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Introduction

The present market of semiconductor is very competitive; on one side con-

sumers ask for always increasing performance and new possibilities, on the

other companies have to offer low prices in order to be successful. For what

concerns performance just think of the wide range of mobile applications,

such as PDAs, cellular phones, and laptops : quality of services, duration of

the battery and computational power are always taken into account when

buying new devices. On the other side, due to the competition, costs have

to be very low; this means that both recursive and non-recursive engineering

costs have to be kept under control.

Time is another important concern: it is usually true that the earlier a

product is presented to the market, the wider share of the market it will

gain. This leads modern semiconductor companies to look for viable ways

to design improved products in a short time. Because of the complexity of

the new electronic systems, this is not an easy task to be accomplished; even

tough electronic design automation (EDA) tools have greatly improved in

the recent years, a gap still exists between the rate foundries can produce

chips and the rate these chips can be designed.

A very common approach to deal with complexity and performance re-

quirements is to integrate as many functions as possible on a single chip

(System-On-Chip); this allows higher clock frequency and lower costs. In

connection to this also design reuse has spread in a great part of semicon-

ductor world. This means using in your system modules that others have

already designed and tested. This allows you to skip some steps in the de-



sign flow (at least for those modules) and saving a significant amount of

time.

In this framework lies the work of my thesis, developed at the StarCore,

a company headquartered in Austin, Texas. StarCore designs and licences

Digital Signal Processors as intellectual property; this is basically one of

the companies that offer its product to be used in other electronic systems,

avoiding licensees to spend time in designing it by themselves.

A Digital Signal Processor is a special kind of processor, designed to

execute calculus-intensive applications: encoding and decoding of informa-

tion, voice synthesis and recognition, compression and decompression of data,

Fourier Transform are just some examples. In many systems, thanks to its

programmability and its limited cost it is the suitable solution. For example

most mobile phones employs a DSP processor to perform base band operation

on the signal.

In these kind of systems, it is important that very few cycles are spent

doing other than signal processing, such as dealing with peripherals. In the

case of an audio signal it is important that the audio port asks for the fewer

cycle it is possible. For this reason at StarCore my activity was to design and

develop an audio port controller aiming to reduce at least the cycles asked

to the processor in case that the algorithm run is frame based.

For this purpose I designed hardware to be mapped into an FPGA, and

wrote some software for the DSP; I worked mainly with the Development

Board, used to prototype applications based on the StarCore processor.

The first part of my thesis introduces some concepts of the modern semi-

conductor world that I consider important in order to understand the envi-

ronment my work was developed. They are System-On-Chip, Design Reuse

and Intellectual Property. Besides those concepts I added an introduction to

the important technology of Digital Signal Processor.

In the second part of this report there is an introduction to my activity

at StarCore: the problem I faced, the resources available, the constraints, an

overview of the solution, and the design flow I used.



In the third part there are all the details of the implementation: the

architecture of the User FPGA, the details of the audio port controller and

some final considerations on the achievements.

In the appendix I considered useful to provide further details on the AHB

standard for On-Chip Buses and to show some meaningful part of the Verilog

Code I wrote.



Part I

First part



Chapter 1

The System-on-Chip and the

Design Reuse

Nowadays System-On-Chip and Design Reuse are two of the dominant paradigms

in the digital electronic world; in the chapter I would like to introduce both

of them trying to focus on their importance in the present semiconductor

world.

1.1 From the Printed Circuit Board to the

System on Chip

Integration is a key concept to understand the evolution of electronic system

from the very beginning up to now. In the early days every single device

was produced by itself and to create a simple system every component was

soldered on a board and connected to the others by wires. On the contrary

nowadays very large systems are created on a single chip, that is millions

of transistors on the same little piece of silicon. This is the result of the

integration, and I’ll try to explain this process in order to understand the

present panorama of the semiconductor world.

The first Integrated Circuit was born approximately in the late 50’s, in

Fairchild and Texas Instruments where they succeeded in producing resistors,



1.1 From the Printed Circuit Board to the System on Chip

capacitors, transistors and diodes on the same slice of silicon. Thanks to this

technological improvement the concurrence of vacuum tubes was beaten and

the semiconductor industry stopped to be an uncertain but promising reality

to became the ever-growing industry that we know today.

In the 70’s Large Scale of Integration (LSI) allowed to produce complex

systems such as memories, micro-controllers and microprocessors; the pro-

duction spread from the U.S. to Europe and other country in East Asia, such

as Japan, South Korea and Taiwan.

During the 80’s the driving applications were the Personal Computer and

other home electronic appliances. The former is important because to it

applies the paradigm called Printed Circuit Board (PCB). In fact the best

example of PCB is the PC’s motherboard: it is a board made of plastic

material where the processor, the memory and all the other modules can be

soldered and interconnected.

So the Printed Circuit Boards were the ground for electronic systems;

they allowed the integration of chips very different from each other, with ad-

hoc multi-layered connections. In this way many chips from different vendors

and with different functions could be assembled together in a single system.

In the 90’s finally came a new degree of integration: the System-On-

Chip. As the name suggests, a SoC is a complete system that stands on a

single slice of silicon in a single package. Many parts of an electronic system

have been integrated, thanks to both the miniaturization of devices and the

improvement of design tools. On the one hand this means higher allowed

frequencies, lower consumption and less silicon area, but on the other hand

there is an increased complexity that causes risks and costs.

To face this problem and to keep the complexity to a manageable size,

design reuse techniques were introduced; system designers were given the

possibility to integrate previously designed modules. This is the subject of

the next section.
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1.2 Intellectual Property Cells in Digital Design

1.2 Intellectual Property Cells in Digital De-

sign

The design of a System-On-Chip is one of the most challenging activity in

the modern era of semiconductor. Since SoCs offer so many positive features,

many industry and research groups are doing many efforts in order to face

this problem; in particular one of their goals is to provide designers with

automatic tools that guarantee a successful output in a short time and at

low cost.

As introduced before, one of the main issues in SoC design is the great

complexity of such systems. Just imagine you have to deal with a CPU, a

memory, and a number of peripheral in the same project; you could desire to

describe them in HDL, simulate them, produce their logic synthesis, always

considering them as a single unit. This is clearly demanding and it takes a

lot of time.

When SoCs started to spread in the semiconductor world, it was intro-

duced the idea of including in SoC project some parts that had been already

designed and verified. For example instead of describing from scratch a

micro-controller that you would need in your system you could use a micro-

controller already designed by a third-party company. This latter sells you

the Intellectual Property of that module, that is usually a RTL model fully

tested and verified. By paying this company you get the right of employing

their knowledge and you are quite sure that you don’t have to worry about

the implementation of that module but just on its integration in the system.

One of the most successful example of Intellectual Property design pro-

duction was ARM; this English company in the early 90’s offered to the

market a soft micro-controller, that was easily integrated in many embedded

SoCs. After this example proved that design reuse was a viable way in the

semiconductor industry, many other companies started to provide different

blocks with different features.

Intellectual Property vendors basically design their own products, test

13



1.2 Intellectual Property Cells in Digital Design

them, and try to synthesize them on different fabrication technologies. One

of the key concepts (and strength) of design reuse and intellectual property

is their technology independence; notwithstanding for SoC designers any aid

in any phase of the design is welcome, in particular in the logic synthesis.

So nowadays design reuse is very wide spread, there are many IP vendors

and many designers integrates more and more massively soft modules in their

chips; far from being a direct solution to the SoC design it is anyway a very

important help in keeping the complexity low and the prices affordable.
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Chapter 2

Digital Signal Processors

This chapter introduces the technology I worked with: Digital Signal Proces-

sors. A DSP processor was the core of the system I developed so an overview

on this kind of devices is necessary. In the first section I describe the archi-

tecture and the feature of the DSP processors; in the second section I provide

some methods of evaluating the performance of such processors, while the

last section deals with the application design flow, another important key in

my work.

2.1 An introduction to Digital Signal Proces-

sors

The function of a great part electronic systems is to process the information

that could come from the environment or from other similar systems. One

possible way to classify them is by their degree of programmability; at the

bottom of this classification we find dedicated systems such as Application

Specific Integrated Circuits (ASIC). These are designed to perform a single

task; it could also be very complex but it will be the same for the whole

device’s life. Instead on the top we find the processors that with the aid of

a memory, could perform any desired task.

At the very top there are the so called General Purpose Processors (GPP)



2.1 An introduction to Digital Signal Processors

that are the hearth of every PC and laptop. If we go down from there, we

immediately find two other kinds of processor: microcontrollers and Digital

Signal Processors (DSP). They both are generally simpler than GPPs, but

nevertheless they can still do almost everything. If we accept the general di-

vision of processor instructions in control instructions and arithmetic-logical

instructions, we could say that the former is specialized in control instruc-

tions, while the second is focused on AL instructions.

Both kinds of processor are used in a number of applications, either be-

cause the high performance of GPPs would be unused or because the available

resources (namely money,power and frequency) are not enough for a GPP. In

systems where there are many peripherals and the task are computationally

easy the most suitable processor is the microcontroller; if on the other side

we require high calculus capacity the straightforward choice is the DSP.

As the name suggests the DSP is particularly suitable for the elaboration

of signals, like audio and video signals. DSPs appeared for the first time in

the early 80’s, when Texas Instruments designed a processor specialized for

operations like Finite Impulse Response (FIR) filter, and Fourier Transform

(FT). The core of both these operations is the so-called tap that consists

of a multiply and an accumulate operation linked together. These could

have been completed without any concerns by a GPP but it would have

taken a huge number of instructions, maybe failing to follow the signal and

hence loosing information; consider that at that time no GPP had a multiply

unit and most of them had a single access to memory. Multiplication was

performed by adding and shifting as many times as the width of the data!

Also take into account that a FIR algorithm requires two operands (the signal

sample and the response coefficient) each time; this means two accesses in

the memory for the data (besides program memory accesses), and given the

intrinsic slowness of memories all this leaded a big loss of cycles.

For these reasons two were the main features introduced:

new memory architecture the so-called Harvard architecture was de-

ployed, where the processor could access separately and at the same

16



2.1 An introduction to Digital Signal Processors

time the program memory and the data memory;

multiply unit in the execution unit a module was dedicated to the multi-

plication.

The price to pay was an increased complexity and more hardware (more

area and more power consumption), but this made a single-cycle multiplica-

tion possible and an on-line execution of those algorithms reliable. Notwith-

standing those drawbacks, this new system proved to be extremely cost-

effective, and DSP’s use rapidly spread in the semiconductor world.

In late 80’s and in the 90’s many other innovations were introduced in the

DSPs’ architecture: among them the introduction of the Very Long Instruc-

tion Word (VLIW), of the Single Instruction Multiple Data (SIMD) and an

high degree of parallelism. All these improvements lead to the wide range

of DSPs that nowadays we can find in the semiconductor market: from the

DSP for high fidelity home audio systems where high precision is required,

to the DSP for mobile applications where the limited power and cost are the

most important requirements.

In the following I would like to introduce the innovative concepts of VLIW

and SIMD that are commonly used in the design of high-performance DSPs.

The Very Long Instruction Word architecture One way to dramat-

ically increase the performance of a DSP is to use multiple execution units

(EU) in parallel; this means that you can at first fetch and then execute

multiple instructions at the same time. This obviously leads to an increased

complexity and there are different techniques to deal with it, that are VLIW

and superscalar architecture.

The basic problem is to choose which instruction is executed in which

EUs; this choice could be done either on-line by the processor itself or by an

ad-hoc compiler. The former solution is adopted in the superscalar processors

and the price to pay is an increased complexity of the execution part. The

opposite approach is found in the VLIW DSP; in this case the load of the

choice is carried by the compiler that groups the instructions in execution

17



2.1 An introduction to Digital Signal Processors

sets according to some rules. The positive feature of this approach is that

notwithstanding an high degree of parallelism (up to eight instructions in

parallel) the complexity ( and so delay and power consumption) keeps low.

The Single Instruction Multiple Data SIMD is an architectural tech-

nique that could be used within any class of architectures. SIMD improves

performance of DSP processor, by allowing it to execute multiple instances

of the same operation in parallel using different data.

SIMD operations could be implemented in hardware with two basic tech-

niques; the first is by adding a second set of execution units that exactly

duplicates the original set. The second is based on the idea of splitting the

DSP execution units into multiple sub-units that process narrower operands.

Both this solutions are used extensively in the TigerSHARC DSP ar-

chitecture from Analog Devices. This processor for example is capable of

executing eight 16-bit multiplications per cycle.

After this overview of the short history and major developments in the

DSP field, in the last part of this chapter I am going to point out and other

interesting features to provide a complete picture.

efficient memory access As I mentioned earlier the memory architecture

is as important as the DSP core; digital processing requires very high

memory bandwidth but offers advantages like predictability and very

intense code repetition. Therefore while on one side it requires at least

two buses, one for instruction the other for data, on the other side it

allows intensive use of program cache and particular addressing modes.

data format Most DSP processors use a fixed-point numeric data type in-

stead of the floating-point format most commonly used in scientific

application. This means that the binary point is located at a fixed lo-

cation in in the data word. Floating-point formats allow a much wider

range of values to be represented, and highly reduce the risk of over-

flow; moreover DSP applications require a high numeric fidelity that

18



2.1 An introduction to Digital Signal Processors

is difficult to be maintained in fixed-point representation. The reason

why the fixed-point is so common is that there are other more impor-

tant constraints in DSP systems such as cost and energy efficiency. For

these goals fixed-point format is far better than its counterpart, being

its hardware implementation simpler and cheaper. Another point in

data format is the data word width: DSP processors tend to use the

shortest data word width that provides the adequate accuracy in their

target applications. So most fixed-point DSP processors use 16-bit data

words. In such cases in order to ensure adequate signal quality some

hardware is added, like wider accumulator register to hold the result of

summing several multiplication products.

zero-overhead looping DSP algorithms usually spend most of the process-

ing time executing a short part of the code, that are run continuously,

i.e. loops. To improve the performance DSP processors provide spe-

cial hardware to support looping, in updating and checking the loop

counter and in the branching back to the top of the loop.

specialized instruction set DSP processors instruction sets usually present

two features: they make the maximum use of the underlying hardware

by being highly parallel, and they have quite short instructions. This

results in wide and complicated sets of short and specialized instruc-

tions. The shortness of each instruction is very important in keeping

the amount of the program memory low, but it has heavy drawbacks

such as an increased number of instruction and a reduced sets of em-

bedded registers. Thus it is easy to understand that programming such

DSP processors is not a trivial task; moreover very rarely high-level lan-

guage compilers like C compilers produce an optimized assembly code

that deploys all the feature of the processors. This is why most of the

code of in DSP applications (or at least the most calculus intensive

parts) are written directly in assembly language by DSP programmers.

19
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2.2 How to evaluate a DSP processor perfor-

mance

After this short overview of the architecture and of the features of the Digital

Signal Processors I consider important to talk about the way of evaluating

the performance of such systems. This is useful for designers in order to

choose to most suitable devices given some constraints. DSP processor per-

formance can be measured in many ways; the first is surely the execution

time, that is the time taken to accomplish a defined task. Others are the

power consumption and the memory usage. The following sections describe

different metrics, trying to point out the strength and the weakness of every

method.

2.2.1 Traditional Approaches: MIPS, MOPS and MACS

The metric that is traditionally used is MIPS, that stands for Millions of In-

structions Per Second. This is a simple counting of the number of instructions

executed in a definite amount of time. This kind of measurement is mislead-

ing because it strongly depends on the architecture of the DSP; for example

a device with powerful execution units could perform a complex mathemati-

cal operation in a single instruction. This would cause a low MIPS, because

the execution of that instruction could take longer than execution of simpler

ones.On the other side a DSP with very simple instructions could score a very

high MIPS, even if the actual mathematical operation are very few. Anyway

MIPS is valid within the context of a single known processor architecture.

To avoid that confusion, other metrics have been used such as Millions

of Operations Per Second (MOPS) and Multiply-Accumulates Per Second

(MACS). Nevertheless they both proved to be unfair. The problem with

MOPS is related to the difficulty of defining an operation, everyone using its

own concepts. For what is concerning the MACS, the point is that even if

the MAC is an important operation, in DSP algorithms involve many other

operations than this. This makes it not reliable as an overall evaluation

20



2.2 How to evaluate a DSP processor performance

parameter.

Anyway neither MIPS,MOPS nor MACS address other fundamental is-

sues in DSP performance evaluation like memory usage and power consump-

tion. Just think of a very high MIPS DSP processor that has slow memory

access or of a system with high consumption of memory requiring the use of

slower external memory; in both cases the MIPS of the processor would never

been deployed since the memory bandwidth would a serious bottleneck. Also

the evaluation of power consumption could be an issue since it is strongly

affected by the frequency and by the kind of instructions executed.

For these reasons other metrics have been developed in order to provide

DSP system designers with more reliable metrics.

2.2.2 Application Benchmarking and Algorithm Ker-

nel Benchmarking

As I said above, in order to take account of every issue, it is more use-

ful to consider a system perspective. In this case a possible approach is

theapplication benchmarking ; this means running on the DSP system an ap-

plication or even a suite of applications and measuring time, memory usage

and energy consumption. This method has its own limits too; in fact applica-

tions are usually written in high-level language like C, and the benchmarking

output will also include an evaluation of the compiler or of the programmer’s

skills.

Hence it’s necessary to make one step down to reach the most suitable

DSP performance evaluation method, that is algorithm the algorithm kernel

benchmarking. Far from being perfect and complete, it is nevertheless the

most common method used to compare different DSP devices and architec-

tures.

Algorithm kernels are the building blocks of most signal processing sys-

tems and include functions such as fast Fourier transforms, vector additions

and multiplications, and filters. These have some compelling advantages such

as ease of specification, optimization and implementation; this means that
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2.3 How to Develop an Application for a DSP Processor

they could be identified easily, implemented in a short time in assembly code

and you can be quite sure that your implementation is close to the optimum

one. Thus a set of algorithm kernels has been selected and it is commonly

used to evaluate the performance of the each DSP.

Typical examples of benchmark suites are offered by the EDN Embedded

Micro-processor Benchmark Consortium (EEMBC), that could also be used

for DSP Processors. EEMBC develops different suites of benchmarks for

different fields, such as consumer, networking, telecom, automotive and office

automation. Each suite is composed of a range (five to sixteen) of individual

benchmark tasks representative of that product category; for example in

the consumer category you could find algorithms for image compression,

image filtering, color conversion and other tasks common to consumer digital

imaging products.

In this way companies can have a standard evaluation of their processor,

that could be compared with those of their competitors.

2.3 How to Develop an Application for a DSP

Processor

After this introduction of the DSP processor, the next step is to describe how

to develop an application on a DSP platform. This is more closely related to

my activity at StarCore; I will underline the role of the Development Board

that is the platform I worked with.

As you can see in picture 3.1 the beginning step is the definition of the

requirements of the system, and the definition of the algorithm to be imple-

mented. These greatly affects the choice of the processor and the architecture

of the system.

Once the device has been chosen, the designer is provided by the DSP

vendor with a suite of software tools that are really helpful in the develop-

ment; these includes a compiler, a linker, a DSP processor simulator and a

profiler. The latter is used to understand which part of the program is more

22



2.3 How to Develop an Application for a DSP Processor

System requirements

and

 algorithm definition

Code 

writing

Code 

optimization

Compile

and link

Software Debug

and simulation

HW/SW 

integration

DSP processor

choice 

integrated

development

environment 

prototyping

board 

delivery

of code 

Figure 2.1: DSP application design flow
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intensively run, that is the part the programmer should optimize best.

The processor simulator is a great tool too; it allows the program to

be run and performance evaluated. It has some drawbacks: first of all it’s

very expensive to be built and secondly it is easily overcome by an hardware

simulation in terms of speed and computation resources.

For these reasons -where possible- the hardware simulation is preferred; it

could be done thanks to a Prototyping Board, where a system similar to the

target one could be created. It is a Board delivered by the DSP vendor that

could be customized by the DSP programmer in order to test the program

and the whole system in the proper conditions.

On this kind of boards there is the DSP processor, so the code could be

downloaded from the PC where it has been developed and made it run on

the actual platform. An important feature that is usually on the same chip

as the processor is the Emulator, that allows the programmer to control the

flow of the program from the IDE, doing an efficient debugging. In general

using the Prototyping Board allows to test in a quite easy way not only the

DSP core but also all the systems resources like memories, caches, buses and

peripherals. For these reasons this is a necessary step in the development of

applications especially for such a particular systems like DSP systems.

This is an overview of the design flow for a DSP application; in my work at

StarCore I mainly focused on this las part, since I worked on the Development

Board DB1000 that is the Prototyping Board used for the StarCore processor.

A deeper description of this board is in the next chapter, together with a

complete introduction to my work in StarCore.
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Chapter 3

Introduction to the system

The activity is basically the design and the implementation of a controller

for an audio port. An audio port is a simple device to collect and play

audio signals; on one side you have a microphone or a speaker, on the other

you have digitally represented samples. This kind of device is used in every

applications where sound is involved; for example a mobile phone has an

audio port to record and reproduce the voice in a conversation. Like many

other peripherals the audio port communicates to the CPU of the system with

the interrupt mechanism. This is a typical method of communication but not

always it is suitable for the correct deployment of the system resources. This

is particularly true in a DSP system, where every cycle should be spent on

algorithm processing, and where algorithms usually are frame-based. Hence

in my work at StarCore was the need for a module - a controller - between

the audio port and the DSP processor, that implements a buffer mechanism,

in order to interrupt the core just once per frame instead of every sample.

So the first section of this chapter tries to provide an overview on possible

solutions in order to deal with peripherals in a DSP environement. On the

other hand the section after describes the actual system I worked with, that

is the Development Board, an important tool already named in the previous

chapter. Then as a conclusion of this chapter there is a section dedicated to

the constraints I had in the implementation of the controller.



3.1 Analysis of the Problem

3.1 Analysis of the Problem

As briefly introduced above the communication between a DSP processor

and the peripherals of the system could be an issue for the designers and the

users. In particular there is the risk of loosing all the advantages of a DSP

processor if the peripherals are not managed in an appropriate manner.

This could happen when the processor elaborates sets of values all to-

gether and not single samples; this is the case of some audio algorithms and

most video and picture processing operations. If you think at the video case it

is easily understandable that the elaboration is usually done on the complete

frame and not on the single pixels.

So if the processor is asked to stop at every incoming samples just to

transfer it in the internal memory, this would be a great lost of cycles. Every

cycle spent by the processor in tasks other than signal processing is considered

overhead, a necessary price that you try to minimize; so the main goal of my

activity is to reduce the overhead in the communication between the DSP

and the audio port.

Even if the interrupt mechanism is a very used one and it works very

well in most of cases, sometimes other solutions can guarantee far better

performance; the Direct Memory Access (DMA) is one of them: it is a kind

of controller that is capable of transferring data in and out between memory

and peripherals interrupting the processor just once.

With the picture 4.1 I would like to provide a comparison between these

two possible solution, showing that for what concerns the overhead reduction

the DMA proves very effective. This picture describes the number of cycles

necessary in different configurations to perform an algorithm on a buffer of

data, and all the IO operations to feed the buffer; it’s worth noting that the

total number of cycle spent in the actual algorithm ( the light blue section) is

always the same, no matter which configuration you consider. That number

in the picture is 10k, so whatever is beyond the 10k tag is to be considered

overhead.

The first case described is the simplest one; the communication method is
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the interrupt mechanism: basically when a sample in the peripheral is ready

a signal is sent to the processor. This signal stops the processor and make

the Interrupt Service Routine (ISR) run; the ISR transfers the data from the

peripheral registers to the internal register. Once this transfer is finished the

DSP goes back to the execution of the algorithm. As you can see in this case

the overhead added by the IO operations is very high.

The second case considers the implementation of a buffer in a module

near the peripheral; the processor is interrupted just once per frame, but in

that case the ISR (clearly different from the first case) would be very cycle

hungry cause it would be in charge of transferring all the data. In this case

the total overhead introduced is slightly fewer than the previous case cause

the transfer of a big amount of data could be somehow made faster.

The last case is the system which deploys the DMA. A controller is near

the peripheral and it sends every incoming samples to the internal memory

using the Direct Memory Access feature. Hence none of the transfer opera-

tions is performed by the processor and for this reason the overhead is very

low.

ISR

ISR RUNS FOR EVERY SAMPLE

ISR PERFORMS BURST TRANSFER,

 BUFFER IN THE CONTROLLER

ISR PERFORMS CTRL OPERATIONS

DMA PERFORMS THE TRANSFER

CYCLE NUMBER0 10k

Signal

Processing

DMA

Figure 3.1: Overhead introduced in a) sample based ISR system ; b)frame

based ISR system ; c) DMA based system.
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Being my goal the reduction of the overhead the best solution is clearly

the last one that involves the use of the Direct Memory Access; this is the

actual solution implemented during my activity.

Before stepping to the description of the DB1000 it’s also important to

point out that DMA and DSP operations could be not always completely

parallel, as it may seem at first sight. The DSP and the DMA share the

memory, and they can access it only one at a time. In the StarCore archi-

tecture the shared memory (the SRAM) is dual port; considering that the

areas in the memory accessed at the same time by the DMI and the DSP

are different (different buffers) , this make the two operations completely

parallel.

3.2 The Resources

The environment -and basic resource of my project- is the Development

Board, that, as described in the previous chapter, is an important tool in

every design flow based on a DSP platform. I will describe the architecture

of this Development Board, and all the functions and possibilities that it

offers.

In this kind of environment there are basically two kinds of resources:

the first is software, that is the code that is run on the processing unit, the

second is the hardware that is mapped on the programmable logic (FPGA)

available in the system. Every design activity involves the use of one of them

or both; in particular mine is mainly focused on the hardware side, being the

software almost untouchable due to constraints that are explained below.

The Development Board is a Printed Circuit Board that helps customers

in testing their applications on the StarCore platform; in particular the

DB1000 hosts the Test Chip TC1000, with the one version of the Core and

the Subsystem.

On the board there are the most common communication plugs like the

USB2.0, the Uart, JTAG, and an ARM Integrator Connector that would
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allow a connection to an ARM processor. Moreover there is a Flash memory

for the beginning configuration and a 256MB SDRAM bank plus the on-chip

SRAM. You can see an overview in picture 4.2.

A further degree of customization is provided by the programmable logic

with the form of Field Programmable Gate Arrays (FPGA). These are dig-

ital chips, that contains a number of logic gates that could be organized to

perform any desirable function. There are two FPGAs on the board; the

first is the Control FPGA, that hosts all the controllers of the peripherals

and it is entirely programmed by StarCore before shipping the board. The

other is the User FPGA that is delivered blank for the customer to use it

and enrich the board as he desires. This latter has the connection to almost

all the peripheral, so every customer could decide to change or implement

other controllers. For example a third-party company developed a multime-

dia demonstration employing the User FPGA.

Third-party softwares are provided to develop the applications; once the

program is compiled in the desired way, it is downloaded via USB in the

internal memory where it runs controlled by the JTAG On-Chip Emulator.

The Test Chip Due to the kind of business carried by StarCore there

is usually no chip designed or sold to customers; the only exception is the

Test Chip, that contains the DSP core and other modules, and it is used by

customers only for prototyping new applications. On the DB1000 the Test

Chip is the heart of this system; besides the core other modules that are

important to be very close to the core itself. In particular we can find:

224 KB SRAM it can be accessed at the same time by the Core and by

the DMI;

8KB Data Cache between the Core and the external memory;

8KB Program Cache between the Core and the external memory;

DMI DMA Interface, that stands amidst the DMA bus and the SRAM
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Figure 3.2: Overview of the DB1000
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OCE On Chip Emulator; it communicates via the JTAG to the external

world and make it possible to debug the system.

SBI System Bus Interface; it is the interface to the System Bus that is

extended off-chip.

This board could act as a stand alone system, with its own operating sys-

tem or as a single threaded system; it could also act in cooperation with other

elaboration systems such as a Personal Computer or other micro-controllers.

In these different cases, different solutions are provided for the communi-

cation; for example in the PC case, a dual port RAM implemented on the

Control FPGA over the USB2.0.

Let me underline the importance and the connection of the buses that

stand between the core and the FPGAs; these are the three buses: Off-Chip

Memory Bus, the Off-Chip System Bus, and the Off-Chip DMA Bus. The

OMB and the OSB are basically off-chip extensions of the internal buses so

they share the same 4-Gbyte memory space. The OMB connects the chip

with the external memories and with the Control FPGA, that has its own

range of addresses. A similar role has the OSB that connects the TestChip

with the User FPGA.

On the other side there is the ODB, used to access from the User FPGA

the internal SRAM, via the DMA Interface. Both the OMB and OSB are

Advanced High-Performance (AHB) buses, a standard for on-chip buses de-

veloped by ARM that is described in detail in the appendix A.

3.3 The Constraints: the Software Compati-

bility

To complete this introduction to my work I am going to speak about the

constraints I was given. These basically come from the software side of the

system.
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If you develop a software application and you need to use any peripheral,

you’ll surely use the driver of this peripheral that is provided to you by the

dealer of the platform. This driver usually comes as a set of functions that

you have to run at the setting time of the system, and as another set of

functions that you have to use in order to communicate with the peripheral.

All these functions are called in the application and have to be included

as library files in the project, already compiled or as high-level language code.

In the case of the audio port peripheral there was already a controller and

its driver and they were used by many applications such as demonstrations

for customers. From this fact comes that even if the controller was changed,

applications should still work. This means that the modifications should be

transparent to the application. In other words the implementations of the

functions composing the driver could even change, but their definitions (that

is the interface toward the upper level) must remain the same.

This constraint poses some limits to the design possibility of my activ-

ity; in particular I had to keep all the memory variables as they were and

could basically change just some initializing functions and part of the Inter-

rupt Service Routine. Details about these modifications are in the software

chapter.

The next chapter will deal with the design flow that I followed in order to

complete the work. Some further details on the implementation of the new

controller will be given.
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Chapter 4

The Design Flow and the

Solution Description

After the overview of the problem provided in the previous chapter, it’s time

to describe the solution implemented with further details and the method

used to design it.

4.1 The Design Flow

Let’s start with a description of the design flow. With the aid of the picture

5.1 I try to provide a clear picture of the whole work.

Analysis of the pre-existing solution The first step of the work is surely

the analysis that was previously adopted for the audio port controller.

This means a study of the audio port integrated circuit and of the pre-

existing controller, provided as a Verilog described module, and all the

software driver. This is the important to understand what could be

still used (if anything) and what should be discarded.

Analysis of the available resources In parallel to this I studied the sys-

tem in order to understand which where the resources available for the

new design, in particular the architecture of the Test Chip and of the

Development Board



4.1 The Design Flow

System Solution Thanks to both the previous steps I was able to propose

a solution involving all the aspects of the final project. It was an high

level solution where the main concerns was to partition the tasks to be

implemented among hardware on the User FPGA and software running

on the DSP. Once this division was clear I was able to work on both

side almost independently.

Hardware design After this partition I designed the architecture of the

User FPGA, that was previously blank. For this work I used a top-down

approach, from the overall architecture down to the implementation of

the single modules. A particular attention was paid to the design of

one of these modules, the audio port controller, as described in the last

section of the chapter 7.

Software design By knowing the definitions of the hardware in the User

FPGA I was able to modify or to write from scratch the functions that

were to be changed for the new controller.

Test of the integrated solution Particular attention was given to the test

phase, that involved both hardware and software sometimes at the same

time. Some tricks were used in the hardware design in order to make

this phase easier. As described by the red lines in picture 5.1, a constant

feedback was necessary on both hardware and software design.

In all this work I was aided by powerful hardware and software tools, that

proved necessary for the overall success.

On the software side I used the DSP Development Environment CodeWar-

rior by Metrowerks; with it I wrote the code (both C and assembly), down-

loaded it on the Board and debugged it thanks to the On-Chip-Emulator.

On the hardware side I used the Quartus Environment by Altera, that

allowed the development of HDL code to be mapped on the Stratix User

FPGA. Thanks to this suite I was able to follow the typical design flow for

Hardware FPGA programming that is:
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1. description of the hardware with HDL

2. functional simulation

3. fitting on the actual FPGA

4. timing simulation

5. programming of the FPGA

6. hardware testing of the system (aided by Signal TAP).

Until step five the design flow is quite straightforward; notwithstanding it’s

worth noting that as the complexity of the system designed increased the

ease of simulation decreased strongly. In my case it was mainly due to the

presence of multiple communication channels (like buses) between my system

on the FPGA and the outer world. Hence I preferred when possible to

test the validity of my design directly on the FPGA; in this activity I was

greatly supported by the Signal TAP controller that allows the recording

and visualization of a number of signals in the design. Moreover testing this

FPGA was done in great part by running some ad-hoc code on the DSP and

verifying the expected behavior.

In some steps of the actual implementation I also had to make use of the

oscilloscope to test some signals directly on the Printed Circuit Board.

After the introduction of the methods I used in this work I am going to

speak about what I actually designed.

4.2 Description of the solution

As described in the previous section, one of the main steps in my design

was the definition of a system solution, that provided a global picture. In

this section I describe the results of this step, and the main ideas that lie

underneath it.

The main problem, as already introduced, is to reduce the overhead due

to the communication between the DSP and the audio port, by deploying the
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feature of the audio algorithms of being frame based. Hence some changes

in the architecture or in the deployment of system resources are to be made.

The first straightforward idea was the use of the Direct Memory Access

bus, that connects the Test Chip to the User FPGA; as the name suggests,

this bus allows a direct access to the memory without bothering the pro-

cessor. Hence the samples from the Audio Port Integrated Circuit could be

transferred to the internal memory via the User FPGA.

At this point, it would have been simple if the sample was to be written in

the memory always at the same location. This is clearly wrong: the samples

are to be stored in a vector one after the other. Moreover for the stereo signal

there must be two vectors, and all this doubled for the outgoing samples.

So every time an audio value is sampled, there should be a transfer in the

right place and the updating of some variables that describe the buffer. For

this purpose some kind of controller is required that could access the internal

memory and register of the audio port peripheral.

Moreover when the vector is full, the processor should be interrupted, to

make it understand that a new frame of data is ready to be processed.

All these features come in the architecture described in picture 5.2; the

main logical modules of this solution are the audio port peripheral and the

audio port controller. These modules are both configured by the DSP pro-

cessor via the Off-Chip System Bus; the peripheral is in charge of make the

serial data coming from the audio port appear parallel, like a register. The

controller on the other hand controls the transfer.

The whole system is timed by the interrupt sent at a frequency equal to

the sampling rate by the audio port peripheral. This interrupt awakes the

controller and enables the transfer. Depending on the configuration of the

latter, when needed it sends another interrupt to the processor, that will

eventually work on the data stored in the SRAM.

An alternative solution to this would be to implement a buffer in hard-

ware, for example on the User FPGA. It would be necessary to store all the

data in it and when it is full to send them in the internal SRAM via the
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Off-Chip DMA Bus. This would not save any overhead, but the complexity

would grow due to the presence of the buffer to be controlled. Another dis-

advantage of this solution is that the variable would not be updated at every

value, as it should be.
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Chapter 5

The User FPGA System

Design and Implementation

The User FPGA is one of the two FPGAs on the Development Board, and

it is where all the custom hardware I designed is hosted. This device, that is

part of the Altera Stratix family, offers a huge amount of resources that are

gates, memory and also specialized circuits. It has been added to the board

to provide the user (i.e. the customer) with a further degree of freedom; in

fact the user could custom the board by adding for example new controllers

of peripherals, or a DMA controller. For this reason the board is usually

delivered with the user FPGA blank, while all the basic functionalities and

controllers are stored in the Control FPGA.

In this chapter I am going to describe the architecture of the digital system

in this FPGA, and every single module that is part of it. There is a Control

Register that contains configuration information, there are two bus interface,

the audio port interface module and the audio port controller module.

To avoid confusion it’s necessary to specify the difference between audio

port interface and audio port controller. The former is a digital block already

existing that translate the serial communication of the audio port to a parallel

register-like shape. The latter, that is the main part of my work, is a kind of

wrapper of the audio port interface and controls the transfer of data between



5.1 The FPGA system architecture and flow of work

the registers into the internal memory. To the description of this module is

dedicated the whole chapter 7.

So after some introductive details about the architecture and the design

flow, all the other modules are described.

5.1 The FPGA system architecture and flow

of work

OSB 
SLAVE 

and
DECODER

ODB 
MASTER

CODEC 
INTERFACE

CODEC 
CONTROLLER

SYSTEM
BUS

DMA
 BUS

serial
communication

USER FPGA

Figure 5.1: Description of the FPGA system
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In this description of the architecture of the FPGA system I would start

by considering which are the connections of this FPGA with the outer world.

As you can see in the picture 6.1, there are two buses and the serial connection

with audio port.

The first bus is the Off-Chip System Bus (OSB), the second is the Off-

Chip DMA Bus (ODB). The OSB is used to initialize both the audio port

interface and the audio port controller, while the other is used just by the

audio port controller to transfer data between the test chip memory and the

audio port interface and to read and write data in the same memory.

It should be clear that since both of them are buses, they must have at

least one master and at least one slave. Due to the configuration on the

board the OSB require a slave that could understand the signal coming on

the Test Chip while the ODB requires a master. Both this OSB slave and

ODB have been implemented and could be seen in the picture 6.1.

Besides these buses there are three wires that are very important between

User FPGA and TestChip: three interrupt wires. One of them is used to

communicate an interrupt to the Test Chip from the audio port Controller.

On the audio port side there is the serial communication that is described

with further details at page B.

From the picture 7.1 you can also see the connection of the audio port

interface and controller, with the other modules. As a legend for that picture

the wide gray lines are buses, the red lines are interrupt wires, and the blue

ones are control signals.

5.1.1 The implementation flow

Besides the design flow I consider in this case interesting to dedicate some

lines to the flow I had in the implementation of this hard module.

As at the beginning of my owrk the FPGA was really empty, the first

thing that I had to design was the System Bus Slave; this is the only way to

start having a look inside the FPGA: without this whichever other modules

in the FPGA would have been stand alone, with no communication at all
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with the TC, and with no possibility for me to understand whether they were

working or not.

The second step was the porting of the Codec Interface from the Control

FPGA to the User FPGA. This is the first layer of abstraction toward the

Core; I made the Codec Interface registers accessible from the System Bus,

and this allowed me to run a simple audio application with this new con-

troller. The only difference with the original version was the FPGA in which

it worked, in the original case the Control FPGA, and in my case the User

FPGA.

Then I designed the Audio Port Controller, widely described in the next

chapter.

Finally I designed the DMA bus master. Thanks to this the Test Chip

memory could be accessed and data read and written from it. It is controlled

by the Codec Controller, via a simple interface. This was the last hardware

piece of my system, and it allowed to simulate and tune my whole system.

For all the duration of this implementation the size and definition of the

User FPGA Control Register were continuously updated and reviewed, since

new features were added during the work.

In the following sections I’ll describe the modules that compose the User

FPGA, starting from the OSB Slave and Decoder.

5.2 The System Bus Slave and Decoder

The Off-Chip System Bus is a 32-bit AHB bus that extends the On-Chip

System Bus. In the architecture of the board, there is a 256-Mbyte memory

space reserved to the User FPGA, accessible via the Off-Chip System Bus,

in the range between address 0xD0000000 and address 0xE0000000. This

means that when in the software there is a read or write operation to a loca-

tion in this range, the System Bus master on the Test Chip will interrogate

the User FPGA.

Hence the function of the OSB Slave and Decoder is to make it possible
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Name Width Address Access

FPGA Control Register 32 0xD0000000 RW

Controller Control Register 32 0xD0000004 RW

Controller Address Register 32 0xD0000008 RW

Controller Status Register 32 0xD000000C R

Codec TX Left Channel Register 16 0xD0000010 RW

Codec TX Right Channel Register 16 0xD0000014 RW

Codec TX Command High Register 16 0xD0000018 RW

Codec TX Command Low Register 16 0xD000001C RW

Codec RX Left Channel Register 16 0xD0000020 R

Codec RX Right Channel Register 16 0xD0000024 R

Codec RX Command High Register 16 0xD0000028 R

Codec RX Command Low Register 16 0xD000002C R

Controller Program Memory 16 x 256 0xD0001000 RW

Table 5.1: Memory Space in the User FPGA

for the Test Chip to really access that memory area, complying the Standard

AHB.

In my system I employed just part of the memory space available, and

it is described in the table 6.1. There are mainly three different part of the

memory:

32-bit registers used for different functions

audio port peripheral 16-bit registers used to store the values sampled

by the audio port

512 byte memory to store the program of the controller

Given this memory space the role of this module is twofold; first it has to

interpret the signals from the master and provide it with the correct signals

according the standard. Then it has to make sure that the data on the bus
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are stored in the proper location (write case), or are loaded from the desired

address (read case).

There is a couple of things I had to pay attention to in the design of

this module; first of all I had to comply with the timing described in the

AHB standard. As usual in this case a state machine was developed for the

handshaking between master and slave.

A second important issue was dealing with the endianness of the system.

In every elaboration system the memory stores data in two ways different

ways, namely big endian and little endian; so in implementing a memory you

have to take care of the endianness.

So in the case of 16-bit access in the User FPGA, according to the endi-

anness value the meaningful bits would change their positions with respect

to the 32 bits of the bus, and the bus slave should take this into account.

Further details about this are in the appendix A, dedicated to AHB standard.

5.3 The User FPGA Control Register

The User FPGA Control Register is a 32 bit register at the address 0xD0000000,

that is the first available on the FPGA; this register is accessed by the core

to control the behavior of the FPGA, in particular of the audio port interface

and of the audio port controller.

Table 6.2 contains a summary of all the values in that register. To under-

stand the architecture and the behavior of the FPGA is necessary to focus

on many of these bits, one by one.

DmaEnable This bit enables the Controller to work. When it is zero the

Audio Port Interface is connected directly to the System Bus Slave,

and its interrupt request goes directly to the core. Instead, when this

bit is set, the Controller stands amidst the Codec Interface and the

DMA Bus Master. The Codec registers in this case are accessible from

the OSB in read only mode. This is the typical running mode, where
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number name function

0 CodecIntAck Acknowledge an interrupt from the CODEC

1 CodecIntEnable Enable the Codec to send interrupt

2 CodecIntResetN Reset the Codec

4 to 7 DipSwitches Set the Codec clock value in Control mode

8 endianness specify the endianness of the board

9 codecDC set the MODE of the codec; 1 Control, 0 Data

10 MasterSlave set the MODE of the codec I/F; 1 Master, 0 Slave

11 Loopback 1 Loopback Mode, 0 regular Mode

12 DmaEnable enable the Codec Controller

13 DmaIntEnable enable the interrupt from the Codec Controller

14

Table 5.2: Control Register bit table

the Audio Port Controller is awake and generate, when it is necessary,

the interrupt request to the core.

Loopback This makes it possible to test the Interface. In this configura-

tion the Codec Rx wire of the serial communication, is shorted to the

Codec Tx ; for the Interface to work properly you expect the Codec RX

registers to reply exactly what you write in the Codec TX registers1.

endianness This bit indicates the endianness of the board. Please consider

that endianness doesn’t affect the 32-bit operations; thanks to this it

is possible for the Core to communicate this information to the FPGA

by making a 32-bit write operation in the Control Register. This con-

figuration must be the first done by the software at power on ; then

this bit is used by the two bus controllers to work in the correct way.

codecDC This bit is one of the Audio Port Serial Interface. It is changed

by the ISR during its control section (see page 73), to change the mode

of the codec from Config to data.

1For the function of these registers see the Audio Port Interface section
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5.4 AHB Off-Chip DMA Bus Master

CodecIntEnable Enable the Interface to send interrupt request; depending

on the DmaEnable bit, the IRQ could reach either the DSP or the

Coded Controller;

DmaIntEnable Enable the Codec Controller to send an interrupt request

to the DSP.

5.4 AHB Off-Chip DMA Bus Master

Another important module in the User FPGA system is the Off-Chip DMA

Bus Master. Its role is to provide the right signal to the bus wires always

complying with the AHB-standard. Moreover it has to provide the Controller

with a simple interface that lets the Controller easily use the DMA bus.

The signals of the interface I designed are described in the table 6.3;

besides the data and address wires it is worth speaking about the control

signals. The audio port controller controls write enable, read enable and

size; when it wants to perform an operation it raises one among re and we

and put the right value on size. The Master, if ready to accept, will drop

the ok signal, meaning that it became busy; the controller knows that the

operation is finished when ok is raised again, and if it is a read operation it

will read the proper value on the RDATA signal.

Due to possible problems in the communication I also implemented a

time-out mechanism that forces each operation to end after 20 cycles, if not

already finished.

5.5 The Audio Port Interface

The last block to describe before the audio port controller is the audio port

interface, the digital block that stands between the audio port IC and the

DSP, to make the two work together. As previously said it is a pre-existing

module, and this section I am just going to describe it. In the picture 6.2

there is an overview of it. You can see the five signals that compose the
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name direction function

WDATA[31:0] IN write data

RDATA[31:0] OUT read data

ADDRESS[31:0] IN on-chip SRAM address to access

WE IN write enable

RE IN read enable

SIZE[1:0] IN data size

OK OUT answer from the master

Table 5.3: DMA bus signals

serial communication to the integrated circuit; they are CodecClock, Codec-

Sync, CodecTx, CodecRx andControlData and they are connected to the

corresponding pins of the integrated circuit.

The data wires are connected to a 64-bit shift register each; this is then

connected to a group of four 16-bit registers. This simple systems makes the

translation from serial to parallel communication. Both the dma bus and the

system bus can access those registers, with the mode described in table 6.5.

The CodecClock and CodecSync are bidirectional pins, that could be

driven by the interface. This happens during the Audio Port configuration

phase2: the State Machine 1 generates a a clock and a sync signal for the

Audio Port, from the UserFPGAClock. The ControlData pin, set to zero, let

the signals generated to drive the actual wires of the interface through the

tristate buffer.

As soon as the data mode is entered (and the ControlData is set), the

clock and the sync will be provided by the Audio Port, at the frequency

configured. In both mode the State Machine 2 is fed with sync and clock, in

order to generate an interrupt to the core, or to the controller.

The interrupt is clearly at the same frequency of the sync signal, that is

basically the sampling frequency. The interrupt means that there are data

ready for the application in the RX registers, and that the TX registers are

2see 8.3 for explanation
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5.6 The issue of synchronous design

empty and they could be filled with new data.

Register name function access mode system bus address

LchTxReg Left Channel Transmit Register write-only 0xD0000010

RchTxReg Right Channel Transmit Register write-only 0xD0000014

CmhTxReg Command High Transmit Register write-only 0xD0000018

CmlTxReg Command Low Transmit Register write-only 0xD000001C

LchRxReg Left Channel Receive Register read-only 0xD0000020

RchRxReg Right Channel Receive Register read-only 0xD0000024

CmhRxReg Command High Receive Register read-only 0xD0000028

CmlRxReg Command High Receive Register read-only 0xD000002C

Codec register table

5.6 The issue of synchronous design

The whole system is basically composed by the Test Chip, the User FPGA

and the audio port IC. During the ordinary activity the audio port is con-

figured to be the master of the serial communication, so this adds an asyn-

chronous component to the system; since I am going to use the Codec I/F as

it is, the problem should have been already faced and I am not going to deal

with it. I would rather focus on the communication between the Test Chip

and the FPGA; it is done by two buses and the clock is provided in both

cases by the Clock Generator in Test Chip, that is software programmable.

The System Bus clock is the one used in the DMA system. The default

configuration is 45 MHz for both, but no software control is given on their

phases; it could have been an important issue if there was a phase delay.

Luckily the results of measurement gave a positive answer, meaning that

the two signals could be considered really synchronous, letting me consider

all this part a complete single clock part.
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Chapter 6

The Audio Port Controller

This chapter deals with the audio port1 controller, its design and its archi-

tecture. To implement this module among the possible choices I decided to

design a kind of micro-controller; the reason for this choice and some details

on its features are in the first section. In the remainder of this chapter there

is the description of all the modules that compose the micro-controller.

6.1 The Audio Port Controller Design Flow

In this first section I am going to explain the choice in the implementation of

this module. It all starts with the tasks it has to accomplish; it is described

in the section 8.4, but at this stage it’s enough to say that it is quite complex

and not a priori easily and exactly definable.

Since that complexity looked to be very high I decided to use a pro-

grammable module, a kind of CPU with its program memory. It is true

that during the ordinary life of the final product there is no need of pro-

grammability, but I thought that this would have been a great advantage in

the development of this module. This causes a little increase in the amount

of resources taken for the design, but since the User FPGA was really huge,

I estimated that this wouldn’t have been an issue. As you can see in the

1in this document instead of the name ”audio port” you could find the name ”codec”



6.2 The Architecture of the Controller

section 7.7, this proved to be right.

For what concerns the design I analyzed the task to be performed and

decided a set of instructions to be implemented. The definition of the in-

struction set is important because it represents a kind of abstraction over

the processing unit. There are many important features that come with

the choice of the proper IS: the number of instructions, the width of each in-

struction, the width of the address space, which instruction to implement. In

order to make the right choice I had to consider requirements from both the

top level and the bottom level, for example readability of code, functionality

desired, complexity of the underlining hardware, speed.

The outcome of this activity is described in details in the section 7.4.1.

Once I finished the implementation of this micro-controller, I tested with

simulation as far as I could and then programmed the FPGA. At this stage

I started also the controller software development, described in the Software

chapter, section 8.4.

A great part of the design was also dedicated to debug tasks; in the

design I had to foresee some tricks that would make the development of the

application easier.

6.2 The Architecture of the Controller

The internal architecture of the audio port controller is described in figure

7.1. As in any processing unit it can be divided into two parts: the control

part and the operating part. The operating part is mainly composed by a

register bank and an arithmetic logic unit (ALU), and its task is to perform

operations on the data stored in the registers.

The program flow and the flow of each instruction is regulated by the

control part that sends the correct signals to the operating part (the red

signals in picture 7.1).
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6.3 Input-output model

6.3 Input-output model

To provide some more details on the controller I would like to introduce all

the inputs and all the outputs. Some of them are already in the picture 7.1,

but the their complete list is in table 7.1.

The controller basically interfaces with the OSB bus, the ODB bus, the

audio port interface, the core and the FPGA control register. It is an almost

completely synchronous system regulated by a single clock and a single reset

signal; the only exception is the Interrupt Control Unit.

Via the OSB, the Test Chip can communicate to the controller some

information like a pointer to a SRAM location (in dma address register),

or configuration bits (in the dma control register); on the other side the

controller provides the TC with some details of his internal behavior. This

is particularly useful in the debug mode.

To perform transfer instructions from and to the internal SRAM, the

controller has to deal with the ODB master; with re, we and size it commands

the master what to do. At the same time address is driven, and interface

registers are enabled if the operation requires it.

There are also four bits from the FPGA control register : two of them

(endianness and dma enable) configure the behavior of the Controller, while

the other two are used for interrupts.

6.4 The control part

As in any other processing unit, the control part is in charge of dealing with

the flow of each instruction through all the stages, and of supervising the

program flow. In this section I want to describe the whole control part, that

is the instruction set, the flow of each instruction and the modules that build

it up.

56



6.4 The control part

name direction width description

system signals

clk IN 1 module clock

reset n IN 1 negative reset

OSB slave interface

dma control IN 32 provide ctrl from TC to DMA

dma address IN 32 provide a starting address to DMA

dma status OUT 32 provide the TC with the status of the DMA

OSB interface to program memory

rom address IN 8 address to program memory

rom we IN 1 write enable from OSB decoder

rom data IN 16 instruction to program memory

signals from FPGA control register

dma enable IN 1 enable DMA

endianness IN 1 select endianness

codec int en IN 1 enable codec interrupt

codec int ack IN 1 acknowledge codec interrupt

TC signals

dma irq OUT 1 interrupt request to TC

ODB master interface

re OUT 1 read request

we OUT 1 write request

size OUT 2 specify size of request

ok IN 1 feedback signal from ODB master

odb address OUT 32 address for the ODB master

wdata OUT 32 data to write

rdata OUT 32 data to read

audio port interface

codec reg sel OUT 3 select one among codec registers

codec reg we OUT 1 codec register write enable

Codec2DmaIrq IN 1 interrupt request from codec

Dma2CodecIntAck OUT 1 acknowledge codec irq

Table 6.1: Input-output description of the DMA module.
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6.4 The control part

6.4.1 The Instruction Set

The instruction set is composed by 15 instruction, encoded in 16 bits, and

divided into four 4-bit fields. In tables 7.2 and 7.3 you can see a detailed de-

scription of the whole instructions set; in the table are assumed the following

meanings:

• value and mask are items in two sets of 16 elements;

• Source, Dest, Source address, Dest address are registers in the bank;

they can be pointers to on-chip SRAM locations;

• address is a program ROM address ;

• condition is one among IFTRUE, IFFALSE, ANYCASE.

Eight instructions among these involve the use of the ALU; ADD, SUB,

OR, and AND are the usual mathematical or logical operations. The first

operand is in the register indicated by REG1 field, while the second operand

is carried encoded in the options field. It means that for anyone of these

instructions the second operand could be chosen in a set of 16 items.

The MOVE,MOVE CTRL and MOVE ADDRESS involve the ALU but

none operation is performed on data. The same could be said for the

TESTEQZERO ; but in this case bit TrueFalse is set or reset if the operand

is equal to zero. This bit is used by the address generation unit.

In all these operations the REG2 field indicates the destination register.

Transfers of data between SRAM and internal registers are performed

thanks to READ and WRITE ; in both cases the REG2 field contains a

pointer to the SRAM location that should be read or written. The same

thing happens with WRITE2CODEC and READFROMCODEC instruc-

tions, which respectively write and read from codec interface registers. One

important difference that is worth noting is that the SRAM to DMA transfer

is 32 bit wide every shot, while the SRAM to CODEC transfer is 16 bit wide.

The JUMP instructions with the options IFTRUE, IFFALSE and ANY-

CASE, are powerful means to control the program flow. The REG1 and
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6.4 The control part

instruction OPCODE OPTIONS REG1 REG2

ALU instructions

ADD 0000 value Dest Dest

SUB 0001 value Source Dest

AND 0010 mask Source Dest

OR 0011 mask Source Dest

TESTEQZERO 0100 none Source Dest

MOVE 0101 none Source Dest

MOVE ADDR 0110 none none Dest

MOVE CTRL 0111 none none Dest

transfer instructions

READ 1000 none Dest Source address

WRITE 1001 none Source Dest address

WRITE2CODEC 1010 none Dest Source address

READFFROMCODEC 1011 none Source Dest address

control instructions

JUMP 1100 condition address[7:4] address[3:0]

ClearCodecIrq 1101 none none none

SendIrq2Dsp 1110 none none none

Table 6.2: Instruction set description table, part I
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instruction descriptions

ALU instructions

ADD Dest = Source + value

SUB Dest = Source + value

AND Dest = Source AND mask

OR Dest = Source OR mask

TESTEQZERO set flag if Source == 0

MOVE Dest = Source

MOVE ADDR Dest = Address

MOVE CTRL Dest = Control

transfer instructions

READ Dest = * Source address

WRITE * Dest address = Source

WRITE2CODEC Dest = * Source address

READFFROMCODEC * Dest address = Source

control instructions

JUMP Jump to address if condition is true

ClearCodecIrq clear the CODEC Int Request

SendIrq2Dsp send an interrupt to DSP

Table 6.3: Instruction set description table, part II
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6.4 The control part

REG2 field together provide the program address (8 bit long) where to jump

if the condition is verified.

To send interrupt request to the core there is the SendIrq2Dsp interrupt;

the most important feature of this instruction is that it will not terminate

until it has been acknowledged by the core. And finally the ClearCodecIrq

instruction clears the interrupt request sent by the codec to the DMA. These

last instructions have their own modules called respectively Interrupt Gen-

erator Unit and Interrupt Control Unit.

6.4.2 The phases of each instruction

A simple state machine - ctrl sm- is responsible for the flow of each instruc-

tion; here are the three steps: fetch,execution and address generation.

fetch phase given the correct address, the next instruction is fetched by

accessing the program memory ; this takes one cycle.

execution phase during this phase the actual operation is performed; please

notice that the duration of this phase is not a priori determined, cause

in transfer operation cases the Test Chip SRAM is involved. If it is

required, the TrueFalse bit is evaluated and appropriate signals for the

AGU are generated.

address generation phase according to the signals provided during the

execution phase, the address of next instruction is produced. During

this phase the Control Part interfaces the Interrupt Control Unit to

check whether any interrupt has occurred .

The control part also provides the internal bus controller, the ALU, and

the ODB bus controller with the appropriate commands.

6.4.3 The execution phase

The execution phase begins when the instruction register is loaded with the

new instruction and an enable command is given; at this moment one among
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6.4 The control part

the following state machines runs :

• alu instr sm controls the instructions that involve the ALU

• spec instr sm controls SendIrq2Dsp and ClearCodecIrq

• trans instr sm controls the transfer instructions

• jump instr sm controls the JUMP instruction;

according to which acknowledges its own opcode pattern. This machine sets

a busy flag, that will be cleared only when it will finish its operation. The

flow doesn’t proceed until all the busy flags are zero; this kind of semaphore

is needed cause the execution time of the transfer instructions is unknown.

During this phase control signals to the datapath are generated; this

is the only moment in the execution flow that it is possible. Each state

machine generates a different configuration of these signals, and every time

the correct configuration is selected with a mux, controlled by the OPCODE

value. In other words, while the alu instr sm is running the mux selects its

configuration to be forwarded to the ALU and to the register bank.

At the same time a binary information is generated for the Address Gen-

erator Unit, such as whether or not a jump is to be performed.

6.4.4 The Address Generation Unit

The AGU is responsible for the generation of the next instruction address;

it either increments the present address, or jump to an absolute address. In

table 7.4 you find a list of inputs and outputs. In the case that the Controller

receives an interrupt request, the AGU jumps to the address provided by the

ICU ; on the other hand a jump could occur if the condition in the JUMP

instruction has been evaluated true.

The AGU interfaces directly with the ICU via two wires: it receives the

int req signal and output the int ack ; the acknowledgment is set when the

interrupt is served, that is when the instruction execution reaches the address
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name size direction description

clk IN 1

Nreset IN 1

new address IN 8 address from the JUMP instruction

int address IN 8 address from the ICU

int req IN 1 from ICU; request of interrupt

int ack OUT 1 to ICU; interrupt acknowledged

LoadInc IN 1 from ctrl sm; increment or load new address

enable IN 1 from ctrl sm;

address out OUT 8 new program counter

Table 6.4: AGU input output description table

generation phase. At this moment the address provided by the ICU via the

int address is loaded as new address.

If the int req is not asserted, the AGU checks whether the JUMP in-

struction condition has been evaluated true; in that case new address will be

loaded as the next one. If any of these possibility has occurred, the present

address is increment by one and put on the output.

6.4.5 The Interrupt Control Unit

The ICU is the module in charge of receiving the interrupt and synchronizing

it with the control part; when an interrupt occurs it signals it to the AGU

and at the same time it provides it with the ROM address where the routine

is. When the ClearCodecIrq instruction is run, the ICU deals with the codec

interrupt acknowledge signal. This is a simple behavior that could be easily

used for multiple interrupts. In this case there was no need for interrupt

masking mechanism, so it was not implemented.
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6.4.6 The Interrupt Generator Unit

The IGU is responsible for sending the interrupt request to the core via

the dedicated FPGA pin. It is triggered via software by the instruction

SendIrq2Dsp and reset by the core, by writing in User FPGA Control Reg-

ister.

6.5 The program memory

The program memory is where all the instructions are stored; it is organized

in 16 bit wide words and the maximum length of the program is 256 in-

structions. These size has been chosen as a trade off between the address

width, and the program length. An eight bit width matches with the sum

of two fields in an instruction; this makes it ideal to fit in REG1 and REG2

fields of the JUMP instruction, as described above. On the other side the

final program length is under 100 instructions, making it reasonable the size

chosen.

Deploying a positive feature of Stratix technology I designed it as a dual

port memory RAM. The first port is a read only access used by the Controller,

and it behaves exactly as a ROM. The other port is used in both write and

read directions by the Core, that accesses it via the system bus. Thanks to

this, it is possible to load the program at run-time, just before making it run.

This feature was very useful in developing the correct program and in the

discovery of bugs in design. The writing in this memory is protected by a

dma memory write enable, of the Dma Control Register ; writing is allowed

only when this bit is set.

As you can see later in this chapter the memory space is organized in

two main part. The first part is at the beginning (address h0 ) and it will be

executed at the start and whenever the Controller is idle. The second part

starts at the address hC and it will be executed every time an interrupt from

the CODEC arrives. At the end of this program the execution is back to the

first part.
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6.6 The DEBUG mode

To reduce the developing time I added a Debug mode to the Controller;

in this mode the flow of the program could be controlled by an external

programmer. I added two bits to the Dma Control Register ; here they are

with their function:

debug enable : this bit force the Controller is the debug mode when set.

It means that the ctrl sm is stuck just before beginning the execution

phase.

debug this bit is used when the Controller is the debug mode. It allows

the ctrl sm to go ahead, but just for one instruction. This signal is

edge triggered, to avoid problems due to asynchrony between core and

Controller.

This allowed me to write simple C functions like dma debug single step()

that proved to be very useful in the debugging activity. It it important to

say in this moment that in the whole work, the greatest important has been

assigned to test and debug tools.

6.7 The Controller Mapped in the FPGA

In table 7.5 you find a list of the resources used by the Controller in the

FPGA. Among those there are Logic Elements that could both registered

and combinatorial, and memory bits, in the dedicated memory blocks. The

device that is referred to is an ALTERA STRATIX EP1S30. A percentage

value is also reported to give an idea of how many gates are required.

65



6.7 The Controller Mapped in the FPGA

module logic elements memory bits

ICU 1 0

IGU 2 0

ctrl sm 19 0

jump instr sm 6 0

spec instr sm 12 0

alu instr sm 12 0

trans instr sm 15 0

AGU 18 0

control part 121 0

ALU 210 0

status register 30 0

mux 64 0

register bank 0 256

program memory 0 4096

overall 428 4352

amount available 32470 3317184

percentage occupied 1.31% 1.29 %

Table 6.5: FPGA resources used by the DMA system
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Chapter 7

The Software

7.1 Introduction

This chapter deals with the software side of the system, that is the code

that runs on the DSP, plus the code for the Controller. It is related to the

hardware in a twofold way; on one side the pre-existing driver contributed

to the specifications of the new controller that I designed. This is due to the

transparency required to the new controller. On the other side the hidden

part of the software and few other functions, had to be reshaped to fit the

new hardware. Moreover some of this software has been changed, some has

been written from scratch, some never touched.

In the software you can recognize three different parts; starting from the

lowest level they are :

the interrupt service routine it is called by the controller, and it has

been changed; in particular it has been decreased in size and function-

alities;

the audio port driver that is all the data structures and functions used

by the application. This was slightly changed

the main program this is the top level; the data are transformed with

library algorithms and the FPGA is configured properly.



7.2 The Audio Port Driver

Trying to follow the way I worked on this issue, I’ll start describing the

CODEC driver ; then I’ll deal the ISR and finally I’ll describe the program

running on the audio port controller.

7.2 The Audio Port Driver

7.2.1 Data structures

The variables are allocated in the SRAM, that is the internal memory of the

DSP system. This memory can be accessed by both the core and the DMA

interface; the sharing of the these variable is one of the points, without which

this work wouldn’t have been possible. The data variables are eight buffers,

half for transmission and half for reception; those for transmission are filled

by the application and emptied by the ISR, and viceversa for the reception

ones. In each of these two groups, two buffers are for the left channel and

the other two are for the right channel.

The buffers allocated seem to be twice as many as required; to focus on

this point consider that two parallel ”threads” will work on the same data.

To avoid that they interfere with each other, double data structures are

needed; in particular when the application reads RxBuffer1 and writes the

transformed data in TxBuffer1, the ISR reads the samples from TxBuffer2

and stores the incoming samples in RxBuffer2.

Let’s introduce now the buffer descriptors called db codec rx bd and db codec tx bd ;

these and all the other variables are described in the picture 8.1. Due to the

complexity I only showed the half referring to reception. Anyway those buffer

descriptors are composed by the following four fields:

lSamplePtr a 32-bit unsigned int, that points to the first sample of the left

channel;

rSamplePtr a 32-bit unsigned int, that points to the first sample of the

right channel;

68



7.2 The Audio Port Driver

status a 32-bit int that contains information about the status of the buffer;

it is the only field that is modified at run time;

length 16-bit int, that provides the size of the buffer.

Each buffer (left and right channel buffers considered as a whole) has its

own descriptors. Every moment just one buffer could be active for the appli-

cation and this is written in its buffer descriptors. The status field is modified

and checked by the application, the ISR and the controller program. The

following table shows the meaning of its parts :

name bit meaning

act 4 set if the buffer is active

rdy 3 buffer ready

lst 2 set if the buffer is the last

lEn 1 left channel enabled

rEn 0 right channel enabled

count 31:16 number of valid samples

Let’s focus on the rdy bit. It behaves differently in the receiver and

transmitter case. In the receiver buffer descriptors, it is set by the controller

when this has filled the whole buffer; it is then cleared by the application

when uses those values. In the transmitter case, it is the application that,

once filled the buffer, sets the rdy bit while the controller should clear it as

soon as it empties the buffer.

In addition the two receiver buffer descriptors may not have any variable

interleaved between them; this is to allow an easy access to the ISR. The

same may happen for transmitter ones.

Besides the buffer descriptors you find a configuration variable called

db codec config ; the following fields are there kept:

mode states the audio port operation mode, as far as data rate, sample size,

behavior;

firstTxBdPtr points to the first transmitter buffer descriptor;

69



7.2 The Audio Port Driver

firstRxBdPtr points to the first receiver buffer descriptor;

callback points to the code where the callback() function is stored.

This variable is initialized at the beginning of the program, and it is never

modified. The callback()function is very important; it is called at the end of

ISR and it just switches a global variable. This allows the main function to

enter in data operation segment. It basically acts as a one to one semaphore.

7.2.2 Interrupt Service Routine Data Variables

So far we have described the variables seen by the application; there is an-

other important variable that is used and modified at run time by both the

ISR and the controller program: it is the DbCodecCurData. It is hidden to

the application, but it points to all the buffers and all the buffer descriptors,

allowing the controller and the ISR to work on them.

Here are the details:

name function

lTxPtr pointer to the next left sample to be sent

rTxPtr pointer to the next left sample to be sent

curTxBdPtr pointer to the current tx buffer descriptor

firstTxBdPtr pointer to the first tx buffer descriptor

txCallback pointer to the tx callback function

lRxBdPtr pointer to the location where to store the next left sample

rRxBdPtr pointer to the location where to store the next right sample

curRxBdPtr pointer to the current rx buffer descriptor

firstRxBdPtr pointer to the first rx buffer descriptor

rxCallback pointer to the rx callback function

Through a pointer to this variable, every data of the driver could be

accessed. This is the way actually done by the controller. An overview of

what I just described is in the picture 8.1.
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7.2.3 Audio Port Driver Functions

The main functions provided for the application are the following:

DbCodecInit() This routine initializes the Audio Port driver: in particular

it does the following operations:

• the Audio Port Interface and IC are reset

• the transmit and receive buffer descriptor are initialized

• the driver’s internal pointers are configured to point the first trans-

mit and receive buffer descriptors

• the Audio Port hardware is programmed according to the specified

configuration mode

• the Audio Port FPGA registers are programmed

• the Audio Port ICU interface is programmed but not enabled

• the Audio Port hardware is taken out of reset

DbCodecEnable() This function enables the Audio Port interrupt with a

specified priority.

These functions were changed to fit the new hardware; in particular the

address of the Audio Port Interface registers changed, and the interrupt in

the new controller was a different one. This modifications required to set in

a different way some parameters in the internal definition of these functions,

but the goals and structures kept exactly the same.

7.3 The Interrupt Service Routine

The interrupt service routine is the part that I most modified; many of the

task originally in charge of it, are now performed by the controller. In this

section I want to make a picture on how was the ISR before my work, and

then make clear which changes were done.

The ISR is basically divided into three parts.
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7.3 The Interrupt Service Routine

the Audio Port configuration this is responsible for the correct initial-

ization of the audio port IC. As described in the CODEC chapter, to

switch from control to data mode, it requires a precise timing. It is

done at the very beginning and it takes about 200 interrupts.

sample transfer This transfers samples from audio port interface to inter-

nal memory. Some control has to be done, and the buffer descriptors

are updated each time. This part of the interrupt runs for every sample,

that at the sampling frequency.

control this part is executed just once per frame, and its goal is to update

the DbCodecCurData variable with the current buffer descriptors.

Even if the configuration takes a long time, it is executed just once, and it

is not taken into account when considering the performances of the system.

As you can see the most cycle expensive part is the second one; it has the

longest code and it is executed far more times than the third. Therefore

this part has been taken away from the ISR and the same tasks have been

assigned to the new controller.

For example let’s consider an audio algorithm that works on 160 sample

frames; let’s also assume that the sampling frequency is 48 KHz. In this

case the transfer part will run at 48 KHz while the control part at only 300

Hz.

In the following I am going to describe the details of this two part.

7.3.1 The Audio Port Configuration

As described in B, the Audio Port IC requires a precise procedure in order

to enter the data mode. At the end of this procedure the Audio Port will be

configured with the current wanted values of sampling frequency, data mode,

internal behavior. To understand the following three phases keep in mind

that the CODEC in the control mode will reply each input on the output.

These are the three phases :
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7.3 The Interrupt Service Routine

first interlock the control word is written with the DCB bit low; when a

control word with the DCB bit low is replied, it jumps to the next

phase;

second interlock the same as the first interlock, but the DCB bit is now

high;

autocalibration reads and writes the control word for 195 times.

7.3.2 The Transfer Section of the ISR

This part is split into two equivalent sections, the first for the transmission,

the second for the reception. Here are the steps executed by each part:

1. the DbCodecCurData is accessed and the current buffer descriptor is

fetched;

2. the status field of the current buffer descriptor is read, in particular the

rEn and lEn bits

3. if enabled the transfer operations between the current buffers and the

audio port registers are performed

4. if enabled the count field of the current buffer descriptor is decreased

by one,

5. if the count field is equal to zero, the control part is called, otherwise

the ISR ends.

7.3.3 The Control Section of the ISR

In the control section the DbCodecCurData is updated; in particular the

CurTxBdPtr and CurTxBdPtr are changed. In addition each buffer descrip-

tors status is modified; the count field is initialized to the size value, and

the ready bit is toggled to communicate to the application that the buffer is

either full or empty.
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7.4 The Program Running on the Controller

Finally the callback function is called, just before ending the ISR. This

will give the control of the flow back to the application.

7.3.4 Changes made in the ISR

The final version of the ISR for the new controller was basically the original

one without the second part, which is in charge of the data transfer. In

fact in the system I developed this function is performed by the audio port

controller.

This change makes the Interrupt Service Routine much shorter in terms

of cycles, and it is the main contribution to the overall overhead reduction.

Quantitative details are in the 9 chapter.

7.4 The Program Running on the Controller

After I introduced all the variables and all the software, the picture is com-

plete and it is possible to show the program that runs on the audio port

controller.

To program the controller in the FPGA I found very useful to develop a

simple program that could translate a text file with the assembly language

into the controller machine language. In this way I make it easier to develop

the program that should run on the controller. It was also very useful in the

debugging of the controller, where the assembler proved to be a user-friendly

and easy tool.

It basically reads each line of the text file and translate it in a 16 bit

word, that is an instruction. Every field is written and encoded separately.

After the encoding it writes this word in a vector, in the location pointed

by the row number. The program was made also to allow blank lines and

comments at the end of each instruction.

Let me remind that the memory in the User FPGA is part of the memory

space of the DSP; this makes it easily accessible via DSP software. Thanks

to this the vector with the instructions is allocated directly in memory in
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the FPGA where the controller goes to read it. A protection bit has been

planned; this protects this area of the memory from unwanted write opera-

tions.

So here is the program that actually runs on the DMA; this is written in

the assembly language described below.

0 MOVE_ADDR R0 // dbCodecCurDatain R0

1 JUMP ANYCASE 0 1

12 ClearCodecIrq

13 MOVE R0 R1

14 ADD EIGHT R1 R2

15 READ R3 R2 // R3 <- curTxBdPtr

16 READ R4 R3 // R4 <- txBdStatus

17 AND REnBdMask R4 R5

18 TESTEQZERO R5 R5

19 JUMP IFTRUE 1 6

20 SUB OX100 R4 R4

21 WRITE R4 R3 // update txBdStatus

22 AND LEnBdMask R4 R5

23 TESTEQZERO R5 R5

24 JUMP IFTRUE 1 D

25 READ R2 R1 // R1 <- lTxPtr

26 WRITE2CODEC CodecTxLeft R2

27 ADD TWO R2 R2

28 WRITE R2 R1 // update lTxPtr

29 AND REnBdMask R4 R5

30 TESTEQZERO R5 R5

31 JUMP IFTRUE 2 5
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7.4 The Program Running on the Controller

32 ADD FOUR R1 R1

33 READ R2 R1 // R1 <- rTxPtr

34 WRITE2CODEC CodecTxRight R2

35 ADD TWO R2 R2

36 WRITE R2 R1 // update rTxPtr

37 AND StatusCountMask R4 R5

38 TESTEQZERO R5 R5

39 JUMP IFFALSE 2 A // 42

40 AND TxReadyMask R4 R5

41 WRITE R5 R3 // clear TX ready bit

42 ADD SIXTEEN R1 R1 // *R1 = lRxPtr

43 ADD EIGHT R1 R2 // *R2 = CurRxBdptr

44 READ R3 R2 // R3 <- curRxBdPtr

45 READ R4 R3 // R4 <- rxBdStatus

46 AND RLEnBdMask R4 R5

47 TESTEQZERO R5 R5

48 JUMP IFTRUE 3 3

49 SUB OX100 R4 R4

50 WRITE R4 R3 // update rxBdStatus

51 AND LEnBdMask R4 R5

52 TESTEQZERO R5 R5

53 JUMP IFTRUE 3 A

54 READ R2 R1 // R2 <- lRxPtr

55 READFROMCODEC CodecRxLeft R2

56 ADD TWO R2 R2

57 WRITE R2 R1 // update lRxPtr
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58 AND REnBdMask R4 R5

59 TESTEQZERO R5 R5

60 JUMP IFTRUE 4 2

61 ADD FOUR R1 R1 // *R1 = rRxPtr

62 READ R2 R1 // R2 <- rRxPtr

63 READFROMCODEC CodecRxRight R2

64 ADD TWO R2 R2

65 WRITE R2 R1 // update rRxPtr

66 AND StatusCountMask R4 R5

67 TESTEQZERO R5 R5

68 JUMP IFFALSE 0 1

69 OR RxReadyMask R4 R5

70 WRITE R5 R3 // set RX ready bit

71 SendIrq2Dsp

72 JUMP ANYCASE 0 1
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LsamplesPtr

RsamplesPtr
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LENGTH

MODE

firstTxBdPtr

firstRxBdPtr

rxCallBack

txCallback

db_codec_config
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rxCallback
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rx_buffer

hidden variable
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RsamplesPtr

STATUS

LENGTH

db_codec_rx_bd

db_codec_cur_data

lTxPtr
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curTxBdPtr
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txCallback
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Figure 7.1: Variables in the internal memory 78



Chapter 8

Achievements

In this chapter I would like to present the outcome of my work in term of

performance. To do so I first introduce the Adaptive-Multi Rate Vocoder

that is a typical example of frame based audio processing algorithm.

Then referring to this algorithm it is possible to make some comparative

evaluation of the final performance of my project.

8.1 The Adaptive Multi-Rate Vocoder

The AMR Vocoder is a standard procedure to compress and decompress the

voice signal. It was standardized in the 1999 by the 3GPP, and it used

in GSM, GPRS and EDGE mobiles. The word Vocoder stands for Voice

Encoder and Decoder. It means that the voice coming from a microphone is

compressed, transmitted and then decompressed to be played on a speaker,

as shown in figure 9.1.

In this picture you can see a block diagram of a typical wireless com-

munication. The voice compressed has to be encoded again before being

sent in the channel; this is due to the characteristic of the channel that may

introduce high noise and distortion.

In this kind of wireless communication system, the band is always an

expensive resource. For this reason, before sending any kind of data, they
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Figure 8.1: Wireless transmission block diagram

are compressed as much as it is possible; this is could be done in an effective

way in the case of the voice, thanks to its particular propriety.

The AMR Vocoder employs a special model for the human speech as you

can see in picture 9.2. This model is only valid for short periods of time

from 2 to 40 milliseconds. According to this model the sounds generated by

humans are either voiced or fricative; the first are produced by the vibration

of the vocal cords and they could represented by a train impulse, where the

pitch is the fundamental frequency. On the other side the fricatives originate

as a random noise, not from vibration of vocal cords.

In both cases the sound passes through the oral cavities where it is mod-

ified; this operation is equivalent to a linear operation and therefore it could

be modelled as a linear filter, with some parameters. The whole model is

also considered in the research field of synthetic speech generation.

The power of this model is that, for every time frame of 20 milliseconds,

just three parameters are sent; they are the voiced/unvoiced information,

the pitch value, and the vocal tract response. These values are extract from

every frame and sent; the decoder with this information tries to rebuild the

original frame.

Another positive feature of the AMR is the ”multi-rate”; according to the

quality of the channel, it can tune the degree of compression used, generating

different bit rates. The standard sampling frequency is 8 KHz; being the

time window 20 millisecond long, it makes every frame composed of 160
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Figure 8.2: Human speech model

samples. The output sent to the channel encoder could be compressed down

to a bit rate between 4.75 Kbit/s and 12.2 Kbit/s. If you consider that

without the compression the bit rate would be 128 Kbit/s, this is a big

improvement; that bit stream is transformed by the channel encoder and

then sent in the channel. The actual bit rate, after channel encoding, for

the only voice is then about 23 kbit/s; to a correct interpretation of this

value take into account that the latest GSM network architectures support

an about 500 Kbit/s channel per user.

8.2 The Evaluation of Performance

Due to many constraints, not last the lack of time, the evaluation of perfor-

mance in my work was not performed as I planned at the beginning.

The original idea was to run the AMR vocoder on the Development Board

with the new controller installed; in that case a measurement of the number

of cycles could have been performed, and then compared to the same number

with the old controller. In particular the number measured should have been

81



8.2 The Evaluation of Performance

the number of cycles taken to perform once the algorithm together with the

IO operations.

Unfortunately to run the AMR vocoder proved to be a not straightforward

task, taking time and efforts to manage issues such as memory organization

and system configuration, that go beyond the purpose of my work.

Nevertheless is still possible with regard to AMR Vocoder to get some

evaluation. In StarCore the AMR Vocoder was usually employed at the

sampling frequency of 8 KHz and time window of 20 msec; this means that

the buffer is made of 160 samples.

In general the overhead spent for IO operations would be the frequency

that the interrupt is called multiplied for the length of the interrupt service

routine that is:

OH = cyclesISR ∗ frequencyinterrupt [MIPS] (8.1)

.

Consider that in this case I am going to make a comparison within the

same architecture, so the measurement in MIPS is considered valid and mean-

ingful.

In the case of the sample-based interrupt system it would be:

OHSAMPLE−BASED = cyclesISR−SAMPLE−BASED ∗ fsample [MIPS] (8.2)

On the other side, in the case of the frame-based interrupt based system the

overhead would be:

OHFRAME−BASED = cyclesISR−FRAME−BASED ∗ fsample

lengthbuffer

[MIPS]

(8.3)

In these equations two values are algorithm dependent, namely the length

of the buffer, and the sampling frequency. Moreover thanks to the implemen-

tation of the system we can also evaluate the length of the interrupt service

routine in both cases. From the code of the two routines an estimation of

their length is 250 cycles for the sample-based one and 30 for the frame-based

one.
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If we substitute the actual values for the AMR algorithm together with

the lengths of the ISR in 9.2 and 9.3 we get:

OHSAMPLE−BASED = 250 ∗ 8KHz = 2 [MIPS] (8.4)

OHFRAME−BASED = 30 ∗ 8KHz

160
= 0.0015 [MIPS] =

2

1300
[MIPS]

(8.5)

So overall thanks to the controller I designed and implemented, the over-

head was reduced by a factor 1300, down to a really negligible value. This

means that the DSP processor really spends its time in an appropriate way,

doing what it was designed for.
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Appendix A

AMBA AHB Bus description

In this appendix I want to provide an overview of the AMBA AHB bus

standard. AHB stands for Advanced High-Performance Bus, and it is part

of the AMBA family together with ASB (Advanced System Bus) and APB

(Advanced Peripheral Bus).

The Advanced Micro-controller Bus Architecture (AMBA) is a set of

specifications that define an on-chip communication standard for designing

high-performance embedded micro-controller. The AMBA AHB is the most

powerful standard in this family, being it suitable for high-performance, high

clock frequency system modules, and it usually acts as the high-performance

backbone bus.

A.1 The Architecture

In the picture A.1 there is a description of the usual architecture; there is the

possibility to have in the same system multiple masters and multiple slaves.

In that case an arbiter and a decoder are necessary. The arbiter deals with

the requests of bus use coming from the masters; it assigns the right of using

the bus to a single master at a time. On the other side the decoder selects

which slave is active each time.
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Figure A.1: Architecture of AHB bus system
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A.2 The Signals and the Timing

The signals involved in the AHB standard are in the table A.2; the first three

signals connect the masters with the arbiter, and their function is to assign

the bus to only one master at a time. In particular, as you can see in the

picture A.3, in the phase 1 and 2 the master raises busreq, and waits for grant

to be raised before going on with the operation.

Once the master has the right on the bus, it starts with the proper signals

for the communication; thanks to write, burst, size and trans it can specify

the mature of the transfer.

Let’s see in details what these signal mean:

write It specifies whether the operation is a read or a write;

size it indicates the size of the transfer, from 8 bits to 1024 bits

burst AHB offers the possibility to perform many transfers together, i.e. a

burst; so this signal indicates whether the required operation is a burst

operation or not and its width.

trans provides more information in the case of burst transfer, or in the case

of no operation required.

After the master has provided the slave with these signals (phase 3),the

slave has to give some feedback to the master, to let it know about the status

of its request. This is done via the ready and resp signals together, phase

4. This phase could also be delayed by the slave if it requires time, just by

keeping ready low.

A.2.1 The Endianness

As I explained in the COntroller chapter, endianness is an important issue

in the design of bus controllers and interfaces. In the table A.2.1 and A.2.1,

you can see the difference between the little endian and big endian case, in

loading shirt data on the 32-bit wide bus.
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name direction function

arbiter signals

busreq M to A master request of the bus

grant A to M arbiter grants the bus to the master

lock M to A master locks the bus for its own use

slave signals

write M to S direction of transfer

ready S to M answer of the slave

data[31:0] bidir data, read and write

address[31:0] M to S address

burst[2:0] M to S kind of transfer

trans[1:0] M to S kind of transfer

size[1:0] M to S size of the single transfer

sel D to S select the slave

clk M to S clock

Figure A.2: AHB signals overview, where M stands for Master, S for Slave,

D for Decoder and A for Arbiter.
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CLOCK

BUSREQ

GRANT

LOCK
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READY
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DATA
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21 3 4 5

Figure A.3: Example of AHB timing for a write operation
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Transfer address Data Data Data Data

size offset [31:24] [23:16] [15:8] [7:0]

word 0 x x x x

halfword 0 x x

halfword 2 x x

byte 0 x

byte 1 x

byte 2 x

byte 3 x

Figure A.4: Active byte lanes for a 32-bit little endian bus

Transfer address Data Data Data Data

size offset [31:24] [23:16] [15:8] [7:0]

word 0 x x x x

halfword 0 x x

halfword 2 x x

byte 0 x

byte 1 x

byte 2 x

byte 3 x

Figure A.5: Active byte lanes for a 32-bit big endian bus
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The Audio Port Integrated

Circuit

The device is an AD1849K SoundPort Stereo Codec produced by Analog

Devices; it integrates the data conversion circuit with the control functions.

The data conversion is composed by two stereo pairs of Sigma-Delta conver-

ters, at a frequency in the range from 5KHz to 48 KHz. The clock could

be supplied either by external oscillators or by an external clock source, or

by the serial interface.

The data are typically on 16 bit; the device support four different data

types, that are the 16-bit twos-complement linear PCM, the 8-bit unsigned

linear PCM, the 8-bit companded u-law, and the 8-bit companded A-law. In

the system I developed the first one was always used. The choice among

these types could be done during the configuration of the Codec as you will

see in the next section.

To interface the outer world the Codec is provided with a six wire serial

port. As you can see in table B.1, thanks to two different data wires the

interface is bidirectional. Along with the clock signal, the fsync provides a

synchronization, being high at the end of each word.

The DC pin is very important, since it decides in which mode the Codec

must be working. There are two possible working modes: config mode and



wire function direction

SDTX CODEC data transmitter OUT

SDRX CODEC data receiver IN

SCLK bit clock INOUT

FSYNC frame sync INOUT

DC DATA CONTROL mode IN

RESET reset IN

Figure B.1: CODEC serial interface pins

data mode. In the former the Codec is always a slave in the serial communi-

cation, while in the latter it could be both slave and master.

When the audio port comes out from reset, it is usually put in the config

mode, by clearing the DC bit. In this phase the desired configuration is

loaded, and then it should be turned to data mode. This happens to be a

complex operation, because it includes also the switch from slave to master

configuration. In my system this operation is performed by the ISR and it

described in details in the section 8.3.1.

To test the device two possible loopback modes are available. The first

is completely digital, the input to the Codec, is replied back directly on the

output. The second is also analog; the digital is converted in analog and then

back in digital. These functionalities proved to be very useful and they were

both employed in the test phase. The serial interface is directly connected

to control or data registers; the word sent through the data wires is always

64-bit long and depending on the mode it could come either from the data

registers or from the control registers.

When in config mode by writing in the control registers you can set the

following configuration for the upcoming data mode:

DF1:0 data format selection

MS master slave select
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MCK2:0 clock source for Codec internal operation

DCB data control bit, see 72

DFR2:0 data conversion frequency select

ST stereo mode select

ENL enable loopback testing

ADL loopback mode

On the other side when the Codec is in data mode the 64-bit word is

composed by two 16-bit samples, plus other 32 online control bits. With

these you can amplify the analog incoming signal, or attenuate the output

signal. These functionalities were not actually used in my project.
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Verilog appendix

In this appendix I show the Verilog code of the central state machine of the

control part. The function of this module is to regulate the flow of each

instruction, fetch, execution, new address generation.

//**************************************************************

//

// module: ctrl_sm

//

//**************************************************************

module ctrl_sm (

debug,

clk,

Nreset,

enable_new_instr,

enable_execution,

addr_en_1,

addr_en_2,

busy_flag_reg,

);



// input and output definition

input debug ;

input clk;

input Nreset;

input[3:0] busy_flag_reg ;

output addr_en_1 ;

output addr_en_2 ;

output enable_new_instr ;

output enable_execution ;

// declaration of internal signals

reg enable_new_instr_reg ;

reg goflag_reg ;

reg addr_en_1_reg ;

reg addr_en_2_reg ;

reg enable_execution_reg ;

reg[3:0] sm ;

// description of the internal architecture of the module

assign enable_execution = enable_execution_reg ;

assign addr_en_1 = addr_en_1_reg ;

assign addr_en_2 = addr_en_2_reg ;

assign enable_new_instr = enable_new_instr_reg ;

always @( posedge clk or negedge Nreset )

begin

if (Nreset == 1’b0) sm <= 4’b0000 ;

else

begin

case (sm)
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0: sm <= 1 ;

1: if (debug == 1’b1) sm <= 1 ; else sm <= 2 ;

2: sm <= 3 ; // FETCH

3: sm <= 4 ; //BEGIN EXECUTION

4: if ( busy_flag_reg == 4’b0000 ) sm <= 4 ; else sm <= 5 ;

5: if ( busy_flag_reg == 4’b0000 ) sm <= 6 ; else sm <= 5 ;

6: sm <= 7 ; // ADDRESS GENERATION

7: sm <= 8 ;

8: sm <= 0 ;

endcase

end

end

always @(sm)

begin

case (sm)

0: begin

enable_execution_reg <= 1’b0 ;

enable_new_instr_reg <= 1’b0 ;

addr_en_2_reg <= 1’b0 ;

addr_en_1_reg <= 1’b0 ;

end

1: ;

2: enable_new_instr_reg <=1’b1;

3: begin

enable_new_instr_reg <= 1’b0 ;

enable_execution_reg <= 1’b1 ;

end

4: enable_execution_reg <= 1’b0 ;

5: ;

6: ;
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7: addr_en_1_reg <= 1’b1 ;

8: begin

addr_en_2_reg <= 1’b1 ;

addr_en_1_reg <= 1’b0 ;

end

endcase

end

endmodule
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Appendix D

Glossary

Here you can find a glossary of terms I used in this document, in particular

acronyms, with their explanation

AMR Adaptive Multi-Rate Vocoder; a voice compression and decompres-

sion algorithm used in GSM mobiles.

DB1000 Development Board 1000. It is a Development Board produced by

Lyrtech, that hosts a Test Chip, many communication peripherals, like

USB2.0, UART, JTAG, RS232, SDRAM memory banks.

DMI Direct Memory access Interface; this module is on the Test Chip and

it stands amidst the ODB and the internal SRAM.

DRAM Dynamic RAM; RAM using capacitors (needs periodic refresh)

DSP Digital Signal Processor; processor specialized for signal elaboration,

like audio and video algorithms, compression and decompression.

FIR Finite Impulse Response filter ; a kind of digital filter which uses a

truncated impulse response.

FPGA Field Programmable Gate Array;

IP Intellectual Property



JTAG Joint Test Action Group; standard serial test interface.

ICU Interrupt Control Unit.

ISR Interrupt Service Routine.

ODB Off-Chip DMA Bus; it is on the DB1000, and it connects the DMI on

the Test Chip with the User FPGA.

OSB Off-chip System Bus; it is on the DB1000, and it connects the Test

Chip with the User FPGA.

SDRAM Synchronous Dynamic RAM.

SRAM Static RAM; RAM using active cells. Compatible with standard

CMOS process.

TC Test Chip; it is an integrated circuit that contains the DSP core and

other subsystem blocks like an internal SRAM, data and program

caches, external memory interfaces, and the DMI. It uses a 130 nm

CMOS technology, and it could speed up to 320 KHz.

VLIW Very Long Instruction Word
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