Università degli Studi di Pisa Facoltà di Ingegneria

TESI DI LAUREA IN INGEGNERIA AERONAUTICA

Analisi numerica del procedimento di *Base Bleed* applicato ad un autoveicolo.

Candidato: Picchi Senio

> Relatori: Prof. Giovanni Lombardi Prof. Guido Buresti Ing. Luca Caldirola

Anno Accademico 2003-2004

Indice

1	Inti	roduzione al Base Bleed	1
	1.1	Fisica del fenomeno	1
		1.1.1 Effetti del base bleed sul flusso separato stazionario a valle di	
		un corpo bidimensionale per numeri di Reynolds compresi tra	
		$50 e 250 \dots \dots$	2
		1.1.2 Effetto del <i>base bleed</i> su una scia con rilascio alternato di vortici	4
		1.1.3 Effetto del base bleed sulla scia subsonica di un corpo tozzo	6
		1.1.4 Aspetti particolari	8
	1.2	Analisi	10
	1.3	Conclusioni	11
2	\mathbf{Flu}	sso sul modello	13
	2.1	Griglia iniziale	15
		2.1.1 Soluzione numerica	17
	2.2	Visualizzazione e analisi del flusso	19
3	Bas	e bleed, analisi del procediento	26
	3.1	Strategia di lavoro	26
	3.2	Parametri importanti	27
	3.3	Problematiche legate alla simulazione	28
	3.4	Dipendenza dal numero di <i>Reynolds</i>	30
4	Sof	faggio centrale	33
	4.1	Procedura	33

INDICE

	4.2	Risultati	35
	4.3	Analisi	43
5	Soff	iaggio intermedio	45
	5.1	Procedura	45
	5.2	Risultati	47
	5.3	Analisi	53
6	Soff	laggio perimetrale	54
	6.1	Procedura	54
		6.1.1 Uscite perimetrali continue	55
		6.1.2 Uscite perimetrali discontinue	56
	6.2	Risultati	57
		6.2.1 Sbocchi continui	57
		6.2.2 Configurazioni perimetrali multiple	67
	6.3	Analisi	75
7	Con	clusioni	77
	7.1	Confronto tipologie di soffiaggio	78
	7.2	Prospettive di ricerca	84
	7.3	Possibili applicazioni	85
\mathbf{A}	Alle	gati alla Tesi	89
в	Con	sigli utili	90

Elenco delle figure

1.1	Modello sperimentale usato da Leal	2
1.2	Andamento qualitativo delle linee di corrente	3
1.3	Attrezzatura sperimentale di Wood	4
1.4	Separazione dietro ad un corpo tozzo $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
1.5	Andamento del $C_{p,b}$ per un corpo cilindrico con naso ad ogiva	9
2.1	Modello usato per l'analisi numerica	13
2.2	Modello usato per l'analisi numerica	14
2.3	Volumi di suddivisione della griglia.	16
2.4	Volumi di suddivisione della griglia. Dettaglio	16
2.5	Mappatura degli spigoli del modello zona baule	16
2.6	Andamento del coefficiente di pressione sul modello	20
2.7	Linee di corrente esterne nella zona della base	21
2.8	Linee di corrente nel <i>near wake</i> . Orientamento 1	22
2.9	Linee di corrente nel <i>near wake</i> . Orientamento 2	22
2.10	Andamento del coefficiente di pressione sulla base	23
2.11	Andamento del coefficiente di pressione nel <i>near wake</i>	23
2.12	Vettori velocità nella zona della base sul piano di simmetria. $\ .\ .\ .$	24
2.13	Vettori velocità su di un piano orizzontale passante per la mezzeria	
	della base	25
3.1	Andamento del C_D con il numero di <i>Reynolds</i>	31
3.2	Andamento del C_L con il numero di <i>Reynolds</i>	32

ELENCO DELLE FIGURE

4.1	Posizione delle uscite sulla base	34
4.2	Sbocco centrale. Coefficienti di resistenza	36
4.3	Sbocco centrale. Coefficienti di portanza	37
4.4	Linee di corrente e C_p sulla base nel soffiaggio centrale	38
4.5	C_p sulla base nel soffiaggio centrale	38
4.6	Componente z della vorticità su un piano a $0.1m$ dal piano di simmetria.	39
4.7	Modulo della velocità su un piano a $0.1m$ dal piano di simmetria. $\ .$.	40
4.8	Soffiaggio centrale. Linee di corrente	40
4.9	Vettori velocità sul piano di simmetria per l'uscita <i>centrale superiore</i> .	42
4.10	Vettori velocità su un piano orizzontale a metà base per l'uscita	
	centrale superiore	42
5.1	Posizione delle uscite intermedie sulla base	46
5.2	Sbocchi intermedi. Coefficienti di resistenza.	48
5.3	Sbocchi intermedi. Coefficienti di portanza.	49
5.4	Sbocchi intermedi. Andamento del C_P sulla base	51
5.5	Sbocchi intermedi. Linee di corrente	52
5.6	Sbocchi intermedi. Vettori velocità sul piano di simmetria	52
61	Desizione delle useite perimetrali continue	55
0.1 6 0	Posizione delle usette perimetrali discontinue.	55
0.2	Share a suivertable. Coefficienti di novistenza	50
0.3	Sbocco perimetrale. Coefficienti di resistenza.	50
0.4	Sbocco perimetrale. Coefficienti di portanza.	59
6.5	Sbocchi perimetrali continui $A_R = 0.2$. Andamento del C_P	60
6.6	Sbocchi perimetrali continui $A_R = 0.1$. Andamento del C_P	62
6.7	Componente z della vorticità al passaggio tra dorso e base. $A_R = 0.2$.	63
6.8	Componente z della vorticità al passaggio tra dorso e base. $A_R = 0.1$.	64
6.9	Velocità su un piano a $0.1m$ dal piano di simmetria. $A_R = 0.1.$	65
6.10	Vettori velocità su un piano orizzontale a metà base. \ldots	66
6.11	Vettori velocità sul piano di simmetria	67
6.12	Sbocchi perimetrali discontinui. Coefficienti di resistenza	68

6.13	Sbocchi perimetrali discontinui. Coefficienti di portanza	69
6.14	Sbocchi perimetrali discontinui. Coefficiente di pressione	71
6.15	Sbocchi perimetrali discontinui. Confronto inferiore-inferiore centrale	72
6.16	Sbocchi perimetrali discontinui singoli. Coefficiente di pressione	72
6.17	Sbocchi perimetrali discontinui. Confronto vettori velocità	73
6.18	Uscita <i>inferiore</i> . Linee di corrente	74
7.1	Tipologie di soffiaggio.	80
7.2	Confronto de i C_D ottenuti con differenti posizioni di soffiaggio 	82
7.3	Confronto de i C_L ottenuti con differenti posizioni di soffiaggio . $\ .\ .$.	83
7.4	Velocità ottima di soffiaggio secondo Mair [16]	84

Elenco delle tabelle

2.1	Grandezze geometriche del modello	14
2.2	Configurazione della soluzione numerica	18
2.3	Risultati dell'analisi di sensibilità	19
2.4	Contributo al C_D delle singole parti del modello $\ldots \ldots \ldots \ldots \ldots$	20
3.1	Variazione del C_D con <i>Reynolds</i>	32
4.1	Soffiaggio centrale. Contributo al ${\cal C}_D$ senza soffiaggio ed aree di sbocco.	34
5.1	Soffiaggio intermedio. Contributo al C_D senza soffiaggio ed aree di	
	sbocco	46
6.1	Soffiaggio perimetrale continuo. Contributi al C_D ed aree di sbocco.	55
6.2	Soffiaggio perimetrale discontinuo. Contributo al C_D ed aree di base.	56

Lista dei simboli

 $A_R = \frac{S}{S_b}$

 C_D = Coefficiente adimensionale di resistenza

 $C_{D,b}$ = Coefficiente di resistenza riconducibile alla base del modello

 $C_{D,e}$ = Coefficiente di resistenza del modello senza *base bleed* epurato dai contributi delle superfici corrispondenti agli sbocchi

 $C_{D,f}$ = Coefficiente di resistenza riconducibile alla parte forebody del modello

 C_L = Coefficiente di portanza adimensionale

 C_p = Coefficiente di pressione

 $C_{p,b} = \frac{\Delta P}{\frac{1}{2}\rho U_{\infty}^2} =$ Coefficiente di pressione sulla base

 $C_q = \frac{Q}{U_\infty S_b} = \text{Coefficiente di portata di base bleed}$

 ${\bf k}$ = Rapporto tra perdita di pressione alla uscita sulla base e la pressione dinamica di base bleed

 $Re = \frac{U_{\infty}l}{\nu} =$ Numero di Reynolds

 $Q = U_0 S =$ Portata di base bleed

 $Q_V =$ Quantità di moto

S = Superficie di efflusso di base bleed

 S_b = Superficie di base

- $St = \frac{f_v l}{U_\infty}$ = Numero di Strouhal (frequenza adimensionale di rilascio dei vortici) $u = \frac{U_0}{U_\infty}$ = Velocità adimensionale
- $U_\infty~=$ Velocità del flusso indisturbato
- U_0 = Velocità media di base bleed

Sommario

Viene studiato numericamente il soffiaggio dalla base di un modello semplificato di veicolo. Il software utilizzato è costituito dal pacchetto *Fluent*, mentre il modello riproduce una vettura coupè semplificata con la zona posteriore di tipo *fastback*.

Vengono analizzate le problematiche legate alla simulazione numerica e si integrano più informazioni per verificare l'attendibilità della soluzione in uscita dal programma.

Si cerca di individuare quali siano le strategie più efficaci e quali siano gli effetti dei principali parametri a disposizione.

Si individuano due metodologie di azione per il soffiaggio. Nella prima si cerca di "spingere" i vortici principali della scia più a valle, nella seconda invece si agisce sulla loro intensità, diffondendoli con della vorticità di segno contrario opportunamente introdotta.

Si realizzano le due tecniche implementando tre differenti tipologie di sbocchi sulla base.

Per limitare il numero di variabili si soffia solo perpendicolarmente alla superficie del modello da uscite rettangolari, imponendo un profilo di velocità in uscita costante. La posizione delle uscite come anche la loro estensione sulla base viene variata.

Non si prende volutamente in considerazione il problema della implementazione tecnica del soffiaggio sull'autoveicolo.