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Abstract

Several schedulability tests for real-time periodic task sets scheduled under
the Earliest Deadline First algorithm have been proposed in literature, in-
cluding analyses for precedence and resource constraints. However, all avail-
able tests consider synchronous task sets only, that are task sets in which
all tasks are initially activated at the same time. In fact, every necessary
and sufficient feasibility condition for asynchronous task sets, also known as
task sets with offsets, is proven to be NP-complete in the number of tasks.
We propose a new schedulability test for asynchronous task sets that, while
being only sufficient, performs extremely better than available tests at the
cost of a slight complexity increase. The test is further extended to task
sets with resource constraints, and we discuss the importance of task off-
sets on the problems of feasibility and release jitter. We then show how our
methodology can be extended in order to account for precedence constraints
and multiprocessor and distributed computation applying holistic response
time analysis to a real-time transaction-based model. This analysis is finally
applied to asymmetric multiprocessor systems where it is able to achieve a
dramatic performance increase over existing schedulability tests.
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Chapter 1

Introduction

Real-time systems are computing systems that must react within precise
time constraints to external events. Real-time systems are gaining more
and more importance in our society since an increased number of control
systems relies on computer control. Examples of such applications include
production processes, automotive applications, telecommunication systems,
robotics and military systems. The correct behaviour of a real-time system
depends not only on computation results but also on the time at which the
result is provided [32, 9]. Moving an actuator at the wrong time can be as
disastrous as moving it in the wrong direction.

It is important to note that real-time computing does not correspond to
fast computing. While the objective of fast computing is to minimize the
average response time of each task, the objective of real-time computing is
to meet the timing constraints of each task in the system. The most typical
timing constraint for a task is a deadline, that is the maximum time at which
the task must complete execution. In particular, a real-time system is said
to be hard if missing a deadline may cause catastrophic consequences on
the environment under control. Obviously, the average response time of the
system has no effect on its correct behaviour in a real-time system.

A key world in real-time system theory is predictability [33]. In other
words, we must be able to predict, based on hardware and software spec-
ifications, the evolution of each task. Specifically, a hard real-time system
must guarantee that all tasks remains feasible (meet their deadlines) even
in the worst possible scenario. Unfortunately, most optimization techniques
used for fast computing, especially on the hardware side, do not work well
on real-time systems since they affect predictability. While deep proces-
sor pipelining and caching enhance a task’s execution speed on average, in
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2 CHAPTER 1. INTRODUCTION

the worst case they may actually introduce further delays. Furthermore,
an increase of computational power or a decrease of execution time do not
necessarily improve feasibility, at least in multiprocessor systems [17].

A real-time system typically consists of a set of concurrent tasks that
compete over processor time. The system must thus implement a scheduling
algorithm that decides which task must be scheduled (executed) at each
time slot. In order to achieve predictable guarantees, schedulability tests
must be developed for each scheduling algorithm. A schedulability test is
an algorithm that given a task set returns a positive answer if the task set
can be feasibly scheduled under its associated scheduling algorithm. This
work introduces new schedulability tests for the well-know Earliest Deadline
First (EDF) scheduling algorithm [24].

Chapter 2 introduces the system models that we will use in our work
and presents a brief survey of available scheduling algorithms. We present
both the standard periodic task model used in literature and the transaction
model introduced in [25].

Chapter 3 presents our new schedulability test for asynchronous periodic
task sets. Our main idea is the exploitation of task offsets; the offset of each
task is the first time instant at which it is activated in the system. As we
show by means of experimental evaluations, our technique clearly outper-
forms the available tests in literature, although its computation complexity
is also slightly higher.

Chapter 4 provides an extension of the test developed in Chapter 3 to
the case of tasks sharing resources. In order to preserve predictability, a
real-time system must implement a real-time resource access protocol that
gives guarantees on the maximum time that a task may be blocked waiting
for a resource. Our discussion is based on the widely used Stack Resource
Protocol (SRP) [2].

Chapter 5 provides more insight into the relation between task offsets
and feasibility. We presents a new offset representation and try to develop
heuristics to choose task offsets in a quasi-optimal way. However, we debate
that solving the latter problem is probably impossible, at least in polynomial
time.

Chapter 6 presents a relevant problem in the field of real-time control
systems, that of task output jitter. The test developed in Chapter 3 is then
applied to the problem and compared to existing approaches.

In Chapters 7 and 8 we extend the offset methodology applied in Chapter
3 to the transaction model. This system model is particularly suitable to
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represent systems in which a task may suspend itself for a certain time,
and for distributed and multiprocessor systems. Since the schedulability
test for this system model is quite complex, we split the discussion into
two chapters. Chapter 7 covers the problem of response time analysis for
transaction systems scheduled under EDF, while Chapter 8 is about the
holistic analysis of transaction sets with dynamic offsets. In both chapters
we present our original contribution to the problem and in Chapter 8 we
even show experimental results.

In Chapter 9 the transaction-based test is applied to the case of heteroge-
neous multiprocessor systems, or asymmetric multiprocessors. Experimental
evaluations show how our test, combined to suitable heuristics, is able to
dramatically outperforms all other analysis known so far.

Finally, in Chapter 10 we offer some conclusive thoughts about our major
results and possible future work.
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Chapter 2

System Model

We will start our discussion by introducing system models and general def-
initions that will be needed in the rest of our work. We will basically use
two different models: a simple task model, which is very similar to the stan-
dard literature real-time task set model, and a transaction model, which was
first introduced in [25] and is suitable to represent a variety of situations in
which dependencies between tasks arises. These two models will be covered
in Section 2.1 and 2.3, while in Section 2.2 we will provide a quick overview
of the main results about feasibility for both fixed and dynamic priority
scheduling.

2.1 Simple task model

We will now introduce our basic task model. We assume that a task set T
made of N different tasks {τ1, . . . , τN} must be scheduled in a hard real-time
system. Barring exceptions, we will suppose that all tasks are executed on
a single processor.

Each task τi consists of an infinite series of jobs {τi1, . . . , τij , . . .}. Each
job τij consists of a thread of execution that must run for at most Ci time
units; such value is called the worst-case computation time of task τi, and
we suppose that it does not change between jobs of the same task. A task
is said to be periodic if each successive job τij is activated (i.e., presented
to the system) at a fixed time interval Ti, which is called the task’s period.
A task is said to be aperiodic if it is not periodic. Note that we can’t
provide any guarantee about aperiodic tasks since no bound on the interval
between successive activations of an aperiodic task is provided; any number

5



6 CHAPTER 2. SYSTEM MODEL

of jobs may be activated inside a time interval of any length. Therefore,
in order to introduce aperiodic tasks in a hard-real time system we must
execute them inside a special periodic task that is typically called a server.
We will not be concerned with servers in the remainder of this work. A
special case of aperiodic tasks worth mentioning is that of sporadic tasks.
Successive jobs of a sporadic task are activated at intervals that are at
least equal to a given minimum inter-arrival time Ti. In this case the lower
bound on the interval permits to develop real-time guarantees on the system,
therefore we are not forced to execute sporadic tasks inside a server; note,
however, that in general a sporadic task performs worse than a periodic
task of period equal to the minimum inter-arrival time of the sporadic task,
meaning that analyses developed for periodic tasks (such as those introduced
in the following chapters) cannot be always extended to sporadic tasks. In
what follows we will be mainly interested in the study of periodic task sets.

A task is characterized by a tuple (φi, Ci, Ti, Di, Ji), where:

• φi is the task’s offset. The offset is the first time at which a job of the
task is activated.

• Ci is the worst-case execution time of the task; note, however, that in
most practical applications computing Ci is far from being easy.

• Ti is either the task’s period (for periodic tasks) or the task’s minimum
inter-arrival time (for sporadic tasks).

• Di is the task’s relative deadline. A job is feasible only if it finishes at
most Di time units after its activation.

• Ji is the task’s release jitter.

Each job τij is thus activated at time aij = φi + jTi and must finish
before or at its absolute deadline dij = aij + Di. If we let fij be the time at
which job τij finishes execution (called the finishing time or the completion
time of the job), the feasibility condition for the task set becomes: ∀1 ≤ i ≤
N,∀j ≥ 1, fij ≤ dij . Each task τi can further experience a release jitter Ji.
If the release jitter is not zero, then the release time of job τij (i.e., the time
at which the task is ready to be scheduled) is different from its activation
time, being comprised between aij and aij + Ji. If not told otherwise, we
will suppose that all release jitters are equal to zero, and thus the release
time of a job corresponds to its activation time; in this case we will use the
two terms interchangeably.
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A task set is said to be incomplete if the task offsets are not specified.
This basically means that we are required to make a pessimistic assumption
on offsets. A task set is said to be complete if task offsets are given; it is
also called a task set with offsets. In this case, the task set is said to be
synchronous if all offsets are equal to zero. A task said is asynchronous if
it is not synchronous. Note that given an asynchronous task set T we can
always define the corresponding synchronous task set as T ′ = {τ ′1, . . . , τ ′N},
where for every task τ ′i : φ′i = 0, C ′

i = Ci, T
′
i = Ti, D

′
i = Di, J

′
i = Ji.

We will suppose that all task parameters are expressed by integer num-
bers. It can be proven that in this case, if a feasible schedule exists, then
a feasible integer schedule (i.e. a schedule in which all preemption times
are expressed by integer numbers) exists too [4]; this property is known as
the integral boundary constraint. We can thus restrict ourselves to consider
only integer schedules. A schedule will thus be a function σ : N→ T ∪ {∅}
that assigns to each time slot t a task τi, or the symbol ∅ to indicate that
the processor is idle. Note that considering all task parameters and thus all
activation and preemption times to be integer is not a major limitation for
at least two reasons. The first one is that, if some parameters were originally
expressed by rational numbers, we can always reduce them to integers mul-
tiplying them by their common denominator; there seems to be no reason
to choose irrational values. The second one is that all time values inside the
system, due to practical implementation, must be multiples of a basic clock
tick.

We further define:

1. Ui = Ci
Ti

is the utilization of task τi; the utilization is a measure of how
much computation time the task requires.

2. U =
∑N

i=1 Ui is the total utilization of task set T .

3. Φ = max{φ1, . . . , φN} is the largest offset.

4. function gcd(Ti, Tj) is the greatest common divisor between two peri-
ods Ti and Tj ; gcd(Ti, . . . , Tj) is the same among periods T1, . . . , Tj .

5. function lcm(T1, Tj) is the least common multiple between two periods
T1, Tj , and lcm(Ti, . . . , Tj) is the same among periods T1, . . . , Tj .

6. H = lcm{T1, . . . , TN} is the hyperperiod of T .

7. ηi(t1, t2) =
(⌊

t2−φi−Di

Ti

⌋
−

⌈
t1−φi

Ti

⌉
+ 1

)
0

is the number of jobs of task
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τi with release time greater than or equal to t1 and deadline less then
or equal to t2 [5].

Also, notation (x)0 will be used as an abbreviation of max(x, 0).
An essential concept is that of busy period. A busy period [t1, t2) is

an interval of time in which the processor is always busy, that is: ∀t ∈
[t1, t2), σ(t) 6= ∅.

In all the figures showing a schedule, we represent the execution of each
task on a separate horizontal line. Upward arrows represent release times
while downward arrows represent absolute deadlines.

2.1.1 Resource usage

In our simple task model, tasks can be synchronized using shared resources.
This synchronization model is commonly used in shared memory systems,
as many real-time systems and most embedded systems are. We consider a
set R of R shared resources ρ1, . . . , ρR. To simplify our presentation, only
single-unit resources are considered, although there are ways to consider the
case of multi-unit resources [2].

Any task τi is allowed to access shared resources only through mutually
exclusive critical sections. Each critical section ξij is described by a 3-ple
(ρij , φij , Cij), where:

1. ρij is the resource being accessed;

2. φij is the earliest time, relative to the release time of job τij , that the
task can enter ξij ;

3. Cij is the worst-case computation time of the critical section.

Critical sections can be properly nested in any arbitrary way, as long as
their earliest entry time and worst-case computation time is known. Note
that our model, which was first proposed in [23], is actually slightly different
from the classic one in literature in that it requires earliest entry time to be
known. We feel, however, that such a request should not pose too great a
problem in practical applications.

Since critical sections must be executed in a mutually exclusive way
to guarantee synchronization, a task can’t enter a critical section using a
resource ρk if another task is using the same resource. This means that
a task can be forced to wait until another one finishes executing a critical
section before restarting execution. Such a task is said to be blocked by the
task holding the resource.
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2.2 Scheduling algorithms

Two classes of scheduling algorithms have been proposed in literature: fixed
priority scheduling (FPS) and dynamic priority scheduling (DPS). Note that
all the following results are valid if no resource synchronization is considered.

In fixed priority scheduling, each task τi is assigned a fixed priority value.
At each time instant, the scheduler schedules the active task with the highest
priority (a task is said to be active if its current job has been released but has
not finished yet and it is not blocked). Under the Rate Monotonic algorithm
(or briefly RM), each task is assigned a priority that is inversely proportional
to its period. Rate Monotonic is proven to be optimal (meaning that if a task
set is schedulable under any algorithm, it is schedulable under RM) among
all fixed priority algorithms in the case where task deadlines are equal to
task periods [24]. In the case in which deadlines are less than or equal to
the periods, the Deadline Monotonic algorithm (or DM), where each task is
assigned a priority inversely proportional to its relative deadline, is optimal
instead [22].

In dynamic priority scheduling, each task is also assigned a priority value,
but such value can be dynamically adjusted. For example, under the Earliest
Deadline First algorithm (or briefly EDF), each task is assigned a priority
inversely proportional to the absolute deadline of its current job; priorities
are thus changed each time a new job is activated. EDF is proven to be
optimal among all scheduling algorithms [13].

If deadlines are equal to the periods, than the condition U ≤ 1 is a
necessary a sufficient feasibility condition under EDF. Such a condition is
only sufficient if deadlines are less than the periods. Under RM, two similar
feasibility bounds on utilization can be provided [24, 8]:

U ≤ N(2
1
N − 1)

and ∏

1≤i≤N

(Ui + 1) ≤ 2

but these conditions are only sufficient.
Necessary and sufficient feasibility conditions exists for both DM and

EDF when deadlines are less than or equal to the periods and the task
set is synchronous [4, 1]. The EDF schedulability test, known as proces-
sor demand criterion, will be analyzed in Chapter 3. While these tests are
clearly more comprehensive than the bounds proposed before, they are also
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more extensive in terms of computation time. The computation complexity
of a schedulability test is usually computed as a function of the number of
tasks. The sufficient and necessary tests for both DM and EDF have pseudo-
polynomial complexity, meaning that they have complexity polynomial in
the number of tasks but also proportional to some task parameters. Intu-
itively, a pseudo-polynomial complexity is somehow worse than a polynomial
one but better than an exponential one.

Scheduling is much more complex when tasks are allowed to share re-
sources. In fact, if plain EDF or RM/DM are applied, a higher priority
task can be blocked indefinitely by lower priority tasks. In order to provide
real-time guarantees, the scheduling algorithm must be modified to include
a resource access protocol. The protocol usually gives an upper bound Bi,
called the maximum blocking time, to the time a task τi can be blocked
waiting for lower priority tasks. Many different resource synchronization
protocols have been proposed for both EDF and RM/DM [2, 12, 19, 29].

Given a maximum blocking time Bi for each task τi, the previous schedu-
lability tests can be updated to include the effect of blocking times. The
feasibility condition based on utilization for EDF becomes:

∀1 ≤ i ≤ N,
∑

1≤j≤i

Uj +
Bi

Ti
≤ 1

where tasks are assumed to be ordered by increasing relative deadline. The
same holds for RM, except that the bound is not 1 but i(2

1
i −1). In Chapter

4 we will see how the processor demand criterion can be applied to the case
of resource usage.

In general, DPS offers better results over FPS in term of feasibility. The
main drawback of dynamic priority scheduling is in its increased conceptual
complexity over fixed priority scheduling. This is the main reasons why
most if not all commercially available real-time systems today implement
only FPS. Secondary DPS problems include a slightly increased scheduling
overhead and worse predictability in case of overloading (an overload occurs
if for some reason a task executes longer than its worst-case computation
time). However, dynamic priority scheduling is progressively gaining im-
portance and most new research operating systems typically offer a choice
between RM/DM and EDF scheduling.

In the remainder of this work, EDF is assumed as the scheduling algo-
rithm.
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ai3ai2ai1ai

Ti

Ci3Ci2Ci1
Ji3Ji2Ji1

Ti

di3φi3

di2φi2

di1φi1

Figure 2.1: Transaction model.

2.3 Transaction model

In this section we introduce a general transaction model that will be used
in Chapter 7 and in Chapters 8 and 9 with small changes.

We will consider a real-time system made of M sets of periodic tasks that
we will name transactions. Each transaction Ti is characterized by period
Ti and offset φi such that the kth instance of each transaction is activated
at time ak

i = φi + kTi. Furthermore, each transaction Ti is composed of
Ni tasks τi1, . . . , τiNi . Each task τij is characterized by an offset φij , a
computation time Cij , a relative deadline dij and a release jitter Jij . The
kth instance (that is, the kth job) of task τij , that we will denote τk

ij , has an
activation time ak

ij = ak
i + φij , but its release time can be delayed up to a

maximum release jitter Jij . The job takes up to Cij units of computation
times to be completed and must be finished before its absolute deadline
ak

ij + dij . We will further define Dij to be the global relative deadline of
task τij , that is the deadline relative to the activation time of transaction
Ti: Dij = dij + φij . We will assume that tasks are statically assigned to be
scheduled on P different processors: in particular, tasks pertaining to the
same transaction may be executed on different processors. Figure 2.1 shows
the model for a transaction Ti.

The worst-case relative response time rij of a task is the greatest differ-
ence between the finishing time of a job τk

ij and its activation time ak
ij . The

worst-case global response time Rij is the greatest difference between the
finishing time of a job of τij and the activation time of its transaction, thus
Rij = rij + φij . Note that a real-time transaction system is feasible if and
only if for all tasks of all transactions, the worst-case relative response time
is less than or equal to the relative deadline.

Tasks are allowed to share resources in mutually exclusive way using
critical section as addressed in Section 2.1.1. Each critical section ξijk is
described by a 3-ple (ρijk, φijk, Cijk), where:
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1. ρijk is the resource being accessed;

2. φijk is the earliest time, relative to the activation time of τijk, that the
task can enter ξijk;

3. Cijk is the worst-case computation time of the critical section.

The effect of resource usage is that a task running on one processor can be
blocked by both lower priority tasks running on the same processor and by
tasks running on a different processor; the maximum blocking time for task
τij is denoted Bij .



Chapter 3

Feasibility analysis for
asynchronous task sets

3.1 Introduction

As we said in the previous Chapter 2, in single processor systems the Earliest
Deadline First scheduling algorithm is optimal [13], in the sense that if a
task set is feasible, then it is schedulable by EDF. Therefore, the feasibility
problem on single processor systems can be reduced to the problem of testing
the schedulability with EDF.

The feasibility problem for a set of independent periodic tasks to be
scheduled on a single processor has been proven to be co-NP-complete in
the strong sense [21, 5]. Leung and Merril [21] proved that it is necessary
to analyze all deadlines from 0 to Φ + 2H. Baruah et al. [5] proved that,
when the system utilization U is strictly less than 1, the Leung and Merril’s
condition is also sufficient.

Under certain assumption, the problem becomes more tractable. For
example, if deadlines are equal to period, a simple polynomial test has been
proposed by Liu and Layland in their seminal work [24]. If the deadlines
are less than or equal to the periods and the task set is synchronous (i.e. all
tasks have initial offset equal to 0), then a pseudo-polynomial test has been
proposed by Baruah et al. [4, 5].

In the case of asynchronous periodic task sets, any necessary and suf-
ficient feasibility test requires an exponential time to run. However, it is
possible to obtain a sufficient test by ignoring the offsets and considering
the task set as synchronous. Baruah et al. [5] showed that, given an asyn-

13
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chronous periodic task set T , if the corresponding synchronous task set T ′
(obtained by considering all offsets equal to 0) is feasible, then T is feasible
too. However, if T ′ is not feasible, no definitive answer can be given on
T . In some case this sufficient test is quite pessimistic, as we will show in
Section 3.5.

The basic idea behind Baruah’s result is based on the concept of busy
period. A busy period is an interval of time where the processor is never idle.
If all tasks start synchronously at the same time t, the first deadline miss (if
any) must happen in the longest busy period starting from t. Unfortunately,
when tasks have offsets, it may not be possible for them to start at the same
time. Hence, in case of asynchronous task sets, we do not know where the
deadline miss might happen in the schedule.

In this chapter, a new sufficient pseudo-polynomial feasibility test for
asynchronous task set is proposed. Our idea is based on the observation
that the patterns of arrivals of the tasks depend both on the offsets and
on the periods of the tasks. By computing the minimum possible distance
between the arrival times of any two tasks, we are able to select a small
group of critical arrival patterns that generate the worst-case busy period.
Our arrival patterns are pessimistic, in the sense that some of these patterns
may not be possible in the schedule. Therefore, our test is only sufficient.
However, experiments show that our test greatly reduces pessimism with
respect to previous sufficient tests.

3.1.1 Motivation

The problem of feasibility analysis of asynchronous task sets can be found
in many practical applications. For example, in distributed systems a trans-
action consists of a chain of tasks that must execute one after the other
and each task can be allocated to a different processor. A transaction is
usually modelled as a set of tasks with offsets, such that the first task in
the chain has offset 0, the second task has an offset equal to the minimal
response time of the first task, and so on. Furthermore, each task is assigned
a non-zero release jitter. In this way, the problem of feasibility analysis of
the entire system is divided into the problem of testing the feasibility on
each node. The holistic analysis [34, 31] iteratively computes the worst-case
response time of each task and updates the start time jitter of the next task
in the chain, until the method converges to a result. The methodology has
been recently extended by Palencia and González Harbour [26], and will be
further explored in Chapter 7 and 8.
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Another important field of application is concerned with the problem of
minimizing the output jitter of a set of periodic tasks. The output jitter
is defined as the distance between the response time of two consecutive in-
stances of a periodic task. Minimizing the output jitter is a very important
issue in control systems. Baruah et al. [3] presented a method for reducing
the output jitter consisting in reducing as much as it is possible the rela-
tive deadlines of the tasks without violating the feasibility of the task set.
However, tasks are considered synchronous. In Chapter 6 we will extend the
method to asynchronous task sets.

3.2 System model

The simple task model introduced in Section 2.1 is used in this chapter.
Task set are supposed to be complete with no release jitter and deadlines
less than or equal to the periods; no resource constraint is considered. The
analysis proposed in this chapter will be extended to the case of resource
usage in the following Chapter 4.

3.3 Feasibility analysis

In this section, we will first show the fundamental results for the problem of
feasibility analysis of periodic task sets on single processor systems. Then
we present our idea and prove it correct.

Our analysis is based on the processor demand criterion [5, 9]. The
processor demand function is defined as

df(t1, t2) =
N∑

i=1

ηi(t1, t2)Ci.

It is the amount of time demanded by the tasks in interval [t1, t2) that the
processor must execute to ensure that no task misses its deadline. Intuitively,
the following is a necessary condition for feasibility:

∀ 0 ≤ t1 < t2 : df(t1, t2) ≤ t2 − t1.

In plain words, the amount of time demanded by the task set in any interval
must never be larger than the length of the interval.

Now, we report two fundamental results on the schedulability analysis of
a periodic task set with EDF. The proofs of these results are not the original
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τ1

τ2

τ3

t1 t2

Figure 3.1: Example of busy period.

ones. They have been rewritten for didactic purposes. In fact, by following
the proofs, the reader will understand the basic mechanism underlying our
methodology.

We will now start by reproducing the following important lemma.

Lemma 1 ([5]) Task set T is feasible on a single processor if and only if:

1. U ≤ 1, and

2. ∀ 0 ≤ t1 < t2 ≤ Φ + 2H : df(t1, t2) ≤ t2 − t1.

Proof.
Both conditions are clearly necessary. By contradiction. Suppose both

conditions hold but T is not feasible. Consider the schedule generated by
EDF. It can be proven [5, 21] that since U ≤ 1 and the task set is not
feasible, some deadline in (0, Φ + 2H] is missed. Let t2 be the first instant
at which a deadline is missed, and let t1 be the last instant prior to t2 such
that either no jobs or a job with deadline greater than t2 is scheduled at
t1 − 1. By choice of t1, it follows that [t1, t2) is a busy period and all jobs
that are scheduled in [t1, t2) have arrival times and deadlines in [t1, t2] (see
Figure 3.1). It also follows that at least one job with deadline no later than
t2 must be released exactly at t1, otherwise either a job with deadline greater
than t2 or no job would be scheduled at t1. Since there is no idle time in
[t1, t2) and the deadline at t2 is missed, the amount of work to be done in
[t1, t2) exceeds the length of the interval. By definition of df , it follows that
df(t1, t2) > t2 − t1, which contradicts condition 2. 2

By looking at the proof, it follows that it is sufficient to check the values
of df(t1, t2) for all times t1 that corresponds to the release time of some job.
In the same way, we can check only those t2 that correspond to the absolute
deadline of some job.

We will now prove that for a synchronous task set the first deadline miss,
if any, is found in the longest busy period starting from t1 = 0. Thus, it
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τ1

τ2

τ3

τ1
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t1+ t′2 t20 5 10 15 20 30 3125

Figure 3.2: Example synchronous task set

suffices to check all deadlines from 0 to the first idle time. The idea is that,
given any busy period starting at t1, we can always produce a “worst-case”
busy period “pulling back” the release times of all tasks that are not released
at t1, so that all tasks are released at the same time. Figure 3.2 shows the
idea for a task set of N = 3 tasks with τ1(C = 4, D = 6, T = 10), τ2(C =
4, D = 12, T = 12), τ3(C = 4, D = 10, T = 14) where task τ1 is released at
t1. In the lower part of the figure, we show the situation where tasks τ2 and
τ3 are “pulled back” until their first release time coincides with t1.

Theorem 1 ([5]) A synchronous task set T is feasible on a single processor
if and only if:

∀L ≤ L?, df(0, L) ≤ L

where L is an absolute deadline and L? is the first idle time in the schedule.

Proof. The condition is clearly necessary. By contradiction. Consider
the schedule generated by EDF. Suppose that a deadline is missed, and let
[t1, t2) be a busy period as in the previous lemma. We already proved that
there is at least one task that is released exactly at t1. Let τi be one such
task, so that t1 = aim for some m, and τk be the task whose deadline dkp is
not met (note that it could be i = k). By following the same reasoning as
in Lemma 1, we obtain df(t1, t2) > t2 − t1.

Now consider a task τj , j 6= i, k, and suppose that the first release time
of a job of τj is ajl > t1. The new schedule generated by “pulling back” all
releases of task τj of ajl − t1 is still unfeasible. In fact, since all absolute
deadlines of task τj are now located earlier, the number of jobs of τj in
[t1, t2] could be increased: η′j(t1, t2) ≥ ηj(t1, t2). Thus

∑N
i=1,i 6=j ηi(t1, t2)Ci +

η′j(t1, t2)Cj ≥
∑N

i=1 ηi(t1, t2)Ci > t2 − t1 (see task τ2 in Figure 3.2). Now
consider task τk, and suppose that k 6= i. Let akl be the first release time
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τ1

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.3: Example task set, τ1(φ = 1, C = 2, D = 3, T = 4), τ2(φ = 0, C =
2, D = 3, T = 6)

of τk after t1. By moving all releases back of akl − t1, we also move back
its deadlines. Let d′kp ≤ dkp be the new deadline. We shall consider two
possible cases. First, suppose that for each deadline djq ≤ dkp, j 6= k, it
still holds djq ≤ d′kp. Then df(t1, t′2 = d′kp) = df(t1, t2) > t2 − t1 > t′2 − t1
and the new task set is not feasible. Second, suppose that djq is the largest
deadline in [t1, t2] such that d′kp < djq ≤ dkp. Consider the new busy period
[t1, t′2 = djq). Then df(t1, t′2) = df(t1, t2), but we obtain t′2 ≤ t2 and thus
the new task set is not feasible (see Figure 3.2, where k = 3 and j = 1).

Therefore, by moving back all tasks such that their first release time is
at t1 we obtain an unfeasible schedule where all tasks are released at t1.
Thus if a deadline is not met inside any busy period, then a deadline must
not be met inside the busy period starting at 0. Since this contradicts the
hypothesis, the theorem holds. 2

Baruah et al. [5] showed that for U < 1 the analysis has complexity
O

(
N U

1−U maxN
i=1{Ti −Di}

)
.

The previous theorem does not hold in the case of an asynchronous task
set. It still gives a sufficient condition, in the sense that if the hypothesis
holds for the corresponding synchronous task set, than the original asyn-
chronous task set is feasible. However the condition is no longer necessary.
Consider the feasible task set in Figure 3.3. It is easy to see that no instant
t1 exists such that both tasks are released simultaneously. We can still use
a pessimistic analysis by considering the corresponding synchronous task
set, but in the case of Figure 3.3 this wouldn’t work since it can be easily
seen that the corresponding synchronous task set is not feasible. Checking
all busy periods in [0, Φ + 2H] is possible but would imply an exponential
complexity.

Our main idea is as follow. Since there is always an initial task that
is released at t1, we build a new task set T ′i for each possible initial task
τi, 1 ≤ i ≤ N . Since τi is released at the beginning of the busy period, we
fix φ′i = 0 in T ′i and check the busy period starting from 0 instead of t1. We



3.3. FEASIBILITY ANALYSIS 19

τ1

τ2

τ3

a11 a12 a13 a14 a15

a21 a22 a23 a24

a31 a32 a33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3.4: Example task set, τ1(φ = 0, T = 3), τ2(φ = 1, T = 4), τ3(φ =
2, T = 6)

can then “pull back” each other task τj by setting φ′j to the minimum time
distance between any activation of τi and the successive activation of τj in
the original task set T . We will use the following Lemma:

Lemma 2 Given two tasks τi and τj, the minimum time distance between
any release time of task τi and the successive release time of task τj is equal
to:

∆ij = φj − φi +
⌈ φi − φj

gcd(Tj , Ti)

⌉
gcd(Tj , Ti)

Proof. Note that for each possible job τim and τjl, ajl − aim = φj − φi +
lTj−mTi. Thus ∀l ≥ 0,∀m ≥ 0, ∃K ∈ Z, ajl−aim = φj−φi +K gcd(Tj , Ti).

By imposing ajl ≥ aim, we obtain K ≥
⌈

φi−φj

gcd(Tj ,Ti)

⌉
. By simple substitution,

we obtain the lemma. 2

Definition 1 Given task set T , T ′i is the task set with the same tasks as T
but with offsets:

φ′i = 0
φ′j = ∆ij ∀j 6= i, 1 ≤ j ≤ N

Consider the example of Figure 3.4. By setting i = 1 we obtain φ′1 =
0, φ′2 = a23 − a14 = 0 and φ′3 = a31 − a11 = 2.

We will now prove that, to assess the feasibility of T , it suffices to check
that, for every task set T ′i , all deadlines are met inside the busy period
starting from time 0.

Theorem 2 Given task set T with U ≤ 1, scheduled on a single processor,
if ∀ 1 ≤ i ≤ N all deadlines in task set T ′i are met until the first idle time,
then T is feasible.
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Proof. By contradiction. Consider the schedule generated by EDF. Sup-
pose that a deadline is not met for task set T , and let [t1, t2) be the busy
period as defined in Lemma 1. We already proved that there is at least one
task that is released at t1, let it be τi. From Lemma 2, it follows that for
every τj , j 6= i, the successive release time is ajl ≥ t1 + ∆ij . By following
the same reasoning as in Theorem 1, we can “pull back” every task so that
its first release time coincides with its minimum distance from t1, and the
resulting schedule is still unfeasible. Let σi(t) be the new resulting schedule.

Now, observe that, from t1 on, the new schedule σi(t) is coincident with
the schedule σ′i(t) generated by task set T ′i from time 0: ∀t ≥ t1 : σi(t) =
σ′i(t − t1). Therefore, there is a deadline miss in the first busy period in
the schedule generated by T ′i , against the hypothesis. Hence, the theorem
follows. 2

Note that Theorem 2 gives us a less pessimistic feasibility condition that
Theorem 1. As an example, consider the task set in Figure 3.3. According
to Theorem 2 the task set is feasible, while Theorem 1 gives no result.

However Theorem 2 gives only a sufficient condition. For example, con-
sider the following task set: τ1(φ = 0, C = 1, D = 2, T = 5), τ2(φ = 1, C =
1, D = 2, T = 4), τ3(φ = 2, C = 1, D = 2, T = 6). By analyzing the schedule,
it can be seen that it is feasible, but Theorem 2 fails to give any result. The
reason can be easily explained. When we “pull back” the tasks to their min-
imum distance from τi, we are not considering the cross relations between
them. In other words, it may not be possible that the pattern of release
times analyzed with Theorem 2 are found in the original schedule of T . We
are considering only N patterns, but they are pessimistic.

In order to reduce the pessimism in the analysis, we can generalize The-
orem 2 in the following way. Instead of fixing just the initial task τi, we
can also fix the position of other tasks with respect to τi and then minimize
the offsets of all the remaining tasks with respect to the fixed ones. The
following lemma provides more insight into the matter.

Lemma 3 The time distance between any release time ail of task τi and the
successive release time ajp of task τj assumes values inside the following set:

{
∆ij(k) | ∀ 0 ≤ k <

Tj

gcd(Ti, Tj)

}

where

∆ij(k) =
⌈

φi + kTi − φj

Tj

⌉
Tj − (φi + kTi − φj)
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Proof. Consider release time ail and let ajp be the first successive release
time of task τj . Since ajp is greater than or equal to ail, it must be φj+pTj ≥
φi+lTi. But since ajp is the first such release, we obtain p =

⌈
φi+lTi−φj

Tj

⌉
and

ajp−ail =
⌈

φi+lTi−φj

Ti

⌉
Tj−(φi+lTi−φj). To end the proof it suffices to note

that the value of ajp − ail as a function of l is periodic of period Tj

gcd(Ti,Tj)
.

In fact:
⌈

φi+(l+K
Ti

gcd(Ti,Tj)
)Ti−φj

Tj

⌉
Tj −

(
φi +

(
l + K

Tj

gcd(Ti,Tj)

)
Ti

)
+ φj =

⌈
φi+lT+K

TjTi
gcd(Ti,Tj)

−φj

Tj

⌉
Tj −

(
φi + lTi + K

TjTi

gcd(Ti,Tj)

)
+ φj = ajp − ail. 2

Therefore, after fixing the first task τi we can fix another task τj to one
of the values of Lemma 3. Now, if we want to fix a third task, we must
be careful to select a time instant that is compatible with the release times
of both τi and τj . The basic idea, explained in the following lemma, is to
consider τi and τj as a single task of period lcm(Ti, Tj) and offset φi + kTi.

To generalize the notation, we denote with i1 the index of the first task
that is fixed, with i2 the index of the second task, and so on, until iM that
denotes the index of the last task to be fixed.

In what follows, notation lcmij denotes the least common multiple among
periods Ti, . . . , Tj , and gcdij will be used in the same way for the greatest
common divisor.

Lemma 4 Let ai1l1 be any release time of task τi1, and let ∆i1i2(k1) be the
distance between ai1l1 and the successive release time of task τi2. The time
distance between ai1l1 and the successive release time of task τi3 assumes
values inside the following set:

{
∆i1i2i3(k2) | ∀ 0 ≤ k2 <

Ti3

lcm(Ti3 , gcd(Ti1 , Ti2))

}

where

∆i1i2i3(k2) =
⌈

φi1 + k1Ti1 + k2lcm(Ti1 , Ti2)− φi3

Ti3

⌉
Ti3−(φi1+k1Ti1+k2lcm(Ti1 , Ti2)−φi3)

Proof. Since the time difference between ai1l1 and the successive release
time ai2l2 of τi2 must be equal to ∆i1i2(k1), not all values of l1 are acceptable.
Indeed, it must hold l1 ≡ k1mod

(
Ti2

gcd(Ti1
,Ti2

)

)
.
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Let τi1i2 be a task with period Ti1i2 = Ti1
Ti2

gcd(Ti1
,Ti2

) = lcm(Ti1 , Ti2) and
offset φi1i2 = φi1 + k1Ti1 . All acceptable release times ai1l1 correspond to
the release times of task τi1i2 . We can then apply Lemma 3 to τi1i2 and τi3

obtaining ∆i1i2i3 . 2

Lemma 5 The time distance between any release time ai1l1 of task τi1 and
the successive release time of task τip, given ai2l2−ai1l1 = ∆i1i2(k1), . . . , aip−1lp−1−
ai1l1 = ∆i1...ip−1(kp−2), assumes values inside the following set:

{
∆i1...ip(kp−1) | ∀ 0 ≤ kp−1 <

Tip

lcm(Tip , gcdi1ip−1
)

}

where

∆i1...ip(kp−1) =
⌈

φi1 +
∑p−1

q=1 kqlcmi1iq − φip

Tip

⌉
Tip−(φi1 +

p−1∑

q=1

kqlcmi1iq−φip)

Proof. The proof can be obtained by induction, reasoning in the same
way as in Lemma 4. 2

Lemma 6 The minimum time distance between any release time ai1l1 of
task τi1 and the successive release time of task τj, given ai2l2 − ai1l1 =
∆i1i2(k1), . . . , aiM lM − ai1l1 = ∆i1...iM (kM−1), is equal to:

∆i1...iM j = φj−φi1−
M−1∑

q=1

kqlcmi1iq+
⌈

φi1 +
∑M−1

q=1 kqlcmi1iq − φj

gcd(Tj , lcmi1iM )

⌉
gcd(Tj , lcmi1iM )

Proof. Reasoning in the same way as in Lemma 4 and 5, all acceptable
release times ai1l1 must correspond to the release times of a task τi1...iM with
period Ti1...iM = lcmi1iM and offset φi1...iM = φi1 +

∑M−1
q=1 kqlcmi1iq . We can

then apply Lemma 2 to τi1...iM and τj obtaining ∆i1...iM j . 2

Following the same line of reasoning as in Theorem 2, we now define task
set T ′i1...iMk1...kM−1

in the same way as T ′i before.

Definition 2 Given task set T , T ′i1...iMk1...kM−1
is the task set with the same

tasks as T but with offsets:

φ′i1 = 0
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...
...

...
φ′ip = ∆i1...ip(kp−1)

...
...

...
φ′iM = ∆i1...iM (kM−1)
φ′j = ∆i1...iM j ∀j 6= i1, . . . , iM , 1 ≤ t ≤ N

Finally, we generalize Theorem 2 to the case of M fixed tasks.

Theorem 3 Given task set T with U ≤ 1, to be scheduled on a single pro-
cessor, let M be a number of tasks, 1 ≤ M < N . If ∀τi1 , 1 ≤ i1 ≤ N,∀τi2 6=
τi1 , 1 ≤ i2 ≤ N, . . . ,∀τiM 6= τi1 , τi2 , . . . , τiM−1 , 1 ≤ iM ≤ N,∀k1, 0 ≤ k1 <

Ti2
gcd(Ti1 , Ti2)

, ∀k2, 0 ≤ k2 <
Ti3

gcd(Ti3 , lcm(Ti1 , Ti2))
, . . . , ∀kM−1,0 ≤ kM−1 <

TiM
gcd(TiM , lcmi1iM−1)

, all deadlines in task set T ′i1...iMk1...kM−1
are met until

the first idle time, then T is feasible.

Proof. By contradiction. Consider the schedule generated by EDF. Sup-
pose that a deadline is missed and let [t1, t2) be the busy period as in the
proof of Lemma 1. We choose i1 such that t1 = ai1l1 for some l1. Next, we
choose any distinct indexes i2, . . . , iM and any values k1, . . . , kM−1 as in Lem-
mas 3, 4, 5, and compute the corresponding distances ∆i1i2(k1), . . . ,∆i1...iM (kM−1)
from t1. These tasks are fixed and will not be “pulled back”. For the re-
maining tasks, we “pull back” their release times as much as it is possible:
for every non-fixed task τj we set the distance from t1 equal to ∆i1...iM j . By
following the same reasoning as in Theorem 2, it can be easily proven that a
deadline is still missed in the new generated schedule σ(t). Note that, from
t1 on, the schedule σ(t) is coincident with the schedule σ′(t) generated by
task set T ′i1...iMk1...kM−1

from time 0: ∀t ≥ t1 : σ(t) = σ′(t − t1). Hence, a
deadline is missed in the first busy period of σ′(t), against the hypothesis.
2

3.4 Algorithm

Theorem 2 gives us a new feasibility test for asynchronous task sets with
U < 1 on single processor systems. For each initial task τi we first compute
the minimal offset φj for each j 6= i and the length L? of the busy period.
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for each i = 1 . . . N

φi = 0

for each j = 1 . . . N, j 6= i

compute φj (according to Lemma 2)

next j

L? = Ci

while L? changes

L? =
∑N

i=1

⌈
L? − (φi + Di)

Ti

⌉

repeat

for each deadline L ≤ L?

if df(0, L) > L return unknown

next L

next i

return feasible

Figure 3.5: Sample code, 1 fixed task

Then we check that each deadline L less than or equal to L? is met. The
pseudo code is given in Figure 3.5.

Note that the recurrence over the length of the busy period L?(t + 1) =∑N
i=1

⌈
L?(t)−(φi+Di)

Ti

⌉
converges in pseudo-polynomial time if U < 1 [30].

Since we must execute the algorithm for each initial task τi, the test has
a computational complexity that is N times that of Barauh’s synchronous
test: O

(
N2 U

1−U maxN
i=1{Ti −Di}

)
.

We can obtain a less pessimistic test, at the cost of an increased computa-
tion time, by using Theorem 3. As the number of fixed tasks M increases, we
can expect to obtain higher percentages of feasible task sets, but the compu-
tation complexity rises quickly. If we select M fixed tasks, the complexity is

bounded by O
(
NM+1 maxN

i,j=1

{
Ti

gcd(Ti,Tj)

}M−1
U

1−U maxN
i=1{Ti−Di}

)
. The

pseudo code for M = 2 is given in Figure 3.6.
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for each i1 = 1 . . . N

φi = 0

for each i2 = 1 . . . N, i2 6= i1

for each k1 = 0 . . .
Ti2

gcd(Ti1 , Ti2)
− 1

compute φi2 (according to Lemma 3)

for each j = 1 . . . N, j 6= i1, i2

compute φj (according to Lemma 6)

next j

L? = Ci

while L? changes

L? =
∑N

i=1

⌈
L? − (φi + Di)

Ti

⌉

repeat

for each deadline L ≤ L?

if df(0, L) > L return unknown

next L

next k1

next i2

next i

return feasible

Figure 3.6: Sample code, 2 fixed tasks
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3.5 Experimental evaluation

In this section, we evaluate the effectiveness of the proposed tests against
Baruah’s sufficient synchronous test described by Theorem 1 and against the
exponential test executed by checking the demand function for every dead-
line until Φ + 2H. For each experiment, we generated 2000 synthetic task
sets consisting of 6, 10 and 20 tasks, respectively, and with total utilization
ranging from 0.8 to 1.

Each task set was generated in the following way. First, utilizations Ui

were randomly generated according to a uniform distribution, so that the
total utilization summed up to the desired value. Then periods were gener-
ated uniformly between 10 and 200 and the worst-case computation time of
each task was computed based on utilization and period. Finally, relative
deadlines were assigned to be either between 0.3 and 0.8 times the task’s
period or between half period and the period, and offsets were randomly
generated between 0 and the period.

We experimented with two types of task sets. In the first case, we gen-
erated the periods so that the greatest common divisor between any two
tasks were a multiple of 5. In the second case, we chose the gcds as multi-
ples of 10. The basic idea is that, if the gcd between two periods is 1, the
distance between the release times of the two tasks can assume any value, 0
included. In the limit case in which all tasks’ periods are relatively prime,
it is possible to show that the synchronous test is necessary and sufficient
also for asynchronous task sets. Note that in the real world, a situation in
which the task periods are relatively prime is not very common.

In each experiment we computed the percentage of feasible tasks using
Baruah’s synchronous test, our test with one, two and three fixed tasks
respectively, and the exponential test. In the following we will denote these
tests with sync, 1-fixed, 2-fixed, 3-fixed and exponential, respectively. The
results are presented in Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12.

Figures 3.7, 3.8 and 3.9 shows the results for 6 tasks, with a minimum
gcd of 10 in Figures 3.7 and 3.8 and a minimum gcd of 5 in Figure 3.9.
In the first two figures, 1-fixed accepts a number of task sets up to 10%
higher then the sync test. Performances are clearly lower with gcd = 5, as
shown in Figure 3.9. Also note that the 2-fixed and 3-fixed tests do not
achieve significant improvements over the 1-fixed test. In fact, increasing
the number of fixed tasks seems to be beneficial only if the number of fixed
tasks M is comparable to the number of total task N , but in that case the
test obviously becomes not tractable (note that for M = N − 1 the test is
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Figure 3.7: 6 tasks, gcd = 10, deadline ∈ [0.3, 0.8]T
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Figure 3.8: 6 tasks, gcd = 10, deadline ∈ [0.5, 1.0]T
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synchronous 1 fixed task exponential
6 tasks 40 67 2233
10 tasks 122 387 461356
20 tasks 639 6341 42781200

Table 3.1: Mean number of cycles, gcd = 10, deadline ∈ [0.3, 0.8]T

equivalent to the exponential one). The same considerations can be applied
to Figures 3.10 and 3.11 where we show the results for 10 tasks and gcd = 10.
The 1-fixed test again achieves very good results. For high computational
loads, the improvement over the sync test is more than 10%. The 2-fixed
and 3-fixed tests seem even less beneficial. The same holds in Figure 3.12
for 20 tasks and gcd = 10.

We also computed the mean number of simulation cycles needed to test
a task set. Table 3.1 shows the results for gcd = 10 and deadline between 0.3
and 0.8 times the period for the sync, 1-fixed and exponential test. Notice
that the number of cycles needed for the 1-fixed test is only one order of
magnitude greater than the sync test. As the number of tasks increases we
can appreciate that the growth in the number of cycles for the 1-fixed test
is still acceptable compared to the corresponding growth of the exponential
test.

3.6 Conclusions

In this chapter, we presented a new sufficient feasibility test for asynchronous
task sets and proved it correct. Our test tries to take into account the offsets
by computing the minimum distances between the release times of any two
tasks. By analyzing a reduced set of critical arrival patterns, the proposed
test keeps the complexity low and reduces the pessimism of the synchronous
sufficient test. We showed, with an extensive set of experiments, that our
test outperforms the synchronous sufficient test.

As future work, we are planning to extend our test to the case of relative
deadline greater than the period.
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Figure 3.9: 6 tasks, gcd = 5, deadline ∈ [0.3, 0.8]T
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Figure 3.10: 10 tasks, gcd = 10, deadline ∈ [0.3, 0.8]T



30CHAPTER 3. FEASIBILITY ANALYSIS FOR ASYNCHRONOUS TASK SETS

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.4

0.5

0.6

0.7

0.8

0.9

1

total utilization

pe
rc

en
ta

ge
 o

f f
ea

si
bl

e 
ta

sk
 s

et
s

synchronous
1 fixed task
2 fixed tasks
3 fixed tasks
exponential

Figure 3.11: 10 tasks, gcd = 10, deadline ∈ [0.5, 1.0]T
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Figure 3.12: 20 tasks, gcd = 10, deadline ∈ [0.5, 1.0]T



Chapter 4

Resource usage extension

4.1 Introduction

In the previous Chapter 3, we developed sufficient schedulability tests for
asserting the feasibility of asynchronous task sets under EDF. However, no
resource constraints have been considered. In this chapter, we will extend
the 1-fixed task test to cover the problem of resource usage.

The same task model as in the previous chapter is considered, but tasks
are assumed to share resources as described in Section 2.1.1

Different resource access protocols have been proposed to bound the
maximum blocking time of tasks due to mutual exclusion under EDF. We
base our discussion on the Stack Resource Protocol proposed by Baker [2],
which is the most frequently used. Under SRP, each task is assigned a static
preemption level πi = 1

Di
. In addition, each resource ρk is assigned a static

ceiling ceil(ρk) = maxi{πi|∃j, ρij = ρk}. A dynamic system ceiling is then
defined as follows:

Πs(t) = max({ceil(ρk)|ρk is busy at time t} ∪ 0)

The scheduling rule is the following: a job is not allowed to start execu-
tion until its priority is the highest among the active jobs and its preemption
level is strictly higher then the system ceiling.

Among the many useful properties of SRP, we are manly interested in
two of them:

Property 1 Under SRP, a job can only be blocked before it starts execution;
once started, it can only be preempted by higher priority jobs.
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Property 2 A job can only be blocked be one lower priority job.

In the following Section 4.2 we will introduce our modified test and
prove it correct, while in Section 4.3 we will show how to compute a bound
on the length of the busy period when resources are taken into account. The
proposed analysis follows the one provided in [23].

4.2 Test extension

In order to prove our modified test, we now need to introduce some prelim-
inary concepts.

Lemma 7 Given two tasks τi and τj, the minimum time distance between
any release time of task τi and the successive release time of task τj that is
greater or equal to some value q + 1 is equal to:

∆q
ij = φj − φi +

⌈φi + q + 1− φj

gcd(Tj , Ti)

⌉
gcd(Tj , Ti)

Proof. The proof is a simple extension of Lemma 2; it is sufficient to see
that the condition on q is equivalent to considering τi being released q time
units later. 2

Definition 3 Given task set T ′i , we define the following dynamic preemp-
tion level:

πi(t) = min({πj |φ′j + Dj ≤ t} ∪ 2)

Note that instead of the constant 2 we could have used any numeric
value that is strictly greater than any possible system ceiling (2 is clearly ok
since no task can have a preemption level greater than 1).

Definition 4 Given task set T ′i , we define the following dynamic maximum
blocking time:

Bi(t) = max({Cjk − 1|Dj > t + ∆φjk

ji ∧ ceil(ρjk) ≥ πi(t)} ∪ 0)

We can now prove our theorem:
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Theorem 4 Given task set T with U ≤ 1, if ∀ 1 ≤ i ≤ N, ∀ L ≤ L?:

df(0, L) + Bi(L) ≤ L

where L is an absolute deadline of task set T ′i and L? is the first idle time
in the schedule of T ′i , then T is feasible.

Proof. By contradiction. Consider the schedule generated by EDF. Sup-
pose a deadline is not met for task set T . Let t2 be the first instant at which
a deadline is not met, and let t1 be the last instant prior to t2 such that
no job with deadline less than or equal to t2 is active at t1 − 1. Note that
following this definition the busy period [t1, t2) is the same as in Lemma 1 if
there are no blocking times, since all tasks that execute inside [t1, t2) must
be released at or after t1 and have deadlines at or before t2. We will call A
the set of all such tasks.

If blocking times are introduced, then it is possible for a single job τjp

with deadline greater than t2 to be executed inside [t1, t2). For this to be
possible, the job must be inside a critical section at time t1, since it must
block some other job in A. Note that there can be only one such job;
otherwise some job in A would be blocked by two lower priority jobs, which
is impossible due to Property 2.

Now consider job τjp. Since it is inside a critical section at t1, it must
hold ajp +φjk < t1 for some k, and ajp +Dj > t2 since its deadline is greater
than t2. Now, there is surely a task τi that is release at t1. If the above
conditions can hold, than they surely hold if we choose t1 − ajp = ∆φjk

ji ,
since it is the minimum possible time difference. Note that in any case the
maximum blocking time induced by critical section ξjk is equal to Cjk − 1,
since τjp can always be delayed by other tasks so that it enters ξjk at t1− 1.
τjp must also be able to block some job in A, thus ceil(ajk) must be at least
equal to the minimum preemption level of tasks in A. This proves that
Bi(t2− t1) is indeed the worst-case blocking time.

To end the proof, it suffices to note that if we ”pull back” all jobs in A
as in Theorem 2, the resulting schedule is still unfeasible. In fact, the tasks
in A do not change, while since the new deadline t′2 is less or equal than t2,
the maximum blocking time is greater or equal than before. Finally, note
that a task τj is in A if and only if φ′j + Dj ≤ t′2, thus πi(t) is in fact the
minimum preemption level of tasks in A. 2
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4.3 Busy period length

Note that the recurrence over the length of the busy period for task set T ′i :

L? =
N∑

j=1

⌈
L? − (φ′j + Dj)

Tj

⌉

is no longer valid when blocking times due are considered. In fact, a task
τj whose offset is greater than or equal to the maximum length computed
in this way, may still contribute to the busy period by adding a blocking
time. The recurrence must thus be modified by adding the blocking time
contribution:

L? =
N∑

j=1

⌈
L? − (φ′j + Dj)

Tj

⌉
+ B?

j (L?)

where
B?

i (t) = max({Cjk − 1|φ′j ≥ t ∧ ceil(ρjk) ≥ π?
i (t)} ∪ 0)

and
π?

i (t) = min({πj |φ′j < t} ∪ 2)



Chapter 5

Offset Space Analysis

5.1 Introduction

In Chapter 3 we introduced a new schedulability test, called 1-fixed, for
asynchronous periodic task sets. Experimental evaluations showed that us-
ing 1-fixed we can achieve a substantial feasibility increase over the classic
synchronous analysis. This means that asynchronous systems are in general
easier to schedule than synchronous one.

In this chapter, we will suppose that there is no constraint on task offsets.
This means that the system designer can set the offsets to any values he
chooses. The problem is thus how to choose the offsets in an optimal way.

In Section 5.2 we will introduce the problem in a formal way and prove
some basic facts, taken from [16]. Then in Sections 5.3 and 5.4 we will
introduce and discuss a new offset representation, that we will call phase
space representation, that offers some insight on the relation among task
activation times. Finally, in Section 5.5 we propose an offset assignment
that tries to make a unfeasible synchronous task set feasible.

5.2 Task model and basic facts

We will consider a periodic asynchronous task set T of the type defined in
Section 2.1. Under this constraint, the activation patters of T depends on
the task offsets and periods only. We can identify the task offsets using an
N -tuple Φ = {φ1, . . . , φN}, which we call the offset of the task set. We
identify the ith value of Φ (that is, φi) with Φi. It is not difficult to see
that different offsets may lead to the same periodic behavior: thus, we are
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interested in introducing the concept of equivalence between offsets.

Definition 5 Given offsets Φ′ and Φ′′, we will say that Φ′ and Φ′′ are equiv-
alent and write Φ′ ≡ Φ′′ iff ∃t ∈ N, such that ∀ 1 ≤ i ≤ N , the difference
between the next activation of τi and time t in the scheduling constructed
from offset Φ′ is equal to the one int the scheduling constructed from Φ′′i .

It can be easily seen that relation ≡ is an equivalence relation. Thus,
given offset Φ and relation ≡, we can create an equivalence class [Φ]≡ as the
class containing all offsets that are equivalent to Φ with respect to ≡.

Theorem 5 ([16]) We may restrict the offsets in such a way that:

∀ 1 ≤ i ≤ N,Φi ∈ [0, Ti − 1]

without emptying any equivalence class [·]≡.

Since we can restrict the offsets without losing generality, in what follows
we will do so. We shall say that an offset Φ expressed in this way is defined
over the offset space of T .

Theorem 6 ([16]) There are
∏

1≤i≤N Ti

H different equivalence classes [·]≡ for
task set T .

Note that a task set is feasible for offset Φ if and only if it is feasible for
each offset in [Φ]≡, so if we want to check if a task set if feasible for any

offset, it suffices to check only one offset for each class [·]≡ (that is,
∏

1≤i≤N Ti

H
different offsets); a formal proof is provided by Goossens in [16]. Selecting∏

1≤i≤N Ti

H different offsets such that each pertains to a different class is not
particularly difficult. A simple method to do it is also presented in [16].
Note, however, that the number of equivalence classes is not polynomial in
the size of N , thus such a test remains untractable even if we select only
one offset inside each class. Furthermore, the proposed method does not
permit to understand how each equivalence class is related to the activation
patterns of the task set. We will therefore introduce a characterization of
equivalence classes [·]≡ that will help in the latter task.

Our idea is to represent each class with an M -tuple Γ = {γ1, . . . , γM},
such that for each 1 ≤ i ≤ M we will define a value Gi,depending only on
periods T1, . . . , TN , 0 ≤ γi < Gi. As before, we will identify γi with Γi. We
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shall also say that a class Γ expressed in this way is defined over the phase
space of task set T , so that we will talk of a specific value Γ as a phase.

The way M and Gi are chosen is quite tricky and is the subject of
the next section. We will also show how to compute Γ for an offset Φ,
effectively performing a conversion from offset-space to phase-space, and
how to compute an offset pertaining to a given phase. Finally, in section 5.4
we will prove that the phase-space representation is correct, meaning that
each phase is related to one and only one offset equivalence class.

5.3 Phase-space construction and conversions

The phase-space can be constructed by following these steps:

1. Factorize each period Ti. Consider the crescent ordered set of prime
factors that appear at least in two different periods, with any multi-
plicity. Let pi be the ith such factor, 1 ≤ i ≤ P , and mi the number
of periods that it divides.

2. M is equal to
∏

1≤i≤P (mi − 1).

3. An ordered list of values G1, . . . , GM can be constructed be using the
following steps in order:

(a) For each factor pi, discard one of the periods in which the factor
appears with higher multiplicity (it could be only one of course).
For each other period in which the factor appears, in decreas-
ing order of multiplicity, add to the list of values pi power its
multiplicity for that period.

(b) Repeat for next pi in the prime factor list.

An example will help make things clearer. Let’s consider a task set T
of N = 4 tasks with periods T1 = 9 = 32, T2 = 45 = 32 · 5, T3 = 15 =
3 · 5, T4 = 25 = 52. We get p1 = 3, p2 = 5,m1 = 3,m2 = 3. M is thus equal
to (3− 1) · (3− 1) = 4. The periods with higher multiplicity are T1 or T2 for
p1 = 3 and T4 for p2 = 5. Thus G1, . . . , G4 = 9, 3, 5, 5.

You can immediately note that there are 9·3·5·5 = 675 different possible
phases. In fact, it should be easy to see from the procedure outlined above
that such number is equal to

∏
1≤i≤N Ti

H , that we also proved equal to the
number of different equivalence classes in Theorem 6.
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We will now show how to obtain the phase relative to an offset Φ. In order
to do so we will need to compute the minimum time distance ∆ij between
the successive activations of two tasks τi and τj in the scheduling constructed
from offset Φ. In Section 3.3 we proved that ∆ij = (φj−φi)mod gcd(Ti, Tj).
∆K

ij will be used as a shortcut to ∆ijmodK. Now supposed you already
factorized periods Ti as above, you can construct an ordered list of values
γ1, . . . , γM following these steps in order:

1. For each factor pi, consider the tasks whose periods have the highest
multiplicity; if there is a task whose period has multiplicity higher
than every other, consider it as having multiplicity equal to the second
highest. Suppose the number of such tasks is k; order them from the
smallest index to the largest, and let’s call them τpi1 , . . . , τpik

. Let K
be pi power its multiplicity for the tasks.

2. Add to the γ-list ∆K
pi1pi2

, ∆K
pi2pi3

, . . . , ∆K
pik−1pik

.

3. Consider the multiplicity immediately lower, and again order the k
tasks having such multiplicity using their index (note that now k can
even be 1, which is not possible for the highest multiplicity). We will
call these tasks τpi1 , . . . , τpik

as before, but now let τpi0 be the last task
with the immediately previously considered multiplicity. K is again pi

power its multiplicity for tasks τpi1 , . . . , τpik
.

4. Add to the γ-list ∆K
pi0pi1

, ∆K
pi1pi2

, . . . , ∆K
pik−1pik

.

5. Repeat from step 3 until you reach the lowest multiplicity of pi, then
proceed to the next prime factor.

You should be able to note that since ∆ij ∈ [0, gcd(Ti, Tj)− 1], value γi

is effectively comprised in [0, Gi−1]. Let’s go back to our example. We have
Γ = {∆9

12, ∆
3
23, ∆

5
23, ∆

5
34}. Also note that ∆9

12 = ∆12 since the gcd between
the periods of the tasks is 9 and ∆5

34 = ∆34 for similar reasons. Given for
example Φ = {6, 37, 5, 17}, we obtain Γ = {4, 1, 3, 2}.

Since Γ represents an entire equivalence class, it should be easy to see
that we can obtain H different offsets from it [16]. We will show how to
obtain one; the others can simply be found by considering the scheduling
constructed from the given offset, advancing time from 1 until H − 1 and
considering at each step the distance to the next activation of each task.

In order to compute the offset, we need to briefly introduce the theory of
congruence systems. A congruence system is an equivalence system of the
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type:

x ≡ a1modb1
...

...
...

x ≡ aKmodbK

The generalized Chinese remainder theorem states that such a congruence
system admits solution if and only if ∀ 1 ≤ i, j ≤ K, gcd(b1, bK) divides
a1 − aK , and that the solution is unique module lcm1≤i≤Kbi.

Now suppose that you have already associated to each γi tasks τj , τk and
power K so that γi = ∆K

jk as detailed above. We will construct a congruence
system for each task so that the final result of the system will hold the offset
value. In order to do so it is sufficient to follow these steps from γ1 to γM :

1. For each γi. Suppose that γi = ∆K
jk in the sense detailed above. If

γi is the first γ-value relative to a prime factor p, add φj ≡ 0modK
to the congruence system of τj . Suppose that φ̄j is the result of the
congruence system constructed for τj so far (clearly 0 if γi is the first
γ-value for p).

2. Add to the congruence system for τk the following equivalence: φk ≡
(φ̄j + γi)modK.

3. Repeat for next γi.

Note that since at most one equivalence is added to the congruence
system of each task for each prime factor, the gcd between the modules is
always 1 and thus the generalized Chinese remainder theorem surely holds.
Also note that we only need to solve congruence systems of two equivalences,
since we can simply solve the congruence system for a task once we have
two equivalences and then carry just the result.

To make things clearer, we take a look again at our example. Suppose
Γ = {4, 1, 3, 2} as before. We will outline the steps made in computing an
associated offset Φ′. Each time a new equivalence is added to a congruence
system, we solve the system immediately and show its solution, separated
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by a horizontal bar.

φ1 ≡ 0(mod9) from γ1

φ2 ≡ 4(mod9) from γ1

φ3 ≡ 5(mod3) = 2(mod3) from γ2

φ2 ≡ 0(mod5) from γ3

φ2 ≡ 40(mod45)
φ3 ≡ 43(mod5) = 3(mod5) from γ3

φ3 ≡ 8(mod15)
φ4 ≡ 10(mod5) = 0(mod5) from γ4

We obtain Φ′ = {0, 40, 8, 0}. It should be easy to check that converting Φ′

to phase-space we indeed obtain the original Γ = {4, 1, 3, 2}; this should be
quite obvious since the transformation from phase to offset-space maintains
the ∆-values. If you wish to check that Φ′ and the previous Φ = {6, 37, 5, 17}
do pertain to the same equivalence class, please note that at time t = 183
in the scheduling constructed from Φ′ the time difference between t and the
successive activation of each task is exactly equal to Φ.

Finally, note that our way of defining the phase-space is not clearly
unique, in the sense that it depends upon a chosen order for both the prime
factors and the tasks. Clearly any possible order can be chosen as long as the
transformations from offset-space to phase-space and vice versa are defined
accordingly.

5.4 Phase-space representation correctness

In this section, we prove that the phase-space is a correct representation for
equivalence classes [·]≡. We wish to prove that the relation between phases
and equivalence classes derived from the conversion between offset to phase-
space (meaning that each class is related to any phase for which a conversion
exists from an offset pertaining to that class) is a bijective function. Since
we showed that each offset can be converted to a phase and each phase can
be converted to an offset, it follows that every phase is related to at least
one class and that each class is related to at least one phase. And since
the dimension of the phase-space is exactly equal to the number of different
classes, either the relation is a bijective function or there is a class that is
related to at least two phases and there is a phase that is related to at least
two classes. We will show that each class is related to one and only one
phase, thus proving the correctness of the representation.
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Lemma 8 In the relation derived from the conversion from offset to phase-
space, each equivalence class is related to one and only one phase.

Proof. Since each offset converts to one and only one phase, each class
is related to at least one phase. In order to prove that a class cannot be
related to more than one phase, we must show that given any two offsets Φ′

and Φ′′ of that class, the two offsets correspond to the same phase.
The phase-space representation associates some value ∆K

jk to each γi.
Now, ∆jk = (φk − φj)mod gcd(Tj , Tk) does not change between two offsets
Φ′ and Φ′′ pertaining to the same equivalence class. Note in fact that given
the definition of relation ≡, Φ′′ can be surely obtained from Φ′ by multiple
applications of the two following operations:

1. adding or subtracting 1 from all components φi of Φ′;

2. adding or subtracting Ti from one component φi.

Adding or subtracting 1 from all offsets does not change φk−φj . Adding or
subtracting the task period from φj or φk does not change ∆jk either since
its module is the gcd of both Tj and Tk.

But since ∆jk does not change between Φ′ and Φ′′, γi remains the same
as well for every i and thus both offsets relates to same phase. 2

We have thus proved the following theorem:

Theorem 7 The phase-space representation is a correct representation of
equivalence classes [·]≡.

5.5 Feasibility applications

Given a phase Γ it is not difficult to compute the minimum distance ∆ij

for all 1 ≤ j ≤ N , after fixing an initial task i. This can be done to apply
the 1-fixed schedulability analysis developed in Chapter 3. It is sufficient to
apply the steps outlined in the conversion from phase-space to offsets-space,
with the following differences:

1. Ignore any prime factor pk that does not divide τi.

2. Treat each task with a multiplicity relative to pk higher than that of
τi as having multiplicity equal to that of τi.
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3. For each prime factor, start by adding the equivalence φi ≡ 0modK
(where K is the prime factor power its multiplicity in Ti), than proceed
as detailed before for all tasks whose index follows φi. For the tasks
that precede τi, proceed in reverse order, taking into account that
∆K

ij = (K −∆K
ji )modK.

After solving the congruence systems, it suffices to impose ∆ij = φj for all
1 ≤ j ≤ N .

Going back to our example, let’s compute {∆3j}1≤j≤N for Γ = {4, 1, 3, 2}.

φ3 ≡ 0(mod3)
φ2 ≡ 2(mod3) reversing γ2

φ1 ≡ 4(mod3) = 1(mod3) reversing γ1

φ3 ≡ 0(mod5)
φ3 ≡ 0(mod15)
φ2 ≡ 2(mod5) = 3(mod5) reversing γ3

φ2 ≡ 2(mod15)
φ4 ≡ 2(mod5) from γ4

And so we obtain ∆31 = 1,∆32 = 2, ∆33 = 0, ∆34 = 2.
Note that although the ∆-values for some τi can be computed easily

(for example for τ1) so that we may get an easy dependence of ∆ from Γ,
in general the dependence is not particularly easy to visualize. The above
examples shows that ∆32 depends both on γ2 and on γ3. Since we must solve
a congruence system to get the result, the dependence is not particularly
easier than that between the ∆-values and the offsets Φ (in this latter case
difficulties arise from the presence of the module in the equation used to
compute ∆).

Also note that if we want to apply the 1-fixed test, we need to check
all different phases, since each phase yields different ∆-values; thus the 1-
fixed analysis treats each phase pessimistically yet differently from all other
phases (see also Chapter 3).

In his paper [16], Goossens proposed an heuristic, the dissimilar offsets
assignment, that tries to choose the offsets in order to achieve feasibility. The
heuristic is based on the assumption that in order to ease the scheduling of
the task set we should try to make its activation patterns as dissimilar as
possible in respect to the ones of its associated synchronous task set. This is
done by trying to maximize both ∆ij and ∆ji at the same time for each i, j.
However, since Goossens considers only the offset-space representation, his
practical algorithm is far from ideal. Its overall result is similar to choosing
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a phase Γ = {G1/2, . . . , GM/2}. This is clearly not good in the general case
since if there are at least three tasks sharing the same factor p in their period,
the offset’s difference between the first and the third task will be minimized
with respect to p. A better heuristic should thus take into account the
number of tasks sharing each factor p. We can define a new heuristic, the
improved offsets assignment, that tries to maximize the difference between
offsets in respect to each prime factor p in the task periods. The improved
offsets assignment is effectively defined on the phase space, since we are
really interested in choosing an offset equivalence class.

Suppose that we already associated to each γi tasks τj , τk and power K
so that γi = ∆K

jk as detailed in Section 5.3. Also suppose that for a given
power K, γi, . . . , γi+q−1 are the γ − values relative to that K. Then:

1. if K has the greatest multiplicity for its prime factor p, use the fol-
lowing phase assignment: γi = 0, γi+1 = K

q , γi+2 = 2K
q , . . . , γi+q−1 =

(q − 1)K
q ;

2. otherwise: γi = K
q+1 , γi+1 = 2 K

q+1 , . . . , γi+q−1 = q K
q+1 .

In order to see the effectiveness of our heuristic, we have conducted
experimental evaluations. Random task sets were generated with the same
procedure as the one described in Section 3.5. Periods are chosen between 10
and 200, with a minimum greatest common divisor between any two periods
equal to 10. Each task set consists of 5 tasks. Each deadline is randomly
chosen either between 0.3 and 0.8 times the task’s period or between half
period and the period.

Figures 5.1 and 5.2 show the results in term of percentage of schedulable
task sets versus utilization. In all figures, synch is the standard synchronous
test; random is the 1-fixed test executed on random offset; optimal is the
1-fixed test executed on all possible equivalence classes (meaning that a
task set is schedulable under optimal if it is schedulable for at least one
offset); dissimilar is the 1-fixed test applied to Goossens’s dissimilar offsets
assignment and finally improved is the 1-fixed test applied to our improved
offsets assignment.

As you can see, results are quite dissatisfactory. The random test per-
forms well, being able to schedule a mean 36% of all task sets schedulable
under optimal but not synch; on the contrary, our heuristic gives no bet-
ter results than random, and the dissimilar offset assignment performs even
worse. This basically means that both heuristic are completely useless. We
could thus ask ourself if a better heuristic exists. Unfortunately, we strongly
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Figure 5.1: 5 tasks, deadline ∈ [0.5, 1.0]T

think that it does not. First, the basic idea beyond both the dissimilar and
the improved offset assignment seems very natural and we doubt that a bet-
ter idea could be exploited. Second and more important, by looking at the
pattern of offsets for which a task set is schedulable, it can be seen that such
offsets are arranged in very complex ways that depend on the interactions
between the modules studies in Section 5.3. Intuitive heuristic are thus very
likely to be doomed to failure, and finding a good polynomial algorithm is
probably very difficult if not impossible.

Furthermore, just choosing the offset in a random way can be sufficient:
trying one random offset we can schedule 36% of all task sets that are
schedulable under optimal but not synch, trying two we schedule a mean
59%, and trying 3 we go up to 74%. The 90th percentile can be reached by
choosing 6 offsets and the 99th by choosing 11 offsets.
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Figure 5.2: 5 tasks, deadline ∈ [0.3, 0.8]T

5.6 Conclusions

In this chapter we introduced an alternative representation of task offsets,
called the phase space representation. This representation is useful since
it maps each class of different offsets in one phase and vice versa. It also
shows more clearly the relation between offsets and patterns of activation
times, although the relation is by no way simple. We also tried to devise
heuristics to choose the offsets in a nearly optimal way, but we showed that
such attempt is probably fruitless. On the contrary, trying one or more
random offsets can give good results.
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Chapter 6

Minimization of output jitter

6.1 Introduction

In this section, we will use the 1-fixed test developed in Chapter 3 in order
to address a relevant problem in the design of real-time control algorithms,
that of output jitter.

Assuming that a task set is schedulable, we may be interested in adjust-
ing our scheduling algorithm in order to optimize some secondary objective.
For example, we may be interested in minimizing the number of context
switches, or, as we will assume in the rest of this chapter, in minimizing
the output jitter of some tasks, that is the variation in the finishing times
(that we will also call inter-finishing time) for successive jobs of the same
task. More formally, given a feasible schedule for a periodic task set T of
the model defined in Section 2.1 with zero release jitters, let

pmin
i = min

k≥0
{fik+1 − fik}

pmax
i = max

k≥0
{fik+1 − fik}

That is, pmin
i is the minimum difference between the finishing times of

two successive jobs of τi while pmax
i is the maximum such difference. We can

then define an absolute jitter for τi as follows:

AbsJitteri = max(pmax
i − pi, pi − pmin

i )

The absolute jitter is thus the maximum variation of the inter-finishing time
from the task’s period. A measure relative to the task’s period is often more
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useful, thus leading to the definition of relative jitter :

RelJitteri =
AbsJitteri

Ti

Finally, we define the relative jitter of the entire task set:

RelJitter = max
1≤i≤N

{RelJitteri}

Note that we may be interested in minimizing the output jitter not of the
entire task set but of some tasks only. In this case, it is clearly sufficient to
consider only the relative jitters of those tasks.

A task set is said to be jitter-free if RelJitter = 0. Note that under
normal EDF it is extremely improbable (although not impossible) for a task
set to be jitter-free. However, minimizing the output jitter in periodic task
system is in a certain way a non-issue. In fact, given a feasible schedule we
could obtain a virtually jitter-free system by simply postponing the execu-
tion of the last chunk of length ε of each task until its deadline. Assuming
ε → 0, we can always maintain feasibility in this way.

However, the above solution is still far from ideal. Apart from its opti-
mality, EDF possesses many other features that are desirable in real-time
systems. Among them, EDF bounds the total number of context switches
to a reasonable number (twice the number of tasks N), and satisfies the
integral boundary constraint. Such features are clearly not preserved by the
modification presented before. In general, we would like any new scheduling
algorithm to preserve the properties of EDF; in particular, this means that
we do not accept delaying a job ready to execute nor inserting idle time in
the schedule.

Furthermore, delaying the finishing time until the deadline is unaccept-
able for control algorithms. Minimizing the output jitter of control tasks
is particularly important since the quality of the control strongly depends
on the output jitters. Unfortunately, since the quality of the control is also
dependent on the finishing time of the task, delaying it is not a good idea.

In the following section 6.2 we will first recall two polynomial time
bounds on the relative jitter of task sets. These bounds are taken from
[3]. In the following section 6.3 we will show how we can minimize the out-
put jitter by moving the deadlines and checking feasibility with either the
synchronous or the 1-fixed test from Chapter 3. Finally, in Section 6.4 we
will provide simulation results.

In all sections, we will initially suppose that all task deadlines are equal
to the periods. This hypothesis usually makes sense since setting a stricter



6.2. POLYNOMIAL TIME BOUNDS 49

deadline is usually done in order to reduce the output jitter of the task, and
that is precisely the method we will use.

6.2 Polynomial time bounds

First of all, note that a job of τi can surely finish no sooner than Ci and no
later than Ti. An easy bound on the relative jitter is thus:

RelJitteri ≤ Ti − Ci

Ti
= 1− Ui

However, this bound can be easily improved as shown in [3] to the following:

RelJitteri ≤ max
i
{U − Ui} (6.1)

The main idea used in the proof is that the latest finishing time of a task
is actually bounded by the total utilization of the system. Unfortunately,
even this bound is not very accurate. We could obtain a lower bound using
one of the response time analyses that we will introduce in Chapter 7, but
it would require pseudo-polynomial time. Instead, we will use this bound to
introduce a polynomial time minimization algorithm for output jitters.

Suppose that instead of its utilization Ui, we reserve to each task τi a
processor share λi ≥ Ui. We could then assign a stricter deadline d′i = Ci

λi
,

and, supposing that Λ =
∑

i λi ≤ 1, the task set will remain feasible under
EDF. With the new assigned deadlines it can be proven that the bound on
the relative jitter becomes:

RelJitteri ≤ Λ
Ui

λi
− Ui

It can be proven [3] that if we set the processor shares as follows:

λi = max
(

Ui,
Ui

Ui + J

)
(6.2)

then, supposed that the task set is feasible, the relative jitter of the task set
is bounded by J.

We can thus use a binary search to determine an accurate bound on the
relative jitter, by searching the greatest processor shares that make the task
set feasible. The pseudocode in Figure 6.1 shows the algorithm, where Jinit

can be the bound computed in Equation 6.1.
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Jhigh ← Jinit

Jmid ← 0

do

Jmid ← Jhigh+Jhigh

2

Compute λi, 1 ≤ i ≤ N (according to 6.2)

if (
∑N

i=1 λi ≤ 1)

Jhigh ← Jmid

else

Jlow ← Jmid

while(Jhigh − Jlow > thres)

return Jmid

Figure 6.1: Sample code, polynomial time method

6.3 Pseudo-polynomial time minimization

A stricter bound on the relative jitter of the task set can be obtained by
directly modifying the task deadlines and using a pseudo-polynomial analysis
to test feasibility. If we set a deadline di ≤ Ti for task τi, the maximum
finishing time of any of its job becomes di, and thus its maximum release
jitter is now equal to:

RelJitteri =
di − Ci

Ti
=

di

Ti
− Ui

If we assign to each task a new deadline Ci + JTi and the task set remains
feasible, then the relative jitter of the task set will be at most equal to J .
We can thus use a binary search algorithm like the one used in the previous
section to search the minimum J, by checking the feasibility of the task set
at each step using a processor demand criterion based test. If the task set
is asynchronous, using the 1-fixed test instead of the synchronous one is
beneficial to the jitter analysis, as we will show in the next section.

Note that instead of a feasibility analysis, we could run a response time
analysis of the type discussed in Chapter 7. While this would lead to better
results once all deadlines are fixed, it would also require a much more com-
plicated study since it gives no direct requirements on how the deadlines
should be modified.
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6.4 Experimental evaluation

We conducted a series of experiments in order to evaluate the performance
of the pseudo-polynomial time minimization in respect to the other methods
introduced in the previous two sections.

Random task sets were generated with the same procedure as the one
described in Section 3.5. Periods were chosen between 10 and 200, with
a minimum greatest common divisor between any two periods equal to 10.
Each task set consists of either 5 or 10 tasks. Deadlines are initially assumed
to be equal to periods.

Figures 6.2, 6.3, 6.4 and 6.5 shows the experimental results, in term of
mean relative jitter versus total utilization. Note that since deadlines are
equal to periods, every randomly generated task set is feasible. Also, we can
expect relative jitter to rise with the utilization, as it becomes progressively
more difficult to reduce each task’s output jitter as the interference from
other tasks rises.

Figures 6.2, 6.3 and 6.4 shows the results for task sets composed of 10
tasks. In Figure 6.2 we tried to minimize the output jitter of all 10 tasks, in
Figure 6.3 of 5 tasks out of 10, and in Figure 6.4 of just 3 of them. Finally,
Figure 6.5 gives the results for task sets of 5 tasks, where we tried to minimize
the jitter of all 5. In all figures, bound stands for the simple bound from
Section 6.2, poly is the polynomial time minimization, and sync and async
are the pseudo-polynomial time minimizations using the synchronous and
1-fixed test respectively.

Some conclusions that we are able to draw from the figures:

• Bound performance are typically quite low compared to the minimiza-
tion methods, which is quite a good hint at the fact that spending
time to implement methods for reducing the output jitter can be re-
munerative.

• In the same way, the most cost-intensive methods (sync and async)
clearly outperforms poly.

• All the minimization methods performs quite better as the ratio be-
tween the number of task in the task set and the number of jitters to
minimize increases. This should be no surprise since the higher the
ratio, the more freedom we have to adjust the scheduling in order to
decrease the relative jitter.

• The async method achieves a practically constant improvement over
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Figure 6.2: 10 tasks, 10 minimized jitters
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Figure 6.3: 10 tasks, 5 minimized jitters
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Figure 6.4: 10 tasks, 3 minimized jitters
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Figure 6.5: 5 tasks, 5 minimized jitters
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the sync one. Unfortunately, such improvement is relatively small in
respect to how 1-fixed compared to the synchronous test in Section
3.5.

6.5 Conclusions

We have briefly shown how our improved processor demand analysis for
asynchronous task sets can be used to address the problem of output jit-
ter. Such problem is particularly important in the case of control tasks, in
which the output jitter directly impacts on the quality of the control. We
have voluntarily kept the discussion easy, addressing the problem from a
strictly scheduling-based point of view. However, a clear understanding of
the control-based point of view may be necessary to better understand the
problem [10] [11].



Chapter 7

Response time analysis for
EDF

7.1 Introduction

In Chapter 3, we saw how initial offsets can be exploited to improve a
task set’s schedule. We developed a new algorithm, called 1-fixed, which
constitutes a sufficient feasibility test for task sets with offset scheduled
under EDF.

In this chapter, our attention will be shifted on the problem of response
time computation. Spuri [30] solved the problem for the synchronous simple
task model from Section 2.1. We could show how to extend his method to
asynchronous task, but we are more interested in extending our technique
to the transaction model described in Section 2.3. This analysis will in fact
be extremely useful in the following Chapters 8 and 9.

Palencia and Gonzàlez developed a worst-case response time analysis for
the transaction model in [25]; however, they considered incomplete trans-
actions, in the sense that the transaction offsets are not specified. We will
present a variation of their original algorithm in Section 7.2. The proposed
method is actually slightly less pessimistic and faster than the one previ-
ously presented and above all way simpler to understand. In Section 7.3
we will instead introduce our new analysis that is able to take into account
transaction offsets.

In what follows, we will assume for simplicity of exposition that each
transaction set is scheduled on a single processor. However, results can be
quickly adapted to the case of multi-processor systems. It suffices to note

55



56 CHAPTER 7. RESPONSE TIME ANALYSIS FOR EDF

that when we compute the response time of a task τij , tasks executed on a
different processor do not contribute in any way to the finishing time of the
task under analysis. We can thus adopt single-processor analyses by simply
considering a new set of transactions T ′1 , . . . , T ′M composed only of the tasks
of T1, . . . , TM respectively that run on the same processor as τij .

7.2 Variation of the Palencia-Gonzàlez’s method

For this method, we will assume that the transaction offsets are unknown,
that is, any offset values φ1, . . . , φM are possible, provided that φ1, . . . , φM

are natural numbers. Goossens proved that choosing a granularity for the
offsets smaller than the rest of the systems does not help feasibility in any
way [16]. Under this constraint, it is easy to prove the following theorem:

Theorem 8 ([26]) The worst-case response time of a task τab can be found
in a busy period starting at some time t0, such that for each transaction
Ti, i 6= a, there is a task τij that is released exactly at t0 after having experi-
enced its maximum release jitter.

Note that if the transaction offsets are set, than the theorem above does
not hold anymore as there may not be any time t0 in which M − 1 tasks
are released simultaneously. Also note that releasing task τab at t0 may
not lead to its worst-case response time. To determine the response time
of τab we need to compute the total contribution of all tasks to τab, that is
the total processor time demanded by tasks executed inside the busy period
with deadlines less than or equal to that of τab. If we move the activation
patter of τab to occur earlier (in other world, we ”pull back” the activation
times of τab), we cause its deadline to be earlier too, and this may imply that
some deadlines of other tasks that previously occurred before the deadline
of τab now occur after, decreasing the total contribution. We thus use the
following strategy: for each possible activation time A of τab, such that τab is
executed inside the busy period (eventually after having experienced some
jitter, provided that it is less than or equal to its maximum), we compute
its finishing time and thus its response time, and then we take the overall
maximum. In order to reduce the number of activation times that needs to
be checked, we use the following theorem:

Theorem 9 The worst-case response time of a task τab corresponds to the
response time of one of its jobs τk

ab executed inside a busy period such that
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either the absolute deadline of τk
ab corresponds to the absolute deadline of a

job of a task of another transaction (executed inside the same busy period)
or a job of a task of transaction Ta (eventually τab itself) is released at the
beginning of the busy period after having experienced maximum jitter.

Proof. Consider job τk
ab, and suppose that neither its deadline corresponds

to the deadline of a job of a task of another transaction (executed inside the
busy period) nor a job of a task of transaction Ta is released at the beginning
of the busy period after having experienced maximum jitter. We can then
”pull back” the activation time of τk

ab, and thus the activation time of Ta,
until one of the two above conditions becomes true, without decreasing the
response time of τk

ab. In fact, note that all jobs that contributed to delaying
the finishing time of τk

ab still counts, while since ak
ab is pulled back as well,

the response time will actually increase.
Finally, note that the above consideration may not hold if τk

ab is the
first task to be released in the busy period. In this case, though, we could
obtained a worst response time by ”pulling back” all other transactions so
that τab is released at the beginning of the new busy period after having
experienced maximum jitter. 2

To compute the contribution of all tasks to the finishing time of τk
ab we

use a recurrence equation over the worst-case contribution of all tasks to a
busy period of length t and deadline D, where D is the deadline (relative to
t0) of τk

ab, and t is subject to the recurrence. To simplify the notation, from
now on we will assume without loss of generality t0 = 0.

Let’s start by computing the worst-case contribution to a busy period of
length t and deadline D of a transaction Ti, i 6= a; we will call it Wi(t,D).
We know that a task τik must be released at the beginning of the busy
period, but unfortunately we do not know which. Trying out every possible
combination for each transaction would lead to exponential complexity. We
thus take a pessimistic approach and compute the contributions Wik(t,D)
for each possible starting task (release at the beginning of the busy period)
τik, then take the maximum. Thus:

Wi(t, D) = max1≤k≤NiWik(t,D)

In order to compute Wik(t,D), we first need to compute the distance ρijk

between the first activation time of a job of task τij inside the busy period
and the busy period itself, considering τik as the starting task. Palencia and
Gonzàlez showed that:

ρijk = (Ti − (φik + Jik − φij)modTi)modTi
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Given this equation, the contribution Wijk(t,D) of task τij to the busy
period considering τik as the starting task can be computed as follows:

Wijk(t, D) =
(⌊Jij + ρijk

Ti

⌋
+ min

(⌈ t− ρijk

Ti

⌉
,
⌊D − ρijk − dij

Ti

⌋
+ 1

))
0
Cij

(7.1)
Clearly now

Wik(t, D) =
∑

1≤j≤Ni

Wijk(t,D) (7.2)

Now let’s compute the contribution of transaction Ta. Let’s call A the ac-
tivation time of the instance of τab we are checking. Then the first activation
of task τac after A if equal to A+φac−φab if φac ≥ φab, or A+Ti +φab−φac

if φac < φab, thus it is always equal to A + (φac − φab)modTi. We can now
compute the difference ρA

acb between the first activation of an instance of
τac inside the busy period and the busy period itself, supposing task τab is
activated at A, in the following way, considering that τac is activated every
Ta time units and that the busy periods starts at 0:

ρA
acb = (A + (φac − φab)modTa)modTa = (A + φac − φab)modTa (7.3)

We can then compute the contribution WA
acb(t, D) for task τab and the

total contribution WA
ab(t,D) for transaction Ta in the same way we computed

Wijk and Wik in Equations 7.1 and 7.2, by simply substituting ρA
acb for ρijk.

The finishing time wA
ab, relative to the beginning of the busy period, can

then be computed with the following recurrence:

wA
ab = Bab + WA

ab(w
A
ab, D) +

∑

1≤i≤M,i 6=a

Wi(wA
ab, D) (7.4)

where
D = A + dab

It now remains to be seen how we can compute the set ψab of starting
times A that need to be checked. We start by computing an upper bound
to the length of the busy period L. This can be done with the following
recursion, considering the contributions without the deadline limitation:

L =
∑

i≤i≤M

Wi(L,∞) (7.5)

Note that, due to the pessimistic nature of the computation, the value of
L may growth to infinity even if the total system utilization U =

∑
1≤i≤M,1≤j≤Ni

Cij

Ti
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is less then 1. In this case, an upper bound to L equal to lcm(Ti, . . . , TM )
can be used; if a busy period were longer than this bound, in fact, then
surely U > 1 and the system is not feasible from the beginning. We will
provide a stricter bound in Section 8.3.

Using Theorem 9, we now consider the set ψ of all activations for τab

in the following way. We first add all the possible activation times whose
absolute deadline correspond to the deadline of some task of another trans-
action, scheduled inside the busy period. Suppose that we want to do so
for a task τij of transaction Ti. Since we do not know a priori which is the
starting task for transaction Ti, we must consider all possible starting tasks
τik. Palencia and Gonzàlez [25] proved that the set of activation times for
jobs of τij that can be scheduled inside the busy period, eventually after
having experienced some jitter, is equal to:

{aijk|∃p, p0,ijk ≤ p ≤ pL,ijk, aijk = ρijk + (p− 1)Ti}

where

p0,ijk = −
⌊

Jij + ρijk

Ti

⌋
+ 1 (7.6)

pL,ijk =
⌈

L− ρijk

Ti

⌉
(7.7)

Thus we need to consider the following set of activation times for τab:

ψ′ =
⋃

1≤i≤M,i6=a,1≤k≤Ni,1≤j≤Ni,p0,ijk≤p≤pL,ijk

ρijk + (p− 1)Ti + dij − dab

We then need to check all possible activation times that correspond to some
task τac of Ta being released at the beginning of the busy period after having
experienced maximum jitter. This is simply achieved by using the following
set:

ψ′′ =
⋃

1≤c≤Na,p0,abc≤p≤pL,abc

ρabc + (p− 1)Ta

Finally, considering that we only need to check those activation times ak
ab

such that τk
ab is released inside the busy period starting at 0, we find:

ψ = {A|A ∈ ψ′ ∪ ψ′′, A + Jab ≥ 0} (7.8)

Given set ψ we finally obtain:

rab = maxA∈ψ(wA
ab −A)
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The main difference between the proposed analysis and Palencia and
Gonzàlez’ original one is in the fact that in the original analysis the authors
fixed a starting task for transaction Ta as well. This leads to a sometimes
better evaluation of the upper bound L on the length of the busy period, but
it adds unnecessary pessimism to the contribution of tasks of transactions
Ta different from τab and τac. It is also max1≤i≤MNi times slower than the
complexity of our method.

7.3 New offset method

In this section we introduce a second method for computing the worst-case
response times. To the contrary of the previous section, we now suppose
that the transaction offsets are fixed, but that tasks experience no release
jitter. As we said before, under these circumstances Theorem 8 does not
hold anymore. We therefore apply ideas similar to the one used in Chapter
3. The worst-case response time for a task τab can be surely found in a busy
period in which some task τpq is activated (and released, since is suffers no
release jitter) at the beginning of the busy period. Our idea is to fix this
starting task τpq and compute the worst-case response time in this case. The
overall worst-case response time for task τab can then be found by taking
the maximum for every possible starting task τpq.

As we have done before, we will now compute the worst-case contribu-
tion W pq

ik (t,D) of transaction Ti, i 6= a, p to the finishing time of task τa,
supposing that task τik is the first to be activated inside the busy period.
Since the transaction offsets are fixed, it may not be possible for task τik

to be activated precisely at the beginning of the busy period. We thus use
the same strategy as in Chapter 3: the worst-case contribution is surely to
be found when the activation of task τik is nearer to the beginning of the
busy period. We can compute the minimum distance ∆pqik between any
activation of task τpq in the scheduling and the successive activation of task
τik as follows.

Lemma 9 The minimum time distance between any activation time of task
τpq and the successive activation time of task τik is equal to:

∆pqik = (φi + φik − φp − φpq)mod gcd(Tp, Ti)

Proof. Note that for each possible job τx
pq and τy

ik, ay
ik − ax

pq = φi +
φik − φp − φpq + yTi − xTp. Thus ∀x ≥ 0, ∀y ≥ 0, ∃z ∈ Z, ay

ik − ax
pq =
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φi + φik − φp − φpq + z gcd(Ti, Tp) and the minimum difference corresponds
to the thesis. 2

Given ∆pqik, we can compute the distance ρpq
ijk between the first activa-

tion of τij inside the busy period and the busy period itself as in Equation
7.3, substituting ∆pqik for A:

ρpq
ijk = (∆pqik + φij − φik)modTi

Finally, given ρpq
ijk we use Equations 7.1 and 7.2 to compute W pq

ik (t, D). The
overall correctness of this procedure is more formally proven by the following
theorem:

Theorem 10 The worst-case response time of task τab corresponds to the
response time of one of its job τk

ab activated inside a busy period where task
τpq is activated at the beginning of the busy period and for each other trans-
action Ti, i 6= a, p, there is a task τij that is activated ∆pqij time units after
the beginning of the busy period.

Proof. Let’s consider the response time of a job of τab activated inside a
busy period; there is surely at least one task that is released at the beginning
at the busy period, say τpq (note that it can be a = p). We do not know which
starting task for transaction Ti, i 6= a, p, gives the worst-case contribution to
the finishing time of τab; suppose it is τik. Now, if we move the activation
pattern of τik to occur earlier inside the busy period, we won’t surely decrease
its contribution, since the deadlines of tasks of T will be ”pulled back” as
well, and this means that new jobs may be activated inside the busy period.
But since we proved that ∆pqij is the minimum possible distance between
an activation of τpq, and thus the beginning of the busy period, and any
activation of τik, the theorem follows. 2

Note that Theorem 10 still gives us a pessimistic condition, since the
activation times of the starting task of all transactions Ti, i 6= a, p, are si-
multaneously minimized with respect to the activation time of τpq, while this
may not be possible in the actual schedule. In fact, when we ”pull back”
the tasks to their minimum distance from τpq, we are not considering the
cross relations between them. We may devise a more complex condition, in
order to reduce pessimism, by ”fixing” more than one starting task, but as
we showed in Chapter 3, this idea is not likely to achieve significantly better
results while it substantially increases the complexity of the algorithm.

As before, we now need to compute the set ψpq of activation times for
task τab that need to be checked. We start be computing the upper bound
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Lpq on the length of the busy period, given by the following recurrence:

Lpq = W pq
pq (Lpq,∞) +

∑

1≤i≤M,i 6=p

W pq
i (Lpq,∞) (7.9)

Note that as before, Lpq may growth to infinity even if the total utilization
is less then 1, so that an upper bound is required.

We now need to compute the total set of possible activations of τab inside
the busy period, that we denote ψpq. Following the same line as in Lemma
9, it should be easy to see that any activation of τab may only occurs at time
∆pqab +k gcd(Tp, Ta) for some k ∈ Z. Since the activation must occur inside
the busy period we get:

ψpq = {A|∃k, A = ∆pqab + k gcd(Tp, Ta), A < Lpq} (7.10)

The recurrence over the finishing time for τab, given an activation time A,
is now:

wpqA
ab = Bab + W pq

pq (wpqA
ab , D) + WA

ab(w
pqA
ab , D) +

∑

1≤i≤M,i6=a,p

W pq
i (wpqA

ab , D)

(7.11)
if p 6= a, or otherwise:

waqA
ab = Bab + W aq

aq (waqA
ab , D) +

∑

1≤i≤M,i6=a

W aq
i (waqA

ab , D) (7.12)

We want to briefly underline two significant considerations. First, note
that if gcd(Tp, Ta) = 1, we will be basically forced to check each possible
activation time for τab inside the busy period. Fortunately, there is a way to
bound the number of activation times to check. We could use the analogue
of Theorem 9 and compute a new set of activation times ψ′ in the same
way as in Section 7.2 (but taking into consideration the minimum activation
time ∆ for the starting task of each transaction). Now given two values
A′, A′′ ∈ ψ, A′ < A′′, if there are no values of ψ′ in the interval (A′, A′′], then
only A′ needs to be checked. In this way, no more activation times that
those of the previous method need to be checked.

Second, this method can be used even if release jitters are not zero, but
its complexity becomes greater. In fact, we cannot simply suppose that task
τpq is released at the beginning of the busy period after having experienced
maximum jitter, since the contribution of tasks of other transactions will
now depend both on the transaction offsets and on jitters. This basically
means that we will be forced to try every possible release jitter for task τpq.



Chapter 8

Improved holistic analysis

8.1 Introduction

The response time analyses developed in the previous Chapter 7 can be used
to solve the schedulability problem for dynamic offset transactions [26] [25].
We consider the same transaction model as in Chapter 7, but we now suppose
that task offsets and jitters are not initially known; on the contrary, we want
to impose a precedence constraint among tasks of the same transaction so
that each task τij can begin execution only after task τij−1 has finished
at least δij time units before. In [25] Palencia and Gonzàlez showed that
this model is useful for systems where tasks suspend themselves and for
distributed multiprocessor transactions.

For example, a task may execute for some time, and then suspend itself
to read some data from the disk. We could model this task as a transaction
Ti composed of two tasks: task τi1 corresponds to the code before the sus-
pension, and τi2 to the code after the suspension. δi2 is used to model the
maximum suspension time.

In multiprocessor and distributed systems it is usual that the system can
be modelled with transactions composed of several tasks. For example, con-
sider a client-server architecture where a client task issues service requests
to several servers, possibly executing on different processors. The client task
can be modelled as a transaction where pieces of code between request are
individual tasks. Each portion of execution on a server is too modelled as
a task of the same transaction, running on a different processor. Commu-
nication delays can be modelled using δ values, or, if a more precise model
is required, each network node can be modelled as an individual processor,
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accounting the non-preemptability of message packets as blocking times [18]
(see also Chapter 9).

Since precedence constraints are hard to consider, we want to change
the task offsets and jitters so that each task can always be released after the
previous one has finished. Offsets and jitters thus depend on task response
times. But unfortunately, in order to compute response times we need to
know both offsets and jitters. To solve the problem we will use variations of
the holistic analysis first developed by Tindell and Clark [35].

This chapter is organized as follows. In Section 8.2 we will introduce
different holistic techniques, including our original contribution to the prob-
lem. Then in Section 8.3 we will discuss implementation issues for the
presented techniques and in Section 8.4 we will present experimental eval-
uations. Finally, Section 8.5 introduces the deadline problem that will be
further examined in the following Chapter 9.

8.2 Holistic Analyses

In this section we use a modified version of the transaction model introduced
in Section 2.3 and used in the previous Chapter 7. We suppose that for each
transaction Ti, task τi1 is activated at the same time of the transaction,
and that each subsequent task τij must be released some time δij after the
finishing time of τij−1.

Palencia and Gonzàlez [26] used the following algorithm (a refinement of
Tindell and Clark original holistic analysis [35]), called WCDO (Worst-case
Analysis for Dynamic Offsets), to solve the problem of response time analysis
for the above model. Each transaction is transformed into a transaction of
the type described in Section 2.3 using the following offsets:

φi1 = 0 (8.1)

φij =
∑

1≤k<j

Cik + δik+1 ∀1 < j ≤ Ni (8.2)

and relative deadlines dij = Dij − φij . The task jitters are initially set to
0, and then the worst-case response time Rij is computed for each task. At
this point, jitters are modified as follows:

Ji1 = 0 (8.3)
Jij = Rij−1 − φij + δij ∀1 < j ≤ Ni (8.4)
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After setting the jitters, new response times are computed for the tasks
with the response time analysis described in Section 7.2 (NTO analysis),
jitters are modified again and so on until the system converges to a stable
result or diverges, in which case the iteration is usually stopped after Rij >
Dij for some task τij , since this means that we cannot prove that the system
is schedulable.

Note that this basically means that the offsets are first set equal to the
minimum possible response time of each task (supposing that the relative
response time of each task before is exactly equal to its computation time)
and then at each step jitters are modified so that each task τij is released
in the worst-case after waiting δij time units from the worst-case finishing
time of the immediately previous task τij .

If the response times are bounded from above, then the algorithm is
proved to converge because the worst-case response times, as computed in
Section 7.2, are monotonically non decreasing in the jitters, as the following
theorem proves:

Theorem 11 The worst-case response times computed in Section 7.2 are
monotonically non decreasing in the jitters.

Proof. We will prove that given any two tasks τij and τab (possibly the
same task), if we substitute jitter Jij with a new jitter value J ′ij ≥ Jij , then
the new worst-case response time r′ab is greater than or equal to the previous
one rab.

We need to consider different cases. First, suppose i 6= a. Then we
have two possibilities. If τij is not the starting task of Ti, then r′ab is surely
increased or equal to rab since the increased jitter J ′ij may cause a new job of
τij , activated before the beginning of the busy period, to be released inside
it. If τij is the starting task, since it is released after having experienced
maximum jitter due to Theorem 9, the deadlines of all tasks of Ti are ”pulled
back” a number of time units equal to J ′ij − Jij and thus new jobs may
contribute to the finishing time of τab. However, since all activation times
of tasks of Ti are pulled back as well, jobs that were released inside the busy
period may now not be released inside it, and thus the total contribution of
Ti may be less than before. Suppose that this happens and let τik be the
task of one such job, such that all tasks that are released after the beginning
of the busy period with jitter Jij and starting task τij are released as well
after the beginning of the busy period with starting task τik and jitter J ′ij .
Then even if the contribution of Ti is less than before with starting task
τij , the contribution is higher or equal selecting τik as the starting task (see
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Figure 8.1: Example of jitter extension.

Figure 8.1 where j = 3 and k = 1; the worst-case busy period starts not at
t′0 but at t′′0).

Second, suppose that i = a. If j 6= b, then the release time is greater
or equal then before for the same reasons as above. If j = b, then the
increased jitter may: increase the number of jobs of τab scheduled inside
the busy period, permit new values inside ψ (those for which the condition
A + Jab ≥ 0 didn’t hold before), and ”pull back” the deadlines of all tasks
of Ta in case τab is the starting task. Notice that in this case, the deadline
of τab is pulled back as well, so that D is decreased and the contribution of
tasks of other transactions may decrease. However, since we always check
all values of A so that the deadlines of τab corresponds to the deadline of
some jobs of another transaction, the worst-case response time of τab cannot
decrease even in this case. 2

We shall now introduce a new refined algorithm for this same problem,
which we will call algorithm CDO (Cycling Dynamic Offsets). The basic
idea is to modify Palencia and Gonzalez algorithm to take into account
offsets between tasks of different transactions, as we did in the response
time analysis of Section 7.3 (TO analysis). However, such extension is not
immediate, because our TO analysis does not consider jitters. Modifying
TO for taking jitters into account is not trivial, as the TO algorithm would
become too complex.

Therefore, we decided to follow a different approach: to eliminate jitters
from Palencia and Gonzalez analysis. How it will become evident in Section
8.4, by eliminating the jitters and by using the TO analysis, we are able to
provide much less pessimistic response times.

We will thus use the following idea. We follow an iterative approach
similar to that of WCDO, but instead of updating the jitters at each step,
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we modify the offsets, based on the response times computed at the step
before, as follows:

φi0 = 0 (8.5)
φij = Rij−1 + δij ∀1 < j ≤ Ni (8.6)

while jitters are always 0.
Roughly speaking, the iterative algorithm can be described as follows.

Starting from the best-case response times {Rij = Cij}, we evaluate the
offsets according to Equations 8.5 and 8.6. At step k, we compute the
response times given the offsets computed at the previous step k − 1; given
these response times, we set the new offsets; and so on. The algorithm should
stop when we obtain the same response times as in the previous step.

Unfortunately, the algorithm just described does not work since we have
no guarantees, using either the TO or the NTO analysis, that response
times are monotonic in the offsets. This means that the iteration might not
converge even if the response times are bounded from above, since it could
reach a limit cycle.

To highlight the problem and explain our solution, we need to introduce
some additional notation. We shall use Rk as the response time vector
{Rk

11, . . . , R
k
1N1

, . . . , Rk
M1, . . . , R

k
MNM

} of global response times computed at
step k of the algorithm.

We define the ≤ operator over the space of response time vectors as
follows:

R′ ≤ R′′ ⇔ ∀ 1 ≤ i ≤ M, 1 ≤ j ≤ Ni, R
′
ij ≤ R′′

ij .

We shall further introduce function f as the function that, given the response
times at some step k, evaluates new response times by computing offsets as
in Equations 8.5 and 8.6 and running the response time analysis presented
in Section 7.2 (NTO). We denote with f ′ the function that does the same
thing using the analysis presented in Section 7.3 (TO).

The algorithm can then be expressed as an iteration over Rk+1 = f(Rk),
starting from R0 = {C11, . . . , C1N1 , . . . , CM1, . . . , CMNM

}.
Figure 8.2 illustrates the problem of the limit cycle. It shows a pos-

sible evolution of the response times computed at each step (for the sake
of simplicity, we show only two response times in the figure. However, the
reader must consider that the response time vector is defined over a multi-
dimensional space). The response time vectors computed at each step are
numbered from R0 to R8; arrows represent the application of function f at
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Figure 8.2: Holistic analysis example.

each step. In the example, if we applies the algorithm described above, the
iteration enters a limit cycle at step 5.

We will thus need to modify the iteration step in order to achieve con-
vergence. In Figure 8.3 we report the CDO algorithm. Each iteration step
k in algorithm CDO is done as follows. First, if f(Rk) ≤ Rk, we can imme-
diately stop the algorithm with final response times Rk. In fact, this means
that, by using the offsets computed at step k we obtain response times Rk

that are compatible with the deadlines and the offsets, so we can stop the
algorithm.

Otherwise, we must check if we incurred in a limit cycle. This can be
done with the following function cycle(Rk):

cycle(Rk) = max({k̄|f(Rk) = Rk̄} ∪ −1).

cycle(Rk) returns −1 if no cycle can be found or k̄ if a limit cycle is found
starting at step k̄. If cycle(Rk) = −1, then we simply set Rk+1 = f(Rk).
If cycle(Rk) = k̄ ≤ 0, we jump out of the limit cycle by selecting a new
response time vector as the maximum between all response times in the
limit cycle. We define a function maxR as follows:

maxR(k1, k2) =




maxk∈{k1...k2}(R
k
11)

...
maxk∈{k1...k2}(R

k
MNM

)



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Then, the new response time can be computed as maxR(k̄, k).
Unfortunately, when we jump out of a limit cycle we could incur in

another cycle. An example is presented in Figure 8.2. Suppose we are at
step k = 7. When we jump out of cycle {R5,R6,R7}, we find the already
visited point R3. If we simply set Rk+1 = maxR(5, 7), we incur in the new
limit cycle {R3, . . . ,R7}. In order to prevent this problem, each time we
jump out of a cycle we must check again if we incur in a new limit cycle.
This can be done by using again function cycle and possibly jump out of
this new cycle too. Of course, the problem can be found again, recursively.
However, every time we jump out of a cycle, we can jump in a cycle including
more points. Therefore, sooner or later we must find a point which is not
part of any cycle.

The following fundamental theorems prove that algorithm CDO is indeed
correct and that it provides better response times with respect to WCDO; g
is the function that, given the response times at some step k, evaluates new
response times according to the WCDO algorithm, that is, by computing
new jitters as in Equations 8.3 and 8.4 and running the NTO analysis with
the offsets given by Equations 8.1 and 8.2.

Theorem 12 Given response times Rk at step k, the new response times
Rk+1 computed by function f are not greater than the response times com-
puted by function g.

Proof. Let R′ = g(Rk) and R′′ = f(Rk). Furthermore, let φ′ij and
J ′ij be the offset and jitter of task τij computed at step k + 1 by WCDO
and let φ′′ij be the offset computed by CDO. Then it suffices to prove that
∀ 1 ≤ i ≤ M,∀ 1 ≤ j ≤ Ni : R′

ij ≥ R′′
ij .

Using Equations 8.4 and 8.6 we easily obtain φ′′ij − φ′ij = J ′ij for each
task τij . Note that this basically means that, assuming the same transaction
activation times, in algorithm CDO each task activation time coincides with
the release time of the same task in WCDO after having experienced the
maximum jitter.

We know prove that the response time R′′
ab of task τab computed by the

NTO analysis in the CDO case with offsets {φ′′ij} and zero jitters is less than
or equal to the response time R′

ab computed by NTO in the WCDO case with
offsets {φ′ij} and jitters {J ′ij}. Let’s start by considering the contribution
of a transaction Ti, i 6= a, to the finishing time of a task τab. Suppose τij is
a starting task in both cases. Then because of the considerations from the
previous paragraph, the activation time of Ti does not change between CDO
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and WCDO. This means that all jobs that can be released after the beginning
of the busy period in WCDO, are still activated after the beginning of it in
CDO, while tasks that are activated after the end of the busy period in
algorithm CDO, may be activated inside it in WCDO due to the jitter.
Thus, the total contribution of Ti in CDO is less than or equal to the one in
WCDO.

Finally, consider transaction Ta. For tasks τac, c 6= b, the same consid-
erations as above hold. For task τab, note that since Dab is not changed by
the algorithms, τab is actually always activated in CDO at the same time
in which it would be released in WCDO should it suffers maximum jitter.
Therefore the only effect is that some instances of τab that could be release
inside a busy period of maximum length in WCDO are activated after it in
CDO, and thus they are not considered for response time evaluation. This
means that even the contribution of transaction Ta in CDO is less than or
equal to the one in WCDO and thus the theorem holds. 2

Theorem 13 Given a transaction set T , if WCDO converges to response
times R̄, then CDO converges to response times R ≤ R̄ in a finite number
of steps.

Proof. Since WCDO converges to R̄, g(R̄) = R̄. Also note that since
WCDO is monotonically non decreasing in the jitters, then function g is also
monotonic, and thus ∀ R ≤ R̄, g(R) ≤ R̄. Therefore because of Theorem 12
we also obtain: ∀ R ≤ R̄, f(R) ≤ R̄. Since clearly R0 ≤ R̄, it follows that
CDO can never reach at any step a point R 6≤ R̄. If this was possible, we
could surely find a step k so that ∀ k′ ≤ k,Rk′ ≤ R̄ ∧Rk+1 6≤ R̄. However,
this is impossible. In fact, Rk+1 can be obtained from Rk by application of
either function f or of function maxR, but neither of them can give a result
that is not less than or equal to R̄.

Since the number of points R ≤ R̄ are finite, it now suffices to prove that
CDO never passes through the same point twice before stopping. Note that
it is impossible that for any step k, ∃k′ ≤ k,Rk = Rk′ , since the iterative
step of CDO only ends when function cycle returns −1, meaning that no
such k′ can be found. Therefore, algorithm CDO visits a new point at each
step and thus must stop in a finite number of steps with response times
R ≤ R̄. 2

Note that although CDO is proven to converge in finite time if a stable
point exists, it can be untractable in the worst-case, since it may require
to pass trough each state R ≤ R̄. Simulation results show that this event
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1. Given Rk, compute f(Rk).

2. If f(Rk) ≤ Rk, stop the algorithm with final response times Rk.

3. Otherwise compute k̄ = cycle(Rk).

(a) If k̄ = −1, then end the iteration step with Rk+1 = Rk.

(b) Otherwise compute R′k = maxR(k̄, k) and k̄′ = cycle(Rk),
then go back to step 3a considering R′k and k̄′ instead of Rk

and k̄, respectively.

Figure 8.3: CDO iteration step.

is very unlikely to happen, and that algorithm CDO usually converges in a
number of steps no greater that those of algorithm WCDO; however, since
the possibility of a cycle remains, we must check at each step if any cycle is
present.

We can define a simpler algorithm, that we call MDO (Maximum Dy-
namic Offsets), using the following iteration step:

Rk+1 =




max(Rk
11, f(Rk

11))
...
max(Rk

MNM
, f(Rk

MNM
))




In other words, in algorithm MDO at each step we always ”jump out” to
the maximum between the previously computed release times and the newly
computed ones. Since algorithm MDO is clearly monotonic, if the response
times are bounded that it surely converges. Furthermore, note that because
of Theorem 12 the response times computed by MDO at each step are less
than or equal to those computed by WCDO. Given this results, it is trivial
to prove that Theorem 15 still holds, in the sense that MDO converges to
a stable point that is less or equal to that of WCDO in a finite number of
steps.

While at first glance algorithm MDO may seem excessively pessimistic
in confront to CDO, simulations showed that the decrease in performance is
negligible. Therefore, algorithm MDO will be our preferred holistic method
int the remainder of this work since it is way simpler than CDO.

Since under both MDO and CDO tasks have always zero jitter, the TO
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response time analysis developed in Section 7.3 comes in handy. In order
to use that method, though, we need to prove that Theorems 15 still holds.
This is a consequence of the following theorem:

Theorem 14 Given a transaction system of the type described in Section
2.3, where all release jitters are equal to zero, the response times computed
by the TO analysis are no greater than the response times computed by the
NTO analysis.

Proof. Given a task τab, we will prove that the total contribution of every
transaction to its worst-case response time in the TO analysis, considering
any initial task τpq, is less than or equal to the contribution in the NTO
analysis.

Let’s start by considering the total contribution of transaction Ti, i 6= a,
to the finishing time of a task τab. Since release jitters are equal to zero, the
only effect of applying TO with respect to NTO is that the activation time of
the starting task of Ti, say τij , is deferred for a time ∆pqij from the beginning
of the busy period. Therefore, both activation times and absolute deadlines
of all jobs of Ti are deferred in TO and thus the contribution is surely less
or equal than the one in NTO, since some jobs may not be scheduled in the
busy period due to a deferred activation time or deadline.

For what concerns transaction Ta, note that the contribution of tasks
of Ta does not change between the two analyses once an activation time
for τab has been fixed. Therefore, it suffices to recall that while checking
the activation times for τab in set ψ from Section 7.2 (NTO) is equivalent
to checking all possible activation times inside the busy period, the TO
analysis limits the activation times to be checked to a subset of the busy
period. Therefore, the worst-case contribution of transaction Ta in TO is
surely less than or equal to the one in NTO. 2

Given function f, f ′ and g and response time vector Rk at step k we
obtain from Theorems 12 and 14: g(Rk) ≤ f(Rk) ≤ f ′(Rk). It is then
trivial to prove the following theorem:

Theorem 15 Given a transaction set T , if WCDO converges to response
times R̄, both CDO and MDO, using function f ′ instead of f at each it-
eration step, converge to response times R′ ≤ R̄ and R′′ ≤ R̄ in a finite
number of steps.

Proof. The proof is an immediate extension of Theorem 15. 2
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Since both CDO and MDO can be used either with the NTO or the
TO response time analysis, in the remainder of our work we will use names
CDO-NTO and MDO-NTO to refer to algorithms CDO and MDO applied
to NTO, and names CDO-TO and MDO-TO to refer to the holistic methods
applied to TO.

Please note that while at each step algorithm MDO-TO performs better
than MDO-NTO, this is no proof that MDO-TO will converge to a result
that is less or equal than that of MDO-NTO. In fact, we have no proof
that the response times computed from a vector Rk at step k will be less or
equal to the response times computed from another vector R′k ≥ Rk. In-
deed, using the following feasible single processor system: T1(φ1 = 13, T1 =
30, C11 = 2, C12 = 1, C13 = 2, C14 = 2, D11 = 6, D12 = 9, D13 = 16, D14 =
22), T2(φ2 = 49, T2 = 70, C21 = 2, C22 = 4, C23 = 3, C24 = 3, D21 = 9, D22 =
26, D23 = 38, D24 = 51), T3(φ3 = 112, T3 = 120, C31 = 2, C32 = 1, C33 =
2, C34 = 1, D31 = 37, D32 = 56, D33 = 93, D34 = 112), T4(φ4 = 121, T4 =
140, C41 = 1, C42 = 4, C43 = 2, C44 = 6, D41 = 9, D42 = 47, D43 = 65, D44 =
121), it can be seen that using MDO-NTO R24 converges to a value of 25
while using MDO-TO we get a value of 26.

8.3 Implementation Issues

Figures 8.4 and 8.5 shows the pseudo-code for algorithm WCDO and MDO,
where rt-analysis is either the NTO or the TO response time analysis; they
are detailed in Figures 8.6 and 8.7.

Although algorithm NTO and TO may appear complex, their overall
complexity is not too great compared to that of EDF schedulability anal-
yses such as Baruah processor demand criterion [4] or the author’s 1-fixed
test from Chapter 3. In each algorithm, we compute the response times
for all tasks, that is N =

∑
1≤i≤M Ni response times. For each task τab

and each of its possible activation times, we need to compute the contri-
bution of each other transaction (M − 1 transactions). For each trans-
action Ti, we must compute the worst-case contribution of all tasks by
selecting each one in turn as a possible starting task: that is, comput-
ing Wi(t,D) has a complexity of O(N2

i ). Thus, the complexity of algo-
rithm NTO amounts to O(N2 max1≤i≤M Ni pseudopoli), and the complex-
ity of NTO to O(N3 max1≤i≤M Ni pseudopoli) (since we must also check
all possible initial tasks τpq); this is also the complexity of the original
Palencia-Gonzàlez analysis. O(pseudopoli) is a pseudo-polynomial com-
plexity that measure the number of activations time to be checked inside
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compute ∀ i, j : φij (8.1,8.2)

∀ i, j : Rij = Cij

do

compute ∀ i, j : Rij using NTO-analysis

compute ∀ i, j : Jij (8.3,8.4)

if ∃ i, j : Rij > Dij

return unknown

while Rij changes

return feasible

Figure 8.4: Sample code, algorithm WCDO

compute ∀ i, j : φij (8.1,8.2)

∀ i, j : Rij = Cij

do

compute ∀ i, j : R′
ij using rt-analysis

compute ∀ i, j : φij (8.5,8.6)

∀ i, j : Rij = max(Rij , R
′
ij)

if ∃ i, j : Rij > Dij

return unknown

while Rij changes

return feasible

Figure 8.5: Sample code, algorithm MDO
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compute L (7.5)

for each a = 1 . . . M

for each b = 1 . . . Na

Rab = Cab

compute ψ (7.8)

for each A in ψpq

compute wA
ab (7.4)

if wA
ab −A > Rab

Rab = wA
ab −A

end if

next A

next b

next a

Figure 8.6: Sample code, algorithm NTO
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for each a = 1 . . .M

for each b = 1 . . . Na

Rab = Cab

for each p = 1 . . . M

for each q = 1 . . . Np

compute Lpq (7.9)

compute ψpq (7.10)

for each A in ψpq

compute wpqA
ab (7.11,7.12)

if wpqA
ab −A > Rab

Rab = wpqA
ab −A

end if

next A

next q

next p

next b

next a

Figure 8.7: Sample code, algorithm TO
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the busy period and depends on tasks’ parameters; note that since there
cannot be more activations that the length of the busy period, any upper
bound on the maximum length of the busy period constitutes an upper ap-
proximation for O(pseudopoli) as well. A simple bound, equal to

∑
i,j Cij

1−U ,
can be found in the following way by reasoning of the busy period length
L. Surely in any case L ≤ ∑

i,j d L
Ti
eCij , since this condition means that

all tasks of all transactions start at the same time with no offset. Then:
L <

∑
i,j(

L
Ti

+ 1)Cij = LU +
∑

i,j Cij , and by solving for L we get our
bound. Also note that supposing for example Ni = M for each i, the poly-
nomial complexity of both NTO and TO is only

√
N higher that that of

Baruah’s processor demand criterion (where N is the number of tasks) and
of 1-fixed respectively

The worst-case complexity of holistic analysis is very high, since theo-
retically even for WCDO at each step we could have an increase in of just
one time unit in one component of the response time vector. However, sim-
ulation shows that all algorithms typically converges (provided that they do
so) in a small number of steps (see next section).

8.4 Experimental evaluation

We will now evaluate the performance of the described analysis. For each
experiment, we generated 1000 synthetic transaction sets consisting of 5
transaction with 5 or 10 tasks.

Each transaction was generated in the following way. First, a transaction
utilization was randomly generated according to a uniform distribution, so
that the total utilization summed up to the desired value (Bini showed how
to efficiently obtain such as result in [7]). Then periods were generated
uniformly between 10 and 200 for transactions with 5 tasks and between 20
and 400 for transactions with 10 tasks, and the total worst-case computation
time of each transaction was computed based on utilization and period.
Relative deadlines were assigned to each transaction to be between half
period and the period, and transaction offsets were randomly generated
between 0 and the period. Afterward, computation times of tasks were
also generated according to a uniform distribution, so that their sum were
equal to their transaction computation time. For simplicity we assumed
all δ-values to be equal to 0, and that no resource constraint was present.
Finally, deadlines were assigned proportional to each task’s computation
time, so that the deadline of the last task corresponded to the transaction
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deadline (note that if we can set the task deadlines freely, the latter can not
be the best solution: we will return on that in the following Section 8.5).

We generated the transaction periods so that the greatest common divi-
sor between any two periods were a multiple of 1/20 of the maximum period
(10 for transactions with 5 tasks and 20 for transactions with 10 tasks). As
we showed in [14], the greater is the gcd between two transaction periods,
the larger is the minimum distance between two successive activations of
tasks of the two transactions and thus the smallest is the contribution of
one transaction to the tasks of the other. In particular, we could show that
if a period were prime with all others, then the TO analysis would be equal
to the NTO one. Note that fortunately this kind of situation is not very
common in real applications.

Figure 8.8 shows the percentage of feasible transaction sets scheduled by
algorithms WCDO, MDO-NTO and MDO-TO, for a system of 5 transaction
with 5 tasks each, running on a single processor, with utilizations ranging
from 0.6% to 0.94%. While algorithm MDO-NTO achieves a small gain
over WCDO (but it is about 5 times faster), algorithm MDO-TO achieves
an improvement up and beyond 20% for utilizations around 0.75%. Also, the
response times computed by algorithm WCDO are 36% longer then those
computed by algorithm MDO-TO in mean.

Figure 8.9 shows the percentage of feasible transaction sets scheduled
for the same system as before but running on two processors with utiliza-
tion between 0.6% and 1.4%. Once again algorithm MDO-NTO does not
achieve any significant benefit over WCDO, but algorithm MDO-TO per-
forms even better than before achieving an improvement over 30% around
0.95% utilization; also, the improvement on the response times was around
46%.

Figure 8.10 shows the case with 5 transactions and 10 tasks per trans-
action, running on 4 processors. This time algorithm MDO-TO is able to
schedule about 50% more total transaction sets than MDO-NTO at about
1.1% utilization. The benefit of our transaction offsets approach clearly
seems to go up as the parallelism of the system increases.

Figure 8.11 uses the same system as Figure 8.9, but shows a comparison
between algorithm MDO-TO and CDO-TO and between MDO-NTO and
CDO-NTO. As we said in Section 8.2, there seems to be no real gain in
preferring CDO over the simpler MDO. In particular, algorithm CDO-TO
is able to schedule only 0.14% more tasks than MDO-TO, and there is no
improvement for CDO-NTO over MDO-NTO.

Finally, Table 8.1 shows the mean number of steps needed for conver-
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Figure 8.8: 5 transactions, 5 tasks per transaction, single processor

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

50

100

150

200

250

300

350

400

450

500

Total Utilization

P
er

ce
nt

ag
e 

of
 F

ea
si

bl
e 

T
ra

ns
ac

tio
n 

S
et

s

MDO−TO
MDO−NTO
WCDO

Figure 8.9: 5 transactions, 5 tasks per transaction, two processors
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Figure 8.10: 5 transactions, 10 tasks per transaction, four processors
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Figure 8.11: 5 transactions, 5 tasks per transaction, two processors
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MDO-TO MDO-NTO WCDO-O
5 tasks, 1 processor 5.19 5.34 5.18
5 tasks, 2 processors 6.16 7.58 7.78
10 tasks, 4 processors 10.97 15.77 16.11

Table 8.1: Mean number of steps, 5 transactions

gence by algorithms MDO-TO, MDO-NTO and WCDO in the cases an-
alyzed before. As you can see, the number of steps is indeed low in all
cases and similar for the three algorithms, except for the fact that algo-
rithm MDO-TO seems to perform better than the others under increased
parallelism.

8.5 Deadline selection

In Section 8.2, we assumed that task deadlines were fixed. Although this
can be the case with some distributed transactions, there are many cases in
which we are only interested in that the last task of each transaction finishes
before a prefixed transaction deadline. In other words, we are not really
concerned with the finishing time of the non terminal task of a transaction
provided that the last task meets the deadline. In this situation, we have
some grades of liberty in our model, in the sense that we are free to choose
the deadlines of all intermediate tasks. The easiest choice would be to assign
to each task a deadline proportional to its computation time, that is, called
Di the relative deadline of transaction Ti:

Dij = Di

∑
1≤k≤j Cik∑

1≤k≤Ni
Cik

(8.7)

Extensive computations show that this simple heuristic is in fact good in the
general case, in the sense that given no further information on the system
it seems difficult to find a better one. If the δ-values are not zero, however,
the following is usually a better heuristic:

Dij = (Di −
∑

2≤k≤Ni

δik)

∑
1≤k≤j Cik∑

1≤k≤Ni
Cik

+
∑

2≤k≤j

δik (8.8)

It can easily be seen, however, that neither heuristics are optimal, in
the sense that there exist transaction sets that are feasible under a cer-
tain deadline assignment but not under the one computed by our heuristic.
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For example, in the following case: T1(φ1 = 18, D1 = 14, T1 = 25, C11 =
5, C12 = 1, C13 = 2), T2(φ2 = 16, D2 = 28, T2 = 30, C21 = 5, C22 =
4, C23 = 4), T3(φ3 = 4, D3 = 8, T3 = 10, C31 = 1, C32 = 1, C33 = 1),
using the deadlines computed by Equation 8.7 would not allow feasibil-
ity to be proven under MDO-TO, while changing the following deadlines:
D11 = 7, D21 = 13, D31 = 2 would make the system schedulable.

Another solution would be the development of an algorithm that iterates
over the space of possible deadline assignments in search of a feasible one.
However, holistic analysis makes it difficult to understand why deadlines
have been missed, and we feel that developing an efficient algorithm for the
general case is extremely difficult. We will instead provide a better heuristic
and a reasonably fast search algorithm for the system model introduced in
the following Chapter 9 in Section 9.6.



Chapter 9

Heterogeneous
multiprocessor systems

9.1 Introduction

In the previous Chapters 7 and 8 we saw how the response time analysis for
transaction systems can be used to provide improved schedulability condi-
tions for multiprocessor and distributed systems. A special case that, in our
opinion, is susceptible of further inquiry is that of heterogeneous multipro-
cessor systems (also known as asymmetric multiprocessors).

An heterogeneous multiprocessor system is composed by a general pur-
pose CPU and one or more specialized CPUs. The specialized CPUs are
typically used as hardware accelerators, or coprocessors: every task runs on
the general purpose CPU but may suspend itself for a certain time, sending
a computation chunk to a coprocessor and waiting for the coprocessor to
end before resuming operations on the general purpose processor. A task
that actually request a coprocessor is called a DSP task ; for simplicity, we
will assume that each DSP task requires a single fixed coprocessor. A com-
mon type of coprocessor is in fact a DSP, and its utility as an hardware
accelerator has already been investigated [6, 15]. The Texas Instruments
TM320C8x, for example, is a single-chip MIMD processor integrating a 32-
bits RISC processor and four 32-bits floating point DSPs. However, we do
not want to restrict ourselves to the case of DSPs only; other units, such as
programmable video controllers, may be considered as coprocessors.

Each DSP task τi of our system model is represented by a period Ti,
a relative deadline Di, offset φi and three computation times Ca

i , Cb
i , Cc

i

83
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with the following semantic: first a computation chunk of length Ca
i must

be executed on the processor, then a computation chunk Cb
i is executed on

the coprocessor (or a fixed coprocessor if there are more than one), and
finally execution resumes on the processor for a time Cc

i . We assumes that
synchronization between the processor and the coprocessor is done in zero
time; we could, however, account for transmission delays by introducing
delay values δab

i and δbc
i between the finishing time of Ca

i and the release
time of Cb

i and between the finishing time of Cb
i and the release time of Cc

i

as in Section 8.2.
The scheduling problem for such a system has been fully analyzed under

fixed priority [15], but no convincing solutions have been proposed so far
for EDF to our knowledge. The distributed response time analysis, on the
contrary, offers a nice solution to the problem, since it is possible to treat
each original DSP task τi as a new transaction Ti with three different tasks
τia, τib and τic with execution times Ca

i , Cb
i and Cc

i respectively. Note that
we are free to choose deadlines Dia and Dib.

We will discuss and show simulation results for three different cases. In
the first one, we will suppose that each DSP task executes on a different co-
processor, that is, the number of coprocessors in the system is equal to the
number of DSP tasks. In the second case, we assume a single preemptible co-
processor in the system, and in the third one, we will use a non-preemptible
coprocessor; this is typically the case of DSP coprocessors. These cases are
covered in Section 9.2, 9.4 and 9.3.

For each experiment, we generated 1000 task sets with 5 or 10 DSP tasks
each and periods within 20 and 400 in the same way as in section 8.4, in
the sense that the computation time of each task was divided according to
a uniform distribution into the three components Ca

i , Cb
i , Cc

i . Whenever
a transaction model is applied, we used algorithm MDO-TO to solve the
holistic problem; for EDF processor demand analysis, we used the 1-fixed
algorithm presented in Chapter 3.

Sections 9.5 and 9.6 cover further details while Section 9.7 offers some
final thoughts.

9.2 Multiple Coprocessors

In this section, we will discuss the case where each DSP task executes on
a different coprocessor. In the case where deadlines are less than or equal
to the periods, whenever the coprocessors are preemptible or not does not
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matter since no coprocessor can be simultaneously requested by more than
one job. In this case, in fact, the coprocessor execution can be simply treated
as a suspension time; that is, each DSP task τi first executes for Ca

i time
units, then suspends itself for Cb

i time units, and after that executes for Cb
i .

The transaction model for τi thus consists simply of tasks τia and τic, but
with an added delay time δic = Cb

i . We can use Equation 8.8 to choose a
good heuristic for Dia.

Unfortunately, there is no way under EDF, apart from using the trans-
action model, to account for suspension times that do not occur before a job
starts execution. Gai [15] gives good reasons why this is a difficult problem
to solve. In fact, the only known way to prove feasibility for such a system
under plain EDF is to consider the suspension time as part of the execution
time of the task, which is clearly extremely pessimistic. A good feasibility
analysis exists instead under fixed priority scheduling, and is shown in [20].
However, this analysis considers a synchronous task model, thus it fails to
take the task offsets into account.

Figure 9.1 and 9.2 shows the simulation results for the system, expressed
as a percentage of feasible task sets in respect to the total system utilization,
for task sets with 5 and 10 tasks respectively. 1-fixed is the 1-fixed processor
demand analysis from Chapter 3, while Kim is the analysis developed in
[20] under deadline monotonic scheduling. MDO-TO achieves a dramatic
performance increase over 1-fixed at utilization around 1.0: the feasibility
percentage for 1-fixed quickly drops to 0 while with the transaction analysis
we are able to schedule almost every task. The performance under Kim is
instead much better, but degrades around utilization 1.2 while MDO-TO
has still a feasibility ratio of 50%; note that in fact, the 1-fixed analysis is
so pessimistic that the results under fixed priority are much better, even if
the Kim analysis does not take the task offsets into account. Finally, MDO-
TO seem to work better as the number of tasks increases, while the other
tests remain unchanged; this outcome should be fairly predictable from the
experimental results of Section 8.4.

9.3 Preemptive Coprocessor

We will now suppose that the system offers a single coprocessor, but that
such a coprocessor is preemptible. In this case, the transaction model con-
sists of tasks τia, τib and τic as in 9.1; deadlines are set according to Equation
8.7. The 1-fixed analysis is still valid in this case, and once again there is no
valid method to reuse the coprocessor time on the main processor, meaning
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Figure 9.1: 5 DSP tasks, dedicated coprocessors
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Figure 9.2: 10 DSP tasks, dedicated coprocessors
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Figure 9.3: 5 DSP tasks, shared preemptible coprocessor

that we must treat each DSP task as a single task with computation time
Cia + Cib + Cic.

Figure 9.3 and 9.5 shows the simulation results for task sets with 5 and
10 tasks respectively; note that the 1-fixed test is the same as the one in
the previous section. Once again, the performance of MDO-TO is extremely
superior for utilizations around 1.0, but this time the feasibility percentage
drops to 0 for utilizations around 1.5, while in the previous case, for 10 DSP
tasks, the percentage was still at 40%.

9.4 Non Preemptive Coprocessor

In this final case, the coprocessor is assumed to be non preemptible. We
can take care of this situation by supposing that each computation chunk
on the coprocessor is executed inside a mutually exclusive critical section of
length Cb

i . We must then introduce blocking times to take care of the fact
that a higher priority task can be blocked by a lower priority one simply
because the lower priority task has taken control of the coprocessor before
the activation of the higher priority one.
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Figure 9.4: 10 DSP tasks, shared preemptible coprocessor

Under the simple task model, an extension of the 1-fixed test for resource
usage has been introduced in Chapter 4.

The transaction analysis needs some in-depth considerations. If we use
critical section as detailed above, only the second chunk of each transaction
may experience blocking. Under this constraint, the blocking guarantees
used in Section 7.2 and 7.3 are too pessimistic. In fact, since resource usage
happens on the coprocessor only, we can develop guarantees similar to the
ones used in the simple task model. This extension is detailed in Section
9.5. We would like, however, to stress an important fact here. The blocking
times considered in 9.5 depends on task offsets. Since the offset based holistic
analyses (CDO and MDO) change the offsets at each step, it follows that
the blocking times change at each step too. This means that Theorem 12
does not hold anymore and thus we cannot prove that CDO performs better
than WCDO, although this is very likely to happen. However, we can surely
say that algorithm MDO converges if the response times are bounded since
it is still monotonic.

A second issue consists in deadline placement. Using Equation 8.7 to
choose deadlines Dia and Dib does not constitute a good heuristic anymore,
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since we must take into account the blocking time. This means that if we
were to use Equation 8.7, τib would miss its deadline much more easily then
τia and τic. A simple yet much more efficient heuristic is the following:

Dia =
Cia

Cia + Cib + Cic
Di

Dib =
(

Cia + Cib

Cia + Cib + Cic
+

(
1.0− Cia + Cib

Cia + Cib + Cic

)
p

)
Di

This basically means that Dib is increased of a number of time units pro-
portional to some factor p; for p = 0 the equation is equal to the one in 8.7.
We saw by simulations that p = 0.8 usually gives good results and will be
consequently used in the following experiments, but even p = 1.0 is much
better than p = 0.

We also tried to design a search algorithms that, starting from our im-
proved heuristic, tries to find a suitable deadline assignment that makes the
task set feasible. The algorithm uses some simple heuristics to move inside
the search space and is quite fast: it is detailed in 9.6. Note that estimat-
ing the algorithm performance is quite hard, since computing, given a task
set, if there is at least one deadline assignment that makes it schedulable
under our transaction analysis takes way too much time for practical task
sets; however, from results obtained from very small task sets we feel that
our algorithm should be able to capture most task sets for which a feasible
deadline assignment exists.

Figure 9.5 and 9.6 shows the simulation results for task sets with 5 and
10 DSP tasks respectively, where MDO-TO, search stands for the transac-
tion analysis performed using the deadline search algorithm, and MDO-TO,
heuristic for the transaction analysis performed using the improved heuris-
tic. Once again, results for the transaction analysis are much better as the
number of tasks increases. Under low utilization values, 1-fixed actually
performs better than both MDO-TO, search and MDO-TO, heuristic, al-
though the difference is negligible. This is because the effect of blocking
time is worst for the transaction analysis than for plain EDF processor de-
mand criterion. As utilization rises, the benefit of being able to reuse the
coprocessor time becomes more significant and the transaction analysis be-
comes better than 1-fixed. The search algorithm also becomes beneficial,
being able to schedule up to 10% more task sets than the heuristic.
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Figure 9.5: 5 DSP tasks, shared non preemptible coprocessor
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Figure 9.6: 10 DSP tasks, shared non preemptible coprocessor
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9.5 Resource usage

In this section, we will extend the TO response time analysis to cover the
problem of resource usage; our discussion will follow the same line as in
Chapter 4. Tasks are assumed to share resources as detailed in Section 2.3.

We would like to use SRP as our resource access protocol. However, note
that SRP, as all resource access protocols proposed for EDF, only works
for uniprocessor systems. We will thus suppose that no resource is shared
among tasks executed on different processors. Under this constraint, we can
compute the worst-case response times by analyzing each processor inde-
pendently as we proposed in Section 7.1.

Note that since no hypothesis is made on the offsets, the main properties
of SRP remain true even for our transaction model if no release jitter is
considered.

As in Section 4.2 we will first give some definitions and then prove our
main theorem.

Lemma 10 Given two tasks τpq and τij, the minimum time distance be-
tween any release time of task τpq and the successive release time of task τij

that is greater or equal to some value k + 1 is equal to:

∆k
pqij = φi + φij − φp − φpq − k − 1(mod gcd(Tp, Ti) + k + 1)

Proof. The proof is a simple extension of the one from Lemma 9. 2

Definition 6 Given an initial task τpq, we define the following dynamic
preemption level:

πpq(t,D) = min({πij |∆pqij + dj ≤ D ∧∆pqij < t} ∪ 2)

Definition 7 Given an initial task τpq, we define the following dynamic
maximum blocking time:

Bpq(t,D) = max({Cijk − 1|dij > D + ∆φijk

ijpq ∧ ceil(ρijk) ≥ πpq(t,D)} ∪ 0)

Theorem 16 The recurrence over the finishing time wpqA
ab of task τab, given

initial task τpq and release time A for τab, can be computed according to
Equations 7.11 and 7.12 by the following substitutions:

Bab = Bpq(t,D)
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Proof. The proof is an extension of both Theorem 4 and of Theorem 10.
When blocking times are considered, the worst-case response time for task
τab can still be computed using the assumptions of Theorem 10, given that
the release time of the initial task τpq, which we will consider to be 0 without
loss of generality, corresponds not to the beginning of the busy period but
to the last time that no job with deadline less or equal than D is active at
the instant before. Let A be the set of jobs with deadline less than or equal
to D that execute inside the busy period.

If blocking times are introduced, then it is possible for a single job τ l
ij

with deadline greater than D to be executed inside the busy period. For
this to be possible, the job must be inside a critical section at time 0, since
it must block some other job in A. Note that there can only be one such
job; otherwise some job in A would be blocked by two lower priority jobs,
which is impossible.

Now consider job τ l
ij . Since it is inside a critical section at 0, it must

hold al
ij +φijk < 0 for some k, and al

ij +dij > D since its deadline is greater
than D. If the above conditions can hold, than they surely hold if we choose
al

ij = −∆φijk

ijpq , since it is the minimum possible time difference. Notice that
in any case the maximum blocking time induced by critical section ξijk is
equal to Cijk − 1, since τijl can always be delayed by other tasks so that
it enters ξijk at −1. τijl must be also able to block some job in A, thus
ceil(rijk) must be at least equal to the minimum preemption level of tasks
in A.

To end the proof, it now suffices to compute the minimum preemption
level of tasks in A. Note that if a task τij is in A, then its deadline must be
less than or equal to D and thus ∆pqij + dij ≤ D, and that the task must
be included in the recurrence over t, that is ∆pqij < t. 2

9.5.1 Busy period length

The dynamic maximum blocking time considered in the busy period length
recurrence in Equation 7.9 must be slightly changed when blocking times
are considered. Simply computing Bpq(t,∞) is incorrect since this would
remove the possibility of any blocking time. Instead, Bpq must be adjusted
to consider blocking time from tasks whose offset may be greater or equal
to the computed length L at some step, that is:

Bpq(t,∞) = max({Cijk−1|∃k, ∆pqik+φj−φkmodTi ≥ t∧ceil(ρijk) ≥ πpq(t,∞)}∪0)



9.6. DEADLINE SEARCH ALGORITHM 93

Note that since we do not know which task is the starting one in transaction
Ti, we need to consider each possible starting task τik to compute the first
activation time of τij inside the busy period.

9.6 Deadline search algorithm

Given a transaction set of the type used in Section 9.4, the deadline search
algorithm tries to find an assignment for each deadline Dia, Dib that proves
the feasibility of the set using algorithm MDO-TO modified as in Section 9.5
to take blocking times into consideration. Using a general optimum search
algorithm such as simulated annealing is possible but inconvenient because
we can make use of some good heuristics to move between solutions.

The algorithm iterates over the space of possible deadline assignments,
choosing a new assignment at each step. Algorithm MDO-TO is then run
until one of the following occurs:

1. MDO-TO converges to a solution where ∀ 1 ≤ i ≤ M, Ria ≤ Dia ∧
Rib ≤ Dib ∧Ric ≤ Dic;

2. at some step ∃ 1 ≤ i ≤ M, Ria > Dia ∨Rib > Dib ∨Ric > Dic

In the first case the deadline assignment is correct and the algorithm ends.
In the second, the algorithm considers which deadlines are missed in the
last step by MDO-TO, and then updates all deadlines using some simple
heuristics that tries to make the tasks that missed their deadlines feasible.
The heuristics used are detailed below in decreasing order of importance.

1. If τib is not feasible, increase Dib to give it more time to finish execu-
tion. Also, decrease Dia, in order to have τia finish earlier decreasing
φib as well.

2. If τia is not feasible, increase its deadline Dia.

3. If τic is not feasible, decrease Dia, so that both τia and τib should finish
earlier. Also decrease Dib, but do it with care, since τib is sensible to
blocking time.

4. If τib is not feasible, increase the deadline Djb of every task j 6= i, as
this helps τib finish earlier.

5. If τia is not feasible, increase the deadline Dja of every task j 6= i.
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In order to better search the solution space, a random factor is applied
to the update of each deadline. Also, the update value is scaled by a tem-
perature which is decreased over time. This helps achieving convergence
preventing the algorithm from ”swinging” back and forth between two dif-
ferent deadline assignments. The final pseudo code is given below.

double temperature=initTemp;
double deadlines[NumTrans][2];
initialHeuristic(deadlines); //set deadlines to initial
heuristic bool fail[NumTrans][3]; //if true, the
corresponding task missed its deadline
while(temperature>finalTemp){
updateModel(deadlines); //update model to current deadlines
if(MDOTOBlocking(failed)) //executes MDO-TO, update failed
return true; //return true if task set is feasible

int numFailed[3]={0,0,0}; //counts the number of failed tasks
for(int i=0;i<numTrans;i++)
for(int c=0;c<3;c++)
if(fail[i][c]) numFailed[c]++;

for(int i=0;i<numTrans;i++) //update deadlines according to heuristics
if(fail[i][1]){
deadlines[i][0]-=deadlines[i][0]*N(temperature);
deadlines[i][1]+=deadlines[i][1]*N(temperature*(1.0+p));

}
else if(fail[i][0])
deadlines[i][0]+=deadlines[i][0]*N(temperature);

else if(fail[i][2]){
deadlines[i][0]-=deadlines[i][0]*N(temperature);
deadlines[i][1]-=deadlines[i][1]*N(temperature*(1.0-p));

}
else{
deadlines[i][1]+=deadlines[i][1]
*N(temperature*(1.0+p)*numFailed[1]/numTrans);

deadlines[i][0]+=deadlines[i][1]
*N(temperature*numFailed[0]/numTrans);

}
boundAbove(deadlines); //ensures that task deadlines

//do not exceed the transaction one
temperature*=coolrate; //update temperature

}
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return false;

N(ε) is a normal distribution with mean ε and standard deviation σ =
0.5ε. Note that both the mean and the standard deviation are always scaled
by the temperature. This means that as the algorithm progresses the up-
dates becomes smaller and more predictable.

Factor p is used to differentiate the heuristics. We used the value p = 0.4.
Finally, initTemp, finalTemp and coolrate are used to control the

temperature and thus the maximum number of steps, which is equal to
dlogcoolrate

finalTemp
initTemp e. We found by simulation that the algorithm gives good

results even with a low number of steps. In the experiments we used values
initTemp = 0.5, coolrate = 0.94, finalTemp = 0.08, which correspond to
30 maximum steps.

9.7 Conclusions

In this section we introduced and discussed schedulability tests for heteroge-
neous multiprocessors based on the response time analysis developed in the
previous chapters. We considered systems of DSP tasks that issue requests to
either exclusive, shared preemptive or non-preemptive coprocessors. While
actual systems with multiple coprocessors may be more complex, includ-
ing non-DSP tasks, DSP tasks with exclusive access to a coprocessor and
DSP tasks with shared access to either a preemptive or non preemptive co-
processor, the various techniques developed in each section provide a clear
understanding of the underlying problems and may be composed to bet-
ter analyze real systems. Extending the analysis to account for multiple
coprocessor requests by each DSP task should be fairly simple.

As future work, we would like to extend our analysis making it possible
for a task to issue a request not to a fixed coprocessor but instead to a pool
of similar coprocessors. This case is more complex since it requires mixing
our approach with conventional symmetric multiprocessor scheduling.
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Chapter 10

Conclusions

In this work we introduced new schedulability tests for periodic task sets
with offsets scheduled under EDF. We formally proved the correctness of
our methods and provided experimental evaluations.

It is quite clear from our results that exploiting the offsets leads to better
results in term of feasibility, output jitters and response times. Results
are particularly significant for the schedulability problem of periodic task
sets and especially for asymmetric multiprocessors of the type introduced
in Chapter 9. In this letter case, the transaction-based analysis makes it
possible to use a DSP (or another specialized processor) as a valid accelerator
for real-time task sets scheduled under EDF.

Unfortunately, there seems to be no easy way to choose task offsets in an
optimal or quasi-optimal way in an acceptable time. However, just trying a
small number of randomly selected offsets for a task set seems to be enough
to greatly improve its chance of being schedulable.

There are many areas of our work that may benefit from future work.
We provide a brief list of the main ones.

• In Section 9.5 we supposed that all tasks sharing a given resource are
executed on the same processor. In fact, while the problem of mul-
tiprocessor resource usage has been analyzed under Rate Monotonic
[28, 27], no convincing solution exists for EDF to our knowledge. We
would like to extend our transaction analysis to account for resources
shared among tasks executed on different processors.

• The problem of deadline assignment for intermediate transaction tasks
remain an open problem. We have provided both heuristics and a

97
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search algorithm, but they had to be devised ad hoc for a specific
system model. A more general approach may be useful.

• We have investigated how offsets can be assigned to obtain schedula-
bility for simple task sets, but we have done nothing similar for the
transaction model. Often the problem is not in determining whenever
a system is schedulable or not but in selecting the tasks’ parameters
under suitable constraints. Unfortunately, the complexity of the holis-
tic response time analysis could make such an attempt quite difficult.

• In the heterogeneous multiprocessor case, we supposed that each com-
putation chunk was assigned to a fixed processor. This is clearly not
always the case, since we could have a pool of similar coprocessor.
The problem in this case is similar to that of symmetric multiprocess-
ing, and usually requires the use of sub-optimal heuristics since the
problem of processor assignment is proven to be NP-hard.

• It could be argued that our approach to DSP coprocessor scheduling is
quite heavy from a computation point of view. Still, no method exists
for exploiting the suspension time of tasks scheduled under EDF. An
extension along the line of [15] could be useful, although it does not
appear to be particularly easy to obtain.

• In Chapter 9 we saw how different coprocessor types (exclusive, shared
preemptible and non-preemptible coprocessors) requires different anal-
yses. Furthermore, the holistic response time analysis can be applied
to a variety of distributed and multiprocessor systems. A verification
tool could be developed in order to assess the schedulability problem
for such systems in a simple way. We feel that a tool would be ex-
tremely useful to real-time systems developers.

Finally, note that Chapter 3 is also to appear in the proceedings of the
16th Euromicro Conference on Real-Time Systems with the title: ”A New
Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets”
[14].
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