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Protein-DNA binding specifities are modeled with random forest in this Master’s
thesis. Specific proteins called transcriptional factors are essential for gene ex-
pression regulation, since their binding on DNA can alter transcription initiation
probability of target genes. Furthermore, transcriptional factors can bind DNA
as dimers even though as individuals they would lack the required affinity for
the binding site. Thus, models that predict individual protein and protein dimer
binding sites, would be beneficial for deducing gene regulatory networks. In this
Master’s thesis HT-SELEX and CAP-SELEX data sets measured by Jolma et al.
are utilized for modeling binding specificities. SELEX measurements yield large
sets of DNA sequences, which are known to comprise a binding site. HT-SELEX
measure individual transcriptional factor binding sites while CAP-SELEX measure
binding sites of transcriptional factor dimers. Currently, position weight matrices
(PWM) are most often utilized for modeling protein-DNA binding specifities even
though they may be too simple and inflexible for accurate modeling. For instance a
neural network model, DeepBind, have been shown to outperform PWM modeling
significantly. In this Master’s thesis, random forest, which is known to be well suited
for high-dimensional and correlated data, is combined with PWMs to yield models
for protein-DNA binding specifities. For individual transcriptional factor binding
sites random forest perform almost equally to DeepBind and outperform PWM
modeling significantly. In addition, random forest predict protein dimer binding
sites significantly more accurately than position weight matrices. Furthermore, the
difference between random forest and PWM modeling is greater for protein pairs
than for individual proteins. In addition, DeepBind is not currently provided for
transcriptional factor pairs. Thus, according to results represented in this Master’s
thesis, modeling protein-DNA binding specificities with random forest is beneficial
in comparison to position weight matrices especially for protein dimers.

Keywords: transcriptional factor, motif, binding specificity, gene expression,
position weight matrix, supervised learning, decision tree, random
forest
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Diplomityössä mallinnetaan satunnaismetsällä proteiini-DNA sitoutumisspesifisyyk-
siä. Transkriptiotekijät ovat proteiineja, jotka säätelevät geenien ilmentymistä sitou-
tumalla DNA juosteelle ja täten laskemalla tai kasvattamalla kohdegeenien trans-
kription todennäköisyytä. Lisäksi transkriptiotekijät voivat sitoutua DNA juosteelle
dimeerisessä muodossa, vaikka yksittäisinä proteiineina näiden sitoutumisaffiniteet-
ti ei olisikaan ollut riittävä kyseiselle sitoutumiskohdalle. Diplomityössä käytetään
sitoutumisspesifisyyksien mallintamiseen Jolma et al. mittaamia HT-SELEX ja
CAP-SELEX aineistoja. SELEX mittaukset tuottavat suuren joukon DNA juosteita,
jotka sisältävät sitoutumiskohdan. HT-SELEX menetelmällä mitataan sitoutu-
miskohtia yksittäisille proteiineille ja CAP-SELEX menetelmällä proteiinipareille.
Tällä hetkellä sitoutumisspesifisyyksiä mallinnetaan useimmiten positio paino mat-
riiseilla (PPM), vaikka ne saattavat olla liian yksinkertaisia ja joustamattomia
sitoutumiskohtien todenmukaiseen mallintamiseen. Esimerkiksi neuroverkkoihin
perustuvan DeepBind mallin on näytetty ennustavan sitoutumiskohtia merkittäväs-
ti tarkemmin kuin positio paino matriisien. Diplomityössä mallinnetaan proteiinien
sitoutumiskohtia yhdistämällä PPM malleja ja satunnaismetsä-mallinnusta, jonka
tiedetään soveltuvan hyvin moniulotteiselle sekä korreloituneelle datalle. Työn
tuloksista selvisi, että satunnaismetsä ennustaa yksittäisten proteiinien sitoutu-
miskohtia lähes samalla tarkkuudella kuin DeepBind ja että ennustustarkkuus on
merkittävästi korkeampi kuin PPM malleilla. Satunnaismetsällä voi lisäksi mallin-
taa proteiiniparien sitoutumiskohtia merkittävästi tarkemmin kuin positio paino
matriiseilla. Ero ennustustarkkuudessa satunnaismetsän ja PPM mallinnuksen välil-
lä on suurempi proteiinipareilla kuin yksittäisillä proteiineilla. Lisäksi DeepBindia
ei tarjota tällä hetkellä proteiinipareille. Täten Diplomityön tulosten perusteella
satunnaismetsä on suositeltava menetelmä proteiini-DNA sitoutumisspesifisyyksien
mallintamiseen erityisesti dimeeristä sitoutumista mallinnettaessa.
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1 Introduction
Proteins regulate gene expression through interactions with DNA that further reg-
ulate cellular processes. In a cell, gene expression is initiated through binding of
specific proteins, transcriptional factors (TF), on DNA sequence. Transcriptional
factors increase chromatin accessibility locally and aid the assembly of transcription
complex to the promoter sequence, which will initiate transcription. Furthermore,
transcriptional factors can bind enhancer sequences far away from the promoter and
increase or decrease the probability for transcription initiation to take place. Thus,
TF binding to DNA can be understood as a mechanism to turn genes on and off.
[1] Furthermore, transcriptional factor interactions with DNA can be represented
as gene regulatory networks with direct relationships between target genes and
transcriptional factors. In addition, gene regulatory networks could potentially be
deduced from knowledge of TF binding sites. [2] Transcriptional factors bind DNA
in a sequence specific manner. Binding specificity, whose representation is called
a motif, describe the ability of a protein to distinguish between putative binding
sites. [3] Currently, binding specifities of many transcriptional factors have not been
measured. In addition, transcriptional factors can bind DNA in pairs with different
spacings between the motifs. The dimeric binding of proteins increase complexity of
gene regulatory networks. [4] Furthermore, in order to understand gene regulatory
networks, models that describe all putative binding sites of transcriptional factors
would be beneficial. In vitro measurements, referring to experiments conducted
outside the cell, can be utilized for building such specificity models. [5]

In this Master’s thesis protein-DNA binding specifities are modeled with random
forest with data acquired by Jolma et al. with evolution of ligands by exponential
enrichment (SELEX) in vitro measurements [5, 4]. SELEX is a method for selecting
DNA sequences from a large DNA ligand library. Binding sites can be revealed by
incubating the protein with a DNA library and separating bound DNA sequences
from the non-bound sequences. [6] Furthermore, high-throughput (HT) SELEX is a
method capable of measuring multiple transcriptional factor binding specifities in
parallel [7]. Individual transcriptional factor binding specificities are modeled with
HT-SELEX data sets [5]. The data comprise large amounts of sequenced DNA reads,
which are known to comprise a bound protein. However, the exact position of the
transcriptional factor on the DNA ligand and the length of the motif are unknown.
[5] In addition, consecutive affinity purification (CAP) SELEX can be utilized for
measuring binding specificities of transcriptional factor pairs. The method has a
couple of adaptations to HT-SELEX that enable the selection of DNA ligands with
both TFs bound to them. [4] Furthermore, CAP-SELEX data sets are utilized for
modeling TF pair specifities in this Master’s thesis [4].

Protein-DNA binding specifities can be modeled in different ways. Most often
specificities are modeled with position weight matrices (PWM) that describe the
probability of detecting a nucleic acid at certain position on the binding site. Position
weight matrix modeling, although simple and intuitive, have inherent limitations.
[8] Position weight matrices assume independence between nucleic acids, while the
nucleic acids on a motif are often correlated [9]. Furthermore, more complex models
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may be better suited for modeling binding specifities. For instance, DeepBind,
that utilize convolutional neural networks outperformed PWM models [10]. In this
Master’s thesis both HT-SELEX and CAP-SELEX data is utilized for modeling TF
binding specifities with random forest. Models were trained on SELEX sequences and
model performance was assessed by scoring unseen DNA ligands. Since the data sets
only comprise sequences with proteins bound to them, background sequences for the
classification task were constructed by shuffling the SELEX sequences. Shuffling was
conducted such that dinucleotide counts, which are known occur hierarchically on
genome, were preserved since negative sequences should resemble putative although
negative binding sites [11, 10].

Random forest is an ensemble of multiple decision trees learned on randomly
chosen subsets of the training data. Furthermore, a decision tree is a recursive
partitioning of the data according to local models. The partitions thus form a tree
structure where local models split the data at nodes and branches indicate the local
model considered next. Finally, tree leaves define the class of the instances falling to
each particular leaf. Aggregating multiple decision trees as in random forest increase
modeling accuracy since decision trees are quite unstable models due to hierarchical
tree growing process. [12] Random forest has an additional layer of randomness in
comparison to other aggregation methods. At data partitions in decision tree nodes
a random set of variables is chosen to be considered for the split. [13] Random forest
is well suited for modeling high-dimensional and often correlated genetic data, since
decision trees are able to select to a class entire data subsections with correlated
variables [14, 15]. Furthermore, decision trees and random forest are able to utilize
both numerical and categorical features [13].

It was discovered that random forest performed almost equally to DeepBind for
modeling individual TF binding specificities. Thus, random forest outperformed
scoring sequences with position weight matrices. Different random forest models
were implemented and their performance was assessed. Since DNA ligands are
double stranded, only one of the strands or even a shorter subsequence should be
chosen for random forest training. The best model was obtained by combining
PWM modeling with random forest. Thus, the most probable binding sites were
searched with position weight matrices and either these sites or the entire DNA
strands where the sites were located, were utilized for training the forests, depending
on the properties of the SELEX experiment at hand. Furthermore, TF pair binding
specificities were modeled with random forest. Different random forest model variants
were implemented. Again the model with highest predictive accuracy was obtained
by combining PWM and random forest modeling. Random forest outperformed
significantly modeling with only PWMs. Furthermore, the difference was greater
for pairs than it was for individual transcriptional factors. The increase in model
complexity and flexibility due to random forest may be more significant for TF pairs,
because of higher variation in binding specificities induced by alteration in TF pair
spacings. DeepBind does not currently provide models for TF pairs. Thus, random
forest is comparable to DeepBind and outperforms PWM models. Especially for TF
pairs, models that provide higher flexibility are beneficial, and should be utilized for
modeling motifs instead of position weight matrices.
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2 Transcriptional regulation
Genes are expressed differently in differentiated cell types, which influences protein
composition and determines the function of the cell [7]. Furthermore, regulation of
gene expression is a an integral part of evolution and progression of diseases [16].
Initiation of transcription, the process of reading a gene into a messenger sequence,
is to a large extent controlled by several associated proteins called transcriptional
factors (TF) [3]. Transcriptional factors bind DNA in a sequence specific manner and
has the ability to alter gene expression. Thus, understanding the binding specificities
of transcriptional factors provide insight for unraveling the gene regulatory networks.
A major goal in understanding gene regulatory networks is to be able to determine
which sites at a genomic sequence are occupied by certain transcriptional factors.
DNA binding specificities of proteins can be measured with inside the cell, in
vivo, and outside the cell, in vitro, techniques. Binding profiles from in vitro
measurements can be used for finding putative binding sites and target genes in the
genome while in vivo methods measure binding specificities at living organisms at
certain conditions. [7] In this Master’s thesis binding specificities of human TFs
measured with in vitro experiments using sequencing techniques are modeled. In
this chapter, the significance of gene regulatory networks and transcriptional factor
binding specificities are discussed. The experimental in vitro methods for which the
models are constructed, are introduced and currently used modeling techniques for
the quantitative data are represented.

2.1 Gene expression
The deoxyribonucleic acid (DNA) sequences that code for proteins are called genes.
DNA comprises four bases, adenine (A), cytosine (C), guanine (G) and thymine (T),
which are covalently linked into two nucleic acid chains. Hydrogen bonds between
the two chains, or strands, hold them together in a DNA double helix. Furthermore,
the hydrogen bonds form energetically favorably between adenine and thymine bases
in addition to guanine and cytosine bases. Thus, genetic information is stored
into complementary DNA double helix. Genes are read out into proteins through
transcription and translation. Transcription produces a single-stranded ribonucleic
acid (RNA) molecule complementary to the gene, which is finally translated into
a protein at a ribosome in cytocol. Gene expression determines which genes are
transcribed and thus, the protein content of the cell. Transcription of protein coding
genes in eucaryotic cells is performed by RNA polymerase II with the help of additional
proteins. General transcriptional factors aid in unwinding the double stranded DNA
and positioning the polymerase on a promoter sequence. Furthermore, the assembly
of general transcription factors and RNA polymerase begins with the binding of
TFIID protein to the DNA sequence element upstream the transcription start site,
which for many genes is the TATA box. The binding of TFIID leads to a significant
change in DNA shape of the TATA sequence or an other element, which serves as a
signal for other proteins. After the assembly of polymerase and additional proteins,
the polymerase is released from the promoter for transcription and it continues
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to elongate messenger RNA sequence until it reaches a DNA terminator sequence.
However, since DNA is packed into nucleosomes and other chromatin structures, the
presence of specific transcriptional factors is needed for transcription initiation in vivo.
These transcriptional factors bind to specific DNA regions and aid at attracting RNA
polymerase II and general transcription factors to the promoter, which is packed
in chromatin. In addition, a protein complex called mediator is needed for proper
interactions between transcriptional factors and RNA polymerase. A cell can change
its protein composition by controlling transcription rates of different genes. Even
though regulation of gene expression can occur in each step of the protein synthesis,
initiation of transcription is the most important point in gene expression control.
Furthermore, gene expression is largely regulated by TF binding to DNA regulatory
sequences. [1]

Transcriptional factors can be divided into general transcriptional factors, tran-
scriptional activators and transcriptional repressors. All transcription factors include
a DNA binding domain (DBD) while activators and repressors also contain a protein
binding domain (PBD). Transcriptional activators function through positive control
by increasing the probability for initiation of transcription of the target gene. Acti-
vator proteins increase the probability for transcription by promoting assembly of
RNA polymerase and general transcriptional factors on the promoter. The activator
binds to an enhancer sequence that can be far away from the promoter sequence
with the DNA binding domain, and the DNA between enhancer and promoter loops
out in order for the transcriptional activator to interact with other proteins at the
promoter. The PBD of a transcriptional activator is also called activation domain.
Transcriptional activators once bound to DNA may act in different ways. Often
the mediator protein has already assembled general TFs and the RNA polymerase,
and the activator proteins help this complex to bind the promoter sequence. How-
ever, sometimes the complex is missing some of the required general transcriptional
factors. Activator proteins may help these proteins to assemble on the promoter.
Transcription initiation is represented in Figure 1. In addition, some activators act
by facilitating the stepwise assembly of general TFs on the promoters. [1]

Figure 1: Transcription begins by binding of TFIID leading to assembly of transcrip-
tion complex on the promoter aided by activators. Modified from [1].
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Furthermore, transcriptional activators increase transcription of target genes by
modifying DNA chromatin structure locally. Many transcriptional activators recruit
histone acetyl transferases and ATP-dependent chromatin remodeling complexes,
which in turn act by covalently modifying histones and remodeling nucleosomes. The
alterations in the chromatin structure make DNA underneath more accessible. [1]

Transcriptional repressors on the other hand act through negative control, thus
their binding to DNA decrease the probability for transcription initiation. The
repressors also work by directly affecting transcription initiation and by modifying
chromatin structure in various ways. Mainly repressors act by inhibiting the function
of transcriptional activators. The inhibition may be achieved through competitive
binding to DNA, masking the protein binding domain of the activator or by occupying
the binding site of the activator at the mediator. Furthermore, transcriptional
repressors can alter chromatin structure to make the DNA sequence at hand less
accessible. Chromatin can be changed back to the pre-transcriptional state by
certain types of chromatin remodeling complexes, which are attracted to the site by
transcriptional repressors. In addition, repressors may recruit histone deacetylases
that make the chromatin less accessible and reduce the affinity of TFIID towards
the promoter. [1]

2.2 Complex gene regulatory networks
Gene expression is to a large extent regulated by transcriptional factors that bind DNA
regulatory sequences, which can be understood as a mechanism of the cell for turning
genes on and off. However, regulation of gene expression is highly complex, because
of the large number of transcriptional activators and repressors and the numerous
enhancer sequences that may be located far away from the promoter sequence. In
addition, RNA polymerase II requires often multiple general transcriptional factors
to initiate transcription. Thus, there are multiple steps for regulating the rate of
transcription. Furthermore, transcriptional factors can alter DNA packaging into
chromatin, which serve as the third mechanism of turning genes on and off, making
gene expression regulation even more complex. It has been estimated that about
5-10 % of genes transcribe for proteins that regulate gene expression, which describes
the complexity of gene expression networks. The expression of genes is regulated
by multiple transcriptional factors whose expression in turn is regulated by other
transcriptional factors and so on. In addition, cells adapt to environmental changes by
altering their gene expression. The activity of transcriptional factors may be changed
for example through protein synthesis, ligand binding, protein phosphorylation and
unmasking the active site of a transcriptional factor. Each gene is regulated differently
in a cell through synergistically functioning transcriptional factors. The joint effect
of multiple transcriptional factors working together is the product of the effect of
each transcriptional factor. Thus, the effect of multiple transcriptional activators on
the transcription rate is much higher than the effect of one activator. [1]

A gene regulatory network denote the interactions between transcriptional factors
and DNA regulatory sequences at a given time in various cellular contexts. In
addition to the direct relationship between transcriptional factors and a target gene,
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a few studies have indicated that sometimes transcriptional factor binding do not
correlate with target gene expression. Furthermore, it is not known whether this
kind of binding is functional or not. The binding might be random or possibly
conveying gene expression regulation at a distance for example by altering chromatin
structure or looping chromatin. Thus, transcriptional factors binding to DNA may
occur near the target gene in order to directly regulate the expression of the gene,
or in a genome-wide manner regulating the chromatin structure. [2] For example
in vivo experimental methods such as chromatin immunoprecipitation followed by
sequencing (ChIP-seq) may be used to determine TF binding sites in a genome
and genes whose expression they are likely to regulate [3]. Thus, for transcriptional
factors that regulate the expression of specific target genes, it could be possible to
deduce their function from revealed binding sites. This might not be possible for
transcriptional factors that bind to regulate chromatin structure and thus regulate
gene expression more widely. However, the ultimate goal in studying gene regulatory
networks would be to be able to directly infer them from the knowledge of the
binding sites in the genome of a cell. [2] Different environments, cell types and many
transcriptional factors make studying the gene regulatory networks complicated.
Thus, the knowledge of all putative binding sites in a genome would be beneficial for
understanding the function of transcriptional factors. [5]

Transcriptional factors may also bind DNA as complexes of multiple proteins,
which increases the complexity of gene regulatory networks. In some cases individual
gene regulatory proteins are not able to bind DNA on their own but as a dimer
have the required affinity for binding specific DNA sequences. Furthermore, other
transcriptional factors containing activator or repressor domains may assemble on the
dimer to alter gene expression. Often, protein interactions are strong enough to occur
only at their DNA binding site, which makes the DNA sequence a seed for assembly of
the proteins. The fact that individual transcriptional factors may have different roles
in different protein complexes, increases the complexity of gene regulatory networks.
[1] Thus, many transcriptional factors bind DNA as homo- and heterodimers. A pair
can possibly bind to multiple different DNA motif, if the spacing and orientation
between the two proteins differ [17, 4]. Often, the transcriptional factor pairs form
between the same structural family. However, pairing between different families have
been identified. [4] Therefore, when gene expression regulation networks are studied
it is important to also consider and model TF pair binding profiles.

2.3 Transcription factor binding specificities
As discussed the knowledge of TF binding sites can be used to infer gene regulatory
networks. Transcriptional factors bind regulatory DNA sequences in a sequence-
specific manner. The affinity of a protein for each potential DNA sequence can
be determined separately. However, for modeling gene expression networks, the
information that is needed is not the affinity of each potential binding site, but
rather the affinity difference between probable binding sites at regulatory sequences
and non-binding sites. Since the amount of genome is so high inside the nucleus,
transcriptional factors will be constantly bound to DNA even if high affinity sites
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are not available. Thus, for transcriptional factors the ability to separate sequences
at regulatory sites from other genomic regions is crucial. The difference in affinity of
all the potential binding sites of a transcriptional factor is referred to as specificity,
whose representation is called a motif. Specificity refers to how well a transcriptional
factor distinguishes between different DNA sequences. [3]

Transcriptional factors recognize the functional binding sites according to base
and shape information of the DNA. The interactions between the DNA sequence and
transcriptional factor occur between the side chains of the protein aminoacids and
accessible edges of the DNA bases. Readout of the transcriptional factor according
to DNA base sequence is called base readout. Possible bonds include for example
hydrogen bonds, hydrophobic interactions and water-mediated hydrogen bonds. In
addition, transcriptional factors recognize shape features of the DNA including
unwinding and bending. These features are dependent on DNA base sequence, thus
they are also referred to as indirect readout. The DNA structure can be divided into
major and minor groove, to which transcriptional factors bind slightly differently.
Most transcriptional factors utilize both base and shape readouts when binding DNA.
Figure 2 represent possible base interactions in major and minor groove in addition
to the interplay of shape and base readout usage. [18]

Figure 2: TF recognize binding sites through base- and shape readouts. Base readout
describe the functional group that each base denote for protein binding while shape
readout describe the shape features that affect binding. Base readout differs between
major and minor grooves. Modified from [18].
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In order for the transcriptional networks to function properly, the transcriptional
factors need to separate functional binding sites from all putative binding sites. The
specificity of a protein may be characterized differently depending on the experimental
method used. Most often enrichment scores, which are based on rank median affinities,
or position weight matrices, describing the probability for each base to occur in each
position, are utilized. [3]

Transcriptional factor dimers bind DNA according to similar principles than single
transcriptional factors. However, protein pairs may have multiple different binding
specificities, since there might be fluctuation in the amount of gaps between the
motifs for the two transcriptional factors. Furthermore, the orientation of the binding
proteins may alter and binding may occur on opposite DNA strands. However,
according to Jolma et al. most transcriptional factors exhibit one or two different
binding orientations while gaps of one or two deoxyribonucleotides between the two
motifs are most common. [4]

2.4 In vitro binding site determination
Currently, the DNA binding preferences are known only for a small fraction of human
transcriptional factors. In vivo techniques can be utilized for discovering TF binding
sites in a cell. However, in vivo measurement techniques do not reveal all potential
TF binding sites. Developing models that describe transcriptional factor binding
based on biochemical principles would be beneficial for understanding gene expression
mechanisms. In addition, these models could possibly predict the effects of mutations,
thus aid at understanding disease susceptibility. In vitro high-throughput techniques
can measure protein-DNA binding specificities outside the cell, which makes the
discovery of all putative binding sites possible, resulting in better sequence specificity
models. [5] Currently, the most popular in vitro measurement techniques for protein
binding affinities include protein binding microarray (PBM) and high-throughput
SELEX. In PBM experiments, double stranded DNA probes are attached on a glass
surface, which is washed with a solution containing epitope tagged protein and an
antibody solution with fluorophore labeled antibody. Thus, binding intensities can
be determined by measuring fluorescence intensity. [19] However, with PBM the
amount of probes that can be placed on the array is restricted and the position of
DNA probes on the array may cause disturbances. In addition, the studied proteins
need to be purified, which makes it difficult to study transcriptional factors that need
post-transcriptional modifications in order to function properly. The high-throughput
systematic evolution of ligands by exponential enrichment (HT-SELEX) is based on
massively parallel sequencing and it has been utilized for studying large amounts
of TF binding affinities in parallel. [7] Furthermore, the method was extended to
measure DNA binding specificities of transcriptional factor pairs. PBM can also be
modified to measure transcriptional factor pair binding affinities. However, CAP-
SELEX enable measurements with many TF pairs in parallel and restrictions on
DNA pool size are looser. [4] HT-SELEX and CAP-SELEX data is modeled in this
Master’s thesis. Thus, these methods are discussed in this chapter more deeply.
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2.4.1 High-throughput SELEX

Evolution of ligands by exponential enrichment (SELEX) is a screening method that
can be utilized for selection of specific DNA sequences that bind a TF. SELEX
comprises repeated cycles of partition and amplification from a large nucleic acid
sequence library. A random nucleotide pool is incubated with the protein and the
bound sequences are separated from the non-bound sequences. Furthermore, bound
sequences go through amplification for the next selection cycle. [6]

Jolma et al. have measured binding specificities for human transcriptional factors
with high-throughput SELEX (HT-SELEX). The experiments begun by manu-
facturing the transcriptional factors or the DNA binding domains (DBDs). The
DNA sequences encoding the proteins were cloned into a Gateway recombination
cloning entry vector. Sequences were retained with streptaviding binding peptide
(SBP) tagged Gaussia luciferase enzyme. Furthermore, the expression of the pro-
teins was measured with a luciferase assay in primate cells, where the proteins had
been transported. In addition, a library for double stranded DNA sequences, called
ligands, was constructed. The DNA sequences were designed so that all possible
nucleotide acid sequences were present. Furthermore, the sequences were attached to
a barcode sequence, which indicate the identity of the ligand, in addition to a primer
sequence, which is needed in PCR amplification. The barcode identification enables
measurements of multiple TF binding specificities in parallel. After the TFs and
DNA ligands are prepared, the HT-SELEX can begin. First the proteins and DNA
ligands are mixed together in order for binding to take place. Then, the sample is
washed and the TF bound DNA sequences are separated from the mixture. These
DNA sequences are PCR amplified and utilized for the next HT-SELEX cycle. The
cycle is repeated multiple times in order to verify that only the highest affinity sites
remain in the DNA sequence pool. Figure 3 represents the HT-SELEX process. [7]

Figure 3: HT-SELEX with repeated cycles of elution, PCR amplification and se-
quencing. [7]

The DNA sequences are sequenced with massively parallel sequencing after
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each HT-SELEX cycle. Possible error sources in the HT-SELEX process include
transcriptional factors having binding affinities towards primer sequences and having
too small DNA sequence pools. Thus, a computational quality control pipeline can
be utilized for detecting successful HT-SELEX cycles. Failed experiments could be
detected by discovering low quantities of highly enriched subsequences. In addition,
the positions of the TF binding sites at the ligands was assessed. Since real binding
sites should be distributed quite evenly across the ligands, binding to barcodes or
flanking constant regions can be detected by discovering binding events at the same
sites in multiple ligands. Furthermore, the quality of individual cycles of HT-SELEX
experiments could be assessed by assuring that the high affinity sequences are enriched
exponentially. If enrichment is not observed at a SELEX cycle for some of the high
affinity subsequences, the cycle is likely to be contaminated. [7]

Binding models can be constructed directly from the HT-SELEX data. Position
weight matrices may be generated by counting the base occurrences in the most
enriched 5-12 bases long subsequences and all the subsequences that differ from these
enriched subsequences by one base. Jolma et al. compared HT-SELEX results for a
specific mouse DNA binding domain to a similar experiment conducted with PBM.
It was discovered that HT-SELEX yielded highly similar binding profiles than PBM.
In addition, in vivo Chip-seq experiments with three different transcriptional factors
gave similar profiles than found with HT-SELEX. High-throughput SELEX may be
more suitable than PBM when DNA binding specificities of multiple transcriptional
factors need to be assessed. [7]

2.4.2 Consecutive affinity-purification SELEX

A transcriptional factor pair can bind multiple different motifs due to different orien-
tations and spacings between the two binding sites. Consecutive affinity-purification
systematic evolution of ligands by exponential enrichment (CAP-SELEX) have been
proposed for measuring TF pair binding specificities. The CAP-SELEX method is
very similar to HT-SELEX. However, a few adjustments have been implemented
in order to enable measurements of transcriptional factor pair binding specificities.
Furthermore, CAP-SELEX is able to measure simultaneously DNA mediated TF
pair binding events and binding of already dimerized TFs. [4]

In Jolma et al. CAP-SELEX experiments, Gateway recipient vectors were con-
structed with two different types of tags for the two different proteins. The first
transcriptional factor was tagged with SBP and the second with 3 x Flag. Both types
of proteins were expressed and purified from E. coli cells. Similarly as with HT-
SELEX experimental procedure, double-stranded DNA ligands were barcoded. DNA
ligands and both types of TFs were incubated together in a buffer that resemble the
conditions of a cell. Furthermore, in order to sequence only those DNA ligands that
have both transcriptional factors bound to them, two washing steps were introduced.
Separation was performed through consecutive affinity purification first by the SBP
tag and then by the 3 x Flag tag. The ligands, which had the protein dimer bound
to them, were then washed and PCR amplified. These sequences were utilized for
the next CAP-SELEX cycle. In CAP-SELEX procedure the cycle is repeated three
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times. [4] Figure 4 represent CAP-SELEX experimental procedure.

Figure 4: CAP-SELEX for revealing TF-TF-DNA interactions. [4]

Similarly as in HT-SELEX the binding specificities of the transcriptional factor
dimers could be revealed by examining the most enriched sequences. However,
the binding site could be identified as one combinatorial binding specificity or by
two separate binding specificities of the two proteins. Furthermore, the gapped or
ungapped enriched subsequences could be found with a de novo motif discovery
algorithm, Autoseed. However, when the two proteins were spaced further apart
on the ligands, a slightly different approach needed to be utilized. In these cases
6-mer representative sequences were defined for both TFs and for each experiment
only those ligands were chosen for further examination that included both of the
representative sequences. Furthermore, the spacing and orientation preferences were
counted from the chosen sequences. [4] Thus, PWMs can be constructed also from
CAP-SELEX data for protein dimers. The next section discusses position weight
matrices more profoundly.

2.5 Modeling transcriptional factor binding sites
Transcriptional factor binding is modeled with binding specificities, which aim at
describing how the protein differentiate between binding and non-binding sites. The
most common and simplest model for specificities is the position weight matrix (PWM)
that is constructed slightly differently for different types of experimental data. [3] The
basic principles of position weight matrices is discussed in this chapter. In addition,
a deep learning model, DeepBind, for predicting sequence specificities is introduced.
The model constructs a binding motif matrix similar to PWM. Furthermore, it has
been utilized for HT-SELEX data. [10] Random forest modeling implemented in
this Master’s thesis is compared to the performance of PWM models and DeepBind.
In addition, random forest is combined with PWM by utilizing the most probable
binding sites search from the SELEX ligands with PWMs for training the model.
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2.5.1 Position weight matrices

Position weight matrices (PWM) may be utilized for scoring DNA sequences for
being binding sites. PWM is defined as a matrix W (b, i) where b refers to the base
b={A, C, G, T} in position i of an L bases long binding site sequence. Each element
in a PWM give a specificity score for a base at each position of the binding site. Thus,
a PWM may be utilized for scoring candidate sequences of length L by summing the
elements of the matrix that correspond to the sequence. [20] If the sequence S is
represented as a binary matrix S(b, i) containing the knowledge of which bases are
present in the sequence, an additive score can be computed for a candidate sequence
as [20],

Score(S|W ) =
∑
b,i

W (b, i)S(b, i). (1)

SELEX data is qualitative in nature. The data comprises DNA reads, which
contain TF binding sites. However, only a subsequence of each read might correspond
to the binding site, which slightly complicates the PWM construction. [7] In general,
probabilistic modeling may be utilized for constructing position weight matrices from
known binding site sequences. First a position frequency matrix (PFM) is generated
by determining the probability for each base. [20] Thus, position frequency matrix,
F , can be constructed from N aligned sequences Sj as [20],

F (b, i) = 1
N

N∑
j=1

Sj(b, i). (2)

For instance Table 1 represent a PFM for Barhl1.

Table 1: PFM for Barhl1 [5]
Base/Position 1 2 3 4 5 6 7 8 9 10

A 0.25 0.22 0.09 0.87 0.99 0.66 0.04 0.14 0.23 0.16
C 0.28 0.36 0.01 0.00 0.00 0.03 0.60 0.04 0.24 0.26
G 0.31 0.14 0.00 0.00 0.01 0.11 0.03 0.71 0.34 0.11
T 0.16 0.28 0.90 0.13 0.00 0.20 0.33 0.11 0.19 0.47

Alternatively to equation 1, PFM can be utilized for computing sequence scores
for sequence S, through multiplication [20],

Pr(S|F ) = Score(S|F ) =
∏
b,i

F (b, i)S(b,i). (3)

The PFM can be transformed to PWM by taking logarithm of the matrix values [20].
In addition, information content (IC), which can be utilized for motif visualization,
is computed from a PFM as [20],

IC(i) =
∑

b

F (b, i) log2

(
F (b, i)
0.25

)
. (4)
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For instance Barhl1 PFM is represented in Figure 5.
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Figure 5: Barhl1 PWM from [5] and visualized using IC.

The binding site position on a DNA read in SELEX data is uncertain [7]. Thus, a
motif discovery algorithm is utilized for finding the binding sites before constructing
the PWM. Motif discovery algorithms are based on alignment of the DNA reads and
finding the most enriched subsequences. [20] The most commonly used methods for
motif discovery include the expectation maximization (EM) algorithm and Gibbs
sampling [21].

2.5.2 Binding motif with deep learning

Although position weight matrices are functional and easy to use, recent advancements
in the field suggest that more complex models capture sequence specificities more
accurately. A deep learning algorithm, called DeepBind, has been proposed for
constructing binding motifs from different types of experimental data including HT-
SELEX sequencing data. The algorithm is based on convolutional neural networks.
Thus, it can be utilized for HT-SELEX data even though the transcriptional factor
binding site on the reads is unknown. The binding motif learned with DeepBind
is similar in structure than the position weigh matrix. Therefore, the motif is easy
to interpret and can be visualized similarly to PWM as represented in Figure 5.
However, the motif values do not necessarily need to be probabilistic. [10]

Training with DeepBind is performed in four steps: convolution, rectification,
pooling and learning with neural networks. In convolution step the sequenced reads,
S, are scanned with a set of binding motifs, k, yielding scores for each subsequence, i,
similarly as with PWMs with the exception of motif scores not having to be positive
or summing up to one. Thus, the convolution step performs the same computation
than the PWM in equation 1 so that Wk(b, i) are the k DeepBind motif matrices.
Next, in the rectification step the convolution scores are modified such that tunable
thresholds, t(k), are reduced from the scores yielding a rectified motif matrix Y (k, i),

Yk(i) = max(0, Score(S|Wk)− t(k)). (5)
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Furthermore, the scores are set to zero if they have negative values. Thus, the
thresholds can be understood as activation thresholds setting those values to zero
that are not greater than the thresholds. Pooling is performed by maximizing and
averaging the rectified responses of each motif detector and subsequence. Maximizing
gives information about longer motifs and averaging about the presence of multiple
shorter motifs. For HT-SELEX experiments utilizing only the maximization step
performed well enough. Thus, pooling was conducted with,

zk = max(Yk(1), ..., Yk(n)), (6)

where n is the total number of subsequences i = 1...n. These features are given to
the neural network, which transforms them to output scores. The neural network is
a vector of tunable weights and the output score is a linear combination of weights
and features. The output score is 0 or 1 indicating a binding or non-binding site.
Thus, output scores, p, are computed as,

p = wd+1 +
d∑

k=1
wkzk, (7)

where d is the total number of motifs, wk are the neural network weights and wd+1
is an additive bias term. Since the true target values are known in training, the
prediction errors are utilized for tuning motif detectors, thresholds and weights.
Figure 6 represent the four stages and work flow of the DeepBind algorithm. [10]

Figure 6: DeepBind comprise convolution, rectification, pooling and neural network.
Motifs Wk, thresholds t(k) and weights wk are tuned in training. [10]

New sequences can be scored as binding or non-binding sites with DeepBind by
utilizing the learned motif detectors, thresholds and weights for test sequences. [10]



15

3 Materials
Protein and DNA binding specificities are modeled in this Master’s thesis. Binding
specificities for individual human transcriptional factors are determined from HT-
SELEX DNA sequences acquired by Jolma et al. [5]. Position weight matrices have
been reconstructed from the data previously but adding complexity with random
forest might yield a more accurate description of the binding specificity. In addition,
Jolma et al. utilized CAP-SELEX method for finding position weight matrices for
transcriptional factor pairs [4]. Similarly, these binding specificities can be modeled
with higher complexity models. In this chapter, the HT-SELEX and CAP-SELEX
data utilized in this thesis is represented.

3.1 HT-SELEX data
In [5], Jolma et al. measured binding specificities of human and mouse transcription
factors with HT-SELEX method. Binding specificities of full length transcriptional
factors and their DNA binding domains (DBD) were examined. Out of the 891
human DBDs and 444 mouse DBDs, 303 human DBDs and 84 mouse DBDs ex-
pressed binding affinity with enriched specific sequences. In addition, 151 full length
human transcriptional factors were discovered to have binding specificities for specific
subsequences, when 984 full length proteins were studied. It was discovered that
especially proteins from high mobility group (HMG) and C2H2 zinc finger group did
not show distinct binding specificities. This is in line with the knowledge of these
proteins expressing unspecific binding. [5] The 538 data sets with significant binding
specificities have been utilized also for assessing DeepBind model performance [10].
In this work only a subset of the transcriptional factors that have been found by
Jolma et al. to bind to specific DNA sequences are modeled. The different ways
of choosing features for the random forest is examined in a case study with Alx1
transcriptional factor. In addition, the best experimental schemes are studied with
a data set comprising of 15 HT-SELEX experiments. Furthermore, the modeling
schemes that perform the best on unseen testing data are utilized for a larger data
set and compared to accuracies with DeepBind and Jolma et al. position weight
matrices.

The HT-SELEX data for transcriptional factors is stored in European Nucleotide
Archive (ENA) to Fastq file format. ENA is a database for high-throughput se-
quencing information and Fastq is a common file format for sharing sequences [22].
Fastq files contain the sequenced reads in addition to the per base quality scores
that describe the estimated probability for error [22]. However, in this work only
the sequenced reads are considered. The Fastq files are named so that first is the
name of the protein, then the barcode that also indicates the length of the sequenced
reads, then the name of the experimental batch and finally the experimental cycle.

Jolma et al. utilized a computational pipeline Inimotif to discover which experi-
ments contained significantly enriched subsequences. The experiment quality was
assessed by considering that the most enriched subsequences should be related to each
other, the binding should occur evenly at all positions on the forward and reverse
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strands and that the high affinity sequences should be enriched exponentially against
the experimental cycles as represented in Figure 7. Contrary, random subsequences
do not express exponential enrichment against selection cycle. [7]

Figure 7: Enrichment increases exponentially against selection cycle for enriched
subsequences contrary to random subsequences. [7]

Quality control was performed by computing the incidences of all 5 to 11 nucleic
acids long subsequences and determining the most enriched one for each length. The
Hamming distances were then computed for other subsequences. Hamming distance
is the amount of base substitutions required to transform the subsequence into the
most enriched one or its reverse complement. Thus, it could be inspected whether the
experiment yielded sufficiently high incidence of the most enriched subsequence and
that there were other subsequences closely related to it. Furthermore, the position
of the most enriched sequences on the forward and reverse strands were computed in
order to assure that binding does not occur on barcode sequences. The sequences
in the ENA fastq-files does not contain the flanking regions including the barcode.
Finally, the exponential enrichment of subsequences from cycle to cycle was assessed
by calculating the incidence of 100 most enriched subsequences and 200 random
subsequences in each cycle and assuring that the same subsequences are enriched in
all cycles. [7] The experimental cycles studied in this Master’s thesis are the same
that have been selected by Jolma et al. for PWM construction and by Alipanahi
et al. for comparison between DeepBind and the PWMs on unseen DNA sequences
[5, 10]. However, a subset of 55 transcriptional factors were chosen randomly for
random forest modeling.

Finally, position weight matrices could be derived from successful experiments.
The most enriched subsequences for different lengths were identified and incidences
were utilized for PWM construction. In addition, incidences for all subsequences
that differed from the most enriched subsequence by at most one base were identified.
The position weight matrices were computed from these subsequences as described
in the previous chapter. Similar analysis was conducted on earlier cycle, which was
utilized for background correction. The optimal position weight matrix was then
selected for each protein by choosing the one with minimum length that still included
all the highly specific positions. [7] The PWM positions were identified as sufficiently
specific if the ratio between the most and least frequent base was greater than one
[5]. Position weight matrices for two example proteins are represented such that the
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information content of each base is plotted in Figure 8.
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(a) Alx3 PWM from [23] and visualized using
information content.
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(b) Barhl1 PWM from [23] and visualized using
information content.

Figure 8: Position weight matrices for Alx3 and Barhl1.

3.2 CAP-SELEX data
Random forest modeling is utilized in this work also for transcriptional factor pair
binding sites. Jolma et al. measured 9400 putative transcriptional factor pair
binding specificities. Hundred proteins were marked with SBP and 94 proteins
were flag-tagged. It was discovered that 315 TF pairs expressed significant DNA
binding affinities. Furthermore, 162 protein pairs preferred only one site while 153
displayed many binding specificities. Most transcriptional factor pairs recognized DNA
sequences with one negative spacing between the motifs of the two transcriptional
factors. In addition, the transcriptional factors that bound DNA with positive
spacing between the individual motifs had a more relaxed binding specificity, thus
expressing multiple gap configurations. Furthermore, some transcriptional factors
expressed both negative spacing binding and the more relaxed positive spacing
binding tactics. However, the differences in the motif distances were mostly small.
Out of the transcriptional factor pairs that expressed relaxed binding preferences 73
% showed binding preferences with only one base pair gap difference between the
two configurations. Furthermore, there are four possible orientations of the proteins
binding to the DNA ligand, since binding can occur on both strands. However,
when multiple orientations were observed, two orientations was the most common
case. Although, some proteins have palindromic binding sites, which refers to the
sequence on reverse and forward strands of the binding site being similar, making the
number of observed orientations likely an underestimate. Thus, binding preferences
of transcriptional factor pairs are highly sensitive to orientation and distance between
the proteins. Figure 9 represent the number of observed gaps between the individual
motifs and the amount of orientations observed in all the CAP-SELEX assays.
Furthermore, for many transcriptional factor pairs the two individual binding motifs
were not distinguishable as expected. In these cases the observed binding sites differed
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from what would have been expected from individual PWMs and this occurred mostly
with pairs that had overlap between their motifs. Thus, transcriptional factor pair
binding is highly complex and to a large extent a DNA mediated process. [4]

Figure 9: Gaps between TF motifs in CAP-SELEX experiments. Modified from [4].

Furthermore, PWMs could be recovered from each CAP-SELEX assay that
showed enrichment of subsequences indicating significant transcriptional factor pair
binding. Again, the sequenced reads were stored to European Nucleotide Archive
(ENA) in Fastq file format. The files are named similarly as with HT-SELEX
experiments so that the name of the two transcriptional factors are annotated first,
then the experimental cycle and the name of the experimental batch. Finally, the
length of the sequenced reads is represented with the barcode sequences. Sequencing
depth was chosen so that on average each experiment yielded 250 000 sequenced
reads. The experiments went through the same Inimotif quality control pipeline
than the HT-SELEX experiments. Thus, experiments, which express most enriched
subsequences related to each other evenly on all positions on the forward and reverse
strands, are chosen for further analysis. The generation of position weight matrices
was performed with Autoseed, which considers gapped subsequences in addition to
ungapped ones. Thus, it can be utilized for finding PWMs for protein pairs that
have gapped binding motifs. [4] Autoseed algorithm utilizes Hudding distance, which
is a distance measure between aligned DNA sequences. Each subsequence is aligned
against all other subsequences and the amount of subsequences that are within one
Hudding distance away from each other are counted. Aligned sequences that have a
Hudding distance of one, have n-1 perfectly matching bases, where n is the number
of defined bases in the longer ungapped subsequence. If the count of a subsequence
is higher than the count of any other related subsequence it is utilized as a seed for
generating the PWM. [24]

Furthermore, Jolma et al. analyzed TF pairs that bind further apart on the DNA
reads. This was performed by determining representative 6 bases long subsequences
for each transcriptional factor. The reads that contained both of the representa-
tive subsequences were then chosen for further analysis in each experiment. The
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orientations and gaps between the binding sites were counted and represented with
the maximum gap count for each orientation. The gap configuration was seen as
significant if the count of it and the two neighboring gaps was higher than 30 % of
the total amount spacings for that orientation. Finally, all the counts were mean
normalized and the orientation and gap combinations were selected as preferred
binding specificities if their count was higher than 50 % of all the spacing counts.
The enriched subsequences were also utilized for PWM generation as a seed. [4]
The seed matches and all subsequences that differed from the seed by one base
were identified and the PWM was computed out of these sequences [7]. Jolma et
al. provide the PWMs for transcriptional factor pairs [4]. In this Master’s thesis
the same experimental cycles chosen by Jolma et al. for PWM construction are
utilized. However, out of the 315 TF pairs expressing DNA binding preferences, 50
were randomly selected for modeling.
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4 Methods
Transcription factor binding sites measured with HT-SELEX and CAP-SELEX are
modeled with random forest. Random forest is an ensemble method based on learning
multiple decision trees on randomly chosen subsets of the data [12]. Furthermore,
decision trees are defined by dividing the data recursively so that the partitioning
can be represented as a tree with leaves corresponding to the final classes [12], which
is this Master’s thesis are binding site (1) and non-binding site (0). Genomic data
is highly correlated and usually high-dimensional, which makes decision trees, and
thus random forests, a suitable method for their modeling [14]. In this chapter,
the theory behind random forest classification is discussed. Model learning and
testing schemes are represented in addition to the introduction of background set
construction and the different experimental settings. Experiments are conducted by
combining position weight matrices with random forest and by utilizing only random
forests. Slightly different approaches are needed for modeling individual TF motifs
and TF pair motifs.

4.1 Supervised learning
In machine learning a predictive model is found by optimizing a performance criterion
on training data set, which may be artificially constructed or experimental. Thus,
machine learning may be utilized in situations where it is not possible to construct a
model that perfectly resembles the data or the acquired knowledge for such a model
is not accessible. However, a good approximation of a model may be found through
optimization. In addition, machine learning is related to artificial intelligence in a way
that models can learn features of the data and adapt to changes. Machine learning
methods can be divided to supervised and unsupervised methods. In supervised
learning the training data is used for constructing the model while the predictive
accuracy of the model is assessed on a test data set. The data in a supervised
learning task is divided into features and labels. Thus, the goal is to construct
a mapping from features to known labels in the training data set. The model is
tested on the test set by learning the labels from test set features and comparing
the predicted labels to true labels. The error between true and predicted labels in
the test set with unseen data is called generalization error. With categorical labels
the supervised learning task is called classification and with continuous labels the
task is called regression. Unsupervised learning differs from supervised learning
by the absence of known labels. In unsupervised learning the aim is to discover
interesting patterns in data. A central task in supervised learning is to find an
optimal model complexity that is able to model all the true trends in the data but
does not overfit. Overfitting may be caused by learning too flexible models that are
in fact modeling the noise in the data. Such models do not perform well on unseen
data sets. Regularization is a common way of preventing overfitting. Regularization
refers to adding a regularization term to the loss function of the model that will
penalize higher complexity models. In machine learning the task is often to choose
the best model complexity and parameters through optimization with training data.
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Often there is not enough data to make reliable estimates of model performance on
the test set. Cross-validation is a learning scheme where the training data is divided
into K folds, k ∈ {1, .., K}, of about the same size. The model is trained separately
on each k fold and tested on all the other folds, which is called validation data set.
The average error in validation set is utilized for selecting the optimal model. [12]

The goal in this Master’s thesis is to model protein-DNA binding specifities.
Thus, the modeling conducted is binary classification. In binary classification there
are only two possible classes. When modeling SELEX data the two possible classes
are binding site (1) and non-binding site (0). Features may be chosen in multiple
ways. However, the simplest way is to use the nucleic acids sequence of the reads as
categorical features. In addition, k-mer frequencies and different shape features of
the DNA ligands may be utilized as features for learning the model. The sequenced
DNA reads in each experiment are divided into training set of 75 % of the entire
data and a test set of 25 % of the data with balanced classes. Thus, there are equal
number of positive and negative instances in the training set. Furthermore, 3-fold
cross-validation is utilized in the training for searching the optimal forest. Random
forest is learned with the training data and the model performance is evaluated in
the test data set.

4.1.1 Bias-variance decomposition

Model predictions differ from the true class labels with an estimated prediction
error. The error is composed of bias and variance. Bias refers to the average error
between true values and predicted values. Variance on the other hand is the difference
between predictions with the same model in different data sets. In practice high
complexity of the model yields low bias, since the model is able to discover all crucial
patterns in the data, and high variance as the noise in the data might be modeled as
well. This situation is referred to as over-fitting, which causes predictions on unseen
observations to be inaccurate. Although, the aim should be to reduce both bias and
variance, it is not possible, since there is a trade-off between them. The bias-variance
decomposition can be demonstrated with single input regression. In regression a
true value y from a data set D can be mapped from the features x with a regression
function h(x). However, regression function is not known exactly. Thus, model
prediction is mapped with a prediction function y(x;D). Furthermore, decomposition
between bias and variance can be represented by considering the expectation of
squared error between the true value h(x) and model prediction y(x;D),

ED[{y(x;D)−h(x)}2] = {ED[y(x;D)]−h(x)}2+ED[{y(x;D)−ED[y(x;D)]}2]. (8)

In equation 8, the first term is squared bias and the latter term is variance. [25]
A similar reconstruction can be found for binary classification [26]. In general, the
bias-variance decomposition shown in equation 8, can be represented for multiple
input data with noise. Thus, the reconstruction is,

expected loss = bias2 + variance+ noise. (9)
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The aim in machine learning is to minimize the expected loss. However, there is
a trade-off between bias and variance, decreasing the other will increase the other.
Thus, optimal model complexity maintains a balance between bias and variance. [25]
The bias variance trade-off is an important concept in tree based modeling, because
decision trees are known to have high variance, which can be reduced by using an
ensemble of multiple decision trees trained on independent training sets [27].

4.2 Background set
HT-SELEX and CAP-SELEX experimental data contain sequenced reads of the
transcription factor binding sites [7, 5, 4]. Since information about non-binding sites
is missing, the background set for the classification task has to be constructed. The
artificial background set should resemble the real differences between specific binding
sites and non-binding sites rather than the differences between binding sites and other
regions of DNA [10]. Furthermore, dinucleotide frequencies are known to appear
on a hierarchical manner in DNA [11]. For instance CG-content differs between
promoters and coding regions [10]. Therefore, the background set should contain the
same dinucleotide frequencies than the sequenced reads in order to resemble putative
but negative binding sites. A background set with preserved dinucleotide counts
ensures that the model does not rely on low-level statistics such as the CG-content
difference between coding regions and protein-binding regions [10].

A tool proposed by Jiang et al. for generating uniform random permutations of
DNA sequences while preserving dinucleotide counts is utilized for background set
construction. The tool is based on Euler’s algorithm and uses Wilson’s algorithm
at forming directed spanning trees. The underlying idea in Euler’s algorithm is to
form a directed graph of the DNA sequence so that each nucleotide is represented
as a vertex and dinucleotides are represented with directed edges. The resulting
graph may contain multiple edges at the same direction. The shuffled sequence can
then be formed by visiting each edge in the graph exactly once, corresponding to an
Eulerian walk, and choosing randomly the output edge when leaving each vertex.
[11] Furthermore, it has been proven that if the Eulerian walk starts and ends at the
same vertices as in the original sequence, the dinucleotide count is preserved [28]. A
Eulerian walk on the graph corresponds to an uniform random directed spanning
tree, which is rooted at the last vertex of the graph. Furthermore, Wilson’s algorithm
is utilized for generating the spanning tree. Thus, the tree is formed by simulating
random walks that begin from each unvisited vertex until the walk encounters the
growing tree that initially contains only the root. As an encounter occurs all the nodes
along that walk are joined to the tree. However, if a walk encounters a previously
visited node, it is erased, ensuring the formation of an Eulerian walk. [11] The
background set is constructed by shuffling each sequenced read once so that the data
contains binding and non-binding sequences with equal amount as it is a common
practice with binary classification to generate balanced classes [10].
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4.3 Random forest classification
Random forest can be utilized for modeling TF binding specificities. In random forest
multiple decision trees are learned on random subsets of the training data. A decision
tree is a nonparametric method that utilize divide-and-conquer strategy. Thus, a
distance measure is used to split the input space into local regions according to
training data. [29] Classification trees and random forests are common methods for
modeling biological data. This is in part, because features in decision tree modeling
can be a mixture of categorical and numerical, continuous and discrete variables.
Thus, for instance a classification tree can be constructed for DNA sequences with
nucleic acids as categorical features in combination with numerical variables such as
DNA shape features. [12] In addition, decision trees carry out variable selection and
perform well with large and correlated data sets [12, 14]. High-throughput biological
data sets are usually large. Both HT-SELEX and CAP-SELEX data sets govern
hundreds of thousands of DNA sequences [5, 4]. In this chapter, the theory behind
random forest classification and the feature selection possibilities are discussed.

4.3.1 Decision tree

Decision trees are hierarchical data structures that can be implemented for non-
parametric modeling. More precisely decision tree is a recursive partitioning of
the data according to local models, which are defined at each partitioning. The
partitioning can be represented as a tree where the splitting of data occur at nodes
and branches indicate which local model is considered next for that subsection of the
data. Thus, leaves of a tree will define the class of the test set observations that have
been localized to that particular leaf. Furthermore, random forest is an ensemble of
decision trees, in this case classification trees. [12] Figure 10 represent the structure
of an example decision tree such that features x are nucleic acids.

Figure 10: Decision tree partitions the data according to features x1, ..., x3 to leaves,
which give probability of belonging to a class. Modified from [25].

Classification tree is an adaptive basis function model where each model define
the region of partitioning the data. In the case of classification the distribution
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of classes in each node is stored. Furthermore, the distribution give probabilities
for each observation to belonging to each class according to features considered at
the path from root to the node. Classification of DNA binding sites of proteins
is a binary classification task. In classification, the basis functions f(x) that map
instances according to features x to label y, can be represented as,

f(x) = E[y|x] =
M∑

m=1
wmI[x ∈ Rm], (10)

where Rm is the m’th region referring to the leaf with probabilities wm of observations
belonging to class m. [12]

The decision tree is often grown with a greedy approach. A split function chooses
the best feature to consider at each node and the best value for that feature. This is
performed by minimizing the cost of the data partitioning. The class-conditional
probabilities are first estimated after the data split in each leaf for each class c as,

πc = 1
|D|

∑
i∈D

1(yi = c), (11)

where D is the data in a leaf and yi are the labels of the samples in that leaf. After
the class probabilities are evaluated, the cost function is used to assess the goodness
of the partitioning. There are multiple possible cost functions for classification. The
cost function utilized in this work is the Gini index, which is the expected error rate
for each class c out of all classes C,

C∑
c=1

πc(1− πc) =
C∑

c=1
πc −

C∑
c=1

π2
c = 1−

C∑
c=1

π2
c . (12)

Other options for cost functions would have included misclassification rate and en-
tropy. The Gini index and entropy are more sensitive to changes in class probability
than misclassification rate. Algorithm 1 represent the recursive procedure of growing
a decision tree. [12]

function grow_tree(node, D, depth);
node_prediction = class label distribution;
{ DL, DR } = split(D);
if not worth splitting then

return node;
end
else

node_left = grow_tree(node, DL, depth+1);
node_right = grow_tree(node, DR, depth+1);
return node;

end
Algorithm 1: Growing a decision tree. If according to Gini index the split is
worthy, the data D in a node is split to two DL and DR. [12]
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Thus, the split function chooses the optimal division of the data at a node. Then
the algorithm examines whether the data at the node is worth splitting. The split is
not fulfilled if the desired tree depth is obtained, the cost of the split is too small or
the node is already pure or sufficiently homogeneous. [12]

A tree can also be pruned in order to prevent overfitting. Pruning refers to
quitting the tree growing once the decrease in impurity measure is not great enough
to explain the increase in tree complexity due to splitting the data. However, this
might produce too little data partitioning if individual features do not explain the
splitting very well but the split could be justified by considering multiple features.
Thus, pruning is usually performed after the tree is fully grown by pruning back
according to cross-validated error on each subtree. The subtree within one standard
error of the minimum is chosen as the pruned tree. [12]

4.3.2 Aggregation methods

Single trees do not usually perform as well as other machine learning models due
to the greedy nature of growing a tree. In addition, decision trees are relatively
unstable models, because the trees are grown hierarchically. [12] Thus, small changes
in the training data might cause large changes in the resulting classifier [27]. In the
tree growing process, the instability manifests itself by small errors in the first splits
causing larger errors at the resulting tree. Therefore, decision trees are high variance
estimators. [12] However, the variance can be reduced by learning multiple weaker
classifiers such as decision trees and combining them into a classifier with more
predictive power. These methods are referred to as aggregation methods or ensemble
methods. The most commonly used aggregation methods include bagging, boosting
and random subspace methods (RSM). [27] Ensemble methods reduce variance,
because statistically choosing the wrong model becomes less probable when multiple
models are combined assuming that the predictors are uncorrelated. In addition,
the decision tree growing algorithms may get stuck to local optima. Thus, building
many models on different data sets may provide a model that more accurately finds
the true trends in the data. [30]

Bagging is a combination of bootstrapping and aggregation. The training data
is randomly divided into subsections with replacement, which is referred to as
bootstrapping, and a base classifier is constructed with every subsection of the data.
Thus, the subsections of the training set are independent of each other. Finally, the
classifiers are aggregated in order to give the resulting decision rule. The aggregation
of base classifiers is usually performed with simple majority voting, where the most
often predicted label from the classifiers is chosen as the final decision. However, other
combination rules may be utilized as well such as the mean of posterior probabilities
given by the base classifiers. Since bootstrap samples contain only part of the data,
the possible data outliers are not present in all of the samples. Therefore, some base
classifiers perform better than a classifier constructed with the entire training data
would perform. Furthermore, the base classifiers with more predictive power give
more extreme posterior probabilities for data observations. Thus, they will have
more decisive power in the aggregation decision, which results in higher predictive
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performance. [27] Figure 11 represent the basic principle of bagging.

Figure 11: Bagging of weak classifiers. 1. Original training data 2. Training
data randomly sampled to bootstrap samples. 3. Classifier trained on each set. 4.
Ensemble classifier combining all classifiers.

Boosting on the other hand is a deterministic method for aggregating multiple
base classifiers. The training set observations are assigned weights and classifiers
are constructed sequentially. Initially all observations have same weights, which are
altered according to the performance of the first classifier constructed on that data set.
Observations that were classified incorrectly get higher weights for building the next
classifier. The alterations in weights and sequential learning of classifiers is repeated
until a sequence of different base classifiers is obtained. Final decision are made with
simple majority voting or weighted majority voting from the classifiers. Random
subspace methods are rather similar to bagging. However, instead of randomly
selecting observations from the original data set for samples, the random subspace
methods randomly selects features for the data subsections. [27]

4.3.3 Random forest

Bootstrap aggregation could be utilized as an ensemble of decision trees. However,
bootstrap aggregation may cause highly correlated predictors limiting the amount of
variance reduction that could be possible. [12] Random forest, on the other hand, is
an ensemble method capable of even higher variance reduction than bagging [13]. In
random forests a subset of variables is randomly chosen at each data partitioning
at the decision tree nodes in addition to random selection of data sets for the
construction of each tree. The random selection of input variables adds an other
layer of randomness to bagging and aims at decorrelating the decision trees. [12]
Thus, the best split, which include the feature and a value for it, is chosen among the
randomly selected subset of variables. Furthermore, the random variable selection is
repeated at each node. Therefore, in order to learn a random forest on a training
data set, the number of variables considered at each data split has to be determined.
If the number of variables at each split is set to the same as the maximum number of
variables in the data set is, the task is the same as in bagging. [31] Too many variables
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considered at each split leads to too low variance reduction while too little variables
considered yield increase in bias [30]. Random forest builds decision trees using
CART (Classification and regression trees) methodology, described in chapter 4.3.1,
to maximum size without pruning and is robust against overfitting. Furthermore, the
accuracy of the random forest depends on the strength of individual classifiers and
the correlation between them. [13] Thus, random forest, f(x), is an ensemble of N
individual classification trees, fn(x), which have been constructed by bootstrapping
samples and randomly choosing variables for a data partitioning at each node [12],

f(x) =
N∑

n=1

1
N
fn(x). (13)

The possibility to use left-out bootstrap samples to estimate important statistics
about the decision trees are useful for random forest. Left-out samples are used
to get out-of-bag predictions in order to evaluate the generalization error in the
left-out samples. [30] The out-of-bag sample set size is about one third of all the
instances and the out-of bag estimates are unbiased [13]. Furthermore, it has been
shown that the out-of-bag estimates perform as well as or even better than the cross-
validation estimates [32]. Thus, out-of-bag estimates provide an good alternative for
cross-validation. However, since bootstrapping may cause differences in prediction
accuracies [30], the out-of-bag generalization error estimation is combined with 3-fold
cross-validation in this work.

Furthermore, one important feature of the random forest is the possibility to
asses variable importance. Variable importance estimation helps to understand the
modeled phenomena more deeply in addition to the possible predictions on unseen
data. In random forests the importance of a variable Xj is assessed by averaging the
sum of weighted decrease in impurity for all nodes t, where the variable is used for a
split, over all decision trees N ,

Imp(Xj) = 1
N

N∑
n=1

∑
t

1(jt = j)[p(t)∆i(st, t)], (14)

where the weight p(t) is the proportion of observations reaching the node t and
∆i(st, t) is the decrease in impurity in that node. This variable importance measure
is referred to as Mean decrease Gini or Gini importance. [30]

The proximity measures for variables can also be assessed within random forests
giving deeper insight into the modeled data. The aim is that the random forest could
give a measure of closeness for observations in the data set. The proximity is defined
as the number of times two observations, x1 and x2, fall to the same leaf in a single
tree divided by the amount of trees,

prox(x1, x2) = 1
N

N∑
n=1

∑
t∈Tn

1(x1, x2 ∈ Xt), (15)

where Tn describe the leaf nodes t in decision tree n. The proximity measure can be
utilized for visualization of data and for identification of outliers. [30]
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Thus, the hyperparameters that are considered in this work include the number
of variables considered at each node for a split and the number of decision trees that
are grown. Furthermore, the minimum size of the tree nodes is considered in order
to ensure the absence of overfitting. Although, random forests are often grown to
purity, it has been shown that for large data sets larger leaf nodes usually perform
better [14]. However, for genomic data with high feature space, near purity have
been discovered to be more effective, since it lowers bias [14].

4.3.4 Random forest for genetic data

High-throughput measurement techniques yield large data sets with high complexity.
Modeling of the type data is challenging due to the high dimensionality and the
correlated nature of genomic data, since many standard statistical models rely on
independence of variables. Regularized statistical learning enables the prevention
of overfitting. With random forest the greedy procedure of growing the decision
trees prevents overfitting. Furthermore, random forest can easily handle correlated
variables, because of the grouping property of decision trees and thus also the forests.
[14] The grouping property refers to the ability of the model to select entire data
subsections that belong to a class for which there is a cluster of correlated variables.
If the decision tree splits the data according to one of the correlated variables, the
other variables are considered soon after. Thus, decision trees will give a small
minimal depth for correlated set of variables and new observations fall to those leaves
more probably. Furthermore, DNA sequences with similar functionality have often
highly correlated sequences. [15] Thus, random forest is well suited for modeling
high-dimensional and correlated data. In addition, feature selection can readily be
handled by considering the variable importance measures given by the random forest,
which can be utilized for ranking the variables [14]. However, the problem with
ranking is that a rank is given to variables independently [14]. Thus, a combination
of variables that would predict the class together but not independently might not
be found [14]. In addition, random forest can handle a mixture of categorical and
numerical input variables [13]. Thus, different genetic features can be easily combined
for modeling the binding specificities.

The HT-SELEX and CAP-SELEX DNA ligands are utilized as features in this
thesis for the random forest. However, only one of the DNA strands are sequenced
and it is not known whether the sequenced strand contained the binding site or not.
The optimal type of features derived from the ligands is searched in this Master’s
thesis. One option is that random forest is trained on categorical features such
that each nucleic acid in each position is a variable. An other option is that k-mer
frequencies of the DNA sequences are utilized as variables for random forest. A k-mer
refer to a DNA sequence of length k [33]. However, the feature space increases quickly
with higher order k-mers, which might lead to too high computational costs. Thus,
only lower k-mers, 3-mers and 4-mers are considered. In addition, it is possible to
combine DNA shape features with categorical nucleic acid features. A more detailed
discussion of DNA shape features is provided next.
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4.3.5 Combining sequence and shape information with random forest

Transcriptional factors recognize the DNA binding sites through sequence and shape
readout. Thus, the combination of sequence and shape features for modeling the
transcriptional factor binding sites might be beneficial. However, it remains unclear
whether the shape readout is indirect or not [34]. It is possible that the DNA shape
features that attract a transcriptional factor can be inferred from the sequence [34].
DNAshape is a model capable of estimating local DNA shape features from nucleic
acid sequences and is provided as a R package DNAshapeR [35]. The method is
based on Monte Carlo (MC) simulations, where the DNA conformations, which are
based on twelve variables, are randomly sampled. The variables that they utilized for
the model include translations and rotations in addition to internal variables such as
bond angles. The MC simulations were analyzed and decomposed into overlapping
pentamers. Then the average shape features, including minor groove width (MGW),
DNA roll, helix twist and propeller twist, were computed for the central or two
central base pairs. The central base pair was used for MGW and Roll, while the two
central base pairs was used for helix and propeller twists. [36] These shape features
can be separately or together utilized for training the random forest classifier. In
this work they are combined with sequence variables separately in order to estimate
their effect on model performance.

Previously the combination of shape features with sequence information have
lead to more predictive accuracy of the model. For example Yang et al. showed
that for 45 % of the tested proteins the addition of DNA shape features increased
model performance significantly when modeling with position weight matrices [34].
In addition, Mathelier et al. showed that incorporating DNA shape features with
sequence information improves accuracy when predicting the transcriptional factor
bound sites in vivo [37].

4.4 Experimental setting
HT-SELEX measurements studied in this Master’s thesis contain 14, 20, 30 or 40
nucleic acids long DNA sequences, most often 20 base long DNA reads. In addition,
the CAP-SELEX measurements include 40 nucleic acids long DNA reads. The
data sets comprise sequenced DNA reads for which the reverse complement must be
considered as well. Since the data include only positive instances, the negative set
for the classification task is constructed artificially. In this Master’s thesis sequenced
reads are dinucleotide shuffled so that each DNA read is shuffled once yielding a
negative set equal in size to the positive set. Furthermore, 75 % of the positive DNA
ligands are randomly sampled to the training set while similarly 75 % of the negative
DNA ligands are sampled to the training set. Random forest modeling is conducted
with R package ’randomForest’ [31].

4.4.1 Random forest with full length DNA read

Random forest modeling experiments begin by considering full length DNA strands
for training the forest (Strand+RF). Thus, a DNA strand has to be chosen inside
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each DNA ligand. It is possible to utilize only the sequenced DNA reads for training
the random forest. However, random forest trained on the DNA strands that contain
the most probable binding site is likely to perform better. Training with full length
DNA strands can be perfromed similarly for HT-SELEX and CAP-SELEX data.
Thus, for each ligand the strand that comprise the highest PWM score position
was chosen for training the random forest. Position weight matrices were selected
from the MotifDb database that is also a R package [38]. The MotifDb database
include extensive amount of position frequency matrices from literature for multiple
organisms [38]. Figure 12 represent the experimental setting and training with the
most probable binding site strand.
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Figure 12: Experimental setting. 1. Negative set is constructed by shuffling SELEX
reads 2. Reverse complement of each DNA sequence 3.75 % of both positive and
negative DNA ligands are randomly chosen for training 4. The strand that include
maximum PWM score is chosen out of each ligand 5. Random forest is trained.

Random forest performance is evaluated on the test set, which include 25 %
of the DNA ligands. Both of the DNA strands in each ligand are scored with the
random forest and the maximum score out of the two is chosen as the final score for
the ligand. The scores range between 0 and 1, thus yielding a probability for the
ligand for containing a binding site.
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4.4.2 PWM site and random forest for HT-SELEX

DNA ligands contain a binding site but the location and the length of this site is
unknown. It is possible that binding sites are shorter than HT-SELEX sequences,
which implicate that for random forest model with entire strands, excessive nucleic
acids that are not related to binding would be utilized for training, which could
disturb random forest performance. Therefore, random forest training could be more
efficient by extracting the most probable binding sites inside each DNA ligand and
utilizing only these sites for training the classifier (PWM+RF). The most probable
binding sites can be found with PWMs from literature, which again were selected
from the MotifDb database [38]. Homo sapiens PWMs from other studies than those
modeled in this Master’s thesis were chosen if possible to extract most probable
binding sites in order to prevent learning with PWMs that have been trained with
the same data. Figure 13 represent random forest training with the most probable
binding sites. Experimental setting is similar than represented in Figure 12 for
modeling with full length DNA reads until choosing the strand in step four.

Positive Training set
3’

A T C G A T C G A T
1.   A T C G A T C G A T

C A T C G A T C A G
2. C T G A T C G A T G

...
T C C T A G C T A G

n.   C T A G C T A G G A

C G A T C A T C A G
1. C T G A T G A T C G

A T C G A T C G A T
2.  A T C G A T C G A T

...
T C C T A G C T A G

n.    C T A G C T A G G A

Negative Training set
5’

5’

5’

5’

5’

5’

5’

5’

5’

5’

5’

5’

3’

3’ 3’

3’

3’

3’

3’

3’3’

3’

3’

Find PWM maximum 
score position

Reverse

Forward

1.

2.

1. A  T  C  G  A
2. G  A  T  C  G

...
n. A  G  C  T  A

1. G  A  T  G  A
2. T   C  G  A  T

...
n. G  C  T  A  G

1
1
...
1

0
0
...
0

v1  v2  v3  v4  v5 Class

Train Random forest3.

Figure 13: Random forest with PWM sites. 1. Training data comprise positive
and negative DNA ligands, for which each position is scored with PWM 2. The
subsequence with maximum PWM score is chosen inside each ligand 3. Random
Forest is trained with the most probable binding sites.

When training is performed with PWM sites, testing must be conducted by scoring
subsequences of the same length than the PWM and thus the training sequences.
Therefore, each subsequence on the forward and reverse strands are scored with the
random forest. Final score for each ligand is then the maximum score out of all the
per position scores assigned to that ligand. Figure 14 represent scoring one test set
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DNA ligand with random forest trained with five nucleic acids long subsequences.
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Figure 14: Scoring DNA ligand with random forest trained with PWM sites. 1.
Each subsequence of the same length than the PWM is scored with random forest 2.
Ligand score is the maximum score out of all per position scores.

Training and testing experimental scheme for random forest with PWM sites
is represented in Algorithm 2 as well. Reverse complements are already computed.
Thus, the represented algorithm takes the sequences in ligand form.

PWM_RF(Ligands, PWM);
1. Subsequences = ∅ ;
2. for each training ligand do

s = find the subsequence with maximum PWM score;
Subsequences = Subsequences ∪ s;

end
3. Train random forest with Subsequences;
4. Score = ∅;
5. for each test ligand do

s = score all positions with random forest and choose the maximum score;
Score = Score ∪ s;

end
6. Final score for test ligands = Score;

Algorithm 2: Training random forest with PWM sites and testing DNA ligands.

4.4.3 PWM site and random forest for CAP-SELEX

The sequences in CAP-SELEX data contain binding sites for two transcriptional
factors [4]. Jolma et al. published combinatorial position weight matrices for the
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studied TF pairs [4]. These PWMs are utilized in this Master’s thesis similarly as
PWMs in HT-SELEX experiments to train random forest with full length DNA
strands and with PWM sites only. Furthermore, random forests are trained with
binding sites chosen by individual transcriptional factor PWMs, which were derived
by Jolma et al. from HT-SELEX data sets [5, 4].

The two TFs can bind DNA with different spacings between them [4]. There are
four possible orientations by which the TF pair can bind a DNA ligand, which are
represented in Figure 15. Furthermore, the TF pair can bind DNA with overlapping
binding motifs or with nucleic acid gaps between the two motifs [4]. PWMs of
both TFs can be used for searching combination binding sites with different spacings
between the motifs and training random forests with these sites (PWM1+PWM2+RF).
In this model the training data is divided into training set and validation set. The two
position weight matrices are attached to each other according all possible orientations
and gaps yielding multiple different combination PWMs. In the training set, random
forests are trained with subsequences chosen by these combination PWMs separately
such that each PWM attachment configuration will yield one forest. The validation
data set was extracted from the training set in order to estimate the performance of
the random forests trained with different spacings between the two PWMs. Thus,
the spacings whose forest give the best predictive accuracy on the validation set are
chosen as the best TF pair spacings for the final model. Finally, random forests are
trained with subsequences chosen by the best PWM attachment configurations using
the entire training data. Test set DNA ligands are then scored as represented in
Figure 14 with all the random forest separately. Furthermore, the average of these
scores was assigned to each ligand as the final score.
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Figure 15: Four possible protein pair binding orientations.

Furthermore, the TF pair binding sites are modeled by searching the maximum
PWM score position of one of the transcriptional factors and extending the site to
cover also the binding site of the other protein (PWM1+PWM2+N+RF). The PWM
extension is performed by adding [0.25, 0.25, 0.25, 0.25] columns to the other end
of the PWM before searching for the binding site. However, the direction to which
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PWM elongation should occur is unknown. Therefore, two random forests are trained
separately such that both extension direction are covered. Binding sites for the first
random forest are searched with PWM of TF1 elongated to the right and PWM of
TF2 elongated to the left. Elongation is performed until the position weight matrix is
25 nucleic acids long. Furthermore, the binding site for random forest training will be
the site with maximum score out of these two PWM matches. This way it is possible
to find putative binding sites from both ends of the DNA ligands. Furthermore,
since the elongation is conducted only until 25 nucleic acids, even shorter binding
sites in the middle on the DNA ligands can be found. Although, it is possible
that 25 nucleic acids binding motif is too short for some TF pairs. The second
random forest is trained with subsequences that are given maximum PWM scores
out of each ligand with either PWM of TF2 elongated to the right or PWM of TF1
elongated to the left. Therefore, the first random forest is trained with subsequences
that resemble orientation one, three or four, which are represented in Figure 15,
or their combination. The second random forest on the other hand is trained on
subsequences searched with PWMs such that they capture either orientations two,
three or four or their combination. DNA ligands are tested by scoring with both
random forests as represented in Figure 14 and taking the average of the two scores
as the final score for the ligand. This model is able to consider all possible gaps
between the motifs simultaneously even though orientations between the proteins on
the ligands need the be considered separately. Furthermore, Algorithm 3 represent
the PWM1+PWM2+N+RF model training and testing.

PWM1_PWM2_N_RF(Ligands, PWM1, PWM2);
1. PWM1_x and x_PWM1 by elongating PWM1 to right and left;
2. PWM2_x and x_PWM2 by elongating PWM2 to right and left;
3. Subsequences_1 = ∅;
4. Subsequences_2 = ∅;
5. for each training ligand do

s1 = find the subsequence with maximum PWM1_x or x_PWM2 score;
s2 = find the subsequence with maximum PWM2_x or x_PWM1 score;
Subsequences_1 = Subsequences_1 ∪ s1;
Subsequences_2 = Subsequences_2 ∪ s2;

end
6. RF_1 = train random forest with Subsequences_1;
7. RF_2 = train random forest with Subsequences_2;
8. Score = ∅;
9. for each test ligand do

s1 = score all positions with RF_1 and choose the maximum score;
s2 = score all positions with RF_2 and choose the maximum score;
Score = Score ∪ average(s1, s2);

end
10. Final score for test ligands = Score;

Algorithm 3: PWM1+PWM2+N+RF training and testing scheme.
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4.4.4 Multiple random forests model

Furthermore, it is possible to find the binding sites with decision trees instead of
the PWM before training the final random forest model with chosen sites (RF+RF).
The learning problem with HT-SELEX and CAP-SELEX data can be considered
as a multiple instance learning problem, where the sequences are divided into bags
and it is known that in the positive set at least one of the bags comprise a binding
site while information about which bag it is, is missing [39]. In the negative set all
the bags are negative [39]. Thus, the binding sites can be discovered with multiple
random forests by first dividing the DNA ligands into equally sized bags and then
training a random forest on each of the bags. The bags are constructed by shifting
along the DNA strand one nucleotide acid at a time similarly on forward and reverse
strands. The chosen amount of bags depend on the length of the DNA reads in the
SELEX data set. For instance for the 20 nucleic acids long DNA reads the bags are
chosen to comprise 18 nucleic acids long subsequences. Figure 16 represent how the
bags are constructed on training set and utilized for learning random forests.

1.   A T C G A T C G A T
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...
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Figure 16: Searching binding sites with decision trees. 1. Sequences are divided into
bags such that both forward and reverse strands are considered 2. Random forests
are trained on each bag.

The sequences in each bag are scored with all random forests for which the
training set did not comprise the sequence itself or the reverse complement. Final
score for each subsequence is the average of all scores assigned to that subsequence.
Then for each DNA ligand the subsequence with the maximum score will be chosen
as the binding site and utilized for training the final random forest model.
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Binding should occur evenly on all positions in order for the multiple random
forest model to function properly. The Inimotif pipeline, which all the data sets
studied in this Master’s thesis have passed, should choose only experiments with
evenly positioned binding sites on both strands [7]. Bags contain binding sites and
random sequences on the positive set and random sequences on the negative set. As
mentioned before decision trees can find correlated groups in the data and classify
them to same class. Thus, randomness in the positive set does not necessarily
disturb random forest significantly. The aim however is to construct the best possible
model for protein-DNA interactions. Therefore, the most probable binding sites for
training the random forest are chosen through the weaker random forests trained
on each bag separately. Algorithm 4 describe how binding site sequence is chosen
with random forests and utilized for training the final random forest model, which is
eventually used for testing unseen DNA ligands. The represented algorithm performs
computations for SELEX measurements such that the parameter shift describe bag
positions as shown in Figure 16.

RF_RF(Ligands);
1. for each shift n do

Bag_n = Subsequences in training ligands that belong to position n;
RF_n = train random forest with sequences in Bag_n;

end
2. for each shift n do

Score sequences in Bag_n with those random forests that were not trained
with Bag_n or the reverse complement Bag;

Average scores given by the random forests for each sequence in Bag_n;
end
3. Sequences = ∅;
4. for each training ligand do

Seq = Choose sequence from Bag_n that has the maximum score;
Sequences = Sequences ∪ Seq;

end
5. Train random forest with Sequences;
6. Score = ∅;
7. for each test ligand do

s = score all positions with random forest and choose the maximum score;
Score = Score ∪ s;

end
8. Final score for test ligands = Score;

Algorithm 4: Modeling with RF+RF.

4.4.5 Summary of models for HT-SELEX and CAP-SELEX data

Multiple random forest models are implemented and their performance is assessed.
For HT-SELEX data the models include Strand+RF and modeling with most probable
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binding sites searched with either position weight matrices (PWM+RF) or decision
trees (RF+RF). The models are summarized in Table 2.

Table 2: Random forest models for HT-SELEX

Model RF model
1. Strand+RF Full length DNA strands
2. PWM+RF Sites chosen by PWM
3. RF+RF Sites chosen by random forests

CAP-SELEX data is modeled with the same models represented in Table 2 by
utilizing either individual position weight matrices of TF1 or TF2, or the TF pair
combinatorial PWM. The ensemble model of multiple spacings (PWM1+PWM2+RF)
is implemented in addition to the model with PWMs elongated to cover the other
TF binding site (PWM1+PWM2+N+RF). These models are summarized in Table 3.

Table 3: Random forest models for CAP-SELEX

Model RF model
1. Strand+RF Full length DNA strands
2. PWM1+RF Sites chosen by PWM of TF1
3. PWM2+RF Sites chosen by PWM of TF2
4. PWM+RF Sites chosen by combinatorial PWM

of TF1 and TF2
5. RF+RF Sites chosen by random forests
6. PWM1+PWM2+RF Ensemble of random forests with sites

chosen by different TF1-TF2 spacing PWMs
7. PWM1+PWM2+N+RF Sites chosen by PWM of TF1 or TF2

and elongated to cover the other TF site

4.5 Evaluation of results
The performance of the models is assessed by comparing prediction accuracies. The
simplest measure of prediction accuracy is the percentage of correctly classified cases
among all predictions. The receiver operating characteristic (ROC) curve is an
other way to visualize and evaluate model performance. For binary classification
the area under ROC-curve yields a better estimate of the overall performance of the
model than the simple prediction accuracy, since the discrimination threshold for
classification to the two classes is chosen manually. Thus, in this Master’s thesis,
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prediction accuracy is evaluated by assessing sensitivity and specificity of the model
predictions and by computing the area under ROC-curve. [40]

4.5.1 Sensitivity and specificity

Sensitivity and specificity are measures needed for the construction of receiver oper-
ating characteristic (ROC) curve. True positive rate (TP ) describes the percentage
of correctly classified positive cases and true negative rate (TN) is the percentage of
correctly classified negative cases. The four variables are often represented within a
confusion matrix as shown in Figure 17. [40]

Figure 17: Confusion matrix.

In addition, model performance analysis may include inspection of variables
false positive rate (FP ) and false negative rate (FN). These measures describe the
percentages of incorrectly classified positive and negative instances. Furthermore,
the true positive rate is also called sensitivity, which is,

Sensitivity = TP rate = TP

P
, (16)

where P is the amount of positive samples as shown in Figure 17. [40] Specificity is
an other important variable for ROC-curve analysis, which can be computed as [40],

Specificity = 1− FP rate = TN

FP + TN
. (17)

4.5.2 Receiver operating curve

The ROC-graph is a graph where the TP rate is plotted against FP rate. Thus,
the ROC-graph represents the benefits (TP ) and costs (FP ) of the classifier. Some
classifiers such as the random forest yield a probability for each instance for belonging
to one of the classes. [40] In addition, some classifiers might give general scores instead
of probabilistic scores, as does DeepBind [10]. The predictions can be converted to
classes by utilizing a threshold above which the sample is classified to class 1 and
below to class 0. These predictions can be represented in ROC-curve so that each
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threshold value is utilized to give a pair of sensitivity and specificity values. All these
plotted on the ROC-graph will yield a ROC-curve. ROC-curves are favored in binary
classification evaluation, because they are insensitive to changes in class distributions,
and they represent the ability of the classifier to predict positive samples relative to
negative samples. The area under ROC-curve (AUC) can be used as one value to
compare classifiers. The value will be between 0 and 1 since it is the area under a unit
square. Although, AUC of 0.5 would be achieved by guessing the class. Therefore,
reasonable classifiers have always AUC between 0.5 and 1. [40]

4.5.3 Statistical significance

AUC values are obtained with multiple different random forest models in addition to
scoring DNA sequences with only the position weight matrices and for HT-SELEX
data also with the neural network model DeepBind. The statistical significance of
the differences in AUC values is assessed with Wilcoxon signed-rank test, which is a
non-parametric statistical test [41]. Thus, the data does not need to be normally
distributed as in paired t-test. The conducted tests are two-sided paired tests, which
test whether population means differ significantly.
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5 Results
In this chapter results for random forest modeling with single transcriptional factor
HT-SELEX data and transcriptional factor pair CAP-SELEX data are represented.
Multiple different models are implemented and their performances are tested. Fur-
thermore, the best choice of features derived from SELEX sequences and values for
random forest parameters are optimized with HT-SELEX assays. The best model was
achieved by utilizing nucleic acids as categorical features for the random forest. Fur-
thermore, random forests can be trained with full length DNA strands (Strand+RF),
or with sites chosen by a PWM (PWM+RF) or decision trees (RF+RF) from the DNA
ligands. Single TF binding specificities are modeled with these approaches using
HT-SELEX data. TF pair binding specificities are modeled using CAP-SELEX data.
The same experimental schemes are investigated for TF pairs. However, the PWM
sites are searched with the individual TF position weight matrices in addition to the
combinatorial position weight matrix of the TF pair. Furthermore, two proteins can
bind a DNA ligand with four different orientations and the amount of gaps between
their motifs can vary [4]. Thus, random forest models trained with TF pair binding
sites found inside DNA ligands with individual position weight matrices of TF1 and
TF2 are implemented (PWM1+PWM2+RF and PWM1+PWM2+N+RF). Random
forest was discovered to perform almost equally to the DeepBind neural network
model for HT-SELEX data and to outperform scoring sequences with position weight
matrices for both HT-SELEX and CAP-SELEX data.

5.1 Random forest for HT-SELEX
In this Master’s thesis DNA binding sites of TFs are modeled with random forest.
Three different random forest models are compared to the neural network model,
DeepBind [10]. In addition, the performance of the random forest models is assessed
in comparison to scoring the sequences with PWMs by Jolma et al. [5]. The three
best ways of modeling with random forest include modeling with the full length
DNA strand, modeling with PWM sites extended with surrounding nucleic acids and
modeling with subsequences chosen by random forests. In this chapter, parameter
tuning is represented for random forest modeling with PWM sites and with the
entire DNA strands separately. The rest of the experiments are performed with
the optimized random forest parameters. In addition, a case study with Alx1 is
represented, which demonstrate the selection of the best random forest models.
Furthermore, experiments were performed on more TFs in order to validate the
results and finally the performance of the best random forest models were compared
to DeepBind and PWM scoring for a more comprehensive data set.

5.1.1 Tuning random forest parameters

Random forest can be tuned by altering decision tree and forest parameters. The
parameters are tuned by considering subsets of HT-SELEX data for five proteins
with different PWM lengths. One parameter at a time the others are set to random
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forest default values and the effects of altering the considered parameter on test set
AUC is observed. The default value for minimum node size (NS) is 1, for number of
features considered at a split (NV ) it is

√
p, where p is the number of features, and

for sample size it is the number of training data observations. The number of decision
trees (NT ) is considered first and the rest of the experiments are conducted with
that value. Only 50 % of the HT-SELEX data is utilized for model tuning in order
to keep running time reasonable. Parameter tuning is performed for two different
models separately: random forest with entire DNA reads and random forest with
PWM sites. Optimization is performed with Alx1, Arx, Barhl2, Batf3 and Bhlhb3.

Increasing the number of bootstrap samples taken and thus the number of decision
trees grown will improve modeling accuracy. However, computational complexity
and running time increases accordingly. Figure 18 represent how increasing the
number of decision trees grown affect the test set AUC and running time. The
represented values are the mean values of the conducted experiments. Furthermore,
the optimization of the number of decision trees is represented only for the random
forest model with the entire DNA strand, because the most probable binding sites
will perform at least as well due to the smaller number of features.
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Figure 18: Optimizing number of decision trees grown.

The number of decision trees for further experiments is chosen according to Figure
18. The parameter should be large enough to assure that increasing it would not
cause significant improvements in the test set AUC but at the same time to be
small enough to minimize running time. It seems that growing 200 decision trees
to a random forest is a good choice. The trade-off between consumed time and the
obtained test set AUC is optimal. Thus, for further experiments with other proteins
NT is 200. However, when other random forest parameters are tuned NT is set to
140 in order to keep running time minimal while performance is close to optimal.

The depth that the trees are grown can be altered through changing random forest
parameters as well. In this Master’s thesis tree depth is controlled with minimum
size of terminal nodes. Thus, the trees are learned as deep as they can be unless the
minimum node size is reached making the node a terminal node. The parameter is
tuned with the same five proteins but this time also for the random forest model with
PWM sites. The effects of altering minimum node size when the number of decision
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trees grown is set to 140 and other parameters are at default values is represented in
Figure 19.
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Figure 19: Optimizing minimum node size.

Random forest modeling with full length DNA strand favor higher tree depths
while for modeling with PWM site the best tree depth is lower. This might occur due
to higher number of features in the full length DNA strand model. Furthermore, TFs
that express more unspecific binding could favor lower tree depths while factors with
highly specific binding possibly benefit from high tree depths. Therefore, NS should
be low enough to ensure optimal modeling for highly specific TFs and high enough
to prevent overfitting especially for the more unspecific TFs. However, random forest
does not seem to be very sensitive to the choice of NS. Future experiments are
performed with NS = 10, which gives good accuracies for both models.

The number of variables tried at each split is probably the most crucial parameter
random forest. Furthermore, the parameter depends upon the number of features
in total. Thus, parameter NV is represented as the the percentage of the variables
tried at each split out of the total number of features. Parameter tuning similarly as
before for Strand+RF and PWM+RF is represented in Figure 20.
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Figure 20: Optimizing number of features tried at each split.
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The optimal number of features chosen randomly for a split is different for modeling
with the entire strand than with only the PWM site. In addition, model performance
with the site chosen by PWM is slightly more sensitive to the choice of this parameter.
It can be seen that when modeling with the entire DNA strand, 30%-50 % of the total
number of features is the best choice for the number of variables sampled randomly
for a split. Therefore, 40 % is chosen as the optimal value for NV . However, for
the random forest trained with PWM sites, the best amount of variables considered
at each split is 20 % - 30 % of the length of the PWM. For shorter PWMs, which
may be even shorter than ten nucleic acids, the 20 % might be too low. Therefore,
the experiments in this Master’s thesis for the more comprehensive data set are
performed such that NV is 30 % of the total number of features.

Furthermore, the size of the bootstrap samples can be altered. However, in this
Master’s thesis the default, which is the number of the instances N in the training
set, is utilized. Thus, bootstrapping is performed. Bootstrapping will result in
approximately 63.2 % of the training data set being in the sample for which the
tree is grown while 37.7 % of the training data belongs to the out-of-bag sample
[13]. In addition, prior probabilities for the two classes might influence random
forest performance. However, in this thesis balanced classes are utilized for random
forest training, which means that prior probability for both classes is 50 %. Thus,
alterations in prior probabilities are not needed.

5.1.2 Transcriptional factor binding motif with random forest

In this chapter the best random forest models are searched with a case study with
Alx1 transcriptional factor. Alx1 HT-SELEX assay cycle three was chosen for the
case study, because the data set had an average size, with 20 nucleic acid long DNA
reads, which is the most common experimental type in the Jolma et al. study [5].
Furthermore, other data sets are considered for some of the random forest models
in order to validate the results. These include HT-SELEX assays with 20 nucleic
acids long DNA reads for transcriptional factors Arx, Ar, Barhl2, Batf3, Bhlhb3 and
Bhlhe41. In addition, experiments with 30 nucleic acids long DNA reads for TFs
Atf7 and Dprx are considered as well as HT-SELEX data sets with 40 nucleic acids
long DNA reads for Barhl2 and Cux1. The experiments begun by searching the best
type of DNA features for random forest modeling with full length DNA reads. The
options include the DNA sequence in a categorical form such that each feature is a
nucleic acid N ∈ {A, C, G, T} and the usage of k-mer frequencies in the DNA reads.
Furthermore, the addition of the DNA shape features is considered. Performance of
the random forest trained with only the PWM sites searched from each DNA ligand
(PWM+RF) is assessed. Furthermore, certain modification to the PWM+RF model
are implemented and their effect on predictive accuracy with unseen DNA ligands
are examined. In addition, the RF+RF model performance is assessed.

5.1.2.1 Random forest with full length DNA strands
In this chapter random forest performance is assessed when the full length DNA
strand is utilized for modeling. The HT-SELEX sequenced DNA reads are either
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14, 20, 30 or 40 nucleic acids long. Thus, for example in the case of a 20 base long
DNA sequence, the random forest model will get 20 variables N1, ..., N20 ordered
according to the position of the nucleic acids in the DNA read, i = 1, .., 20, and each
variable is a nucleic acid Ni ∈ {A, C, G, T}. Furthermore, only one of the strands of
the DNA ligand is sequenced in HT-SELEX experiments. Thus, the strand where
TF binds is unknown. Model training is performed either with the sequenced reads
or with the DNA strand that contain the most probable binding site according to
a PWM. Due to complementary nature of double stranded DNA, the binding site
is reflected also on the other DNA strand. Thus, training the model with only the
sequenced strand could work. However, it is likely that random forest can find the
binding sites better when training is performed with the more probable binding site
strand. When the model is tested with unseen DNA ligands, both of the strands
are tested and probability for that ligand to contain a binding site is chosen to be
the maximum probability out of the two strands. Random forest parameters were
NT = 200, NS = 10 and NV is 40 % of total number of features as optimized in
previous chapter. These two modeling approaches are tested for Alx1. ROC-curves
with AUC-values for Alx1 data set with both of the random forest training approaches
that consider full length DNA strands are represented in Figure 21.
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Figure 21: Training with the full length DNA strands in categorical form with Alx1.

Thus, random forest model with the sequenced DNA strand and with the most
probable binding site strand perform equally at least for Alx1. Future experiments
are performed by training the forest with the strand that contain PWM site, because
this way of modeling is more reliable and should perform well also for other proteins.

5.1.2.2 Random forest model with k-mer frequencies
An other way of modeling is to utilize k-mer frequencies as features. Feature
spaces with 1-mer, 2-mer, 3-mer and 4-mer vectors constructed from DNA reads
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are considered. Furthermore, full length DNA strands that contain PWM sites are
utilized for k-mer random forest modeling. It can be expected that 1-mer and 2-mer
counts do not perform very well as random forest features since the 1-mer frequencies
are not usually very informative for binding specificities and the background DNA
set was constructed so that dinucleotide count was preserved. Therefore, 3-mer
and 4-mer frequency features were expected to be give more accurate random forest
models for Alx1 data set. The 4-mer frequency features already produced so time
consuming training that the number of trees grown on random samples had to be
decreased to 20, while 1-mer and 2-mer random forests were trained with NT = 200
and NT = 100 respectively. Furthermore, the 3-mer random forest had NT = 50.
Thus, k-mers higher than four would lead to computationally too heavy problems. In
addition, 1-mer random forest was trained with 2 and other k-mer random forest with
8 variables chosen randomly for each split. For all k-mer models NS = 10. Figure 22
represent the k-mer random forest model ROC-curves and AUC values.
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Figure 22: ROC-curves and AUC for Alx1 with different k-mer frequencies.

As expected the 1-mer feature random forest model is not able to distinguish
between binding and non-binding sites. However, similar results were expected for
2-mer model as well. One explanation for the ability of random forest to classify with
2-mer features is the fact that the training set does not contain the corresponding
negative 2-mer feature vectors shuffled from each positive sequence since the training
set is constructed by sampling randomly 75 % of the positive reads and similarly 75
% of the negative reads to the training set. In fact, when the training and testing
sets were divided so that the training set contained 75 % of the positive reads and
the corresponding shuffled negative reads, test set AUC was 0.500, while 3-mer (AUC
= 0.924) and 4-mer (AUC = 0.943) test set AUC values remained almost unchanged.

5.1.2.3 Combining sequence and shape information
Categorical features for modeling the binding sites perform better than k-mers and is
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considered further. It has been shown previously that combining DNA shape features
to 1-mer sequence variables increase modeling accuracy significantly [36]. Thus, the
shape features are combined with the categorical features. The four shape features
are minor groove width (MGW), DNA roll (Roll), propeller twist (ProT) and helix
twist (HelT). The number of decision trees was set to 200, minimum node size to 10
and the number of variables chosen for a split was 40 % of total number of features
as optimized for the full length DNA strand categorical model. Figure 23 represent
the four shape features independently combined with the sequence variables for Alx1.
The shape features are utilized independently of each other in order to keep the
feature space and thus the computational cost smaller. Figure 23 represent also test
set AUC values for other HT-SELEX data sets when shape feature Roll is combined
with sequence features. Random forest parameter values were the same as for Alx1,
NV = 40%, NT = 200 and NS = 10. However, as the feature space increases with
the addition of the Roll features, running time increases as well. Therefore, for the
largest data set of Arx protein, NT was set to 100.
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Figure 23: Training with the combination of sequence and shape features.

Shape features do not increase modeling accuracy for Alx1. Out of the four
different features, DNA Roll feature is the best shape feature for Alx1. Thus, DNA
Roll feature was tested for other TFs as well. However, for most proteins adding
shape feature Roll did not increase modeling accuracy. Although for Arx data set the
test set AUC with Roll feature is probably an underestimate due to the smaller NT ,
it can be concluded that the addition of DNA Roll features do not improve modeling
accuracy significantly. Shape features are generated through k-mer feature encoding
from the sequences [35]. Thus, the result in Figure 23 is as expected since k-mer
information is already present in the sequence features. Furthermore, lower feature
space of the model with only sequence features might be beneficial for random forest.
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5.1.2.4 Random forest model with PWM
If the binding site is shorter than the sequenced DNA read in HT-SELEX experiment,
random forest might have problems building an accurate model. Since true binding
sites are located in different positions in the DNA reads and each nucleic acid position
is represented as a feature, there will be unnecessary dispersion in the features that
makes uncovering the true binding specificity difficult. The information about the
binding site characteristics will not be only at certain features. Therefore, it could be
beneficial to first extract the most probable binding site with a PWM and use only
those subsequences for training the random forest. As nucleic acid positions relative
to each other would be similar across all instances, learning the binding specificities
might be easier for the forest. Therefore, position weight matrices are utilized for
finding the most probable binding sites inside DNA ligands before the random forest
is trained with these subsequences. Furthermore, the unseen DNA ligands are tested
with the model by going through each possible binding site within the sequenced
strand and its reverse complement. In addition, random forest could learn a binding
specificity model that is more accurate than the position weight matrix alone, since
the decision trees can increase model complexity. Figure 24 represent the ROC-curve
for Alx1 transcriptional factor model that combines position weight matrices and
random forest modeling. The random forest parameters were as optimized before,
NT = 200, NS = 10, and NV = 20%.
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Figure 24: Random forest modeling with PWM sites with Alx1 data set.

Utilizing full length DNA strands for random forest training performs better at
least for Alx1 than using only the most probable binding sites found with PWM.
In order to validate whether training random forest with PWM sites is inefficient
also for other TFs the same comparison is conducted for multiple HT-SELEX data
sets with 20 nucleic acids long DNA reads. Furthermore, model performances are
assessed with HT-SELEX data sets comprising 30 nucleic acids long DNA reads in
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addition to data sets comprising 40 nucleic acids long DNA reads in order to examine
whether predictive accuracy between the two random forest models depend on the
DNA read length. For all the experiments NV = 20% for the PWM+RF model and
NV = 40% for the Strand+RF model. In addition, NT = 200 and NS = 10. Figure
25 represent the test set AUC values.
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Figure 25: Test set AUC with random forests trained with full length DNA strands
and PWM sites for multiple TFs. DNA read length is noted after TF name.

Thus, the Strand+RF model perform better for most data sets. Although, it
can be noted that for HT-SELEX measurements with 40 nucleic acids long DNA
reads, the extraction of the PWM sites before random forest training is beneficial
unlike for HT-SELEX data sets with shorter DNA reads. Thus, it is possible that
the excess nucleic acids and variation in binding site positions become significant
for random forest performance only after DNA read length exceed 30 nucleic acids.
Furthermore, random forest might find information regarding binding specificities
outside the PWM sites, which would make modeling with the entire DNA strands
beneficial for the HT-SELEX data sets with shorter sequences. Binding site length
is assessed more profoundly in the next chapter.

One possible reason for modeling with PWM sites not increasing predictive
accuracy in comparison to modeling with the entire DNA sequences, is that the
PWM might not find the binding site inside the DNA ligand accurately. If the PWM
cannot find the most probable binding site accurately before training the random
forest, the forest will be learning DNA features, which do not actually resemble
the true differences between binding and non-binding sites. In order to figure out
whether this is the case, PWM score histograms on the HT-SELEX sequences and
the background sequences for Alx1 are compared to each other. PWM scores are
computed with matchPWM R-function such that the maximum score is chosen
for each ligand as the final score [42]. In addition, empirical cumulative density
functions with the data set that is known to include binding sites and with the
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shuffled background set are considered. The empirical cumulative density function
show the proportion of instances that fall below a certain PWM score. Figure 26
represent the histograms and cumulative density functions.
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(c) HT-SELEX data
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(d) Background data

Figure 26: The position weight matrix scores and cumulative density functions on
Alx1 data set.

It seems that the PWM can distinguish between positive and negative instances
quite accurately at least with Alx1. However, for some DNA strands the PWM
might choose the wrong site. One explanation for the problem with the position
weight matrix is the fact that proteins might bind DNA ligands at their ends so that
part of the protein is not attached to the ligand. Figure 24 represent PWM of Alx1
transcriptional factor. For Alx1 the bases farthest apart from the middle point at
both ends of the binding site are the most unspecific. Furthermore, the binding sites
usually comprise a core with highly specific binding and a few nucleic acids around
it with more unspecific binding preferences. Therefore, it is likely that the proteins
sometimes bind the DNA ligands at their ends with the core binding motifs so that
the more unspecific positions are not attached to the ligand. For example the motif
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in Figure 24 could bind to a DNA sequence so that the position 2 binds to the first
position in the DNA sequence. Thus, utilizing the PWM as it is to find the most
probable binding site will not result in the correct binding site. This could be solved
by adding letters of N to both ends of the DNA reads before searching the PWM sites
(N+PWM+RF). The PWM would then score the N categories with a probability of
0.25. Figure 27 shows ROC-curves when one or two N letters are added to both ends
of the strands with the Alx1 data set. In addition, AUC values for other HT-SELEX
data sets with 20 nucleic acids long DNA reads, which are padded with one N letters
at both ends before finding the PWM site, are represented.
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(a) ROC-curves and AUC with DNA strands
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Figure 27: N letters added to both ends of the DNA strands before finding PWM
sites (N+PWM+RF).

It can be concluded form Figure 27 that adding N letters to the ends of the DNA
ligand might be beneficial for some transcriptional factors although the amount should
be kept small. Thus, one nucleic acid at both ends of the position weight matrix do
not necessarily affect binding. Although, adding one N categories at both ends of the
ligands for modeling binding specificities with HT-SELEX might be beneficial for
some transcriptional factors, the effect is not significant and for most of the proteins
padding sequences with N letters result in lower modeling accuracy. Perhaps adding
a new category of N to {A, C, G, T} disturb random forest performance.

5.1.2.5 Modifications to PWM
Analysis with multiple proteins demonstrate that finding the most probable binding
site with position weight matrix before training the random forest does not perform
as well as utilizing the full length DNA strand chosen by the same position weight
matrix. In this chapter two modifications to PWM+RF model are implemented
and modeling accuracy is assessed. First there is a possibility that PWM chooses
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the binding sites incorrectly. Therefore, a modeling scheme where position weight
matrix is optimized simultaneously with random forest is examined. Furthermore,
the results in Figure 25 insinuated that the issue with utilizing the PWM site for
random forest training might be related to binding site length. Therefore, extending
the found PWM sites with surrounding nucleic acids before utilized for training the
random forest is considered as well.

Although, it was shown in Figure 26 that the position weight matrix is in fact
able to distinguish between the sequences containing a binding site and sequences
not containing one, it is likely that for some proteins other than Alx1, the PWM is
not able to perform as expected. As an example, the position weight matrix score
distributions and empirical cumulative density functions of positive and negative
data sets separately are represented for Batf3 in Figure 28. The PWM scores are
computed again so that the score for each ligand is the maximum score of all the
position scores.
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(d) Background data

Figure 28: Histograms and cumulative density functions of position weight matrix
scores for Batf3 data set.



52

According to Figure 28, position weight matrix scores the HT-SELEX sequences
and the shuffled background sequences similarly. Thus, the Batf3 PWM might be
bad and it is likely that the PWM finds the most probable binding sites incorrectly.
It can be concluded that for Batf3 and possibly for other proteins as well, the position
weight matrix is not capable of differentiating the positive and negative DNA reads.
Although, one possibility is that Batf3 express so unspecific binding that there might
be true binding sites in the negative set as well. However, random forest modeling
with the entire DNA strand for Batf3 outperform the random forest with the PWM
sites. Thus, it is possible that the position weight matrix simply does not perform as
well as it should.

Thus, position weight matrices are probably at least with some HT-SELEX
data sets choosing the most probable binding sites from the ligands incorrectly
and crucial information for the classifier is lost while non-significant information
is preserved. However, this problem could potentially be solved by optimizing the
PWM simultaneously with the random forest in the training set. To test this idea,
an iterative approach was implemented. After each iteration a new position weight
matrix was constructed from the true positive sequences according to confusion
matrix of the out-of-bag predictions of the random forest. Figure 29 illustrate how
the test set AUC change within ten iterations of tuning PWM for transcriptional
factor Barhl1.
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Figure 29: Test set AUC with random forests trained with subsequences chosen by
PWM tuned after each iteration for Barhl1.

Thus, position weight matrix modification simultaneously with random forest
seems to increase modeling performance, although the effect is moderate. Tuning
PWM according to out-of-bag predictions might not be beneficial due to the increase
in model training time caused by learning of multiple random forests. Furthermore,
the change in PWM after the iterations might reveal something about the binding
specificity. The change in Barhl1 position weight matrix after each iteration is
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represented in Figure 30. It can be seen that the specificity of the PWM decrease
especially for some of the positions while a binding preference at the beginning of
the PWM emerge. Since the increase in test set AUC is moderate and the increase
in running time is significant, the PWM modification simultaneously with random
forest training is not considered further.
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(a) Barhl1 PWM. [23]
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(b) PWM after iteration 1.
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(c) PWM after iteration 2.
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(d) PWM after iteration 3.
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(e) PWM after iteration 4.
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(f) PWM after iteration 5.

Figure 30: PWM modification simultaneously with random forest training.
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Furthermore, it is possible that the binding sites are longer than the PWM
insinuates or that the protein actually binds to the full length DNA sequence. In
addition, results in Figure 25 suggest that utilizing the PWM sites for random
forest training for HT-SELEX experiments with 40 nucleic acids long DNA reads
is beneficial in comparison to modeling with the entire DNA strands. Thus, it is
possible that transcriptional factors bind to the entire DNA strands in case of 20
nucleic acids long reads, while the 40 nucleic acids long reads are longer than the
binding site. To test this hypothesis, the found PWM sites were extended by one,
two or three nucleic acids at both ends for Alx1. Furthermore, if the binding site
was found from an end of the DNA ligand then the PWM site was extended with
the required amount of N letters so that each binding site utilized for random forest
has the same length. In addition, the testing sequences were padded with one, two
or three N features accordingly in order for the testing sequences to resemble the
training scheme. The model with elongated PWM sites is referred to as PWM+N+RF.
Figure 31 shows how adding nucleic acids at both ends of the most probable binding
site affects ROC-curve and the AUC-value of Alx1.
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Figure 31: ROC-curve and AUC with PWM+N+RF for Alx1 data set with 0, 1, 2,
and 3 N.

Thus, elongating the found PWM sites with surrounding nucleic acids seems
to increase modeling accuracy. Perhaps the binding site of Alx1 is longer than
the position weight matrix insinuates. The extended PWM sites as it grows to
the maximum becomes a centralized version of the entire DNA strand. However,
modeling with the entire DNA strand performs still better than modeling with the
PWM site only. This might occur, because the addition of multiple N categories
decreases information content in spite of the sequence length remaining similar.

Furthermore, since Figure 31 insinuated that extending the found PWM sites
will increase modeling performance, it is tested whether extending the PWM sites
by more than one nucleotides at both ends increases the model accuracy with other



55

proteins as well. Table 4 summarizes these findings with the same 10 TFs studied
previously: Arx, Ar, Barhl2, Batf3, Bhlhb3, Bhlhe41, Atf7, Dprx, Barhl2 and Cux1.
The most probable binding sites found with PWM were extended as far as they could
without exceeding the length of the sequenced read in the case of 20 nucleic acid long
DNA read experiments. For experiments with 30 and 40 nucleic acid long sequences
the extension were performed until extension of 6 bases to both ends was reached.

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Dprx_30N_2

Cux1_40N_3

Barhl2_40N_3

Atf7_30N_4

Bhlhe41_20N_3

Bhlhb3_20N_2

Batf3_20N_4

Barhl2_20N_3

Ar_20N_4

Arx_20N_2

0.556 0.554 0.556 0.557 0.557 0.557 0.556

0.955 0.956 0.957 0.956 0.957 0.957 0.957

0.670 0.666 0.667 0.670 0.661 0.663 0.668

0.639 0.638 0.640 0.641 0.640 0.641 0.642

0.809 0.817 0.817 0.818 0.816 0.818

0.803 0.806 0.810 0.821 0.827 0.827

0.549 0.550 0.553 0.562 0.562 0.562

0.853 0.853 0.866

0.606 0.611

0.629 0.629

Table 4: Test set AUC for random forest with PWM sites extended by N nucleotides
to both directions

Table 4 suggest that elongating the PWM sites to maximum length at least with
20 nucleic acid long HT-SELEX experiments is beneficial. Thus, PWM sites seem
to be too short for the studied transcriptional factors. For the experiments with 30
and 40 nucleic acid long DNA reads, the best random forest model is achieved with
PWM sites extended with a few nucleic acids to both ends. PWM length for Atf7
is 14 bases, for Barhl2 16, for Cux1 18 and for Dprx 11 bases. Respectively, the
length of the subsequences utilized for random forest training after optimum number
of nucleic acid extensions to the PWM is 26 for Atf7, 16 or 22 for Barhl2, between
20 and 30 for Cux1 and between 17 and 21 for Dprx. Therefore, it seems that the
optimal model is achieved by extending the found PWM site to be a slightly over
20 bases long binding site. The AUC values in Table 4 are achieved with the same
random forest parameters as optimized previously for the PWM site with random
forest model. However, as the feature space for random forest increased, it was
discovered that increasing the amount of variables for a data partitioning at each
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node, improved model performance slightly. Thus, the number of variables tried at a
split NV will be 30 % of the total amount of features for the final PWM and random
forest combination model (PWM+N+RF).

In summary, the best PWM and random forest combination model is achieved by
finding the PWM sites inside the ligands and elongating the sites with surrounding
nucleic acids. Thus, the PWM and random forest model is implemented by searching
for the most probable binding site with PWM, extending the site for 19 or 20
nucleic acids depending whether the PWM has odd or even length and utilizing
that information for random forest training. In addition, modeling HT-SELEX
experiments with 30 and 40 bases long DNA sequences is performed by extending
the PWM site to 23 or 24 nucleic acids long sequences and utilizing these for the
random forest.

5.1.2.6 Random forest with subsequences found by decision trees
The transcriptional factor binding sites could also be modeled by utilizing subse-
quences, that are found by decision trees to be binding sites. The forward and reverse
strands are divided into equally sized bags such that the subsequences in each DNA
ligand at certain positions belong to the same bag. Furthermore, random forests
are trained on each bag. Subsequences in each bag are scored with these random
forests excluding the forest trained with the same bag or the corresponding reverse
complement bag. The final score for each subsequence is the mean of the assigned
scores. The subsequence with the highest score inside each ligand is chosen as the
binding site for training the final random forest. In order for this model to function
properly the binding should occur evenly on all positions so that the different random
forests would predict the binding site accurately. The Inimotif pipeline should choose
only experiments with evenly positioned binding sites on both strands [7]. In order
to validate this, the start positions of maximum PWM score sites inside the DNA
ligands is represented in Figure 32 for Alx1.
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Figure 32: PWM positions for Alx1 indicated as start positions such that both
forward and reverse strands are covered.
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Thus, Figure 32 shows that according to PWM the transcriptional factor binds
quite evenly on all positions at the DNA forward and reverse strands. Alx1 HT-
SELEX data set include 20 nucleic acids long DNA reads. Previously, it has been
discovered that extending the PWM sites improve modeling accuracy. Thus, for the
RF+RF model, 18 nucleic acid long subsequences are considered, which are quite
long but sufficient amount of bags would still be formed. Therefore, the procedure
yields six different forests, which are trained with NV = 40%, NS = 100 in order
to prevent overfitting and NT = 100 in order to keep the running time moderate.
Out of each DNA ligand the subsequence with the maximum score given by these
random forests is chosen as the most probable binding site sequence for that read
and utilized for training the final random forest. The final forest has parameter
values NT = 200, NS = 10 and NV = 40%. Figure 33 represent the ROC-curve and
AUC values for Alx1 data set with RF+RF model in addition to Strand+RF and
PWM+N+RF models.
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Figure 33: ROC-curve and AUC value with RF+RF model with 18 nucleotide binding
site for Alx1.

Thus, at least for Alx1 the random forest trained with the full length DNA strand
performs the best. However, the random forest trained with subsequences chosen
by decision trees outperforms the random forest trained with the elongated position
weight matrix sites. Furthermore, predictive accuracies of Strand+RF, PWM+N+RF
and RF+RF models are assessed with the 10 transcriptional factors studied before.
For all HT-SELX data sets NT is set to 200 and NS to 10. In addition, NV is set to
40 % of the total number of features for Strand+RF and RF+RF models and to 30 %
for PWM+N+RF model. With RF+RF model, 18 nucleic acids long subsequences are
considered for constructing the bags with all HT-SELEX data sets with 20 nucleic
acids long DNA reads. Furthermore, for data sets with 30 and 40 nucleic acid long
DNA sequences, 25 and 32 nucleic acid long binding sites are searched with decision
trees correspondingly. The test set AUC values for the 10 transcriptional factor data
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sets are represented in Figure 34.
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Figure 34: Test set AUC for multiple TFs.

Thus, RF+RF does not perform as well as Strand+RF model. However, RF+RF
model predicts binding almost equally to PWM+N+RF. Therefore, three models,
Strand+RF, PWM+N+RF and RF+RF, are chosen for further analysis with a more
comprehensive data set.

5.1.3 Comparison to DeepBind and position weight matrices

Three random forest models are compared to the neural network model DeepBind and
to Jolma et al. PWMs [10, 5]. In addition, the performance of random forest with
full length DNA strands (Strand+RF), with elongated PWM sites (PWM+N+RF)
and with sites chosen by decision trees (RF+RF), are compared to each other. Some
HT-SELEX measurements were conducted on 14 bases long DNA sequences. For
these data sets, PWM sites are extended to 13 or 14 nucleic acids for the PWM+N+RF
model and RF+RF model is implemented by searching for 12 bases long binding
sites. In addition, scoring sequences with only the Jolma et al. PWMs is compared
to the random forest models. PWM scoring (PWM) was performed by scoring all
positions on a ligand with PWM and averaging these scores to give final score for the
ligand. In addition, DNA strands were padded with four ’N’ features at both ends,
because this improved model performance. If Jolma et al. published multiple PWMs
only the best AUC is reported. It was discovered by Alipanahi et al. that padding
with ’N’ improved PWM model performance and that taking the mean score of all
position scores for a ligand performed better than utilizing the maximum score [10].
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Experiments are conducted with 55 HT-SELEX data sets in order to carry out the
comparison. Figure 35 represent test set AUC values with all the 55 data sets.
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Figure 35: AUC comparison of PWM, PWM+N+RF, RF+RF and Strand+RF



60

PWM+N+RF and RF+RF models perform with almost equal accuracy and AUC
values do not differ significantly (p-value = 0.46, two-sided Wilcoxon signed rank
test, n = 55). However, Strand+RF model has higher test AUC (0.713) than the two
other random forest models. Furthermore, the difference is statistically significant
in comparison to RF+RF model (average = 0.708, p-value = 0.00030, two-sided
Wilcoxon signed rank test, n = 55) and PWM+N+RF model (average = 0.707, p-value
= 0.00027, two-sided Wilcoxon signed rank test, n = 55). All three random forest
models perform significantly better than scoring sequences with only the PWMs. For
instance Strand+RF model has significantly higher AUC than scoring with PWMs
(average=0.633, p-value = 1.14 ∗ 10−10, two-sided Wilcoxon signed rank test, n =
55). From Figure 35 it can be seen that PWM+N+RF model perform slightly better
for HT-SELEX data sets that yield lower AUC values in general, while the RF+RF
model predict higher AUC values even more accurately.

Furthermore, comparison of the random forest models to DeepBind is conducted.
DeepBind software can be utilized for testing new sequences since Alipanahi et
al. offer the trained motifs in addition to the neural network package for scoring
the sequences [10]. However, the motifs have been trained partly with the same
HT-SELEX sequences that are scored in this thesis. Therefore, some of the DeepBind
AUC values that are reported here are possibly overestimates of the DeepBind model
performance. DeepBind achieved higher test set AUC (mean AUC = 0.719) than the
random forest models, RF+RF (average = 0.708, p-value = 5.79 ∗ 10−5, two-sided
Wilcoxon signed rank test, n = 55), PWM+N+RF (average = 0.707, p-value =
3.53 ∗ 10−6, two-sided Wilcoxon signed rank test, n = 55) and Strand+RF (average
= 0.713, p-value = 0.041, two-sided Wilcoxon signed rank test, n = 55). Figure 36
represent how RF+RF and Strand+RF compare to DeepBind.
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Figure 36: AUC comparison of RF+RF and Strand+RF to DeepBind.

Increasing modeling complexity of TF binding specificities with random forest is
beneficial in comparison to utilizing only PWMs. Furthermore, DeepBind outperform
the different random forest models. However, a final random forest model can be
constructed differently for different types of HT-SELEX data sets. For measurements
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with 14, 20 or 30 nucleic acids long DNA reads, the random forest can be trained
with full length DNA strands, while HT-SELEX data sets with 40 nucleic acids long
DNA reads can be trained with elongated PWM sites. Test set AUC values for this
random forest model are represented in Figure 37 in comparison to DeepBind.
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Figure 37: AUC comparison of final random forest and DeepBind.

DeepBind with mean AUC of 0.719 outperforms final random forest model
(average=0.716, p-value = 0.063, two-sided Wilcoxon signed rank test, n = 55).
However, means do not differ statistically significantly. Therefore, a relatively
competitive model can be provided with random forest also for TF pairs whose
binding specificities have been measure with CAP-SELEX. Figure 38 summarizes
test set AUC values for the final random forest model, DeepBind and PWM. The
TFs are sorted according to test set AUC values computed with random forest.
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Figure 38: Test set AUC of 55 TFs.
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5.2 Random forest for CAP-SELEX
In this chapter random forest is applied for modeling transcriptional factor pair
binding specificities measured with CAP-SELEX by Jolma et al. in [4]. The
sequenced DNA reads in CAP-SELEX are 40 nucleic acids long. The experimental
schemes that performed the best for individual TF motifs measured with HT-SELEX
are utilized for TF pair modeling as well. The models include training random
forest with the full length DNA strand (Strand+RF) and training with the individual
transcriptional factor PWM sites (PWM1+RF and PWM2+RF). Furthermore, Jolma
et al. published position weight matrices for the TF pair combinatorial binding sites
[4]. Thus, random forests are trained additionally with the binding sites found with
these combinatorial PWMs (PWM+RF) and extending the found sites by one nucleic
acids at both ends is considered as well (PWM+N+RF). Random forests are also
trained with subsequences inside the CAP-SELEX DNA ligands found by decision
trees trained in bags containing subsequences starting at different positions (RF+RF).
Transcriptional factor pairs can in addition be modeled by considering each possible
orientation and gap between the two individual TF binding motifs. Random forests
can be trained with subsequences inside the DNA ligands found with PWMs, which
combine the individual TF motifs according to the best spacings (PWM1+PWM2+RF).
Furthermore, binding sites could be found by choosing the maximum score position
with the other PWM and extending the chosen site to the other direction in order
to cover binding site of the other TF as well (PWM1+PWM2+N+RF). Since the
direction to which the site should be extended is not known, two random forest are
trained separately with both extension directions. Test DNA sequences are scored
with both random forests and the average score is assigned to each ligand. Models
for CAP-SELEX except the combinatorial PWM elongation model were summarized
in Table 3. Random forest parameters are as optimized for HT-SELEX data in the
previous chapter. For all CAP-SELEX experiments NS = 10 and NT = 200. For
the forests trained with entire DNA strand (Strand+RF) or subsequences chosen
by decision trees (RF+RF) NV is 40 % of total number of features, while for the
forests that are trained on subsequences chosen by PWMs NV is 30 % out of total
amount of features. The results are evaluated with a case study with Alx4-Eomes
transcriptional factor pair and five other TF pairs including Cux1-Hoxa13, Erf-Eomes,
Gcm1-Foxi1, Hoxb2-Pax1 and Alx4-Tbx21. The models are trained on CAP-SELEX
data sets selected by Jolma et al. in [4]. Thus, these data sets passed the quality
control pipeline and were utilized for PWM construction. In addition, results with
50 CAP-SELEX data set are represented for different random forest models and
compared to each other and scoring with only the combinatorial PWMs.

5.2.1 Modeling with full length DNA reads and individual PWM sites

Random forest modeling is first performed by modeling with the full length DNA
strands, which according to the Jolma et al. combinatorial PWM include the binding
site (Strand+RF). In addition, performance of random forests trained with the
individual TF binding sites are evaluated (PWM1+RF and PWM2+RF). The position
weight matrices published by Jolma et al. derived from HT-SELEX measurements
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were utilized [5]. ROC-curves and AUC values for Alx4-Eomes with these three
random forest models in addition test set AUC values obtained with five other
CAP-SELEX data sets are represented in Figure 39.
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Figure 39: Random forest model with DNA strand and individual PWM sites

Thus, the random forest model with the full length DNA strand seems to perform
already quite accurately. Although the true binding site is likely to be shorter than
the 40 nucleic acid long strand, the random forest is able to reveal binding specificities
inside the strand despite variation in binding site position. Modeling with the entire
DNA strands perform better than utilizing the individual TF binding motifs for
random forest learning as could have been expected. The models trained with only
one transcriptional factor PWM site loose information about the other PWM site
which should be present on the ligand. Random forest with the entire DNA strand
on the other hand can utilize the information of both of the binding motifs even
though the excess nucleic acids and differences in binding site positions may disturb
the random forest.

5.2.2 Modeling with combinatorial PWM sites

Jolma et al. derived combinatorial position weight matrices for transcriptional
factor pairs in [4]. These position weight matrices can be utilized for finding the
most probable binding sites inside DNA ligands, and training the forest with them.
Furthermore, it was discovered in HT-SELEX experiments that extending the found
PWM sites to both directions and utilizing these longer PWM sites for random
forest training increased modeling performance. Thus, it is tested for the six TF
pairs whether extending the combinatorial position weight matrix sites by one
nucleic acid to both directions increases modeling accuracy. ROC-curves and AUC
values for Alx4-Eomes and test set AUC values for five other TF pair data sets are
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represented in Figure 40 when modeling is perfromed with full length DNA strands
and with subsequence chosen by the combinatorial PWM (PWM+RF). In addition,
performance of PWM+N+RF model with the elongated PWM sites is assessed.
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Figure 40: Random forest model with TF1-TF2 combinatorial PWM sites

Utilizing PWM sites for training the random forest outperforms learning with the
entire DNA strand even though for Alx4-Eomes these two models predict binding
with almost equal accuracy. The DNA reads are 40 nucleic acids long in CAP-
SELEX measurements, while the TF pair binding motifs are usually about 20 nucleic
acids long [4]. Thus, with the Strand+RF model random forest receives nucleic acid
features that do not concern binding, increasing randomness in the training data
and complicating learning. In addition, with the PWM+RF model, random forest
should receive nucleotide acids at specific positions on the binding motif always as
certain variables, which should aid random forest in classification. Furthermore, for
CAP-SELEX data it seems that extending the found PWM sites do not increase
modeling accuracy. Thus, PWM length seems to be sufficient for TF pairs.

5.2.3 Random forest model

Random forest modeling could also be conducted by training with subsequences
chosen by decision trees to be the binding site inside each DNA ligand. DNA ligands
are divided into equally sized bags and random forests with NT = 100 and NS = 100
are trained on each of the bags. Furthermore, all subsequences are scored with those
random forests that were not trained on the bag that contained the subsequence or the
bag with the reverse complement of the sequence. The final score for a subsequence
is then the average of the scores assigned to it. The subsequence with the highest
score inside each ligand is chosen as the binding site for training the final random
forest with NT = 200 and NS = 10. For CAP-SELEX data subsequence lengths
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of 28, 30 and 32 bases are tested. Figure 41 represent the ROC-curves with the
different subsequence length RF+RF models for Alx4-Eomes in addition to test set
AUC values for five other transcriptional factor pair data sets.
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Figure 41: Test set AUC with RF+RF models.

The RF+RF model performs quite well for TF pair binding site modeling. In
fact, the model outperforms modeling with the entire DNA strands and modeling
with the subsequences chosen by combinatorial PWMs. For Alx4-Eomes the optimal
length for the subsequences and thus for the bags is 30 nucleic acids. However,
when multiple TF pairs are considered it can be seen that the optimal length for
subsequences is 28 nucleic acids.

5.2.4 Modeling with binding sites of both transcriptional factors

Individual PWMs could also be combined in an optimal manner to search for binding
sites inside the DNA ligands and utilizing the found subsequences for random forest
training. Thus, the two position weight matrices are attached to each other according
to the knowledge about the orientation of the two transcriptional factors on the
DNA ligand and the amount of nucleic acid gaps between their motifs. It is assumed
that the TFs bind DNA according to a fixed spacing. According to Jolma et al.
those transcriptional factor pairs that bind DNA with overlapping motif have fixed
spacings between the motifs and those pairs that bind DNA with multiple gaps
between the two motifs have more relaxed binding preferences [4]. Since the true
spacing between the transcriptional factor binding motifs is unknown, the two PWMs
are attached to each other with all four possible orientations and amounts of gaps
between them. In this Master’s thesis the amount of gaps is assumed to range between
negative 10 to positive 5 between the individual motifs. Position weight matrices
are combined according to all four possible transcriptional factor pair orientations,
which are represented in Figure 15. Spacings are demonstrated with Cux1-Hoxa13
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transcriptional factor pair. Figure 42 represent the Cux1 and Hoxa13 position weight
matrices.
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(a) Cux1 PWM from [5] and visualized
with information content.
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(b) Hoxa13 PWM from [5] and visual-
ized with information content.

Figure 42: Cux1 and Hoxa13 PWMs

Therefore the PWM combinations become Cux1-Hoxa13, Hoxa13-Cux1, Cux1-
reverse(Hoxa13) and Hoxa13-reverse(Cux1), where reverse refers to the reverse
complement of a PWM, which is thus able to search for the binding motif when
the two TFs are bound to different DNA strands. Furthermore, positive gaps are
added between the PWMs with [0.25, 0.25, 0.25, 0.25] columns while negative gaps
are obtained by overlapping the two PWMs. If the negative spacing is uneven, the
PWMs are overlapped with an additional nucleotide acid and a [0.25, 0.25, 0.25,
0.25] column is added between the two motifs. Figure 43 represent two examples of
Cux1 and Hoxa13 PWM attachments with orientation Hoxa13-Cux1.
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(b) Gap -3

Figure 43: Two possible spacings of Cux1 and Hoxa13 in orientation Hoxa13-Cux1.

The training data set is divided into training and validation sets such that 20
% of the training set will belong to validation set. Random forests are trained in
the training set with subsequences searched from the DNA ligands with all possible
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spacings separately. Furthermore, the performance of the forests trained with different
spacings is assessed in the validation data set. Figure 44 represent the validation set
AUC values for Cux1-Hoxa13 and the percentage of each spacing model from the
spacing that yielded the maximum AUC value.
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Figure 44: Cux1-Hoxa13 validation set AUC

Thus, random forest can quite accurately predict binding with most of the spacings.
A similar analysis is represented for Alx4-Eomes in Figure 45.
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Figure 45: Alx-Eomes validation set AUC

Alx4-Eomes seem to express more specific binding preferences than Cux1-Hoxa13.
However, it seems that random forest can perform quite well with all possible
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spacings even though binding is assumed to occur with only certain orientations and
gap configurations. However, random forest can already predict binding relatively
accurately when trained with only the subsequences search with the other PMW.
Even when searching subsequences with incorrect PWM spacings, the different
spacing models include the other PWM site and at least sometimes by change the
extension to the correct direction. Thus, there is probably crucial binding motif
information in subsequences searched with different PWM spacings even though they
were possibly incorrect. Therefore, most probably the correct spacing between the
two transcriptional factors is given by the random forest with the highest validation
set AUC. However, the spacings which yield AUC values close to the forest with
the most probably correct spacing should perhaps be considered as well in the final
model. The spacings may be combined by scoring DNA ligands in test set with
multiple random forests trained with subsequences chosen by the best motif spacings.
Furthermore, a DNA ligand would get a final score through averaging over the various
random forest scores or by selecting the maximum score to be the final score. It was
discovered that averaging produced higher test set AUC values. Experiments are
conducted with three settings. First only the best spacing between the TF motifs
chosen in the validation data set is utilized for scoring test set DNA ligands with
the corresponding random forest. Then random forests with motif spacings of at
most 0.3 % difference in validation set AUC to the the best spacing are utilized
for scoring test ligands and finally all forests within 0.5 % of difference to the best
spacing. Thus, the model becomes an ensemble of random forests. Test set AUC
values for six TF pair data sets and ROC-curves for Alx4-Eomes are represented in
Figure 46.
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Figure 46: Test set AUC with PWM1+PWM2+RF.

Thus, a higher classification accuracy is achieved by averaging the scores given
by multiple random forests trained with different motif spacings than by considering
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only the best spacing between the TF motifs. Furthermore, the ensemble model
performs better with more different spacings considered. It could be possible to
achieve even higher test set AUC values if more random forests were added to the
ensemble. However, this would increase running time significantly.

5.2.5 Modeling by utilizing binding specificity of one protein

A model that considers all the possible gaps at once between the two transcriptional
factor motifs could be constructed as well. This model searches the maximum PWM
score sites with only the other transcriptional factor PWM such that the matrix is
extended with N = [0.25, 0.25, 0.25, 0.25] columns to the extent of 25 positions long
PWM. However, the extension is performed only to the other direction to which
the binding of the other motif could have occurred on the forward or the reverse
strands. Thus, two random forest are trained with both of the possible orientations
separately. Test set DNA ligands are then scored with both of the random forests and
the final score for the ligand is obtained by averaging the two scores or by choosing
the maximum score. Figure 47 shows Alx4 and Eomes position weight matrices for
which the PWM extensions are represented later as an example.
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(a) Alx4 PWM from [5] and visualized with
information content.
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(b) Eomes PWM from [5] and visualized with
information content.

Figure 47: Alx4 and Eomes PWMs

The two individual PWMs can bind to DNA in orientations Alx4-Eomes or
Eomes-Alx4. When the other binding motif is masked with N columns, these two
orientations automatically consider all possible binding scenarios on opposite strands.
Furthermore, as the amount of gaps is unknown the length of the true combinatorial
PWM site is unknown. Therefore, both ends of the DNA ligands should be searched
with a true PWM, not only with the N extension. Thus, searching for the maximum
PWM score sites is performed by searching with two extended PWMs for both of
the orientations. For instance, for orientation Alx4-Eomes, the maximum score site
is searched with a PWM where Alx4 position weight matrix is extended to 25 bases
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to the right and with a PWM where Eomes position weight matrix is extended to 25
bases to the left. Then the subsequence that has the highest score out of the sites
searched with both of these PWMs is chosen as the maximum score site for training
the random forest. The extended PWMs for orientation Alx4-Eomes are represented
in Figure 48. Furthermore, the length of the PWM extensions was chosen to be 25
in order for all the possible sites in the middle of the DNA ligands to be scored with
the PWMs as well, since the binding motif is very unlikely to be shorter than 10
nucleic acids. However, this binding motif length might be too short for some of the
TF pairs. Thus, part of the information might be missing. Random forest should
however model the binding motif with 25 bases already rather accurately.
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(a) Alx4 + N PWM
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(b) N + Eomes PWM

Figure 48: Alx4-Eomes PWM extensions

Furthermore, Figure 49 represent the PWM extensions for orientation Eomes-
Alx4. Thus, Eomes PWM is extended to 25 nucleic acids to the right and Alx4 is
extended to 25 nucleic acids to the left.
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(a) N + Alx4 PWM
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(b) Eomes + N PWM

Figure 49: Eomes-Alx4 PWM extensions

Thus, two random forests are trained with subsequences chosen by PWMs cov-
ering the two orientations. It is tested for Alx4-Eomes and for the five other TF
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pairs whether taking the maximum score out of the two random forest scores for
each DNA ligand in test set or averaging them produce higher test set AUC. In
addition, the performance of these two approaches (PWM1+PWM2+N+RF Max)
and (PWM1+PWM2+N+RF Mean) are compared to the random forest ensem-
ble with spacings within 0.5 % of best spacings according to validation set AUC
(PWM1+PWM2+RF). The results are represented in Figure 50 for six data sets.
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Figure 50: Test set AUC with PWM1+PWM2+N+RF model in comparison to
PWM1+PWM2+RF.

The results indicate that finding subsequences from DNA ligands for random
forest training with the extended PWMs (PWM1+PWM2+N+RF) performs equally
or slightly better than the random forest ensemble with all the best spacings. This
might occur, because all the gaps are considered simultaneously. Thus, choosing
the PWM site incorrectly is less likely than when the two PWMs are attached to
each other according to one of the spacings. In addition, running time for this model
is lower. Thus, random forest modeling with sites found with extended PWMs is
considered further. However, it is surprising that averaging the scores of the two
random forest for each DNA ligand in test set outperforms taking the maximum, since
only one orientation should occur on each DNA ligand. Ensemble of the two random
forests increase predictive accuracy even though one of the forests contain incorrect
information about the motif at least partly. Since the PWM sites are searched with
only the other PWM, even the forest trained on the incorrect orientation include
correct information about the binding motif.

5.2.6 Results with multiple experiments

The performance of random forest trained with 25 nucleic acids long subsequence
chosen by matching only one of the transcriptional factor pair position weight matrices
(PWM1+PWM2+N+RF) is assessed with a more comprehensive set comprising 50
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CAP-SELEX data sets. Furthermore, random forests trained with the entire DNA
reads (Strand+RF) in addition to training with only individual PWM sites (PWM1+RF
and PWM2+RF) and with Jolma et al. combinatorial PWM sites (PWM+RF) are
considered. Figure 51 shows the comparisons.
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Figure 51: Comparison of Strand+RF, PWM1+RF, PWM2+RF, PWM+RF and
PWM1+PWM2+N+RF.

Random forest modeling with the combinatorial PWM sites with a mean AUC
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of 0.759 outperforms modeling with the individual PWM sites: PWM1+RF (aver-
age=0.712, p-value=2.39 ∗ 10−8, two-sided Wilcoxon signed rank test, n=50) and
PWM2+RF (average=0.716, p-value=1.39 ∗ 10−6, two-sided Wilcoxon signed rank
test, n=50). However, the full length DNA strand model and random forest modeling
with the combinatorial PWM sites perform equally. Random forest trained with 25
nucleic acids long subsequence chosen by matching only one of the TF pair PWMs
(PWM1+PWM2+N+RF) outperforms with a mean AUC of 0.790 the PWM+RF
model (average=0.759, p-value=1.68 ∗ 10−9, two-sided Wilcoxon signed rank test,
n=50) and the Strand+RF model (average=0.753, p-value=2.09 ∗ 10−8, two-sided
Wilcoxon signed rank test, n=50)

PWM1+PWM2+N+RF and PWM+RF models are compared to the prediction
accuracies obtained by scoring sequences with only the Jolma et al. TF pair position
weight matrices (PWM). Similarly as with HT-SELEX experiments, the PWM scores
of each position in a ligand are averaged, which gives the final score to the DNA
ligand. The DNA reads are padded with four ’N’ values at each end, which are scored
with probability 0.25. Furthermore, if there is multiple PWMs published for a TF
pair, the DNA ligands are scored with all of them and the maximum score for each
ligand is chosen as the final score, because TF pairs can bind DNA with different
spacings. However, sometimes utilizing only one of the PWMs yielded highest AUC
value. For each CAP-SELEX data set the highest obtained AUC is reported for
scoring with PWMs. Figure 52 represents how the two random forest models that
perform the best on test data compare to scoring sequences with TF pair PWMs.
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Figure 52: Comparison of PWM1+PWM2+N+RF and PWM+RF to PWM.

Thus, random forest increase classification accuracy in comparison to scoring
sequences only with the position weight matrices. Random forest trained with
the combinatorial PWM sites outperforms scoring sequences with only the PWM
(average=0.618, p-value=7.78 ∗ 10−10, two-sided Wilcoxon signed rank test, n=50).
Furthermore, random forest model with elongated PWM sites of the individual
transcriptional factors (PWM1+PWM2+N+RF) with mean test set AUC of 0.790
outperforms the TF pair PWMs (average=0.618, p-value=7.79 ∗ 10−10, two-sided
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Wilcoxon signed rank test, n=50). In addition, the difference between PWM and
random forest seems to be more significant for transcriptional factor pairs than for
individual transcriptional factor motifs as represented in Figure 35 for HT-SELEX
data. Figure 53 represent test set AUC values for the 50 studied transcriptional factor
pair data sets with the two random forest models in addition to scoring sequences only
with the position weight matrices. The transcriptional factors are sorted according
to AUC values with PWM1+PWM2+N+RF model.
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6 Discussion
Protein-DNA binding specificities measured with HT-SELEX by and CAP-SELEX by
Jolma et al. were modeled with random forests in this Master’s thesis [5, 4]. SELEX
measurements yield DNA sequences, which are known to contain a binding site
although the exact position is unknown. In addition, binding might have occurred
on the complementary DNA strand. [7] Binding specificities are usually modeled
with position weight matrices, which describe the probability for seeing a certain
nucleic acid at specific positions on the motif [3]. Recently, a neural network model,
DeepBind, have been proposed to model TF binding motifs [10].

Experiments with HT-SELEX data sets were conducted by training random
forests with full length DNA reads or with binding sites inside the DNA ligands
search with either PWM or with decision trees. Modeling binding motifs with only
the PWM is inaccurate in comparison to all the proposed random forest models
and the neural network model, Deepbind. It has been shown that with in vivo
experiments the independent normalization of each position on the binding sites
may skew the probabilities, which might lead to incorrect PWM models [8]. Thus,
it is possible that there are problems in PWM construction that impair predictive
accuracy. In addition, modeling TF binding motifs with position weight matrices
is inflexible. Higher complexity may be added to modeling the motif with random
forest. This could be observed particularly as training random forest with the PWM
sites yielded higher AUC values than simply utilizing the PWM. Random forest
is a suitable method for modeling TF binding specificities as it can process DNA
sequences with correlated neighboring nucleic acids as well as correlated nucleic acids
with gaps. Due to the grouping property of random forests, the binding sites could
be modeled such that DNA sequences with correlated variables get small minimal
depths and thus high probabilities are given to new similar sequences [15]. One
of the biggest limitations with PWMs is the assumed independence of nucleic acid
positions on the motif [9]. In addition, it was shown by Rahul Siddharthan that
although the nearest neighbor dinucleotide correlations are observed most commonly
in yeast transcriptional factor binding sites, correlations of gapped dinucleotides are
observed as well [9]. Since random forest is able to exploit these correlations, it
is obvious that random forest would outperform PWM models. Furthermore, the
instability of decision trees can be reduced by learning multiple decision trees and
combining them [27]. Thus, random forests, as an ensemble of decision trees, will
achieve high modeling complexity. Furthermore, when decision trees are constructed,
the variables, which are considered for a data partitioning, are chosen randomly at
each node [13]. In addition to improving variance reduction, this may enable the
decision trees to discover groups of data with correlated variables at alternating
positions. Therefore, random forest may be able to model binding even if there is
variation in the exact location of the motif on the DNA sequence.

Random forest can increase model complexity in comparison to utilizing only the
position weight matrices. Furthermore, one model was constructed by first searching
for the PWM sites and utilizing these for training the random forest. This model
give nucleic acids on the motifs positioned on certain features for random forest
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training, which could aid decision trees to partition training data correctly. However,
since the PWM does not perform very well for all proteins, it might be problematic
to utilize the PWM before training the random forest. However, even if random
forest was trained partly on wrong subsequences, the forest would probably be able
to discover true binding sites due to the grouping property of the decision trees. It
was discovered for HT-SELEX data that training random forest with full length
DNA strands outperformed training with binding motifs found either with PWM or
decision trees. However, with HT-SELEX measurements conducted with 40 nucleic
acids long DNA sequences random forest trained on subsequences outperformed
forests trained on the entire DNA strands. This suggest that the TF motifs might
actually be longer than the Jolma et al. position weight matrices insinuates [5].
Furthermore, it was revealed that elongating the found PWM sites with surrounding
nucleic acids increased classification accuracy. If the PWM sites were found from
the end of the DNA reads, they were elongated with the corresponding number of
’N’ letters denoting nucleotides that are not determined. However, even the random
forests with PWM sites elongated to the length of the entire DNA sequence did not
predict binding sites as accurately as forests trained with the strands. Thus, it is
possible that the ’N’ letters disturb model performance. Since the amount of features
is the same but for a part of the DNA sequences nucleic acids are replaced with
’N’ features, information is lost, which seem to result in lower test set AUC values.
Although, it could be assumed that centralizing specific nucleic acids of the TF motif
positions to certain random forest features would increase the model performance,
the information loss due to introduction of ’N’ categories is more significant.

Furthermore, a model where the binding motifs were searched from DNA ligands
with other decision trees before training the final random forest was implemented.
This model performed almost equally to the forest trained with elongated PWM
sites. The searched subsequences were long in order to ensure training the forests
with entire motifs. Thus, the problem with PWM should not be only the inability
to select subsequences correctly. Rather, the issue is probably with the length of
the subsequences. Furthermore, Alipanahi et al. utilized the entire 20 nucleic acids
long DNA strands for training the neural network model DeepBind as well [10]. In
addition, for HT-SELEX measurements with 30 or 40 nucleic acids long DNA reads,
the searched motifs were over 20 nucleic acids long [10]. Thus, the results in this
Master’s thesis are in line with the optimal motif lengths according to Alipanahi et
al. for DeepBind. In addition, it is possible that a transcriptional factor can bind
differing DNA motifs that should be modeled with more than one PWM [43]. Thus,
searching with only one PWM, may result in incorrect motifs to be chosen for forest
training. Contrary, random forest should be able to classify sequences even if there
were different motifs present.

The optimal random forest model for HT-SELEX data is obtained by utilizing full
length DNA strands chosen by a position weight matrix for measurements with 14, 20
or 30 nucleic acids long DNA reads, while for measurements with 40 nucleic acids long
DNA reads the random forest is trained with elongated PWM sites. The PWM sites
were elongated to 23 or 24 nucleic acids depending on whether the PWM has an odd
or even length. The DeepBind outperformed random forest slightly but the difference



77

is not statistically significant according to a two-sided Wilcoxon signed-rank test.
Thus, random forest is a promising method for modeling transcriptional factor pair
binding motifs as well.

Random forest was applied for CAP-SELEX data for modeling TF pair DNA
binding motifs. Again random forest increased classification accuracy in comparison
to only scoring sequences with PWMs. Thus, random forest is able to increase model
complexity and flexibility also for transcriptional factor pair motifs. Furthermore, the
difference between PWM scoring and random forest is more significant for TF pairs
than for individual TFs in HT-SELEX data. It is possible that TF pairs have more
variation in their binding motifs than individual TFs. Thus, the increased model
complexity achieved with random forest is even more beneficial for TF pairs than
for transcriptional factors that bind DNA individually. Modeling TF pair motifs
with single PWMs might not be sufficient, since Jolma et al. noticed that some TF
pairs bind DNA with relaxed gap spacings between the two individual TF motifs [4].
Random forest on the other hand does not seem to be highly sensitive to the location
of the core motif on the features, since rather high classification accuracies can be
achieved even with the full length DNA sequences. Thus, a motif that comprise
different possible spacings of the two TFs can be constructed with random forest.

Random forests trained with the full length DNA strands chosen by the combi-
natorial PWM perform almost equally to the forests trained with the sites chosen
by Jolma et al. position weight matrices published in [4]. Therefore, random forest
seems to be able to discover the motif information even if the exact position of
the motif on the DNA reads is uncertain. However, the test set AUC values with
random forests trained on the sites chosen by Jolma et al. PWMs are slightly better,
which might be due to DNA sequences of 40 bases being too long just as shown
with HT-SELEX. However, the difference between these two approaches is not as
significant with TF pairs as it is with individual TFs. One possibility is simply that
motifs are longer for TF pairs, which improves performance of the full length DNA
strand model. However, it was tested whether elongating the searched Jolma et al.
PWM sites would increase classification accuracy and for TF pairs it seemed that
the combinatorial PWMs were long enough. Thus, it is possible that TF pair motifs
are not significantly longer than motifs of individual TFs. An other option is that
the combinatorial PWMs does not choose the correct subsequences as accurately as
the individual TF PWMs. Thus, random forest trained with the PWM sites would
not perform as well as it could for TF pairs. Furthermore, random forests were
trained on subsequences chosen by PWMs of the individual transcriptional factors
separately. Testing unseen DNA ligands with the two random forest would indicate
whether accurate models could be constructed already with information of either
one of the transcriptional factor motifs. It was discovered that random forest can in
fact distinguish between ligands that contain a binding site and those that do not
quite accurately when either one of the TF motifs were considered. Thus, there is
information about individual TF motifs present on the DNA reads as well.

Furthermore, experiments were conducted by attaching the two transcriptional
factor PWMs to each other according to all four different orientations with varying
amount of gaps. These combination PWMs were then utilized for searching for
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subsequences corresponding to the assumed motifs and used for training random forest.
Surprisingly it was discovered the most of the spacings yielded good classification
accuracies on unseen DNA ligands even though it was shown by Jolma et al. that
transcriptional factors preferred certain orientations over others [4]. One explanation
for this is the ability of random forest to predict binding already with either one
of the transcriptional factor PWM sites out of the pair. In addition, random forest
is not extremely sensitive to excessive features not pertaining to binding. Thus, as
the combination PWMs are likely to choose sites that comprise at least one of the
two TF motifs even if the spacing between the PWMs was incorrect, there will be
information considering the motifs in random forest training. Furthermore, in the
case of incorrect spacing chosen for PWM attachment, the subsequences are chosen
by the more specific binding motif on the combination PWM. However, some spacing
result in higher test set AUC values than others. These spacing may be considered as
the spacings choosing subsequences from the ligands most often correctly. Separate
random forest trained with the best spacings may be combined by scoring test ligands
with each of them and choosing the maximum score or the average of the scores as
the final score. As expected averaging produced higher test set AUCs. Although,
only one spacing should be present on each DNA ligand, the ensemble of random
forests combines the predictive power of multiple forests and thus is able to predict
TF pair binding sites more accurately.

Finally, a model that incorporate multiple spacings at once was implemented.
However, since the orientation of the transcriptional factors on the ligand is unknown,
all possible spacing were not combined for training a single random forest. Rather,
the individual PWMs were elongated to 25 nucleic acids to both directions separately
and utilized for searching subsequences corresponding to certain orientations. The
model yields two random forest such that all possible orientations were covered.
Furthermore, since the individual PWMs were elongated, all possible gaps between
the motifs could be considered simultaneously. Unseen test DNA ligands were scored
with both of the random forests and the final score could be obtained by either
maximizing or averaging the two scores. Averaging again produce higher AUC values,
although only one orientation would be present on each ligand. If the TFs are bound
to opposite strands both of the forests should be capturing to a large extent the
same binding preferences in which case averaging will yield a higher AUC due to
the combination of more decision trees increasing modeling accuracy. When binding
have occurred on the same strand, only the other forest should be scoring binding
correctly. However, the forest trained with the incorrect binding orientation should
still include the other TF binding site. Therefore, the forest should be able to predict
binding to some extent as well according to previous results with scoring CAP-SELEX
sequences with only the other TF binding motif. Thus, combining the two forest
scores through averaging yield higher AUC values. Furthermore, since the individual
PWMs were extended only to 25 nucleic acids, binding motif information might be
missing partly for some pairs, although for most pairs 25 should be sufficient. The
elongation to 25 nucleic acids was chosen so that shorter motifs positioned on the
middle of the strands could be found as well. Furthermore, random forest is not
particularly sensitive to positive training set containing partly random sequences,
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since decision trees are able to find the correlated groups such that new sequences
will fall to these leaves more likely [15]. Thus, the forests should model binding
specificities accurately even if for some DNA ligands the wrong sites were chosen,
such as if the true motif was shorter than 10 nucleic acids and in the middle of the
DNA strand. However, TF pairs motifs should be longer than 10 nucleic acids. The
model with elongated transcriptional factor PWMs outperformed slightly the model
with the ensemble of best spacings search with attached PWMs. Although, the
spacing ensemble model could probably be improved further by averaging over more
forests. However, the computational cost and running time would increase greatly.
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7 Conclusions
In this Master’s thesis random forest was implemented for modeling protein-DNA
binding specificities. The studied proteins were transcriptional factors, thus responsi-
ble for regulating gene expression in cells. Currently, binding specificities are most
often modeled with position weight matrices even though they are likely to be too
simple for modeling DNA binding motifs. Furthermore, a neural network model,
DeepBind, have been proposed for modeling binding specificities and it was shown
by Alipanahi et al. that DeepBind outperformed PWM models [10]. In this Master’s
thesis random forest models were trained with HT-SELEX and CAP-SELEX data
sets measured by Jolma et al. [5, 4]. Thus, models were implemented for individual
transcriptional factor binding specificities in addition to transcriptional factor pair
binding specificities. The best performing models combined position weight matrices
with random forest. Random forest models outperformed scoring sequences with
position weight matrices with both individual and dimer transcriptional factor motifs.
Furthermore, the difference between PWM models and random forest models was
greater for transcriptional factor pairs than for individual transcriptional factors.
Thus, the possible variations in spacing between the two transcriptional factors in
the dimer may increase the benefits of utilizing more flexible models. Furthermore,
for individual transcriptional factor motifs DeepBind outperformed random forest
slightly. However, the difference is not significant and for transcriptional factor pairs
DeepBind models are not provided. Thus, modeling transcriptional factor pair DNA
binding specificities with random forest instead of PWM models is advantageous.
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A HT-SELEX test set AUC for TFs

Protein Strand + RF PWM + N + RF RF + RF DeepBind PWM

Alx1_20N_Z_3 0,965 0,955 0,959 0,968 0,880

Alx3_20N_AE_2 0,612 0,613 0,576 0,582 0,531

Arx_20N_AC_2 0,632 0,629 0,611 0,648 0,546

Ar_20N_AD_4 0,615 0,611 0,600 0,641 0,565

Atf7_30N_AI_4 0,654 0,642 0,628 0,656 0,559

Barhl1_20N_AC_3 0,932 0,912 0,926 0,921 0,795

Barhl2_20N_AC_3 0,871 0,866 0,861 0,886 0,740

Barhl2_40N_AI_3 0,637 0,671 0,668 0,699 0,611

Barx1_20N_AC_3 0,803 0,802 0,797 0,806 0,698

Batf3_20N_AC_4 0,576 0,562 0,533 0,567 0,504

Bhlhb3_20N_AD_2 0,849 0,827 0,824 0,840 0,722

Bhlhe41_20N_AD_3 0,843 0,818 0,826 0,861 0,714

Cebpg_20N_AC_2 0,659 0,637 0,653 0,621 0,599

Cenpb_20N_AD_3 0,794 0,772 0,789 0,797 0,713

Cpeb1_20N_AC_3 0,637 0,640 0,633 0,661 0,552

Creb3l1_20N_AD_4 0,967 0,953 0,965 0,968 0,917

Cux1_40N_AI_3 0,941 0,957 0,951 0,971 0,912

Dbp_20N_AE_2 0,881 0,860 0,880 0,882 0,768

Dlx1_20N_AC_4 0,735 0,742 0,739 0,748 0,581

Dlx4_20N_AC_3 0,667 0,660 0,660 0,655 0,587

Dprx_30N_AI_2 0,559 0,556 0,541 0,583 0,547

Dmbx1_20N_AC_4 0,563 0,561 0,555 0,577 0,538

Ebf1_20N_AC_3 0,563 0,540 0,566 0,572 0,502

Egr1_20N_AA_4 0,530 0,531 0,525 0,535 0,510

Egr4_40N_AI_4 0,618 0,628 0,616 0,632 0,524

Elk3_20N_AC_3 0,612 0,605 0,600 0,631 0,575

En2_20N_AE_3 0,569 0,571 0,548 0,581 0,542

Esrra_20N_AC_4 0,834 0,819 0,836 0,847 0,683

Esx1_20N_AE_2 0,822 0,809 0,818 0,834 0,732

Pou1f1_40N_AI_3 0,732 0,799 0,779 0,827 0,699

Emx2_30N_AI_4 0,763 0,760 0,773 0,790 0,706

Fli1_20N_AC_4 0,929 0,910 0,923 0,924 0,844

Foxc1_30N_AI_3 0,671 0,685 0,689 0,704 0,585

Foxb1_20N_AE_4 0,535 0,534 0,536 0,532 0,516

Foxg1_20N_AA_4 0,539 0,534 0,532 0,546 0,501

Gata3_20N_AC_2 0,526 0,526 0,521 0,535 0,520

Gcm1_20N_AE_4 0,819 0,807 0,818 0,825 0,731

Hoxc11_20N_AC_4 0,664 0,664 0,658 0,675 0,582

Hes7_14N_U_4 0,564 0,558 0,563 0,558 0,514

Hoxd13_14N_U_4 0,615 0,585 0,593 0,579 0,545

Klf13_20N_AE_4 0,917 0,904 0,888 0,926 0,728

Mafb_20N_AA_4 0,872 0,858 0,870 0,877 0,725

Mafk_20N_AE_3 0,660 0,644 0,655 0,645 0,561

Neurog2_20N_AE_4 0,564 0,551 0,550 0,532 0,512

Nfia_20N_AA_3 0,934 0,920 0,934 0,940 0,797

Nfib_20N_AC_3 0,972 0,963 0,973 0,969 0,873

Nrf1_20N_AC_2 0,567 0,545 0,558 0,565 0,515

Onecut_20N_AE_3 0,801 0,769 0,789 0,747 0,607

Pou2f1_20N_AC_2 0,805 0,805 0,809 0,787 0,645

Rfx3_20N_AC_3 0,850 0,851 0,852 0,865 0,723

Rfx5_30N_AI_2 0,545 0,529 0,541 0,526 0,502

Sox8_30N_AI_4 0,649 0,629 0,639 0,639 0,543

Foxk1_14N_S_4 0,556 0,563 0,556 0,581 0,520

Id4_14N_U_4 0,549 0,534 0,544 0,546 0,505

Tbx4_40N_AI_3 0,679 0,698 0,689 0,735 0,670

MEAN 0,713 0,707 0,708 0,719 0,633

Figure A1: AUC with HT-SELEX. Labeling: TF_Read length_Batch_Cycle
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B CAP-SELEX test set AUC for TF pairs

Protein pair Strand + RF PWM1+RF PWM2+RF PWM+RF PWM PWM1+PWM2+N+RF

Alx4_Eomes_40N_AAD_3 0,884 0,815 0,824 0,883 0,688 0,900

Cux1_Hoxa13_40N_AY_3 0,841 0,795 0,738 0,838 0,682 0,869

Erf_Eomes_40N_AAC_3 0,835 0,759 0,718 0,857 0,633 0,869

Gcm1_Foxi1_40N_AU_3 0,636 0,606 0,664 0,637 0,580 0,703

Hoxb2_Pax1_40N_AY_3 0,677 0,717 0,613 0,719 0,540 0,719

Alx4_Tbx21_40N_AAD_3 0,951 0,883 0,937 0,950 0,807 0,961

Elk1_Onecut2_40N_AAA_2 0,708 0,721 0,723 0,760 0,596 0,781

E2f3_Drgx_40N_AAA_2 0,592 0,584 0,574 0,584 0,523 0,601

Elk1_Hoxb13_40N_AAA_3 0,855 0,766 0,721 0,817 0,782 0,845

Elk1_Etv7_40N_AAA_2 0,787 0,754 0,737 0,819 0,581 0,846

Atf4_Cebpb_40N_AT_3 0,945 0,934 0,901 0,933 0,681 0,951

Atf4_Cebpd_40N_AT_3 0,923 0,931 0,918 0,936 0,793 0,945

Cux1_Hoxb13_40N_AY_3 0,843 0,830 0,782 0,854 0,707 0,876

Cux1_Tbx21_40N_AY_3 0,845 0,829 0,810 0,865 0,688 0,880

E2f1_Elk1_40N_AX_2 0,624 0,628 0,613 0,659 0,548 0,677

E2f3_Foxo6_40N_AAA_3 0,580 0,577 0,544 0,586 0,528 0,587

Erf_Cebpd_40N_AAC_3 0,839 0,705 0,703 0,803 0,586 0,858

Erf_Figla_40N_AAC_3 0,783 0,721 0,705 0,771 0,654 0,793

Erf_Foxi1_40N_AAC_2 0,892 0,729 0,857 0,783 0,707 0,899

Etv2_Bhlha15_40N_AAA_3 0,689 0,758 0,737 0,756 0,633 0,782

Etv2_Cebpd_40N_AAA_2 0,734 0,750 0,731 0,767 0,629 0,771

Fli1_Drgx_40N_AAC_3 0,773 0,682 0,717 0,744 0,621 0,807

Fli1_Etv7_40N_AAC_2 0,757 0,591 0,633 0,732 0,529 0,774

Foxj3_Tbx21_40N_AAE_3 0,856 0,736 0,673 0,838 0,600 0,855

Foxo1_Elk3_40N_AS_2 0,589 0,558 0,552 0,574 0,508 0,598

Gcm1_Etv4_40N_AX_2 0,646 0,671 0,668 0,631 0,545 0,719

Gcm1_Foxo1_40N_AU_3 0,723 0,652 0,666 0,649 0,601 0,744

Gcm1_Max_40N_AU_3 0,803 0,755 0,753 0,803 0,655 0,850

Gcm1_Spdef_40N_AU_3 0,715 0,688 0,699 0,730 0,584 0,764

Gcm2_Onecut2_40N_AAB_3 0,725 0,633 0,661 0,687 0,512 0,709

Gcm2_Pitx1_40N_AAB_3 0,624 0,592 0,602 0,674 0,572 0,693

Hoxb2_Elf1_40N_AY_3 0,743 0,684 0,838 0,819 0,751 0,828

Hoxb2_Hoxb13_40N_AY_3 0,643 0,656 0,679 0,733 0,641 0,749

Hoxb2_Pax5_40N_AY_2 0,677 0,608 0,709 0,708 0,576 0,713

Hoxd12_Elk1_40N_AAB_3 0,775 0,653 0,639 0,765 0,527 0,806

Hoxd12_Etv4_40N_AAB_3 0,765 0,676 0,643 0,749 0,576 0,792

Meis1_Evx1_40N_AT_3 0,744 0,683 0,674 0,739 0,578 0,780

Meis1_Hoxa13_40N_AT_3 0,707 0,701 0,674 0,731 0,602 0,774

Meis1_Onecut2_40N_AT_3 0,705 0,697 0,705 0,759 0,570 0,773

Mybl1_Elf1_40N_AX_3 0,639 0,650 0,659 0,648 0,536 0,692

Mybl1_Eomes_40N_AX_3 0,766 0,771 0,780 0,816 0,771 0,828

Pou2f1_Elk1_40N_AS_2 0,998 0,962 0,889 0,986 0,751 0,998

Pou2f1_Eomes_40N_AS_2 0,892 0,813 0,836 0,844 0,682 0,900

Rfx3_Bhlha15_40N_AY_3 0,686 0,745 0,690 0,727 0,506 0,766

Tead4_Cebpd_40N_AY_3 0,787 0,705 0,806 0,818 0,762 0,861

Tead4_Drgx_40N_AY_3 0,838 0,632 0,773 0,692 0,574 0,800

Tead4_Elf1_40N_AY_2 0,642 0,625 0,681 0,700 0,591 0,700

Tead4_Gsc2_40N_AX_3 0,592 0,569 0,569 0,606 0,539 0,628

Tfap2c_E2f8_40N_AY_3 0,672 0,753 0,712 0,747 0,567 0,774

Meis1_Sox2_40N_AT_3 0,718 0,654 0,686 0,714 0,515 0,733

MEAN 0,753 0,712 0,716 0,759 0,618 0,790

Figure B1: AUC with CAP-SELEX. Labeling: TF pair_Read length_Batch_Cycle
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