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Chapter 1

Introduction

Due to the broad diffusion of every kind of network and mobile device in the
last few years, computing is rapidly evolving towards what is now called global
computing. With this term we refer to a new field of research and development in
computer science, with innovative features with respects to standard development
processes and software architectures:

– computing is distributed : rather than a set of libraries, the software designer
can use and integrate services that frequently are not physically close to
each other;

– computing is mobile: besides being executed on single machines, with the
typical services of a computer, software components also run on a variety of
devices, ranging from mobile phones to car equipment, and communication
channels change rapidly as soon as the devices move from one location to
another;

– programs are heterogeneous : components that constitute a software system
cannot be assumed to be implemented all in the same language, or using the
same technology; middleware that allows uniform interaction is introduced,
and even this middleware can often be layered into different integration
technologies;

– systems are open-ended : the designer is no longer required, nor able, to
predict and classify all the features that a system can provide or use, since
the whole system is not programmed by a single entity; new software com-
ponents can be added to the system at any time, and already running pro-
grams should become aware of their existence, and become able to make
use of their functionalities;

5



6 CHAPTER 1. INTRODUCTION

– computational entities are autonomous : as programs are distributed, and
components are mobile, there can’t be a global entity controlling their be-
havior, and there are many independently controlled software agents that
move from one location to another, enter or leave security domains, access
simultaneously many different services, leading to security concerns such
as information leaks or access control to private resources, and also to a
considerably higher difficulty in designing communication protocols.

To completely meet these goals in software production, work is required from the
theoretical point of view, both to develop new models of computation that satisfy
the given requirements, and to learn how to reason about the behavior, and check
properties, of such systems. In this thesis, we will concentrate on a particular
operational model for concurrent, mobile processes, develop a decidable logic to
reason about properties of software components represented in this model, and
describe how it is possible to algorithmically check if these properties hold.

Formally representing mobility

The research on the formal semantics of concurrent programs had a turn, at the
end of the eighties, with the definition of the π-calculus [16]. The π-calculus is a
language expressly designed for mobility, with constructs for parallel composition,
nondeterministic choice and fresh name generation among others. All previous
models for concurrency, such as Petri nets [22] or CCS [12], lacked the funda-
mental ability of dynamically reconfiguring the communication structure, which
is an essential feature when representing mobility, because it allows processes to
switch their communication channel while communication is in progress, without
having to interrupt (and establish again) their connection.

Models for concurrent mobile processes are undoubtedly a need in today’s com-
puter science, due to the increasing number of systems and protocols running on
mobile hardware, but also to the massive usage of code migration mechanisms
in distributed and network programming. Actually, π-calculus dynamic reconfig-
uration of channels is semantically equivalent to having higher-order concurrent
processes, as shown by Sangiorgi [23]; this is perhaps a bit surprising, but reflects
a view of distributed programming in which we do not know or care about where
the code is located, but only how to reach another process, i.e. the channel by
which we can send and receive messages to another part of the program.

The novel approach of the π-calculus was to allow both the transmission of chan-
nels as messages, which allows reconfiguration, and the restriction operator (al-
ready found in CCS) which corresponds to the generation of a fresh, private chan-
nel that can then be communicated to other processes; the calculus was based on
pure names, in the sense that a name does not designate additional data, but it
is simply an abstract notion of an identifier equipped with an equality operation.
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According to what Milner itself says [15], names are the most important feature of
the π-calculus: apart from the fact that arbitrary data structures can be encoded
as π-calculus processes, it is name passing that allows for code mobility and dy-
namic modification of the connection structure; moreover, the conjunction of this
ability with fresh name generation (or restriction) is responsible for much of the
expressive power of this language: for example, it allows for atomic communica-
tion of sequences of messages, encoding function calls and thus the λ-calculus [13],
and is able to represent the unique identity of objects in object-oriented program-
ming, as found in [24], where a complete encoding of a parallel object-oriented
language into the π-calculus is introduced. Another key use for the restriction
operator is expressing secrecy properties in secure communication protocols: the
spi-calculus, developed by Abadi and Gordon in 1996 [1], is an extension of the
π-calculus designed for the description and analysis of cryptographic protocols.

After the π-calculus was defined, a great number of variants, extensions and
related languages have been invented, and there is an entire family of calculi for
mobile processes, each one giving different visibility in the operational semantics
to particular characteristics such as locations or resource usage.

Model checking as feasible mechanical validation of design
against requirements

Once found the tools to mathematically represent mobile processes, a very good
reason to give a formal semantics to any kind of language or system is to be able
to formally reason about programs behavior. To this aim, logics are defined,
which can express desired properties about systems; these logics are often modal,
meaning that there are formulae which have a context, defining e.g. what has to
happen before the given formula can become true. Compare for example what
different meaning the assertions “Mario is at home” and “after traveling, Mario is
at home” have: the context “after traveling” radically changes the extent of the
proposition; in modal logics such a context is called “modality”. There are many
different kinds of modal logics, depending on what the modalities describe: we
range from temporal logics, which describe properties of systems as they evolve in
time, or spatial logics which reason about the structure of system states, such as
the number of involved processes or the usage of resources at a specific moment,
to more sophisticated forms of reasoning where modalities may indicate beliefs of
agents regarding to what other agents know, or actions which are executed with
given probabilities.

Having defined any kind of logic for a language, one needs an interpretation
relation between formulae and states, or programs, which explains how to check
if a formula holds. It is desirable, at this point, to introduce some mechanized
procedure to check the truth of these assertions. Theorem provers and model
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checkers are semi-automatic or fully-automatic tools to accomplish this goal.

In practice, a model checker works by enumeration of all the possible states
of a system, thus it is implicitly decidable if the state space is finite and the
interesting properties are decidable, as it is often the case, and the verification
procedure can be fully mechanized. On the other hand, theorem proving is a
much more powerful and general technique, which can check properties of infinite
systems, but requires that some parts of the proof be done “by hand” because
the properties of interest are often not decidable or even not semidecidable. In
fact, there are no fully automatic theorem provers, but only proof assistants
or verifiers, that check if a proof, in part constructed by hand, is correct. So
theorem proving it’s not usable by any programmer or software engineer, but
requires experience with mathematical logics, and theorem proving skills, to be
used. Model checking appears to be the right compromise between verification
possibilities and real world necessities, as underlined in [2]. A more complete
comparison of these two approaches to formal verification can be found in [9].

Generally speaking, what many formal reasoning methods try to achieve is to
define a design language, not an implementation one, for certain parts of a system,
and then to validate part of the project requirements by expressing them into
a modal logic. This has many advantages over a full verification of an entire
software product:

– the approach is practically feasible, since design languages usually describe
few, interesting properties of a system (e.g. its behavior w.r.t. concurrency
and communication), while often full verification is impossible due to the
size of the implementation

– we may validate the design against requirements before the implementation
effort takes place

– model checking algorithms usually return a counterexample when a formula
is not verified by the system, so we can discover and examine in detail, in the
form of use cases, many potential problems with the design, which might
be difficult to address in other stages of the production cycle

– if a property is not satisfied, this may as well indicate that the system
is designed the right way, but the requirement is too strong, i.e. formal
reasoning can help validating requirements and checking that requirements
are really what we expect from the system.

Model checking is decidable for large classes of programs, thus it is relatively
easy to build automatic model checkers. Complexity is polynomial in terms of
the size of the state space of the system and of the formula being checked, and
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so can be exponential in the size of the programs, but there are a lot of practical
cases in which this method proves efficient, because the state space is relatively
small (again, because the design simplifies over many properties of a system,
which are not interesting from a global point of view). This technique is already
used in a great deal of applications, ranging from business protocols to hardware
verification, and there are examples of security protocols vulnerable to attacks
that were only discovered, after years from the definition of the protocol itself,
by the use of a model checker (the typical example is the Needham-Schroeder
protocol [10]).

It may seem right now that model checking is the magic wand by which we
can verify any requirement expressible into modal logics. In fact, even if this
procedure is often decidable, there is an important concern, which obviously is in
the size of the state space being checked. Realistic applications of model checking
usually include the so called “control” problems, where it does not matter what
data comes through the system, but how this data is created, routed and collected.
Examples of this kind of problems are, again, communication protocols, but also
hardware verification, and less computer-science related topics such as workflow
management, where formal methods, used to model passing of tasks and control
between workgroups, are assuming a crucial role, due to the growing size of
business companies and their departments.

HD-automata: towards an universal operational model

Operational semantics, in the case of mobile processes, frequently gives rise to
non-finitary transition systems: for example, in the standard LTS (labeled transi-
tion systems) semantics for the π-calculus, the input action is infinite-branching,
i.e. there are infinitely many possible events when an agent tries to read a value
from a channel, one for each possible name that could be received, thus making
exhaustive model checking undecidable even for very simple programs.

Better operational models, which are finite-branching for interesting classes of
π-calculus programs, have been proposed. History-dependent automata (HD-
automata for short) are a particular operational model similar to labeled transi-
tion systems, where states are enriched with additional information that depends
on previous transitions that the system has made (hence the attribute history-
dependent in their name). In this thesis, we will use history-dependent automata
with symmetries, where this additional information is encoded in the form of sym-
metries (sets of permutations that are groups w.r.t. composition) over names.

History-dependent automata, as we will see, have many useful characteristics that
make them a good model for concurrency and mobility. First of all, finite-state
models are obtained from useful categories of π-calculus agents, thus allowing
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model checking; besides, not only π-calculus, but also other formalisms for con-
currency, including Petri nets [20] and calculi with localities [18], can be modeled
adequately. In general, it seems that calculi with name passing (or binding) and
name generation can be translated into HD-automata.

Working with an unified model can lead to a significant simplification in the
development of tools for formal design and verification of concurrent systems. If
written for HD-automata, those need not to be adapted to many different process
calculi. Another important property of HD-automata with symmetries is that
they can be minimized [7], allowing optimal model and bisimilarity (a notion of
behavioral equivalence strictly linked to the operational semantics) checking. The
ability of being minimized is not a feature of every model for mobile processes,
and in particular minimization of π-calculus agents required much work on the
theoretical side. In [19] a coalgebraic operational semantics with minimization
for the π-calculus is given, and it’s strictly linked with the class of HD-automata
with symmetries used in this work.

Previous work on the subject and aim of the thesis

The logic for the π-calculus described here is directly derived from the seminal
work of Milner, Parrow and Walker [17], where it is shown what relations hold
between variants of the π-calculus semantics and different modal logics for mobile
processes. In [17] no fixpoint operator, or path operator, is given, while we will
extend our work to a simple but powerful path modality. Perhaps the most
powerful temporal logic is the propositional µ-calculus [3], a modal logic with
name passing and two fixpoint operators (least and greatest fixpoint). Regarding
HD-automata, there have been previous works, both for other process calculi,
as in [25], where a simpler history-dependent operational model for Petri nets
is given together with an adequate modal logic, and for the π-calculus itself, as
in the π-logic [8, 5], that already uses HD-automata to verify π-calculus agents
properties.

The developments of our work, including the proof of adequacy, are new w.r.t.
[17], because of the presence of symmetries into HD-automata, and also because
of the different fresh name generation mechanism which the HD model has, if
compared to the π-calculus. Even previous results found in [8] could not have
been reused here, because adequacy results are proved for the π-logic, and not for
any HD-automata logic; moreover, the flavor of HD-automata used in [8] is the
one without symmetries; even if in the “if” part of the proof of adequacy we use
the same concept of [17], symmetries in states change the way proofs are done
and so we had to work out these from scratch.

There are many good-working implementations of model checkers. One example,
suitable to check properties of π-calculus and fusion calculus programs, is the
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“Mobility Workbench” [27], a powerful tool to verify even the open semantics of
the π-calculus. Another important operational environment for mobile processes
is the “HD-automata Laboratory” [26], which implements the framework for the
π-logic cited above, that we are going to extend with results from this work.

Here we introduce a modal logic for mobile processes, and give an interpretation
both over the π-calculus and over history-dependent automata with symmetries.
The main point is that the interpretation over HD-automata is generalizable to
any modal logic with name generation and name passing, so that it is possible to
reuse algorithms developed here to model check, for example, Petri nets, by first
translating a net into a HD-automata and then checking logic formulae over this
model.

The novelty of our approach, again, is in the quest for an unique operational
model, which can be minimized and checked, reusable for various kinds of systems.
An evidence of HD-automata with symmetries being the right choice for this
purpose, apart from the many process calculi that already can be translated into
this formalism, is that in the definition of the logic we have no side conditions for
modalities: every necessary condition over names is already encoded in the mere
presence of a transition with the desired label, i.e. HD-automata transitions carry
enough information to check temporal logics with name passing and generation.
Thus the theory is much simplified w.r.t. the one introduced for the π-calculus,
and this is promising from an implementation point of view, since no special cases
have to be made (e.g. for name generation) in the model checking algorithm.

The thesis is divided into six chapters. Chapter 2 introduces the π-calculus and
HD-automata with symmetries, chapter 3 is the core of the work, describing
in detail a modal logic for the π-calculus, an interpretation over HD-automata,
explaining how we went to such a definition, and providing proofs of adequacy,
soundness and completeness.

The logic is first introduced as a pure Hennessy-Milner one, then an eventually
modality is added; this has been made both to add expressive power, since the
enriched logic can express liveness (something good eventually happens) and
safety (something bad never happens) properties, and to show that it is feasible
to add fixpoint-alike operators.

The π-calculus semantics mainly used in this work is the early semantics, but
in chapter 3 we also give an account of how to treat the late semantics, and
explain how the results of this thesis already hold for the late variant, too, by
exploiting the translation of the late semantics into the early one found in [6]; this
translation is done adding two new kinds of transitions to the early operational
semantics, the second always used immediately after the first, which correspond
to preparing to receive input on a certain channel, and then reading a value from
the same channel. In [17] it is shown that to characterize late bisimulation, a
logic needs to have both a bound input modality and a name matching construct.
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It is clear that these two result are very similar: the two added transitions of [6],
if translated into modalities, are a form of bound input immediately followed by
a specialized matching construct. This is explained in more detail in the section
about the late semantics.

In chapter 4 we describe the model checking algorithm, explaining why it is
decidable (if the state space is finite) and describing an efficient model checking
procedure. Case studies showing the expressive power of the logic are given in
chapter 5.



Chapter 2

Preliminaries

2.1 The π-calculus

The π-calculus has been presented by Milner, Parrow and Walker in 1992. It is a
process algebra featuring concurrency and nondeterminism, and being a nominal
calculus it has name generation, name passing and a notion of equality over
names. As we already said, the novelty of this language was the introduction of
name passing, which allows for reconfiguration of the communication structure
at runtime. Since its introduction it has been object of intensive study, both
to test its expressive power and limitations, and to exploit practical possibilities
of formal methods applied to mobility. In fact, the large diffusion of systems
for distributed programming, often in the form of client/server programs for the
world wide web, has given rise to much interest in this field of research. It has
been discovered that the combination of name generation and passing can express
a great deal of programming language features, ranging from unique objects to
function and method calls.

In an operational model (e.g. labeled transition systems) the operational se-
mantics naturally gives rise to a notion of bisimilarity or behavioral equivalence,
which asserts that two programs perform the same transitions, and the destina-
tion states of these transitions are still equivalent.

There are many operational semantics, and thus bisimulation equivalences, for the
π-calculus: the semantics can be synchronous or asynchronous, early, late or open,
and there are even more variants taking in account localities or spatial properties
of states (such as resource usage). Our version will be the early, synchronous
π-calculus, where the term early refers to the instantiation time of the received
name in an input action (see [17] for a detailed explanation of the differences
between early and late bisimulation).

13
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2.1.1 Syntax

Given a denumerable infinite set of names N = {x0, x1, x2, . . .}, the set of π-
calculus agents is defined by the syntax

P ::= 0
∣∣∣ α.P

∣∣∣ P1 | P2

∣∣∣ P1 + P2

∣∣∣ (νx) P
∣∣∣ [x = y] P

∣∣∣ A
(
x1, . . . , xr(A)

)

α ::= τ
∣∣∣ x(y)

∣∣∣ xy

where r(A) is the rank of the process identifier A. Free names and bound names
of an agent P are defined as usual and indicated with fn (P ) and bn (P ), with
n(P ) = fn (P ) ∪ bn (P ); name y is bound in x(y).P and (νy) P .

Each identifier A has a definition A
(
y1, . . . , yr(A)

)
= PA (with yi all distinct and

fn (PA) ⊆ {
y1 . . . yr(A)

}
) and each identifier in PA is in the scope of a prefix

(guarded recursion).

We define an equivalence relation over π-calculus agents, called structural con-
gruence, which is the smallest congruence that satisfies the following axioms, and
identify agents up to this equivalence:

(alpha) P ≡ Q if P and Q are alpha equivalent

(sum) P+0 ≡ P P+Q ≡ Q+P P+(Q+R) ≡ (P+Q)+R

(par) P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R

(res) (νx) 0 ≡ 0 (νx) (νy) P ≡ (νy) (νx) P

(νx) (P |Q) ≡ P | (νx) Q if x 6∈ fn (P )

(match) [x=y]P ≡ [y=x]P

A quick review of the syntax will serve us to informally explain the meaning of
the constructs:

– the inactive process is called 0 and does nothing;

– the syntactical category α is that of the so-called prefixes ; τ is the prefix
indicating the unobservable action, corresponding to an internal computa-
tion, x(y) is the input prefix, corresponding to waiting for a name to be
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sent over channel x, and then reading it into the local variable y for further
usage; finally, xy is the output prefix, corresponding to sending the name
y over the channel x (there is no distinction between a name and a chan-
nel, and both the terms are to be considered synonyms when working with
π-calculus);

– the process α.P performs the action corresponding to α and then behaves
like P ;

– the construct + is nondeterministic choice: P + Q can behave as either P
or Q;

– the construct | is parallel composition: P |Q intuitively “runs” P and Q in
parallel, allowing them to synchronize by message passing over channels;

– (νx) P is the restriction operator: it makes the name x a local name which
other processes do not know; it is easier to read (νx) P as “create a fresh
channel named x and then act like P”;

– [x=y]P is the matching construct: the obtained process can behave like P ,
but only when x and y are equal;

– finally, an iterative behavior can be expressed with the recursive definition
construct. The original version of the π-calculus had a different mechanism
for this purpose, the bang or replication operator, which roughly corre-
sponds to spawning infinite copies of a process; the two methods have the
same expressive power but using named recursion has the advantage of
being able to define syntactical classes of agents which have a finite-state
behavior (e.g. the class of finite control agents defined below).

2.1.2 Early operational semantics

The operational semantics is given in terms of what actions a process performs;
actions are different from prefixes, even if they look similar (indeed, prefixes are
a syntactical domain, while actions are the corresponding semantical domain).
An action can be, in the early operational semantics, one of:

τ : this stands for an internal computation which the agent performs;

xz: this represents free input, which is the reception of the name z over the
channel x. The difference between the free input action and the bound
input prefix is that here the name z is free, i.e. it is not a placeholder but
the real name received. In fact, this means that there are infinitely many
branches in the LTS for the operational semantics of an input action;
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xz: this represents free output, i.e. the process is sending the name z over the
channel x;

x(z): this is the bound output actions, that happens when a process transmits
over channel x a name that it has just generated, as in (νy)xy.0, which
generates y and then communicates it over channel x.

We can now give the operational semantics of an agent in the form of a labeled
transition system, in small groups of rules which we comment separately. Besides
the rules of the operational semantics, there is an implicit structural congruence
axiom, which states that structurally equivalent π-calculus agents have the same
transitions. Since we silently identify structurally congruent agents we do not
have to add this axiom to the operational semantics, but it is useful to keep it in
mind:

P ′ ≡ P, P
α−→ Q,Q ≡ Q′

P ′ α−→ Q′

– τ.P
τ−→ P x̄y.P

x̄y−→ P x(y).P
xz−→ P{z/y}

These are the simplest rules. Note that for bound input the name z can be
any name, either free in the agent or unknown to it.

– P1
α−→ P ′

P1+P2
α−→ P ′

P1
α−→ P ′

1

P1|P2
α−→ P ′

1|P2

if bn (α) ∩ fn (P2) = ∅

The rule for nondeterministic choice (and other symmetric rules) are given
only for one of the two possible choices, because the other one is given by
the structural congruence axiom. In the first rule for parallel composition,
we have a side condition. Two parallel processes can proceed independently,
but if one of the two generates a fresh name, this name has to be fresh also
for the other one, hence the side condition, which is however not limiting
the possible transitions of the first process, because it is α-convertible to
avoid this “fresh name capture”.

–
P1

x̄y−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

P1
x̄(y)−→ P ′

1 P2
xy−→ P ′

2

P1|P2
τ−→ (νy) (P ′

1|P ′
2)

if y 6∈ fn (P2)

The left rule is called synchronization: process P1 is offering a synchronous
communication to the outside world, and P2 is attempting to receive a value
from the same channel. The two process synchronize, and the observable
result is a τ transition. The right rule represents transmission of a fresh
name to another process: P2 gains the new name, but it must obey to the
same rules as if it had generated the name, thus it’s put inside the scope
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of the restriction. When iterated, this method ensures that a process Pj

receiving a name which is fresh in Pi, either because Pi has generated it or
because Pi has received it from another process, will remain fresh in all the
processes. This rule, together with the first rule for parallel, is responsible
for the power of the π-calculus, but also for the difficulties when handling
its operational semantics (in a global environment, it’s not trivial to ensure
that a given name is not known to any other process).

– P
x̄y−→ P ′

(νy) P
x̄(y)−→ P ′

if x 6= y P
α−→ P ′

(νx) P
α−→ (νx) P ′ if x 6∈ n(α)

Here we see how fresh names are generated and offered for communication,
and how a process which has created a fresh name is not compelled to
immediately use it: the process can perform any transition not involving
the new name.

– P
α−→ P ′

[x = x]P
α−→ P ′

PA{y1/x1 · · · yn/xn} α−→ P ′

A(y1, . . . , yn)
α−→ P ′ if A(x1, . . . , xn)

def
= PA

These are the last two rules, the one for matching and the one for recursion.

We can now introduce the definition of early bisimulation for the π-calculus:

Definition 2.1 (early bisimulation). A relation R over agents is an early
simulation if whenever P RQ then:

– for each P
α−→ P ′ with bn (α)∩ fn (P, Q) = ∅ there is some Q

α−→ Q′ such
that P ′RQ′.

The side condition ensures that there is no free name capture in both processes,
but does not affect completeness of the definition, since the label is α-convertible
and free names of both the agents are in a finite number.

A relation R is an early bisimulation if both R and R−1 are early simulations.

Two agents P and Q are early bisimilar, written P ∼π Q (or simply P ∼ Q if
it is clear from the context that we are talking about π-calculus bisimilarity) if
P RQ for some early bisimulation R. We call relation ∼π early bisimilarity.

2.1.3 Example: buffers and memory cells

A simple synchronous one-position buffer spends its whole life alternating an
input state, where it reads an input data, to an output state, where it sends data
to another object. This can be modeled in the π-calculus using a single channel
ch to communicate with the outside world, as follows:
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Buf(c)
def
= c(x).cx.Buf(c)

This behavior is different from that of, e.g., a memory cell, which can be either
read or written at a given time, in a non deterministic way:

Cell(c)
def
= c(x).FullCell(c, x)

FullCell(c, x)
def
= c(y).FullCell(c, y) + cx.FullCell(c, x)

2.2 Names and Permutations

A name substitution is a function σ : N → N. We will write σ; σ′ for the reverse
composition of substitutions σ and σ′; that is, (σ; σ′)(x) = σ′(σ(x)). We denote
with {y1/x1 · · · yn/xn} the substitution that maps xi into yi for i = 1, . . . , n and
which is the identity on the other names.

A name permutation is a bijective name substitution; we first need to define an
operator over a permutation ρ which shifts it up n names; we will use the notation
ρ+n:

ρ+n(xi) =





xi if i < n

xj+n if ρ(xi−n) = xj

It’s easy to show that (σ; ρ)+n = (σ+n; ρ+n) and that (σ−1)+n = (σ+n)−1; more-
over, σ+0 = σ.

The kernel K(ρ) of a permutation ρ is the set of the names that are changed by
the permutation:

K(ρ) = {n | ρ(n) 6= n}.
Permutation ρ has finite kernel if K(ρ) is finite. A finite-kernel permutation can
change only a finite subset of the names. In particular, the identity substitution
id is a finite-kernel permutation with K(id) = ∅.
A symmetry S is a group of finite-kernel permutations, i.e. a set of finite-kernel
permutations closed for composition. Since permutations are finite-kernel, the
identity and inverse permutations are necessarily present in a symmetry under
this condition. We denote with Sym the set of the symmetries on N.

A symmetry S has finite support if it contains all the permutations that do not
change the names of a certain finite set (but it does not necessarily contain all
the permutations that change it):
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∃N ⊂ N.∀ρ.(∀n ∈ N.ρ(n) = n) ⇒ ρ ∈ S

In this case, the support of S, written supp(S), is the smallest set of names that
satisfies this condition.

If a symmetry S has finite support, then it can be described as follows:

S = {ρ′; ρ | ρ ∈ S ∧ (∀n 6∈ supp(S). ρ(n) = n) ∧ (∀n ∈ supp(S). ρ′(n) = n)}.

That is, the permutations of symmetry S can be obtained, from the permutations
ρ ∈ S that act only on the names in the support, by applying the permutations
on the names outside the support. This implies that we can finitely represent a
finite support symmetry S by giving its support supp(S) and the set ssym(S) of
permutations that only act on supp(S).

2.3 History-dependent automata with symme-

tries

History-dependent automata with symmetries [18, 19] allow the representation
of the behavior of concurrent systems up to name permutations, by enriching
with finite support symmetries the information contained in each state of the
transition system corresponding to the system semantics. Names appearing in
states do not have a global meaning, but only a local identity, which maps to
the previous state, revealing where a name came from, by the means of a per-
mutation associated to each transition. In HD-automata, transitions implicitly
carry additional information; for example, we never encode non-representative π-
calculus transitions in HD transitions, but only the representative ones, since we
can encode all the non representative transitions by using symmetries associated
to the states.

We will not present here the full theory of HD-automata, but we just say that
for any HD-automata there exists a minimal automata bisimilar to it, and that
there exist finite algorithms to perform minimization.

Definition 2.2 (HD-automata). A HD-automaton with Symmetries (or simply
HD-automaton) A is a tuple 〈S, sym, L, 7−→〉, where:

– S is the set of states ;

– sym : S → Sym associates to each state a finite support symmetry ;

– L is the set of labels ;
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– 7−→ ⊆ {〈Q, l, ζ, Q′〉 |Q,Q′ ∈ S, l ∈ L, ζ is a finite-kernel permutation} is
the transition relation, where:

– Q and Q′ are, respectively, the source and the target states;

– l is the label of the transition, and

– ζ is a permutation mapping names of the target state into names of
the source state of the transition.

Whenever 〈Q, l, ζ, Q′〉 ∈ 7−→ then we write Q Â l
ζ
// Q′.

We assume that each label l ∈ L has the form α(x1, . . . , xn), where x1, . . . , xn ∈
N, and that each label is in a set Li, where i ∈ N represents the number of
fresh names generated along a transition. Note that fresh name generation is
an intrinsic feature for the HD-automata model, and this greatly decreases the
complexity of mappings for calculi with names into HD-automata. Fresh names
are not mentioned in the arguments of a label, but rather free names of the source
state of a transition are shifted (in the sense of sending x0 into x1, x1 into x2

and so on) in the destination state to make place for the new ones, the number
of indexes to shift being given by the index of the set Li of the label. This
machinery, analogous to de Bruijn indices [4], will be clearer when we will see
how π-calculus agents are translated into HD-automata.

We do not allow distinct isomorphic transitions between the same states to be

present in a HD-automaton, where Q Â l1
ζ1
// Q′ and Q Â l2

ζ2
// Q′ are isomorphic if

there exists some ρ ∈ sym(Q) such that:

– l2 = ρ(l1);

– ζ1; ρ+n; ζ−1
2 ∈ sym(Q′) if l1 ∈ Ln.

We now define HD-bisimulation. Since the names that appear in the states of
the HD-automata have only a local identity, a HD-bisimulation is defined as a set
of triples 〈Q1, δ, Q2〉, where δ is a permutation of N that sets a correspondence
between the names of Q1 and those of Q2.

Definition 2.3 (HD-bisimulation). Let A be a HD-automaton. A HD-simu-
lation for A is a set of triples

R ⊆ {〈Q1, δ, Q2〉 |Q1, Q2 ∈ S, δ is a finite-kernel permutation}

such that, whenever 〈Q1, δ, Q2〉 ∈ R then:
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– for each ρ1 ∈ sym(Q1) and each Q1
Â l1

ζ1
// Q′

1, there exist some ρ2 ∈ sym(Q2)

and some Q2
Â l2

ζ2
// Q′

2, such that:

– l2 = γ(l1), where γ = ρ1; δ; ρ
−1
2

– 〈Q′
1, δ

′, Q′
2〉 ∈ R, where δ′ = ζ1; γ+n; ζ−1

2 if l1 ∈ Ln.

A HD-bisimulation for A is a set of triples R such that both R and R−1 =
{〈Q2, δ

−1, Q1〉 |〈Q1, δ, Q2〉 ∈ R} are HD-simulations for A.

A single HD-automaton transition represents a whole set of transitions that dif-
fer for a permutation in the symmetry of the source state, so that a matching
transition must be chosen, among those going out of Q2, for every different per-
mutation in this set (but for the same reason, permutations can be applied also
when looking for a transition from Q2).

Two transitions Q1
Â l1

ζ1
// Q′

1 and Q2
Â l2

ζ2
// Q′

2 match only if they have the same

label up to the appropriate permutation γ, and the target states are related in
the HD-bisimulation, via a correspondence δ′ that is obtained from γ by applying
the name correspondences ζ1 and ζ−1

2 . In the case of transitions generating fresh
names, permutation γ is shifted before applying substitutions ζ1 and ζ−1

2 , because
the first n names are considered fresh in the destination state of the transition.

Definition 2.4 (largest HD-bisimulation). Let A be a HD-automaton. We
denote with RA the largest HD-bisimulation for A:

RA =
⋃

R is a HD-bisimulation for A
R .

When 〈Q, δ,Q′〉 ∈ RA we also write Q
δ∼Q′.

2.4 From π-calculus agents to HD-automata

Here we will explain how a π-calculus agent can be translated into a HD-
automata, and tell sufficient conditions for this construction to be finite.

We introduce the function l to translate labels from π-calculus:
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l(τ) = tau ∈ L0

l(xy) = in(x, y) ∈ L0

l(xy) = out(x, y) ∈ L0

l(x(y)) = bout(x) ∈ L1

An important thing to notice is that the bound output label has only one argu-
ment, corresponding to the channel over which a fresh name is sent. The fresh
name itself is always x0, which implicitly differs from any other name because of
the way the translation is made.

We define a substitution which is used to introduce fresh names: this substitution
is indexed over a finite set s of n names and sends them (sorted) to x0, . . . , xn−1,
while shifting up n positions the remaining names:

rots(xi) =





xk−1 if, after sorting, xi is the kth element of s

xi+n if xi /∈ s and n is the cardinality of s

It does not really matter in what order we take the n fresh names, since they are
new, provided that this order is fixed once for all (for example, as we do in the
definition, by exploiting an ordering over names).

It’s important to underline that the substitution rots is not bijective, so we will
have to be careful in not trying to find its inverse, but rotbn(x) restricted to fn(x)
is, of course, invertible. It holds that rot∅ = id.

In the HD-automaton a single state is used to represent a whole set of agents
that differ for name permutations; we define a canonical representative for this
set, assuming to have a function norm that, given a π-calculus agent P , returns
a pair 〈Q, ρ〉 = norm (P ), where Q is the representative of the class of agents
differing from P for a name permutation which leaves the agent into the same
orbit, and ρ is a finite-kernel permutation such that P = Qρ.

We also define representative transitions, so that a single transition is taken out
of many transitions differing only for the choice of a bound name. Representa-
tive transitions are also useful to avoid inserting in the obtained HD-automaton
transitions that just differ for permutations in the symmetry of their source state
(and would be isomorphic in the HD-automaton).

Definition 2.5 (representative transitions). Let v be the partial order on
π-calculus actions defined as follows:
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– τ v τ ,

– xy v wz if x < w, or if x = w and y ≤ z,

– x̄y v w̄z if x < w, or if x = w and y ≤ z,

– x̄(y) v w̄(z) if x < w, or if x = w and y ≤ z.

A π-calculus transition P
µ−→ Q is a representative transition if, whenever P

µ′−→
Q′ and there exists some permutation ρ such that

– P ≡ Pρ (i.e., ρ is a permutation in the symmetry of P ),

– µ′ = ρ(µ) and Q′ ≡ Qρ (i.e., the two transitions correspond via ρ),

then relation µ v µ′ holds.

Notice that if P
x̄(y)−→ Q is a representative transition, then y = min(N \ fn (P )).

Analogously, if P
xy−→ Q is a representative transition and y 6∈ fn (P ), then

y = min(N \ fn (P )).

Definition 2.6 (from π-calculus agents to HD-automata). The HD-au-
tomaton HDπ corresponding to the π-calculus is defined as follows:

– S = {Q |〈Q, σ〉 = norm (P ) for some P and σ};

– sym(Q) = {ρ |Q ≡ Qρ} for each Q ∈ S;

– if Q ∈ S, Q
µ−→ Q′ is a representative transition, and norm

(
Qrotbn(µ)

)
=

〈Q′′, ζ〉, then Q Â l(µ)

ζ
// Q′′.

Let P be a π-calculus agent and let norm (P ) = 〈Q, σ〉. Then we denote with
HDπ(P ) the HD-automaton corresponding to P . It consists of the subsets of
the states and of the transitions of HD-automaton HDπ that are reachable from
state Q.

Definition 2.6 produces HD-automata that in general are infinite. However, there
are classes of π-calculus agents that generate finite HD-automata: this is case of
finitary π-calculus agents:
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Definition 2.7 (finitary agents). The degree of parallelism deg(P ) of a π-
calculus agent P is defined as follows:

deg(0) = 0 deg(µ.P ) = 1

deg((νx) P ) = deg(P ) deg(P |Q) = deg(P ) + deg(Q)

deg([x=y]P ) = deg(P ) deg(P+Q) = max(deg(P ), deg(Q))

deg(A(x1, . . . , xn)) = 1

A π-calculus agent P is finitary if max{deg(P ′) |P µ1−→ · · · µi−→ P ′} < ∞.

In [19] it is shown that if P is a finitary π-calculus agent then HDπ(P ) is finite,
in the sense that it has finite states and transitions (thanks to the use of finite
support symmetries, which also are representable with finite memory).

In general, it is not decidable whether an agent is finitary, but there are subclasses
of finitary agents which can be characterized syntactically. As an example we can
consider finite control agents, which have no parallel composition in the body of
recursive definitions. In this case, after an initialization phase during which
a finite set of processes acting in parallel is created, no new processes can be
generated; therefore a finite-control agent is clearly finitary.

The following theorem, proved in [21] for a slightly different version of HD-
automata with symmetries, states that two π-calculus agents are bisimilar, ac-
cording to the standard π-calculus semantics, if and only if the corresponding
states in HD-automaton HDπ are HD-bisimilar.

Theorem 2.8. Let P1 and P2 be two π-calculus agents and let norm (P1) =

〈Q1, σ1〉 and norm (P2) = 〈Q2, σ2〉. Then P1 ∼π P2 iff Q1
δ∼Q2, where δ = σ1; σ

−1
2

Clearly, when HD-automata are exploited to check whether two π-calculus agents
P1 and P2 are bisimilar, it is not necessary to generate the whole HD-automaton
HDπ, since is sufficient to generate the subset of the states reachable from Q1

and Q2. We already know that the obtained HD-automaton is finite whenever
agents P1 and P2 are finitary. Therefore, HD-automata can be effectively used to
check π-calculus bisimilarity for finitary agents.

2.4.1 Example: translating buf and cell

Now we see how to translate the one-position buffer and the memory cell of
section 2.1.3. Note that our names are sorted as in the English alphabet, so the
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first name is a, and the rest are b, c, . . .. Using this convention instead of x0, x1, . . .
will ease reading. Also note that the normalization function that is applied to
every destination state of a representative π-calculus transition can replace bound
names, but the backward substitution which is present in every transition of an
HD automata won’t, because a substitution is not applied to bound names, thus
agents are silently identified modulo α-equivalence.

1. Normalize the buffer:

norm(Buf(c)) = norm(c(x).cx.Buf(c)) = 〈a(b).ab.Buf(a), {c/a, a/c}〉
2. Find the outgoing π-calculus representative transitions from the initial

state:

a(b).ab.Buf(a)
aa−→ aa.Buf(a)

a(b).ab.Buf(a)
ab−→ ab.Buf(a)

These are the only two representative transitions, because b = min(N \
fn (Buf(a))).

3. Iterate the procedure, by normalizing destination states, and annotating
the transitions with the mapping obtained from normalization.

We draw the HD-automaton corresponding to our buffer, which has three states,
using square brackets to visually distinguish name mappings from actions:

S1

aa

[id]
vv

ab

[id]
((

S2

aa

[id]

66

S3

ab

[id]

hh

State S1: a(b)ab.Buf(a), support: {a}, suppsym: {}

State S2: aa.Buf(a), support: {a}, suppsym: {}

State S3: ab.Buf(a), support: {a,b}, suppsym: {}
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We also should have annotated each state with its symmetry; according
to equation 2.2 we just have to give the support and the permutations that act
over it; in the case of Buf(a) the support is only a and there are, of course, no
permutations which change it. State 2 is in the same situation while in state 3
there are again no permutations in the symmetry, but the support contains both
a and b.

Notice how the only thing that matters about names, in HD-automata, is their
identity: there are two very similar states (state 2 and 3), one where the two
free names coincide, and the other one where they are different. There is no
other information that we can get about the identity of a name in a state (but
transitions record the origin of names in the global namespace).

Here is the HD-automaton corresponding to the memory cell after normalization;
the identity mappings have been omitted, while ρ =

{
b/c, c/b

}
:

S1

aa

²²

ab

[ρ]

ÂÂ@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

S2aa
((

aa

GG

ab [ρ]

77 S3

aa

ww

ac

¨¨
acii

ab
[ρ]

GG

State S1: a(b).FullCell(a, b), support: {a}, suppsym: {}

State S2: a(b).FullCell(a, b) + aa.FullCell(a, a), support: {a}, suppsym: {}

State S3: a(b).FullCell(a, b)+ ac.FullCell(a, c), support: {ac}, suppsym: {}
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A modal logic for HD-automata

3.1 A modal logic for the π-calculus: F
We present a very simple Hennessy-Milner logic, which was introduced by Milner,
Parrow and Walker [17] and was shown to characterize π-calculus early bisimula-
tion; in the following sections, we will give an interpretation over HD-automata
which is adequate for HD-bisimulation, sound and complete w.r.t. the π-calculus
interpretation, and suitable for finite-state model checking.

F is a temporal logic, which means that, in addition to usual conjunction and
negation constructs, we have one or more modalities, which describe properties
of a system as it evolves in time (which are called temporal properties). In
our logic we have modal operators that represent τ , free input, free output and
bound output transitions, so we will be able to reason about the behavior of an
agent which performs these actions. Typically, to express interesting properties
(e.g. liveness and safety properties) of a concurrent program, we need advanced
modal operators like “eventually”, to state that some property eventually holds
after an unspecified number of transitions, or “never”. The eventually operator,
that together with negation can derive the never operator, will be included in an
extension of F (sec. 3.6). A powerful modal logic for the π-calculus, with model
checking over the version of HD-automata without symmetries, can be found in
[8] and in [5], while a very general logic based on fixpoint, called “name passing
µ-calculus” is presented in [3].

The syntax of F is:

Definition 3.1 (F logic).

A ::=
∧

i∈I
Ai

∣∣∣ ¬A
∣∣∣ 〈α〉A

α ::= 〈τ〉
∣∣∣ xy

∣∣∣ xy
∣∣∣ x(y)

27
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Note that the logic does not include disjunction, as it can be derived from con-
junction and negation by applying De Morgan’s laws:

A ∨B = ¬(¬A ∧ ¬B)

The constant true can be obtained as
∧
∅ (this will be clearer after giving the

satisfaction relation), and false can be obtained as ¬true.

The syntax 〈α〉A represents modality: the formula holds for a π-calculus agent if,
after performing the action α, A holds for the resulting agent. This corresponds
to ask for existence of a transition matching α. To require that for all transitions
going out of a state a formula holds, we can use negation again: the formula
¬ 〈α〉 ¬A is true if, for all transitions matching α, the formula A holds in the
destination state.

The satisfaction relation is given on a generic π-calculus agent P :

Definition 3.2 (interpreting F over π-calculus).

P ²
∧

i∈I Ai ⇔ ∀i ∈ I.P ² Ai

P ² ¬A ⇔ P 2 A

P ² 〈α〉A,α ∈ {τ, xy, xy} ⇔ ∃P ′.P α−→ P ′, P ′ ² A

P ² 〈x(y)〉A ⇔ ∃ω /∈ (fn (A) \ {y}) .∃P ′.P
x(ω)−→ P ′,

P ′ ² A {ω/y}

It is important to notice how fresh names are handled: since the name y is
bound in 〈x(y)〉A, the choice of y is arbitrary, and we can apply α-conversion
to the formula: for an agent P to satisfy the formula 〈x(y)〉A it is required that

P
x(z)−→ P ′ and that 〈x(y)〉A be α-convertible to 〈x(z)〉A{z/y}.

3.2 Interpreting F over HD-automata

We give an interpretation of F over HD-automata which meets the following
goals:

– It’s adequate (sec. 3.3) for HD-bisimulation, so that it may become usable,
in a generalized definition, not only for HD-automata that are translations
of π-calculus agents, but for every HD-automata.
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– It is sound and complete w.r.t. the one for π-calculus, so that it can be
used as a model checking tool for π-calculus agents.

– It has no side conditions in the definitions for modalities, thanks to the
powerful semantics of HD-automata.

– It is suitable for finite-state model checking, so that an algorithmic proce-
dure, which is decidable for finite-state HD-automata, exists.

To define the interpretation of F formulae over HD-automata, we have to take in
account that names in HD states only have a local meaning, and not a global one,
so we cannot just give a binary satisfaction relation over states and formulae, as
in the case of π-calculus, but we have to give a ternary satisfaction relation
which includes a mapping from the names of a HD state to the names of a formula.
We will denote this relation with ²HD.

Now we can define the satisfaction relation over HD-states, name mappings and
formulae; we will use the more readable notation q ²ρ A, where q is a HD-
automata state, ρ is a permutation which describes how names in q are to be
interpreted into A, and A ranges over F formulae, instead of q ²ρ

HD A.

Especially if taking in account lemma A.3, one might wonder if we really need to
use such a mapping, or if it would be simpler to say that

q ²ρ A ⇔ q ²id Aρ−1

and define a binary relation which always uses the identity as mapping. In the
implementation of the model checking algorithm, we will use not only states,
but also formulae in normal form. In this case, the mapping becomes necessary
since an arbitrary permutation can send a normalized formula into a non normal-
ized one, thus using the normalizing permutation as the mapping in the ternary
relation is required.

3.2.1 Design choices

Before giving the formal definition, we will consider its motivations; cases for
conjunction and negation in the definition are easy to understand: those just
follow an inductive pattern as in the interpretation over π-calculus. The case
for modalities is driven by the definitions of bisimulation and of HD-automata
corresponding to a π-calculus agent (sec. 2.4). If we want agent q to satisfy
formula 〈α〉A, via the name mapping ρ from its names to those in the formula,
it is necessary that:
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– q perform a transition, q Â β

ζ
// q′, where β has for q, via the permutation ρ,

the same meaning than α for the formula; for this we will use the function
l described above

– q′ satisfy the formula A via a suitable permutation of names

Before showing how to choose the name permutations in the mapping for β and q′,
let’s look at some example which will show how to take in account the symmetries
of q; in all the following diagrams, arrows represent name mappings, we assume
σ ∈ sym(q), and we consider the state q1 which, as a π-calculus agent, is in the
orbit of Q, with q1 = σ (q).

For each example, we have to choose a suitable mapping to give meanings to local
names of the label and destination state of a transition, in a way that allows the
destination state to satisfy the immediate subformula of a modality.

Tau modality

In this case things seem simple:

q ρ // 〈τ〉A

q′

ζ

OO

ξ // A

id

OO

To make the diagram commute, the permutation ξ might be chosen as (ζ; ρ), so
the definition might be:

q ²ρ 〈τ〉A ⇔ ∃q′, ζ.q Â tau

ζ
// q′ ∧ q′ ²(ζ;ρ) A

however we will see that also symmetries of states play an important role, because
of the other modalities.

Free input and free output modalities

Consider the following statement, which we would like to hold, because it holds
for the corresponding π-calculus agent:

a(b).0 ²id 〈ac〉 true
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When we decided (sec. 2.4) to use only representative transitions in the trans-
lation from π-calculus agents to HD-automata, we knew that we were represent-
ing all of the π-calculus agent transitions within a single HD-automata one, by
putting symmetries into HD-automata states. On the other hand, we cannot
hope that every mapping in sym(q) will fit, because there is, for example, the
permutation

{
c/d, d/c

}
which will not map b into c. But we know that there exists

a permutation σ ∈ sym(q) such that b is mapped into c (this will be exploited in
the completeness proof).

Generally speaking, we need to find a permutation σ ∈ sym(q) such that free
names in the modality are mapped to free names in the transition, via ρ, which
means that, thanks to symmetries in states, we are allowed to look for a matching
transition not only for q , but for any state in the orbit of q.

In the following example diagram, q Â in(x,y)

ζ
// q′ is a HD transition, and names

of q1, which is in the orbit of q, match names in the formula by the permutation
ρ, which we assume to be the identity on z and w to ease explanation.

The π-calculus agent q1 can perform the transition zw (drawn separately), thus
it satisfies 〈zw〉Aρ−1 if q′1 ² Aρ−1. Moreover we assume that the permutation
which exchanges x with z and y with w is in the symmetry of q. Labels of ar-
rows correspond to name substitutions (unless in square brackets, which indicate
transition labels or satisfaction relations).

〈zw〉A q1
ρoo q

σ∈sym(q)oo

A

id

OO

q′
ζ;σ;ρ

oo

ζ [in(x,y)]

OO

HD automaton

q1

id [zw]

²²

[²]

id
// 〈zw〉Aρ−1

id

²²
q′1

[²]

id
// Aρ−1

π-calculus agent

This interpretation is particularly well-suited for soundness, because of the struc-
tural congruence axiom in the operational semantics of the π-calculus:

A ≡ B ∧ C ≡ D ∧ A
α−→ C

B
α−→ D

In the example diagram, q ≡ q1 by definition of HDπ, so the structural congruence
axiom has an instance in

q ≡ q1 ∧ q′1 ≡ q′1 ∧ q1
zw−→ q′1

q
zw−→ q′1
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Moreover, we can always find a permutation σ ∈ sym(q) (the identity in the worst
case) to map names when interpreting the tau modality, so the requirement of
existence for the permutation σ does not affect our previous definition; the new
one can be given as:

q ²ρ 〈α〉A, α ∈ (τ, xy, xy)

⇔ ∃σ ∈ sym(q).∃q′, ζ . q Â (ρ−1;σ−1)(l(α))

ζ
// q′ ∧ q′ ²(ζ;σ;ρ) A

The same considerations hold for the free output modality, and the same defini-
tion can be used.

Bound output modality

Now we have to take into account the generation of fresh names. As for the
other modalities, free names in the label can correspond to free names in the
modal operator by (σ; ρ) where σ ∈ sym(q), but to be sure that the generated
name is fresh in the formula, and corresponds to the generated name in the HD
transition, given the formula 〈x(y)〉A, when recurring in the definition, we apply
the substitution rot{y} to A, so that the fresh name is always x0 both in the
destination state of the transition and in the immediate subformula of the modal
formula.

The following diagram shows how names are mapped in the case of a transition

q Â bout(x)

ζ
// q′′. The agent q1, which is in the orbit of q, can perform the transition

q1
z(w)−→ q′1, drawn in square brackets, and {x/z, z/x} is in its symmetry. According

to the definition of HDπ (sec. 2.4), names of q are rotated, to send the newly
generated name into x0; this is represented with the states q′r1 and q′r; names
in 〈z(w)〉A are rotated accordingly, and for ease of readability we assume that
ρ(z) = z. The number n is the number of fresh names generated along the
transition (for bout transitions, it’s 1).

Under these conditions, it’s clear that q1 ² 〈z(w)〉Aρ−1 if q′1 ² Aρ−1 {a/w}, where
a /∈ fn (A), and so we want q to satisfy 〈z(w)〉A via ρ.
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〈z(w)〉A

rot{w}

²²

q1
ρoo

rot{y}

²²

q
σ∈sym(q)oo

rot{y}

²²
q
′r
1

ρ+n

||yyy
yyy

yyy
yyy

yyy
yy

q
′rσ+noo

Arot{w} q′′

ζ

OO

HD automaton

q1

[z(y)]id

²²
q′1

π-calculus agent

As displayed in the diagram, names in q′′ have to correspond to names in A by
(ζ; σ+n; ρ+n); this is not a trouble for previous definitions, since if no fresh name
is generated, the number n is equal to zero, and the rotation is over an empty
set and becomes the identity substitution.

3.2.2 Formal definition

The above examples explain how we can make design choices for the satisfaction
relation of F over HD-automata, keeping in mind soundness and completeness
w.r.t. the interpretation over π-calculus; now we will give a formal definition,
slightly more general than the ones we have just seen (e.g. it potentially allows
labels generating more than one fresh name).

For a HD-automata state q to satisfy a formula 〈α〉A via the mapping ρ it is
required that:

– a transition T = q Â β

ζ
// q′ exist

– α correspond to β by l and by a suitable mapping η over free names

– the number n of fresh names generated by T be the same of the bound
names in α

– q’ satisfy A by appropriate name substitutions

– the following diagram commute, where σ ∈ sym(q) and fresh(T ) denotes
those bound names in q that are instantiated with fresh names by T
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q

σ−1

²²

ρ // 〈α〉A

rotbn(α)

²²

β
η //

rot(fresh(T ))

²²

l(α)

id
;;xxxxxxxx

q′

ζ−1

²²
q′′ θ // A

The only unknowns in the diagram are η and θ. The diagram commutes with
η = σ; ρ and θ = ζ; (σ; ρ)+n, where n is the number of bound names in α, as we
will show in the adequacy proof.

Definition 3.3 (Interpreting F over HD-automata).

q ²ρ
∧

i∈I Ai ⇔ ∀i ∈ I.q ²ρ Ai

q ²ρ ¬A ⇔ q 2ρ A

q ²ρ 〈α〉A ⇔ ∃ (σ ∈ sym(q), q′, ζ) .q Â (ρ−1;σ−1)(l(α))

ζ
// q′,

q′ ²(ζ;(σ;ρ)+n) Arotbn(α),

where α has n bound names

3.2.3 Example: checking some property of a buffer

Now we can check some property for the buffer of our previous examples:

Buf(c)
def
= c(x).cx.Buf(c)

we can require that every time a value is stored into the buffer, it is immediately
available for retrieving:

mem = 〈ca〉 〈ca〉 true

also, we can check that it’s impossible to retrieve a value when we just have stored
another one:
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consistent = ¬(〈ca〉 〈cb〉 true)

By looking at the HD-automaton

S1

aa

[id]
vv

ab

[id]
((

S2

aa

[id]

66

S3

ab

[id]

hh

State S1: a(b)ab.Buf(a), support: {a}, suppsym: {}

State S2: aa.Buf(a), support: {a}, suppsym: {}

State S3: ab.Buf(a), support: {a,b}, suppsym: {}

we see that S1 ²ρ mem, where ρ = {a/c, c/a}, i.e. the permutation that
normalizes Buf(c) into S1; for ease of explanation we check the equivalent
assertion

S1 ²id memρ−1 = 〈ab〉 〈ab〉 true

There is a transition labeled ab from S1 to S2, and then one labeled ab from S2

to S1, so the formula is true without having to use any permutation σ.

Now we look at

S1 ²id consistent ρ = ¬(〈ac〉 〈ab〉 true)

We notice that we don’t have a transition labeled ac leaving S1, but there is ab,
and permutation

{
b/c, c/b

}
is in the symmetry of S1 (α-conversion), so we apply

the name mapping id as prescribed in the definition, and check if S2 ²id 〈ac〉 true.
This is false, because we don’t have any transition labeled ac, but only ab, and{
b/c, c/b

}
is not in the symmetry of S2.

3.3 Adequacy

In a modal logic L interpreted over an ordinary labeled transition system
(S, L, T ), we say that L is adequate w.r.t. the relation B ⊆ S × S (which is
usually the bisimilarity relation) if
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(∀F ∈ L.∀A,B ∈ S.A ² F ⇔ B ² F ) ⇔ 〈A,B〉 ∈ B

that is, A is bisimilar to B if and only if A and B satisfy the same formulae. A
logic is also said to characterize B if this property holds.

Since names for HD-automata are local, the definition of bisimulation takes into
account name mappings (sec. 2.3), and the definition of adequacy has to be
restated accordingly: we say that a logic L is adequate w.r.t. HD-bisimulation if
for all states Q1 and Q2 we have

Q1
δ∼Q2 ⇔

(
∀A ∈ L.Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A

)

The name mapping (δ−1; ρ) can be understood with the help of the following
diagram (remember that δ is invertible):

Q1
²ρ

//

δ∼

²²

A

Q2

²(δ−1;ρ)

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

In the adequacy proof, we will exploit the obvious fact that

Q1
δ∼Q2 ⇔ ∃R.R is a HD-bisimulation ∧ 〈Q1, δ, Q2〉 ∈ R

Adequacy of F
The proof that F is adequate for HD-bisimilarity is split into the “if” and the
“only if” parts.

To show the former we prove that the relation

S =
{
〈Q1, δ, Q2〉

∣∣∀A ∈ F .Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A
}

is a HD-bisimulation.

The latter can be shown by induction over the rules generating the formulae in
F : we prove that for HD-automata Q1 and Q2 bisimilar via permutation δ, and
for any formula A ∈ F , the following property holds:

P (A) = Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A
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The formal proof follows (note that we use the shorthand ∀ (or ∃) Q Â µ

ζ
// Q′ for

∀ (or ∃) Q,Q′, µ, ζ (such that) Q Â µ

ζ
// Q′).

Theorem 3.4. F is adequate for HD-bisimulation.

“if” part:

(
∀A ∈ F .Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A

)
⇒ Q1

δ∼Q2

Proof. Let S =
{
〈Q1, δ, Q2〉

∣∣∀A ∈ F .Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A
}

, and suppose

that S is not a bisimulation. Be 〈Q1, δ, Q2〉 ∈ S.

S is not a bisimulation

⇒ ∃σ1 ∈ sym(Q1).∃Q1
Â l1

ζ1
// Q′

1.∀σ2 ∈ sym(Q2).∀Q2
Â l2

ζ2
// Q′

2.

l2 6= γ (l1) ∨ 〈Q′
1, δ

′, Q′
2〉 /∈ S

where γ =
(
σ1; δ; σ

−1
2

)
, n is the number of bound names in l and

δ′ =
(
ζ1; γ+n; ζ−1

2

)

Now we can analyze the two cases separately, using definition A.6 to build a
modal formula from a transition:

1. No l2 matches l1:

∀σ2 ∈ sym(Q2).∀Q2
Â l2

ζ2
// Q′

2.l2 6= γ (l1)

≡ ¬∃ (σ2 ∈ sym(Q2), Q
′
2, l2, ζ2) . Q2

Â

ş
(δ−1;σ−1

1 )
−1

;σ−1
2

ť(
l1

)

ζ2
// Q′

2

⇒ {
definition of ²HD (3.3) with ρ =

(
δ−1; σ−1

1

) }

Q1 ²σ−1
1 〈m(l1)〉 true ∧Q2 2(δ−1;σ−1

1 ) 〈m(l1)〉 true

and this clearly contradicts the hypothesis. Note that Q1 ²id 〈m(l1)〉, but

since σ1 ∈ sym(Q1) we also have Q1 ²σ−1
1 〈m(l1)〉.
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2. No Q′
2 matches Q′

1

〈Q′
1, δ

′, Q′
2〉 /∈ S

⇒ {definition of S}

∃ρ̄.∃f̄ ∈ F .Q′
1 ²ρ̄ f̄ ∧Q′

2 2(δ′−1;ρ̄) f̄

⇒ {lemma A.3}

∀ρ injective .∃fρ = f̄ (ρ̄−1; ρ) .Q′
1 ²ρ fρ ∧Q′

2 2(δ−1;ρ) fρ

Using the function m∗ defined at A.6 we will now build from fρ a modal for-
mula A such that Q1 ²id A but Q2 2δ−1

A, which contradicts the hypothesis
and completes the proof.

Be n the number of fresh names generated by l1 (and l2), and µ =

σ1(m
∗
xi

(l1)), where xi+n = min
(
N \ fn

(
f(ζ1;(σ1)+n)

))
.

Be γ(x) = y iff rotbn(µ)(y) = x (i.e. γ is the inverse of rotbn(µ) restricted to
its image). Notice that γ; rotbn(µ) = id.

Then Q1 ²id 〈µ〉 f(ζ1;(σ1)+n)γ: according to the definition of ²HD we have

σ1 ∈ sym(Q1) ∧Q1
Â (id−1;σ−1

1 )(l(µ)))

ζ1
// Q′

1

by definition of m∗,l and µ, and

Q′
1 ²(ζ1;(σ1;id)+n) f(ζ1;(σ1)+n) γ rotbn(µ)

which is the same as

Q′
1 ²(ζ1;(σ1)+n) f(ζ1;(σ1)+n)

by construction of fρ.

Now let’s suppose that Q2 satisfy the same formula via δ−1:

Q2 ²δ−1 〈µ〉 f ζ1;((σ1)+n)γ

⇒ ∃σ2 ∈ sym(Q2), l2, ζ2.Q2
Â δ;σ−1

2 (l(µ))

ζ2
// Q′

2∧

Q′
2 ²

ş
ζ2;(σ2;δ−1)

+n

ť
f(ζ1;(σ1)+n)
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The first part of the conjunction, by definition of µ, brings in scope the
same set of states Q′

2 which we are supposing not bisimilar to Q′
1 via δ′, so

we have a contradiction from the second part of the conjunction; let’s start
with the definition of fρ:

Q′
2 2((δ′)−1;ζ1;(σ1)+n) f(ζ1;(σ1)+n)

⇒ {definition of δ′}

Q′
2 2

şş
ζ2;

ş
σ2;δ−1;(σ−1

1 )
+n

ť
;ζ−1

1

ť
;ζ1;(σ1)+n

ť
f(ζ1;(σ1)+n)

⇒ {properties of substitutions}

Q′
2 2

ş
ζ2;(σ2;δ−1)

+n

ť
f(ζ1;(σ1)+n)

This contradicts the previous result.

“only if” part:

Q1
δ∼Q2 ⇒

(
Q1 ²ρ A ⇔ Q2 ²(δ−1;ρ) A

)

proof (by induction over the structure of A).

1. Conjunction:

Q1 ²ρ
∧

i∈I Ai

⇔ ∀i ∈ I.Q1 ²ρ Ai

⇔ {induction hypothesis}

∀i ∈ I.Q2 ²(δ−1;ρ) Ai

⇔ Q2 ²(δ−1;ρ)∧
i∈I Ai

2. Negation:
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Q1 ²ρ ¬A

⇔ Q1 2ρ A

⇔ {induction hypothesis}

Q2 2(δ−1;ρ) A

⇔ Q2 ²(δ−1;ρ) ¬A

3. Modalities:

Q1 ²ρ 〈α〉A, where α has n bound names

⇔ ∃ (σ1 ∈ sym(Q1), Q
′
1, ζ1) .Q1

Â (ρ−1;σ−1
1 )(l(α))

ζ1
// Q′

1∧

Q′
1 ²(ζ1;(σ1;ρ)+n) Arotbn(α)

⇔
{

Q1
δ∼Q2

}

∃σ2 ∈ sym(Q2).Q2
Â ((ρ−1;σ−1

1 );(σ1;δ;σ−1
2 ))(l(α))

ζ2
// Q′

2∧

Q′
1

ş
ζ1;(σ1;δ;σ−1

2 )
+n

;ζ−1
2

ť

∼ Q′
2

⇔ {induction hypothesis, properties of substitutions}

∃σ2 ∈ sym(Q2).Q2
Â (ρ−1;δ;σ−1

2 )(l(α))

ζ2
// Q′

2∧

Q′
2 ²

ş
ζ2;(σ2;δ−1;σ−1

1 )
+n

;ζ−1
1 ;ζ1;(σ1;ρ)+n

ť
Arotbn(α)

⇔ {properties of substitutions}

∃σ2 ∈ sym(Q2).Q2
Â

ş
(δ−1;ρ)

−1
;σ−1

2

ť
(l(α))

ζ2
// Q′

2∧

Q′
2 ²

ş
ζ2;(σ2;(δ−1;ρ))

+n

ť
Arotbn(α)
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⇔ Q2 ²(δ−1;ρ) 〈α〉A

3.4 Soundness and completeness

We already know that F is adequate for HD-automata bisimulation, that it’s
adequate for π-calculus early bisimulation [17], and that the translation HDπ

respects bisimulation [19], so (P ∼e Q)∧(P ² A) ⇒ Q ² A∧HDπ(P )
δ∼HDπ(Q)

for some δ. The only thing that is still missing is to show that P and HDπ(P )
satisfy the same formulae (with correct name mappings in the HD satisfaction
relation); this proof of soundness and completeness can be done by induction over
the rules generating F .

Theorem 3.5 (Soundness and completeness).

P̄ ² A, norm(P̄ ) = 〈P, ρ〉 ⇔ HDπ(P ) ²ρ A

Proof (by induction over the rules generating F). Cases for negation and con-
junction are trivial, while the proof for modalities uses the following observation:

Observation 3.6. If P
α−→ P ′ is a π-calculus transition, there always exists

σ ∈ sym(P ) such that P
σ(α)−→ P ′σ is a representative transition (the set of

transitions corresponding to P is non empty, and the set of labels is well founded

so it has a minimum element). We also have Pσ
σ(α)−→ P ′σ because of the structural

congruence axiom.

– Tau, free input and free output modalities:

P̄ ² 〈α〉A, norm(P̄ ) = 〈P, ρ〉 , α 6= x(y)

⇔ {Lemma A.2}

P ² (〈α〉A) ρ−1

⇔ P ² 〈ρ−1(α)〉Aρ−1

⇔ ∃P ′.P
ρ−1(α)−→ P ′ ∧ P ′ ² Aρ−1

⇔ {Lemma A.2, observation 3.6}
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∃P ′, σ−1 ∈ sym(P ).Pσ−1
(ρ−1;σ−1)(α)−→ P ′σ−1 is a representative

transition ∧ P ′σ−1 ² A (ρ−1; σ−1)

⇔ {Q = Pσ−1, Q′ = P ′σ−1}

∃σ ∈ sym(Q), Q′.Q
(ρ−1;σ−1)(α)−→ Q′ is a representative transition ∧

Q′ ² A (ρ−1; σ−1)

Since the π-calculus transition is representative, we can obtain the HD state
corresponding to Q and the HD transition from Q to Q′; then, by induction
hypothesis, we will also transform the satisfaction of A from a property of
the π-calculus agent Q′ to a property of the corresponding HD state:

{norm(Q′) = 〈Q′′, ζ〉}

∃σ ∈ sym(Q), Q′, ζ.Q Â (ρ−1;σ−1)(l(α))

ζ
// Q′′ ∧Q′′ ² A (ρ−1; σ−1; ζ−1)

⇔ {induction hypothesis, with norm(Q′′) = 〈Q′′, id〉}

∃σ ∈ sym(Q), Q′, ζ.Q Â (ρ−1;σ−1)(l(α))

ζ
// Q′′ ∧Q′′ ²id A (ρ−1; σ−1; ζ−1)

⇔ {Lemma A.3}

∃σ ∈ sym(Q), Q′, ζ.Q Â (ρ−1;σ−1)(l(α))

ζ
// Q′′ ∧Q′′ ²(ζ;σ;ρ) A

⇔ {Definition of ²HD}

Q ²ρ 〈α〉A

– Bound output modality

The proof for the bound output modality requires particular care and is
split into the if and the only if parts. The reader should remind that for
a π-calculus agent P it holds σ ∈ sym(P ) ⇒ σ−1 ∈ sym(P ).

1. From agents to states (⇒):
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P̄ ² 〈x(y)〉A, norm(P̄ ) = 〈P, ρ〉

⇒ P ² (〈x(y)〉A) ρ−1

⇒ P ² 〈ρ−1(x(y))〉Aρ−1

⇒ {definition of ²}

∃ω /∈ fn(Aρ−1).∃P ′.P
ρ−1(x(w))−→ P ′ ∧ P ′ ² A (ρ−1; {w/ρ−1(y)})

⇒ {Observation 3.6}

∃ω /∈ fn(Aρ−1), σ−1 ∈ sym(P ), P ′.P
(ρ−1;σ−1)(x(z))−→ P ′σ−1

is representative ∧ P ′σ−1 ² A (ρ−1; {w/ρ−1(y)} ; σ−1)

⇒ {
norm

(
P ′σ−1rot{σ−1(w)}

)
= 〈P ′′, ζ〉 , definition of HDπ

}

∃ω /∈ fn(Aρ−1), P ′′, ζ, σ ∈ sym(P ).P Â ρ−1;σ−1(bout(x))

ζ
// P ′′∧

P ′ (σ−1; rotσ−1(w)

)
² A

(
ρ−1; {w/ρ−1(y)} ; σ−1; rot{σ−1(w)}

)

⇒ {
induction hypothesis, γ =

(
ρ−1; {w/ρ−1(y)} ; σ−1; rot{σ−1(w)}

)}

∃P ′′, ζ.P Â ρ−1;σ−1(bout(x))

ζ
// P ′′ ∧ P ′′ ²ζ Aγ

Now, if we show that γ, restricted to free names in A, is equal to(
roty; (ρ

−1; σ−1)+1

)
, the thesis is proved, since, for σ bijective, P ²α

Aσ ⇔ P ²α;σ−1
A (lemma A.3), and so we would have:

∃σ ∈ sym(P ).P Â ρ−1;σ−1(l(x(y)))

ζ
// P ′′ ∧ P ′′ ²(ζ;(σ;ρ)+1) Aroty.

It’s easy to verify this fact: suppose xi ∈ fn(A); if xi = y, then γ(xi) =
x0, else γ(xi) = yi+1, where yi = (ρ−1; σ−1) (xi); this is by definition
(ρ−1; σ−1) (xi+1), and since xi 6= y we know that roty(xi) = xi+1, hence
the thesis.

2. From states to agents (⇒):
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Q ²ρ 〈x(y)〉A

⇒ ∃σ ∈ sym(Q).Q Â bout((ρ−1;σ−1)(x))
ζ
// Q′′∧

Q′′ ²(ζ;(σ;ρ)+1) Aroty

⇒ {definition 2.6}

Q
(ρ−1;σ−1)(x)(w′′)−→ Q′ ∧ norm (Q′rotw′′) = 〈Q′′, ζ〉

Using α-conversion, we choose w′′ such that (ρ(σ(w))) /∈ fn (A), which
will be used later in the proof. We have to apply the induction hy-
pothesis over Q′′, and then lemma A.2: since rots is always injective,
by looking at the thesis of this theorem we have:

Q′ rotw′′ ² Aroty (ρ−1; σ−1)+1

We introduce the substitution

unrot(k,i)(xj) =

{
xi+j if j ∈ [0, k − 1]

xj−k if j ∈ [k, i]

which in is the “opposite” of rot{n1,...nk}, in the sense of lemma A.5.

Now we consider the π-calculus transition that we have found:

Q
(ρ−1;σ−1)(x)(w′′)−→ Q′

⇒ {lemma A.1, w′ = σ(w′′)}

Qσ
(ρ−1)(x)(w′)−→ Q′σ

⇒ {σ ∈ sym(Q), structural congruence rule}

Q
ρ−1(x)(w′)−→ Q′σ

⇒ {w = ρ(w′), former result}

Qρ
x(w)−→ Q′(σ; ρ) ∧Q′ rotw′′ ² A roty (ρ−1; σ−1)+1

⇒ Qρ
x(w)−→ Q′(σ; ρ) ∧Q′ rotw′′ (σ; ρ)+1 ² Aroty
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⇒ {lemma A.4}

Qρ
x(w)−→ Q′(σ; ρ) ∧Q′(σ; ρ; rotw) ² Aroty

⇒ Qρ
x(w)−→ Q′(σ; ρ) ∧Q′(σ; ρ); rotw; unrot(1,w) ² A

(
roty; unrot(1,w)

)

⇒ {lemma A.5, w /∈ fn (A)}

∃w /∈ fn (A) .Qρ
x(w)−→ Q′(σ; ρ) ∧Q′(σ; ρ) ² A {w/y}

⇒ {definition 3.2}

Qρ ² 〈x(y)〉A
Since Q is in normal form we have norm (Qρ) = 〈Q, ρ〉 and this con-
cludes the proof.

3.5 The late semantics of the π-calculus

We have seen the early semantics of the π-calculus, but there are other interpre-
tations of the syntax; the very first one proposed by Milner, Parrow and Walker
was the late one, which is tighter in the sense that two late bisimilar processes
are early bisimilar, but the converse does not hold. The main point of the late se-
mantics w.r.t. the early one is that, in the input action, the received name is not
free but bound. Bisimilarity is changed accordingly: two states which are sources

of the transitions P1
x(y)−→ P ′

1 and P2
x(z)−→ P ′

2 match if P ′
1 and P ′

2 are bisimilar for
every choice of y that P2 can be α-converted to, while in the early semantics we
can choose a different input transition (e.g. in a choice construct) for every input
name; thus the following two processes are early bisimilar but not late bisimilar
(the example is due to [17]):

x(u).τ.0 + x(u).0 ∼e P.0 + x(u).[u = z]τ.0

3.5.1 Modalities for the late semantics

As shown in [6], the late semantics of the π-calculus can be expressed using two
transition steps, which have to be considered atomically; a transition of the form
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P
x(y)−→ P ′

is turned into

P
x−→ λy.P ′ [z]−→ P ′ {y/z}

where the second step is infinite branching and the name z is free, similarly to
what happens for the free input modality. This method of giving a late semantics
has the advantage that the definition of bisimulation can be the early one.

The logic F can be enriched with the two corresponding modalities, which we
call respectively 〈x〉 and 〈[x]〉.
In [17] a modal logic, adequate for the late semantics of the π-calculus, is pre-
sented. This logic is F extended with bound input x(y) and matching [x = y]
constructs. Even if at first sight the approach followed in our work may look very
different from the one in [17], these are similar:

– the modality 〈x〉 can be seen as 〈x(y)〉, because the name y is bound, so
the only information that one gets from the truth of P ² 〈x(y)〉 true is that
there exists a name which has been received on channel x;

– matching is not useful in contexts differing from a bound input modality,
because names in other contexts can only be free or fresh, and in both
cases the result of matching can be known by just examining the agent
syntactically. Here is an example formula without fresh names:

〈xy〉 〈[x = y]〉 true

We already know that the matching will fail, because x and y are different.
An example involving bound output is:

〈x(y)〉 〈[y = z]〉 true

where, again, we already know that the matching will always fail, since y
is different from any other name.

Our operator 〈[x]〉 corresponds to matching specialized to the immediately pre-
ceding input transition; this is the reason why it is not as expressive as [17]: the
real matching can be postponed at any time or even not done. Consider the
following example:
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P
def
= x(y).xx.0

With bound input we can assert:

P ² 〈x(y)〉 〈xx〉 true

while to describe the same property with our version of the late semantics and
the corresponding logic, we are compelled to use the second step of the input
transition, so we have to match all the possibilities (which are in a finite number,
namely one for every free name of the agent, plus one for all the non-free names
which are identified in the agent’s orbit), and the required formula depends on
the agent:

P ² 〈x〉 〈[x]〉 〈xx〉 true ∨ 〈x〉 〈[y]〉 〈xx〉 true

3.5.2 Interpretation over HD-automata and adequacy

The interpretation over HD-automata is straightforward: we define the labels
binp(x), which announces input on channel x, and conc(z), which corresponds to
the second step, often called concretion.

A π-calculus transition P
x(y)−→ P ′ is translated into (without considering nor-

malizations for simplicity) P
binp(x)−→ λ(y).P ′ conc(y)−→ P ′, where the y in λ(y) is

α-convertible as usual, and the symmetry of the intermediate state behaves ac-
cordingly. Both names in the labels are free, and there is no fresh name generated
along any of the two transitions. Of course, states should be normalized, and only
representative transitions should be used, as it is stated in definition 2.6.

The only thing that differs in the interpretation of the logic (definition 3.3) is the
function l, which turns modalities of the logic into labels of the HD-automata
and has to be changed to reflect the addition of the two new labels.

The adequacy proof remains unchanged, so the new logic is still adequate for HD
bisimulation. This is a consequence of the fact that the function l is still bijective
modulo α-conversion of labels; for any formalism mapped into HD-automata,
which has a modal logic, if we manage to find a bijective l to map this modal
logic into the HD one, the adequacy proof holds.
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3.6 Extending F : F∗

3.6.1 An “eventually” temporal operator

The ability to express liveness and safety properties is very useful in a modal
logic; for this purpose we add to the logic F a very simple “eventually” operator,
and give an interpretation for this new construct over π-calculus and over HD-
automata. This modal operator is referred to by the syntax E Φ, where Φ is any
formula. The logic F is thus augmented with a new construct; we will call this
new logic F∗.

Definition for π-calculus

The definition for π-calculus agents is simple in principle: we just require that
agent P either satisfy Φ or perform any transition and then satisfy E Φ in the
resulting state. In practice we also need to avoid free name capture in bound
output transitions, so we require that, if agent P satisfies Φ after k transitions,
bound names of all those transitions don’t appear in Φ as free names. This makes
sense, since these names should be unknown to the formula Φ.

Definition 3.7 (Interpreting E Φ over π-calculus).

P0 ² E Φ ⇔ ∃k ≥ 0.∃P1, . . . , Pk.P0
α1−→ P1

α2−→ . . .
αn−→ Pn

∧Pn ² Φ ∧ ∀i ∈ [1, k].bn(k) ∩ fn(Φ) = ∅

The definition should be a little more careful about what happens when k = 0;
if k = 0 we do not require the existence of any transition, but simply that P0

satisfy Φ.

Note that the same definition can be given in a recursive way, as we will do for
clarity in the case of HD-automata, and the following definition is equivalent to
the one we have just seen:

P ² E Φ ⇔ P ² Φ ∨ (P
α−→ P1 ∧ bn(α) ∩ fn(Φ) = ∅ ∧ P1 ² E Φ)

Definition for HD-automata

The definition over HD-automata is somewhat complicated by the locality of
names in HD states. Luckily we do not want to reason about fresh names not
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belonging to the formula Φ, so we only need to be sure that, in every transition
preceding the satisfaction of Φ, any fresh name is not free in the formula; the
simplest way to do this is to shift free names of the formula by one position when
a HD state performs a bound output transition; iterating this process is very
similar to iterating the definition for the modalities of F :

Definition 3.8 (Interpreting E Φ over HD-automata).

Q ²ρ E Φ ⇔ Q ²ρ Φ ∨ ∃σ ∈ sym Q, µ, ζ, Q′.Q Â µ

ζ
// Q′∧

Q′ ²ζ;(σ;ρ)+n Φ shiftn

where n is the number of fresh names generated along µ.

The definition for shiftk is:

shiftk (xi) = xi+k

This process is decidable, as we will see in the chapter about model checking; as in

the previous case, if Q ²ρ E Φ then there exists a finite path Q Â µ1

ζ1
// . . . Â µn

ζn

// Qn

generating k fresh names such that, via a suitable name mapping, Qn satisfies
Φ shiftk.

Adequacy, soundness and completeness

The introduction of the eventually modality does not affect adequacy, since if two
agents, or two HD states, satisfy the same formulae in F∗, then they also satisfy
the same formulae in F , and vice-versa.

Theorem 3.9 (Adequacy of F∗). F∗ is adequate for π-calculus early bisimu-
lation and for HD-automata bisimulation.

Proof. We reason by induction over the structure of F∗ formulae: if f /∈ F∗ \ F ,
certainly the property of adequacy holds, so we need only to show the result for
a formula E Φ, and can assume the induction hypothesis for Φ.

– Proof for π-calculus:

Suppose P ∼ P ′, and P ² E Φ. Then by definition of ² we know that a
path P

α1−→ P1
α2−→ . . .

αk−→ Pk of length k ≥ 0 exists, such that Pk ² Φ and

fn (Φ) ∩
(⋃

i∈[1,k] bn (αi)
)

= ∅. Now we can reason by induction over k; if

k = 0 the property holds directly for induction hypothesis (the one over
formulae, not the one over k).
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k > 0

⇒ P
α1−→ P1

⇒ {P ∼ P ′}

∃α′1, P ′
1.P

′ α′1−→ P ′
1 ∧ P1 ∼ P ′

1

⇒ {induction hypothesis over k, P1 ² E Φ}

P ′
1 ² E Φ

⇒ P ′ ² E Φ

– Proof for HD-automata:

Suppose Q
δ∼Q′, and Q ²ρ E Φ. Again, there is a path

Q Â α1

ζ1
// Q1

Â α2

ζ2
// . . . Â αn

ζn

// Qk, and we reason by induction over its length

k: If k = 0 the property holds for the main induction hypothesis, while for
k > 0 we have:

∃σ ∈ sym(Q), Q1, µ, ζ.Q Â µ

ζ
// Q1 ∧Q1 ²ζ;(σ;ρ)+n E Φ

⇔
{

Q
δ∼Q′

}

∃σ′ ∈ sym(Q′), Q′
1, µ

′, ζ ′.Q Â µ′

ζ′
// Q′

1 ∧Q1

(ζ;(σ;δ;(σ′)−1)+n;(ζ′)−1)∼ Q′
1

⇔ {induction hypothesis over k}

Q′
1 ²(ζ′;(σ′;δ−1;σ−1)+n;ζ−1;ζ;(σ;ρ)+n) E Φ

⇔ Q′
1 ²(ζ′;(σ′;δ−1;ρ+n)) E Φ

⇔ {k > 0}

Q′ ²(δ−1;ρ) E Φ
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Also our soundness and completeness results are unchanged, since if an agent P
satisfies E Φ with k transitions, it satisfies a modal formula in F with k modalities,
corresponding to the transitions in the path, and then Φ, by adequacy of F .
This formula is also satisfied by its corresponding HD state, via suitable name
mappings.

3.6.2 Example: liveness and safety properties of a buffer

Now we go back to our running example, and exploit the new temporal operator
to verify that the memory cell has a liveness property, in the stronger sense of
“something good always happens”: the cell never reaches a state in which it can’t
eventually read a value in the future. Also we check a safety property: it never
happens that a certain value is read and immediately after a different value is
outputted.

alive = ¬E(¬E 〈cx〉 true)

safe = ¬E(¬E 〈cx〉 〈cy〉 true)

These properties are true, but to prove it we should reason inductively about any
possible path. It turns out that model checking a path modality over an automata
is decidable, so model checking can prove these formulae without having to build
an inductive proof.
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Chapter 4

Model checking F and F∗

4.1 Decidability of model checking

We will now take in exam decidability of a modal formula of F∗ over a finite HD-
automaton. There are, to the aim of finite-state model checking, many possible
flaws in our definitions. First, symmetries in HD-states are infinite, and in the
interpretation of F modalities we have used an existential quantification over a
symmetry. Thus, we have to show that this process is decidable, by exploiting the
fact that we only deal with finite support symmetries. Another possible problem
is in the definition for the “eventually” operator: in this case, we have to check
a possibly infinite number of paths, bounded by their length k, but we will see a
way to make this process decidable.

How can we describe in a finite way all the mappings by which a HD state can
satisfy a given modal formula 〈α〉A ∈ F? With a little abuse of notation we
write supp(Q) in place of supp(sym(Q)), and we define the shorthands:

S(Q, 〈α〉A)
def
=

{
ρ
∣∣Q ²ρ 〈α〉A}

ssym(Q)
def
=

{
ρ ∈ sym(Q)

∣∣∀n /∈ supp(Q).ρ(n) = n
}

nsym(Q)
def
=

{
ρ
∣∣∀n ∈ supp(Q).ρ(n) = n

}

Equation 2.2 can be rewritten as:

supp(S) = N ⇒ S =
{
ρ; ρ′

∣∣ρ ∈ ssym(Q) ∧ ρ′ ∈ nsym(Q)
}

The important thing to note is that names of the support are always mapped,
by a generic ρ ∈ sym(Q), into names of the support and vice-versa. There is no

53
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possibility for names into and outside the support to get mixed by a permutation
in the symmetry of ρ.

We have:

ρ ∈ S(Q, 〈α〉A)

⇔ ∃σ ∈ sym(Q).∃Q′, µ, ζ.Q Â µ

ζ
// Q′ ∧ (σ; ρ)(µ) = l(α) ∧Q′ ²ζ;(σ;ρ)+n Arotn

⇔ ∃σ ∈ sym(Q).∃Q′, µ, ζ.Q Â µ

ζ
// Q′ ∧ (σ; ρ)(µ) = l(α) ∧ (ζ; (σ; ρ)+n) ∈ S(Q′, A rotn)

⇔ ∃σ1 ∈ ssym(Q).∃σ2 ∈ nsym(Q).∃Q′, µ, ζ.Q Â µ

ζ
// Q′ ∧ (σ1; σ2)(µ) = ρ−1(l(α))

∧(ζ; (σ1; σ2; ρ)+n) ∈ S(Q′, A rotn)

Now we argue that the only part that matters for a permutation ρ to verify the
assertion Q ²ρ A is the restriction of ρ to fn (Q). This is true, indeed, because
N \ fn(Q) is outside the support of Q, so all the permutations of this set are
in sym(Q), and the fact that ρ maps one of those names into any other adds
no further information. Moreover, the normalization mapping ζ sends fn (Q′)
exactly to fn(Q) ∪ fn(µ) shifted by n positions, plus the first n names.

Notice that σ2 is important in the second half of the conjunction, according to the
previous consideration, only for the binding between fn (µ) \ fn (Q) and fn (α),
which is completely determined by the first half of the conjunction. Since the
permutations mapping free names of Q into themselves are in a finite number,
the possible interesting permutations σ = σ1; σ2 are also finite and obtained
from ssym(Q) by adding to each permutation in this set the correspondences
obtained resolving the equation σ(µ) = ρ−1(l(α)). This reasoning can be applied
inductively to the second part of the conjunction to obtain a proof of decidability.

Regarding the “eventually” modality, we will show in the next section that we
can find an equivalence relation over permutations by which the enumeration of
{ρ|Q ²ρ A}, where ρ is taken modulo the equivalence relation, is finite. This
means that, when looking for a path originating in Q to satisfy the formula E Φ,
we have only a finite number of possibilities, and this makes model checking
decidable.

4.2 The model checking algorithm

Model checking can be seen as the decisional problem of finding the paths in
the state graph that satisfy a conjunction of formulae. The fact that there are
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many overlapping subproblems leads to using dynamic programming to solve this
problem: solutions to subproblems are not calculated each time they are required,
but rather stored in a table, or cached applying memoization if not all possible
subproblems are required to solve the main problem.

In our case, every time we need to check if state S of a given HD-automata
satisfies formula A via mapping ρ, we have to build a three dimensional table
T [s, σ, a], where s is a HD state, a is a subformula of A and σ is a permutation.
To reduce the required checks and optimize the algorithm, we can always use
normalized formulae, using lemma A.3:

∀A,Q, ρ.norm(A) = 〈A′, σ〉 ⇒ Q ²ρ A ⇔ Q ²(ρ;σ−1) A′

Since permutations which can map names of Q into names of A are infinite, (for
example in the case of Q ²ρ true, where ρ can be any permutation) we cannot
index the third dimension of the table with any permutation, but have to choose
permutations modulo an equivalence relation. We build the equivalence class of
permutations which allow a generic state Q to satisfy a formula A:

ρ ≡〈Q,A〉 ρ′ ⇔ ρ∣∣
r(Q,ρ,A)

= ρ′∣∣
r(Q,ρ′,A)

where

r(Q, ρ, A) = fn (Q) ∩ ρ−1(fn (A))

The following observation is the key to find an upper bound to the size of the
table:

ρ ≡〈Q,A〉 ρ′ ⇒ ∀Q.∀A.Q ²ρ A ⇔ Q ²ρ′ A

Since it does not matter how names outside fn (Q) ∩ ρ−1(fn (A)) are mapped,
we can represent all the possible interesting permutations in a row of our table in
a finite way by enumerating all the partial functions from fn (Q) ∩ ρ−1(fn (A)),
which are in a finite number, even if it’s exponential w.r.t. the maximum number
of free names in a formula or in a state. In the implementation, this step will be
done using a normalization function that, given a permutation ρ, a state Q and
a formula A, returns a canonical representative of the class of equivalence of ρ
over Q and A.

Having a finite table means that we do not have to check an infinite number of
states when, starting from a state Q, we explore the graph of all triples of states,
formulae and permutations reachable from Q ²ρ E Φ in search for a state which
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satisfies Φ via the right name mapping: if we discover that we have visited all of
the reachable cells of the table, then we have found that Q 2ρ A.

Of course, the table will be very sparse over the dimension indexed by permuta-
tions, and a more appropriate data structure, which should be chosen depending
on how one represents a finite support symmetry, could be used, however this
does not affect the presentation of the algorithm, which we give below using the
Caml programming language. Self-explaining auxiliary functions will be used
without definition, but we will see their types after the main algorithm. Being
this a reference implementation, we will not care too much of optimizations (e.g.
redundant calls to the normalization function).

First of all, we introduce types used throughout the implementation:

type name
type subst
type perm
type state
type action
type formula = And of formula list

| Not of formula
| Next of action ∗ formula
| Eventually of formula

type label
type table

The only interesting one is the abstract syntax for formulae, while the other types
are considered abstract.

The entry point of the program takes a state, a permutation and a formula, and
returns the boolean value corresponding to whether the state satisfies or not the
formula via the given mapping:

let rec model_checker : state −> perm −> formula −> bool =
fun state rho formula −>
let table = build_table state formula in

memo table state rho formula

Initially the caching table is built (the function build_table will internally per-
form a normalization of the formula), and then the function memo is called. This
function is responsible for normalizing the formula and the permutation and
eventually calling the actual model checking routine, caching the results:

and memo : table −> state −> perm −> formula −> bool =
fun table state rho formula −>
let (fmla , p ) = norm_f formula in
let rho1 = norm_p ( seq [ rho ; inv p ] ) state fmla in
match ( read_table table ( state , rho1 , fmla ) ) with
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Some x −> x
| None −>

let retval = check table state rho1 fmla in
write_table table ( state , rho1 , fmla ) retval ;
retval

The function, like all the following, takes the table as its first argument. The
table has a function to read from it, which returns an optional boolean value
representing whether the specified location has already been written or not, and
the contents of the location in the first case. If no value is already present at
the current coordinates, the formula and the permutation are normalized (the
function inv is inversion of permutations). We assume that any uninteresting
name is mapped by the resulting permutation to a special, unused value (which
is one of the ways to represent partial functions). Then the model checking
function is called, and the return value is stored in the table for later use. The
model checking function performs a pattern matching operation on the formula
and recursively calls the memoizing function:

and check : table −> state −> perm −> formula −> bool =
fun table state rho formula −>
match formula with

And subfs −>
for_all ( memo table state rho ) subfs

| Not subf −>
not ( memo table state rho subf )

| Next (act , subf ) −>
exists ( check_next table state rho subf act )

( out_transitions state )
| Eventually subf −>

i f visited table ( state , rho , formula )
then fa l se
else i f memo table state rho subf

then true
else
begin
set_visited table ( state , rho , formula ) ;
exists

( check_eventually table state rho formula )
( out_transitions state )

end

The And case is the one which allows the program to terminate when an empty
conjunction (which, as we said, represents the boolean value true) is found. The
for_all and exists functions are in the standard library of the language and
check respectively for all or one element of a list to satisfy a boolean predicate.
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The interesting cases are Next and Eventually. We find all the outgoing tran-
sitions from the current state, and check if any of these transitions satisfies the
check_next or check_eventually function. The former will unify with a permu-
tation the label of the transition and the action of the modal formula (applying
ρ as in the definition), and cause recursion as expected, while the latter will be
simpler, and only make the recursive call with appropriate mappings. As we
already said, the eventually modality, according to the definition, should lead to
an infinite computation but, when considering the graph given by all the cells
of the table, and all the steps that we can make over those, it’s clear that a
cycle doesn’t add information to the checking process, so we can perform a visit
(a depth-first search, in this case) of this graph, using a flag in the table itself,
which is initially clear, and can be set to indicate that the given cell has already
been visited. Note that there are no problems with a formula like E Φ ∧ E Φ,
where Φ is true in the starting state, because in the second call the memoization
function returns true without allowing the program to check the “visited” flag
again (which would erroneously lead to return false to the caller because the cell
has already been visited).

We first see check_next:

and check_next : table −> state −> perm −> formula −>
action −> ( state ∗ label ∗ perm ) −> bool =

fun table state rho subf act (dest , label , z ) −>
match make_equal label ( apply_l ( inv rho ) (l act ) ) with

None −> fa l se
| Some pairs −>

let sigmas = find_compatible_perms state pairs in
let fn = fresh_names act in
let n = length fn in
let fmla = apply_f ( rot fn ) subf in

exists
( fun sigma −> memo table dest

( seq [ z ; plus n sigma ; plus n rho ] ) fmla )
sigmas

The first call is to the function make_equal, which takes two labels l1 and l2 and
returns an optional list of pairs, explicitly enumerating the necessary bindings to
turn l1 into l2. If the value None is returned, the arguments are not unifiable.
Notice that this procedure is not proper unification [11], because the returned
substitution must be injective. We look for a substitution σ such that label =
σ−1(rho−1(l(act))), which is the same as saying σ(label) = rho−1(l(act)). If no
such substitution is found, we return false, else we find, in the symmetry of the
current state, all the permutations sigmas that satisfy the substitution (which
can be seen as a set of constraints). Then names of the immediate subformula
that we are considering are rotated as in definition 3.3, and finally we check for
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the existence of a permutation, among the sigmas, which satisfies the recursive
invocation of the function memo, with the correct permutation as an argument
(remember that normalization is performed in the memo function itself).

The implementation of check_eventually follows. The function class_of gives
the number of fresh names for a HD label, i.e. the index i such that µ ∈ Li

and check_eventually : table −> state −> perm −> formula −>
( state ∗ label ∗ perm ) −> bool =

fun table state rho subf (dest , label , z ) −>
let n = class_of label in
let fmla = apply_f ( shift n ) subf in

exists
( fun sigma −> memo table dest

( seq [ z ; plus n sigma ; plus n rho ] ) fmla )
( find_useful_perms state

( map_and_discard
( fun x −> applysubst ( shift ˜−n )

( applyperm z x ) ) ( fn_s state ) )
( map ( applyperm ( inv rho ) ) ( fn_f fmla ) ) )

The problem when implementing the eventually modality is that, when we choose
a permutation σ ∈ sym(Q) (where Q is the current state), we don’t add con-
straints, as instead we do in check_next, because it’s not important where names
of the transition label are sent. This way we should consider all the infinite per-
mutations outside the support of sym(Q). Consider for example the following
π-calculus agent:

x(y).yy.nil

This agent satisfies the formula E 〈zz〉 true, using permutation {x/y, y/x} in the
starting state; to avoid considering all the possible permutations, we select only
those that map free names of the destination state of the transition we are con-
sidering into free names of the formula. Since there may be fresh names in the
destination state, it’s necessary to shift “backwards” those names, eventually
loosing some name. The function find_useful_perms takes as arguments a state
Q, a list of source names and a list of destination names, and returns all the
permutations in sym(Q) that are interesting for the given source and destination
names (by an obvious enumeration). Names in the destination state of the transi-
tion are transformed through z and then shifted negatively, using the substitution
shift ˜−n applied by the function applysubst, which returns an option because
the result could be undefined. The map_and_discard function takes f and l and
applies f , which returns an optional value, to every element of l, returning all
those elements which are not None (this function is not in the standard library
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but it’s easy to implement). Names of the formula are transformed through the
inverse of rho as it’s needed according to definition 3.3.

The main algorithm presentation could be ended here, however we also see the
function find_compatible_perms, which deserves interest because it is the only
point where we solve path constraints in the algorithm. It can be described as
follows:

and find_compatible_perms : state −> ( name ∗ name ) list −>
perm list =

fun state pairs −>
i f exists

( fun (a , b ) −>
mem a ( support state ) <> mem b ( support state ) )

pairs
then [ ]
else

let (filt , ext ) = partition
( fun (a , b ) −>

mem a ( support state ) &&
mem b ( support state ) )

pairs in
let to_extend = fold_left

( fun perms binding −>
( filter ( perm_has binding ) perms ) )

( ssym state ) filt in
let addition = build_permutation ext in

map ( fun p −> seq [ p ; addition ] ) to_extend

The function is based on the idea that, given an HD state Q, if we want to
select all the permutations σ ∈ sym(Q) such that σ(a) = b, then there are three
possibilities:

1. One of a and b is in the support of Q, and the other is not. In this case, no
permutation in sym(Q) can satisfy the constraint.

2. Both a and b are in the support of Q. In this case we have to select from
ssym(Q) all those permutations σ which satisfy σ(a) = b, and no condition
is imposed for names outside the support, so that we still have a finite
support symmetry but with less permutations over the support.

3. None of a and b is in the support of Q. In this case, there are infinite
permutations in nsym(Q) that satisfy the constraint, so we choose the
one that satisfies all the constraints of this kind simultaneously and is the
identity on all other names (it does not matter, anyway) and compose this
permutation with all the permutations obtained from the previous step.
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The implementation first checks if the set of constraints is satisfiable. If it is,
the list of pairs is partitioned into filt, which is the list of pairs in the support,
and ext, the list of pairs outside the support. The formers are used to filter the
permutations over the support of the current state, while the remaining bindings
are used to build a single permutation, which is composed with the results of the
previous step.

The function mem checks membership in a list, fold_left is a generic iterator
over lists using a local state for accumulation of the results, partition splits a
list into a pair of lists according to a boolean predicate, and the function map

applies a function to all the elements of a list, returning the list of results. All
these functions are in the standard Caml library.

A final consideration is about the handling of the caching table: should an im-
plementor wish to use a more efficient representation, for all the symmetries in a
row of the table, than explicit enumeration, this could be achieved in the imple-
mentation of the functions to build, read and write a table, without affecting the
rest of the algorithm.

Types of auxiliary functions are as follows:

(∗ Functions to b u i l d and use t a b l e s ∗)
val build_table : state −> formula −> table
val read_table : table −> ( state ∗ perm ∗ formula )

−> bool option
val write_table : table −> ( state ∗ perm ∗ formula )

−> bool −> unit
val visited : table −> ( state ∗ perm ∗ formula ) −> bool
val set_visited : table −> ( state ∗ perm ∗ formula ) −>

unit

(∗ Functions over s t a t e s and formulae ∗)
val out_transitions :

state −> ( state ∗ label ∗ perm ) list
val norm_f : formula −> ( formula ∗ perm )
val support : state −> name list
val ssym : state −> perm list
val find_useful_perms : state −> name list −> name list −>

perm list
val fn_s : state −> name list
val fn_f : formula −> name list

(∗ Functions over s u b s t i t u t i o n s ∗)
val apply_f : subst −> formula −> formula
val apply_l : perm −> label −> label
val applyperm : perm −> name −> name
val applysubst : subst −> name −> name option
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val inv : perm −> perm
val rot : name list −> subst
val shift : int −> subst
val plus : int −> perm −> perm
val seq : perm list −> perm
val norm_p : perm −> state −> formula −> perm
val perm_has : ( name ∗ name ) −> perm −> bool
val build_permutation : ( name ∗ name ) list −> perm

(∗ Functions over ac t i on s and l a b e l s ∗)
val l : action −> label
val make_equal : label −> label −> ( name ∗ name ) list option
val fresh_names : action −> name list
val class_of : label −> int

(∗ Other f unc t i on s ∗)
val map_and_discard : ( ’ a −> ’b option ) −> ’a list −> ’b list

4.3 Complexity of the algorithm

As we said earlier, explicit representation of all the possible permutations gives
a clear view of the algorithm, but it’s definitely not good from the point of
view of complexity. The number of partial bijective (if restricted to the right
domain) functions from a set N of n elements to itself is obtained by choosing
all the possible pairs of subsets of N of the same cardinality, and for any of those
choosing all the possible permutations; the exact number is

Pf (n) =
n∑

k=0

(
n

k

)(
n

k

)
k!

which surely has a lower bound in 2n =
∑n

k=0

(
n
k

)
. Of course, there is no necessity

to explicitly store in memory all the possible permutations: we can use, as the
third dimension of our table, a dynamic data structure (a bit like saying that
a function from strings of length k into natural numbers can be represented
explicitly as a table containing all the possible strings, or as a hash table). If we
still have to examine all the possible permutations, this optimization does not
change complexity.

We observe that, if we exclude the “eventually” modality which is the more
problematic, the set of symmetries taken in exam at each step does not grow,
so complexity of the algorithm on that dimension is bound by a more tractable
number, the maximum cardinality of ssym(Q) (which is often very small). Per-
haps the exponential worst-case complexity is intrinsic to the problem, because
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symmetries are a compact way to represent a series of states using a single one,
but in model checking we enumerate all of the system states, so it may well be
that this “unfolding” is inevitable; further study on the topic is worth.

Said this, to evaluate the worst-case complexity of our algorithm we can imagine
to fill the whole table, starting from the bottom, since memoization is only an
optimization. Be Q the set of states reachable from the starting one, q its cardi-
nality, q′ the maximum number of outgoing transitions starting in any state of Q,
F the set of subformulae of the checked formula, f its cardinality, f ′ the maximum
number of immediate subformulae of a formula in F , s the maximum cardinality
of ssym(S) for some S reachable from the starting state, n the maximum number
of names in an element of Q ∪ F , p = Pf (n).

The actual model checking function check is called no more times than the num-
ber of elements of the table, which is q· f · p, and to build the current state, when
evaluating a formula of F , we look at q′· f ′· s other cells. So total complexity is

(q· f · p)· (q′· f ′· s)

In the average case, q′· f ′· s should be much smaller than the remaining part (in
particular, f ′ is 1 unless in case of a conjunction), so that we can consider it as
a constant, and say that complexity is q· f · p.
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Chapter 5

Case studies

We will take into exam some example, to test the expressivity of our temporal
logic, and show that there are useful properties of a concurrent system with
mobility of agents that can be modeled as F or F∗ formulae. Since all the example
programs are π-calculus agents, we have been able to take advantage from the
previous work on HAL [26], and use its model checker to test our formulae.

Even if case studies presented here are not complicated (but the last one, which in
the incorrect version has about two thousands of states), it would be impossible
to hand check these requirements, while a machine can perform the checks in
seconds, and even output a counterexample.

5.1 The dining philosophers

We will check the “no deadlock” and “no starvation” properties for the famous
problem proposed by E. W. Dijkstra. Five philosophers are sitting at a round
table, with a bowl of rice each one, and between each pair of philosophers is a
chopstick. Philosophers either think or eat. To eat, a philosopher has to take two
chopsticks, the one on his left and the one on his right. Then he eats, releases
the chopsticks, and he gets back to thinking again, restarting the cycle.

For simplicity we will only check properties of a more intimate dinner with two
philosophers; a stick is modeled by a process with two states: it first waits for
an input, and then outputs a value on the channel received as input. Since our
semantics is synchronous, writing a value on a channel means waiting for another
process to read it, and this is what a philosopher process does to release the
stick. A philosopher is modeled as a process with two channels, eat and think.
The philosopher first writes a value (it does not matter what one) on think, then
he acquires the two sticks in no particular order, he writes a value on eat to
indicate he’s eating, finally releasing the two sticks and going back to think.
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Stick(x)
def
= x(y).yy.Stick(x)

Ph(l, r, think, eat)
def
= think think.(ll.rr.eat eat.l(x).r(y).Ph(l, r, think, eat)

+ rr.ll.eat eat.l(x).r(y).Ph(l, r, think, eat))

Dinner(e1, e2, t)
def
= (νr) (νl) (Stick(l)|Stick(r)|Ph(l, r, t, e1)|Ph(l, r, t, e2))

We have used a single channel as the think channel for both the philosophers,
because we only will need to check if someone is thinking.

Now we can ask for the “no deadlock” property:

NoDeadlock = ¬E(¬E(
〈
tt

〉
true))

The formula states that there will always, and infinite times, be someone who is
writing over the channel “think” the value “think”. This is expressed by stating
the equivalent property that there will not eventually be a moment in which
there is not eventually the possibility that someone write the value “think” on
the channel “think”.

The model checker returns false when verifying this formula. From literature, we
already know that one possible solution to this problem is to impose an ordering
over sticks:

Ph(l, r, think, eat)
def
= think think.ll.rr.eat eat.l(x).r(y).Ph(l, r, think, eat)

In this case, our property holds. The other interesting property for the problem
of the dining philosophers is the one known as “no starvation”: we require (in
the corrected version) that each man can eat for infinite times:

NoStarvation = ¬E¬(E(〈e1e1〉 true) ∧ E(〈e2e2〉 true))

This formula, which is decidably true, is read as “there is no possible future
situation in which it does not hold that both the events can eventually happen”,
where the events are e1e1 and e2e2.
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5.2 Non atomic access to memory regions

We show a typical problem with shared memory: if two processes write simulta-
neously, into a random access memory, data which is constituted by more than
one word, it may happen that data written by the two process is mixed. We show
a didactic example where data is made up of two values, and each process can
access two memory cells. The memory cell is modeled similarly to our buffer, but
it has two different channels for input and output:

Buf(i, o)
def
= i(x).ox.Buf(i, o)

Write(c1, c2, v1, v2)
def
= c1v1.c2v2.0

P (x, v1, v2, v3, v4)
def
= (νi1) (νi2) (νo1) (νo2)

(Write(i1, i2, v1, v2)|Write(i1, i2, v3, v4)|
Buf(i1, o1)|Buf(i2, o2)|o1(a).o2(b).xaxb)

The fifth process, which writes on channel x, serves us as a tester for a safety
property:

Integrity = ¬E(〈xv1〉 ¬ 〈xv2〉 true)

The model checker tells that this property is false. Then we might suspect what
happens, and ask a more precise question:

Integrity2 = ¬E(〈xv1〉 〈xv4〉 true)

This property is false in the starting state.

5.3 Mutual exclusion

Now we correct our implementation, by adding a mutex, i.e. a data structure
which can be atomically locked and unlocked. We model a mutex as a process
which reads a value from a fixed channel, then a value from the received channel,
and then returns in its initial state:

Mutex(c)
def
= c(x).x(y).Mutex(c)
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A process uses the mutex by first generating a new name x, then sending it over
c. Now the mutex is locked; to unlock it, the process, which is the only one
entitled to do so, sends a value over x.

Here’s our previous example, modified to lock memory before writing data. The
Write program has another argument, corresponding to the channel the mutex
is listening on.

Buf(i, o)
def
= i(x).ox.Buf(i, o)

Write(c1, c2, v1, v2,m)
def
= (νx) mx.c1v1.c2v2.xx.0

P (x, v1, v2, v3, v4)
def
= (νi1) (νi2) (νo1) (νo2) (νm)

(Write(i1, i2, v1, v2, m)|Write(i1, i2, v3, v4,m)

Buf(i1, o1)|Buf(i2, o2)|o1(a).o2(b).xaxb|
Mutex(m))

Now our two integrity properties are verified, and we can still check that some-
thing good eventually happens:

SomethingGood = (E 〈xv1〉 〈xv2〉 true) ∨ (E 〈xv3〉 〈xv4〉 true)

5.4 An example involving mobility

We define a very simple mobile protocol, similar to the handover protocol de-
scribed in [14], where a single client can access a system through one of three
access points, and there is an input channel where anybody can send messages
to this client.

The first program we introduce is the tracker, which keeps track of the channel
where the client is reachable at. The tracker has two arguments, the switch
channel, where access points register new locations for the client, and the in
channel, where everybody can send messages to the client. The program has two
states (the first one is used only before the client logs in for the first time), and
it’s similar to the memory cell of section 2.1.3:

Tracker(switch, in)
def
= switch (loc).T rack2(loc, switch, in)

Track2(loc, switch, in)
def
= in (msg).locmsg.Track2(loc, switch, in)+

switch (newloc).T rack2(newloc, switch, in)
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Now we introduce the access point, which knows the switch channel of the tracker,
and has an enter channel, where the client can log in; the login procedure is very
simple and does not take in account any security concern, such as the use of
a password, because we will only check properties related to reachability of the
client.

The login protocol, from the point of view of the client, consists in two steps:

1. The client sends a channel to the access point, to signal that he wants to
log in.

2. On this channel, the client receives a new channel. This is the channel
where he will receive new messages. From this point on, any previously
received channel can be discarded and will never be used again.

From the point of view of the access point, before sending the new channel to the
client the access point communicates it to the tracker via the switch channel:

Ap(switch, enter)
def
= enter (x). (νc) switch c.xc.Ap(switch, enter)

The client knows the three enter channels of three access points, and at any time
it can read a message and output it on a fixed channel (e.g. a message window
on an user’s screen), or log in to another access point:

Client(ap1, ap2, ap3, out)
def
=

(c)(ap1 c.c(k).Comm(k, ap1, ap2, ap3, out)

+ap2 c.c(k).Comm(k, ap1, ap2, ap3, out)

+ap3 c.c(k).Comm(k, ap1, ap2, ap3, out))

Comm(k, ap1, ap2, ap3, out)
def
=

k(msg).outmsg.Comm(k, ap1, ap2, ap3, out)

+Client(ap1, ap2, ap3, out)

The main program puts in parallel composition a tracker in its starting state,
three access points and a client. Again, we introduce a tester process, which
writes the values x and y on the input port:
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Prog2(out, x, y)
def
= (νswitch) (νap1) (νap2) (νap3) (νin)

(Ap(switch, ap1)|Ap(switch, ap2)|Ap(switch, ap3)

|Tracker(switch, in)

|Client(ap1, ap2, ap3, out)

| in x.in y.0)

Now we can finally test some property of the system; for first, we require that
both x and y are eventually sent on the out channel, in the right order:

both = E
〈
out x

〉
E

〈
out y

〉
true

ordered = ¬E
〈
out y

〉
E

〈
out x

〉
true

The model checker answers true to both questions. Then we check that no other
value comes through the out channel, and of course the model checker agrees:

correct = ¬E
〈
out z

〉
true

Finally, we ask the model checker if it is possible that x is outputted and not y,
i.e. if the channel can loose any message:

lossless = ¬(E
〈
out x

〉¬E
〈
out y

〉
true)

The model checker responds that this formula is true, so we can be happy with
our mobile protocol. It is important to underline that this is a formal proof of
correctness for the design of a relatively complex protocol, obtained by simple
means that any programmer could easily learn and use. If the implementation
is correct w.r.t. the design, the implementor can be mathematically sure that
respecting the protocol no message will be lost; this is much better (when it
can be done) than only testing the design against a set of test cases, but the
specification language is very similar, so that already existing experience in testing
can be easily reused with model checking.
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5.5 Finding an error

Now we show that the model checker can really find errors in a protocol, by
changing the program for the access point into:

Ap(switch, enter)
def
= enter (x). (νc) xc.switch c.Ap(switch, enter)

We have inverted the two actions of communicating the fresh channel to the
client and to the tracker. At first sight, this might seem not harmful because
the channel is fresh. We check all of our properties and find that those all hold,
but the last one: the channel may loose messages. Of course, what happens is
that the client discards the old channel too early, before the tracker has stopped
sending messages to it.

This example demonstrates how a possible problem, which, depending on the
speed of the channel switch in the tracker process (specifically the nondetermin-
istic choice in the Track2 program) might never show up in the testing phase,
can be identified and corrected at design time without difficulty.

Besides, while testing and debugging concurrent programs after a test failure is
often a complicated trial and error procedure, and as we said it’s even possi-
ble that potential problems does not happen at all in the testing phase (when
the program is run in a controlled environment, different from the one where
the software will be used) model checking finds the problem and even returns
a counterexample, so that an eventual mistake can be spotted and solved with
ease.
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Chapter 6

Conclusions and future work

Starting from the definition of a modal logic for the π-calculus, we have obtained
a kind of interpretation for modal formulae over HD-automata which, under
generalizable conditions (e.g. section 3.5), can be systematically adapted to many
kinds of branching-time temporal logics. There are some features which are
particularly suited to practical implementation of verification techniques using
our approach:

– We have obtained a general framework to deal with finite-state enumerative
methods for formal verification. The number of formalisms that can be
mapped into the HD model, either directly, or by an intermediate encoding
into π-calculus, leads to think that further studies in this area might provide
an uniform theory for model checking algorithms.

– HD-automata with symmetries can be considered the implementative point
of view of a recently introduced [19] coalgebraic semantics for the π-calculus,
which used a systematic approach to obtain minimization. Minimizing a
system before an exhaustive verification can become a crucial factor for the
tractability of such problems.

– The absence of side conditions in the definition for modalities gives a uni-
form and intuitive treatment of modal formulae with name allocation, deal-
location and passing. This is a direct consequence of the way HD-automata
have been designed, and by itself is an evidence that that symmetries in
states and locality of names are a good (if not minimal) abstract model
for resource allocation and information passing mechanisms. The proof of
adequacy itself, even if appearing mechanical, is in its most part a series of
equations on substitutions; also in this case, the absence of side conditions
helps in reasoning about the formalism.
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The complexity result is, as we said, not so promising, but aligned with results
using other methods, being the problem intrinsically enumerative. On the other
hand, the logic is expressive: as case studies highlight, interesting properties of
a system can be checked in reasonable time, and without the need to provide an
hand made proof.

Being able to verify calculi with name passing and generation is indeed a very
useful feature in software design. Since HD-automata have local names, only
name identity is preserved in transitions, but names can represent many different
things, such as objects, localities, channels or messages. Identity of objects,
channel and messages is the key property to correctly represent a wide spectrum
of programming paradigms at the design level, when one often does not want to
deal with actual values of data fields but rather to their identity when operations
are applied to them. With transmission of channels, we also achieve verification
of programs involving mobility of code, which is, as we already said, an important
challenge for computer science, given the recent broad diffusion of mobile devices
of any kind.

There are many possibilities to extend the work presented here:

– Studying modal logics for other process calculi (e.g. with localities, causal-
ity etc.) and their translation into corresponding logics for HD-automata.

– In our formalism, names are local, and the only property they have is
identity: if two names are distinct, they will never be mapped into equal
names in the destination state of a transition. Ongoing research is working
on modeling name fusions with HD-automata, and it would be interesting
to see if the results of this thesis can be generalized to logics with fusion.

– Since we can map very different languages into HD-automata, it would be
useful to see how we could integrate different parts of the design, written
in different languages, into a single HD-automaton and verify properties of
the obtained heterogeneous system.

– Adding other path modalities, or generalizing our logic using fixpoint op-
erators. Even if this might seem the most appealing direction, our results
for complexity of model checking, and maybe even for decidability, are to
be restated and might not hold at all.

– Exploiting properties of substitutions to optimize the algorithm. After
all, we handle the set of symmetries acting on the support of a state by
explicit enumeration. An optimization step would be to find monotonic
(w.r.t. composition) operators, related to the interpretation of our logic,
that could then be applied to the generators of this group instead of all of
its elements.
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– Finding optimized data structures to represent a set of permutations with
efficient insert and search (based on a set of constraints) operations. This
would be aimed to implement the third dimension of the caching table, and
can reduce average time and space complexity of the algorithm.

Given all the safety and fault-tolerance problems encountered by software pro-
duced with traditional design technologies when impacting the global computing
age that has just begun, we hope that this work will contribute to the start of new
methodologies, with formal specification and verification as strong foundations,
which will make software written in the near future more reliable, and allow users
to trust, and with few risks depend upon, services and products which are going
to pervade our lives.
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Appendix A

Auxiliary theorems and
definitions

Lemma A.1 (Injective substitution and π-calculus transitions).

ρ injective ⇒ (P
α−→ P ′ ⇔ Pρ

apply(ρ,α)−→ P ′ρ)

where apply(ρ, α) is ρ(α) but where bound names n1, . . . , nk of the label have
been converted to ρ(n1), . . . , ρ(nk), which is necessary because these names be-
come free in P ′.

Lemma A.2 (Injective substitution and ²).

ρ injective ⇒ (P ² A ⇔ Pρ ² Aρ)

Lemma A.3 (Injective substitution and ²HD).

β injective ⇒ (Q ²ρ A ⇔ Q ²(ρ;β) Aβ)

Lemma A.4 (Composition of rot{n1,...,nk} and ρ+k).

ρ bijective ⇒ rot{n1,...,nk}; ρ+k = ρ; rot{ρ(n1),...,ρ(nk)}

Lemma A.5 (Composition of rot{n1,...,nk} and unrot(k,i)). Be unrot(k,i) the
substitution

unrot(k,i)(xj) =

{
xi+j if j ∈ [0, k − 1]

xj−k if j ∈ [k, i]

and xi−1 = max(fn (X)). Then

X rotn1,...,nk
unrot(k,i) = X{xi/n1, . . . , xi+k−1/nk}

A corollary is that
(
rotxi

; unrot(1,i)

)
= id.
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Definition A.6 (Modal formula corresponding to a HD-label).
Given a HD label µ we can build a modality α such that Q ²id 〈α〉 true ⇔
∃Q′, ζ.Q Â µ

ζ
// Q′ with the following function:

m(tau) = τ

m(in(x, y)) = xy

m(out(x, y)) = xy

m(bout(x)) = x(x0)

the proof is trivial and comes directly from the definition of ²ρ; notice that the
choice of x0 is completely arbitrary: we could have chosen any name since this
name will be discarded. We will also need a more precise function m∗, with
specified fresh names in the case for bound output; to do so, we define m∗ as a
function from labels to modalities, but indexed over a name:

m∗
y(bout(x)) = x(y)

m∗
y(l) = m(l) in other cases

If we wanted to generalize the results of this thesis to any set of labels, not
only those of HDπ, we would have to index m∗ over an arbitrary enumeration of
names, and not only over a single name, to handle the polyadic case.
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[26] web site. The HD-automata laboratory. http://fmt.isti.cnr.it:8080/

hal.

[27] web site. The Mobility Workbench. http://www.it.uu.se/research/

group/mobility/mwb.


