use, and rapid deployment become important priorities. Additional roles for UAVs in the
near future will include homeland security and medical re-supply. The Coast Guard and Border
Patrol, parts of the newly formed Department of Homeland Security, already have plans to
deploy UAVs to watch coastal waters, patrol the nation’s borders, and protect major oil and gas
pipelines. Congressional support exists for using UAVs for border security. During a Senate
Armed Services Committee hearing on homeland defense, it was stated that although it would
not be appropriate or constitutional for the military to patrol the border, domestic agencies using
UAVs could carry out this mission. On the medical side, UAVs such as the Army’s Shadow
have been studied as delivery vehicles for critical medical supplies needed on the battlefield. Not

 23

all of these new applications have been approved — UAV advocates state that in order for UAVs
to take an active role in homeland security, Federal Aviation Administration (FAA) regulations
concerning the use of UAVs will have to change. The Coast Guard will most likely take the lead
in resolving UAV airspace issues with the FAA. The National Aeronautics and Space
Administration (NASA) and the UAV industry will also be working with the FAA on the issue,
as they are joining forces in an initiative to achieve routine UAV operations in the national
airspace within a few years.

3.1 Model of used UAV
The aircraft model used in AAR simulation is an ICE-101 [33], the model has been developed

using the conventional modeling approach outlined in [32]. The resulting UAV model is described by
a 12 steady state model:

, , , , , , , , , , ,E Ex V p q r x y Hα β ψ θ ϕ = (3.1)

where x is the state variable; V (m/s) is the component x of the velocity in body axis; α (rad) is
the wind axis angle of attack; β (rad) is the wind axis sideslip angle; p, q, r (rad/sec) are the
components (x, y, z) of the angular velocity in body axis (also known as roll, pitch and yaw
rates); ψ, θ, φ (rad) are the yaw, pitch and roll Euler angles; Ex, Ey, H are the position in Earth
fixed Reference Frame (ERF).
The angle of attack α and the sideslip angle β are defined as:

1 1tan and sinW U
V V

α β− −

 = =

 (3.2)

where [], ,V V U W= is the linear velocity in body axis.

Fig. 3.2: angle of attack α and sideslip angle β definition

The input vector u is:

_ _ _ _ _ _ _ _, , , , , , , , ,Throttle AMT R AMT L TEF R TEF L LEF R LEF L PF SSD R SSD Lu δ δ δ δ δ δ δ δ δ δ = (3.3)

where AMT is All Moving Tips, TEF is Trailing Edge Flaps, LEF is Leading Edge Flaps, PF is
Pitch Flaps, SSD is Spoiler Slot Deflector, the position of the control surface are shown in Fig.
3.3.

 24

Fig. 3.3: Position of control surface

The dynamic UAV model can be described by the differential equation

() (, ,)x t f x u t= (3.4)
which can be linearized in a trim point such as:

0 0() (, ,) 0x t f x u t= = (3.5)

in the above condition, the UAV has acceleration equal to zero and module of the vector velocity
constant. The equivalent state space model:

x Ax Bu= + (3.6)
is an LTI system with 12 state variable, the analysis of (3.6) shown that there is a substantial
decoupling between the longitudinal symmetric motion (translation x, translation z and rotation
y) and the lateral-directional asymmetric motion (translation y, rotation x and rotation z).

The longitudinal motion is characterized by 2 modes, the first one with high frequency (short
period) dominated by negligible variation in velocity, the second one with low frequency
(phugoid) characterized by small variation of incidence and slow variation on the pitch angles:

1 1, 1,

2 2, 2,

 ()
 ()

R I

R I

j short period
j phugoid

λ λ λ
λ λ λ
= ±

= ±
 (3.7)

The lateral-directional motion is characterized by 4 real modes, of which 2 are unstable:

3

4

5

6

0
0
0
0

λ
λ
λ
λ

>
<
<
>

 (3.8)

for this reason the model results with very unstable lateral dynamics.

 25

3.2 Sensors
The UAVs need more sensors of a normal airplane. Normally the precision in the sensors

play a major role in the performance of a system, in a UAV this is even more important since
there is no human intervention during the flight phases.

It is assumed that the UAV has a GPS system, an Inertial Navigation Unit (INU) with gyros
and accelerometers and a Machine Vision (MV) system.

The INU provides ψ, θ, φ (rad), and p, q, r (rad/sec),with some added noise. In this effort, a
Band-limited White Gaussian Noise (BWGN) with a power of (np) = 1*10-9 and sample time T
=0.05 sec is assumed for the euler angles, and an BWGN with a np = 1*10-8 and T=0.05 sec, is
assumed for p, q, and r . The measurements of the velocity angles α and β (rad) have a np =
1*10-9 and T=0.05 sec, and the velocity V (m/s) has a np = 1*10-7 and T=0.05 sec. The
accelerations and the other measurements do not have any added WGN.

The GPS system provides Ex, Ey, H , for which a WGN with np = 1*10-3 and T=0.1 sec is
assumed. Furthermore, the GPS has a unit delay to better approximate the real behavior of this
system. The simulation of these sensors is shown in Fig 3.4.

A BWGN is a simulation of White Gaussian Noise with the high of the Power Spectral
Density (PSD) equal to np, the correlation time is equal to the sample time T and the covariance

is pn
c

T
= .

Fig. 3.4: Sensor block scheme

The MV system can be consider a smart sensor, that provides the distance between camera

and observed point (Tanker). Within this effort, the MV system requires that the tanker has some
bright markers, placed in a known positions. It is nevertheless possible to use feature extraction
algorithms that could detect tanker corners in known positions, thereby avoiding the pacement of
bright markers on the tanker. The MV system is described in detail in the following chapter of
this document.

 26

The availability of a communication channel between UAV and Tanker is crucial, since the
UAV system has to know the position and orientation of the Tanker in order for a GPS-only
based system to work correctly. It is important to notice that the evaluation of the distance
requires not only the measurements coming from the GPS and MV but also the measurements of
the attitude angles of the UAV and the Tanker. Furthermore, as outlined below, the AAR control
laws require the measurement of all the UAV states. The measurement process was modeled by
corrupting the signals with an additive zero mean random noise with a typical STD.
Transmission and processing delay have been considered in the AAR simulation. As for the
transmission delay, 55 data bytes have to be transmitted: 13 floating point numbers (12 state
variables and the time, 4 byte/number), plus header and checksum (3 bytes). Assuming a bit rate
of 19.6 kbits/s, the transmission time is about 55x8/19600 ≈ 0.023 ms. As for the processing
time, the algorithm runs in about 0.02 s on the Simulink environment (no accelerator) on a
Pentium 4 2.6GHz Windows 2000 Operating System. Therefore the estimation of 0.05 s for the
overall delay was assumed.

Thanks to these sensors we have been able to set a method of fusion between GPS and MV
systems. The basic idea is that the measurement is entirely provided by the GPS (dGPS) when the
UAV has a distance d from the Tanker greater or equal to d1 and it is entirely provided by the
MV (dMV) if the distance UAV - Tanker is lesser or equal to d2. If 1 2d d d< < we have a linear
interpolation between the distance provided by the MV and that provided by the GPS, with the
rule:

2 2

1 2 1 2

1GPS MV
d d d dd d
d d d d

 − −
+ − − −

 (3.9)

the fusion system is presented in Fig 3.5.

Fig. 3.5: fusion between GPS and MV systems

 27

In more detail, the data provided by the GPS and INU is used to calculate the homogeneous
transformation matrix C

TT , which is the matrix that transforms a vector with origin in TRF in a
vector with the origin in CRF; a calculation method for this matrix is presented in Fig 3.6. C

TT is
also the output of the MV system, as can be seen in Fig 3.7, the other output of the MV is the
number of markers (US_MK) used for the current estimation. At this point we can join the two
measurements with the fusion method previously described. The MV measurement is valid only
is the current measurement is provided with at least 5 markers. Therefore, the fusion is
performed if the MV has a number greater or equal to 5 in US_MK and only for the translation
vector (x, y, z) of the matrix C

TT . The Euler angles provided by the MV tend to be more noisy
than the ones provided by the MV system, furthermore, the latter are in principle always
available independently on external conditions such as the number of detected markers. We
choose, for that reason, to use the angles that come from INU in the feedback loop.

The output of the fusion block is fed back as input of the MV block because this is deemed
to be the “best estimation” for the value of C

TT at the next sampling time.

Fig. 3.6: calculus of C

TT

Fig. 3.7: UAV software scheme

 28

3.3 Control
The controller has to be able to maintain the aircraft on a defined trajectory, that is the UAV

controller has to preserve the internal stability (the model is dynamically unstable in the lateral-
directional motion), has to follow a docking path, and finally keep the distance between
Receptacle point (R) on the UAV and Box Point (B) on the Tanker as low as possible. This kind
of minimization problem is typical in the control theory and can be resolved using a Linear
Quadratic Regulator (LQR) controller. The LQR control tries to minimize a performance cost
function J which depends quadratically on the output vector Y and the input U.

In this problem we can define an augmented state vector:

, , , , , , , , , , , , , ,AUG x y z x y zX V p q r e e e e e eα β ψ θ ϕ = ∫ ∫ ∫ (3.10)

where ex, ey and ez are the x, y and z distance between the point R and the point B and the
reference trajectory. The input vector U is the same defined in (3.3). At this point we can define
a performance cost function:

()
0

T TJ Y QY U RU dt
∞

= +∫ (3.11)

where Q and R are diagonal matrices that establish the performance for each used variable, the Y
variable is:

, , , , ,x y z x y zY e e e e e e = ∫ ∫ ∫ (3.12)

In the augmented state vector XAUG there is the integral of the distances in order to guarantee
that the distances converge to zero.

The controller uses the nine state variables of the UAV system, the vector BR expressed in
Tanker frame (TRF), and the pitch and roll angles of the Tanker (Fig 3.7) to provide one vector
cmd of 11 elements. It can be noticed that (Fig 3.8) the vector BRt is rotated of the angles pitch
and roll of the Tanker to yeald the vector BR in a reference frame called Psi Frame (MRF). MRF
has the same origin of ERF but is oriented on the direction of the Tanker; this allows to control
the aircraft as if it was always directed toward north in ERF. The nine state variables are
subtracted to the trim point x0. The reference trajectory, generated as a cubic path in three
dimensions, is subtracted to the BR vector in MRF. Once the integrals of ex, ey and ez are
available, we can find the input vector U for the state space model using the formula:

LQR AUGU K X= (3.13)

where KLQR represent the MIMO static controller with 15 inputs and 11 outputs.
The variable cmd is the sum of U and the trim input constant. In this way non-linear systems

are locally controlled through a simple linear controller in a trim point.

 29

Fig. 3.8: Controller scheme

3.4 Atmospheric turbulence and wake effect
The atmospheric turbulence acting on the probe system and on both Tanker and the UAV

aircraft has been modeled using the Dryden wind turbulence model [34]. A ‘light’ turbulence
was selected since aerial refueling is typically performed at high altitudes in calm air [34]. The
wake effects of the Tanker on the UAV are more significant than the atmospheric turbulence and
have been modeled through the interpolation from a large amount of experimental data [35][36]
as perturbations to the aerodynamic coefficients , , , , ,D L m l n YC C C C C C for the UAV aerodynamic
forces and moments. These coefficients represents: Drag and Lift coefficient, rolling, pitching
and yawing moment coefficient and Side Force coefficient, all of them are subject to variations
due to formation flight.

Fig. 3.9: AAR test to search the coefficient increment

 30

3.5 Actuators dynamics
To have a more realistic implementation of the aircraft modeling of the actuators has been

added. Every actuator of the input vector (3.3) has a saturation and a rate limiter (Fig, 3.10) that
is, an upper and lower limit and a velocity limit. The input vector is also delayed, and every
actuator is filtered, the filters are faster for the control surfaces than for the throttle command.

Fig. 3.10: actuators dynamics

 31

4. THE MACHINE VISION SYSTEM

Active sensors based on structured lighting are now compact and fast enough to be used in
visual servoing [27][29]. In addition to the specific class of sensors and markers, the
performance of a Machine Vision (MV) system depends on the performance of the marker
detection, labeling and pose estimation methods. In a MV system is very important that sampling
time is proportionate to the relative dynamics of the airplanes. Different approaches for the
marker detection/labeling are outlined in Refs [2] [30] [31]. Within this effort the attention is
focused on the labeling algorithm for the detected markers and the pose estimation problem [4]
with a variable or fixed number of visible markers. Thus, for our purposes it reasonable to
describe the markers as points in space and to model the image formation process by prospective
projections [29] , this method is also known as “pin hole” model [27] and is detailed later.

4.1 The pin hole model
The pin hole model is the simplest geometric model for image construction. Let P be a scene

point with coordinate (X, Y, Z), and let P’ the projection on image plane, with coordinates
(X’,Y’,Z’). If f is the distance between the hole O and the image plane (focal length), for the
similarity of the triangle we have:

' ' and Y Y Z Z
f X f X

− = − = (4.1)

therefore

' , ' , 'Y ZY f Z f X f
X X

= − = − = − (4.2)

Fig. 4.1: geometry of image construction in pin hole camera

Note that the image is inverted in comparison to the scene both right-left that up-down, in

the (4.2) there is minus sign. These equations define the image process formation that is known
as perspective projection. Subsequently we call (,)j ju v the perspective projection of the
point (, ,)j j j jP X Y Z= .

 32

4.2 The Machine Vision block
In the AAR simulation considered there is a block that manages the classical MV function,

this block correspond to a smart sensor that provides the measurement with a sampling time of
0.1 sec. We can see in Fig 4.2 the composition of this block.

Fig. 4.2: MV scheme

The MV has one input port (C

TT) that is the homogeneous transformation matrix (4 x 4)
from Tanker Reference Frame to Camera Reference Frame, which is composed as follows:

|
|
|

0 0 0 | 1

C T
T

C
T

R TC
T

 =
 − − − − −

 (4.3)

where C

TR is the rotation matrix that changes the reference frame from Tanker frame to
Camera Reference Frame, and TTC is the translation vector (x, y, z) that has the origin in the
Tanker Center of Gravity (TKCG)and the end in the Camera origin. The matrix C

TT is used to
transform a vector expressed within TRF in a corresponding vector in CRF. This matrix contains
all the information necessary to express the relationship among two different reference system,
which in our case are the Tanker frame and Camera frame.

The MV block has two outputs, the first one (nUsed) is the number of used markers in the
pose estimation problem, and the second one (C

TT) is the homogeneous transformation matrix
from Tanker to Camera composed as previously shown and provided by the Pose estimation
Algorithm.

4.2.1 Camera and Filter
The Camera and Filter is a Matlab® S-Function that captures the image that Virtual Reality

Toolbox® (VRT®) shows on the screen. The image has dimensions (320 x 200), and after the
capture this is mapped into the memory as a matrix (320 x 200 x 3) where the third dimension
represented the intensities of the color red, green and blue. We know that the markers are red, for
this reason we convert only the sub-matrix with the red intensity, using an appropriate threshold
to transform the sub-matrix into a black and white (BW) image. Using standard morphological
filtering techniques, we search into the BW image all the connected objects and extract the
centroid coordinate for each connected object. The output of the function is a vector with all the
coordinates (' , ')j ju v of all connected objects found, often, these object are simply the markers,

 33

but sometimes, some points that are also connected objects but are not markers, show up in the
output.

Fig. 4.3: image captured from VRT ®

4.2.2 Scale
The scale function transforms the 2D coordinates of the detected markers from camera plane

(' , ')j ju v express in pixel into Camera Reference Frame (,)j ju v express in meters, known the
vertical and horizontal dimension of one pixel and the dimension of the screen

Fig. 4.4: the scale function

4.2.3 Rotation markers in camera frame
The block RotMarkCamFrame in Fig 4.2 is open and shown in Fig 4.5. This block provides

an estimation of the markers position in 3D Camera Reference Frame (CRF). If we pre-multiply

 34

the matrix T M of the markers points expressed within the Tanker Reference Frame (TRF), by
the rotation matrix C

TT , we obtain the actual position of the markers within CRF CM , the last
operation consists in bringing the matrix in classical 3D coordinates.

Fig. 4.5: rotation markers in camera frame scheme

4.2.4 The Labeling function
In a MV system the labeling of the detected markers is one of most important and

complicated parts. Initially, the set of points [,]j j jp u v≡ from the camera measurements are not
related to the actual markers on the tanker. The problem can be formalized in terms of matching
the set of points 1 2(, ,...,)mP p p p= to the set of points 1 2

ˆ ˆ ˆ ˆ(, ,...,)nP p p p= where ˆ ˆ ˆ[,]j j jp u v≡ . In

this effort the set P represents the set of the m ‘to be matched’ detected markers extracted by the
camera measurements, while the set P̂ represents the set of the n (n=9) “nominal” markers
estimated. Since the data sets P and P̂ represents the 2D projections of the same markers at
the same time instant on the same plane (as shown in Fig. 4.6) a high degree of correlation
between the two sets is expected. In the ideal case corresponding points would be exactly
superimposed, resulting in a trivial matching process. However, in the presence of different
sources of system and measurement noise, a matching problem has to be defined and solved.

U-axis

 V
-a

xi
s

1

2
3

45

67
8

9

[,]j ju v•→
ˆ ˆ[,]j ju v∗→

Fig. 4.6: Matching between the labeled set of points P̂ and the unlabelled set P .

 35

A detailed technical literature describes a number of robust matching techniques for point
sets [45]. Usually, the degree of similarity between two data sets is defined in terms of a cost
function or a distance function derived on general principles as geometric proximity, rigidity,
and exclusion [46]. The best matching is then evaluated as the result of on optimization process
exploring the space of the potential solutions. Often, the problem can be set as a classical
assignment problem, and therefore solved using standard polynomial Network Flow algorithms.
A definition of the point-matching problem as an assignment problem, as well as an extensive
analysis of different labeling algorithms, in a different, still to be published, study [47]. In this
effort, the author has chosen to move beyond the simple assignment problem paradigm, since it
was deemed too restrictive to correctly represent the point matching problem in real world
situations. For example, it often happens that, due to misleading visual clues, points that are not
markers are interpreted as such from the image processing algorithms, leading to situations
where the set P contains more elements than P̂ . In these cases, an algorithm that just tries to
minimize a linear function of the involved distances (thereby solving a simple LP assignment
problem) usually performs poorly. Conversely, an algorithm that instead has the ability to
deliberately ignore some markers by considering them “erroneous” (thereby solving a problem
that cannot be cast as a simple assignment one) could provide better performance.

 The developed labeling function has two inputs: the first one is an estimation of the markers
position in the 3D CRF (the output of the block analyzed in section 4.2.3), the second one is the
vector of detected markers provided by the camera and scaled (the output of the block analyzed
in section 4.2.2).

The labeling function has two outputs: the first one, called Simulated Vision (SV), provides
a vector []1 1, ,, ,n nu v u v , which is simply the projection of the estimated markers
position in the 2D CRF using the rule (4.2) of the pin hole camera. The second output, called
Real Vision (RV), provides the vector for which the labeling function has been really created,
that is an ordered vector of detected markers.

The labeling function, therefore, has the purpose to detect the points that correspond to real
markers and arrange the output vector so that it has the format []1 1, ,, ,n nu v u v . If the
kth marker is not detectable the overflow value 100 is used instead in the position 2* k and
2*k+1.

Now we explain how the function works: let M denote the set of the n physical markers, and
let M denote the set of detected markers (not to exceed m). The labeling function creates a
matrix Err of dimension n-by-m, whose coefficients are all the Euclidian distance between the
markers M and M . Three vectors, MinR , MinC and Index - with dimensions n, m and m
respectively - are also created, as shown in Fig. 4.6. The minimum element of the column is
stored in the row vector MinC while the minimum element of the row is stored in the column
vector MinR . The index of the row in which the function finds the minimum is stored in the row
vector Index . The position of one detected marker M is valid if the position j of []MinC j is

equal to []MinR Index j , that is the position of MinR indicated by the vector Index in the
position j. Using a C syntax the validity condition is given by:

[] []MinC j MinR Index j == (4.4)

This method works with the hypothesis that the MV system has frequency of 10 Hz, and the
aircrafts have low relative dynamics, this two assumptions essentially imply that the positions of
the airplanes does not change in meaningful way between the current cycle and the following
one. This function, which has a computational complexity of ()2O n , avoids the typical errors

 36

associated with a labeling function that simply assigns the detected markers M to the nearest
markers M .

Fig. 4.7: labeling method for detected markers

For example, typical matching errors may occur if one detected marker is confused with 2

close markers, as shown in Fig. 4.7, where the detected markers p and q are obviously the same
marker but, due a filtering error, two distinct markers are detected instead. At this point, a simple
labeling function pairing up the nearest markers would assign ‘p’ to ‘a’ and ‘b’ to ‘q’, leading to
an incorrect pose estimation. Instead, the developed labeling function avoids the incorrect
matching; in fact, while it still assigns ‘p’ to ‘a’, the fact that ‘q’ is closer to the point ‘a’ - which
has already been assigned - than to the point ‘b’ leads to the fact that the condition in (4.4) is
false. In turn this leads to discarding the point ‘q’ so that at the end only the points that are most
relevant for pose estimation purposes are used.

Fig. 4.8: example of avoided error in labeling function

4.2.5 Simulated Vision and Real Vision
Into the MV diagram there is a switch that allows the user to choose between Simulated

Vision (SV) and Real Vision (RV), the position of this switch determine which data are provided

 37

to the pose estimation algorithm. If we choose the SV, we decide that the pose estimation will be
made with the 2D projection of the markers obtained with the (4.2) from the pinhole camera
model. The data in SV mode are in every moment complete of each marker position, they are
smooth and regular. The SV mode has been created for testing the pose estimation algorithm and
uses the MV system without being bound to the performance of the labeling function. The
goodness of the pose estimation is clearly dependent by the input of the MV block, in theory we
should have that the output matrix C

TT results equal to the input matrix C
TT . The SV allows, also,

using the MV from great distances even if it reduces the MV to a fictitious system.
The Real Vision mode allows one to use the data that come from the camera, this data are

certainly noisy and often incomplete since often some markers are not detectable, and sometimes
they are not good for the pose estimation algorithm (we will analyze this case in chapter 7), the
data depend also by the camera, the filter, the labeling algorithm (see in 4.2.4 the case where the
labeling function discard some marker). The RV mode allows the MV system to work with data
similar to real-world ones, which is the main reason for which this mode has been developed.

Fig. 4.9: block diagram of Simulated Vision and Real Vision

Fig. 4.10: RV (left) and SV (right) detected markers at the time t = 2.1 sec

 38

4.2.6 The Pose estimation algorithm
The pose estimation algorithm block is the core of MV system, this block has one input that

is the ordered vector of the coordinates []1 1, ,, ,n nu v u v of the markers in the 2D CRF,
which has been ordered by the labeling algorithm. If the kth markers is not detectable the
overflow value 100 is placed in the position 2* k and 2*k+1. The analyzed algorithms are two,
the Gaussian Least Squares Differential Correction (GLSDC) [3] [27] and the Lu, Hager and
Mjolsness algorithm (LHM) [4]. The GLSDC resolves the pose estimation problem finding the
first order approximation for [], , 1,..,k ku v k n= as a function of the 3D coordinates of the
markers in camera frame, and solving the least square problem for the search of the differential
correction using the iterative Gauss-Newton method. Advantages of this algorithms are its
simplicity and speed, and the fact that it can provide the estimation within a fixed number of
cycles. The main disadvantages are instead related to the fact that the first order approximation
sometimes is not accurate enough, and can lead the algorithm to divergence. This in turn implies
that the GLSDC is not robust with respect to errors in the markers position or initial conditions
(see chapter 7). The LHM algorithms instead calculates the pose estimation minimizing an error
metric based on collinearity in object space, this algorithm is iterative and computes the
orthogonal rotation matrix. The iterative calculus without a fixed number of steps can be
computationally more intensive than the GLSDC, especially if the input data are not smooth or
the airplane considerably changes its position between the precedent and the current cycle of
integration (0.1 sec). The LHM provides, on the other hand, high robustness and proved global
convergence. The analysis of these algorithms and their performance is provided in the next 3
chapters of this effort.

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

t (sec)

(m
et

er
s)

Pose estimation output

xMV

yMV
zMV

nUsedMark

Fig. 4.11: LHM pose estimation output in RV case

 39

The output of a pose estimation algorithm is the vector (x, y, z, yaw, pitch, roll, nUsedMark)
that represents respectively the translation vector between TRF and CRF, the relative Euler
angles between TRF and CRF and finally the number of markers used to provide the pose
estimation. If we connect the first 6 parameter to the “S function3” (see Fig 4.2) we obtain an
estimation of the homogeneous transformation matrix C

TT .

 40

5. THE GLSDC

Pose estimation is an essential step in many machine vision problems involving the
estimation of an object’s position and orientation relative to a model reference frame or relative
to the object position and orientation at a previous time using a camera sensor or a range sensor.
There are four pose estimation problems with point data. Each arises from two views taken of the
same object that can be thought of as having undergone an unknown rigid body motion from the
first view to the second view. In model-based vision, one “view” provides three-dimensional (3-
D) data relative to the model reference frame. The other is the 2-D perspective projection. In
motion estimation and structure from motion problems there is a rigid body motion of the sensor,
the object or both. Both views are 2-D perspective projections. In any case, in each problem
corresponding point pairs from the two views are obtained from some kind of matching
procedure. The pose estimation problem with corresponding point data begins with such a
corresponding point data set. Its solution is a procedure that uses the corresponding point data set
to estimate the translation and rotation that define the relationship between the two coordinate
frames.

In the simplest pose estimation problem, the data sets consist of two-dimensional data points
in a two-dimensional space. Such data sets arise naturally when flat 3-D objects are viewed
under perspective projection with the look angle being the same as the surface normal of the
object viewed. In the next more difficult pose estimation problem, the data sets consist of three-
dimensional data points in a three-dimensional space. Such data sets arise naturally when 3-D
objects are viewed with a range finder sensor. In the most difficult pose estimation problems, one
data set consists of the 2-D perspective projection of 3-D points and the other data set consists of
either a 3-D point data set, in which case it is known as absolute orientation problem, or the other
data set consists of a second 2-D perspective projection view of the same 3-D point data set, in
which case, it is known as the relative orientation problem. The latter case occurs with time-
varying imagery, uncontrolled stereo or multicamera imagery.

We are interested to the 2-D perspective projection of 3-D points problem but for the
solution we need to know the solution of the 3-D – 3-D estimation problem.

5.1 3-D – 3-D estimation
Let y1,..... ,yN be N points in Euclidean 3-space. Let R be a rotation matrix and t be a

translation vector. Let xl,….. xN be the points in Euclidean 3-space that match y1,..... ,yN , each xN
is the same rigid body motion of yN. Hence each yN is obtained as a rotation of xN , plus a
translation plus noise.

nnn tRxy η++= (5.1)

The 3-D-3-D pose estimation problem is to infer R and t from xl,….. xN and y1,..... ,yN.
To determine R and t we set up a constrained least-squares problem. We will minimize

∑
=

+−
N

n
nnn tRxyw

1

2)((5.2)

subject to the constraint that R is a rotation matrix, that is, Rt=R-1. To be able to express
these constraints using Lagrangian multipliers we let

=
t

t

t

r
r
r

R

3

2

1

 (5.3)

where each ri is a 3x1 vector.
The constraint Rt=R-1, then amounts to the six constant equation

 41

0

0

0

1

1

1

32

31

21

33

22

11

=

=

=

=

=

=

rr

rr

rr

rr

rr

rr

t

t

t

t

t

t

 (5.4)

The least-squares problem with constraints given by (5.4) can be written as
minimizing 2ε where

() ()

2221

3

2

1

3

2

1

3

2

1

1

3

1
326315214

3

1

22

=

=

=

+++−+−−= ∑ ∑∑
= ==

t
t
t

t
y
y
y

y
x
x
x

x

rrrrrrrrtxryw

n

n

n

n

n

n

n

n

n

N

n k

ttt
k

t
kk

k
kn

t
knkn λλλλε

 (5.5)

Taking the partial derivate of 2ε with respect to tn, there results

()() .3 ,2 ,1 12
1

2

=−−−=
∂
∂ ∑

=

ktxryw
t

N

n
kn

t
knkn

k

ε (5.6)

Setting these partial to zero results in

() 0
1

=−−∑
=

N

n
nnn tRxyw (5.7)

By rearranging we obtain
xRyt −= (5.8)

where

∑

∑

=

== N

n
n

N

n
xn

w

xw
x

1

1
∑

∑

=

== N

n
n

N

n
xn

w

yw
y

1

1 (5.9)

Thus once R is known, t is quickly determined from (5.8). Substituting yRx − for t in the
definition of 2ε , there results

() ()∑ ∑∑
= ==

+++−+−−−=
N

n k

ttt
k

t
kk

k
n

t
knkn rrrrrrrrxxryyw

1

3

1
326315214

3

1

22 2221)(λλλλε (5.10)

where

3

2

1

3

2

1

=

=

y
y
y

y
x
x
x

x (5.11)

Now we take partial derivatives of 2ε with respect to the components of each yn. To write
things more compactly, by nr∂∂ 2ε we mean a 3 x 1 vector whose components are the partial
derivatives of 2ε with respect to each of the components of rn. Then

 42

()()()∑
=

+++−−−−−=
∂
∂ N

n
nn

t
nn rrrxxxxryyw

r 1
352411111

1

2

2221)(2 λλλε (5.12)

()()()∑
=

+++−−−−−=
∂
∂ N

n
nn

t
nn rrrxxxxryyw

r 1
361422222

2

2

2221)(2 λλλε (5.13)

()()()∑
=

+++−−−−−=
∂
∂ N

n
nn

t
nn rrrxxxxryyw

r 1
261533333

3

2

2221)(2 λλλε (5.14)

Setting these partial derivatives to zero and rearranging we obtain

()() ()()∑∑
==

−−=+++−−
N

n
nnn

N

n

t
nnn xxyywrrrrxxxxw

1
11

1
3524111 λλλ (5.15)

 ()() ()()∑∑
==

−−=+++−−
N

n
nnn

N

n

t
nnn xxyywrrrrxxxxw

1
22

1
3622142 λλλ (5.16)

()() ()()∑∑
==

−−=+++−−
N

n
nnn

N

n

t
nnn xxyywrrrrxxxxw

1
33

1
3326153 λλλ (5.17)

Let

()()

=Λ

−−= ∑
=

365

624

541

1

λλλ
λλλ
λλλ

N

n

t
nn xxxxA

 (5.18)

and
[]321 bbbB = (5.19)

where

()()∑
=

−−=
N

n
nknknk xxyywb

1

 (5.20)

Then (5.15), (5.16) and (5.17) can be simply rewritten as
BRAR tt =Λ+ (5.21)

Multiplying both sides of (5.21) on the left by R we have
RBRARt =Λ+ (5.22)

Since A=At, (RARt)t=RARt. Since both RARt and Λ are symmetric, the left-hand side must be
symmetric. Hence the right-side is also symmetric. This means

()tRBRB = (5.23)
The solution for R now comes quickly. Let the singular value decomposition of B be

 UDVB = (5.24)
where U and V are orthonormal and D is diagonal. Then

() ttttt RDUVRUDVRUDV == (5.25)
By observation, a solution for R is immediately obtained as

 ttUVR = (5.26)

 43

Solutions to this problem can be found in the photogrammetry literature beginning with
Thompson [17], Schut [18], Tienstra [19], and Pope [20] . Blais [21] gives a solution to the
problem in the case where there may be a scale factor or magnification different than 1. Sansò
[22] gives a solution to the problem using quaternions. Arun et al. [23] and Haralick et al. [24]
have discussed the singular value decomposition approach to the problem.

5.2 2-D perspective projection – 3-D pose estimation
Let y1,......,yN be the observed 3-D model points in Euclidean 3-space. Let R be a rotation

matrix and t be a translation vector. Let (un1, un2), n =1,..., N be the corresponding 2-D
perspective projection of the 3-D points. Then the relationship between the 3-D model points and
the 2-D perspective projection points is given by

=

=

+
+

=

+
+

=

3

2

1

321

33

22
2

33

11
1

),,(

r
r
r

R

tttt

tyr
tyr

fu

tyr
tyr

fu

t

n

n
n

n

n
n

 (5.27)

where f , the focal length, is the distance of the image plane in front of the origin that is the
center of perspectivity. In the 3-D coordinate system of the camera, the perspective projections
are given by

nn

n

n

n

n fvv
v

f
f

u
u

u =

=

=

1
2

1

2

1

 (5.28)

where 2211 and nnnn fvufvu == .
The problem of pose estimation is to determine the unknown rotation matrix R and the

translation vector t given the 3-D model points and the corresponding 2-D perspective projection
points on the image plane. This problem is known as the exterior orientation problem in the
photogrammetry literature. The dissertation by Szczepanski [14] surveys nearly 80 different
solutions beginning with one given by Schrieber of Karlsruhe in the year 1879. The first robust
solution in the computer vision literature was Fischler and Bolles [15]. Wrobel and Klemm [16]
discuss the fact that there are configurations of points for which the solution is unstable.

5.2.1 Iterative least-square solution
This section describes iterative procedures for determining a least-squares solution for R and

t . In the following subsections we use the superscript or subscript k to denote the values in the
kth iteration step. Let

t
y
y
y

R
x
x
x

x

n

n

n

n

n

n

n +

=

=

3

2

1

3

2

1

 (5.29)

be the rotated and translated point of yn. Let dn be the estimated depth of each point xn relative to
the camera coordinate system.

 44

• Method 1: One iterative procedure for determining a least-square solution for R and t is
the following.

1. Choose initial reasonable values for the depth 0
nd of each point. The initial values

could, for example, be the same constant for each point, the constant representing
an initial guess of how far the object is from the perspective center.

2. Iterate. Suppose the depth values Nnd k
n ,...,1 , = are given. Define the depth

values for the (k +l)th iteration by:
a) Find the rotation matrix Rk and the translation vector tk that minimizes

∑
=

−+=
N

n
n

k
nknknk vdtyRw

1

22ε (5.30)

where the {wn | n = 1,.…,N} are nonnegative weights reflecting the
goodness of the observations. Rk and tk constitute the solution to the 3-D-
3-D pose estimation problem.

b) Define

k
n

x

yk
n x

D
D

d 3
1

=+ (5.31)

where

 ∑∑
==

==
N

n
n

N

n
n y

n
yx

n
x

11

1 ,1 (5.32)

and

∑
=

−=
N

n
ny yyD

1

2 (5.33)

∑
=

−=
N

n
nx xxD

1

2 (5.34)

• Method 2: Replace the step 2b) of method 1 with step 1 of method 2.
1. Define

n
t
n

n
t

knkk
n vv

vtyR
d

)(1 +
=+ (5.35)

It can be shown that 22
1 kk εε ≤+ and

 45

() ()

() () ()

() ()[]
() ()[]

() ()

.

22

2

22

2

1

2

2

2

2
122

1

2

2
1

2

2122

1

2112

1

21212

1

2112

1

21

1

21

1

21
11

2
1

∑

∑

∑

∑

∑

∑

∑∑

=

+

=

++

=

++

=

++

=

++

=

+

=

+

=

+
+++

−−

−+=

=

−+−+=

=−−−+=

=−+−−+=

=

 −+−−+−=

=−+−=

=−+≤−+=

N

n n

n
tk

nk
n

n

n
tk

nk
nnnk

N

n

k
n

k
n

n

n
tk

nk
n

n

n
tk

nk
nnnk

N

n
n

k
n

k
nn

tk
n

k
n

k
nnk

N

n
n

k
n

k
nn

k
nn

tk
n

k
n

k
nnk

N

n
n

k
n

k
nn

k
n

k
n

t
n

k
n

k
nn

k
n

k
nn

N

n
n

k
nn

k
nn

k
n

k
nn

N

n
n

k
nknkn

N

n
n

k
nknknk

v
vx

d
v

vx
dvw

dd
v

vx
d

v
vx

dvw

vddvxddw

vddvdvxddw

vddvddvdxvdxw

vdvdvdxw

vdtyRwvdtyRw

ε

ε

ε

ε

ε

 (5.36)

Consider the terms in the bracket as a function of 1+k
nd . The function reaches a minimum when

2
1

n

n
tk

nk
n

v
vx

d =+ (5.37)

The resulting value of the terms in the bracket at the minimum is
2

2

−−

n

n
tk

nk
n

v
vx

d (5.38)

This value cannot be positive. Since 02 >nn vw , when

2
1

n

n
tk

nk
n

v
vx

d =+ (5.39)

Each term in the summation is not positive and from this we can infer
22

1 kk εε ≤+ (5.40)

5.2.2 Least-squares adjustment by linearization
Let ψθφ ,, be the three angles that define the rotation matrix R such that

() () ()

+−+
++−

−
=

==

θφψθφψφψθφψφ
θφψθφψφψθφψφ

θψθψθ

ψθφ

coscossinsincoscossincossincossinsin
cossinsinsinsincoscoscossinsinsincos

sinsincoscoscos
zyx RRRR

 (5.41)

As there always exists random errors in the measurement of the image coordinates, let
,....,Nn,ivuu ninini 1 .21 ,0 ==+= (5.42)

 46

where ()0
2

0
1, nn uu are the measured image points and ()21 , nn vv are the correction needed to

account for the random error in the measured coordinates. Similarly, let

3 ,2 1 ,0

0

0

0

,ittt iii =∆+=

∆+=

∆+=

∆+=

ψψψ

θθθ

φφφ

 (5.43)

where ,,,,, 0
3

0
2

0
1

000 tttψθφ are some approximation, and ,,,,, 321 ttt ∆∆∆∆∆∆ ψθφ are their
corresponding correction. We assume that the correction ∆’s are small and the collinearity
equations are linear over the small intervals between the true values of these parameters and their
corresponding approximation.
Let

33

22
22

33

11
11

tyr
tyr

fuF

tyr
tyr

fuF

n

n
nn

n

n
nn

+
+

−=

+
+

−=

 (5.44)

These equation can be linearized by Newton’s first order approximation as follows:

3262251242322212
0
22

3162151141312111
0
11

tbtbtbbbbvFF

tbtbtbbbbvFF

nnnnnnnnn

nnnnnnnnn

∆+∆+∆+∆+∆+∆++≅

∆+∆+∆+∆+∆+∆++≅

ψθφ

ψθφ
 (5.45)

where

0

3
6

0

3
5

0

1
4

0

3

0

2

0

1

∂
∂

=

∂
∂

=

∂
∂

=

∂
∂

=

∂
∂

=

∂
∂

=

t
F

b
t
F

b

t
F

b
F

b

F
b

F
b

ni
ni

ni
ni

ni
ni

ni
ni

ni
ni

ni
ni

ψ

θφ

 (5.46)

for i = 1,2, where the superscript 0 implies that the function values are computed with the
approximations (,,,,, 0

3
0
2

0
1

000 tttψθφ). Taking Fnl = Fn2 = 0, the linearized equation can be
expressed as the matrix system

−

−
−

−
−

=

∆
∆
∆
∆
∆
∆

2

1

12

11

0
2

0
1

0
12

0
11

3

2

1

262524232221

161514131211

126125124123122121

116115114113112111

..........................

N

N

N

N

NNNNNN

NNNNNN

v
v

v
v

F
F

F
F

t
t
t

bbbbbb
bbbbbb

bbbbbb
bbbbbb

ψ
θ
φ

 (5.47)

or simply
 vFB −=∆ (5.48)

This equation can be solved using the singular value decomposition method. The computed
corrections () ,,,,, t

321 ttt ∆∆∆∆∆∆=∆ ψθφ from one iteration are used to update the parameters

 47

()t0
3

0
2

0
1

000 ,,,,, tttψθφ=Λ and then these updated parameters are used as approximations in the
next iteration. The whole iteration process is repeated until the corrections become negligibly
small.

5.3 The GLSDC implementation
The evaluation of the rigid transformation from camera to tanker, is a typical pose estimation

problem [3]. In this effort, the information available for solving the problem is given in the form
of a set of point correspondences each composed of a 3-D reference point (marker) expressed in
object coordinates (Tanker Reference Frame TRF) and its 2-D projection expressed in image
()vu, coordinates (Camera Reference Frame CRF). For an arbitrary number of points, this
approach to pose estimation is based upon the application the Gauss-Newton method [3], [25],
[26], [4] to the minimization of a nonlinear cost function typically solved iteratively using. The
Gaussian Least Squares Differential Correction (GLSDC) algorithm has been implemented in
[27]. This algorithm exhibited convergence and accuracy even in presence of quantization noise
produced by the CCD matrix. The nonlinear 3-D to 2-D correspondence in terms of the unknown
vector [, , , , ,]C C C C C C t

t t t t t tX x y z ψ θ ϕ= and known vectors ()
T

jP , where ()
T

jP are the marker
positions in TRF, can be written as:

()
()

()

()

, ,

, ,

T
u juj

T
vj v j

g f X Pg
g g f X P

 =
 (5.49)

with mj ,....,1= . By grouping the equation (5.49) for all m markers, the following 1 x 2m vector
of nonlinear relationships is generated

[]vmumvu ggggG ,,.....,, 11= (5.50)

Next, the MV estimation error at sampling time k is defined as:

()()
ˆ() () , (), ()T

meas jG k G k G f X k P k∆ = − (5.51)

where)(kGmeas is a vector of the measured coordinates of the markers on the image plane and
ˆ ()X k is the current estimation of vector X. In each time frame the starting estimation of X is

iteratively refined by the GLSDC algorithm by repeating the following steps for a number of
iterations (with index i):

() () ()t
i i k iR k A k W A k= (5.52)

1ˆ () () () ()t
i i i k iX k R k A k W G k−∆ = ∆ (5.53)

1
ˆ ˆ ˆ() () ()i i iX k X k X k+ = + ∆ (5.54)

In (5.52) the matrix A is a 2m x 6 Jacobian matrix

)(ˆ)(
)(

)(
kXX

kX
kG

kA

i

i
i

=
∂
∂

= (5.55)

and W is the 2m x 2m covariance matrix ()vmumvudiagW σσσσ 1,1,....,1,1 11= of the

estimation error. The initial guess)(ˆ
0 kX at time step k is given by the final estimation at time

step k-1.
The basic algorithm (5.52)-(5.55) is designed to work with a fixed number of m markers.

The following strategy has been introduced for handling a time varying number of markers. At

 48

the beginning of each time step the number of the visible markers is evaluated; in the event that
some markers are not visible, these are removed by the estimation process. This entails that
(5.50) has to be modified with the appropriate number of rows; next, the dimensions and the
values of the matrices A and W in (5.51) - (5.55) are adjusted accordingly. The internal function
that provides the pose estimation (5.52)-(5.55) is called a fixed numbers of times that in a
nominal case is 3. The algorithm is able to estimate the position with a minimum number of
detected markers of 4. The simulations associated with the described modification of the GLSDC
algorithm will be shown in the analysis described in chapter 7.

 49

6. THE LHM

The LHM algorithm formulates the pose estimation problem as that of minimizing an object-
space collinearity error. From this objective function, we derive an algorithm that operates by
successively improving an estimate of the rotation portion of the pose and then estimates an
associated translation. The intermediate rotation estimates are always the best orthogonal
solution for each iteration. The orthogonality constraint is enforced by using singular value
decomposition, not from specific parameterization of rotations, e.g., Euler angles. We further
prove that the proposed algorithm is globally convergent.

6.1 Camera model
The mapping from 3D reference points to 2D image coordinates can be formalized as

follows: Given a set of noncollinear 3D coordinates of reference points pi = (xi, yi, zi)t, i =1,..,n, n
≥ 3 expressed in an object-entered reference frame, the corresponding camera-space coordinates
qi = (x’i, y’i, z’i)t, are related by a rigid transformation as:

tRpq ii += (6.1)

where

3

3

2

1

 and)3(ℜ∈

=∈

=

z

y

x

t

t

t

t
t
t

tSO
r
r
r

R (6.2)

are a rotation matrix and a translation vector, respectively. The camera reference frame is chosen
so that the center of projection of the camera is at the origin and the optical axis points in the
positive z direction. The reference points pi are projected to the plane with z’ = 1, referred to as
the normalized image plane, in the camera reference frame. Let the image point vi = (ui, vi, 1)t be
the projection of pi on the normalized image plane (see Fig 6.1). Under the idealized pinhole
imaging model, vi, qi and the center of projection are collinear. This fact is expressed by the
following equation:

zi
t

xi
t

i tpr
tpr

u
+
+

=
3

1 (6.3a)

zi
t

yi
t

i tpr
tpr

v
+

+
=

3

2 (6.3b)

or

)(1

3

tRp
tpr i

zi
ti +

+
=v (6.4)

 50

Fig. 6.1: the reference frame in pose estimation problem

which is known as the collinearity equation in the photogrammetry literature. However,

another way of thinking of collinearity is that the orthogonal projection of qi on vi should be
equal to qi itself. This fact is expressed by the following equation:

)(tRpVtRp iii +=+ (6.5)

where

i
t
i

t
ii

iV
vv
vv

= (6.6)

is the line-of-sight projection matrix that, when applied to a scene point, projects the point
orthogonally to the line of sight defined by the image point vi. Since Vi is a projection operator, it
satisfies the following properties:

, , 3ℜ∈≥ xxx iV (6.7a)

i
t

i VV = (6.7b)

i
t

iii VVVV ==2 (6.7c)

In the remainder of this chapter, we refer to (6.4) as the image space collinearity equation
and (6.5) as the object space collinearity equation. The pose estimation problem is to develop an
algorithm for finding the rigid transform (R, t) that minimizes some form of accumulation of the
errors (for example, summation of squared errors) of either of the collinearity equations (see Fig.
6.2).

 51

Fig. 6.2: object-space and image space collinearity errors

6.2 The LHM algorithm
The main objective of this section is to explain the LHM algorithm (also referred to as the

orthogonal iteration (OI) method) in more detail, using the previously introduced formulation. In
particular, the pose estimation problem is firstly introduced, using an appropriate object space
error function, then this function is rewritten in a way which admits an iteration based on the
solution to the 3D-3D pose estimation problem. Since the algorithm depends heavily on the
solution to absolute orientation, we first review the absolute orientation problem and its solution
before presenting the algorithm and proving its convergence.

6.2.1 Optimal absolute orientation solution
The absolute orientation problem can be posed as follows: suppose the 3D camera-space

coordinates qi could be reconstructed physically (for example, by range sensing) or
computationally (for example, by stereo matching or structure-from-motion). Then, for each
observed point, we have:

tRpq ii += (6.8)

Computing absolute orientation is the process of determining R and t from corresponding
pairs qi and pi. With three or more noncollinear reference points, R and t can be obtained as a
solution to the following least-squares problem

IRRqtRp t
n

i
iitR

=−+∑
=

 subject to ,min
1

2

,
 (6.9)

Such a constrained least-squares problem [6] can be solved in closed form using quaternions
[7], [8] or singular value decomposition (SVD) [12], [9], [7], [8].

The SVD solution proceeds as follows: Let { pi} and { qi} denote lists of corresponding
vectors related by (6.1) and define

 52

∑∑
==

==
n

i
i

defn

i
i

def
q

n
qp

n
p

11

1 , 1 (6.10)

that is, qp and are the centroid of { pi} and { qi}, respectively. Define

qqqppp iiii −=−= ' , ' (6.11)

and

∑
=

=
n

i

t
ii pqM

1
'' (6.12)

In other words, M
n
1 is the sample cross-covariance matrix between { pi} and { q i}. It can be

shown that [12] if R*
, t* minimize (6.9), then they satisfy

)(maxarg* MRtrR t
R= (6.13)

pRqt ** −= (6.14)
Let (U, Σ, V) be a SVD of M, that is, UtMV = Σ. Then, the solution to (6.9) is

tVUR =* (6.15)
Note that the optimal translation is entirely determined by the optimal rotation and all
information for finding the best rotation is contained in M as defined in (6.12). Hence, only the
position of the 3D points relative to their centroids is relevant in the determination of the optimal
rotation matrix. It is also important to note that, although the SVD of a matrix is not unique, the
optimal rotation is the one shown in Appendix 10.2.

6.2.3 The algorithm
We now turn to the development of the LHM Algorithm. The starting point for the algorithm

is to state the pose estimation problem using the following object-space collinearity error vector
(see Fig. 6.2):

))(ˆ(tRpVIe iii +−= (6.16)

where iV̂ is the observed line-of-sight projection matrix defined as:

i
t
i

t
ii

iV
vv
vv
ˆˆ
ˆˆˆ = (6.17)

We then seek to minimize the sum of the squared error

∑∑
==

+−==
n

i
ii

n

i
i tRpVIetRE

1

2

1

2))(ˆ(),((6.18)

over R and t. Note that all the information contained in the set of the observed image points{ vi}
is now completely encoded in the set of projection matrices{ iV̂ }. Since this objective function is
quadratic in t, given a fixed rotation R, the optimal value for t can be computed in closed form
as:

∑∑ −

−=

−

j
jj

j
j RpIVV

n
I

n
Rt)ˆ(ˆ11)(

1

 (6.19)

for (6.19) to be well-defined, ∑=
−

n

i iV
n

I
1

ˆ1 must be positive definite, which can be verified as

follows:

 53

 () ()

0ˆ1

ˆˆ1ˆ1ˆ1

 shown thatcan it ,vector x-3any For

1

22

1

2

1

2

1

3

>

 −=

−=−=

−

ℜ∈

∑

∑∑∑

=

===

n

i
i

n

i
i

t
i

t
n

i
i

t
n

i
i

t

xVx
n

xVVxx
n

xVxx
n

xV
n

Ix (6.20)

While
22 ˆ xVx i− can be individually greater than or equal to zero, they cannot be all equal

to zero unless all scene points are projected to the same image point. Therefore, (6.20) is
generally strictly greater than zero and, thus, the positive definiteness of iV̂ is asserted.
Given the optimal translation as a function of R and defining

∑
=

=+=
n

i
i

def

ii

def

i Rq
n

RqRtRpVRq
1

)(1)(and))((ˆ)((6.21)

(6.18) can be rewritten as:

∑
=

−+=
n

i
ii RqRtRpRE

1

2))()(()((6.22)

This equation now bears a close resemblance to the absolute orientation problem (compare with
(6.9)). Unfortunately, in this case, we cannot solve for R in closed form as the sample cross-
covariance matrix between { pi} and { qi(R)}, that is,

∑
=

=
n

i

t
ii pRqRM

1
')(')((6.23)

where ' , and '() () ()i i i ip p p q R q R q R= − = − is dependent on R itself.
However, R can be computed iteratively as follows: first assume that the kth estimate of R is R(k),
t(k)=t(R(k)) and qi

(k)=R(k)pi+t(k). The next estimate R(k+1), is determined by solving the following
absolute orientation problem:

=−+= ∑
=

+
n

i

k
iiiR

k qVtRpR
1

2)()1(ˆminarg (6.24)

())(maxarg)(kt
R RMRtr= (6.25)

where the set of)(ˆ k
ii qV is treated as a hypothesis of the set of the scene points qi in (6.9). In this

form, the solution for R(k+1) is given by (6.15). We then compute the next estimate of translation,
using (6.19), as:

())1()1(++ = kk Rtt (6.26)
and repeat the process. A solution R* to the pose estimation problem using the LHM algorithm is
defined to be a fixed point to (6.24), that is, R* satisfies

∑
=

+−+=
n

i
iiiR RtpRVtRpR

1

2***))((ˆminarg (6.27)

Note that is a solution does not necessary correspond to the correct true pose.

6.2.4 Global convergence
We now wish to show that the orthogonal iteration algorithm will converge to an optimum of

(25) for any set of observed points and any starting point R(0). Our proof, which is based on the
Global Convergence Theorem [13, chapter 6], requires the following definitions:

 54

Def. 6.1: A point-to-set mapping A from X to Y is said to be closed at Xx∈ if the
assumption

1. Xxxx kk ∈→ ,

2. imply)(, kkk xyyy A∈→

3.)(xy A∈
The point-to-set mapping A is said to be closed on X if it is closed at each point of X.

Note the continuous point-to-point mapping are special closed point-to-set mappings.
Def. 6.2: A set S is said to be closed if S∈→ kk xxx with implies S∈x . S is said to be

compact if it is both closed and bounded.
Define)3()3(: SOSO →OI to be the mapping that generates R(k+1) from R(k), that is,

R(k+1)=OI(R(k)). According to the Global Convergence Theorem [13], to prove the global
convergence of the orthogonal iteration algorithm we need to show that

1. OI is closed.
2. All { R(k) } generated by OI are contained in a compact set.
3. OI strictly decreases the objective function unless a solution is reached.
To verify the first condition, we note that OI can be considered as the composition of three

mappings:
33)3(: ×ℜ→SOF is a point-to-point mapping that represents the computation

)()()(kk RMM = in (6.23).
)3()3()3(: 33 SOSOSVD ×℘×→ℜ × is a point-to-set mapping that represents the calculation

of the SVD of)(kM .
)3()3()3()3(: SOSOSOG →×℘× is a point-to-point mapping that represents the

computation of R(k+1) from the SVD of)()(kRM using (6.15).
Where SO(3) is the set 3 x 3 orthogonal matrices and)3(℘ is the set 3 x 3 diagonal matrices.
The first and the last mappings, F and G, are continuous and, hence, are closed. In

Appendix, it is shown that SVD is also a closed mapping. Therefore, it follows that OI is closed
using the fact that the composition of closed mappings is also closed [13].

Since OI always generates orthogonal matrices and the set of orthogonal matrices SO(3) is
compact (closed and bounded), the second criteria is met.

Finally, we seek to prove the third criteria. The sum of squared error of the estimate R(k+1)
can be related to that of R(k) as follows:

() ()()∑ ∑

∑∑

= =

++++

=

++

=

+++

−+−−+−=

=−+−=−=

n

i

n

i

k
ii

k
ii

k
ii

k
i

t
i

k
i

k
i

k
ii

k
i

n

i

k
ii

k
ii

k
ii

k
i

n

i

k
ii

k
i

k

qVqVqVqVqqqVq

qVqVqVqqVqR

1 1

)1()()()1()1()(2)()1(

1

2)1()()()1(

1

2)1()1()1(

ˆˆˆ2ˆˆ

ˆˆˆˆ

 (6.28)

Applying the fact that t
iii VVV ˆˆˆ = to the second term in the right hand side of the last equation

in (6.28), we have

() ∑∑
=

+

=

+++ −−=

 +−−

n

i

k
ii

k
ii

n

i

k
ii

k
ii

k
ii

k
ii

tk
ii qVqVqVqVqVqVqV

1

2)()1(

1

2)1(2)(2)1()1()(ˆˆˆˆˆ2ˆˆ2 (6.29)

But, according to (6.24) and (6.26),

 ())(

1

2)()(

1

2)()1(ˆˆ k
n

i

k
ii

k
i

n

i

k
ii

k
i REqVqqVq =−≤− ∑∑

==

+ (6.30)

and we obtain

 55

() () ∑
=

++ −−≤
n

i

k
ii

k
ii

kk qVqVRERE
1

2)()1()()1(.ˆˆ (6.31)

Assume that R(k) is not a fixed point of OI which implies R(k+1) ≠ R(k) and)()1(k
i

k
i qq ≠+ . If

∑=
+ −

n

i
k

ii
k

ii qVqV
1

2)()1(ˆˆ is equal to zero, then)()1(ˆˆ k
ii

k
ii qVqV =+ . But since the optimal solution to

the absolution orientation problem is unique, according to (6.24), we must have R(k+1) = R(k),

which contradicts our assumption that R(k) is not a fixed point. Therefore, ∑=
+ −

n

i
k

ii
k

ii qVqV
1

2)()1(ˆˆ

cannot be zero. Combined with (6.31), we have
() ())()1(kk RERE <+ (6.32)

meaning that OI decreases E strictly unless a solution is reached.
Now, we can claim that the orthogonal iteration algorithm is globally convergent, that is, a

solution, or a fixed point, will eventually be reached from arbitrary starting point. Although
global convergence does not guarantee that the true pose will always be recovered, it does
suggest that the true pose can be reached from very a broad range of initial guesses. Based on the
experiments we have empirically observed that the only constraint on R(0) for OI to recover the
true pose is that it does not result in translation with negative z component, i.e., it does not place
the object behind the camera.

6.2.5 Initialization and Weak Perspective approximation
The OI algorithm can be initiated as follows: Given an initial guess R(0) of R, compute t(0).

The initial pose (R(0), t(0)) is then used to establish a set of hypothesized scene points
)(ˆ)0()0(tpRV ii + , which are used to start the first absolute orientation iteration. Although the

orthogonal iteration algorithm is globally convergent, it does not guarantee that it will efficiently
or eventually converge to the correct solution. Instead of choosing R(0), we can treat vi
themselves as the first hypothesized scene points. This leads to an absolute orientation problem
between the set of 3D reference points pi and the set of image points vi considered as coplanar
3D points. This initial absolute orientation problem is related to weak perspective approximation.

6.2.5.1 Weak-perspective model
Weak-perspective is an approximation to the perspective camera model described in Section

6.1. Under the weak perspective model, we have the following relation for each reference point
pi

()xi
t

i tpr
s

u +≈ 1
1 (6.33a)

()yi
t

i tpr
s

v +≈ 2
1 (6.33b)

where s is called scale or principle depth. Weak perspective is valid when the depths of all
camera-space coordinates are roughly equal to the principle depth and the object is close to the
optical axis of the camera. Conventionally, the principle depth is chosen as the depth of the
origin of the object space, that is, the z -component of the translation tz when p , the center of the
reference points, is also the origin of the object space. Here, we decouple the scale s from tz, so it
can be chosen as the one that minimizes its deviation from the depths of the camera space
coordinates

∑
=

−+
n

i
zi

t stpr
1

2
3)((6.34)

Of course, we also need to minimize the square of the image error over R, t and s

 56

[]∑
=

−++−+
n

i
iyi

t
ixi

t vstprustpr
1

2
2

2
1)ˆ()ˆ((6.35)

Combining (6.34) and (6.35), and weighting them equally, we have the following least-squares
objective function:

∑
=

−+
n

i
ii stRp

1

2v̂ (6.36)

This is the same objective function as for absolute orientation, (6.9), but with the additional scale
variable and the (implicit) constraint that all camera-space coordinates have the same depth. In
this new objective function, the value of s together with R and t must be determined
simultaneously.
By considering the following modified objective function [7], [12]

∑
=

−
n

i
iistR

qsRp
s1

2

,,
''1min (6.37)

the solution for s an be found to be

∑
∑

=

== n

i i

n

i i

q

p
s

1

2
1

2

'

'
 (6.38)

The rotation matrix of the pose is independent of s, yet it reduces the overall least-squares
objective function. After R and s are determined, t can be computed as:

pRst −= v (6.39)

where ∑=
=

n

in 1
ˆ1 vv . Note that if the origin of the object space is placed at p , i.e., 0=p , then

zts = .
6.2.5.2 Initial absolute orientation solution
With the OI algorithm, the initial rotation will be the same as those computed using the

aforementioned weak-perspective algorithm, however, the translation is different in that it is
computed using (6.19) as a result of optimizing (6.18). Let us rewrite (6.19) here

∑∑ −

−=

−

j
jj

j
j RpIVV

n
I

n
Rt)ˆ(ˆ11)(

1

 (6.40)

Comparing (6.39) and (6.40), we find that the former is approximated by the latter if the
following conditions hold:

IV
n

I
j

j ≈

−

−

∑
1

ˆ1 (6.41)

∑ ≈
j

jj sRpV
n

vˆ1 (6.40)

The first condition states that the scene points are located close to the optical axis and the second
condition states that the scene points are distributed like a plane parallel to the image plane.
These two conditions closely resemble the conditions under which weak-perspective
approximation is valid.

In summary, we have reformulated the pose estimation problem under the weak-perspective
model as the problem of fitting the set of the reference points to a planar projection of the image
points. Using the image points themselves as the hypothesized scene points in the initial absolute

 57

orientation iteration results in a pose solution better than the unmodified weak-perspective
solution. This pose solution serves, therefore, as a good initial guess for the subsequent iterative
refinement.

6.3 The LHM implementation
In the LHM implementation we use the same strategy illustrated in the end of the chapter 5.

We have variable number of visible markers, that is only the positions of the detected markers
are introduced in the internal function that provides the pose estimation. In the LHM
implementation, we can choose to solve the pose estimation using the SVD method or the
Quaternion method. Several simulation experiments showed that the SVD method is faster then
Quaternion method. The algorithm is able to estimate the position with a minimum number of
detected markers of 5. The internal iterations of the LHM algorithm are stopped in two cases, if
the sum of squared object space error in the current iteration is less or equal to the parameter of
the functionε or if the (_ _) _new err old err old err− is less or equal to a second parameter
Tolerance. Where new_err and old_err are the sum of squared object space error in the current
iteration and in the past iteration. In a nominal case the parameterε and Tolerance are equal to
1*10-8 and 1*10-5 respectively. The tests on the pose estimation algorithm are provided in the
next chapter.

 58

7. PERFORMANCE OF GLSDC AND LHM

Pose estimation from a camera image is becoming a very used method to acquire relative
position and orientation information. Any practical realization requires that the algorithm has
certain characteristics (performance criteria). These performance criteria often depend upon the
system that we have to control and its hardware. Performance criteria used in [5] are the time of
simulation with a different number of point, robustness against noise in the image, quality of
estimation depending on both the number of points, and effective field of view. In the Ansar and
Daniilidis paper [5] the analysis is performed on static images. In this section we propose a
different approach, that is we analyze the algorithms on the Autonomous Arial Refueling (AAR)
simulation, this allows us to examine the algorithms in two cases: Simulated Vision (SV), where
we have a fixed number of markers and input data are smooth, and Real Vision (RV) where we
have a variable number of markers and the input data are characterized by extreme variability
and sometimes they are not suitable for the pose estimation algorithm. We establish now the
performance criteria to compare the algorithms:

1. Number of FLOPS.
2. Speed performance.
3. Estimated delay.
4. Differences between "true" values and estimated values and R.M.S. of the error.
5. Robustness on markers noisy position, labeling error and initial conditions.
6. Error propagation analysis.

The purpose of the following tests is to try to analyze the algorithms on many aspects that

are code heaviness, delays, estimation consistency, robustness and error propagation.
The entire tests are performed with Matlab® 6.5 and Simulink® 5.0.

7.1 Number of FLOPS
The term FLOPS is a short for floating-point operations, is a common benchmark

measurement for rating the computational weight of one executed function. Floating point
operation includes any operations that involve fractional numbers. Such operations, which take
much longer to execute than integer operations, occur often in some applications. Most modern
microprocessors include a floating-point unit (FPU), which is a specialized part of the
microprocessor responsible for executing floating-point operations. The FLOPS measurement,
therefore, measures the number of operation executed by the FPU, this is a good benchmark even
if the computer could have some application resident into the memory that use the FPU in the
meantime the tests are performed.

To extract the data for this benchmark we used Matlab® 5.3 because in the following Matlab
versions the function flops is disabled. The data are summarized in table 7.1.

Simulated Vision Real Vision

GLSDC LHM GLSDC LHM

19949385 12051938 14222319 21019524

Tab. 7.1: Number of FLOPS of the two algorithms in SV case and in RV case

Note that the GLSDC algorithm has a number of FLOPS bigger in the SV case than in the

RV case, this happens because this algorithm estimates the position always in the same way with

 59

a fixed number of iterations (which in the nominal case is 4). In the SV case, the algorithm
works always with the maximum number of markers, which means that the working matrix has
the largest size, which in turn means that more flops are required to invert the matrix.

In the RV case instead, the size of the working matrix is limited by the number of seen
markers, so the matrix size is smaller and it takes less flops to invert it.

The LHM algorithm process the data in a different way. In the SV case the incoming data are
very smooth so the LHM algorithm is able to estimate the position using a relatively small
number of steps, because the current rotation matrix R is very close to the current one.

In the RV case the data are noisy and irregular so the LHM has to use more steps to
converge to a solution.

7.2 Speed performance
The speed performance is a simple test that gives an idea of the heaviness of the function.

The test is obviously dependent from the utilized system resources and from the number of
applications resident in memory, but if the measures are performed approximately in the same
time, and with the same computer, the end result can be compared. If we join the speed
performance data with FLOPS data we can have a better understanding of the computational
heaviness of the functions. For this test we used a Pentium 4, 2.53 GHz laptop with 448 Mbytes
of RAM. We measured the speed performance with the profiler tool of Matlab®. This tool gives
the running time in seconds for each called function and sub-function. The test consists in the
execution of the 2 algorithms in the SV case and in RV case. The simulation lasted 40 seconds, a
sampling time of 0.1 sec was used by the MV algorithms. At the end of the test the estimation
algorithm is called 4010 times, in this way we have a good estimation of the execution mean
time for each function.

The profiler tool provides a result called Time/call, this measures the mean time of execution
for the function.

Simulated Vision Real Vision

GLSDC (sec) LHM (sec) GLSDC (sec) LHM (sec)

0.0053910447761 0.0158049751244 0.0053000000000 0.02006865671642

Tab. 7.2: Mean time of execution for GLSDC and LHM algorithms in SV and RV case

Let us analyze the data in Tab. 7.2. In the SV case although the GLSDC has a grater number

of FLOPS, it has a lesser mean time of execution, and if we calculate the ratio from the two data
we obtain 2.931. This means that the LHM function can use up to triple the GLSLD time. We
can see that the GLSDC algorithm uses around the same time in SV case and RV case,
unexpectedly from the FLOPS results, while the LHM algorithm uses more time in the RV case
as it was to be expected, we can see that the ratio in RV case grows up to 3.786. Moreover, we
can see that the differences of mean time of execution is not very relevant, in the LHM
algorithm, between SV case and RV case as it occur in the FLOPS case instead.

7.3 Estimated delay
The estimation of the delay is a test in the SV case that consists searching the time delay that

minimizes the error between the “real” value (value obtained by the sensor without GPS noise)
and the estimated value of the vision algorithm. This prove is obviously connected to the
precision of camera parameter, and in particular to both the field of view (fov) parameter and the

 60

GPS system, because the SV case gives one estimation of the marker position based on the
measure of GPS system (see chapter 4 and 3). The estimated delay is not therefore a parameter
tightly correlated to the algorithm but if we compare the two obtained values, and the values are
obtained in the same condition, we can decide which algorithm provides first the measure. For
the search of the estimated delay we can make a simple function on Matlab® that translates in
time the distance found in SV case (x, y, z) and calculates the instant time when we have a
minimum error between this value and the estimated value. The function uses the Frobenius
norm applied to the error matrix e, which is difference between value in SV case and “real”
value, for calculate the root mean square (rms):

n

eediag

n

e
rms

T
F ∑
==

)(

 (7.1)

we search the value of the time t than minimizes the rms function delaying the distance in

SV case. We found that the estimated delay for the GLSDC algorithm is t = 0.3 sec, while for the
LHM algorithm is t = 0.25 sec. An example is reported in fig. 7.1 where we can see that the
GLSDC line is a better estimation of the red line rather than the blue line.

20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25
35

36

37

38

39

40

41

42

43

t (sec)

x
(m

et
er

s)

Estimated delay

SV x
GLSDC x
SV xdelayed

Fig. 7.1: Estimated delay for GLSDC (t = 0.3 sec)

7.4 Differences between true values and estimated values
Before comparing estimated values with true ones, we have to clarify that “true values” are

defined as the distance and orientation of the tanker in camera frame, calculated using the
readings from the linear and angular position (simulated) sensors. In practice a white noise
having power spectral density of p=10-9 and covariance of c=2*10-8 is added to the Euler angles

 61

(roll, pitch, yaw) sensors to simulate sensor noise. These signals are used to calculate the
homogeneous transformation matrix C

TT with the relative distance (x, y, z) between camera and
tanker. We examine the differences in SV case and RV case keeping in mind that the true values
are different for LHM and GLSDC algorithm because they are dependent by the trajectory that
the UAV cross that is in relationship with the estimated distance. We can see in fig. 7.2, 7.3, 7.4,
7.5 the difference between GLSDC and true values in SV case.

5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

t (sec)

(m
et

er
s)

x y z Simulated Vision GLSDC

SV x
SV y
SV z
GLSDC x
GLSDC y
GLSDC z

Fig. 7.2: differences between real x y z and GLSDC x y z in SV case

 62

5 10 15 20 25 30 35 40 45 50
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t (sec)

ph
i (

ra
d)

roll Simulated Vision GLSDC

SV phi
GLSDC phi

Fig. 7.3: difference between real roll and GLSDC roll in SV case

5 10 15 20 25 30 35 40 45 50

0.44

0.45

0.46

0.47

0.48

0.49

0.5

t (sec)

th
et

a
(ra

d)

pitch Simulated Vision GSCDC

SV theta
GLSDC theta

Fig. 7.4: difference between real pitch and GLSDC pitch in SV case

 63

5 10 15 20 25 30 35 40 45 50
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t (sec)

ps
i (

ra
d)

yaw Simulated Vision GLSDC

SV psi
GLSDC psi

Fig. 7.5: difference between real yaw and GLSDC yaw in SV case

In fig. 7.6, 7.7, 7.8, 7.9 we represent the same data for LHM algorithm

 64

5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

t (sec)

(m
et

er
s)

x y z Simulated Vision LHM

SV x
SV y
SV z
LHM x
LHM y
LHM z

Fig. 7.6: differences between real x y z and LHM x y z in SV case

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

t (sec)

ph
i (

ra
d)

roll Simulate Vision LHM

SV phi
LHM phi

Fig. 7.7: difference between real roll and LHM roll in SV case

 65

0 5 10 15 20 25 30 35 40 45 50

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

t (sec)

th
et

a
(ra

d)

pitch Simulated Vision LHM

SV theta
LHM theta

Fig. 7.8: difference between real pitch and LHM pitch in SV case

0 5 10 15 20 25 30 35 40 45 50
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

t (sec)

ps
i (

ra
d)

yaw Simulated Vision LHM

SV psi
LHM psi

Fig. 7.9: difference between real yaw and LHM yaw in SV case

 66

It is apparent form the above graphs that the difference is negligible. Therefore, other
parameters of comparison are needed in order to chose between the two algorithms. Using the
rms (7.1) where e is now a vector and the Frobenius norm is therefore equivalent to the norm 2,
we obtain the following data:

 X Y Z Roll Pitch Yaw

GLSDC 1.7042 0.9291 3.0024 0.0500 0.0127 0.0438

LHM 1.2936 1.2955 0.8005 0.0039 0.0214 0.0025

Tab. 7.3: rms values of the error for GLSDC and LHM algorithm in SV case

Analyzing the data in Tab. 7.3 we can see that the LHM algorithm has better estimation for

the variable (x, z, Roll, Yaw), the larger difference is in the variable z which is one of the most
important variables. In fact, within the AAR problem, Euler angles are provided by the gyro,
therefore the quality of the Euler angles provided by the Pose Estimation algorithm is not of
primary importance. Conversely, the accuracy of the distance information is of primary concern.

We proceed now with the comparison of the graphs in RV case, this is very important to
understand the characteristics of the data that an estimation algorithm provides, which is in turn
essential for the design of a controller based on machine vision.

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

t (sec)

(m
et

er
s)

x y z Real Vision GLSDC

RV x
RV y
RV z
GLSDC x
GLSDC y
GLSDC z

Fig. 7.10: difference between real x y z and GLSDC x y z in RV case

 67

0 5 10 15 20 25 30 35 40 45

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t (sec)

ph
i (

ra
d)

roll Real Vision GLSDC

RV phi
GLSDC x

Fig. 7.11: difference between real roll and GLSDC roll in RV case

0 5 10 15 20 25 30 35 40 45 50

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

t (sec)

th
et

a
(ra

d)

pitch Real Vision GLSDC

RV theta
GLSDC theta

Fig. 7.12: difference between real pitch and GLSDC pitch in RV case

 68

0 5 10 15 20 25 30 35 40 45 50

-0.05

0

0.05

0.1

0.15

t (sec)

ps
i (

ra
d)

yaw Real Vision GLSDC

RV psi
GLSDC psi

Fig. 7.13: difference between real yaw and GLSDC yaw in RV case

We can see from fig. 7.10 – 7.13 that the results that GLSDC algorithm provides in the RV

case are very different from the results obtained in the SV case. Since these results are dependent
of the number of seen markers, in fig 7.14 – 7.17, we present the data for the LHM algorithm
only in the RV case.

 69

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

t (sec)

(m
et

er
s)

x y z Real Vision LHM

RV x
RV y
RV z
LHM x
LHM y
LHM z

Fig. 7.14: difference between real x y z and LHM x y z in RV case

0 5 10 15 20 25 30 35 40 45 50
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t (sec)

ph
i (

ra
d)

roll Real Vision LHM

RV phi
LHM phi

Fig. 7.15: difference between real roll and LHM roll in RV case

 70

0 5 10 15 20 25 30 35 40 45 50

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

t (sec)

th
et

a
(ra

d)

pitch Real Vision LHM

RV theta
LHM theta

Fig. 7.16: difference between real pitch and LHM pitch in RV case

0 5 10 15 20 25 30 35 40 45 50
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

t (sec)

ps
i (

ra
d)

yaw Real Vision LHM

RV psi
LHM psi

Fig. 7.17: difference between real yaw and LHM yaw in RV case

 71

Looking the Fig. 7.11 – 7.13 and Fig. 7.15 – 7.17 we see that the Euler angles are very noisy
and these are not fit to be insert in a loop system without an apposite filter.

Now we can analyze the data in RV case using the rms (7.1) analysis as we have done in the
SV case, and we obtain:

 X Y Z Roll Pitch Yaw

GLSDC 1.7395 0.9225 3.0089 0.0488 0.0193 0.0444

LHM 1.4474 1.3117 0.8040 0.0156 0.0242 0.0137

Tab. 7.4: rms values of the error for GLSDC and LHM algorithm in RV case

Analyzing the obtained result for the RV case we can make the same considerations done for

Tab. 7.4 but now we observe that the LHM needs a minimum of 5 markers for have a good
estimation and the GLSDC need 4 markers and moreover the GLSDC have initial data strongly
dependent from the initial condition, we decide, therefore, to start the comparison when all
algorithm work in optimal situation and we extract from the data in RV case one table with the
start data for t1 = 15 sec and end data t2 = 50 sec, we obtain:

 X Y Z Roll Pitch Yaw

GLSDC 0.3254 0.0962 0.1679 0.0090 0.0150 0.0098

LHM 0.3364 0.0963 0.1367 0.0109 0.0125 0.0104

Tab. 7.5: rms values of the error for GLSDC and LHM algorithm in RV case between t1=15 sec
and t2=50 sec

In Tab.7.5 we can see that the values are very similar and we can tell that the GLSDC and

LHM are equivalent when enter in a good condition for work. These conditions, as described
next, are different, so we have to apprise which one is better for the used simulation.

7.5 Robustness
In this section we analyze the robustness of the algorithm, for this we have to establish the

method of comparison, we test the GLSDC and LHM algorithm in four cases:
• Noise addiction in the markers position with correct labeling.
• Error in the labeling.
• A real case: noise addiction in the markers position with uncertain labeling.
• Error in initial condition.
These tests try to show the behavior of the algorithm in different cases and therefore a design

for one control more robust.

7.5.1 Noise addition in the markers position with correct labeling
This test consist in the addition of the noise at the position of the markers in the RV case

after that the labeling function has been performed, one explanation is given in Fig. 7.18. The
position is consequently the input of the estimation function, in this way we are sure that the
algorithm performs the estimation on correct labeled data with noise, this is evidently different

 72

from a real case, since in reality noisy data are processed by both labeling function and pose
estimation algorithm.

Fig. 7.18: noise adding after the labeling function

The test consist in the execution of the simulation with different noise power, in order to see

clearly the behavior of the algorithms, the Machine Vision (MV) results do not enter in the
control loop because the MV data are too noisy and can produce chattering effects in the control
which can in turn bring instability. A real white noise has a correlation time of 0, a flat power
spectral density (PSD) and a covariance of infinity, which are properties that cannot be achieved
in reality but can only be approximated. Therefore, the used noise is a band limited white noise
with correlation time tc=0.05 with height of PSD equal to the parameter Noise power. The
covariance is the Noise power divided by tc. We have tested the algorithm with different Noise
powers, starting form 0 to 5*10-9 with an interval of 1*10-9 and variable number of markers, as it
happens in reality, the number of seen markers are visible in Fig 7.19 - 7.20 where we represent
the number of seen markers for the all simulations.

 73

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

se
en

 m
ar

ke
rs

t (sec)

Seen markers form t=0 sec to t=20 sec

Fig. 7.19: seen markers from t=0 to t=20 sec

20 22 24 26 28 30 32 34 36 38 40
0

1

2

3

4

5

6

7

8

9

se
en

 m
ar

ke
rs

t (sec)

Seen markers form t=20 sec to t=40 sec

Fig. 7.20: seen markers from t=20 to t=40 sec

 74

Whenever the algorithms work, they tend to produce similar results, however, it is

interesting to observe the conditions in which they do not work and why this happens. We can
see in Fig. 7.21 and 7.22 that for a noise power until 4*10-9 both algorithms do not have great
problems, we can see that the estimation has an additional noise, (which is related to the noise
power in input, this relationship will be analyzed later). For a noise power of 4*10-9 the LHM
begins to show some problem as we can see in Fig. 7.23, that is, with low number of seen
markers, the LHM algorithm can provide an incorrect estimation. In this case the estimation is
provided with 5 markers, this problem shows up also for a noise power of 5*10-9 where in fact is
more common.

13 14 15 16 17 18 19 20 21 22

2

4

6

8

10

12

14

16

t (sec)

y
(m

et
er

s)

Noise in estmed GLSDC y

GLSDC y no noise
GLSDC y noise=10 -9

GLSDC y noise=2*10 -9

GLSDC y noise=3*10 -9

GLSDC y noise=4*10 -9

Fig. 7.21: effect of the noise in the GLSDC algorithm

 75

18 19 20 21 22 23 24 25 26

2

4

6

8

10

12

t (sec)

y
(m

et
er

s)

Noise in estimed LHM y

LHM y no noise
LHM y noise=10-9

LHM y noise=2*10-9

LHM y noise=3*10-9

LHM y noise=4*10-9

LHM y noise=5*10-9

Fig. 7.22: effect of the noise in the LHM algorithm

32 33 34 35 36 37 38 39 40

0

5

10

15

20

25

30

35

40

t (sec)

(m
et

er
s)

Differences in GLSDC and LHM for noise=4*10-9

LHM x
LHM y
LHM z
GLSDC x
GLSDC y
GLSDC z

Fig. 7.23: differences between GLSDC and LHM algorithm for a noise power =4*10-9

 76

We have seen what happens in the LHM algorithm whenever the noise power is increased to
5*10-9 and beyond, that is sometimes when the number of seen markers decreases the LHM can
provide an incorrect estimation. However, a correct estimation can be promptly recovered
whenever the number of seen markers increases or the noise power decreases. It is important to
notice that the above behavior is not shown by the GLSDC algorithm, indeed when the GLSDC
algorithm stop providing a good estimation it often becomes unstable and there is no way of
bringing it back to state that yields a good estimation. This fact is presented in Fig 7.24 and 7.25,
where the behavior of the algorithms with a noise power at 5*10-9 is shown. We can see that the
GLSDC algorithm starts with a good estimation, then at t=11.7 sec the algorithm restarts the
estimation process since for a moment the number of seen markers goes below 4, at this point the
estimated measures diverge and although the number of seen markers goes soon to 9 the
algorithm does not come back to a state presenting a reasonable estimation. In Fig 7.25 we can
see that the biggest problems for LHM algorithm happen for 27.7< t <30.7 sec and t >33 sec. In
fact, analyzing this case, we can see that for t = 27.7 we have a number of seen markers that
decreases from 9 to 7 and until t = 31.2 the numbers of markers is always 7. This decrease,
together with a peak of noise, causes an incorrect estimation. Similarly, for t=33 sec we have a
decrease of markers from 6 to 5 (that is the minimum number of markers for LHM algorithm)
and this creates a problem for the estimation when the noise is too high.

A test was performed by fixing the numbers of markers at 9, the result is that the two
algorithms evolve in a similar way and none of the two diverges or gives relevant errors, so it
can be deduced that the better way to get a good robustness is to have a suitable number of
markers for all the simulation time.

0 5 10 15

-40

-20

0

20

40

60

80

t (sec)

(m
et

er
s)

GLSDC divergence for noise= 5*10-9

GLSDC x
GLSDC y
GLSDC z

Fig. 7.24: GLSDC behavior with noise power 5*10-9, divergence for t=11.7 sec

 77

0 5 10 15 20 25 30 35 40
-20

-10

0

10

20

30

40

50

60

70
LHM x y z with noise=5*10-9

t (sec)

(m
et

er
s)

LHM x
LHM y
LHM z

Fig. 7.25: LHM behavior with noise power 5*10-9

7.5.2 Robustness to labeling errors
The test consists on the inversion of two markers in RV case when the MV does not enter in

the control loop. This allows analyzing the behavior of the algorithms without holding in
consideration the possible problems that would derive form using the MV estimation in the
control loop. In the test we invert the found positions for the markers 1 and 2 for two execution
of the pose estimation algorithm, specifically for t = 20 sec and t = 20.1 sec. During these time
instants we see the markers {1, 2, 3, 5, 6, 7, 8, 9} for the first call and {1, 2, 3, 4, 6, 7, 8} in the
second call of the estimation algorithms. In Fig. 7.26 we can see the markers positions (with
relative identification number) on the tanker, in Fig. 7.27 and 7.28 we show the response of the
two algorithms to the labeling error. The GLSDC algorithm suffers the error more than LHM,
indeed the estimated x lowers form 42.8 to 12.6 against the 33.5 of the LHM, and all errors in the
estimated variables are smaller for the LHM. Even more important is the fact that the GLSDC
algorithm needs a considerable resumption time, in fact we can see that the measures return
consistent only at time t=20.6 against the t=20.3 of the LHM, in other words, the first algorithm
needs a settling time of 0.3 when we have a labeling error.

 78

Fig. 7.26: Numbers and positions of markers on the tanker

15 16 17 18 19 20 21 22 23 24 25

0

10

20

30

40

50

t (sec)

(m
et

er
s)

GLSDC inversion of markers for t=20 sec

GLSDC x
GLSDC y
GLSDC z

Fig. 7.27: labeling error response with GLSDC algorithm

 79

15 16 17 18 19 20 21 22 23 24 25

0

10

20

30

40

50

t (sec)

(m
et

er
s)

LHM inversion of markers for t=20 sec

LHM x
LHM y
LHM z

Fig. 7.28: labeling error response with LHM algorithm

7.5.3 A real case: noise addiction in the markers position with uncertain labeling
This test is a simulation of what really happens: the camera gives noisy data to the labeling

function. We can have both noisy signals and labeling errors without knowing where in reality
the errors are. For this reason we move the noise presented in Fig 7.18 before the labeling
function and after the scale block. The results are analogous to those obtained in the paragraph
7.5.1 and for a labeling error caused by the noise, the GLSDC algorithm would probably diverge
for a noise power of 4*10-9, and as said previously, once this happens, the GLSDC does not
return to the correct estimation. In fact we can observe that the GLSDC algorithm in a real
situation is less stable than the LHM algorithm, since the presence of noise and labeling errors is
enough to have the divergence of the GLSDC. In Fig 7.29 and 7.30 we can see how the GLSDC
behaves in the limit case of a noise power of 3*10-9, and instead how the LHM algorithm works
for a noise power of 4*10-9. The behavior of LHM algorithm is for some time instant incorrect
but when we have a correct labeling and enough seen markers the algorithm comes back to a
correct pose estimation.

 80

0 5 10 15 20 25 30 35 40

-10

0

10

20

30

40

50

60

70

t (sec)

(m
et

er
s)

GLSDC real noise =3*10-9

GLSDC x
GLSDC y
GLSDC z

Fig. 7.29: GLSDC behavior for a noise power of 3*10-9 and uncertain labeling

0 5 10 15 20 25 30 35 40

-10

0

10

20

30

40

50

60

70

t (sec)

(m
et

er
s)

LHM real noise = 4*10-9

LHM x
LHM y
LHM z

Fig. 7.30: LHM behavior for a noise power of 4*10-9 and uncertain labeling

 81

7.5.4 Robustness to errors in initial conditions
This test shows the different behaviors of the GLSDC and LHM algorithms with different

initial conditions. The initial conditions are composed by the translation vector and the Euler
angles. The test is diversified in two parts, the first one consists in the search of a convergence
area for the translation vector, for simplicity we varied the vector of one constant quantity for the
three components (x, y, z), the second one consist in a search of a convergence area for the yaw
angle, these can give an idea of the robustness of the algorithm to errors in the initial condition.
We performed the test with a fixed number of markers, specifically the markers {1, 3, 4, 6, 9},
surely the convergence area results widened if more markers are used. We consider xo= [x y z psi
theta phi] = [60.5 20 -2.5 0 0.467 0] as the exact initial condition, where x y and z are the relative
position expressed in meters between camera and tanker in camera frame and psi, theta and phi
are the Euler angles expressed in radiant. The results are presented in Tab. 7.6, and we note
immediately that the GLSDC has a limited convergence area while the LHM works in all
situations.

Translation vector Yaw angle (psi)

GLSDC
interval from

exact initial condition

LHM
interval from

exact initial condition

GLSDC
interval from

exact initial condition

LHM
interval from

exact initial condition
[-44.7 65.4] [-∞ +∞] [-1.74 3.06] rad =

[-100 175] °
[0 2π]

Tab. 7.6: convergence area in the initial condition tests

In Fig. 7.31 we can see how the GLSDC works at the limit of the convergence area for the

translation vector, specifically the algorithm shows a settling time of t = 0.4 sec before providing
a consistent measure. If we give an initial condition external to the convergence area, the
algorithm provides a wrong estimation or diverges according to how much the initial condition is
far from the convergence area. We can see in Fig. 7.32 an example of the GLSDC behavior
when it starts immediately out of the convergence area. In Fig. 7.33 we show that the LHM
algorithm works with initial condition on the translation vector that are considerably distant from
the correct initial condition. This is due to the fact that, as seen in chapter 6, the LHM uses an
initial condition on the rotation matrix and extracts the translation vector in closed form from the
matrix R, therefore the convergence area for this algorithm is unbounded.

 82

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

60

80

100

120

140
GLSDC with initial conditio x0 + 65.4

t (sec)

(m
et

er
s)

GLSDC x
GLSDC y
GLSDC z

Fig. 7.31: GLSDC algorithm in the limit of the convergence area for the translation vector

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-100

-50

0

50

100

150

t (sec)

(m
et

er
s)

GLSDC with initial condition x0 + 65.5

GLSDC x
GLSDC y
GLSDC z

Fig. 7.32: GLSDC algorithm out of the convergence area for the translation vector

 83

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-100

-50

0

50

100

150

LHM with initial condition x0 +100

LHM x
LHM y
LHM z

Fig. 7.33: LHM algorithm behavior with initial condition wrong for the translation vector

Now we examine the robustness to errors in the yaw angle. The GLSDC pose estimation

algorithm has a limited convergence area even if we change only the yaw angle. In Fig.7.34, and
7.35 we show that a variation on the yaw angle generates a variation on the other angles and this
variation cause instability or an incorrect estimation. The LHM algorithm for any given variation
on yaw angle does not show problems or incorrect estimation, an example is provided in Fig
7.36. We note that a variation in the yaw angle has influence on the other angles but this
influence is bounded on the first execution of the algorithm.

 84

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

t (sec)

(ra
d)

GLSDC angles with initial condition yaw = -1.73

GLSDC yaw
GLSDC pitch
GLSDC roll

Fig. 7.34: GLSDC algorithm in the limit of convergence area for the yaw angle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

3

4

t (sec)

(ra
d)

GLSDC angles with inital condition yaw = -1.74

GLSDC yaw
GLSDC pitch
GLSDC roll

Fig. 7.35: GLSDC algorithm out of the convergence area for the yaw angle (divergence)

 85

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t (sec)

(ra
d)

LHM algorithm with initial condition yaw = pi

LHM yaw
LHM pitch
LHM roll

Fig. 7.36: LHM algorithm behavior with initial condition wrong for the yaw angle

7.6 Error propagation analysis
The test that we propose in this section tries to explain how the noises on the position

markers influence the estimated position, and how the input noise is propagated to the output.
For this test, the position estimation works in SV with seen markers {1, 3, 4, 6, 9}. A white
Gaussian noise (WGN) with several values of noise power is added on the position (x, y) of the
marker 1 found by the camera image, and, as a result, the translation vector of the pose
estimation algorithm results noisy. We can isolate the output noise by subtracting the non noisy
reference output from the noisy output. In the analysis we assume that the all statistic processes
are ergodic, which means that time and space distribution averages are equal. In other words, the
ergodicity of one process means that the statistics process behavior is the same for a great but
limited numbers of samples and for infinite numbers of samples.

The input noise is a white Gaussian noise with mean around 0 and noise power different for
each test. We use in the first test a noise power equal to 1*10-9, the second one has a noise power
of 2*10-9 and the last has a noise power of 3*10-9. We represent the estimated power spectral
density (PSD) of the first noise in Fig 7.37 and the empirical cumulative distribution function
(CDF) together with the reference CDF in Fig 7.38. That proves that the input noise is an
approximation of WGN. The details of the input noises are presented in Tab 7.7.

 86

 Min Max η = Mean σ = STD
Noise power

=1*10-9
-4.856*10-4 4.272*10-4 -1.367*10-6 1.403*10-4

Noise power
=2*10-9

-6.867*10-4 6.041*10-4 -1.933*10-6 1.984*10-4

Noise power
=3*10-9

8.410*10-4 7.399*10-4 -2.368*10-6 2.431*10-4

Tab. 7.7: input data noise

All the data are sampled with the frequency f = 10 Hz as this is the frequency of all the

components in the machine vision system. In all the PSD figures we have the normalized
frequency on the x axis, and the value of 1 (rad /sample) corresponds to the frequency 5 Hz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-110

-105

-100

-95

-90

-85

-80

-75

-70

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

Periodogram PSD Estimate

Input noise

Fig. 7.37: noise input Power Spectral Density (PSD) for noise power = 1*10-9

 87

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

Noise input =1*10-9 CDF

CDF data
CDF reference

Fig. 7.38: noise input Cumulative Distribution Function (CDF) for noise power = 1*10-9

The addition of noise on the position of one marker causes noisy position estimation; we can

examine this noise, as aforesaid, by subtracting the data obtained from one non-noisy simulation
from the data obtained from a noisy simulation. The PSD of the output noise is characteristic of a
white noise for both the algorithms as we can see by Fig. 7.39 and 7.40. According to the theory
of stochastic processes, if a Gaussian process goes trough a linear systems the output process is
still Gaussian.

At this point it is interesting to investigate in whether the MV system acts as a linear system

as far as noise propagation, between an input (on the marker position) and the output(on the
translation vector), is concerned. We consider the system composed by one input and three
outputs as if they were three systems with one input and one output, and we call this systems
GLSDCX, GLSDCY and GLSDCZ for the GLSDC algorithm and LHMX, LHMY and LHMZ for the
LHM algorithm. In addition we define the estimated PSD with the periodogram method:

2

1

2)(∑
=

−=
n

l

lj
lex

n
fPSD ωπ

 (7.2)

where n is the number of element of the noise data and xl is the position l of the vector.
From the signal theory we know:

2)(
)(
)(fH

fPSD
fPSD

X

Y = (7.3)

where PSDY represent the output noise PSD, PSDX represent the input noise PSD, H(f) is the
frequency response of the system.

 88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

10

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

Periodogram PSD Estimate

PSD xe
PSD ye
PSD ze

Fig. 7.39: output noises PSD of GLSDC algorithm with noise input power = 1*10-9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

LHM Periodogram PSD Estimate

PSD xe
PSD ye
PSD ze

Fig. 7.40: output noises PSD of LHM algorithm with noise input power = 1*10-9

 89

If the ratio between PSDY and PSDX is almost equal among the various powers of input

noise, then for what concerns noise propagation, we can approximate the systems with a linear
ones. The linearity is a sufficient condition for the preservation of the Gaussian distribution. We
can see in Fig. 7.41, 7.42, 7.43 the square of the frequency response for the systems GLSDCX,
GLSDCY and GLSDCZ . In Fig 7.44, 7.45 7.46 we present the square of the frequency response of
the systems LHMX, LHMY and LHMZ. It is clearly visible that the behavior of 6 systems is
exactly linear, because we have an exact overlap of the line on the 6 figures. Once the linearity is
verified, we can establish with safety that the output noise is Gaussian with mean equal to 0
since the input noise has mean value equal to 0 and the following relationship is valid:

XY H ηη)0(= (7.4)
where ηX is the input mean value, ηY the output mean value and H(0) is the static gain of the
system. The output error has variance equal to the second order moment because the error has
mean equal to 0, and the second order moment is provided by the relationship:

(){ } ()dffPSDtXE Y∫
∞

=
0

2 2 (7.5)

where PSDY is the power spectral density of the output noise.
We now have all the information to model the output noise. We are sure that if the input

noise is WGN, the output noise will be WGN and moreover we know that the systems behaves
as a linear system as far as noise transmission is of concern.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30

40

50

60

70

80

90

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

GLSDC PSDx(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.41: verification of linearity propriety for GLSDCX system

 90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

80

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

GLSDC PSDy(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.42: verification of linearity propriety for GLSDCY system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50

55

60

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

GLSDC PSDz(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.43: verification of linearity propriety for GLSDCZ system

 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
45

50

55

60

65

70

75

80

85

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

LHM PSDx(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.44: verification of linearity propriety for LHMX system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

80

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

LHM PSDy(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.45: verification of linearity propriety for LHMY system

 92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

50

55

60

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

LHM PSDz(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

Fig. 7.46: verification of linearity propriety for LHMZ system

At this point we have to compare the output noise between the three systems of GLSDC and

LHM, to understand which algorithm amplifies the noise. In Fig 7.47 -7.49, a direct comparison
between the PSD of the systems GLSDCX and LHMX, GLSDCY and LHMY, GLSDCZ and
LHMZ are shown. In Fig 7.47 and 7.48 the lines are overlapped which means that the GLSDC
and LHM algorithms propagate the errors in the same way. In Fig 7.49, the GLSDC algorithm
amplifies the noise more than LHM algorithm as it concerns the variable z.

 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

10

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

PSD noise = 1*10-9 LHMx and GLSDCx

GLSDCx

LHMx

Fig. 7.47: PSD of GLSDCX and LHMX with noise 1*10-9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

PSD noise 1*10-9 LHMy and GLSDCy

GLSDCy

LHMy

Fig. 7.48: PSD of GLSDCY and LHMY with noise 1*10-9

 94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

Normalized Frequency (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

PSD noise 1*10-9 LHMz and GLSDCz

GLSDCz

LHMz

Fig. 7.49: PSD of GLSDCZ and LHMZ with noise 1*10-9

 95

8. CONCLUSIONS

This thesis described different MV algorithms that were developed and jointly tested within
a simulation environment specifically developed for the study of the MV-based Autonomous
Aerial Refueling problem. In particular, the attention focused on the development of an accurate
labeling algorithm that avoids typical errors and on the analysis of the performance of the two
most used pose estimation algorithms - the GLSDC and the LHM algorithms - in terms of speed,
accuracy, robustness and errors propagation. The results from this detailed comparison indicate
that the accuracy of the two algorithms is substantially similar; however, the LHM algorithm
provides a substantial higher level of robustness at the expense of a larger required
computational effort.

 96

9. REFERENCE

[1] M.L. Fravolini, A. Ficola, M.R. Napolitano G. Campa, M.G. Perhinschi, “Development of

Modelling and Control Tools for Aerial Refueling for UAV’s”, Proceedings of the 2003
AIAA GNC Conference, Paper 2003-5798, Austin (TX), August 2003.

[2] L. Pollini, G. Campa, F.Giulietti, M.Innocenti, “Virtual Simulation Set-up for UAVs Aerial
Refueling” , Proceedings of the 2003 AIAA Conference on Modeling and Simulation
Technologies and Exhibits, Paper 2003-568211-14, Austin (TX), August 2003.

[3] R.M. Harlalick et al., “Pose Estimation from Corresponding Point Data”, IEEE Trans.
Systems, Man, and Cybernetics, vol. 19, no. 6, pp. 1,426-1,446, 1989.

[4] C-P Lu, G. Hager, and E. Mjolsness, "Fast and Globally Convergent Pose Estimation From
Video Images", IEEE Transaction on Pattern analysis and machine intelligence, vol. 22, pp.
610 - 622, 2000.

[5] A. Ansar and K. Daniilidis, "Linear pose estimation form point or lines", IEEE Transaction
on Pattern analysis and machine intelligence, vol. 25, no. 4, April 2003.

[6] O. Faugeras, Three-Dimensional Computer Vision. MIT Press, 1993.
[7] B.K.P. Horn, “Closed-Form Solution of Absolute Orientation Using Unit Quaternion”, J.

Optical Soc. Am., vol. 4, pp. 629-642, 1987.
[8] M.W. Walker, L. Shao, and R.A. Volz, “Estimating 3D Location Parameters Using Dual

Number Quaternions”, CVGIP: Image Understanding, vol. 54, no. 3, pp. 358-367, 1991.
[9] K.S. Arun, T.S. Huang, and S.D. Blostein, “Least-Squares Fitting of Two 3D Point Sets”,

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, pp. 698-700, 1987.
[10] M. Ciampi, L. Verazzani, G. Del Corso, “Teoria dei segnali, Segnali aleatori”, ETS Pisa,

1984.
[11] A. Caiti, “Appunti di Identificazione dei Sistemi Incerti”, Università di Pisa, 2004.
[12] B.K.P. Horn, H.M. Hilden, and S. Negahdaripour, “Closed-Form Solution of Absolute

Orientation Using Orthonomal Matrices”, J.Optical Soc. Am., vol. 5, pp. 1,127-1,135, 1988.
[13] D.G. Luenberger, Linear and Nonlinear Programming. second ed. Reading, Mass.: Addison

Wesley, 1984.
[14] W. Szczepanski. “Die LBsungsvorschlage fur den raumlichen Ruckwartheinschnitt.

Deutsche Geodatische Kommission.” Reihe C:Dissertationcn-Heft Nr. 29, pp. 1-144, 1958.
[15] M. A. Fischler and R. S. Bolles, “Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography.” Communications of the
ACM, vol. 24, no. 6, June 1981.

[16] B. Wrobel and D. Klemm. “Uber die Vermeidung singularer Falle bel der Berechnung
allgemeiner raumlicher Drehungen.” in Proc. XVrh Congress of ISPRS. Rio de Janeiro,
Brazil, 1984. and in the Int. Archives of Photogrammetry and Remote Sensing, vol. 25, part
A3b. pp. 1153-1163.

[17] E. H. Thompmn. “An exact linear solution of the problem of absolute orientation.”
Phorogrunimerriu, vol. 15, no. 4. pp. 163-178. 1958.

[18] G . H. Schut, “On exact linear equations for the computation of rotational element of
absolute orientation.” Photogrammetria, vol.15, no. 1. pp. 34-37, 1960.

[19] J. M. Tienstra. “Calculation of orthogonal matrices,” ITC DelftSeries. A4X. 1969.
[20] J. A. Pope, “An advantageous. alternative parametrization of rotations for analytical

photogrammetry,” ESSA Tech. Rep., C and GS 39. 1970.
[21] J. A. R. Blais, “Three-dimensional similarity,” The Canadian Surveyor . no. 1, 1972. pp. 71-

76.
[22] F. Sanso. “An exact solution of the roto-translation problem.” Photogrammetria. vol. 29. pp.

203-216, 1973.

 97

[23] K. S. Arun, T. S. Huang, and S. D. Rlostein. “Least-squares fitting of two 3-D point sets,”
IEEE Trans. Pattern Anal . Machine Intell., vol. PAMI-9, no. 5. pp. 698-700. Sept. 1987.

[24] R.M. Haralick. H. Joo, C. Lee. X. Zhuang, V. Vaidya. and M. Kim. “Pose estimation from
corresponding point data,” IEEE Computer Society Workshop on Computer Vision, Miami
Beach, FL. Nov. 30-Dec. 3, 1987. pp. 258-263.

[25] R.M. Haralick and L.G. Shapiro, “Computer and Robot Vision”. Reading, Mass.: Addison-
Wesley, 1993.

[26] D.G. Lowe, “Three-Dimensional Object Recognition from Single Two-Dimensional Image”,
Artificial Intelligence, vol. 31, 1987, pp. 355- 395.

[27] Kimmett J., Valasek J., Junkins J.L., “Autonomous Aerial Refueling Utilizing a Vision
Based Navigation System”, Proceedings of the 2002 AIAA GNC Conference, Paper 2002-
5569, Monterey (CA), August 2002.

[28] A. Fusiello “Visione Computazionale: Appunti delle lezioni” Università di Verona, 2003-
2004

[29] S. Hutchinson, G. Hager, P. Corke, “A tutorial on visual servo control”, IEEE Trans. On
Robotics and Automation, vol. 12, no. 5, 1996, pp. 651-670.

[30] Lowe, D. G., "Fitting parameterized three-dimensional models to images," IEEE
Transactions on Pattern Analysis and Machine intelligence, vol. 13, no. 5, 1991, pp. 441-
450.

[31] S. Vogt, A. Khamene, F. Sauer, H. Niemann, ”Single Camera Tracking of Marker Clusters:
Multiparameter Cluster Optimization and Experimental Verification”, Proceedings of
International Symposium on Mixed and Augmented Reality, Darmstadt, Germany , pp. 127–
136, Sept. 2002.

[32] B.L. Stevens, F.L. Lewis, “Aircraft Control and Simulation”, John Wiley & Sons, New
York, 1987.

[33] Addington, G.A., Myatt, J.H., “Control-Surface Deflection Effects on the Innovative Control
Effectors (ICE 101) Design, ”Air Force Report”, AFRL-VA-WP-TR-2000-3027, June 2000.

[34] Roskam J. “Airplane Flight Dynamics and Automatic Flight Controls – Part II”, DARC
Corporation, Lawrence, KS, 1994.

[35] Blake W, Gingras D.R., “Comparison of Predicted and Measured Formation Flight
Interference Effect”, Proceedings of the 2001 AIAA Atmospheric Flight Mechanics
Conference, AIAA Paper 2001-4136, Montreal, August 2001.

[36] Gingras D.R., Player J.L., Blake W., “Static and Dynamic Wind Tunnel testing of Air
Vehicles in Close Proximity”, Proceedings of the 2001 AIAA Atmospheric Flight
Mechanics Conference, Paper 2001-4137, Montreal, Canada, August 2001.

[37] Philip N.K., Ananthasayanam M.R., “Relative Position and Attitude Estimation and Control
Schemes for the Final Phase of an Autonomous Docking Mission of Spacecraft”, Acta
Astronautica, vol. 52, 2003, pp. 511-522.

[38] Sinopoli B., Micheli M., Donato G., Koo T.J., “Vision Based Navigation for an Unmanned
Aerial Vehicle”, Proceedings of the 2001 IEEE International Conference on Robotics and
Automation, Vol. 2, 1757-1764, Seoul, South Korea, May 2001.

[39] Addington, G.A., Myatt, J.H., “Control-Surface Deflection Effects on the Innovative Control
Effectors (ICE 101) Design,”Air Force Report, AFRL-VA-WP-TR-2000-3027, June 2000.

[40] M.L. Fravolini, G. Campa, A. Ficola, M.R. Napolitano, B. Seanor, “Modeling and Control
issues for Machine Vision based Autonomous Aerial Refueling”, Journal of Guidance
Control and dynamics, In Press.

[41] M.L. Fravolini, A. Ficola, G. Campa, M.R. Napolitano, B. Seanor, “Modeling and Control
issues for Autonomous Aerial Refueling for UAVs using a Probe-Drogue refueling system”,
Aerospace science of technology, Vol. 8, no. 7, pp. 611-618. Oct. 2004.

 98

[42] G. Campa, M.L. Fravolini, A. Ficola, M.R. Napolitano, B. Seanor, M.G. Perhinschi,
“Autonomous aerial refueling for UAVs using a combined GPS-machine vision guidance”,
AIAA Guidance, Navigation, and Control Conference and Exhibit; Providence, pp. 1-11.
2004, 16-19 Aug. 2004, RI, USA.

[43] L. Pollini, R. Mati and M. Innocenti, G. Campa and M. Napolitano, “A Synthetic
Environment for Simulation of Vision-Based Formation Flight”, AIAA Modeling and
Simulation Technologies Conference and Exhibit, Austin, Texas, Aug. 11-14, 2003.

[44] L. Pollini, R. Mati and M. Innocenti, “Experimental evaluation of vision algorithms for
formation flight and aerial refueling”, American institute of Aeronautics and Astronautics, In
Press.

[45] Umeyama, S., “Parameterized point pattern matching and its application to recognition of
object families,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol.15, No.2, 1993, pp.136-144.

[46] Pla, F., Marchant, J.A., “Matching Feature Points in Image Sequences through a Region-
Based Method,” Computer vision and image understanding, Vol. 66, No. 3, 1997, pp. 271-
285.

[47] Fravolini, M.L., Campa, G., Napolitano, M.R., Ficola, A., “Evaluation of Machine Vision
Algorithms for Autonomous Aerial Refueling for Unmanned Aerial Vehicles”, Submitted to:
AIAA Journal of Aerospace Computing, Information and Communication, April 2005.

 99

10. APPENDIX

10.1 Homogeneous Coordinate
Homogenous coordinates utilize a mathematical trick to embed three-dimensional

coordinates and transformations into a four-dimensional matrix format. As a result, inversions or
combinations of linear transformations are simplified to inversion or multiplication of the
corresponding matrices. Homogenous coordinates also make it possible to define perspective
transformations.

10.1.1 4x1 Homogeneous coordinate vector
Instead of representing each point (x,y,z) in three-dimensional space with a single three-

dimensional vector:
x
y
z

 (10.1)

homogenous coordinates allow each point (x,y,z) to be represented by any of an infinite
number of four dimensional vectors:

*
*
*

T x
T y
T z

T

 (10.2)

The three-dimensional vector corresponding to any four-dimensional vector can be
computed by dividing the first three elements by the fourth, and a four-dimensional vector
corresponding to any three-dimensional vector can be created by simply adding a fourth element
and setting it equal to one.

Many textbooks define homogenous coordinates in such a way that points are represented by
1x4 vectors:

[]* * *T x T y T z T (10.3)

instead of 4x1 vectors. This definition is not used in the AIR package and results in different
4x4 homogenous coordinate transformation matrices than those described below.

10.1.2 4x4 Homogenous Coordinate Transformation Matrices
Homogenous coordinate transformation matrices operate on four-dimensional homogenous

coordinate vector representations of traditional three-dimensional coordinate locations. Any
three-dimensional linear transformation (rotation, translation, skew, perspective distortion) can
be represented by a 4x4 homogenous coordinate transformation matrix. In fact, because of the
redundant representation of three space in a homogenous coordinate system, an infinite number
of different 4x4 homogenous coordinate transformation matrices are available to perform any
given linear transformation. This redundancy can be eliminated to provide a unique
representation by dividing all elements of a 4x4 homogenous transformation matrix by the last
element (which will become equal to one). This means that a 4x4 homogenous transformation
matrix can incorporate as many as 15 independent parameters. The generic format representation
of a homogenous transformation equation for mapping the three dimensional coordinate (x,y,z)
to the three-dimensional coordinate (x',y',z') is:

 100

'* ' ''* ''* ''* ''* *
'* ' ''* ''* ''* ''* *
'* ' ''* ''* ''* ''* *

' ''* ''* ''* ''

T x T a T b T c T d T x
T y T e T f T g T h T y
T z T i T j T k T m T z

T T n T p T q T T

 =

 (10.4)

If any two matrices or vectors of this equation are known, the third matrix (or vector) can be
computed and then the redundant T element in the solution can be eliminated by dividing all
elements of the matrix by the last element.

Various transformation models can be used to constrain the form of the matrix to
transformations with fewer degrees of freedom.

In many textbooks, you will find homogenous transformation matrices defined such that 1x4
homogenous coordinate vectors are placed to the left of the 4x4 homogenous coordinate
transformation matrix and multiplied.

10.1.3 Translations
Translations can be represented by the 4x4 homogenous coordinate transformation matrix:

1 0 0
0 1 0
0 0 1
0 0 0 1

x shift
y shift
z shift

−
 −
 −

 (10.5)

where:

 = translation along the x axis
 = translation along the y axis
 = translation along the z axis

x shift
y shift
z shift

−
−
−

10.1.4 Rotation
A series of rotations (in the order [roll matrix]*[pitch matrix]*[yaw matrix]) can be

represented by the 4x4 homogenous coordinate transformation matrix:
cos cos cos sin cos sin sin sin sin cos sin cos 0
cos sin cos cos sin sin sin cos sin cos sin sin 0

sin cos sin cos cos 0
0 0 0 1

θ ψ θ ψ ψ θ ϕ ψ ϕ ψ θ ϕ
θ ψ ψ ϕ θ ψ ϕ ψ ϕ ϕ ψ θ

θ θ ϕ θ ϕ

− + +
 + − +
 −

 (10.6)

where

 = rotation around the x axis (roll)
 = rotation around the y axis (pitch)
 = rotation around the z axis (yaw)

ϕ
θ
ψ

10.1.5 Rescaling
Rescaling along the major axes can be represented by the 4x4 homogenous coordinate

transformation matrix:

 101

0 0 0
0 0 0
0 0 0
0 0 0 1

x scale
y scale

z scale

−
 −
 −

 (10.7)

where

 = rescaling along standard file x dimension
 = rescaling along standard file y dimension
 = rescaling along standard file z dimension

x scale
y scale
z scale

−
−
−

10.1.6 Perspective
Perspective distortion is achieved by applying the 4x4 homogenous coordinate

transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0

1 1 1 1xview yview zview

 (10.8)

where

 = x coordinate from which image is viewed
 = y coordinate from which image is viewed
 = z coordinate from which image is viewed

xview
yview
zview

10.2 Singular Value Decomposition
Let X denote an m x n matrix of real-valued data and rank r, where without loss of generality

m≥n, and therefore r ≤ n. In the case of microarray data, xij is the expression level of the ith gene
in the jth assay. The elements of the ith row of X form the n-dimensional vector gi, which we refer
to as the transcriptional response of the ith gene. Alternatively, the elements of the jth column of
X form the m-dimensional vector aj, which we refer to as the expression profile of the jth assay.

The equation for singular value decomposition of X is the following:
TX U V= ∑ (10.9)

where U is an m x n matrix, ∑ is an n x n diagonal matrix, and VT is also an n x n matrix.
The columns of U are called the left singular vectors, {uk}, and form an orthonormal basis for
the assay expression profiles, so that ui·uj = 1 for i = j, and ui·uj = 0 otherwise. The rows of VT
contain the elements of the right singular vectors, {vk}, and form an orthonormal basis for the
gene transcriptional responses. The elements of ∑ are only nonzero on the diagonal, and are
called the singular values. Thus, ∑ = diag(s1,...,sn). Furthermore, sk > 0 for 1 ≤ k ≤ r, and si = 0
for (r+1) ≤ k ≤ n. By convention, the ordering of the singular vectors is determined by high-to-
low sorting of singular values, with the highest singular value in the upper left index of the S
matrix. Note that for a square, symmetric matrix X, singular value decomposition is equivalent to
diagonalization, or solution of the eigenvalue problem.

One important result of the SVD of X is that:

 102

()

1

l
l T

k k k
k

X u s v
=

=∑ (10.10)

is the closest rank-l matrix to X. The term “closest” means that X(l) minimizes the sum of the
squares of the difference of the elements of X and X(l), ∑ij|xij – x(l)

ij|2.
One way to calculate the SVD is to first calculate VT and S by diagonalizing XTX:

2T TX X V V= ∑ (10.11)
and then to calculate U as follows:

1U XV −= ∑ (10.12)
where the (r+1),...,n columns of V for which sk = 0 are ignored in the matrix multiplication of

(10.12). Choices for the remaining n-r singular vectors in V or U may be calculated using the
Gram-Schmidt orthogonalization process or some other extension method. In practice there are
several methods for calculating the SVD that are of higher accuracy and speed

Relation to principal component analysis. There is a direct relation between PCA and SVD
in the case where principal components are calculated from the covariance matrix. If one
conditions the data matrix X by centering each column, then XTX = Σigigi

T is proportional to the
covariance matrix of the variables of gi (i.e., the covariance matrix of the assays). By (10.11),
diagonalization of XTX yields VT, which also yields the principal components of {gi}. So, the
right singular vectors {vk} are the same as the principal components of {gi}. The eigenvalues of
XTX are equivalent to sk

2, which are proportional to the variances of the principal components.
The matrix U∑ then contains the principal component scores, which are the coordinates of the
genes in the space of principal components.

If instead each row of X is centered, XXT = Σjajaj
T is proportional to the covariance matrix of

the variables of aj (i.e. the covariance matrix of the genes). In this case, the left singular vectors
{uk} are the same as the principal components of {aj}. The sk

2 are again proportional to the
variances of the principal components. The matrix ∑ VT again contains the principal component
scores, which are the coordinates of the assays in the space of principal components.

10.2.1 Uniqueness of the optimal solution to the absolute orientation problem
We show that the best rotation R to (6.9) is unique. Let

1 1 1 2 2 2 3 3 3
T T T TM U V s u v s u v s u v= ∑ = + + (10.13)

be an SVD of M, where U and V are orthogonal matrices and ∑ is diagonal. The solution
for R is VUt. U, ∑ , and V are unique 1) making the same permutation P of the columns of U,
elements of ∑ , and columns of V , or 2) changing the sign of the corresponding columns of U
and V, or 3) replacing columns of U and V corresponding to repeated singular values by any
orthonormal basis of the span defined by the columns. This corresponds to rotating the columns
by an orthogonal matrix.

For a square matrix M with an SVD M = U∑ Vt, all three changes do not affect VUt. Let the
new SVD under any of these changes be ' ' 'TU V∑ . For rotation, let

' , 'U UT V VT= = (10.13)
then

' 'T T T TV U VTT U VU= = (10.13)
 since TTt = I. The same reasoning can be applied to permutation since permutation matrices

are special cases of rotation matrices. Changing signs of corresponding columns of U and V will
not change VUT since 1 1 2 2 3 3

T T T TVU v u v u v u= + + .

 103

10.2.2 Closedness of SVD
Suppose that kM M→ , that (, ,)k k kU V∑ is an arbitrary SVD of Mk, and that

(, ,) (, ,)k k kU V U V∑ → ∑ . To show that SVD, viewed as a point-to-set mapping, is closed, we
must show that (, ,)U V∑ is a SVD of M.

From the closedness of SO(3), U and V are orthonormal matrices. Likewise, the set of
diagonal matrices in)3(℘ is a closed subgroup and, hence, ∑ is a diagonal matrix. Therefore,
(, ,)U V∑ is an SVD of some matrix ' TM U V= ∑ . However, by the continuity of transposition
and matrix multiplication, if (, ,) (, ,)k k kU V U V∑ → ∑ , then , T T

k k kU V U V∑ → ∑ and, hence,
'kM M→ . Therefore, M=M’ and, consequently, (, ,)U V∑ is an SVD of M.

10.3 Matlab and C code
10.3.1 GLSDC function

function [sys,x0,str,ts] =
sfunGLS3(t,x,u,flag,X0,Markers,MV_SamplingTime,CCDsideH,CCDsideV,focal,Step,M
inMark)

% S-function for gaussian least square position and orientation estimation

persistent nUsedMarkers

switch flag,
 %%%%%%%%%%%%%%%%%%
 % Initialization %
 %%%%%%%%%%%%%%%%%%
 case 0,

[sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,MV_SamplingTime);

 %%%%%%%%%%
 % Update %
 %%%%%%%%%%
 case 2,

[sys,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,Step,MinMa
rk);

 %%%%%%%%%%%
 % Outputs %
 %%%%%%%%%%%
 case 3,
 sys=[x;nUsedMarkers];

 %%%%%%%%%%%%%
 % Terminate %
 %%%%%%%%%%%%%
 case 9,
 sys=mdlTerminate(t,x,u);

 %%%%%%%%%%%%%%%%%%%%
 % Unexpected flags %
 %%%%%%%%%%%%%%%%%%%%
 otherwise
 error(['Unhandled flag = ',num2str(flag)]);

 104

end

% end sfuntmpl

%
%==
=
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%==
=
%
function
[sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,MV_SamplingTime)
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.

[components,nmarkers]=size(Markers);

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 6;
sizes.NumOutputs = 6+1;
sizes.NumInputs = 2*nmarkers;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

nUsedMarkers=-1;

x0=X0;
str = [];
ts = [MV_SamplingTime 0];

% end mdlInitializeSizes

%
%==
=
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%==
=
%
function
[x,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,Step,MinMark
)

Xk=x;
for k=1:Step,
 [Xk,nUsedMarkers]=gales1(Xk,u,Markers',focal,CCDsideH,CCDsideV,MinMark);
end
x=Xk;

% end mdlUpdate

 105

%
%==
=
% mdlTerminate
% Perform any end of simulation tasks.
%==
=
%
function sys=mdlTerminate(t,x,u)
sys = [];

% end mdlTerminate

function [Xknew,nUsedMarkers] =
gales1(Xk,Gk,Markers,f,CCDsideH,CCDsideV,MinMark)

N=size(Markers,1);
W=eye(2*N);

% calculate projections and gradients
A=derivatG(Markers,Xk,f);
Gs=computG(Markers,Xk,f);

% indexes to consider only markers inside the camera CCD
MkIn= (abs(Gk(1:2:2*N)) < ones(N,1)*CCDsideH) .* (abs(Gk(2:2:2*N)) <
ones(N,1)*CCDsideV);
UVIn=reshape(repmat(MkIn,1,2)',2*N,1);
ind=find([UVIn].*[1:2*N]'>0);

% consider the right column and rows in A and W
A=A(ind,:);
W=W(ind,ind);

% calculate difference in G
deltaGk=diag([UVIn])*(Gk-Gs);
deltaGk=deltaGk(ind);

% descent
P=A'*W*A;
dXk=pinv(P)*A'*W*deltaGk;

% number of used markers
nUsedMarkers=size(A,1)/2;

% update only if the number of markers is above the minimum
if (nUsedMarkers > (MinMark-1)),
 Xknew=Xk+dXk;
else
 Xknew=Xk;
end

%Calcolo della matrice A delle derivate di G
%rispetto alle coordinate e all'orientazione del centro del cestello
function AA=derivatG(Markers,Xk,f)

N=size(Markers,1);
AA=zeros(2*N,6);
A=zeros(2,6);

 106

for ii=1:N,

 Point=Markers(ii,:);

 xM=Point(1);
 yM=Point(2);
 zM=Point(3);

 xD=Xk(1);
 yD=Xk(2);
 zD=Xk(3);
 psi=Xk(4);
 theta=Xk(5);
 phi=Xk(6);

 t1 = sin(psi);
 t2 = cos(theta);
 t3 = t1*t2;
 t4 = t3*xM;
 t5 = cos(psi);
 t6 = cos(phi);
 t7 = t5*t6;
 t8 = sin(theta);
 t9 = t1*t8;
 t10 = sin(phi);
 t11 = t9*t10;
 t14 = t5*t10;
 t15 = t9*t6;
 t16 = -t14+t15;
 t19 = t5*t2;
 t20 = t19*xM;
 t21 = t1*t6;
 t22 = t5*t8;
 t23 = t22*t10;
 t25 = (-t21+t23)*yM;
 t28 = t1*t10+t22*t6;
 t29 = t28*zM;
 t30 = xD+t20+t25+t29;
 t31 = t30*t30;
 t32 = 1/t31;
 t33 = (yD+t4+(t7+t11)*yM+t16*zM)*t32;
 t34 = 1/t30;
 t37 = -t7-t11;
 t41 = -t4+t37*yM+(t14-t15)*zM;
 t45 = t10*yM;
 t47 = t6*zM;
 t54 = -t22*xM+t19*t45+t19*t47;
 t64 = t28*yM+(t21-t23)*zM;
 t68 = t2*t10;
 t70 = t2*t6;
 t73 = (zD-t8*xM+t68*yM+t70*zM)*t32;
 A(1,1) = -t33;
 A(1,2) = t34;
 A(1,3) = 0.0;
 A(1,4) = (t20+t25+t29)*t34-t33*t41;
 A(1,5) = (-t9*xM+t3*t45+t3*t47)*t34-t33*t54;
 A(1,6) = (t16*yM+t37*zM)*t34-t33*t64;
 A(2,1) = -t73;
 A(2,2) = 0.0;
 A(2,3) = t34;
 A(2,4) = -t73*t41;

 107

 A(2,5) = (-t2*xM-t8*t10*yM-t8*t6*zM)*t34-t73*t54;
 A(2,6) = (t70*yM-t68*zM)*t34-t73*t64;

 AA([2*ii-1,2*ii],1:6)=f*A;

end

% computation of the gradient of G
function G=computG(Markers,Xk,f)

N=size(Markers,1);
G=zeros(2*N,1);

for ii=1:N,

 Point=Markers(ii,:);
 xM=Point(1);
 yM=Point(2);
 zM=Point(3);
 xD=Xk(1);
 yD=Xk(2);
 zD=Xk(3);
 psi=Xk(4);
 theta=Xk(5);
 phi=Xk(6);

 t1 = sin(psi);
 t2 = cos(theta);
 t5 = cos(psi);
 t6 = cos(phi);
 t8 = sin(theta);
 t9 = t1*t8;
 t10 = sin(phi);
 t22 = t5*t8;
 t31 = 1/(xD+t5*t2*xM+(-t1*t6+t22*t10)*yM+(t1*t10+t22*t6)*zM);
 Ui = (yD+t1*t2*xM+(t5*t6+t9*t10)*yM+(-t5*t10+t9*t6)*zM)*t31;
 Vi = (zD-t8*xM+t2*t10*yM+t2*t6*zM)*t31;

 G([2*ii-1,2*ii])=f*[Ui; Vi];

 end

10.3.2 LHM function

function [sys,x0,str,ts] =

sfunLHM1(t,x,u,flag,X0,Markers,CCDsideH,CCDsideV,focal,tol,epsilon,met,T)
% S-function che usa l'algoritmo LHM per stimare la posizione e gli angoli

di eulero

persistent nUsedMarkers
%persistent Option

switch flag,
 %%%%%%%%%%%%%%%%%%
 % Initialization %
 %%%%%%%%%%%%%%%%%%
 case 0,

 108

 [sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,T);

 %%%%%%%%%%
 % Update %
 %%%%%%%%%%
 case 2,

[sys,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,tol,epsilo
n,met);

 %%%%%%%%%%%
 % Outputs %
 %%%%%%%%%%%
 case 3,
 sys=mdlOutput(t,x,u,nUsedMarkers);

 %%%%%%%%%%%%%
 % Terminate %
 %%%%%%%%%%%%%
 case 9,
 sys=mdlTerminate(t,x,u);

 %%%%%%%%%%%%%%%%%%%%
 % Unexpected flags %
 %%%%%%%%%%%%%%%%%%%%
 otherwise
 error(['Unhandled flag = ',num2str(flag)])

end

% end sfuntmpl

%
%===

====
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-

function.
%===

====
%
function [sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,T)
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.

[components,nmarkers]=size(Markers);

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 12;
sizes.NumOutputs = 6+1;
sizes.NumInputs = 2*nmarkers;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

 109

nUsedMarkers=-1;
% Option = tol
% Option.epsilon= epsilon
% Option.method = 'SVD'
rot=[0 1 0; 0 0 -1; 1 0 0];
x0=[X0(1:9);rot*X0(10:12)];
str = [];
ts = [T 0];

% end mdlInitializeSizes

%
%===

====
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%===

====
%
function

[x,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,tol,epsilon,
met)

% Secondo le nostre considerazioni l'algoritmo LHM utilizza un sistema di
% riferimento diverso da quello descritto nell'articolo e soprattutto non

è destrorso, il sistema di
% riferimento che secondo noi viene utilizzato è:
% /|\
% | y'=v'
% |
% |
% |_______________>
% z' entrante nel foglio x'=u'
%
% Questo spiega i problemi che si hanno anche in uscita con gli angoli
%
% Il nostro sistema di riferimento è il classico sistema aereonautico di

assi corpo:
% __________________>
% x entrante nel | y=u
% foglio |
% |
% \|/z=v
% La trasformazione rigida tra questi sistemi di riferimento è
% [x'; y';z']= R * [x; y; z] dove R= [0 1 0; 0 0 -1; 1 0 0]
% [u';v']= [1 0; 0 -1] *[u;v]
%
% Secondo noi l'alg LHM restituisce una matrice di rotazione tra sistemi

di
% riferimenti non destrorsi e questo spiega perchè non ritorni la
% trasformazione per gli angoli di eulero, per fare in modo che questi

ritornino
% si devono invertire alcuni segni e scambiare tra loro le definizioni
% degli angoli stessi, mentre la trasformazione funziona per il vettore di
% traslazione t come facilmente intuibile.
%
Xk=x;
a=size(Markers);
nMarkers=a(2);
%seleziono i markers interni allo spazio della telecamera

 110

MkIn= (abs(u(1:2:2*nMarkers)) < ones(nMarkers,1)*CCDsideH) .*
(abs(u(2:2:2*nMarkers)) < ones(nMarkers,1)*CCDsideV);

markVisti=sum(MkIn);

if(markVisti>4)
 %sistemo gli ingressi 2D per l'algoritmo LHM dando soltanto le

coordinate dei LEDs visibili e riportando in metri
 Qp1=reshape(u,2,nMarkers);
 Qp(1,:)=Qp1(1,find([MkIn].*[1:nMarkers]'>0));
 Qp(2,:)=-Qp1(2,find([MkIn].*[1:nMarkers]'>0)); %cambio il segno
 Qp=Qp./focal;
 %seleziono solo i Markers visibili
 for i=1:3
 P(i,:)=Markers(i,find([MkIn].*[1:nMarkers]'>0));
 end
 %cambio sistema di riferimento da assi corpo della telecamera al
 %sistema descritto sopra
 P=[0 1 0; 0 0 -1; 1 0 0]*P;
 Option.tol=tol;
 Option.epsilon=epsilon;
 Option.method=met;
 Option.initR=reshape(Xk(1:9),3,3); %inizializzo initR con la matrice

trovata al passo precedente

 [R, t, it, obj_err, img_err] = objpose(P, Qp, Option); %Funzione LHM

originale
% it
% obj_err
% img_err
 XK1=[reshape(R,9,1);t]; %nuovo vettore di stato
else
 XK1=Xk;
end

x=XK1;
nUsedMarkers=markVisti;

% end mdlUpdate
function sys=mdlOutput(t,x,u,nUsedMarkers)
R=reshape(x(1:9),3,3);
rot=[0 0 1; 1 0 0; 0 -1 0];
 %R=rot*R;

ypr(2) = atan2(R(2,3),R(3,3));
ypr(1) = -asin(-R(1,3));
ypr(3) = atan2(R(1,2),R(1,1));

t=rot*x(10:12);
sys = [t;ypr';nUsedMarkers];

 %sys = [reshape(R,9,1);t;nUsedMarkers];

%
%===

====
% mdlTerminate
% Perform any end of simulation tasks.
%===

====

 111

%
function sys=mdlTerminate(t,x,u)
sys=[];
% end mdlTerminate

function [R, t, it, obj_err, img_err] = objpose(P, Qp, options)
% OBJPOSE - Object pose estimation
% OBJPOSE(P, Qp) compute the pose (exterior orientation)
% between the 3D point set P represented in object space
% and its projection Qp represented in normalized image
% plane. It implements the algorithm described in "Fast
% and Globally Convergent Pose Estimation from Video
% Images" by Chien-Ping Lu et. al. to appear in IEEE
% Transaction on Pattern Analysis and Machine intelligence
%
% INPUTS:
% P - 3D point set arranged in a 3xn matrix
% Qp - 2D point set arranged in a 2xn matrix
% options - a structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.initR initial guess of rotation none
% OPTIONS.tol Convergence tolerance: 1e-5
% abs(new_value-old_value)/old_value<tol
% OPTIONS.epsilon lower bound of the objective function 1e-8
% OPTIONS.method 'SVD' use SVD for solving rotation 'QTN'
% 'QTN' use quaternion for solving
% rotation
% OUTPUTS:
% R - estimated rotation matrix
% t - estimated translation vector
% it - number of the iterations taken
% obj_err - object-space error associated with the estimate
% img_err - image-space error associated with the estimate
%
% TOL = 1E-5;
% EPSILON = 1E-8;
% METHOD = 'SVD';

if nargin >= 3
 if isfield(options, 'tol')
 TOL = options.tol;
 end

 if isfield(options, 'epsilon')
 EPSILON = options.epsilon;
 end

 if isfield(options, 'method')
 METHOD = options.method;
 end
end

n = size(P,2);

% move the origin to the center of P
pbar = sum(P,2)/n;

 112

for i = 1:n
 P(:,i) = P(:,i)-pbar;
end

Q(1:3,n) = 0;
for i = 1 : n
 Q(:,i) = [Qp(:,i);1];
end

% compute projection matrices
F(1:3,1:3,1:n) = 0;
V(1:3) = 0;
for i = 1:n
 V = Q(:,i)/Q(3,i);
 F(:,:,i) = (V*V.')/(V.'*V);
end

% compute the matrix factor required to compute t
tFactor = inv(eye(3)-sum(F,3)/n)/n;

it = 0;
if isfield(options, 'initR') % initial guess of rotation is given
 Ri = options.initR;
 Sum(1:3,1) = 0;
 for i = 1:n
 Sum = Sum + (F(:,:,i)-eye(3))*Ri*P(:,i);
 end
 ti = tFactor*Sum;

 % calculate error
 Qi = xform(P, Ri, ti);
 old_err = 0;
 vec(1:3,1) = 0;
 for i = 1 : n
 vec = (eye(3)-F(:,:,i))*Qi(:,i);
 old_err = old_err + vec'*vec;
 % old_err = old_err + dot(vec,vec);
 end

else % no initial guess; use weak-perspective approximation
 % compute initial pose estimate
 [Ri, ti, Qi, old_err] = abskernel(P, Q, F, tFactor, METHOD);
 it = 1;
end

% compute next pose estimate
[Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD);
it = it + 1;

while (abs((old_err-new_err)/old_err) > TOL) & (new_err > EPSILON)

 old_err = new_err;

 % compute the optimal estimate of R
 [Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD);
 it = it + 1;

end

 113

R = Ri;
t = ti;
obj_err = sqrt(new_err/n);

if (nargout >= 5) % calculate image-space error
 Qproj = xformproj(P, Ri, ti);
 img_err = 0;
 vec(1:3,1) = 0;
 for i = 1:n
 vec = Qproj(i)-Qp(i);
 img_err = img_err + vec'*vec;
% img_err = img_err + dot(vec,vec);
 end
end
img_err = sqrt(img_err/n);

% correct possible reflection w.r.t the projection center
if t(3) < 0
 R = -R;
 t = -t;
end

% get back to original refernce frame
t = t - Ri*pbar;

% end of OBJPOSE

function [R, t, Qout, err2] = abskernel(P, Q, F, G, method)
% ABSKERNEL - Absolute orientation kernel
% ABSKERNEL is the function for solving the
% intermediate absolute orientation problems
% in the inner loop of the OI pose estimation
% algorithm
%
% INPUTS:
% P - the reference point set arranged as a 3xn matrix
% Q - the point set obtained by transforming P with
% some pose estimate (typically the last estimate)
% F - the array of projection matrices arranged as
% a 3x3xn array
% G - a matrix precomputed for calculating t
% method - 'SVD' -> use SVD solution for rotation
% 'QTN' -> use quaterion solution for rotation
%
%
% OUTPUTS:
% R - estimated rotation matrix
% t - estimated translation vector
% Qout - the point set obtained by transforming P with
% newest pose estimate
% err2 - sum of squared object-space error associated
% with the estimate

n = size(P,2);

for i = 1:n
 Q(:,i) = F(:,:,i)*Q(:,i);
end

% compute P' and Q'

 114

pbar = sum(P,2)/n;
qbar = sum(Q,2)/n;
for i = 1:n
 P(:,i) = P(:,i)-pbar;
 Q(:,i) = Q(:,i)-qbar;
end

if method == 'SVD' % use SVD solution
 % compute M matrix
 M(1:3,1:3) = 0;
 for i = 1:n
 M = M+P(:,i)*Q(:,i).';
 end

 % calculate SVD of M
 [U,S,V] = svd(M);

 % compute rotation matrix R
 R = V*(U.');
elseif method == 'QTN' % use quaternion solution
 % compute M matrix
 A(1:4,1:4) = 0;
 for i = 1:n
 A = A + qmatQ([1;Q(:,i)]).'*qmatW([1;P(:,i)]);
 end

 % Find the largest eigenvalue of A
 eigs_options.disp = 0;
 [V,D] = eigs(A, eye(size(A)), 1, 'LM', eigs_options);

 % compute rotation matrix R from the quaternion that
 % corresponds to the largest egienvalue of A
 R = quat2mat(V);
end

Sum(1:3,1) = 0;
for i = 1:n
 Sum = Sum + F(:,:,i)*R*P(:,i);
end
t = G*Sum;

Qout = xform(P, R, t);

% calculate error
err2 = 0;
vec(1:3,1) = 0;
for i = 1 : n
 vec = (eye(3)-F(:,:,i))*Qout(:,i);
 err2 = err2 + vec'*vec;
% err2 = err2 + dot(vec,vec);
end

% end of ABSKERNEL

function Q = xform(P, R, t)
% XFORM - Transform
% XFORM(P, R, t) transform the 3D point set P by rotation
% R and translation t

 115

%

n = size(P,2);

Q(1:3,n) = 0;

for i = 1:n
 Q(:,i) = R*P(:,i)+t;
end

%end function

function Qp = xformproj(P, R, t)
% XFORMPROJ - Transform and project
% XFORMPROJ(P, R, t) transform the 3D point set P by
% rotation R and translation t, and then project them
% to the normalized image plane

%

n = size(P,2);

Q(1:3,n) = 0;
Qp(1:2,n) = 0;

for i = 1:n
 Q(:,i) = R*P(:,i)+t;
 Qp(:,i) = Q(1:2,i)/Q(3,i);
end

%end function

function Q = qmatQ(q)
% QMATQ - Compute the Q matrix (4x4) of quaternion q
%

w = q(1); x = q(2); y = q(3); z = q(4);
Q = [w, -x, -y, -z;
 x, w, -z, y;
 y, z, w, -x;
 z, -y, x, w];

%end function

function W = qmatW(q)
% QMATW - Compute the W matrix (4x4) of quaternion q
%

w = q(1); x = q(2); y = q(3); z = q(4);
W = [w, -x, -y, -z;
 x, w, z, -y;
 y, -z, w, x;
 z, y, -x, w];

%end function

 116

function R = quat2mat(q)
% QUAT2MAT - Convert a quaternion to a 3x3 rotation matrix
%

a = q(1); b = q(2); c = q(3); d = q(4);
R = [a^2+b^2-c^2-d^2, 2*(b*c-a*d), 2*(b*d+a*c); ...
 2*(b*c+a*d), a^2+c^2-b^2-d^2, 2*(c*d-a*b); ...
 2*(b*d-a*c), 2*(c*d+a*b), a^2+d^2-b^2-c^2];

%end function

10.3.3 Labeling function
/* S-Function for Marker Labeling ** G.Campa & M.Mammarella ** November

2004 *****************/

#define S_FUNCTION_NAME labeling
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/* mdlCheckParameters, check parameters, this routine is called later from

mdlInitializeSizes */
#define MDL_CHECK_PARAMETERS
static void mdlCheckParameters(SimStruct *S)
{
 /* Basic check : All parameters must be real positive vectors

*/
 real_T *pr;

 int_T i, el, nEls;
 for (i = 0; i < 5; i++) {
 if (mxIsEmpty(ssGetSFcnParam(S,i)) || mxIsSparse(

ssGetSFcnParam(S,i)) ||
 mxIsComplex(ssGetSFcnParam(S,i)) || !mxIsNumeric(

ssGetSFcnParam(S,i)))
 { ssSetErrorStatus(S,"Parameters must be real finite

vectors"); return; }
 pr = mxGetPr(ssGetSFcnParam(S,i));
 nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));
 for (el = 0; el < nEls; el++) {
 if (!mxIsFinite(pr[el]))
 { ssSetErrorStatus(S,"Parameters must be real finite

vectors"); return; }
 }
 }

 /* Check number of elements in parameter: nmarker

*/
 if (mxGetNumberOfElements(ssGetSFcnParam(S,0)) != 1)
 { ssSetErrorStatus(S,"The parameter must be a scalar"); return; }

 /* get the basic parameters and check them

*/
 pr=mxGetPr(ssGetSFcnParam(S,0));
 if (pr[0] < 1)

 117

 { ssSetErrorStatus(S,"Number of markers must be greater than zero");
return; }

 /* Check number of elements in parameter: max number of point

*/
 if (mxGetNumberOfElements(ssGetSFcnParam(S,1)) != 1)
 { ssSetErrorStatus(S,"The parameter must be a scalar"); return; }

 /* get the basic parameters and check them

*/
 pr=mxGetPr(ssGetSFcnParam(S,1));
 if (pr[0] < 1)
 { ssSetErrorStatus(S,"Max number of point must be greater than zero");

return; }

 /* Check number of elements in parameter: focal length

*/
 if (mxGetNumberOfElements(ssGetSFcnParam(S,2)) != 1)
 { ssSetErrorStatus(S,"The parameter must be a scalar"); return; }

 /* get the basic parameters and check them

*/
 pr=mxGetPr(ssGetSFcnParam(S,2));
 if (pr[0] < 0)
 { ssSetErrorStatus(S,"Focal length cannot be negative"); return; }

 /* Check number of elements in parameter: screen limit

*/
 if (mxGetNumberOfElements(ssGetSFcnParam(S,3)) != 4) // screen

limit
 { ssSetErrorStatus(S,"The screen limit must be a 4 elements vector");

return; }

 /* Check number of elements in parameter: sampling time

*/
 if (mxGetNumberOfElements(ssGetSFcnParam(S,4)) != 1)
 { ssSetErrorStatus(S,"The parameter must be a scalar"); return; }

 /* get the basic parameters and check them

*/
 pr=mxGetPr(ssGetSFcnParam(S,4));
 if (pr[0] < 0)
 { ssSetErrorStatus(S,"Sampling Time cannot be negative"); return; }

}

/* mdlInitializeSizes - initialize the sizes array

**/
static void mdlInitializeSizes(SimStruct *S)
{
 real_T *n, *m;

 n=mxGetPr(ssGetSFcnParam(S,0)); // number of markers
 m=mxGetPr(ssGetSFcnParam(S,1)); // number of max point

from input

 118

 ssSetNumSFcnParams(S,5); /* number of

expected parameters */

 /* Check the number of parameters and then calls mdlCheckParameters to

see if they are ok */
 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S))
 { mdlCheckParameters(S); if (ssGetErrorStatus(S) != NULL) return; }

else return;
 n=mxGetPr(ssGetSFcnParam(S,0));

 ssSetNumContStates(S,0); /* number of

continuous states */
 ssSetNumDiscStates(S,0); /* number of

discrete states */

 if (!ssSetNumInputPorts(S,2)) return; /* number of input

ports */
 ssSetInputPortWidth(S,0,(int_T)(n[0]*4)); /* first input port

width */
 ssSetInputPortWidth(S,1,(int_T)(m[0]*2)); /* second input port

width */
 ssSetInputPortDirectFeedThrough(S,0,1); /* first port direct

feedthrough flag */
 ssSetInputPortDirectFeedThrough(S,1,1); /* second port

direct feedthrough flag */

 if (!ssSetNumOutputPorts(S,2)) return; /* number of output

ports */
 ssSetOutputPortWidth(S,0,(int_T)(n[0]*2)); /* first output port

width */
 ssSetOutputPortWidth(S,1,(int_T)(2*n[0])); /* second output

port width */

 ssSetNumSampleTimes(S,0); /* number of sample

times */

 ssSetNumRWork(S,(int_T)(n[0]*m[0]+n[0]+m[0])); /* number real

work vector elements */
 ssSetNumIWork(S,m[0]); /* number int_T work

vector elements */
 ssSetNumPWork(S,0); /* number ptr work

vector elements */
 ssSetNumModes(S,0); /* number mode work

vector elements */
 ssSetNumNonsampledZCs(S,0); /* number of

nonsampled zero crossing */
}

/* mdlInitializeSampleTimes - initialize the sample times array

*******************************/
static void mdlInitializeSampleTimes(SimStruct *S)
{
 real_T *t;
 t=mxGetPr(ssGetSFcnParam(S,4));

 ssSetSampleTime(S, 0, *t);
 ssSetOffsetTime(S, 0, 0);
}

 119

/* mdlStart - initialize work vectors

***/
#define MDL_START
static void mdlStart(SimStruct *S)
{
 int_T i,j;
 real_T *nMark,*nPoint;
 real_T *errM;
 nMark=mxGetPr(ssGetSFcnParam(S,0));
 nPoint=mxGetPr(ssGetSFcnParam(S,1)); // max num di punti
 errM= ssGetRWork(S);

 for (i=0;i<nMark[0]+1;i++)
 for(j=0;j<nPoint[0]+1;j++) // inizializzo anche i

vettori di minimo
 errM[j*(int_T)(nMark[0])+i]=1000;
}

/* mdlOutputs - compute the outputs

***/
static void mdlOutputs(SimStruct *S, int_T tid)
{
int_T i, j, k;
real_T *y1 = ssGetOutputPortRealSignal(S,0);
real_T *y2 = ssGetOutputPortRealSignal(S,1);
InputRealPtrsType up1 = ssGetInputPortRealSignalPtrs(S,0);
InputRealPtrsType up2 = ssGetInputPortRealSignalPtrs(S,1);
real_T *focal;
real_T *nMarkR;
int_T nMark;
real_T *nPointR;
int_T nPoint;
real_T *errM;
real_T *minR;
real_T *minC;
int_T *indiciC;
real_T *limit;

// y[2] y è puntatore a vettore;
// (*up[2]) up è puntatore a puntatore

nMarkR=mxGetPr(ssGetSFcnParam(S,0));
nPointR=mxGetPr(ssGetSFcnParam(S,1));
focal=mxGetPr(ssGetSFcnParam(S,2));
limit=mxGetPr(ssGetSFcnParam(S,3));

nMark=(int_T)(nMarkR[0]);
nPoint=(int_T)(nPointR[0]);

// si implementa la camera simulata

for (i=0;i<nMark;i++)
 {
// Xi[i]= (*up1[4*i]); (asse di profondità della camera)
// Yi[i]= (*up1[4*i +1]); (asse che punta a destra)
// Zi[i]= (*up1[4*i +2]); (asse che punta verso il basso)

 120

 if ((*up1[4*i]) !=0) // division by zero checking
 {
 y1[2*i]= focal[0] * (*up1[4*i+ 1])/(*up1[4*i]);
 y1[2*i+1]= focal[0] * (*up1[4*i+ 2])/(*up1[4*i]);
 }
 else
 y1[2*i]=y1[2*i+1]=0;
 }

// labeling dei markers

errM= ssGetRWork(S);
minR = &errM[nMark*nPoint]; //il vettore di minimo di riga inizia alla

posizione nMark*nPoint
 //ed ha nMark posizioni
minC= &minR[nMark]; //il vettore di minimo di colonna inizia alla

posizione nMark
 //ed ha nPoint posizioni

indiciC=ssGetIWork(S); // vettore indici delle colonne ha nPoint

posizioni

for (i=0;i<nMark;i++)
 {
 minR[i]=1000;
 for(j=0;j<nPoint;j++) // inizializzo errM e minR e minC a

1000
 {
 errM[j*nMark+i]=1000; // questo va fatto per non

confondersi con il passo precedente
 minC[j]=1000;
 }
 }
for (i=0;i< nMark;i++)
 {
 for (j=0; j<nPoint;j++)
 {
 if ((*up2[2*j] >= limit[0]) && (*up2[2*j] <= limit[1])

&& (*up2[2*j+1] >= limit[2]) && (*up2[2*j+1] <= limit[3]))
 { //

calcolo le distanze se i markers trovati rientrano nello schermo
 errM[j*nMark +i]= ((*up2[2*j] - y1[2*i])*(*up2[2*j] -

y1[2*i])+
 (*up2[2*j+1] - y1[2*i

+1])*(*up2[2*j+ 1] - y1[2*i +1]));
 }
 }
 }

for (i=0; i< nMark; i++)
 {
 for (j=0;j<nPoint; j++)
 {
 if (errM[j*nMark +i] < minR[i])
 minR[i]=errM[j*nMark +i];

 if (errM[j*nMark +i] < minC[j])
 {
 minC[j]=errM[j*nMark +i];

 121

 indiciC[j]=i+1;
 }
 if (minC[j]==1000)
 indiciC[j]=0;
 }

 }

for (i=0;i<nMark;i++)
 {
 y2[2*i]=100; // inizializzo output altrimenti

rimane il valore del passo
 y2[2*i+1]=100; // precedente
 }

for (j=0;j<nPoint; j++)
 {
 if(indiciC[j]>0)
 {
 if(minC[j] == minR[(indiciC[j]-1)])
 {
 y2[2*(indiciC[j]-1)]= *up2[2*j];
 y2[(2*(indiciC[j]-1)) +1]= *up2[2*j +1];
 }
 }
}

}

/* mdlTerminate - called when the simulation is terminated

***********************************/
static void mdlTerminate(SimStruct *S) {}

/* Trailer information to set everything up for simulink usage

*******************************/
#ifdef MATLAB_MEX_FILE /* Is this file being

compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface

mechanism */
#else
#include "cg_sfun.h" /* Code generation

registration function */
#endif

