
 

UNIVERSITÀ DI PISA 

 

Facoltà di Ingegneria 

Laurea Specialistica in Ingegneria dell’Automazione 

Tesi di laurea 

Candidato: 

Marco Mammarella      __________________ 

Relatori: 

Prof.  Mario Innocenti ___________________ 

Prof.  Andrea Caiti      ___________________ 

 Addressing pose estimation issues for 
application of machine vision to UAV 

Autonomous Aerial Refueling 
 

Tesi di laurea svolta presso Department of Mechanical and Aerospace Engineering 
West Virginia University  (Morgantown) 

Sessione di Laurea del 19/07/2005 
Archivio tesi Laurea Specialistica in Ingegneria dell’Automazione 

Anno accademico 2004/2005 
Consultazione consentita 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14691173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Questo documento è il frutto di un lungo periodo di studio e di vita su cui mi sento in dovere 

di ringraziare: 
• Prof. Marcello Napolitano e Dr. Giampiero Campa per il supporto tecnico e morale 

fornito durante la realizzazione di questo progetto. 
• I miei familiari per l’immenso supporto morale e la disponibilità finanziaria fornita. 
• Sofia, Matteo, Tore e Gabriele per essermi stati vicini nelle innumerevoli avventure 

di questi anni ma anche nei momenti difficili. 
• Tutti coloro che hanno contribuito a rendere questo periodo indimenticabile.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 2

ABSTRACT 

The purpose of this thesis is to describe the results of an effort on the analysis of the 
performance of specific algorithms for the ‘pose estimation’ problem within the context of 
applying Machine Vision-based control laws for the problem of Autonomous Aerial Refueling 
(AAR) for UAVs. It is assumed that the MV-based AAR approach features several optical 
markers installed on specific points of the refueling tanker. However, the approach can be 
applied without any loss of generality to the more general case of the use feature extraction 
methods to detect specific points and corners of the tanker in lieu of the optical markers. The 
document proposes a robust ‘detection and labeling algorithm’ for the correct identification of 
the optical markers, which is then provided to the ‘pose estimation’ algorithm. Furthermore, a 
detailed study of the performance of two specific ‘pose estimation’ algorithms (the GLSDC and 
the LHM algorithms) is performed with special emphasis on required computational effort, 
robustness, and error propagation. Extensive simulation studies demonstrate the potential of the 
LHM algorithm and also highlight the importance of the robustness of the ‘detection and 
labeling’ algorithm. The simulation effort is performed with a detailed modeling of the AAR 
maneuver using the USAF refueling method. 

 
SOMMARIO 
 

Lo scopo di questa tesi è descrivere i risultati di uno studio riguardante l’analisi delle 
prestazioni di specifici algoritmi per il problema della stima della posizione in un contesto 
applicato ad una legge di controllo basata su Machine Vision (MV) per il problema del 
rifornimento aereo in modo autonomo (AAR) per veicoli aerei non pilotati (UAVs). Si assume 
che l’avvicinamento durante il rifornimento avvenga grazie a diversi markers ottici installati in 
punti specifici dell’aeromobile che fornisce il carburante (Tanker). Il metodo può comunque 
essere usato senza perdita di generalità in un caso dove si usa il metodo della feature extraction 
per trovare dei punti specifici sul contorno del Tanker al posto dei markers ottici. Il documento 
propone un algoritmo robusto per la corretta identificazione dei markers ottici, i quali vengono 
poi forniti agli algoritmi di stima della posizione. Inoltre si propone uno studio dettagliato di due 
specifici algoritmi per la stima della posizione (il GLSDC e LHM) dove si da particolare 
importanza al peso computazione, la robustezza e la propagazione dell’errore. Numerose 
simulazioni dimostrano il potenziale dell’algoritmo LHM evidenziando l’importanza della 
robustezza e dell’algoritmo di identificazione dei markers ottici. Le simulazioni sono state 
eseguite con un modello dettagliato della manovra di AAR usando il metodo proposto da USAF. 
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1. THE AUTONOMOUS AERIAL REFUELING PROBLEM 

The strategic and tactical importance of Unmanned Aerial Vehicles (UAVs) for civil and 
military purposes has grown in recent years. The deployment of UAVs has been tested in current 
and recent overseas conflicts.  Reducing costs and risks of human casualties is one immediate 
advantage of UAVs. An additional advantage is the possibility of avoiding troop deployment in 
enemy territory for dangerous rescue missions as is done currently with manned missions.  It is 
envisioned that formations of UAV will perform not only intelligence and reconnaissance 
missions but provide close air support, precision strike, and suppression of enemy air defenses. 

One of the biggest current limitations of deployed military UAVs is their limited aircraft 
range.  In fact, today UAVs are not capable of overseas flight and need to be flown by ground 
troops deployed at limited distances from a combat scenario. Furthermore, terrain and weather 
factors can also determine how close to the targets the UAVs can be launched.  Therefore, the 
acquisition of AAR capabilities for UAVs is a critical goal.  To achieve these capabilities 
specific technical challenges need to be overcome.   

 

 
Fig. 1.1: aerial refueling using a boom system  

 
Currently, there are two types of hardware set-ups used for aerial refueling. The first method 

is used by the US Air Force and is based on a refueling boom (Fig. 1.1); the second method is 
used by the US Navy as well as the armed forces of other NATO nations and is based on a 
“probe and drogue” setup, consisting of a refueling flexible hose with a flexible basket at the end 
(Fig. 1.2). 

In recent years, the AAR problem has attracted the attention of many researchers [1][2][27].  
In this effort a key issue is represented by the need of a high accuracy measurement of the 
relative Tanker-UAV relative distance and attitude in the final phase of docking and during the 
refueling. The use of MV technology has been proposed in addition or as an alternative to more 
conventional GPS technology. Particularly, a MV-based system has been proposed for close 
proximity operations of aerospace vehicles [37] and for the navigation of UAVs [38]. For the 
“probe and drogue” refueling system a MV-based system has been proposed in Refs. [1][2][27]. 
Within these studies, a fixed or variable number of visible optical markers is assumed to be 
available.  On the other hand, temporary loss of visibility might occur due to hardware failures 
and/or physical interference between the UAV on-board camera and the markers due to the 
refueling boom itself and/or different structural components of the Tanker or just simply because 
the markers exit the visual range of the on-board camera. 



 

 9

 

 
Fig. 1.2: aerial refueling using a probe and drogue system 

 
In this effort the AAR problem is addressed for the “refueling boom” method. In this case, 

the objective is to guide the UAV to a defined 3-D Window (3DW) below the Tanker where the 
boom operator can then manually proceed to the docking of the refueling boom with the UAV 
fuel receptacle followed by the actual refueling phase (Fig.1.3).  

 

 
Fig. 1.3: boom operator on Boeing  KC-135R 
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A specific docking control scheme featuring a fusion of GPS and MV distance 
measurements is proposed in this thesis. The MV estimation algorithms studied are capable of 
handling temporary loss of visibility of the markers. A detailed simulation environment has been 
designed providing accurate modeling for the drogue flexibility, the wake effects from the 
Tanker on the UAV, the atmospheric turbulence, the UAV trajectory constraints, as well as the 
GPS and MV measurements errors. Extensive simulations of the various aspects of the proposed 
docking scheme are analyzed and discussed; the UAV has been characterized with the 
parameters of the ICE-101 aircraft [39][38], the Tanker by a Boeing KC-135R aircraft [37]. 

A simulation environment for the AAR problem (Fig.1.4) is developed and analyzed, the 
simulation uses Virtual Reality Toolbox® (VRT) of Matlab for the image representation, a 
simulated camera is included in the simulation, it capture the VRT image and process the image 
to extract the position of the points, the MV system uses this data to provide the relative distance 
between camera and Tanker. The analysis of the MV system is the main purpose of this effort, 
using a particular emphasis for the pose estimation algorithms: Gaussian Least Squares 
Differential Correction (GLSDC) and the Lu, Hager and Mjolsness algorithm (LHM). The 
differences between the two algorithms will be analyzed, highlighting and the most important 
results. 

  
Fig. 1.4: AAR simulation 
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1.1 Reference frame 
The relevant reference frames, the problem formulation, sensors and distance vectors will be 

described in this section. 
The general scheme of the (Tanker + refueling boom + UAV) system is shown in Fig. 1.5   
The study of the AAR problem requires the definition of specific Reference Frames (RFs); 

where ERF is the earth fixed reference frame; TRF and URF are the body fixed RF for the 
Tanker and the UAV respectively; these RFs are applied in the center of mass of the aircrafts.  
Note, CRF refers to a fixed UAV camera RF. To make the docking problem invariant with 
respect to the nominal heading of the aircraft, an additional fixed frame MRF is defined; this 
frame is rotated of the nominal heading angle ψ0 with respect to the ERF. In this thesis, the 
following notation will be used: ER represents a point R expressed within ERF, EAB represents 
the vector from point A to point B expressed within ERF, while the matrix E

TT  represents the 
homogeneous transformation matrix that transform a vector/point expressed within TRF in a 
vector/point expressed within ERF. 

 

 
Fig. 1.5: reference frames in AAR problem 

 

1.2 Problem formulation 
The objective is to guide the UAV such that its fuel receptacle (point R in Fig.1.5) tracks the 

center of a 3-dimensional window (3DW) under the tanker (point B). Once the UAV fuel 
receptacle reaches and remains within this 3DW, the boom operator is assumed to take control of 
the refueling operations. It should be underlined that point B is fixed in the TRF with the 
dimensions of the 3DW (δx,δy,δz) presented in Tab 1.1 being an important design parameter. It 
is assumed that the tanker and the UAV share a data communication link. The UAV is equipped 
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with a digital camera along with MV algorithms acquiring the images of the tanker and the 
point-wise markers (points jP ) installed on the tanker itself. 

 
 Desired 

(meter) 
Limit 

(meter) 
δx ±0.40 ±2.10 

δy ±1.87 ±2.10 

δz ±0.90 ±2.56 

Tab. 1.1: 3DW dimension specification 
 
Actually the desired parameters δx, δy and δz are respected both from the GLSDC and LHM 

algorithms, the result are presented in Fig 1.6 -1.8 and in Tab. 1.2 where a mean and a standard 
deviation of the 3DW distance are shown for the two algorithms with a initial position of the 
UAV aircraft x0=[-50, -20, 30] within TRF. 
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Fig. 1.6: coordinate x of BR distance in MRF 
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Fig. 1.7:  coordinate y of BR distance in MRF 
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Fig. 1.8: coordinate z of BR distance in MRF 
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Mean value (η) Standard Deviation (σ) 

 GLSDC 
(meter) 

LHM 
(meter) 

GLSDC 
(meter) 

LHM 
(meter) 

δx 0.2581 0.2539 0.2160 0.2166 

δy 0.0153 0.0034 0.0943 0.0898 

δz 0.1100 0.0966 0.0949 0.0875 

Tab. 1.2: 3DW mean distance and std with GLSDC and LHM algorithms 
 
An evaluation of the tracking error is provided for the GLSDC and LHM algorithms in 

Fig.1.9 - 1.10 and in Tab.1.3, where we consider the tracking error as the difference between the 
actual position of the aircraft and the nearest point in the whole trajectory. The trajectory is 
considered to be simply a set of points, the time dependency is not considered for the tracking 
error calculation. An analysis of the tracking error shows that the aircraft follows the trajectory 
without major differences between the two algorithms.   

 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

x 
(m

et
er

s)

Tracking error with GLSDC algorithm

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

y 
(m

et
er

s)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

t (sec)

z 
(m

et
er

s)

 
Fig. 1.9: tracking error with GLSDC algorithm 
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Fig. 1.10: tracking error with LHM algorithm 

 
 

 GLSDC 
(meter) 

LHM 
(meter) 

x 1.3831*10-2 1.4180*10-2 

y 1.0154*10-2 0.9996*10-2 

z 1.2835*10-2 1.3674*10-2 

Tab. 1.3: mean of tracking error 
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2. THE TANKER    

The Tanker used in the AAR simulation is the Boeing KC-135R Stratotanker, this is among 
the most common aircraft used for this purpose. 

The KC-135 Stratotanker's primary mission is to refuel long-range aircraft. It also provides 
aerial refueling support to Air Force, Navy, Marine Corps and allied aircraft. Four turbojets, 
mounted under wings swept 35 degrees, power the KC-135. Nearly all internal fuel can be 
pumped through the tanker's flying boom, the KC-135's primary fuel transfer method. A special 
shuttlecock-shaped drogue, attached to and trailed behind the flying boom, is used to refuel 
aircraft fitted with probes. An operator stationed in the rear of the plane controls the boom. A 
cargo deck above the refueling system holds passengers or cargo. Depending on fuel storage 
configuration, the KC-135 can carry up to 37,350 kilograms of cargo.  

The KC-135 tanker fleet made an invaluable contribution to the success of Operation Desert 
Storm in the Persian Gulf, flying around-the-clock missions to maintain operability of allied 
planes. The KC-135s form the backbone of the Air Force tanker fleet, meeting the aerial 
refueling requirements of bomber, fighter, cargo and reconnaissance forces, as well as the needs 
of the Navy, Marines and allied nations.  

 

 
Fig. 2.1: Boeing KC-135R front view 

 
Because the KC-135A's original engines are of 1950s technology, they don't meet modern 

standards of increased fuel efficiency, reduced pollution and reduced noise levels. By installing 
new, CFM56 engines, performance is enhanced and fuel off-load capability is dramatically 
improved. In fact, the modification is so successful that two-re-engined KC-135Rs can do the 
work of three KC-135As. This improvement is a result of the KC-135R's lower fuel consumption 
and increased performance which allow the tanker to take off with more fuel and carry it farther. 
Since the airplane can carry more fuel and burn less of it during a mission, it's possible to 
transfer a much greater amount to receiver aircraft.  

The quieter, more fuel-efficient CFM56 engines are manufactured by CFM International, a 
company jointly owned by SNECMA of France, and General Electric of the U.S. The engine is 
an advanced-technology, high-bypass turbofan; the military designation is F108-CF-100. Related 
system improvements are incorporated to improve the modified airplane's ability to carry out its 
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mission, while decreasing overall maintenance and operation costs. The modified airplane is 
designated a KC-135R.  

Because the KC-135R uses as much as 27 percent less fuel than the KC-135A, the USAF 
can expect huge fuel savings by re-engining its fleet of KC-135s - about $1.7 billion over 15 
years of operation. That's enough to fill the gas tanks of some 7.7 million American cars each 
year for a decade and a half. Annual savings are estimated to be about 2.3 to 3.2 million barrels 
of fuel, about three to four percent of the USAF's annual fuel use. This equals the fuel needed to 
provide electrical power for 145 days to a city of 350,000 to 400,000.  

Re-engining with the CFM56 engines also results in significant noise reductions. Area 
surrounding airports exposed to decibel noise levels is reduced from over 240 square miles to 
about three square miles. This results in a reduction in the noise impacted area of more than 98 
percent. Maximum take-off decibel levels drop from 126 to 99 decibels. This meets the tough 
U.S. Federal Air Regulation standards -- a goal for commercial aircraft operated within the U.S. 
In addition, smoke and other emission pollutants are reduced dramatically.  

Boeing has delivered approximately 400 re-engined KC-135Rs and is under contract for 
about 432 re-engine kits. Each kit includes struts, nacelles, 12.2 miles of wiring, and other 
system modification components. Engines are purchased directly by the Air Force from CFM 
International.  

 

 
Fig. 2.2: Boeing KC-135R rear view 

 
Boeing has completed work on a program to re-engine all KC-135As in the Air Force 

Reserve and Air National Guard fleet - a total of 161 airplanes. In that modification program, 
which began in 1981, KC-135As were modified with refurbished JT3D engines taken from used, 
commercial 707 airliners. After modification, the airplanes are designated KC-135Es. This 
upgrade, like the KC-135R program, boosts performance while decreasing noise and smoke 
pollution levels. The modified KC-135E provides 30 percent more powerful engines with a noise 
reduction of 85 percent.  
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The program included acquisition of used 707s, procurement of purchased parts and 
equipment, basic engineering, some parts manufacturing, and refurbishment and installation of 
the engines, struts and cowling. Kits also included improved brakes, cockpit controls and 
instruments.  

 

2.1 Aircraft model 
The used model for the Tanker has the dynamic characteristic of the Boeing KC-135R, the 

aircraft has to assume for the refueling a steady state equivalent to a rectilinear trajectory, a 
constant Mach number of 0.65 and an altitude (H) of 6,000 m. This allows simplifying the 
Tanker dynamics as described in section 3.1. The lateral-directional motion is eliminated by the 
dynamics inasmuch the aircraft has just a longitudinal motion. The longitudinal motion has a 
stable dynamics and the Tanker does not need an internal stability control. 

 
Fig. 2.3: aircraft Tanker model 

 

2.2 Model of the boom 
The boom has been modeled using the scheme represented in Fig. 2.4. The boom is 

connected to the Tanker at point P and consists of two elements: the first element is connected to 
point P by two revolute joints, allowing vertical and lateral relative rotations (θ4 and θ5); the 
second element is connected to the first one by a prismatic joint that allows the extension d6.  
The dynamic model of the boom has been derived using the Lagrange method: 

( ) ( ), ,
, 1,...,

∂ ∂
− = =

∂ ∂ i
i i

L q q L q qd F i n
dt q q

 (2.1) 

where ( ) ( ) ( ), ,= −L q q T q q U q  is the Lagrangian (difference between the boom kinetic and 
potential energy), q is the vector of the Lagrangian coordinates and Fi are the lagrangian forces 
on the boom. 
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TANKER 
JOINT Fwx1Fwy1 

θ4 

θ5 

TANKER 
C.o.M. 

T 

P 

d1 
d2 d3 

d6

Fwz1

Fwx2 
Fwy2

Fwz2

1st element: lenght 6.1 m, mass 180 kg. 
2nd element: lenght 4.6 m, mass 140 kg. 

 
Fig. 2.4: model of the refueling boom  

 
To derive the Lagrangian, reference is made to an inertial frame, the ERF; in this case the 

inertial and gravitational forces are implicitly included in the left-hand side of (2.1) and Fi 
represent the active forces (wind and control forces). With respect to this frame, the boom has 
six degrees of freedom: the three translations d1, d2, and d3 of point P, the rotations θ4 and θ5, and 
the extension d6; therefore the Lagrangian coordinates can be chosen as 

[ ]1 2 3 4 5 6, , , , , Tq d d d dθ θ= . 
 

 
Fig. 2.5: Boom operator console 

 
Furthermore, the first three variables d1, d2, and d3 are expressed in function of the tanker 

position as: 

( ) ( )
( ) ( )
( ) ( ) ( )

E E E

E E E

E E E E

P t T t TP

P t T t TP

P t T t TP TP

ω

ω ω ω

= +

= + ×

= + × + ∧ ∧

 (2.2) 
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where ET is the position of the Tanker’s center of gravity, ω is the tanker angular velocity, 
E [ ]1 2 3, ,= TP d d d , ETP is the fixed length vector going from ET to EP. 

The kinetic and potential energies have be derived referring to the Denavit-Hartenberg 
representation of the system: 

 
 

 ai αi di θi 

1 0 
2
π  d1 0 

2 0 
2
π  d2 

2
π  

3 0 
2
π  d3 0 

4 0 
2
π

−  
0 4θ  

5 0 
2
π

−  
0 5θ  

6 0 
2
π  

d6 
2
π  

Tab. 2.1: Denavit-Hartenberg Boom parameter  
 
In the AAR simulation the boom is controlled using a joystick and there is a camera point of 

view that corresponds to the operator point of view during the refueling maneuver (Fig.2.6).  
 

Fig. 2.6: Boom operator view in a real and simulated refueling maneuver 
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2.3 Markers 
The markers are bright red lights placed in the Tanker, they are modeled as spheres with a 

radius of 10 cm each. In the AAR simulation the markers are 9 and they have a default 
configuration (Fig 2.7), but there is a possible for modify the number until a maximum of 10 and 
the position of the markers. In the next chapters we always refer to the default configuration and 
we will call the markers with the number that identifies it.  

   

Fig. 2.7: default position of the markers and identification  
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3. THE UNMANNED AERIAL VEHICLE  

Unmanned Aerial Vehicles (UAVs) have been referred to in many ways: RPVs (Remotely 
Piloted Vehicle), drones, robot planes, and pilot less aircraft are a few such names. Most often 
called UAVs, they are defined by the Department of Defense (DOD) as powered, aerial vehicles 
that do not carry a human operator, use aerodynamic forces to provide vehicle lift, can fly 
autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or 
non-lethal payload. Ballistic or semi-ballistic vehicles, cruise missiles, and artillery projectiles 
are not considered UAVs by the DOD definition. UAVs differ from RPVs in that some UAVs 
can fly autonomously. UAVs are either described as a single air vehicle (with associated 
surveillance sensors), or a UAV system, which usually consists of three to six air vehicles, a 
ground control station, and support equipment. UAVs are thought to offer two main advantages 
over manned aircraft: they are arguably cheaper to produce, and they eliminate the risk to a 
pilot’s life. UAVs protect the lives of pilots by performing the “3-D” missions. Furthermore, for 
those certain missions which require a very small aircraft, only a UAV can be deployed because 
there is no equivalent manned system small enough for the job. There are a number of reasons 
why UAVs have only recently been given a higher priority. Technology is now available that 
wasn’t available just a few years ago, included advanced video surveillance and sensing systems 
that can be mounted on UAVs. 

UAVs range from the size of an insect to that of a commercial airliner. DOD currently 
possesses five major UAVs: the Air Force’s Predator and Global Hawk, the Navy and Marine 
Corps’s Pioneer, and the Army’s Hunter and Shadow.  

 

Fig. 3.1: Predator (left) and Pioneer (right) UAVs   
 
The non-military use of UAVs is expected to increase in the future as technologies evolve 

that allow the safe, reliable flight of UAVs over populated areas. One emerging application is the 
use of less sophisticated UAVs as aerial camera platforms for the movie-making and 
entertainment industries. A similar market is growing rapidly in the television news reporting 
and coverage arenas also. As demand in these markets grows, aircraft such as the IUAS will 
become a more desirable aerial platform than less-capable hobbyist aircraft, as safety, reliability, 
ease-of-use, and rapid deployment become important priorities. Additional roles for UAVs in the 
near future will include homeland security and medical re-supply. The Coast Guard and Border 
Patrol, parts of the newly formed Department of Homeland Security, already have plans to 
deploy UAVs to watch coastal waters, patrol the nation’s borders, and protect major oil and gas 
pipelines. Congressional support exists for using UAVs for border security. During a Senate 
Armed Services Committee hearing on homeland defense, it was stated that although it would 
not be appropriate or constitutional for the military to patrol the border, domestic agencies using 
UAVs could carry out this mission.  On the medical side, UAVs such as the Army’s Shadow 
have been studied as delivery vehicles for critical medical supplies needed on the battlefield. Not 
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all of these new applications have been approved — UAV advocates state that in order for UAVs 
to take an active role in homeland security, Federal Aviation Administration (FAA) regulations 
concerning the use of UAVs will have to change. The Coast Guard will most likely take the lead 
in resolving UAV airspace issues with the FAA. The National Aeronautics and Space 
Administration (NASA) and the UAV industry will also be working with the FAA on the issue, 
as they are joining forces in an initiative to achieve routine UAV operations in the national 
airspace within a few years.  

3.1 Model of used UAV 
The aircraft model used in AAR simulation is an ICE-101 [33], the model has been developed 

using the conventional modeling approach outlined in [32]. The resulting UAV model is described by 
a 12 steady state model: 

, , , , , , , , , , ,E Ex V p q r x y Hα β ψ θ ϕ =    (3.1) 

where x is the state variable; V (m/s) is the component x of the velocity in body axis; α (rad) is 
the wind axis angle of attack; β (rad) is the wind axis sideslip angle; p, q, r (rad/sec) are the 
components  (x, y, z) of the angular velocity in body axis (also known as roll, pitch and yaw 
rates); ψ, θ, φ (rad) are the yaw, pitch and roll Euler angles; Ex, Ey, H  are the position in Earth 
fixed Reference Frame (ERF). 
The angle of attack α and the sideslip angle β are defined as: 

1 1tan     and    sinW U
V V

α β− −
   
   = =
   
   

 (3.2) 

where [ ], ,V V U W=  is the linear velocity in body axis. 
 

 
Fig. 3.2: angle of attack α and sideslip angle β definition  

 
The input vector u is:  

_ _ _ _ _ _ _ _, , , , , , , , ,Throttle AMT R AMT L TEF R TEF L LEF R LEF L PF SSD R SSD Lu δ δ δ δ δ δ δ δ δ δ =    (3.3) 

where AMT is All Moving Tips, TEF is Trailing Edge Flaps, LEF is Leading Edge Flaps, PF is 
Pitch Flaps, SSD is Spoiler Slot Deflector, the position of the control surface are shown in Fig. 
3.3.   
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Fig. 3.3: Position of control surface 

 
The dynamic UAV model can be described by the differential equation  

( ) ( , , )x t f x u t=  (3.4) 
which can be linearized in a trim point such as: 

0 0( ) ( , , ) 0x t f x u t= =  (3.5) 

in the above condition, the UAV has acceleration equal to zero and module of the vector velocity 
constant. The equivalent state space model: 

x Ax Bu= +  (3.6) 
is an LTI system with 12 state variable, the analysis of (3.6) shown that there is a substantial 
decoupling between the longitudinal symmetric motion (translation x, translation z and rotation 
y) and the lateral-directional asymmetric motion (translation y, rotation x and rotation z).  

The longitudinal motion is characterized by 2 modes, the first one with high frequency (short 
period) dominated by negligible variation in velocity, the second one with low frequency 
(phugoid) characterized by small variation of incidence and slow variation on the pitch angles: 

1 1, 1,

2 2, 2,

   (  )
  ( )

R I

R I

j short period
j phugoid

λ λ λ
λ λ λ
= ±

= ±
 (3.7) 

The lateral-directional motion is characterized by 4 real modes, of which 2 are unstable:   

3

4

5

6

0
0
0
0

λ
λ
λ
λ

>
<
<
>

 (3.8) 

for this reason the model results with very unstable lateral dynamics. 
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3.2 Sensors 
The UAVs need more sensors of a normal airplane. Normally the precision in the sensors 

play a major role in the performance of a system, in a UAV this is even more important since 
there is no human intervention during the flight phases.  

It is assumed that the UAV has a GPS system, an Inertial Navigation Unit (INU) with gyros 
and accelerometers and a Machine Vision (MV) system.  

The INU provides ψ, θ, φ (rad), and p, q, r (rad/sec),with some added noise. In this effort, a 
Band-limited White Gaussian Noise (BWGN) with a power of (np) = 1*10-9 and sample time T 
=0.05 sec is assumed for the euler angles, and an BWGN with a np = 1*10-8 and T=0.05 sec, is 
assumed for  p, q, and r . The measurements of the velocity angles α and β (rad) have a np = 
1*10-9 and T=0.05 sec, and the velocity V (m/s) has a np = 1*10-7 and T=0.05 sec. The 
accelerations and the other measurements do not have any added WGN. 

The GPS system provides Ex, Ey, H , for which a WGN with np = 1*10-3 and T=0.1 sec is 
assumed. Furthermore, the GPS has a unit delay to better approximate the real behavior of this 
system. The simulation of these sensors is shown in Fig 3.4. 

A BWGN is a simulation of White Gaussian Noise with the high of the Power Spectral 
Density (PSD) equal to np, the correlation time is equal to the sample time T and the covariance 

is pn
c

T
= . 

 
Fig. 3.4: Sensor block scheme 

 
The MV system can be consider a smart sensor, that provides the distance between camera 

and observed point (Tanker). Within this effort, the MV system requires that the tanker has some 
bright markers, placed in a known positions. It is nevertheless possible to use feature extraction 
algorithms that could detect tanker corners in known positions, thereby avoiding the pacement of 
bright markers on the tanker. The MV system is described in detail in the following chapter of 
this document. 
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The availability of a communication channel between UAV and Tanker is crucial, since the 
UAV system has to know the position and orientation of the Tanker in order for a GPS-only 
based system to work correctly. It is important to notice that the evaluation of the distance 
requires not only the measurements coming from the GPS and MV but also the measurements of 
the attitude angles of the UAV and the Tanker. Furthermore, as outlined below, the AAR control 
laws require the measurement of all the UAV states. The measurement process was modeled by 
corrupting the signals with an additive zero mean random noise with a typical STD. 
Transmission and processing delay have been considered in the AAR simulation. As for the 
transmission delay, 55 data bytes have to be transmitted: 13 floating point numbers (12 state 
variables and the time, 4 byte/number), plus header and checksum (3 bytes). Assuming a bit rate 
of 19.6 kbits/s, the transmission time is about 55x8/19600 ≈ 0.023 ms. As for the processing 
time, the algorithm runs in about 0.02 s on the Simulink environment (no accelerator) on a 
Pentium 4 2.6GHz Windows 2000 Operating System. Therefore the estimation of 0.05 s for the 
overall delay was assumed. 

Thanks to these sensors we have been able to set a method of fusion between GPS and MV 
systems. The basic idea is that the measurement is entirely provided by the GPS (dGPS) when the 
UAV has a distance d from the Tanker greater or equal to d1 and it is entirely provided by the 
MV (dMV) if the distance UAV - Tanker is lesser or equal to d2. If  1 2d d d< <  we have a linear 
interpolation between the distance provided by the MV and that provided by the GPS, with the 
rule: 

2 2

1 2 1 2

1GPS MV
d d d dd d
d d d d

   − −
+ −   − −   

 (3.9) 

the fusion system is presented in Fig 3.5. 
  

 
Fig. 3.5: fusion between GPS and MV systems 
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In more detail, the data provided by the GPS and INU is used to calculate the homogeneous 
transformation matrix C

TT , which is the matrix that transforms a vector with origin in TRF in a 
vector with the origin in CRF; a calculation method for this matrix is presented in Fig 3.6. C

TT  is 
also the output of the MV system, as can be seen in Fig 3.7, the other output of the MV is the 
number of markers (US_MK) used for the current estimation. At this point we can join the two 
measurements with the fusion method previously described. The MV measurement is valid only 
is the current measurement is provided with at least 5 markers. Therefore, the fusion is 
performed if the MV has a number greater or equal to 5 in US_MK and only for the translation 
vector (x, y, z) of the matrix C

TT . The Euler angles provided by the MV tend to be more noisy 
than the ones provided by the MV system, furthermore, the latter are in principle always 
available independently on external conditions such as the number of detected markers.  We 
choose, for that reason, to use the angles that come from INU in the feedback loop.  

The output of the fusion block is fed back as input of the MV block because this is deemed 
to be the “best estimation” for the value of C

TT  at the next sampling time. 

 
Fig. 3.6: calculus of C

TT  
 

 
Fig. 3.7: UAV software scheme  
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3.3 Control 
The controller has to be able to maintain the aircraft on a defined trajectory, that is the UAV 

controller has to preserve the internal stability (the model is dynamically unstable in the lateral-
directional motion), has to follow a docking path, and finally keep the distance between 
Receptacle point (R) on the UAV and Box Point (B) on the Tanker as low as possible. This kind 
of minimization problem is typical in the control theory and can be resolved using a Linear 
Quadratic Regulator (LQR) controller. The LQR control tries to minimize a performance cost 
function J which depends quadratically on the output vector Y and the input U. 

In this problem we can define an augmented state vector: 

, , , , , , , , , , , , , ,AUG x y z x y zX V p q r e e e e e eα β ψ θ ϕ =  ∫ ∫ ∫  (3.10) 

where ex, ey and ez are the x, y and z distance between the point R and the point B and the 
reference trajectory. The input vector U is the same defined in (3.3). At this point we can define 
a performance cost function: 

( )
0

T TJ Y QY U RU dt
∞

= +∫  (3.11) 

where Q and R are diagonal matrices that establish the performance for each used variable, the Y 
variable is: 

, , , , ,x y z x y zY e e e e e e =  ∫ ∫ ∫  (3.12) 

In the augmented state vector XAUG there is the integral of the distances in order to guarantee 
that the distances converge to zero. 

The controller uses the nine state variables of the UAV system, the vector BR expressed in 
Tanker frame (TRF), and the pitch and roll angles of the Tanker (Fig 3.7) to provide one vector 
cmd of 11 elements. It can be noticed that (Fig 3.8) the vector BRt is rotated of the angles pitch 
and roll of the Tanker to yeald the vector BR in a reference frame called Psi Frame (MRF). MRF 
has the same origin of ERF but is oriented on the direction of the Tanker; this allows to control 
the aircraft as if it was always directed toward north in ERF. The nine state variables are 
subtracted to the trim point x0. The reference trajectory, generated as a cubic path in three 
dimensions, is subtracted to the BR vector in MRF. Once the integrals of ex, ey and ez are 
available, we can find the input vector U for the state space model using the formula: 

LQR AUGU K X=  (3.13) 

where KLQR represent the MIMO static controller with 15 inputs and 11 outputs. 
The variable cmd is the sum of U and the trim input constant. In this way non-linear systems 

are locally controlled through a simple linear controller in a trim point.      
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Fig. 3.8: Controller scheme  

3.4 Atmospheric turbulence and wake effect 
The atmospheric turbulence acting on the probe system and on both Tanker and the UAV 

aircraft has been modeled using the Dryden wind turbulence model [34]. A ‘light’ turbulence 
was selected since aerial refueling is typically performed at high altitudes in calm air [34]. The 
wake effects of the Tanker on the UAV are more significant than the atmospheric turbulence and 
have been modeled through the interpolation from a large amount of experimental data [35][36] 
as perturbations to the aerodynamic coefficients , , , , ,D L m l n YC C C C C C  for the UAV aerodynamic 
forces and moments. These coefficients represents: Drag and Lift coefficient, rolling, pitching 
and yawing moment coefficient and Side Force coefficient, all of them are subject to variations 
due to formation flight. 

 

 
Fig. 3.9: AAR test to search the coefficient increment  
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3.5 Actuators dynamics 
To have a more realistic implementation of the aircraft modeling of the actuators has been 

added. Every actuator of the input vector (3.3) has a saturation and a rate limiter (Fig, 3.10) that 
is, an upper and lower limit and a velocity limit. The input vector is also delayed, and every 
actuator is filtered, the filters are faster for the control surfaces than for the throttle command. 

 
 

 
Fig. 3.10: actuators dynamics 
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4. THE MACHINE VISION SYSTEM  

Active sensors based on structured lighting are now compact and fast enough to be used in 
visual servoing [27][29]. In addition to the specific class of sensors and markers, the 
performance of a Machine Vision (MV) system depends on the performance of the marker 
detection, labeling and pose estimation methods. In a MV system is very important that sampling 
time is proportionate to the relative dynamics of the airplanes. Different approaches for the 
marker detection/labeling are outlined in Refs [2] [30] [31]. Within this effort the attention is 
focused on the labeling algorithm for the detected markers and the pose estimation problem [4] 
with a variable or fixed number of visible markers. Thus, for our purposes it reasonable to 
describe the markers as points in space and to model the image formation process by prospective 
projections [29] , this method is also known as “pin hole” model [27] and is detailed later. 

4.1 The pin hole model 
The pin hole model is the simplest geometric model for image construction. Let P be a scene 

point with coordinate (X, Y, Z), and let P’ the projection on image plane, with coordinates 
(X’,Y’,Z’). If f is the distance between the hole O and the image plane (focal length), for the 
similarity of the triangle we have: 

' '     and   Y Y Z Z
f X f X

− = − =  (4.1) 

therefore 

'   ,    '  ,     'Y ZY f Z f X f
X X

= − = − = −  (4.2) 

 
Fig. 4.1: geometry of image construction in pin hole camera 

 
Note that the image is inverted in comparison to the scene both right-left that up-down, in 

the (4.2) there is minus sign. These equations define the image process formation that is known 
as perspective projection. Subsequently we call ( , )j ju v  the perspective projection of the 
point ( , , )j j j jP X Y Z= . 
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4.2 The Machine Vision block 
In the AAR simulation considered there is a block that manages the classical MV function, 

this block correspond to a smart sensor that provides the measurement with a sampling time of 
0.1 sec. We can see in Fig 4.2 the composition of this block. 

 
Fig. 4.2: MV scheme 

 
The MV has one input port ( C

TT ) that is the homogeneous transformation matrix (4 x 4) 
from Tanker Reference Frame to Camera Reference Frame, which is composed as follows: 

|
|
|

0 0 0 | 1

C T
T

C
T

R TC
T

 
 
 
 =
 − − − − − 
  

 (4.3) 

 
where C

TR  is the rotation matrix that changes the reference frame from Tanker frame to 
Camera Reference Frame, and TTC  is the translation vector (x, y, z) that has the origin in the 
Tanker Center of Gravity ( TKCG )and the end in the Camera origin. The matrix C

TT  is used to 
transform a vector expressed within TRF in a corresponding vector in CRF. This matrix contains 
all the information necessary to express the relationship among two different reference system, 
which in our case are the Tanker frame and Camera frame. 

The MV block has two outputs, the first one (nUsed) is the number of used markers in the 
pose estimation problem, and the second one ( C

TT ) is the homogeneous transformation matrix 
from Tanker to Camera composed as previously shown and provided by the Pose estimation 
Algorithm. 

4.2.1 Camera and Filter 
The Camera and Filter is a Matlab® S-Function that captures the image that Virtual Reality 

Toolbox® (VRT®) shows on the screen. The image has dimensions (320 x 200), and after the 
capture this is mapped into the memory as a matrix (320 x 200 x 3) where the third dimension 
represented the intensities of the color red, green and blue. We know that the markers are red, for 
this reason we convert only the sub-matrix with the red intensity, using an appropriate threshold 
to transform the sub-matrix into a black and white (BW) image. Using standard morphological 
filtering techniques, we search into the BW image all the connected objects and extract the 
centroid coordinate for each connected object. The output of the function is a vector with all the 
coordinates ( ' , ' )j ju v  of all connected objects found, often, these object are simply the markers, 
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but sometimes, some points that are also connected objects but are not markers, show up in the 
output. 

 
Fig. 4.3: image captured from VRT ® 

 

4.2.2 Scale 
The scale function transforms the 2D coordinates of the detected markers from camera plane 

( ' , ' )j ju v express in pixel into Camera Reference Frame ( , )j ju v express in meters, known the 
vertical and horizontal dimension of one pixel and the dimension of the screen  

   

 
Fig. 4.4: the scale function 

 

4.2.3 Rotation markers in camera frame 
The block RotMarkCamFrame in Fig 4.2 is open and shown in Fig 4.5. This block provides 

an estimation of the markers position in 3D Camera Reference Frame (CRF). If we pre-multiply 
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the matrix T M  of the markers points expressed within the Tanker Reference Frame (TRF), by 
the rotation matrix C

TT , we obtain the actual position of the markers within CRF CM , the last 
operation consists in bringing the matrix in classical 3D coordinates. 

 
Fig. 4.5: rotation markers in camera frame scheme 

 

4.2.4 The Labeling function 
In a MV system the labeling of the detected markers is one of most important and 

complicated parts. Initially, the set of points [ , ]j j jp u v≡  from the camera measurements are not 
related to the actual markers on the tanker. The problem can be formalized in terms of matching 
the set of points 1 2( , ,..., )mP p p p=  to the set of points 1 2

ˆ ˆ ˆ ˆ( , ,..., )nP p p p= where ˆ ˆ ˆ[ , ]j j jp u v≡ .  In 

this effort the set P  represents the set of the m ‘to be matched’ detected markers extracted by the 
camera measurements, while the set P̂ represents the set of the n (n=9) “nominal” markers 
estimated.  Since the data sets P  and P̂  represents the 2D projections of the same markers at 
the same time instant on the same plane (as shown in Fig. 4.6) a high degree of correlation 
between the two sets is expected.  In the ideal case corresponding points would be exactly 
superimposed, resulting in a trivial matching process.  However, in the presence of different 
sources of system and measurement noise, a matching problem has to be defined and solved. 
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Fig. 4.6: Matching between the labeled set of points P̂ and the unlabelled set P . 
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A detailed technical literature describes a number of robust matching techniques for point 
sets [45]. Usually, the degree of similarity between two data sets is defined in terms of a cost 
function or a distance function derived on general principles as geometric proximity, rigidity, 
and exclusion [46].  The best matching is then evaluated as the result of on optimization process 
exploring the space of the potential solutions. Often, the problem can be set as a classical 
assignment problem, and therefore solved using standard polynomial Network Flow algorithms. 
A definition of the point-matching problem as an assignment problem, as well as an extensive 
analysis of different labeling algorithms, in a different, still to be published, study [47]. In this 
effort, the author has chosen to move beyond the simple assignment problem paradigm, since it 
was deemed too restrictive to correctly represent the point matching problem in real world 
situations. For example, it often happens that, due to misleading visual clues, points that are not 
markers are interpreted as such from the image processing algorithms, leading to situations 
where the set P  contains more elements than P̂ . In these cases, an algorithm that just tries to 
minimize a linear function of the involved distances (thereby solving a simple LP assignment 
problem) usually performs poorly. Conversely, an algorithm that instead has the ability to 
deliberately ignore some markers by considering them “erroneous” (thereby solving a problem 
that cannot be cast as a simple assignment one) could provide better performance. 

 The developed labeling function has two inputs: the first one is an estimation of the markers 
position in the 3D CRF (the output of the block analyzed in section 4.2.3), the second one is the 
vector of detected markers provided by the camera and scaled (the output of the block analyzed 
in section 4.2.2).  

The labeling function has two outputs: the first one, called Simulated Vision (SV), provides 
a vector [ ]1 1, , ......, ,n nu v u v , which is simply the projection of the estimated markers 
position in the 2D CRF using the rule (4.2) of the pin hole camera. The second output, called 
Real Vision (RV), provides the vector for which the labeling function has been really created, 
that is an ordered vector of detected markers. 

The labeling function, therefore, has the purpose to detect the points that correspond to real 
markers and arrange the output vector so that it has the format [ ]1 1, , ......, ,n nu v u v . If the 
kth marker is not detectable the overflow value 100 is used instead in the position 2* k and 
2*k+1.  

Now we explain how the function works: let M denote the set of the n physical markers, and 
let M  denote the set of detected markers (not to exceed m). The labeling function creates a 
matrix Err of dimension n-by-m, whose coefficients are all the Euclidian distance between the 
markers M and M . Three vectors, MinR , MinC and Index  - with dimensions n, m and m 
respectively - are also created, as shown in Fig. 4.6. The minimum element of the column is 
stored in the row vector MinC  while the minimum element of the row is stored in the column 
vector MinR . The index of the row in which the function finds the minimum is stored in the row 
vector Index . The position of one detected marker M is valid if the position j of [ ]MinC j is 

equal to [ ]MinR Index j   , that is the position of MinR indicated by the vector Index  in the 
position j.  Using a C syntax the validity condition is given by: 

[ ] [ ]MinC j MinR Index j ==    (4.4) 

This method works with the hypothesis that the MV system has frequency of 10 Hz, and the 
aircrafts have low relative dynamics, this two assumptions essentially imply that the positions of 
the airplanes does not change in meaningful way between the current cycle and the following 
one. This function, which has a computational complexity of ( )2O n , avoids the typical errors 
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associated with a labeling function that simply assigns the detected markers M  to the nearest 
markers M . 

 
Fig. 4.7: labeling method for detected markers 

  
For example, typical matching errors may occur if one detected marker is confused with 2 

close markers, as shown in Fig. 4.7, where the detected markers p and q are obviously the same 
marker but, due a filtering error, two distinct markers are detected instead. At this point, a simple 
labeling function pairing up the nearest markers would assign ‘p’ to ‘a’ and ‘b’ to ‘q’, leading to 
an incorrect pose estimation. Instead, the developed labeling function avoids the incorrect 
matching; in fact, while it still assigns ‘p’ to ‘a’, the fact that ‘q’ is closer to the point ‘a’ - which 
has already been assigned - than to the point ‘b’ leads to the fact that the condition in (4.4) is 
false.  In turn this leads to discarding the point ‘q’ so that at the end only the points that are most 
relevant for pose estimation purposes are used. 

        

 
Fig. 4.8: example of avoided error in labeling function 

 

4.2.5 Simulated Vision and Real Vision 
Into the MV diagram there is a switch that allows the user to choose between Simulated 

Vision (SV) and Real Vision (RV), the position of this switch determine which data are provided 
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to the pose estimation algorithm. If we choose the SV, we decide that the pose estimation will be 
made with the 2D projection of the markers obtained with the (4.2) from the pinhole camera 
model. The data in SV mode are in every moment complete of each marker position, they are 
smooth and regular. The SV mode has been created for testing the pose estimation algorithm and 
uses the MV system without being bound to the performance of the labeling function. The 
goodness of the pose estimation is clearly dependent by the input of the MV block, in theory we 
should have that the output matrix C

TT  results equal to the input matrix C
TT . The SV allows, also, 

using the MV from great distances even if it reduces the MV to a fictitious system. 
The Real Vision mode allows one to use the data that come from the camera, this data are 

certainly noisy and often incomplete since often some markers are not detectable, and sometimes 
they are not good for the pose estimation algorithm (we will analyze this case in chapter 7), the 
data depend also by the camera, the filter, the labeling algorithm (see in 4.2.4 the case where the 
labeling function discard some marker). The RV mode allows the MV system to work with data 
similar to real-world ones, which is the main reason for which this mode has been developed. 

 

 
Fig. 4.9: block diagram of Simulated Vision and Real Vision 

 

 
Fig. 4.10: RV (left) and SV (right) detected markers at the time t = 2.1 sec  
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4.2.6 The Pose estimation algorithm 
The pose estimation algorithm block is the core of MV system, this block has one input that 

is the ordered vector of the coordinates [ ]1 1, , ......, ,n nu v u v of the markers in the 2D CRF, 
which has been ordered by the labeling algorithm. If the kth markers is not detectable the 
overflow value 100 is placed in the position 2* k and 2*k+1. The analyzed algorithms are two, 
the Gaussian Least Squares Differential Correction (GLSDC) [3] [27] and the Lu, Hager and 
Mjolsness algorithm (LHM) [4]. The GLSDC resolves the pose estimation problem finding the 
first order approximation for [ ], ,   1,..,k ku v k n=  as a function of the 3D coordinates of the 
markers in camera frame, and solving the least square problem for the search of the differential 
correction using the iterative Gauss-Newton method. Advantages of this algorithms are its 
simplicity and speed, and the fact that it can provide the estimation within a fixed number of 
cycles. The main disadvantages are instead related to the fact that the first order approximation 
sometimes is not accurate enough, and can lead the algorithm to divergence. This in turn implies 
that the GLSDC is not robust with respect to errors in the markers position or initial conditions 
(see chapter 7). The LHM algorithms instead calculates the pose estimation minimizing an error 
metric based on collinearity in object space, this algorithm is iterative and computes the 
orthogonal rotation matrix. The iterative calculus without a fixed number of steps can be 
computationally more intensive than the GLSDC, especially if the input data are not smooth or 
the airplane considerably changes its position between the precedent and the current cycle of 
integration (0.1 sec). The LHM provides, on the other hand, high robustness and proved global 
convergence. The analysis of these algorithms and their performance is provided in the next 3 
chapters of this effort. 
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Fig. 4.11: LHM pose estimation output in RV case    
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The output of a pose estimation algorithm is the vector (x, y, z, yaw, pitch, roll, nUsedMark) 
that represents respectively the translation vector between TRF and CRF, the relative Euler 
angles between TRF and CRF and finally the number of markers used to provide the pose 
estimation. If we connect the first 6 parameter to the “S function3” (see Fig 4.2) we obtain an 
estimation of the homogeneous transformation matrix C

TT .  
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5. THE GLSDC 

Pose estimation is an essential step in many machine vision problems involving the 
estimation of an object’s position and orientation relative to a model reference frame or relative 
to the object position and orientation at a previous time using a camera sensor or a range sensor. 
There are four pose estimation problems with point data. Each arises from two views taken of the 
same object that can be thought of as having undergone an unknown rigid body motion from the 
first view to the second view. In model-based vision, one “view” provides three-dimensional (3-
D) data relative to the model reference frame. The other is the 2-D perspective projection. In 
motion estimation and structure from motion problems there is a rigid body motion of the sensor, 
the object or both. Both views are 2-D perspective projections. In any case, in each problem 
corresponding point pairs from the two views are obtained from some kind of matching 
procedure. The pose estimation problem with corresponding point data begins with such a 
corresponding point data set. Its solution is a procedure that uses the corresponding point data set 
to estimate the translation and rotation that define the relationship between the two coordinate 
frames. 

In the simplest pose estimation problem, the data sets consist of two-dimensional data points 
in a two-dimensional space. Such data sets arise naturally when flat 3-D objects are viewed 
under perspective projection with the look angle being the same as the surface normal of the 
object viewed. In the next more difficult pose estimation problem, the data sets consist of three-
dimensional data points in a three-dimensional space. Such data sets arise naturally when 3-D 
objects are viewed with a range finder sensor. In the most difficult pose estimation problems, one 
data set consists of the 2-D perspective projection of 3-D points and the other data set consists of 
either a 3-D point data set, in which case it is known as absolute orientation problem, or the other 
data set consists of a second 2-D perspective projection view of the same 3-D point data set, in 
which case, it is known as the relative orientation problem. The latter case occurs with time-
varying imagery, uncontrolled stereo or multicamera imagery. 

We are interested to the 2-D perspective projection of 3-D points problem but for the 
solution we need to know the solution of the 3-D – 3-D estimation problem. 

5.1 3-D – 3-D estimation 
Let y1,..... ,yN  be N points in Euclidean 3-space. Let R be a rotation matrix and t be a 

translation vector. Let xl,….. xN be the points in Euclidean 3-space that match y1,..... ,yN , each xN  
is the same rigid body motion of yN. Hence each yN is obtained as a rotation of xN , plus a 
translation plus noise. 

nnn tRxy η++=  (5.1) 

The 3-D-3-D pose estimation problem is to infer R and t from xl,….. xN  and y1,..... ,yN. 
To determine R and t we set up a constrained least-squares problem. We will minimize 

∑
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N

n
nnn tRxyw

1

2)(  (5.2) 

subject to the constraint that R is a rotation matrix, that is, Rt=R-1. To be able to express 
these constraints using Lagrangian multipliers we let 
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where each ri is a 3x1 vector. 
The constraint Rt=R-1, then amounts to the six constant equation 
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The least-squares problem with constraints given by (5.4) can be written as 
minimizing 2ε where 

( ) ( )

                     

2221

3

2

1

3

2

1

3

2

1

1

3

1
326315214

3

1

22
















=
















=
















=

+++−+−−= ∑ ∑∑
= ==

t
t
t

t
y
y
y

y
x
x
x

x

rrrrrrrrtxryw

n

n

n

n

n

n

n

n

n

N

n k

ttt
k

t
kk

k
kn

t
knkn λλλλε

 (5.5) 

Taking the partial derivate of 2ε  with respect to tn, there results  
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Setting these partial to zero results in  
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By rearranging we obtain 
xRyt −=  (5.8) 
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Thus once R is known, t is quickly determined from (5.8). Substituting yRx −  for t in the 
definition of  2ε , there results 

( ) ( )∑ ∑∑
= ==

+++−+−−−=
N

n k

ttt
k

t
kk

k
n

t
knkn rrrrrrrrxxryyw

1

3

1
326315214

3

1

22 2221)( λλλλε  (5.10) 

where  
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Now we take partial derivatives of 2ε  with respect to the components of each yn. To write 
things more compactly, by nr∂∂ 2ε we mean a 3 x 1 vector whose components are the partial 
derivatives of 2ε  with respect to each of the components of rn. Then 
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Setting these partial derivatives to zero and rearranging we obtain 
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and  
[ ]321 bbbB =  (5.19) 

where 
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Then (5.15), (5.16) and (5.17) can be simply rewritten as 
BRAR tt =Λ+  (5.21) 

Multiplying both sides of (5.21) on the left by R we have 
RBRARt =Λ+  (5.22) 

Since A=At, (RARt)t=RARt. Since both RARt and Λ  are symmetric, the left-hand side must be 
symmetric. Hence the right-side is also symmetric. This means  

( )tRBRB =  (5.23) 
The solution for R now comes quickly. Let the singular value decomposition of B be 

 UDVB =  (5.24) 
where U and V are orthonormal and D is diagonal. Then 

( ) ttttt RDUVRUDVRUDV ==  (5.25) 
By observation, a solution for R is immediately obtained as  

 ttUVR =  (5.26) 
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Solutions to this problem can be found in the photogrammetry literature beginning with 
Thompson [17], Schut [18], Tienstra [19], and Pope [20] . Blais [21] gives a solution to the 
problem in the case where there may be a scale factor or magnification different than 1. Sansò 
[22] gives a solution to the problem using quaternions. Arun et al. [23] and Haralick et al. [24] 
have discussed the singular value decomposition approach to the problem. 

5.2 2-D perspective projection – 3-D pose estimation 
Let y1,......,yN  be the observed 3-D model points in Euclidean 3-space. Let R be a rotation 

matrix and t be a translation vector. Let ( un1, un2), n =1,..., N be the corresponding 2-D 
perspective projection of the 3-D points. Then the relationship between the 3-D model points and 
the 2-D perspective projection points is given by 
















=

=

+
+

=

+
+

=

3

2

1

321

33

22
2

33

11
1

),,(

r
r
r

R

tttt

tyr
tyr

fu

tyr
tyr

fu

t

n

n
n

n

n
n

 (5.27) 

where f , the focal length, is the distance of the image plane in front of the origin that is the 
center of perspectivity. In the 3-D coordinate system of the camera, the perspective projections 
are given by 
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where  2211   and nnnn fvufvu == . 
The problem of pose estimation is to determine the unknown rotation matrix R and the 

translation vector t given the 3-D model points and the corresponding 2-D perspective projection 
points on the image plane. This problem is known as the exterior orientation problem in the 
photogrammetry literature. The dissertation by Szczepanski [14] surveys nearly 80 different 
solutions beginning with one given by Schrieber of Karlsruhe in the year 1879. The first robust 
solution in the computer vision literature was Fischler and Bolles [15]. Wrobel and Klemm [16] 
discuss the fact that there are configurations of points for which the solution is unstable. 

5.2.1 Iterative least-square solution 
This section describes iterative procedures for determining a least-squares solution for R and 

t . In the following subsections we use the superscript or subscript k to denote the values in the 
kth iteration step. Let 
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be the rotated and translated point of yn. Let dn be the estimated depth of each point xn relative to 
the camera coordinate system. 
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• Method 1: One iterative procedure for determining a least-square solution for R and t is 
the following. 

1. Choose initial reasonable values for the depth 0
nd  of each point. The initial values 

could, for example, be the same constant for each point, the constant representing 
an initial guess of how far the object is from the perspective center. 

2. Iterate. Suppose the depth values Nnd k
n ,...,1  , =  are given. Define the depth 

values for the ( k +l)th iteration by: 
a) Find the rotation matrix Rk and the translation vector tk that minimizes 
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where the {wn | n = 1,.…,N} are nonnegative weights reflecting the 
goodness of the observations. Rk and tk constitute the solution to the 3-D-
3-D pose estimation problem. 
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• Method 2: Replace the step 2b) of method 1 with step 1 of method 2. 
1. Define  
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It can be shown that 22
1 kk εε ≤+  and  
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Consider the terms in the bracket as a function of 1+k
nd . The function reaches a minimum when  
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The resulting value of the terms in the bracket at the minimum is   
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This value cannot be positive. Since 02 >nn vw , when 
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Each term in the summation is not positive and from this we can infer 
22

1 kk εε ≤+  (5.40) 

5.2.2 Least-squares adjustment by linearization 
Let ψθφ ,, be the three angles that define the rotation matrix R such that 
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As there always exists random errors in the measurement of the image coordinates, let  
,....,Nn,ivuu ninini 1     .21      ,0 ==+=  (5.42) 
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where ( )0
2

0
1, nn uu  are the measured image points and ( )21 , nn vv are the correction needed to 

account for the random error in the measured coordinates. Similarly, let    
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where   ,,,,, 0
3

0
2

0
1

000 tttψθφ are some approximation, and  ,,,,, 321 ttt ∆∆∆∆∆∆ ψθφ are their 
corresponding correction. We assume that the correction ∆’s are small and the collinearity 
equations are linear over the small intervals between the true values of these parameters and their 
corresponding approximation. 
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These equation can be linearized by Newton’s first order approximation as follows: 
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where 
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for i = 1,2, where the superscript 0 implies that the function values are computed with the 
approximations (   ,,,,, 0

3
0
2

0
1

000 tttψθφ ). Taking Fnl = Fn2 = 0, the linearized equation can be 
expressed as the matrix system 
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or simply  
 vFB −=∆  (5.48) 

This equation can be solved using the singular value decomposition method. The computed 
corrections ( )  ,,,,, t

321 ttt ∆∆∆∆∆∆=∆ ψθφ  from one iteration are used to update the parameters 
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( )t0
3

0
2

0
1

000  ,,,,, tttψθφ=Λ and then these updated parameters are used as approximations in the 
next iteration. The whole iteration process is repeated until the corrections become negligibly 
small. 

5.3 The GLSDC implementation  
The evaluation of the rigid transformation from camera to tanker, is a typical pose estimation 

problem [3]. In this effort, the information available for solving the problem is given in the form 
of a set of point correspondences each composed of a 3-D reference point (marker) expressed in 
object coordinates (Tanker Reference Frame TRF) and its 2-D projection expressed in image 
( )vu,  coordinates (Camera Reference Frame CRF). For an arbitrary number of points, this 
approach to pose estimation is based upon the application the Gauss-Newton method [3], [25], 
[26], [4] to the minimization of a nonlinear cost function typically solved iteratively using. The 
Gaussian Least Squares Differential Correction (GLSDC) algorithm has been implemented in 
[27]. This algorithm exhibited convergence and accuracy even in presence of quantization noise 
produced by the CCD matrix. The nonlinear 3-D to 2-D correspondence in terms of the unknown 
vector [ , , , , , ]C C C C C C t

t t t t t tX x y z ψ θ ϕ=  and known vectors ( )
T

jP , where ( )
T

jP  are the marker 
positions in TRF, can be written as: 

( )
( )

( )

( )

, ,

, ,

T
u juj

T
vj v j

g f X Pg
g g f X P

    =      
 (5.49) 

with mj ,....,1= . By grouping the equation (5.49) for all m markers, the following 1 x 2m vector 
of nonlinear relationships is generated 

[ ]vmumvu ggggG ,,.....,, 11=  (5.50) 

Next, the MV estimation error at sampling time k is defined as: 

( )( )
ˆ( ) ( ) , ( ), ( )T

meas jG k G k G f X k P k∆ = −  (5.51) 

where )(kGmeas  is a vector of the measured coordinates of the markers on the image plane and 
ˆ ( )X k is the current estimation of vector X. In each time frame the starting estimation of X is 

iteratively refined by the GLSDC algorithm by repeating the following steps for a number of 
iterations (with index i): 

( ) ( ) ( )t
i i k iR k A k W A k=  (5.52) 

1ˆ ( ) ( ) ( ) ( )t
i i i k iX k R k A k W G k−∆ = ∆  (5.53) 

1
ˆ ˆ ˆ( ) ( ) ( )i i iX k X k X k+ = + ∆  (5.54) 

In (5.52) the matrix A is a 2m x 6 Jacobian matrix 

)(ˆ)(
)(

)(
kXX

kX
kG

kA

i

i
i

=
∂
∂

=  (5.55) 

and W is the 2m x 2m covariance matrix ( )vmumvudiagW σσσσ 1,1,....,1,1 11=  of the 

estimation error. The initial guess )(ˆ
0 kX at time step k is given by the final estimation at time 

step k-1. 
The basic algorithm (5.52)-(5.55) is designed to work with a fixed number of m markers. 

The following strategy has been introduced for handling a time varying number of markers. At 
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the beginning of each time step the number of the visible markers is evaluated; in the event that 
some markers are not visible, these are removed by the estimation process. This entails that 
(5.50) has to be modified with the appropriate number of rows; next, the dimensions and the 
values of the matrices A and W in (5.51) - (5.55) are adjusted accordingly. The internal function 
that provides the pose estimation (5.52)-(5.55) is called a fixed numbers of times that in a 
nominal case is 3. The algorithm is able to estimate the position with a minimum number of 
detected markers of 4. The simulations associated with the described modification of the GLSDC 
algorithm will be shown in the analysis described in chapter 7. 
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6. THE LHM  

The LHM algorithm formulates the pose estimation problem as that of minimizing an object-
space collinearity error. From this objective function, we derive an algorithm that operates by 
successively improving an estimate of the rotation portion of the pose and then estimates an 
associated translation. The intermediate rotation estimates are always the best orthogonal 
solution for each iteration. The orthogonality constraint is enforced by using singular value 
decomposition, not from specific parameterization of rotations, e.g., Euler angles. We further 
prove that the proposed algorithm is globally convergent. 

6.1 Camera model 
The mapping from 3D reference points to 2D image coordinates can be formalized as 

follows: Given a set of noncollinear 3D coordinates of reference points pi = (xi, yi, zi)t, i =1,..,n, n 
≥ 3 expressed in an object-entered reference frame, the corresponding camera-space coordinates 
qi = (x’i, y’i, z’i)t, are related by a rigid transformation as: 

tRpq ii +=  (6.1) 

where 
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are a rotation matrix and a translation vector, respectively. The camera reference frame is chosen 
so that the center of projection of the camera is at the origin and the optical axis points in the 
positive z direction. The reference points pi are projected to the plane with z’ = 1, referred to as 
the normalized image plane, in the camera reference frame. Let the image point vi = (ui, vi, 1)t be 
the projection of pi on the normalized image plane (see Fig 6.1). Under the idealized pinhole 
imaging model, vi, qi and the center of projection are collinear. This fact is expressed by the 
following equation: 
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Fig. 6.1: the reference frame in pose estimation problem 

 
which is known as the collinearity equation in the photogrammetry literature. However, 

another way of thinking of collinearity is that the orthogonal projection of qi on vi should be 
equal to qi itself. This fact is expressed by the following equation: 

)( tRpVtRp iii +=+  (6.5) 

where 

i
t
i

t
ii

iV
vv
vv

=  (6.6) 

is the line-of-sight projection matrix that, when applied to a scene point, projects the point 
orthogonally to the line of sight defined by the image point vi. Since Vi is a projection operator, it 
satisfies the following properties: 

,    , 3ℜ∈≥ xxx iV  (6.7a) 

i
t

i VV =  (6.7b) 

i
t

iii VVVV ==2  (6.7c) 

In the remainder of this chapter, we refer to (6.4) as the image space collinearity equation 
and (6.5) as the object space collinearity equation. The pose estimation problem is to develop an 
algorithm for finding the rigid transform (R, t) that minimizes some form of accumulation of the 
errors (for example, summation of squared errors) of either of the collinearity equations (see Fig. 
6.2). 
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Fig. 6.2: object-space and image space collinearity errors 

6.2 The LHM algorithm  
The main objective of this section is to explain the LHM algorithm (also referred to as the 

orthogonal iteration (OI) method) in more detail, using the previously introduced formulation. In 
particular, the pose estimation problem is firstly introduced, using an appropriate object space 
error function, then this function is rewritten in a way which admits an iteration based on the 
solution to the 3D-3D pose estimation problem. Since the algorithm depends heavily on the 
solution to absolute orientation, we first review the absolute orientation problem and its solution 
before presenting the algorithm and proving its convergence. 

 

6.2.1 Optimal absolute orientation solution 
The absolute orientation problem can be posed as follows: suppose the 3D camera-space 

coordinates qi could be reconstructed physically (for example, by range sensing) or 
computationally (for example, by stereo matching or structure-from-motion). Then, for each 
observed point, we have: 

tRpq ii +=  (6.8) 

Computing absolute orientation is the process of determining R and t from corresponding 
pairs qi and pi. With three or more noncollinear reference points, R and t can be obtained as a 
solution to the following least-squares problem 

IRRqtRp t
n

i
iitR

=−+∑
=

 subject to    ,min
1

2

,
 (6.9) 

Such a constrained least-squares problem [6] can be solved in closed form using quaternions 
[7], [8] or singular value decomposition (SVD) [12], [9], [7], [8].  

The SVD solution proceeds as follows: Let { pi} and { qi} denote lists of corresponding 
vectors related by (6.1) and define 
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1     , 1  (6.10) 

that is, qp  and  are the centroid of { pi} and { qi}, respectively. Define   

qqqppp iiii −=−= '     , '  (6.11) 

and 

∑
=

=
n

i

t
ii pqM

1
''  (6.12) 

In other words, M
n
1 is the sample cross-covariance matrix between { pi} and { q i}. It can be 

shown that [12] if R*
, t* minimize (6.9), then they satisfy 

)(maxarg* MRtrR t
R=  (6.13) 

pRqt ** −=  (6.14) 
Let (U, Σ, V) be a SVD of M, that is, UtMV =  Σ. Then, the solution to (6.9) is 

tVUR =*  (6.15) 
Note that the optimal translation is entirely determined by the optimal rotation and all 
information for finding the best rotation is contained in M as defined in (6.12). Hence, only the 
position of the 3D points relative to their centroids is relevant in the determination of the optimal 
rotation matrix. It is also important to note that, although the SVD of a matrix is not unique, the 
optimal rotation is the one shown in Appendix 10.2. 
 

6.2.3 The algorithm 
We now turn to the development of the LHM Algorithm. The starting point for the algorithm 

is to state the pose estimation problem using the following object-space collinearity error vector 
(see Fig. 6.2): 

))(ˆ( tRpVIe iii +−=  (6.16) 

where iV̂  is the observed line-of-sight projection matrix defined as: 

i
t
i

t
ii

iV
vv
vv
ˆˆ
ˆˆˆ =  (6.17) 

We then seek to minimize the sum of the squared error 
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i
i tRpVIetRE
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2

1

2 ))(ˆ(),(  (6.18) 

over R and t. Note that all the information contained in the set of the observed image points{ vi} 
is now completely encoded in the set of projection matrices{ iV̂ }. Since this objective function is 
quadratic in t, given a fixed rotation R, the optimal value for t can be computed in closed form 
as: 

∑∑ −
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 (6.19) 

for (6.19) to be well-defined, ∑=
−

n

i iV
n

I
1

ˆ1  must be positive definite, which can be verified as 

follows:  
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While 
22 ˆ xVx i−  can be individually greater than or equal to zero, they cannot be all equal 

to zero unless all scene points are projected to the same image point. Therefore, (6.20) is 
generally strictly greater than zero and, thus, the positive definiteness of iV̂  is asserted. 
Given the optimal translation as a function of R and defining 
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)(1)(    and     ))((ˆ)(  (6.21) 

(6.18) can be rewritten as: 
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n

i
ii RqRtRpRE
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2))()(()(  (6.22) 

This equation now bears a close resemblance to the absolute orientation problem (compare with 
(6.9)). Unfortunately, in this case, we cannot solve for R in closed form as the sample cross-
covariance matrix between { pi} and { qi(R)}, that is, 

∑
=

=
n

i

t
ii pRqRM

1
')(')(  (6.23) 

where  '  , and  '( ) ( ) ( )i i i ip p p q R q R q R= − = −  is dependent on R itself. 
However, R can be computed iteratively as follows: first assume that the kth estimate of R is R(k), 
t(k)=t(R(k)) and qi

(k)=R(k)pi+t(k). The next estimate R(k+1), is determined by solving the following 
absolute orientation problem: 

=−+= ∑
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+
n

i

k
iiiR

k qVtRpR
1

2)()1( ˆminarg  (6.24) 

( ))(maxarg )(kt
R RMRtr=  (6.25) 

where the set of )(ˆ k
ii qV  is treated as a hypothesis of the set of the scene points qi in (6.9). In this 

form, the solution for R(k+1) is given by (6.15). We then compute the next estimate of translation, 
using (6.19), as: 

( ))1()1( ++ = kk Rtt  (6.26) 
and repeat the process. A solution R* to the pose estimation problem using the LHM algorithm is 
defined to be a fixed point to (6.24), that is, R* satisfies 

∑
=

+−+=
n

i
iiiR RtpRVtRpR

1

2*** ))((ˆminarg  (6.27) 

Note that is a solution does not necessary correspond to the correct true pose.  

6.2.4 Global convergence  
We now wish to show that the orthogonal iteration algorithm will converge to an optimum of 

(25) for any set of observed points and any starting point R(0). Our proof, which is based on the 
Global Convergence Theorem [13, chapter 6], requires the following definitions: 
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Def. 6.1: A point-to-set mapping A from X to Y is said to be closed at Xx∈ if the 
assumption  

1. Xxxx kk ∈→      ,  

2. imply   )(     , kkk xyyy A∈→  

3. )(xy A∈  
The point-to-set mapping A is said to be closed on X if it is closed at each point of X. 

Note the continuous point-to-point mapping are special closed point-to-set mappings.  
Def. 6.2: A set S is said to be closed if  S∈→ kk xxx   with   implies S∈x .  S is said to be 

compact if it is both closed and bounded. 
Define )3()3(: SOSO →OI to be the mapping that generates R(k+1) from R(k), that is, 

R(k+1)=OI(R(k)). According to the Global Convergence Theorem [13], to prove the global 
convergence of the orthogonal iteration algorithm we need to show that 

1. OI is closed. 
2. All { R(k) } generated by OI are contained in a compact set. 
3. OI strictly decreases the objective function unless a solution is reached. 
To verify the first condition, we note that OI can be considered as the composition of three 

mappings: 
33)3(: ×ℜ→SOF  is a point-to-point mapping that represents the computation 

)( )()( kk RMM =  in (6.23). 
)3()3()3(: 33 SOSOSVD ×℘×→ℜ × is a point-to-set mapping that represents the calculation 

of the SVD of )(kM . 
)3()3()3()3(: SOSOSOG →×℘× is a point-to-point mapping that represents the 

computation of R(k+1) from the SVD of )( )(kRM using (6.15). 
Where SO(3) is the set 3 x 3 orthogonal matrices and )3(℘ is the set 3 x 3 diagonal matrices. 
The first and the last mappings, F and G, are continuous and, hence, are closed. In 

Appendix, it is shown that SVD is also a closed mapping. Therefore, it follows that OI is closed 
using the fact that the composition of closed mappings is also closed [13]. 

Since OI always generates orthogonal matrices and the set of orthogonal matrices SO(3) is 
compact (closed and bounded), the second criteria is met. 

Finally, we seek to prove the third criteria. The sum of squared error of the estimate R(k+1) 
can be related to that of R(k) as follows: 
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 (6.28) 

Applying the fact that t
iii VVV ˆˆˆ =  to the second term in the right hand side of the last equation 

in (6.28), we have 
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But, according to (6.24) and (6.26), 
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and we obtain 
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2)()1()()1( .ˆˆ  (6.31) 

Assume that R(k) is not a fixed point of OI which implies R(k+1) ≠ R(k) and )()1( k
i

k
i qq ≠+ . If 
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ii qVqV
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2)()1( ˆˆ is equal to zero, then )()1( ˆˆ k
ii

k
ii qVqV =+ . But since the optimal solution to 

the absolution orientation problem is unique, according to (6.24), we must have R(k+1) = R(k), 

which contradicts our assumption that R(k) is not a fixed point. Therefore, ∑=
+ −

n

i
k

ii
k

ii qVqV
1

2)()1( ˆˆ  

cannot be zero. Combined with (6.31), we have 
( ) ( ))()1( kk RERE <+  (6.32) 

meaning that OI decreases E strictly unless a solution is reached. 
Now, we can claim that the orthogonal iteration algorithm is globally convergent, that is, a 

solution, or a fixed point, will eventually be reached from arbitrary starting point. Although 
global convergence does not guarantee that the true pose will always be recovered, it does 
suggest that the true pose can be reached from very a broad range of initial guesses. Based on the 
experiments we have empirically observed that the only constraint on R(0)  for OI to recover the 
true pose is that it does not result in translation with negative z component, i.e., it does not place 
the object behind the camera. 

6.2.5 Initialization and Weak Perspective approximation 
The OI algorithm can be initiated as follows: Given an initial guess R(0) of R, compute t(0). 

The initial pose (R(0), t(0)) is then used to establish a set of hypothesized scene points 
)(ˆ )0()0( tpRV ii + , which are used to start the first absolute orientation iteration. Although the 

orthogonal iteration algorithm is globally convergent, it does not guarantee that it will efficiently 
or eventually converge to the correct solution. Instead of choosing R(0), we can treat vi 
themselves as the first hypothesized scene points. This leads to an absolute orientation problem 
between the set of 3D reference points pi and the set of image points vi considered as coplanar 
3D points. This initial absolute orientation problem is related to weak perspective approximation. 

6.2.5.1 Weak-perspective model 
Weak-perspective is an approximation to the perspective camera model described in Section 

6.1. Under the weak perspective model, we have the following relation for each reference point 
pi 

( )xi
t

i tpr
s

u +≈ 1
1  (6.33a) 

( )yi
t

i tpr
s

v +≈ 2
1  (6.33b) 

where s is called scale or principle depth. Weak perspective is valid when the depths of all 
camera-space coordinates are roughly equal to the principle depth and the object is close to the 
optical axis of the camera. Conventionally, the principle depth is chosen as the depth of the 
origin of the object space, that is, the z -component of the translation tz when p , the center of the 
reference points, is also the origin of the object space. Here, we decouple the scale s from tz, so it 
can be chosen as the one that minimizes its deviation from the depths of the camera space 
coordinates 
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t stpr
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2
3 )(  (6.34) 

Of course, we also need to minimize the square of the image error over R, t and s 
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Combining (6.34) and (6.35), and weighting them equally, we have the following least-squares 
objective function: 
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ii stRp
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2v̂  (6.36) 

This is the same objective function as for absolute orientation, (6.9), but with the additional scale 
variable and the (implicit) constraint that all camera-space coordinates have the same depth. In 
this new objective function, the value of s together with R and t must be determined 
simultaneously. 
By considering the following modified objective function [7], [12] 
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the solution for s an be found to be  
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The rotation matrix of the pose is independent of s, yet it reduces the overall least-squares 
objective function. After R and s are determined, t can be computed as: 

pRst −= v  (6.39) 

where ∑=
=

n

in 1
ˆ1 vv . Note that if the origin of the object space is placed at p , i.e., 0=p , then 

zts = .  
6.2.5.2 Initial absolute orientation solution 
With the OI algorithm, the initial rotation will be the same as those computed using the 

aforementioned weak-perspective algorithm, however, the translation is different in that it is 
computed using (6.19) as a result of optimizing (6.18). Let us rewrite (6.19) here 
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Comparing (6.39) and (6.40), we find that the former is approximated by the latter if the 
following conditions hold: 
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jj sRpV
n

vˆ1  (6.40) 

The first condition states that the scene points are located close to the optical axis and the second 
condition states that the scene points are distributed like a plane parallel to the image plane. 
These two conditions closely resemble the conditions under which weak-perspective 
approximation is valid.  

In summary, we have reformulated the pose estimation problem under the weak-perspective 
model as the problem of fitting the set of the reference points to a planar projection of the image 
points. Using the image points themselves as the hypothesized scene points in the initial absolute 
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orientation iteration results in a pose solution better than the unmodified weak-perspective 
solution. This pose solution serves, therefore, as a good initial guess for the subsequent iterative 
refinement. 

6.3 The LHM implementation 
In the LHM implementation we use the same strategy illustrated in the end of the chapter 5. 

We have variable number of visible markers, that is only the positions of the detected markers 
are introduced in the internal function that provides the pose estimation. In the LHM 
implementation, we can choose to solve the pose estimation using the SVD method or the 
Quaternion method. Several simulation experiments showed that the SVD method is faster then 
Quaternion method. The algorithm is able to estimate the position with a minimum number of 
detected markers of 5. The internal iterations of the LHM algorithm are stopped in two cases, if 
the sum of squared object space error in the current iteration is less or equal to the parameter of 
the functionε  or if the ( _ _ ) _new err old err old err−  is less or equal to a second parameter 
Tolerance. Where new_err and old_err are the sum of squared object space error in the current 
iteration and in the past iteration. In a nominal case the parameterε  and Tolerance are equal to 
1*10-8 and 1*10-5 respectively. The tests on the pose estimation algorithm are provided in the 
next chapter. 
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7. PERFORMANCE OF GLSDC AND LHM 

Pose estimation from a camera image is becoming a very used method to acquire relative 
position and orientation information. Any practical realization requires that the algorithm has 
certain characteristics (performance criteria). These performance criteria often depend upon the 
system that we have to control and its hardware. Performance criteria used in [5] are the time of 
simulation with a different number of point, robustness against noise in the image, quality of 
estimation depending on both the number of points, and effective field of view. In the Ansar and 
Daniilidis paper [5] the analysis is performed on static images. In this section we propose a 
different approach, that is we analyze the algorithms on the Autonomous Arial Refueling (AAR) 
simulation, this allows us to examine the algorithms in two cases: Simulated Vision (SV), where 
we have a fixed number of markers and input data are smooth, and Real Vision (RV) where we 
have a variable number of markers and the input data are characterized by extreme variability 
and sometimes they are not suitable for the pose estimation algorithm. We establish now the 
performance criteria to compare the algorithms:   

1. Number of FLOPS. 
2. Speed performance. 
3. Estimated delay. 
4. Differences between "true" values and estimated values and R.M.S. of the error. 
5. Robustness on markers noisy position, labeling error and initial conditions. 
6. Error propagation analysis. 

 
The purpose of the following tests is to try to analyze the algorithms on many aspects that 

are code heaviness, delays, estimation consistency, robustness and error propagation. 
The entire tests are performed with Matlab® 6.5 and Simulink® 5.0. 

7.1 Number of FLOPS 
The term FLOPS is a short for floating-point operations, is a common benchmark 

measurement for rating the computational weight of one executed function. Floating point 
operation includes any operations that involve fractional numbers. Such operations, which take 
much longer to execute than integer operations, occur often in some applications. Most modern 
microprocessors include a floating-point unit (FPU), which is a specialized part of the 
microprocessor responsible for executing floating-point operations. The FLOPS measurement, 
therefore, measures the number of operation executed by the FPU, this is a good benchmark even 
if the computer could have some application resident into the memory that use the FPU in the 
meantime the tests are performed.  

To extract the data for this benchmark we used Matlab®  5.3 because in the following Matlab 
versions the function flops is disabled. The data are summarized in table 7.1. 

 
 

Simulated Vision Real Vision 

GLSDC LHM GLSDC LHM 

19949385 12051938 14222319 21019524 

Tab. 7.1: Number of FLOPS of the two algorithms in SV case and in RV case 
 
Note that the GLSDC algorithm has a number of FLOPS bigger in the SV case than in the 

RV case, this happens because this algorithm estimates the position always in the same way with 
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a fixed number of iterations (which in the nominal case is 4). In the SV case, the algorithm 
works always with the maximum number of markers, which means that the working matrix has 
the largest size, which in turn means that more flops are required to invert the matrix. 

In the RV case instead, the size of the working matrix is limited by the number of seen 
markers, so the matrix size is smaller and it takes less flops to invert it. 

The LHM algorithm process the data in a different way. In the SV case the incoming data are 
very smooth so the LHM algorithm is able to estimate the position using a relatively small 
number of steps, because the current rotation matrix R is very close to the current one. 

In the RV case the data are noisy and irregular so the LHM has to use more steps to 
converge to a solution. 

7.2 Speed performance 
The speed performance is a simple test that gives an idea of the heaviness of the function. 

The test is obviously dependent from the utilized system resources and from the number of 
applications resident in memory, but if the measures are performed approximately in the same 
time, and with the same computer, the end result can be compared. If we join the speed 
performance data with FLOPS data we can have a better understanding of the computational 
heaviness of the functions. For this test we used a Pentium 4, 2.53 GHz laptop with 448 Mbytes 
of RAM. We measured the speed performance with the profiler tool of Matlab®. This tool gives 
the running time in seconds for each called function and sub-function. The test consists in the 
execution of the 2 algorithms in the SV case and in RV case. The simulation lasted 40 seconds, a 
sampling time of 0.1 sec was used by the MV algorithms. At the end of the test the estimation 
algorithm is called 4010 times, in this way we have a good estimation of the execution mean 
time for each function. 

The profiler tool provides a result called Time/call, this measures the mean time of execution 
for the function.  

 
Simulated Vision Real Vision 

GLSDC (sec) LHM (sec) GLSDC (sec) LHM (sec) 

0.0053910447761 0.0158049751244 0.0053000000000 0.02006865671642

Tab. 7.2: Mean time of execution for GLSDC and LHM algorithms in SV and RV case 
 
Let us analyze the data in Tab. 7.2. In the SV case although the GLSDC has a grater number 

of FLOPS, it has a lesser mean time of execution, and if we calculate the ratio from the two data 
we obtain 2.931. This means that the LHM function can use up to triple the GLSLD time. We 
can see that the GLSDC algorithm uses around the same time in SV case and RV case, 
unexpectedly from the FLOPS results, while the LHM algorithm uses more time in the RV case 
as it was to be expected, we can see that the ratio in RV case grows up to 3.786. Moreover, we 
can see that the differences of mean time of execution is not very relevant, in the LHM 
algorithm, between SV case and RV case as it occur in the FLOPS case instead. 

7.3 Estimated delay  
The estimation of the delay is a test in the SV case that consists searching the time delay that 

minimizes the error between the “real” value (value obtained by the sensor without GPS noise) 
and the estimated value of the vision algorithm. This prove is obviously connected to the 
precision of camera parameter, and in particular to both the field of view (fov) parameter and the 
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GPS system, because the SV case gives one estimation of the marker position based on the 
measure of GPS system (see chapter 4 and 3). The estimated delay is not therefore a parameter 
tightly correlated to the algorithm but if we compare the two obtained values, and the values are 
obtained in the same condition, we can decide which algorithm provides first the measure. For 
the search of the estimated delay we can make a simple function on Matlab® that translates in 
time the distance found in SV case (x, y, z) and calculates the instant time when we have a 
minimum error between this value and the estimated value. The function uses the Frobenius 
norm applied to the error matrix e, which is difference between value in SV case and “real” 
value, for calculate the root mean square (rms):  

n

eediag

n

e
rms

T
F ∑
==

)(

 (7.1) 
 
we search the value of the time t than minimizes the rms function delaying the distance in 

SV case. We found that the estimated delay for the GLSDC algorithm is t = 0.3 sec, while for the 
LHM algorithm is t = 0.25 sec. An example is reported in fig. 7.1 where we can see that the 
GLSDC line is a better estimation of the red line rather than the blue line. 
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Fig. 7.1: Estimated delay for GLSDC (t = 0.3 sec) 

7.4 Differences between true values and estimated values 
Before comparing estimated values with true ones, we have to clarify that  “true values” are 

defined as the distance and orientation of the tanker in camera frame, calculated using the 
readings from the linear and angular position (simulated) sensors. In practice a white noise 
having power spectral density of p=10-9 and covariance of c=2*10-8 is added to the Euler angles 
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(roll, pitch, yaw) sensors to simulate sensor noise. These signals are used to calculate the 
homogeneous transformation matrix C

TT  with the relative distance (x, y, z) between camera and 
tanker. We examine the differences in SV case and RV case keeping in mind that the true values 
are different for LHM and GLSDC algorithm because they are dependent by the trajectory that 
the UAV cross that is in relationship with the estimated distance. We can see in fig. 7.2, 7.3, 7.4, 
7.5 the difference between GLSDC and true values in SV case. 
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Fig. 7.2: differences between real x y z and GLSDC x y z in SV case 
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Fig. 7.3: difference between real roll and GLSDC roll in SV case 
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Fig. 7.4: difference between real pitch and GLSDC pitch in SV case 
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Fig. 7.5: difference between real yaw and GLSDC yaw in SV case 

 
 
In fig. 7.6, 7.7, 7.8, 7.9 we represent the same data for LHM algorithm  
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Fig. 7.6: differences between real x y z and LHM x y z in SV case 
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Fig. 7.7: difference between real roll and LHM roll in SV case 
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Fig. 7.8: difference between real pitch and LHM pitch in SV case 
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Fig. 7.9: difference between real yaw and LHM yaw in SV case 
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It is apparent form the above graphs that the difference is negligible. Therefore, other 
parameters of comparison are needed in order to chose between the two algorithms. Using the 
rms (7.1) where e is now a vector and the Frobenius norm is therefore equivalent to the norm 2, 
we obtain the following data: 

 
 X Y Z Roll Pitch Yaw 

GLSDC 1.7042 0.9291 3.0024 0.0500 0.0127 0.0438

LHM 1.2936 1.2955 0.8005 0.0039 0.0214 0.0025

Tab. 7.3: rms values of the error for GLSDC and LHM algorithm in SV case 
 
Analyzing the data in Tab. 7.3 we can see that the LHM algorithm has better estimation for 

the variable (x, z, Roll, Yaw), the larger difference is in the variable z which is one of the most 
important variables. In fact, within the AAR problem, Euler angles are provided by the gyro, 
therefore the quality of the Euler angles provided by the Pose Estimation algorithm is not of 
primary importance. Conversely, the accuracy of the distance information is of primary concern. 

We proceed now with the comparison of the graphs in RV case, this is very important to 
understand the characteristics of the data that an estimation algorithm provides, which is in turn 
essential for the design of a controller based on machine vision.  
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Fig. 7.10: difference between real x y z and GLSDC x y z in RV case 
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Fig. 7.11: difference between real roll and GLSDC roll in RV case 
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Fig. 7.12: difference between real pitch and GLSDC pitch in RV case 
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Fig. 7.13: difference between real yaw and GLSDC yaw in RV case 

 
We can see from fig. 7.10 – 7.13 that the results that GLSDC algorithm provides in the RV 

case are very different from the results obtained in the SV case. Since these results are dependent 
of the number of seen markers, in fig 7.14 – 7.17, we present the data for the LHM algorithm 
only in the RV case. 
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Fig. 7.14: difference between real x y z and LHM x y z in RV case 
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Fig. 7.15: difference between real roll and LHM roll in RV case 
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Fig. 7.16: difference between real pitch and LHM pitch in RV case 
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Fig. 7.17: difference between real yaw and LHM yaw in RV case 
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Looking the Fig. 7.11 – 7.13 and Fig. 7.15 – 7.17 we see that the Euler angles are very noisy 
and these are not fit to be insert in a loop system without an apposite filter. 

Now we can analyze the data in RV case using the rms (7.1) analysis as we have done in the 
SV case, and we obtain: 

 
 X Y Z Roll Pitch Yaw 

GLSDC 1.7395 0.9225 3.0089 0.0488 0.0193 0.0444

LHM 1.4474 1.3117 0.8040 0.0156 0.0242 0.0137

Tab. 7.4: rms values of the error for GLSDC and LHM algorithm in RV case 
    
Analyzing the obtained result for the RV case we can make the same considerations done for 

Tab. 7.4 but now we observe that the LHM needs a minimum of 5 markers for have a good 
estimation and the GLSDC need 4 markers and moreover the GLSDC have initial data strongly 
dependent from the initial condition, we decide, therefore, to start the comparison when all 
algorithm work in optimal situation and we extract from the data in RV case one table with the 
start data for t1 = 15 sec and end data t2 = 50 sec, we obtain: 

 
 X Y Z Roll Pitch Yaw 

GLSDC 0.3254 0.0962 0.1679 0.0090 0.0150 0.0098

LHM 0.3364 0.0963 0.1367 0.0109 0.0125 0.0104

Tab. 7.5: rms values of the error for GLSDC and LHM algorithm in RV case between t1=15 sec 
and t2=50 sec 

 
In Tab.7.5 we can see that the values are very similar and we can tell that the GLSDC and 

LHM are equivalent when enter in a good condition for work. These conditions, as described 
next, are different, so we have to apprise which one is better for the used simulation. 

7.5 Robustness 
In this section we analyze the robustness of the algorithm, for this we have to establish the 

method of comparison, we test the GLSDC and LHM algorithm in four cases: 
• Noise addiction in the markers position with correct labeling. 
• Error in the labeling. 
• A real case: noise addiction in the markers position with uncertain labeling. 
• Error in initial condition. 
These tests try to show the behavior of the algorithm in different cases and therefore a design 

for one control more robust. 

7.5.1 Noise addition in the markers position with correct labeling 
This test consist in the addition of the noise at the position of the markers in the RV case 

after that the labeling function has been performed, one explanation is given in Fig. 7.18. The 
position is consequently the input of the estimation function, in this way we are sure that the 
algorithm performs the estimation on correct labeled data with noise, this is evidently different 
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from a real case, since in reality noisy data are processed by both labeling function and pose 
estimation algorithm. 

 
Fig. 7.18: noise adding after the labeling function 

 
The test consist in the execution of the simulation with different noise power, in order to see 

clearly the behavior of the algorithms, the Machine Vision (MV) results do not enter in the 
control loop because the MV data are too noisy and can produce chattering effects in the control 
which can in turn bring instability. A real white noise has a correlation time of 0, a flat power 
spectral density (PSD) and a covariance of infinity, which are properties that cannot be achieved 
in reality but can only be approximated. Therefore, the used noise is a band limited white noise 
with correlation time tc=0.05 with height of PSD equal to the parameter Noise power. The 
covariance is the Noise power divided by tc. We have tested the algorithm with different Noise 
powers, starting form 0 to 5*10-9 with an interval of 1*10-9 and variable number of markers, as it 
happens in reality, the number of seen markers are visible in Fig 7.19 - 7.20 where we represent 
the number of seen markers for the all simulations. 
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Fig. 7.19: seen markers from t=0 to t=20 sec 

20 22 24 26 28 30 32 34 36 38 40
0

1

2

3

4

5

6

7

8

9

se
en

 m
ar

ke
rs

t (sec)

Seen markers form t=20 sec to t=40 sec

 
Fig. 7.20: seen markers from t=20 to t=40 sec 
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Whenever the algorithms work, they tend to produce similar results, however, it is 

interesting to observe the conditions in which they do not work and why this happens. We can 
see in Fig. 7.21 and 7.22 that for a noise power until 4*10-9 both algorithms do not have great 
problems, we can see that the estimation has an additional noise, (which is related to the noise 
power in input, this relationship will be analyzed later). For a noise power of 4*10-9 the LHM 
begins to show some problem as we can see in Fig. 7.23, that is, with low number of seen 
markers, the LHM algorithm can provide an incorrect estimation. In this case the estimation is 
provided with 5 markers, this problem shows up also for a noise power of 5*10-9 where in fact is 
more common. 
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Fig. 7.21: effect of the noise in the GLSDC algorithm  



 

 75

18 19 20 21 22 23 24 25 26

2

4

6

8

10

12

t (sec)

y 
(m

et
er

s)

Noise in estimed LHM y

LHM y no noise
LHM y noise=10-9

LHM y noise=2*10-9

LHM y noise=3*10-9

LHM y noise=4*10-9

LHM y noise=5*10-9

 
Fig. 7.22: effect of the noise in the LHM algorithm 
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Fig. 7.23: differences between GLSDC and LHM algorithm for a noise power =4*10-9 
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We have seen what happens in the LHM algorithm whenever the noise power is increased to 
5*10-9 and beyond, that is sometimes when the number of seen markers decreases the LHM can 
provide an incorrect estimation. However, a correct estimation can be promptly recovered 
whenever the number of seen markers increases or the noise power decreases. It is important to 
notice that the above behavior is not shown by the GLSDC algorithm, indeed when the GLSDC 
algorithm stop providing a good estimation it often becomes unstable and there is no way of 
bringing it back to state that yields a good estimation. This fact is presented in Fig 7.24 and 7.25, 
where the behavior of the algorithms with a noise power at 5*10-9 is shown. We can see that the 
GLSDC algorithm starts with a good estimation, then at t=11.7 sec the algorithm restarts the 
estimation process since for a moment the number of seen markers goes below 4, at this point the 
estimated measures diverge and although the number of seen markers goes soon to 9 the 
algorithm does not come back to a state presenting a reasonable estimation. In Fig 7.25 we can 
see that the biggest problems for LHM algorithm happen for 27.7< t <30.7 sec and t >33 sec. In 
fact, analyzing this case, we can see that for t = 27.7 we have a number of seen markers that 
decreases from 9 to 7 and until t = 31.2 the numbers of markers is always 7. This decrease, 
together with a peak of noise, causes an incorrect estimation. Similarly, for t=33 sec we have a 
decrease of markers from 6 to 5 (that is the minimum number of markers for LHM algorithm) 
and this creates a problem for the estimation when the noise is too high. 

A test was performed by fixing the numbers of markers at 9, the result is that the two 
algorithms evolve in a similar way and none of the two diverges or gives relevant errors, so it 
can be deduced that the better way to get a good robustness is to have a suitable number of 
markers for all the simulation time. 
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Fig. 7.24: GLSDC behavior with noise power 5*10-9, divergence for t=11.7 sec 
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Fig. 7.25: LHM behavior with noise power 5*10-9   

7.5.2 Robustness to labeling errors 
The test consists on the inversion of two markers in RV case when the MV does not enter in 

the control loop. This allows analyzing the behavior of the algorithms without holding in 
consideration the possible problems that would derive form using the MV estimation in the 
control loop. In the test we invert the found positions for the markers 1 and 2 for two execution 
of the pose estimation algorithm, specifically for t = 20 sec and t = 20.1 sec. During these time 
instants we see the markers {1, 2, 3, 5, 6, 7, 8, 9} for the first call and {1, 2, 3, 4, 6, 7, 8} in the 
second call of the estimation algorithms. In Fig. 7.26 we can see the markers positions (with 
relative identification number) on the tanker, in Fig. 7.27 and 7.28 we show the response of the 
two algorithms to the labeling error. The GLSDC algorithm suffers the error more than LHM, 
indeed the estimated x lowers form 42.8 to 12.6 against the 33.5 of the LHM, and all errors in the 
estimated variables are smaller for the LHM. Even more important is the fact that the GLSDC 
algorithm needs a considerable resumption time, in fact we can see that the measures return 
consistent only at time t=20.6 against the t=20.3 of the LHM, in other words, the first algorithm 
needs a settling time of 0.3 when we have a labeling error.  
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Fig. 7.26: Numbers and positions of markers on the tanker  
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Fig. 7.27: labeling error response with GLSDC algorithm 
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Fig. 7.28: labeling error response with LHM algorithm 

7.5.3 A real case: noise addiction in the markers position with uncertain labeling 
This test is a simulation of what really happens: the camera gives noisy data to the labeling 

function. We can have both noisy signals and labeling errors without knowing where in reality 
the errors are. For this reason we move the noise presented in Fig 7.18 before the labeling 
function and after the scale block. The results are analogous to those obtained in the paragraph 
7.5.1 and for a labeling error caused by the noise, the GLSDC algorithm would probably diverge 
for a noise power of 4*10-9, and as said previously, once this happens, the GLSDC does not 
return to the correct estimation. In fact we can observe that the GLSDC algorithm in a real 
situation is less stable than the LHM algorithm, since the presence of noise and labeling errors is 
enough to have the divergence of the GLSDC. In Fig 7.29 and 7.30 we can see how the GLSDC 
behaves in the limit case of a noise power of 3*10-9, and instead how the LHM algorithm works 
for a noise power of 4*10-9. The behavior of LHM algorithm is for some time instant incorrect 
but when we have a correct labeling and enough seen markers the algorithm comes back to a 
correct pose estimation. 
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Fig. 7.29: GLSDC behavior for a noise power of 3*10-9 and uncertain labeling 
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Fig. 7.30: LHM behavior for a noise power of 4*10-9 and uncertain labeling 
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7.5.4 Robustness to errors in initial conditions 
This test shows the different behaviors of the GLSDC and LHM algorithms with different 

initial conditions. The initial conditions are composed by the translation vector and the Euler 
angles. The test is diversified in two parts, the first one consists in the search of a convergence 
area for the translation vector, for simplicity we varied the vector of one constant quantity for the 
three components (x, y, z), the second one consist in a search of a convergence area for the yaw 
angle, these can give an idea of the robustness of the algorithm to errors in the initial condition. 
We performed the test with a fixed number of markers, specifically the markers {1, 3, 4, 6, 9}, 
surely the convergence area results widened if more markers are used. We consider xo= [x y z psi 
theta phi] = [60.5 20 -2.5 0 0.467 0] as the exact initial condition, where x y and z are the relative 
position expressed in meters between camera and tanker in camera frame and psi, theta and phi 
are the Euler angles expressed in radiant. The results are presented in Tab. 7.6, and we note 
immediately that the GLSDC has a limited convergence area while the LHM works in all 
situations. 

 
Translation vector Yaw angle (psi)  

GLSDC 
interval from 

exact initial condition 

LHM 
interval from 

exact initial condition

GLSDC 
interval from 

exact initial condition

LHM 
interval from 

exact initial condition
[-44.7 65.4] [-∞ +∞] [-1.74 3.06] rad = 

[-100 175] ° 
[0 2π] 

Tab. 7.6: convergence area in the initial condition tests 
 
In Fig. 7.31 we can see how the GLSDC works at the limit of the convergence area for the 

translation vector, specifically the algorithm shows a settling time of t = 0.4 sec before providing 
a consistent measure. If we give an initial condition external to the convergence area, the 
algorithm provides a wrong estimation or diverges according to how much the initial condition is 
far from the convergence area. We can see in Fig. 7.32 an example of the GLSDC behavior 
when it starts immediately out of the convergence area. In Fig. 7.33 we show that the LHM 
algorithm works with initial condition on the translation vector that are considerably distant from 
the correct initial condition. This is due to the fact that, as seen in chapter 6, the LHM uses an 
initial condition on the rotation matrix and extracts the translation vector in closed form from the 
matrix R, therefore the convergence area for this algorithm is unbounded. 
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Fig. 7.31: GLSDC algorithm in the limit of the convergence area for the translation vector 
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Fig. 7.32: GLSDC algorithm out of the convergence area for the translation vector  
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Fig. 7.33: LHM algorithm behavior with initial condition wrong for the translation vector 
 
Now we examine the robustness to errors in the yaw angle. The GLSDC pose estimation 

algorithm has a limited convergence area even if we change only the yaw angle. In Fig.7.34, and 
7.35 we show that a variation on the yaw angle generates a variation on the other angles and this 
variation cause instability or an incorrect estimation. The LHM algorithm for any given variation 
on yaw angle does not show problems or incorrect estimation, an example is provided in Fig 
7.36. We note that a variation in the yaw angle has influence on the other angles but this 
influence is bounded on the first execution of the algorithm.    
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Fig. 7.34: GLSDC algorithm in the limit of convergence area for the yaw angle 
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Fig. 7.35: GLSDC algorithm out of the convergence area for the yaw angle (divergence) 
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Fig. 7.36: LHM algorithm behavior with initial condition wrong for the yaw angle 

7.6 Error propagation analysis 
The test that we propose in this section tries to explain how the noises on the position 

markers influence the estimated position, and how the input noise is propagated to the output. 
For this test, the position estimation works in SV with seen markers {1, 3, 4, 6, 9}. A white 
Gaussian noise (WGN) with several values of noise power is added on the position (x, y) of the 
marker 1 found by the camera image, and, as a result, the translation vector of the pose 
estimation algorithm results noisy. We can isolate the output noise by subtracting the non noisy 
reference output from the noisy output. In the analysis we assume that the all statistic processes 
are ergodic, which means that time and space distribution averages are equal. In other words, the 
ergodicity of one process means that the statistics process behavior is the same for a great but 
limited numbers of samples and for infinite numbers of samples. 

The input noise is a white Gaussian noise with mean around 0 and noise power different for 
each test. We use in the first test a noise power equal to 1*10-9, the second one has a noise power 
of 2*10-9 and the last has a noise power of 3*10-9. We represent the estimated power spectral 
density (PSD) of the first noise in Fig 7.37 and the empirical cumulative distribution function 
(CDF) together with the reference CDF in Fig 7.38. That proves that the input noise is an 
approximation of WGN. The details of the input noises are presented in Tab 7.7. 
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 Min Max η = Mean σ = STD 
Noise power 

=1*10-9 
-4.856*10-4 4.272*10-4 -1.367*10-6 1.403*10-4 

Noise power 
=2*10-9 

-6.867*10-4 6.041*10-4 -1.933*10-6 1.984*10-4 

Noise power 
=3*10-9 

8.410*10-4 7.399*10-4 -2.368*10-6 2.431*10-4 

Tab. 7.7: input data noise  
 
All the data are sampled with the frequency f = 10 Hz as this is the frequency of all the 

components in the machine vision system. In all the PSD figures we have the normalized 
frequency on the x axis, and the value of 1 (rad /sample) corresponds to the frequency 5 Hz.    
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Fig. 7.37: noise input Power Spectral Density (PSD) for noise power = 1*10-9    
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Fig. 7.38: noise input Cumulative Distribution Function (CDF) for noise power = 1*10-9  
 
The addition of noise on the position of one marker causes noisy position estimation; we can 

examine this noise, as aforesaid, by subtracting the data obtained from one non-noisy simulation 
from the data obtained from a noisy simulation. The PSD of the output noise is characteristic of a 
white noise for both the algorithms as we can see by Fig. 7.39 and 7.40. According to the theory 
of stochastic processes, if a Gaussian process goes trough a linear systems the output process is 
still Gaussian.  

 
At this point it is interesting to investigate in whether the MV system acts as a linear system 

as far as noise propagation, between an input (on the marker position) and the output(on the 
translation vector), is concerned. We consider the system composed by one input and three 
outputs as if they were three systems with one input and one output, and we call this systems 
GLSDCX, GLSDCY and GLSDCZ for the GLSDC algorithm and LHMX, LHMY and LHMZ for the 
LHM algorithm. In addition we define the estimated PSD with the periodogram method: 

2

1

2)( ∑
=

−=
n

l

lj
lex

n
fPSD ωπ

 (7.2) 

where n is the number of element of the noise data and xl is the position l of the vector.    
From the signal theory we know: 

2)(
)(
)( fH

fPSD
fPSD

X

Y =  (7.3) 

where PSDY represent the output noise PSD, PSDX  represent the input noise PSD, H(f) is the 
frequency response of the system.    
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Fig. 7.39: output noises PSD of GLSDC algorithm with noise input power = 1*10-9    
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Fig. 7.40: output noises PSD of LHM algorithm with noise input power = 1*10-9    
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If the ratio between PSDY and PSDX is almost equal among the various powers of input 

noise, then for what concerns noise propagation, we can approximate the systems with a linear 
ones. The linearity is a sufficient condition for the preservation of the Gaussian distribution. We 
can see in Fig. 7.41, 7.42, 7.43 the square of the frequency response for the systems GLSDCX, 
GLSDCY and GLSDCZ . In Fig 7.44, 7.45 7.46 we present the square of the frequency response of 
the systems LHMX, LHMY and LHMZ. It is clearly visible that the behavior of 6 systems is 
exactly linear, because we have an exact overlap of the line on the 6 figures. Once the linearity is 
verified, we can establish with safety that the output noise is Gaussian with mean equal to 0 
since the input noise has mean value equal to 0 and the following relationship is valid: 

XY H ηη )0(=  (7.4) 
where ηX is the input mean value, ηY the output mean value and H(0) is the static gain of the 
system. The output error has variance equal to the second order moment because the error has 
mean equal to 0, and the second order moment is provided by the relationship: 

( ){ } ( )dffPSDtXE Y∫
∞

=
0

2 2  (7.5) 

where PSDY is the power spectral density of the output noise.  
We now have all the information to model the output noise. We are sure that if the input 

noise is WGN, the output noise will be WGN and moreover we know that the systems behaves 
as a linear system as far as noise transmission is of concern.     
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Fig. 7.41: verification of linearity propriety for GLSDCX system 



 

 90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

80

Normalized Frequency  (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/ r

ad
/s

am
pl

e)

GLSDC PSDy(f) / PSDin(f)

Noise power=1*10-9

Noise power=2*10-9

Noise power=3*10-9

 
Fig. 7.42: verification of linearity propriety for GLSDCY system  
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Fig. 7.43: verification of linearity propriety for GLSDCZ system 
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Fig. 7.44: verification of linearity propriety for LHMX system 
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Fig. 7.45: verification of linearity propriety for LHMY system 
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Fig. 7.46: verification of linearity propriety for LHMZ system 

 
At this point we have to compare the output noise between the three systems of GLSDC and 

LHM, to understand which algorithm amplifies the noise. In Fig 7.47 -7.49, a direct comparison 
between the PSD of the systems GLSDCX and LHMX, GLSDCY and LHMY, GLSDCZ and 
LHMZ are shown. In Fig 7.47 and 7.48 the lines are overlapped which means that the GLSDC 
and LHM algorithms propagate the errors in the same way. In Fig 7.49, the GLSDC algorithm 
amplifies the noise more than LHM algorithm as it concerns the variable z.   
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Fig. 7.47: PSD of GLSDCX  and LHMX with noise 1*10-9 
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Fig. 7.48: PSD of GLSDCY  and LHMY with noise 1*10-9 
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Fig. 7.49: PSD of GLSDCZ  and LHMZ with noise 1*10-9 
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8. CONCLUSIONS 

This thesis described different MV algorithms that were developed and jointly tested within 
a simulation environment specifically developed for the study of the MV-based Autonomous 
Aerial Refueling problem. In particular, the attention focused on the development of an accurate 
labeling algorithm that avoids typical errors and on the analysis of the performance of the two 
most used pose estimation algorithms - the GLSDC and the LHM algorithms - in terms of speed, 
accuracy, robustness and errors propagation. The results from this detailed comparison indicate 
that the accuracy of the two algorithms is substantially similar; however, the LHM algorithm 
provides a substantial higher level of robustness at the expense of a larger required 
computational effort.  
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10. APPENDIX 

10.1 Homogeneous Coordinate 
Homogenous coordinates utilize a mathematical trick to embed three-dimensional 

coordinates and transformations into a four-dimensional matrix format. As a result, inversions or 
combinations of linear transformations are simplified to inversion or multiplication of the 
corresponding matrices. Homogenous coordinates also make it possible to define perspective 
transformations. 

10.1.1 4x1 Homogeneous coordinate vector 
Instead of representing each point (x,y,z) in three-dimensional space with a single three-

dimensional vector: 
x
y
z

 
 
 
  

 (10.1) 

homogenous coordinates allow each point (x,y,z) to be represented by any of an infinite 
number of four dimensional vectors: 

*
*
*

T x
T y
T z

T

 
 
 
 
 
 

 (10.2) 

The three-dimensional vector corresponding to any four-dimensional vector can be 
computed by dividing the first three elements by the fourth, and a four-dimensional vector 
corresponding to any three-dimensional vector can be created by simply adding a fourth element 
and setting it equal to one.  

Many textbooks define homogenous coordinates in such a way that points are represented by 
1x4 vectors: 

[ ]* * *T x T y T z T  (10.3) 

instead of 4x1 vectors. This definition is not used in the AIR package and results in different 
4x4 homogenous coordinate transformation matrices than those described below. 

 

10.1.2 4x4 Homogenous Coordinate Transformation Matrices 
Homogenous coordinate transformation matrices operate on four-dimensional homogenous 

coordinate vector representations of traditional three-dimensional coordinate locations. Any 
three-dimensional linear transformation (rotation, translation, skew, perspective distortion) can 
be represented by a 4x4 homogenous coordinate transformation matrix. In fact, because of the 
redundant representation of three space in a homogenous coordinate system, an infinite number 
of different 4x4 homogenous coordinate transformation matrices are available to perform any 
given linear transformation. This redundancy can be eliminated to provide a unique 
representation by dividing all elements of a 4x4 homogenous transformation matrix by the last 
element (which will become equal to one). This means that a 4x4 homogenous transformation 
matrix can incorporate as many as 15 independent parameters. The generic format representation 
of a homogenous transformation equation for mapping the three dimensional coordinate (x,y,z) 
to the three-dimensional coordinate (x',y',z') is: 
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'* ' ''* ''* ''* ''* *
'* ' ''* ''* ''* ''* *
'* ' ''* ''* ''* ''* *

' ''* ''* ''* ''

T x T a T b T c T d T x
T y T e T f T g T h T y
T z T i T j T k T m T z

T T n T p T q T T

     
     
     =
     
     
     

 (10.4) 

If any two matrices or vectors of this equation are known, the third matrix (or vector) can be 
computed and then the redundant T element in the solution can be eliminated by dividing all 
elements of the matrix by the last element. 

Various transformation models can be used to constrain the form of the matrix to 
transformations with fewer degrees of freedom. 

In many textbooks, you will find homogenous transformation matrices defined such that 1x4 
homogenous coordinate vectors are placed to the left of the 4x4 homogenous coordinate 
transformation matrix and multiplied.  

 

10.1.3 Translations 
Translations can be represented by the 4x4 homogenous coordinate transformation matrix: 

1 0 0
0 1 0
0 0 1
0 0 0 1

x shift
y shift
z shift

− 
 − 
 −
 
 

 (10.5) 

where: 

 

  = translation along the x axis
  = translation along the y axis
  = translation along the z axis

x shift
y shift
z shift

−
−
−

 

10.1.4 Rotation 
A series of rotations (in the order [roll matrix]*[pitch matrix]*[yaw matrix]) can be 

represented by the 4x4 homogenous coordinate transformation matrix: 
cos cos cos sin cos sin sin sin sin cos sin cos 0
cos sin cos cos sin sin sin cos sin cos sin sin 0

sin cos sin cos cos 0
0 0 0 1

θ ψ θ ψ ψ θ ϕ ψ ϕ ψ θ ϕ
θ ψ ψ ϕ θ ψ ϕ ψ ϕ ϕ ψ θ

θ θ ϕ θ ϕ

− + + 
 + − + 
 −
 
 

 (10.6) 

where 

 

  = rotation around the x axis (roll)
  = rotation around the y axis (pitch)
  = rotation around the z axis (yaw)

ϕ
θ
ψ

 

10.1.5 Rescaling 
Rescaling along the major axes can be represented by the 4x4 homogenous coordinate 

transformation matrix: 
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0 0 0
0 0 0
0 0 0
0 0 0 1

x scale
y scale

z scale

− 
 − 
 −
 
 

 (10.7) 

where 

 

  = rescaling along standard file x dimension
  = rescaling along standard file y dimension
  = rescaling along standard file z dimension

x scale
y scale
z scale

−
−
−

 

10.1.6 Perspective 
Perspective distortion is achieved by applying the 4x4 homogenous coordinate 

transformation matrix: 
1 0 0 0
0 1 0 0
0 0 1 0

1 1 1 1xview yview zview

 
 
 
 
 
 

 (10.8) 

where  

 

  = x coordinate from which image is viewed
  = y coordinate from which image is viewed
  = z coordinate from which image is viewed

xview
yview
zview

 

10.2 Singular Value Decomposition 
Let X denote an m x n matrix of real-valued data and rank r, where without loss of generality 

m≥n, and therefore r ≤ n. In the case of microarray data, xij is the expression level of the ith gene 
in the jth assay. The elements of the ith row of X form the n-dimensional vector gi, which we refer 
to as the transcriptional response of the ith gene. Alternatively, the elements of the jth column of 
X form the m-dimensional vector aj, which we refer to as the expression profile of the jth assay. 

The equation for singular value decomposition of X is the following: 
TX U V= ∑  (10.9) 

where U is an m x n matrix, ∑  is an n x n diagonal matrix, and VT is also an n x n matrix. 
The columns of U are called the left singular vectors, {uk}, and form an orthonormal basis for 
the assay expression profiles, so that ui·uj = 1 for i = j, and ui·uj = 0 otherwise. The rows of VT 
contain the elements of the right singular vectors, {vk}, and form an orthonormal basis for the 
gene transcriptional responses. The elements of ∑  are only nonzero on the diagonal, and are 
called the singular values. Thus, ∑  = diag(s1,...,sn). Furthermore, sk > 0 for 1 ≤ k ≤ r, and si = 0 
for (r+1) ≤ k ≤ n. By convention, the ordering of the singular vectors is determined by high-to-
low sorting of singular values, with the highest singular value in the upper left index of the S 
matrix. Note that for a square, symmetric matrix X, singular value decomposition is equivalent to 
diagonalization, or solution of the eigenvalue problem. 

One important result of the SVD of X is that: 
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( )

1

l
l T

k k k
k

X u s v
=

=∑  (10.10) 

is the closest rank-l matrix to X. The term “closest” means that X(l) minimizes the sum of the 
squares of the difference of the elements of X and X(l), ∑ij|xij – x(l)

ij|2. 
One way to calculate the SVD is to first calculate VT and S by diagonalizing XTX: 

2T TX X V V= ∑  (10.11) 
and then to calculate U as follows: 

1U XV −= ∑  (10.12) 
where the (r+1),...,n columns of V for which sk = 0 are ignored in the matrix multiplication of 

(10.12). Choices for the remaining n-r singular vectors in V or U may be calculated using the 
Gram-Schmidt orthogonalization process or some other extension method. In practice there are 
several methods for calculating the SVD that are of higher accuracy and speed 

Relation to principal component analysis. There is a direct relation between PCA and SVD 
in the case where principal components are calculated from the covariance matrix. If one 
conditions the data matrix X by centering each column, then XTX = Σigigi

T is proportional to the 
covariance matrix of the variables of gi (i.e., the covariance matrix of the assays ). By (10.11), 
diagonalization of XTX yields VT, which also yields the principal components of {gi}. So, the 
right singular vectors {vk} are the same as the principal components of {gi}. The eigenvalues of 
XTX are equivalent to sk

2, which are proportional to the variances of the principal components. 
The matrix U∑  then contains the principal component scores, which are the coordinates of the 
genes in the space of principal components.  

If instead each row of X is centered, XXT = Σjajaj
T is proportional to the covariance matrix of 

the variables of aj (i.e. the covariance matrix of the genes). In this case, the left singular vectors 
{uk} are the same as the principal components of {aj}. The sk

2 are again proportional to the 
variances of the principal components. The matrix ∑ VT again contains the principal component 
scores, which are the coordinates of the assays in the space of principal components. 

10.2.1 Uniqueness of the optimal solution to the absolute orientation problem 
We show that the best rotation R to (6.9) is unique. Let 

1 1 1 2 2 2 3 3 3
T T T TM U V s u v s u v s u v= ∑ = + +  (10.13) 

be an SVD of M, where U and V are orthogonal matrices and ∑  is diagonal. The solution 
for R is VUt. U, ∑ , and V are unique 1) making the same permutation P of the columns of U, 
elements of ∑ , and columns of V , or 2) changing the sign of the corresponding columns of U 
and V, or 3) replacing columns of U and V corresponding to repeated singular values by any 
orthonormal basis of the span defined by the columns. This corresponds to rotating the columns 
by an orthogonal matrix. 

For a square matrix M with an SVD M = U∑ Vt, all three changes do not affect VUt. Let the 
new SVD under any of these changes be ' ' 'TU V∑ . For rotation, let 

' ,    'U UT V VT= =  (10.13) 
then 

' 'T T T TV U VTT U VU= =  (10.13) 
 since TTt = I. The same reasoning can be applied to permutation since permutation matrices 

are special cases of rotation matrices. Changing signs of corresponding columns of U and V will 
not change VUT since 1 1 2 2 3 3

T T T TVU v u v u v u= + + . 
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10.2.2 Closedness of SVD 
Suppose that kM M→ , that ( , , )k k kU V∑ is an arbitrary SVD of Mk, and that 

( , , ) ( , , )k k kU V U V∑ → ∑ . To show that SVD, viewed as a point-to-set mapping, is closed, we 
must show that ( , , )U V∑  is a SVD of M. 

From the closedness of SO(3), U and V are orthonormal matrices. Likewise, the set of 
diagonal matrices in )3(℘  is a closed subgroup and, hence, ∑  is a diagonal matrix. Therefore, 
( , , )U V∑  is an SVD of some matrix ' TM U V= ∑ . However, by the continuity of transposition 
and matrix multiplication, if ( , , ) ( , , )k k kU V U V∑ → ∑ , then , T T

k k kU V U V∑ → ∑ and, hence, 
'kM M→ . Therefore, M=M’ and, consequently, ( , , )U V∑ is an SVD of M. 

 

10.3 Matlab and C code 
10.3.1 GLSDC function 
 

function [sys,x0,str,ts] = 
sfunGLS3(t,x,u,flag,X0,Markers,MV_SamplingTime,CCDsideH,CCDsideV,focal,Step,M
inMark) 
  
% S-function for gaussian least square position and orientation estimation 
  
persistent nUsedMarkers 
  
switch flag, 
  %%%%%%%%%%%%%%%%%% 
  % Initialization % 
  %%%%%%%%%%%%%%%%%% 
  case 0, 
    
[sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,MV_SamplingTime); 
  
  %%%%%%%%%% 
  % Update % 
  %%%%%%%%%% 
   case 2, 
    
[sys,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,Step,MinMa
rk); 
  
  %%%%%%%%%%% 
  % Outputs % 
  %%%%%%%%%%% 
  case 3, 
    sys=[x;nUsedMarkers]; 
  
  %%%%%%%%%%%%% 
  % Terminate % 
  %%%%%%%%%%%%% 
  case 9, 
    sys=mdlTerminate(t,x,u); 
  
  %%%%%%%%%%%%%%%%%%%% 
  % Unexpected flags % 
  %%%%%%%%%%%%%%%%%%%% 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
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end 
  
% end sfuntmpl 
  
% 
%============================================================================
= 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%============================================================================
= 
% 
function 
[sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,MV_SamplingTime) 
% 
% call simsizes for a sizes structure, fill it in and convert it to a 
% sizes array. 
  
[components,nmarkers]=size(Markers); 
  
sizes = simsizes; 
  
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 6; 
sizes.NumOutputs     = 6+1; 
sizes.NumInputs      = 2*nmarkers; 
sizes.DirFeedthrough = 0; 
sizes.NumSampleTimes = 1;   % at least one sample time is needed 
  
sys = simsizes(sizes); 
  
nUsedMarkers=-1; 
  
x0=X0; 
str = []; 
ts  = [MV_SamplingTime 0]; 
  
% end mdlInitializeSizes 
  
% 
%============================================================================
= 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%============================================================================
= 
% 
function 
[x,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,Step,MinMark
) 
  
Xk=x; 
for k=1:Step, 
     [Xk,nUsedMarkers]=gales1(Xk,u,Markers',focal,CCDsideH,CCDsideV,MinMark); 
end 
x=Xk; 
  
% end mdlUpdate 
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% 
%============================================================================
= 
% mdlTerminate 
% Perform any end of simulation tasks. 
%============================================================================
= 
% 
function sys=mdlTerminate(t,x,u) 
sys = []; 
  
% end mdlTerminate 
  
  
function [Xknew,nUsedMarkers] = 
gales1(Xk,Gk,Markers,f,CCDsideH,CCDsideV,MinMark) 
  
N=size(Markers,1); 
W=eye(2*N); 
  
% calculate projections and gradients 
A=derivatG(Markers,Xk,f); 
Gs=computG(Markers,Xk,f); 
  
% indexes to consider only markers inside the camera CCD 
MkIn= (abs(Gk(1:2:2*N)) < ones(N,1)*CCDsideH) .* (abs(Gk(2:2:2*N)) < 
ones(N,1)*CCDsideV); 
UVIn=reshape(repmat(MkIn,1,2)',2*N,1); 
ind=find([UVIn].*[1:2*N]'>0); 
  
% consider the right column and rows in A and W  
A=A(ind,:); 
W=W(ind,ind); 
  
% calculate difference in G 
deltaGk=diag([UVIn])*(Gk-Gs); 
deltaGk=deltaGk(ind); 
  
% descent 
P=A'*W*A; 
dXk=pinv(P)*A'*W*deltaGk; 
  
% number of used markers 
nUsedMarkers=size(A,1)/2; 
     
% update only if the number of markers is above the minimum 
if ( nUsedMarkers > (MinMark-1) ), 
    Xknew=Xk+dXk;    
else 
    Xknew=Xk; 
end 
  
  
%Calcolo della matrice A delle derivate di G  
%rispetto alle coordinate e all'orientazione del centro del cestello  
function AA=derivatG(Markers,Xk,f) 
  
N=size(Markers,1); 
AA=zeros(2*N,6); 
A=zeros(2,6); 
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for ii=1:N, 
     
    Point=Markers(ii,:); 
     
    xM=Point(1); 
    yM=Point(2); 
    zM=Point(3); 
     
    xD=Xk(1); 
    yD=Xk(2); 
    zD=Xk(3); 
    psi=Xk(4); 
    theta=Xk(5); 
    phi=Xk(6); 
     
    t1 = sin(psi); 
    t2 = cos(theta); 
    t3 = t1*t2; 
    t4 = t3*xM; 
    t5 = cos(psi); 
    t6 = cos(phi); 
    t7 = t5*t6; 
    t8 = sin(theta); 
    t9 = t1*t8; 
    t10 = sin(phi); 
    t11 = t9*t10; 
    t14 = t5*t10; 
    t15 = t9*t6; 
    t16 = -t14+t15; 
    t19 = t5*t2; 
    t20 = t19*xM; 
    t21 = t1*t6; 
    t22 = t5*t8; 
    t23 = t22*t10; 
    t25 = (-t21+t23)*yM; 
    t28 = t1*t10+t22*t6; 
    t29 = t28*zM; 
    t30 = xD+t20+t25+t29; 
    t31 = t30*t30; 
    t32 = 1/t31; 
    t33 = (yD+t4+(t7+t11)*yM+t16*zM)*t32; 
    t34 = 1/t30; 
    t37 = -t7-t11; 
    t41 = -t4+t37*yM+(t14-t15)*zM; 
    t45 = t10*yM; 
    t47 = t6*zM; 
    t54 = -t22*xM+t19*t45+t19*t47; 
    t64 = t28*yM+(t21-t23)*zM; 
    t68 = t2*t10; 
    t70 = t2*t6; 
    t73 = (zD-t8*xM+t68*yM+t70*zM)*t32; 
    A(1,1) = -t33; 
    A(1,2) = t34; 
    A(1,3) = 0.0; 
    A(1,4) = (t20+t25+t29)*t34-t33*t41; 
    A(1,5) = (-t9*xM+t3*t45+t3*t47)*t34-t33*t54; 
    A(1,6) = (t16*yM+t37*zM)*t34-t33*t64; 
    A(2,1) = -t73; 
    A(2,2) = 0.0; 
    A(2,3) = t34; 
    A(2,4) = -t73*t41; 
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    A(2,5) = (-t2*xM-t8*t10*yM-t8*t6*zM)*t34-t73*t54; 
    A(2,6) = (t70*yM-t68*zM)*t34-t73*t64; 
     
    AA([2*ii-1,2*ii],1:6)=f*A; 
  
end 
   
% computation of the gradient of G 
function G=computG(Markers,Xk,f) 
  
N=size(Markers,1); 
G=zeros(2*N,1); 
  
for ii=1:N, 
     
    Point=Markers(ii,:); 
    xM=Point(1); 
    yM=Point(2); 
    zM=Point(3); 
    xD=Xk(1); 
    yD=Xk(2); 
    zD=Xk(3); 
    psi=Xk(4); 
    theta=Xk(5); 
    phi=Xk(6); 
     
    t1 = sin(psi); 
    t2 = cos(theta); 
    t5 = cos(psi); 
    t6 = cos(phi); 
    t8 = sin(theta); 
    t9 = t1*t8; 
    t10 = sin(phi); 
    t22 = t5*t8; 
    t31 = 1/(xD+t5*t2*xM+(-t1*t6+t22*t10)*yM+(t1*t10+t22*t6)*zM); 
    Ui = (yD+t1*t2*xM+(t5*t6+t9*t10)*yM+(-t5*t10+t9*t6)*zM)*t31; 
    Vi = (zD-t8*xM+t2*t10*yM+t2*t6*zM)*t31; 
     
    G([2*ii-1,2*ii])=f*[Ui; Vi]; 
     
  end 
   
   

 

10.3.2 LHM function 
 
function [sys,x0,str,ts] = 

sfunLHM1(t,x,u,flag,X0,Markers,CCDsideH,CCDsideV,focal,tol,epsilon,met,T) 
% S-function che usa l'algoritmo LHM per stimare la posizione e gli angoli 

di eulero    
  
persistent nUsedMarkers 
%persistent Option 
  
switch flag, 
  %%%%%%%%%%%%%%%%%% 
  % Initialization % 
  %%%%%%%%%%%%%%%%%% 
  case 0, 
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    [sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,T); 
  
  %%%%%%%%%% 
  % Update % 
  %%%%%%%%%% 
   case 2, 
    

[sys,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,tol,epsilo
n,met); 

  
  %%%%%%%%%%% 
  % Outputs % 
  %%%%%%%%%%% 
  case 3, 
    sys=mdlOutput(t,x,u,nUsedMarkers); 
  
  %%%%%%%%%%%%% 
  % Terminate % 
  %%%%%%%%%%%%% 
  case 9, 
    sys=mdlTerminate(t,x,u); 
  
  %%%%%%%%%%%%%%%%%%%% 
  % Unexpected flags % 
  %%%%%%%%%%%%%%%%%%%% 
  otherwise 
      error(['Unhandled flag = ',num2str(flag)]) 
  
end 
  
% end sfuntmpl 
  
% 
%=========================================================================

==== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-

function. 
%=========================================================================

==== 
% 
function [sys,x0,str,ts,nUsedMarkers]=mdlInitializeSizes(X0,Markers,T) 
% 
% call simsizes for a sizes structure, fill it in and convert it to a 
% sizes array. 
  
[components,nmarkers]=size(Markers); 
  
sizes = simsizes; 
  
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 12; 
sizes.NumOutputs     = 6+1; 
sizes.NumInputs      = 2*nmarkers; 
sizes.DirFeedthrough = 0; 
sizes.NumSampleTimes = 1;   % at least one sample time is needed 
  
sys = simsizes(sizes); 
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nUsedMarkers=-1; 
%  Option = tol 
%  Option.epsilon= epsilon 
% Option.method = 'SVD' 
rot=[0 1 0; 0 0 -1; 1 0 0]; 
x0=[X0(1:9);rot*X0(10:12)]; 
str = []; 
ts  = [T 0]; 
  
% end mdlInitializeSizes 
  
% 
%=========================================================================

==== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%=========================================================================

==== 
% 
function 

[x,nUsedMarkers]=mdlUpdate(t,x,u,Markers,CCDsideH,CCDsideV,focal,tol,epsilon,
met) 

% Secondo le nostre considerazioni l'algoritmo LHM utilizza un sistema di 
% riferimento diverso da quello descritto nell'articolo e soprattutto non 

è destrorso, il sistema di  
% riferimento che secondo noi viene utilizzato è: 
%                  /|\  
%                   |  y'=v' 
%                   | 
%                   |  
%                   |_______________> 
%     z' entrante nel foglio       x'=u' 
%  
% Questo spiega i problemi che si hanno anche in uscita con gli angoli 
%  
% Il nostro sistema di riferimento è il classico sistema aereonautico di 

assi corpo: 
%                   __________________> 
%  x entrante nel   |                y=u 
%      foglio       |  
%                   | 
%                  \|/z=v                                    
% La trasformazione rigida tra questi sistemi di riferimento è  
%  [x'; y';z']= R * [x; y; z]   dove R= [0 1 0; 0 0 -1; 1 0 0] 
%  [u';v']= [1 0; 0 -1] *[u;v] 
% 
% Secondo noi l'alg LHM restituisce una matrice di rotazione tra sistemi 

di 
% riferimenti non destrorsi e questo spiega perchè non ritorni la 
% trasformazione per gli angoli di eulero, per fare in modo che questi 

ritornino 
% si devono invertire alcuni segni e scambiare tra loro le definizioni 
% degli angoli stessi, mentre la trasformazione funziona per il vettore di 
% traslazione t come facilmente intuibile. 
% 
Xk=x; 
a=size(Markers); 
nMarkers=a(2); 
%seleziono i markers interni allo spazio della telecamera 
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MkIn= (abs(u(1:2:2*nMarkers)) < ones(nMarkers,1)*CCDsideH) .* 
(abs(u(2:2:2*nMarkers)) < ones(nMarkers,1)*CCDsideV); 

  
markVisti=sum(MkIn); 
  
if(markVisti>4) 
    %sistemo gli ingressi 2D per l'algoritmo LHM dando soltanto le 

coordinate dei LEDs visibili e riportando in metri      
    Qp1=reshape(u,2,nMarkers); 
    Qp(1,:)=Qp1(1,find([MkIn].*[1:nMarkers]'>0)); 
    Qp(2,:)=-Qp1(2,find([MkIn].*[1:nMarkers]'>0));  %cambio il segno 
    Qp=Qp./focal; 
    %seleziono solo i Markers visibili      
    for i=1:3 
        P(i,:)=Markers(i,find([MkIn].*[1:nMarkers]'>0)); 
    end 
    %cambio sistema di riferimento da assi corpo della telecamera al 
    %sistema descritto sopra 
    P=[0 1 0; 0 0 -1; 1 0 0]*P;     
    Option.tol=tol; 
    Option.epsilon=epsilon; 
    Option.method=met; 
    Option.initR=reshape(Xk(1:9),3,3);  %inizializzo initR con la matrice 

trovata al passo precedente 
    
    [R, t, it, obj_err, img_err] = objpose(P, Qp, Option);  %Funzione LHM 

originale 
%    it 
%    obj_err 
%    img_err 
    XK1=[reshape(R,9,1);t]; %nuovo vettore di stato 
else 
    XK1=Xk; 
end 
  
x=XK1; 
nUsedMarkers=markVisti; 
  
% end mdlUpdate 
function sys=mdlOutput(t,x,u,nUsedMarkers) 
R=reshape(x(1:9),3,3); 
rot=[0 0 1; 1 0 0; 0 -1 0]; 
 %R=rot*R; 
  
ypr(2) = atan2(R(2,3),R(3,3)); 
ypr(1) = -asin(-R(1,3)); 
ypr(3) = atan2(R(1,2),R(1,1)); 
  
t=rot*x(10:12); 
sys = [t;ypr';nUsedMarkers]; 
  
 %sys = [reshape(R,9,1);t;nUsedMarkers]; 
  
% 
%=========================================================================

==== 
% mdlTerminate 
% Perform any end of simulation tasks. 
%=========================================================================

==== 
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% 
function sys=mdlTerminate(t,x,u) 
sys=[]; 
% end mdlTerminate 
  
  
  
function [R, t, it, obj_err, img_err] = objpose(P, Qp, options) 
% OBJPOSE - Object pose estimation 
%   OBJPOSE(P, Qp) compute the pose (exterior orientation) 
%   between the 3D point set P represented in object space  
%   and its projection Qp represented in normalized image  
%   plane. It implements the algorithm described in "Fast  
%   and Globally Convergent Pose Estimation from Video  
%   Images" by Chien-Ping Lu et. al. to appear in IEEE  
%   Transaction on Pattern Analysis and Machine intelligence 
% 
%   INPUTS: 
%     P - 3D point set arranged in a 3xn matrix 
%     Qp - 2D point set arranged in a 2xn matrix 
%     options - a structure specifies certain parameters in the algorithm. 
%  
%      Field name       Parameter                              Default 
%  
%      OPTIONS.initR    initial guess of rotation              none 
%      OPTIONS.tol      Convergence tolerance:                 1e-5  
%                       abs(new_value-old_value)/old_value<tol 
%      OPTIONS.epsilon  lower bound of the objective function  1e-8 
%      OPTIONS.method   'SVD' use SVD for solving rotation     'QTN' 
%                       'QTN' use quaternion for solving  
%                       rotation  
%   OUTPUTS: 
%     R - estimated rotation matrix 
%     t - estimated translation vector 
%     it - number of the iterations taken 
%     obj_err - object-space error associated with the estimate 
%     img_err - image-space error associated with the estimate 
% 
% TOL = 1E-5; 
% EPSILON = 1E-8; 
%  METHOD = 'SVD'; 
  
if nargin >= 3 
  if isfield(options, 'tol') 
    TOL = options.tol; 
  end 
   
  if isfield(options, 'epsilon') 
    EPSILON = options.epsilon; 
  end 
   
  if isfield(options, 'method') 
    METHOD = options.method; 
  end 
end 
   
n = size(P,2); 
  
% move the origin to the center of P 
pbar = sum(P,2)/n; 
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for i = 1:n 
  P(:,i) = P(:,i)-pbar; 
end 
  
Q(1:3,n) = 0; 
for i = 1 : n 
  Q(:,i) = [Qp(:,i);1]; 
end 
  
% compute projection matrices 
F(1:3,1:3,1:n) = 0; 
V(1:3) = 0; 
for i = 1:n 
  V = Q(:,i)/Q(3,i); 
  F(:,:,i) = (V*V.')/(V.'*V); 
end 
  
% compute the matrix factor required to compute t 
tFactor = inv(eye(3)-sum(F,3)/n)/n; 
  
it = 0; 
if isfield(options, 'initR')  % initial guess of rotation is given 
  Ri = options.initR; 
  Sum(1:3,1) = 0; 
  for i = 1:n 
    Sum = Sum + (F(:,:,i)-eye(3))*Ri*P(:,i); 
  end 
  ti = tFactor*Sum; 
     
  % calculate error 
  Qi = xform(P, Ri, ti); 
  old_err = 0; 
  vec(1:3,1) = 0; 
  for i = 1 : n 
    vec = (eye(3)-F(:,:,i))*Qi(:,i); 
    old_err = old_err + vec'*vec; 
    %     old_err = old_err + dot(vec,vec); 
  end 
   
else % no initial guess; use weak-perspective approximation 
  % compute initial pose estimate 
  [Ri, ti, Qi, old_err] = abskernel(P, Q, F, tFactor, METHOD); 
  it = 1; 
end 
  
% compute next pose estimate 
[Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD); 
it = it + 1;  
  
while (abs((old_err-new_err)/old_err) > TOL) & (new_err > EPSILON)  
   
  old_err = new_err; 
   
  % compute the optimal estimate of R 
  [Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD); 
  it = it + 1; 
  
end 
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R = Ri; 
t = ti; 
obj_err = sqrt(new_err/n); 
  
if (nargout >= 5) % calculate image-space error 
  Qproj = xformproj(P, Ri, ti); 
  img_err = 0; 
  vec(1:3,1) = 0; 
  for i = 1:n 
    vec = Qproj(i)-Qp(i); 
    img_err = img_err + vec'*vec; 
%     img_err = img_err + dot(vec,vec); 
  end 
end 
img_err = sqrt(img_err/n); 
  
% correct possible reflection w.r.t the projection center 
if t(3) < 0 
  R = -R; 
  t = -t; 
end 
  
% get back to original refernce frame 
t = t - Ri*pbar; 
  
% end of OBJPOSE 
  
function [R, t, Qout, err2] = abskernel(P, Q, F, G, method) 
% ABSKERNEL -  Absolute orientation kernel 
%   ABSKERNEL is the function for solving the 
%   intermediate absolute orientation problems 
%   in the inner loop of the OI pose estimation 
%   algorithm 
% 
%   INPUTS: 
%     P - the reference point set arranged as a 3xn matrix 
%     Q - the point set obtained by transforming P with 
%         some pose estimate (typically the last estimate) 
%     F - the array of projection matrices arranged as 
%         a 3x3xn array 
%     G - a matrix precomputed for calculating t 
%     method - 'SVD'  -> use SVD solution for rotation 
%              'QTN' -> use quaterion solution for rotation 
% 
% 
%   OUTPUTS: 
%     R - estimated rotation matrix 
%     t - estimated translation vector 
%     Qout - the point set obtained by transforming P with 
%         newest pose estimate 
%     err2 - sum of squared object-space error associated  
%         with the estimate 
  
n = size(P,2); 
  
for i = 1:n 
  Q(:,i) = F(:,:,i)*Q(:,i); 
end 
  
% compute P' and Q' 
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pbar = sum(P,2)/n; 
qbar = sum(Q,2)/n; 
for i = 1:n 
  P(:,i) = P(:,i)-pbar; 
  Q(:,i) = Q(:,i)-qbar; 
end 
  
if method == 'SVD' % use SVD solution 
  % compute M matrix 
  M(1:3,1:3) = 0; 
  for i = 1:n 
    M = M+P(:,i)*Q(:,i).'; 
  end 
   
  % calculate SVD of M 
  [U,S,V] = svd(M); 
   
  % compute rotation matrix R 
  R = V*(U.'); 
elseif method == 'QTN' % use quaternion solution 
  % compute M matrix 
  A(1:4,1:4) = 0; 
  for i = 1:n 
    A = A + qmatQ([1;Q(:,i)]).'*qmatW([1;P(:,i)]); 
  end 
   
  % Find the largest eigenvalue of A  
  eigs_options.disp = 0; 
  [V,D] = eigs(A, eye(size(A)), 1, 'LM', eigs_options); 
   
  % compute rotation matrix R from the quaternion that 
  % corresponds to the largest egienvalue of A 
  R = quat2mat(V); 
end 
  
Sum(1:3,1) = 0; 
for i = 1:n 
  Sum = Sum + F(:,:,i)*R*P(:,i); 
end 
t = G*Sum; 
  
Qout = xform(P, R, t); 
  
% calculate error 
err2 = 0; 
vec(1:3,1) = 0; 
for i = 1 : n 
  vec = (eye(3)-F(:,:,i))*Qout(:,i); 
  err2 = err2 + vec'*vec; 
%   err2 = err2 + dot(vec,vec); 
end 
  
% end of ABSKERNEL 
  
  
function Q = xform(P, R, t) 
% XFORM - Transform 
%   XFORM(P, R, t) transform the 3D point set P by rotation 
%   R and translation t 
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%    
  
n = size(P,2); 
  
Q(1:3,n) = 0; 
  
for i = 1:n 
  Q(:,i) = R*P(:,i)+t; 
end 
  
%end function 
  
  
function Qp = xformproj(P, R, t) 
% XFORMPROJ - Transform and project 
%   XFORMPROJ(P, R, t) transform the 3D point set P by  
%   rotation R and translation t, and then project them 
%   to the normalized image plane 
  
%    
  
n = size(P,2); 
  
Q(1:3,n) = 0; 
Qp(1:2,n) = 0; 
  
for i = 1:n 
  Q(:,i) = R*P(:,i)+t; 
  Qp(:,i) = Q(1:2,i)/Q(3,i); 
end 
  
%end function 
  
  
function Q = qmatQ(q) 
% QMATQ - Compute the Q matrix (4x4) of quaternion q 
%    
  
w = q(1); x = q(2); y = q(3); z = q(4); 
Q = [w, -x, -y, -z; 
     x, w, -z, y; 
     y, z, w, -x; 
     z, -y, x, w]; 
  
%end function 
  
function W = qmatW(q) 
% QMATW - Compute the W matrix (4x4) of quaternion q 
%    
  
w = q(1); x = q(2); y = q(3); z = q(4); 
W = [w, -x, -y, -z; 
     x, w, z, -y; 
     y, -z, w, x; 
     z, y, -x, w]; 
  
%end function 
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function R = quat2mat(q) 
% QUAT2MAT - Convert a quaternion to a 3x3 rotation matrix 
%    
  
a = q(1); b = q(2); c = q(3); d = q(4); 
R = [a^2+b^2-c^2-d^2, 2*(b*c-a*d), 2*(b*d+a*c); ... 
     2*(b*c+a*d), a^2+c^2-b^2-d^2, 2*(c*d-a*b); ... 
     2*(b*d-a*c), 2*(c*d+a*b), a^2+d^2-b^2-c^2]; 
  
%end function 
   

10.3.3 Labeling function 
/*  S-Function for Marker Labeling ** G.Campa & M.Mammarella ** November 

2004 *****************/ 
  
#define S_FUNCTION_NAME labeling 
#define S_FUNCTION_LEVEL 2 
  
  
#include "simstruc.h" 
  
/* mdlCheckParameters, check parameters, this routine is called later from 

mdlInitializeSizes */ 
#define MDL_CHECK_PARAMETERS 
static void mdlCheckParameters(SimStruct *S) 
{ 
    /* Basic check : All parameters must be real positive vectors                    

*/ 
    real_T *pr;                             
  
    int_T  i, el, nEls; 
    for (i = 0; i < 5; i++) { 
        if (mxIsEmpty(    ssGetSFcnParam(S,i)) || mxIsSparse(   

ssGetSFcnParam(S,i)) || 
            mxIsComplex(  ssGetSFcnParam(S,i)) || !mxIsNumeric( 

ssGetSFcnParam(S,i))  ) 
                  { ssSetErrorStatus(S,"Parameters must be real finite 

vectors"); return; }  
        pr   = mxGetPr(ssGetSFcnParam(S,i)); 
        nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i)); 
        for (el = 0; el < nEls; el++) { 
            if (!mxIsFinite(pr[el]))  
                  { ssSetErrorStatus(S,"Parameters must be real finite 

vectors"); return; } 
        } 
    } 
  
    /* Check number of elements in parameter: nmarker                                

*/ 
    if ( mxGetNumberOfElements(ssGetSFcnParam(S,0)) != 1 ) 
    { ssSetErrorStatus(S,"The parameter must be a scalar"); return; } 
  
    /* get the basic parameters and check them                                       

*/ 
    pr=mxGetPr(ssGetSFcnParam(S,0)); 
    if ( pr[0] < 1 ) 
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    { ssSetErrorStatus(S,"Number of markers must be greater than zero"); 
return; } 

  
  
    /* Check number of elements in parameter: max number of point                    

*/ 
    if ( mxGetNumberOfElements(ssGetSFcnParam(S,1)) != 1 ) 
    { ssSetErrorStatus(S,"The parameter must be a scalar"); return; } 
  
    /* get the basic parameters and check them                                       

*/ 
    pr=mxGetPr(ssGetSFcnParam(S,1)); 
    if ( pr[0] < 1 ) 
    { ssSetErrorStatus(S,"Max number of point must be greater than zero"); 

return; } 
  
        /* Check number of elements in parameter: focal length                       

*/ 
    if ( mxGetNumberOfElements(ssGetSFcnParam(S,2)) != 1 ) 
    { ssSetErrorStatus(S,"The parameter must be a scalar"); return; } 
  
    /* get the basic parameters and check them                                       

*/ 
    pr=mxGetPr(ssGetSFcnParam(S,2)); 
    if ( pr[0] < 0 ) 
    { ssSetErrorStatus(S,"Focal length cannot be negative"); return; } 
  
    /* Check number of elements in parameter: screen limit                           

*/ 
    if ( mxGetNumberOfElements(ssGetSFcnParam(S,3)) != 4 )      // screen 

limit 
    { ssSetErrorStatus(S,"The screen limit must be a 4 elements vector"); 

return; } 
  
    
     /* Check number of elements in parameter: sampling time                         

*/ 
    if ( mxGetNumberOfElements(ssGetSFcnParam(S,4)) != 1 ) 
    { ssSetErrorStatus(S,"The parameter must be a scalar"); return; } 
  
    /* get the basic parameters and check them                                      

*/ 
    pr=mxGetPr(ssGetSFcnParam(S,4)); 
    if ( pr[0] < 0 ) 
    { ssSetErrorStatus(S,"Sampling Time cannot be negative"); return; } 
  
     
    
} 
  
/* mdlInitializeSizes - initialize the sizes array 

********************************************/ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    real_T *n, *m;   
     
    n=mxGetPr(ssGetSFcnParam(S,0));               // number of markers 
    m=mxGetPr(ssGetSFcnParam(S,1));               // number of max point 

from input 
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    ssSetNumSFcnParams(S,5);                          /* number of 

expected parameters        */ 
  
    /* Check the number of parameters and then calls mdlCheckParameters to 

see if they are ok */ 
    if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) 
    { mdlCheckParameters(S); if (ssGetErrorStatus(S) != NULL) return; } 

else return; 
    n=mxGetPr(ssGetSFcnParam(S,0)); 
  
    ssSetNumContStates(S,0);                          /* number of 

continuous states          */ 
    ssSetNumDiscStates(S,0);                          /* number of 

discrete states            */ 
  
    if (!ssSetNumInputPorts(S,2)) return;             /* number of input 

ports                */ 
    ssSetInputPortWidth(S,0,(int_T)(n[0]*4));         /* first input port 

width               */ 
    ssSetInputPortWidth(S,1,(int_T)(m[0]*2));         /* second input port 

width              */ 
    ssSetInputPortDirectFeedThrough(S,0,1);           /* first port direct 

feedthrough flag   */ 
    ssSetInputPortDirectFeedThrough(S,1,1);           /* second port 

direct feedthrough flag  */ 
  
    if (!ssSetNumOutputPorts(S,2)) return;            /* number of output 

ports               */ 
    ssSetOutputPortWidth(S,0,(int_T)(n[0]*2));        /* first output port 

width              */ 
    ssSetOutputPortWidth(S,1,(int_T)(2*n[0]));        /* second output 

port width             */ 
  
    ssSetNumSampleTimes(S,0);                         /* number of sample 

times               */ 
  
    ssSetNumRWork(S,(int_T)(n[0]*m[0]+n[0]+m[0]));      /* number real 

work vector elements     */ 
    ssSetNumIWork(S,m[0]);                         /* number int_T work 

vector elements    */ 
    ssSetNumPWork(S,0);                               /* number ptr work 

vector elements      */ 
    ssSetNumModes(S,0);                               /* number mode work 

vector elements     */ 
    ssSetNumNonsampledZCs(S,0);                       /* number of 

nonsampled zero crossing   */ 
} 
  
/* mdlInitializeSampleTimes - initialize the sample times array 

*******************************/ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    real_T *t; 
    t=mxGetPr(ssGetSFcnParam(S,4)); 
  
    ssSetSampleTime(S, 0, *t); 
    ssSetOffsetTime(S, 0, 0); 
} 
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/* mdlStart - initialize work vectors 

*********************************************************/ 
#define MDL_START 
static void mdlStart(SimStruct *S) 
{ 
    int_T i,j; 
    real_T *nMark,*nPoint; 
    real_T *errM; 
    nMark=mxGetPr(ssGetSFcnParam(S,0)); 
    nPoint=mxGetPr(ssGetSFcnParam(S,1));       // max num di punti 
    errM= ssGetRWork(S); 
  
    for (i=0;i<nMark[0]+1;i++) 
        for(j=0;j<nPoint[0]+1;j++)             // inizializzo anche i 

vettori di minimo 
            errM[j*(int_T)(nMark[0])+i]=1000;    
} 
  
/* mdlOutputs - compute the outputs 

***********************************************************/ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
int_T     i, j, k; 
real_T             *y1  = ssGetOutputPortRealSignal(S,0); 
real_T             *y2  = ssGetOutputPortRealSignal(S,1); 
InputRealPtrsType up1  = ssGetInputPortRealSignalPtrs(S,0); 
InputRealPtrsType up2  = ssGetInputPortRealSignalPtrs(S,1); 
real_T *focal; 
real_T *nMarkR; 
int_T nMark; 
real_T *nPointR; 
int_T nPoint; 
real_T *errM; 
real_T *minR; 
real_T *minC; 
int_T *indiciC; 
real_T *limit; 
  
// y[2] y è puntatore a vettore; 
// (*up[2]) up è puntatore a puntatore 
  
  
nMarkR=mxGetPr(ssGetSFcnParam(S,0)); 
nPointR=mxGetPr(ssGetSFcnParam(S,1)); 
focal=mxGetPr(ssGetSFcnParam(S,2)); 
limit=mxGetPr(ssGetSFcnParam(S,3)); 
  
nMark=(int_T)(nMarkR[0]); 
nPoint=(int_T)(nPointR[0]); 
  
  
// si implementa la camera simulata 
  
for (i=0;i<nMark;i++) 
    { 
//  Xi[i]= (*up1[4*i]); (asse di profondità della camera) 
//  Yi[i]= (*up1[4*i +1]); (asse che punta a destra) 
//  Zi[i]= (*up1[4*i +2 ]); (asse che punta verso il basso) 
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    if ((*up1[4*i]) !=0 )       // division by zero checking 
        { 
        y1[2*i]=   focal[0] * (*up1[4*i+ 1])/(*up1[4*i]); 
        y1[2*i+1]= focal[0] * (*up1[4*i+ 2])/(*up1[4*i]); 
        } 
    else 
        y1[2*i]=y1[2*i+1]=0; 
    } 
  
  
// labeling dei markers 
  
errM= ssGetRWork(S); 
minR = &errM[nMark*nPoint]; //il vettore di minimo di riga inizia alla 

posizione nMark*nPoint 
                                //ed ha nMark posizioni 
minC= &minR[nMark];         //il vettore di minimo di colonna inizia alla 

posizione nMark 
                                //ed ha nPoint posizioni 
  
indiciC=ssGetIWork(S);          // vettore indici delle colonne ha nPoint 

posizioni  
  
for (i=0;i<nMark;i++) 
    {    
    minR[i]=1000; 
    for(j=0;j<nPoint;j++)             // inizializzo errM e minR e minC a 

1000 
            { 
            errM[j*nMark+i]=1000;           // questo va fatto per non 

confondersi con il passo precedente 
            minC[j]=1000; 
            } 
    } 
for (i=0;i< nMark;i++) 
    { 
    for (j=0; j<nPoint;j++) 
        {    
            if ((  *up2[2*j]  >= limit[0]) && ( *up2[2*j]  <= limit[1] ) 

&& (  *up2[2*j+1]  >= limit[2]) && ( *up2[2*j+1]  <= limit[3] ) )            
                {                                                    // 

calcolo le distanze se i markers trovati rientrano nello schermo 
                errM[j*nMark +i]=  ( (*up2[2*j] - y1[2*i])*(*up2[2*j] - 

y1[2*i])+ 
                                        (*up2[2*j+1] - y1[2*i 

+1])*(*up2[2*j+ 1] - y1[2*i +1])); 
                }        
        } 
    } 
  
for (i=0; i< nMark; i++) 
    { 
    for (j=0;j<nPoint; j++) 
        { 
        if (errM[j*nMark +i] < minR[i]) 
            minR[i]=errM[j*nMark +i]; 
                     
        if (errM[j*nMark +i] < minC[j]) 
            { 
            minC[j]=errM[j*nMark +i]; 
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            indiciC[j]=i+1; 
            } 
        if (minC[j]==1000)      
            indiciC[j]=0; 
        } 
     
    } 
  
for (i=0;i<nMark;i++) 
    { 
        y2[2*i]=100;                    // inizializzo output altrimenti 

rimane il valore del passo 
        y2[2*i+1]=100;                  // precedente 
    }                                
  
  
  
for (j=0;j<nPoint; j++) 
    { 
    if(indiciC[j]>0) 
        { 
        if(minC[j] == minR[ (indiciC[j]-1) ]) 
            { 
            y2[2*(indiciC[j]-1)]= *up2[2*j];             
            y2[(2*(indiciC[j]-1)) +1]= *up2[2*j +1];                 
            } 
        } 
} 
 
} 
  
/* mdlTerminate - called when the simulation is terminated 

***********************************/ 
static void mdlTerminate(SimStruct *S) {} 
  
/* Trailer information to set everything up for simulink usage 

*******************************/ 
#ifdef  MATLAB_MEX_FILE                      /* Is this file being 

compiled as a MEX-file?   */ 
#include "simulink.c"                        /* MEX-file interface 

mechanism                 */ 
#else 
#include "cg_sfun.h"                         /* Code generation 

registration function        */ 
#endif 
 
 

 


