UNIVERSITA' DI PISA Facoltà di Ingegneria

Corso di Laurea in Ingegneria Nucleare

TESI DI LAUREA

Analisi di un evento di PTS originato da un incidente di tipo MSLB in un impianto nucleare WWER-1000/320 condotta mediante i codici accoppiati Relap5, Trio_U e Ansys

Relatori:

Prof. Ing. Francesco D'Auria

Prof. Ing. Marco Beghini

Dott. Ing. Davide Mazzini

Candidato:

Stefano Vettori

Dicembre 2003

<u>Titolo della tesi</u>: "Analisi di meccanica della frattura del vessel di un impianto nucleare WWER-1000/320 condotta mediante i codici accoppiati Relap5, Trio_U e Ansys, in caso di un evento di PTS originato da un incidente di tipo MSLB"

Riassunto: Il presente lavoro documenta lo studio degli effetti di un PTS (Pressurized Thermal Shock) originato da un MSLB (Main Steam Line Break) sul recipiente in pressione di un reattore di tipo WWER-1000/320. E' stata condotta una analisi accoppiata fra un codice termoidraulico di sistema (Relap5) e un codice agli elementi finiti (Ansys 5.7) al fine di determinare i margini di all'infragilimento del materiale del vessel. I risultati del calcolo sicurezza in relazione termoidraulico ottenuti da Relap hanno permesso di determinare i carichi termici e meccanici da introdurre nel codice strutturale. Le sollecitazioni determinate con Ansys sono state quindi utilizzate per una analisi di meccanica della frattura condotta su una ipotetica cricca monodimensionale superficiale, assiale e circonferenziale, avente 3 differenti valori di profondità: 7 mm (cricca piccola), 73 mm (1/4 dello spessore del vessel), 196 mm (>1/2 dello spessore del vessel); nei calcoli, sia termoidraulici che meccanici, è stata presa in considerazione la presenza del *cladding*. In accordo alle raccomandazioni della IAEA e' stato analizzato il comportamento di una cricca bidimensionale semiellittica superficiale (assiale) su vessel senza cladding, avente 3 differenti valori di profondità all'apice: 7 mm, 16 mm e 73 mm e rapporto di aspetto 0.5, 0.3 e 0.5 rispettivamente. Infine è stata condotta una analisi fluidodinamica tramite codice CFD Trio U, al quale sono stati

forniti come dati di ingresso i risultati termoidraulici ottenuti con il codice Relap, per determinare gli effetti dell'eventuale miscelamento del fluido primario nel *downcomer* sui risultati di meccanica della frattura.

<u>Thesis title</u>: "WWER 1000/320 Reactor Pressure Vessel fracture mechanics analysis in case of PTS originated by a MSLB accident, conducted by coupling Relap5, Trio_U and Ansys codes"

Abstract: The present report documents the activity performed to investigate the consequences of a Pressurized Thermal Shock for the Reactor Pressure Vessel of a WWER-1000/320, originated by a Main Steam Line Break accident. The investigation, aimed at the establishing of the embrittlment safety margin for the vessel material, has been conducted estimating the stresses in the pressure structure by the use of Relap5/mod3.3 and Ansys 5.7 coupled codes. The thermal-hydraulic results obtained from the transient analysis conducted by the system code plant nodalisation have been used to determine the mechanical and thermal loads to be employed for the stress computation by the structural finite element model. For conservative reasons, the Fracture Mechanics analysis has been conducted assuming passing through circumferential and axial cracks, adopting three different depth values: 7 mm (shallow crack), 73 mm (1/4 of the thickness) and 196 mm (> 1/2 of the thickness) and a bidimensional semi elliptical surface crack with three different crack tip depth values: 7 mm, 16 mm and 73 mm with aspect ratio of 0.5, 0.3 and 0.5 respectively. The presence of the internal cladding, except for the bidimensional crack, has been taken into account for both thermal-hydraulic and structural calculations; stainless steel and carbon steel physical and mechanical properties have been specified. A fluid-dynamics analysis with CFD Trio U code has been finally conducted to study the effect of the downcomer fluid mixing on the Fracture Mechanics results.

SOMMARIO

Nel presente lavoro sono state analizzate le conseguenze di un evento di PTS (*Pressurized Thermal Shock*) originatosi a seguito di un MSLB (*Main Steam Line Break*) sulla propagazione instabile di una cricca localizzata sulla parete del *vessel* di un WWER-1000/320. Il PTS non è altro che un transitorio termoidraulico in cui un forte sovra-raffreddamento del circuito primario determina uno shock termico nel materiale costituente il *vessel* mentre la pressione si mantiene su valori elevati.

Lo scopo che ci si propone è quello di verificare se sussistono adeguati margini di sicurezza relativamente all'infragilimento neutronico del materiale. Durante la vita operativa dell'impianto, infatti, l'irraggiamento ad opera dei neutroni veloci provoca una variazione importante delle caratteristiche meccaniche dell'acciaio, riassumibili in:

- incremento dei limiti di rottura e di snervamento
- incremento della durezza
- riduzione della duttilità
- riduzione della tenacità a frattura.

Questo ultimo effetto in particolare è stato studiato intensivamente tramite provini Charpy inseriti all'interno del *vessel*, periodicamente rimossi e soggetti alla prova di resilienza. L'analisi dei dati ha mostrato che l'effetto principale dell'irraggiamento neutronico consiste in un aumento della temperatura di transizione NDT e in una conseguente diminuzione della tenacità a frattura. Il capitolo 1, oltre alla descrizione dei tre codici di calcolo utilizzati (Relap5/mod3.3 – Ansys 5.7 – Trio_U), riporta una sintesi dei fenomeni legati all'esposizione neutronica. Sempre nel capitolo 1 vengono descritti i metodi di calcolo utilizzati per l'analisi di PTS nell'ambito della meccanica della frattura lineare elastica (LEFM). In tale ambito il comportamento del materiale è di tipo fragile, ovvero la propagazione instabile di un difetto coinvolge una limitata zona di plasticizzazione all'apice della fessura. La previsione circa il comportamento di una fessura acuta passa attraverso la conoscenza di alcuni parametri del materiale quali la tenacità a frattura (KIC) e lo *Stress Intensification Factor* (KI), il cui confronto permette di stimare l'eventuale propagazione instabile della cricca.

L'analisi di PTS è stata condotta su di un generico impianto nucleare WWER-1000/320 da 3000 MWth e 4 *loops*, le cui caratteristiche principali vengono descritte nel capitolo 2. Tale impianto, pressurizzato ad acqua leggera, deriva dall'esperienza maturata dagli ingegneri russi nell'esercizio degli impianti di propulsione operativi nei sottomarini nucleari. Le notevoli affinità presenti fra i WWER e i reattori ad acqua in pressione occidentali (PWR) rende possibile lo studio dell'impianto russo con gli stessi strumenti sviluppati in occidente per lo studio dei PWR, compresi naturalmente i codici di calcolo termoidraulici. La maggior differenza fra i WWER e i PWR occidentali consiste sia nella diversa localizzazione degli ingressi delle *Hot e Cold Legs* (nei WWER le 8 tubazioni hanno diversa elevazione: le 4 *Hot Leg* sono poste più in alto rispetto alle 4 *Cold Leg*) sia nei generatori di vapore a tubi orizzontali. I sistemi di sicurezza dell'impianto sono in linea con gli standard occidentali (sistemi di iniezione ad alta pressione, accumulatori, sistemi di iniezione a bassa pressione, contenimento a soppressione di pressione).

Il lavoro ha lo scopo ulteriore di dimostrare la fattibilità di calcoli accoppiati (termoidraulici – strutturali) nell'analisi di meccanica della frattura. La stima delle sollecitazioni termo-meccaniche nella struttura in pressione è stata infatti condotta accoppiando il codice termoidraulico di sistema Relap 5/mod3.3 con il codice strutturale agli elementi finiti Ansys 5.7. I risultati termoidraulici dedotti dall'analisi Relap del transitorio sono stati utilizzati sia come dati di ingresso per il calcolo

strutturale agli elementi finiti sia come dati di ingresso per un calcolo di miscelamento del fluido realizzato con il codice CFD Trio_U.

Il sistema nucleare nel suo complesso è stato opportunamente discretizzato tramite il codice termoidraulico di sistema. A tal proposito, come analisi preliminare, è stato sviluppato un modello Relap semplificato della parete al fine di stabilire i requisiti minimi cui devono soddisfare le celle della nodalizzazione del RPV per assicurare risultati adeguati per l'analisi di PTS. A scopo di confronto e nell'ottica di una attività di qualifica si è analizzato anche il comportamento di un modello Trio_U semplificato della parete. Lo studio ha consentito di apprendere dati utili sul comportamento termico della parete conduttiva in seguito all'interposizione del *cladding* in acciaio inossidabile.(capitolo 4).

Nel calcolo termoidraulico e in quello strutturale è stata presa in considerazione la presenza del *cladding* in acciaio inossidabile e ove possibile i risultati ottenuti per *vessel* con e senza *cladding* sono stati confrontati fra loro.

L'analisi di meccanica della frattura è stata condotta considerando sia una cricca monodimensionale passante superficiale (assiale e circonferenziale) sia una cricca bidimensionale semiellittica superficiale (assiale).

Per la cricca monodimensionale sono stati considerati tre differenti profondità dell'apice: 7 mm (cricca superficiale), 73 mm (1/4 dello spessore del vessel), 196 mm (> $\frac{1}{2}$ dello spessore del vessel). Per la cricca bidimensionale sono stati considerati diversi valori del semiasse minore (apice): a = 7 mm con a/c = 0.5; a = 16 mm con a/c = 0.3; a = 73 mm con a/c = 0.5 dove a/c è il rapporto di aspetto (rapporto fra il semiasse minore "a" e il semiasse maggiore "c" dell'ellissi). L'analisi della cricca bidimensionale è stata condotta considerando il *vessel* senza *cladding* (capitolo 5).

La curva di tenacità a frattura (KIc) è stata scelta sulla base di quanto consigliato dalla IAEA relativamente all'analisi di PTS dei WWER-1000. Nel 1990 l'IAEA (*International Atomic Energy Agency*) ha iniziato infatti un programma di assistenza ai paesi dell'Europa dell'Est per la valutazione della sicurezza di alcuni tipi di centrali nucleari (WWER 440/230, WWER 440/213, WWER 1000 e RBMK). A tale scopo ha pubblicato nell'Aprile del 1997 le "*Guidelines on Pressurized Thermal Shock Analysis for WWER Nuclear Plants*", documentazione che può essere presa come punto di riferimento per l'analisi di PTS. Le "*Guidelines*" stabiliscono una serie di raccomandazioni, derivanti da esperienze operazionali, stato dell'arte attuale e risultati di ricerche e studi condotti dai paesi membri, per condurre una analisi di integrità del RPV in caso di PTS (capitolo 3).

Per determinare gli effetti dell'eventuale miscelamento nel *downcomer* del fluido primario sui risultati di meccanica della frattura è stata condotta una analisi fluidodinamica tramite codice CFD (*Computational Fluid Dynamic*), capitolo 7. Il termine miscelamento (*coolant mixing*) in ambito ingegneristico definisce tutti quei fenomeni determinati da modifiche locali di un parametro scalare, per esempio la temperatura, la concentrazione di boro ecc; la cui variazione spaziale e temporale può avere notevole effetto sulle sollecitazioni meccaniche cui sono soggetti i componenti del reattore. Il fluido in ingresso dalla *Cold Leg* numero 1, raffreddato a seguito del MSLB, potrebbe miscelarsi nel *downcomer* col fluido relativamente più caldo proveniente dalle altre *Cold Legs*; si verrebbe così a determinare una temperatura media del fluido più elevata in prossimità di una ipotetica cricca, con conseguente raffreddamento meno intenso della parete e aumento della tenacità del materiale. L'analisi è stata condotta utilizzando il codice CFD Trio_U, con il quale sono stati realizzati due modelli riproducenti la parte inferiore del *vessel* e della zona fluida del reattore (*downcomer*), uno con *barrel* forato e l'altro senza. Il calcolo è stato condotto senza considerare lo scambio termico fra fluido e *vessel*, imponendo condizioni di parete adiabatica alla zona conduttiva.

LISTA DEI SIMBOLI PRINCIPALI

a	semiasse minore del difetto ellittico
α	diffusività termica
c	semiasse maggiore del difetto ellittico
C _p	calore specifico a pressione costante
C _v	calore specifico a volume costante
E	energia
h	coefficiente di scambio termico
H(x,a)	weight function
n _k	fattore correttivo sul KI utilizzato nelle "IAEA Guidelines"
n _a	fattore correttivo su "a" utilizzato nelle "IAEA Guidelines"
KI	fattore di intensificazione degli sforzi (Stress Intensification Factor)
KIc	tenacità a frattura (o KI critico)
KIa	tenacità all'arresto
Т	temperatura
T_k	temperatura critica di infragilimento a fine vita
ΔT	fattore correttivo sulla RNDT utilizzato nelle "IAEA Guidelines"
t	tempo
$\overline{\tau}$	componente viscosa del tensore degli sforzi
<i>u</i> _i	componente i-sima della velocità
р	pressione
$\sigma(\mathbf{x})$	tensione lungo l'apice della cricca
$\sigma 0$	componente costante della tensione agente in corrispondenza della cricca bidimensionale
σ l	componente flessionale della tensione agente in corrispondenza della cricca bidimensionale
$\sigma^{=}$	tensore degli sforzi di Cauchy

Φt	fluenza neutronica (neutroni/cm2)
μ	viscosità dinamica
k oppure λ	conducibilità termica
ρ	densità
v	viscosità cinematica

LISTA DELLE ABBREVIAZIONI

- ACC Accumulatori di acqua borata
- ASME American Society of Mechanical Engineers
- ATWS Anticipated Transient Without Scram
- BRU-A Valvola di scarico in atmosfera
- BRU-K Valvola di by-pass nel condensatore
- CEA Commissariat à l'Energie Atomique
- CFD Computational Fluid Dynamic
- DBA Design Basic Accident
- DIMNP Dipartimento di Ingegneria Meccanica Nucleare e della Produzione
- DNS Direct Numerical Simulation
- ECCS Emergency Core Cooling System
- EFW Emergency Feed Water
- FEM Finite Element Method
- GV Generatore di Vapore
- HPCI High Pressure Cooling Injection
- HPIS High Pressure Injection System
- IAEA International Atomic Energy Agency
- LBLOCA Large Break LOCA
- LEFM Linear Elastic Fracture Mechanics
- LES Large Eddy Simulation
- LOCA Loss Of Coolant Accident
- LPIS Low Pressure Injection System
- LWR Light Water Reactor
- MSIV Main Steam Isolation Valve

MSLB	Main Steam Line Break
NDT	Nil Ductility Temperature
NRC	Nuclear Regulatory Commission
PORV	Pilot Operated Relief Valve
PRZ	Pressurizzatore
PTS	Pressurized Thermal Shock
PWR	Pressurized Water Reactor
RANS	Raynolds Averaged Navier-Stokes
RHR	Residual Heat Removal
RPV	Reactor Pressure Vessel
RTNDT	Reference Temperature Nil Ductility Transition (o RNDT)
SBLOCA	Small Break LOCA
SIF	Stress Intensification Factor (KI)
SIS	Safety Iniection System
SIT	Safety Iniection Tank
SOR	Successive Over Relaxation
SG	Steam Generator
SRV	Steam Relief Valve
VDF	Volumes Differences Finis
VEF	Volumes Elementes Finis (Finite Element based Finite Volume)
WWER	Water cooled Water moderated Energy Reactor (o Vodo Vodjanyi Energetitseskij Reaktor
WF	Weight Function

INDICE

ABSTRACT	i
SOMMARIO	ii
LISTA DEI SIMBOLI PRINCIPALI	iv
LISTA DELLE ABBREVIAZIONI	vi
<u>1 INTRODUZIONE</u>	1
1.1 generalità	1
1.2 ANALISI STRUTTURALE DEL VESSEL IN CONDIZIONI DI PTS	2
1.3 DESCRIZIONE DEL CODICE TERMOIDRAULICO RELAP5/MOD3.3	9
1.4 descrizione del codice di calcolo cfd trio_U	12
 1.4.1 equazioni di bilancio 1.4.2 generiche equazioni di conservazione di grandezze scalari 1.4.3 termini di sorgente 1.4.4 modelli numerici utilizzati da Trio_U 1.4.5 modelli utilizzati per stimare la turbolenza 	12 14 15 15 17
1.5 CENNI SUL CODICE DI CALCOLO STRUTTURALE ANSYS 5.7	21
2 DESCRIZIONE DEL REATTORE WWER 1000	23
2.1 INTRODUZIONE	23
2.2 VESSEL E CORE DEL REATTORE	31
2.3 SISTEMI DI SICUREZZA	39
2.4 sistema primario	40
2.5 PRESSURIZZATORE E SISTEMA DI CONTROLLO DELLA PRESSIONE	42
2.6 SISTEMA SECONDARIO – GENERATORE DI VAPORE	44
2.7 LINEA VAPORE, TURBINA, CONDENSATORE, FEED-WATER	47

<u>3 METODOLOGIA DI ANALISI SECONDO LE IAEA GUIDELINES</u>

3.1 INTRODUZIONE	50
3.2 SEQUENZE INCIDENTALI DA CONSIDERARE NELL'ANALISI DI PTS	50
3.3 DATI IMPORTANTI PER L'ANALISI DI PTS	51
3.4 RACCOMANDAZIONI PER L'ANALISI STRUTTURALE E DI MECCANICA DELLA FRATTURA	52
<u>4 ANALISI TERMOIDRAULICA DI UN CASO SEMPLIFICATO DI PTS</u> TRAMITE CODICI DI CALCOLO RELAP5 E TRIO_U	57
4.1 INTRODUZIONE E SCOPO DEL CALCOLO	57
4.2 MODELLI NUMERICI	59
4.2.1 nodalizzazione Relap5 4.2.2 nodalizzazione Trio_U	59 61
4.3 RISULTATI OTTENUTI CON RELAP5	63
 4.3.1 potenza termica totale 4.3.2 potenza totale senza cladding con portata ridotta 4.3.3 andamento del flusso termico 4.3.4 andamento della temperatura di bulk del fluido 4.3.5 andamento del coefficiente di scambio 4.3.6 andamento della temperatura di parete 	63 65 66 68 69 69
4.4 risultati ottenuti con Trio_U	71
4.4.1 potenza termica totale4.4.2 andamento della temperatura di parete4.4.3 potenza totale senza cladding con portata ridotta	71 74 74
4.5 OSSERVAZIONI CONCLUSIVE	75
5 ANALISI TERMOIDRAULICA (RELAP5/MOD3.3) E STRUTTURALE (ANSYS 5.7) DEL VESSEL DI UN WWER 1000 DOTATO DI CLADDING DURANTE UN MSLB	77
5.1 ipotesi principali	77
5.2 NODALIZZAZIONE RELAP5 DELL'IMPIANTO E SCHEMATIZZAZIONE DEL RPV	80

5.2.1 descrizione del modello relap utilizzato e del transitorio termoidraulico5.2.2 descrizione della nodalizzazione dei componenti idrauli5.2.3 descrizione della nodalizzazione delle strutture termiche	80 87 89
5.3 RISULTATI TERMOIDRAULICI OTTENUTI TRAMITE CODICE RELAP5	93
5.3.1 andamento della temperatura e della potenza termica del reattore	93
5.3.2 andamento della pressione	98
5.3.3 andamento del grado di vuoto	104
5.3.4 andamento della portata	106
5.3.5 andamento della temperatura nella parete conduttiva	108
5.3.6 confronto fra i parametri termoidraulici ottenuti nel caso di presenza e assenza di <i>cladding</i>	113
5.4 CARATTERISTICHE DELLA MESH UTILIZZATA NEL CODICE DI CALCOLO ANSYS 5.7	115
5.5 ACCOPPIAMENTO FRA RISULTATI TERMOIDRAULICI E ANALISI STRUTTURALE	119
5.5.1 andamento della temperatura nel vessel	121
5.6 risultati dei calcoli strutturali	125
5.6.1 introduzione	125
5.6.2 tensioni totali circonferenziali e assiali	130
5.6.3 tensioni termiche circonferenziali e assiali	135
5.6.4 tensioni meccaniche circonferenziali e assiali	140
5.6.5 confronto fra le tensioni ottenute in caso di presenza e assenza di cladding	143
5.6.6 definizione dei dati di ingresso per l'analisi di meccanica della frattura tramite programma fortran	148
5.7 RISULTATI DI MECCANICA DELLA FRATTURA	149
5.7.1 ipotesi per l'analisi	149
5.7.2 utilizzo della weight function per la valutazione del fattore di intensificazione degli sforzi	150
5.7.3 risultati di meccanica della frattura	151
5.7.4 confronto fra i risultati di meccanica della frattura ottenuti in caso di presenza e assenza di cladding	157
5.7.5 andamento del SIF in funzione della temperatura	160
6 STUDIO DI UNA CRICCA BIDIMENSIONALE SEMIELLITTICA	162
6.1 INTRODUZIONE	162
6.2 METODO DI CALCOLO	162
6.3 risultati	166
6.3.1 cricca bidimensionale da 7 mm	166

7 STUDIO DEL MISCELAMENTO DEL FLUIDO PRIMARIO NEL DOWNCOMER DEL REATTORE TRAMITE CODICE CED TRIO, U	177
DOWNCOMER DEE REATTORE TRAMITE CODICE CFD TRIO_0	1//
7.1 INTRODUZIONE	177
7.2 NODALIZZAZIONE DEL VESSEL	178
7.2.1 nodalizzazione del downcomer senza barrel7.2.2 nodalizzazione del downcomer con barrel	178 180
7.3 ANALISI DEI RISULTATI PER IL DOWNCOMER SENZA BARREL	183
7.3.1 andamento del profilo di temperatura7.3.2 andamento del profilo di temperatura in prossimità della cricca ipotizzata	183 186
7.4 ANALISI DEI RISULTATI PER IL DOWNCOMER CON BARREL	189
7.4.1 andamento del profilo di temperatura7.4.2 andamento del profilo di temperatura in una sezione assiale del dowcomer	189 192
<u>8 CONCLUSIONI</u>	195
BIBLIOGRAFIA	199
APPENDICE A	
ALTRI RISULTATI TERMOIDRAULICI OTTENUTI CON IL CODICE RELAP5/MOD3.3	201
<u>APPENDICE B</u>	
CODICE SORGENTE DEL PROGRAMMA FORTRAN TTEMP_CLAD	213
<u>APPENDICE C</u>	
CODICE SORGENTE DEL PROGRAMMA FORTRAN FM_CLAD	239
<u>APPENDICE D</u>	
WEIGHT FUNCTION PER LA CRICCA MONODIMENSIONALE	246
<u>APPENDICE E</u>	
FILE DI INPUT PER IL CODICE RELAP 5/MOD3.3 - VESSEL CON CLADDING	249

APPENDICE F

ESTRATTO DEL FILE DI INPUT PER ILCODICE RELAP 5/MOD 3.3 (STRUTTURE TERMICHE DEL VESSEL CON CLADDING – MODELLO RAFFINATO	307
<u>APPENDICE G</u>	
ESTRATTO DEL FILE DI INPUT PER IL CODICE TRIO_U - VESSEL SENZA BARREL	319
<u>APPENDICE H</u>	
FILE X-PREPRO PER LA COSTRUZIONE DELLA MESH DI TRIO_U (DOWNCOMER CON E SENZA BARREL)	329