View metadata, citation and similar papers at $\underline{core.ac.uk}$

brought to you by CORE

INDICE

SOMMARIO	.5
ABSTRACT	.7
RINGRAZIAMENTI	.9
INDICE	11
LISTA DEI SIMBOLI	15
ABBREVIAZIONI	17
LISTA DELLE FIGURE	19
LISTA DELLE TABELLE	23
AMBITO E OBIETTIVO DELLA TESI	13
1.1 Ambito della tesi: l'aerotermodinamica	13
1.2 Obiettivo della tesi: simulazione numerica del "gap" heating	13
FLUSSO IPERSONICO	15
2.1 Definizione di flusso ipersonico	15
2.1.1 Strati d'urto sottili	15
2.1.2 Strato di entropia	16
2.1.3 Flussi ad alta temperatura	17
2.1.4 Flussi a bassa densità	19
2.2 Interazioni viscose ipersoniche	21
2.2.1 Introduzione	21
2.2.2 Interazioni viscose forti e deboli	26
2.2.3 Interazioni onda d'urto ipersonica / strato limite	29
2.3 Riscaldamento aerodinamico ipersonico	31
2.4 Rientro in atmosfera	33
DATI E ESPERIMENTI DI RIFERIMENTO	37
3.1 Introduzione	37
3.2 Descrizione del lavoro svolto da ESA sul problema del "gap heating".	37
II MODELLO MOLECOLARE	51
4.1 Introduzione	51
4.2 Requisiti per una descrizione molecolare	52
4.3 Il gas semplice diluito	56
4.4 Proprietà macroscopiche in un gas semplice	58
4.5 Grandezze molecolari	60
4.6 Effetti di gas reale	62

IL METODO DI SIMULAZIONE DIRETTA DI MONTE CARLO (DSMC) 67

5.1 I	Introduzione	57
5.2 1	Il metodo DSMC	58
5.3 I	Effetti di gas reale per flussi non reagenti	71
5.4 I	Il metodo DSMC e il programma DS2G	73
5.5 I	Lo scopo del programma DS2G	76
5.5.1	La geometria	76
5.5.2	Il modello del gas	76
5.5.3	Interazioni gas-superficie	77
5.5.4	Descrizione generale del programma DS2G	77
SIMU	JLAZIONE NUMERICA DEL "GAP" HEATING	31
6.1 I	Definizione della geometria del modello	31
6.2 I	Definizione delle condizioni al contorno della corrente libera cl	he
investe i	il modello	32
6.3 (Calcolo delle variabili termodinamiche	33
6.4	Applicazione del programma DS2G	34
6.4.1	Introduzione	34
6.4.2	Modo di operare del programma DS2G	34
6.4	k.2.1 Dati di ingresso generali	35
6.4	1.2.2 Dati di ingresso della corrente	35
6.4	A.2.3 Parametri computazionali	36
6.5 l	Descrizione dei diversi domini computazionali	37
6.6 l	Risultati computazionali	39
6.6.1	Configurazione del flusso per diverse temperature della fessura	39
6.6.2	Pressioni e flussi di calore alle pareti per diverse temperature del	la
fessu	ra 91	
6.6.3	Risultati sul numero di Knudsen) 5
6.7	Analisi dell'indipendenza dei risultati ottenuti dal numero di celle e d	al
numero	di molecole	96
6.7.1	Analisi dell'indipendenza dei risultati ottenuti dal numero di cel 97	le
6.7.2	Analisi dell'indipendenza dei risultati ottenuti dal numero	di
molec	cole 102	
ANA	LISI TERMICA 10)7
7.1 I	Introduzione10)7
7.2 I	Definizione della geometria e delle condizioni al contorno del model	10
per l'ana	alisi termica10)7
7.3 I	Definizione dei carichi termici10)9
7.4 I	Descrizione del programma QuickField1	11
7.5 1	Modello numerico utilizzato per l'analisi termica	12
7.5.1 Modello agli elementi finiti		
7.6	Analisi termica	14
7.7 I	Descrizione dei vari casi analizzati1	15

7.8 Risultati dell'analisi termica
7.8.1 Risultati ottenuti dall'analisi termica utilizzando la griglia 1 117
7.8.2 Risultati ottenuti utilizzando la griglia 2119
7.8.3 Risultati ottenuti utilizzando la griglia 3 120
7.9 Analisi dell'indipendenza dei risultati dell'analisi termica dalla griglia
utilizzata
CONFRONTO TRA I RISULTATI OTTENUTI E QUELLI OTTENUTI
DA ESA
8.1 Confronto tra le distribuzione di flusso di calore ottenuti con il
programma DS2G e quelli ottenuti con il codice di Navier-Stokes nella
simulazione numerica eseguita da ESA 123
8.2 Confronto tra l'andamento di temperatura calcolata con il programma
QuickField e quella calcolata da ESA con il TMM (Modello matematico
termico)
CONCLUSIONI 127
9.1 Attività svolte nel lavoro di tesi
9.2 Conclusioni 127

APPENDICI^(*)

- Listati dei programmi DS2G
- Visualizzazione delle distribuzioni di temperatura e di numero di Mach relativi alle seguenti distribuzioni di temperatura nel gap: 500K; 700K; 900K; 1100K.
- Visualizzazione delle griglie 2 e 3 utilizzate per l'analisi termica.
- Visualizzazione delle distribuzioni di temperatura nel modello numerico alla fine dell'intervallo considerato nella analisi termica

(*)In formato elettronico

LISTA DEI SIMBOLI

Simboli latini

_

C	velocità molecolare media
е	energia per unità di massa
k	costante di Boltzmann
Kn	numero di Knudsen
M_{∞}	numero di Mach della corrente incidente
т	massa di una molecola
n	number density
Ν	numero di Avogadro
N_{c}	numero di collisioni per unità di tempo per unità di volume
р	pressione statica locale
p_0	pressione totale della corrente incidente
R_a	costante dell'aria
R_e	numero di Reynolds
Т	temperatura statica locale
T_0	temperatura totale della corrente incidente

Simboli greci

ρ	densità
$ ho_{_0}$	densità totale
δ	spaziatura molecolare media
λ	cammino libero medio
υ	frequenza di collisione per molecola
1/ <i>v</i>	tempo di collisione media
τ	tempo di rilassamento vibrazionale
σ	sezione trasversale di collisione

ABBREVIAZIONI

DLR	German Aerospace Centre
EADS/LV	European Aeronautics Defence and Space Company/Launch
	Vehicles
ESA	European Space agency
ONERA	Office National d'Etudes et de Recherches Aerospatiales
NAL	National Aerospace Laboratory
NASDA	National Space development Agency of Japan
FC	Flow Condition
HYFLEX	HYpersonic FLight EXperiment
L3K	6 MW arc heated facility of DLR
TC	Thermocouple
TPS	Thermal Protection System

LISTA DELLE FIGURE

Capitolo 1

Fig. 1.1 : Visualizzazione del veicolo Hyflex

Capitolo 2

- Fig. 2.1 : Schematizzazione dello strato d'urto sottile a numeri di Mach ipersonici
- Fig. 2.2 : Schematizzazione dello strato di entropia su un corpo affusolato con il muso smussato a velocità ipersonica
- Fig. 2.3 : Schematizzazione dello strato d'urto a elevata temperatura su un corpo smussato a velocità ipersonica
- Fig. 2.4 : Schematizazione del profilo di temperatura in uno strato limite di un flusso ipersonico
- Fig. 2.5 : Schematizzazione delle distribuzioni di pressione su una lastra piana: (a) flusso non viscoso; (b) flusso viscoso
- Fig. 2.6 : Schematizzazione delle zone di interazione viscosa forte e debole su una lastra piana
- Fig. 2.9 : Schematizzazione delle regioni a elevata temperatura nel campo di flusso su un corpo di rientro
- Fig. 2.10 : Schematizzazione di un velo di plasma intorno a un corpo
- Fig. 2.11 : Schematizzazione di un campo di flusso non adiabatico e radiante intorno a un corpo

- Fig. 3.1 : Visualizzazione della disposizione delle termocoppie sopra la superficie del veicolo
- Fig. 3.2 : Visualizzazione del modell di piastrella del Hyflex montata sul contenitore
- Fig. 3.3 : Schema bidimensionale della distribuzione delle termocoppie

- Fig. 3.4 : Schema del sensore di flusso di calore con termocoppie integrate
- Fig. 3.5 : Storia della temperatura superficiale misurata per un punto sulla superficie del sensore
- Fig. 3.6 : Sviluppo della temperatura misurato dentro il sensore di flusso di calore
- Fig. 3.7 : Storia della temperatura del gap misurata 10mm sotto la superficie del modello
- Fig. 3.8 : Storia della temperatura misurata al fondo della fessura
- Fig. 3.9 : Griglia 2D con configurazioni del gap trasversale
- Fig. 3.10: Distribuzione di temperatura alla parete: distribuzione a gradino e distribuzione lineare
- Fig. 3.11: Distribuzioni del flusso di calore calcolate per la fessura secondo le due griglie calcolate
- Fig. 3.12: Visualizzazione del TMM (modello matematico termico) usato per l'analisi termica
- Fig. 3.13: analisi termica confronto con i dati dei test T04/T05/T06/T07/T08

Capitolo 4

- Fig. 4.1: Limiti del numero di Knudsen sui modelli matematici
- Fig. 4.2: Schematizzazione di una collisione tra due sfer dure spheres di diametro d

Capitolo 5

- Fig. 5.1: Schematizzazione di una tipica regione di flusso
- Fig. 5.2: Rappresentazione di un tipico arrangiamento delle regioni
- Fig. 5.3: Files associati con il programma DS2G

- Fig.6.1: schematizzazione del modello bidimensionale analizzato
- Fig.6.2: Griglia completa per il dominio computazionale: la dimensione delle celle è stata aumentata per permetterne la visualizzazione.
- Fig. 6.3: Mappa del numero di Mach: il numero di Mach minimo 0.469; il massimo 7.032
- Fig. 6.4: Mappa della Temperatura: la temperatura minima è 361.672K; la massima è 3947.228K

- Fig.6.5. Confronto tra profili di pressione per diverse temperature del gap. Tutti i casi sono stati realizzati con la stessa griglia.
- Fig.6.6: Confronto tra profili di flusso di calore per diverse temperature del gap. Tutti i casi sono stati realizzati con la stessa griglia.
- Fig.6.7: Ingrandimento della zona della griglia
- Fig.6.8: Ingrandimento fatto alla parete a monte della griglia
- Fig.6.9: Primo piano del fondo della griglia
- Fig.6.10: Mappa del cammino libero medio cammino libero medio minimo 4.630937E-5; massimo 2.627E-4.
- Fig.6.11: Analisi dell'indipendenza dalla griglia per il profilo di pressione
- Fig.6.12: Ingrandimento nella zona della fessura
- Fig.6.13: primo piano alla parete a monte della fessura
- Fig.6.14: Analisi dell'indipendenza dalla griglia per il profilo di flusso di calore
- Fig.6.15: Ingrandimento della zona della fessura
- Fig.6.16: Primo piano alla parete a monte della fessura
- Fig.6.17: Primo piano nel fondo della fessura
- Fig.6.18. Indipendenza dal numero di molecole per il flusso di calore.
- Fig.6.19: Ingrandimento della zona della fessura
- Fig.6.20: Primo piano ala parete a monte della fessura
- Fig.6.21: Primo piano alla parete a valle della fessura
- Fig.6.22: Primo piano nel fondo della fessura

- Fig.7.1: modello bidimensionale utilizzato per l'analisi termica
- Fig.7.2: schematizzazione dei modi di trasmissione del calore del modello.
- Fig.7.3: modello bidimensionale utilizzato per la definizione dei carichi termici
- Fig.7.4: Modello agli elementi finiti utilizzato per l'analisi termica. Il numero di nodi è 10188
- Fig.7.5: visualizzazione dei punti 1 e 2. Questi punti si trovano in corrispondenza della termocoppia TC8, la quale, nell'esperimento di riferimento, era posizionata al centro del triangolo situato nel fondo del gap.
- Fig.7.6 Distribuzione della temperatura dopo 180 secondi nel modello agli elementi finiti relativo alla griglia 1
- Fig.7.7 Distribuzione della temperatura dopo 590 secondi nel modello agli elementi finiti relativo alla griglia 1
- Fig.7.8 Andamento della temperatura nell'intervallo di tempo considerato nella simulazione in due punti distinti vicini alla posizione della termocoppia TC8 (situata nel fondo del gap). Caso con la griglia 1.
- Fig.7.9: Distribuzione della temperatura dopo 180 secondi nel modello agli elementi finiti relativo alla griglia 2

- Fig.7.10 Distribuzione della temperatura nel modello agli elementi finiti avente la griglia 3 dopo 180 sec.
- Fig.7.9: Confronto degli andamenti della temperatura nell'intervallo di tempo nei punti 1 e 2 per le tre griglie utilizzate nell'analisi termica.

- Fig.8.1 Ingrandimento del confronto tra le distribuzioni di Net Energy ottenuti con il programma DS2G e quelli ottenuti da ESA con il codice di Navier-Stokes
- Fig.8.3:Primo piano alla parete a valle del gap
- Fig.8.4: Primo piano nel fondo del gap
- Fig.8.5 Confronto tra gli andamenti di temperatura ottenuti con il programma QuickField e quelli ottenuti da ESA con il TMM.

LISTA DELLE TABELLE

Capitolo 3 Tab.3.1: Matrice delle prove

Capitolo 6 Tabella 6.1: condizioni a contorno della corrente libera

- Tab.7.1: valori medi calcolati di flusso di calore per ogni parte in cui è stato suddivisa la superficie superiore del modello bidimensionale.
- Tab.7.2 Caratteristiche termiche di conducibilità e di emissione dei materiali costituenti il modello, utilizzate per la simulazione del campo termico del modello.