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Abstract: Coastal areas have become more prone to flooding with seawater due to
climate-change-induced sea-level rise and intensified storm surges. One way to cope with this
issue is by “managed coastal realignment”, where low-lying coastal areas are no longer protected
and instead flooded with seawater. How flooding with seawater impacts soil microbiomes and
the biogeochemical cycling of elements is poorly understood. To address this, we conducted
a microcosm experiment using soil cores collected at the nature restoration project site Gyldensteen
Strand (Denmark), which were flooded with seawater and monitored over six months. Throughout
the experiment, biogeochemical analyses, microbial community fingerprinting and the quantification
of marker genes documented clear shifts in microbiome composition and activity. The flooding
with seawater initially resulted in accelerated heterotrophic activity that entailed high ammonium
production and net removal of nitrogen from the system, also demonstrated by a concurrent increase
in the abundances of marker genes for ammonium oxidation and denitrification. Due to the depletion
of labile soil organic matter, microbial activity decreased after approximately four months. The event
of flooding caused the largest shifts in microbiome composition with the availability of labile organic
matter subsequently being the most important driver for the succession in microbiome composition
in soils flooded with seawater.

Keywords: Gyldensteen coastal lagoon; climate change; sea-level rise; nitrogen cycle;
microbiome succession

1. Introduction

Sea-level rise driven by climate change is expected to impact ~70% of the global coastlines during
the 21st century [1]. The resulting increased amplitude and frequency of storm surges will lead to
more incidences of broken coastal defenses and floods [2], and strategies to cope with this problem
are required. Besides the classical strategy of improving coastal defenses, other ways of climate
change adaption are under consideration [3–5]. An increasingly popular strategy is “managed coastal
realignment”, where low-lying coastal areas are permanently flooded with seawater by the intentional
breaching of existing dikes and building of new dikes further inland [6,7]. This generates buffer zones
for storm surges, protecting the more valuable agricultural areas and settlements inland [8,9].

Soils are heterogeneous environments which are mainly oxic down to 75–100 cm depth [10–12]
but also contain anoxic microniches [13]. Flooding with seawater will cause a shift towards anoxic
conditions below a depth of few millimeters. This will limit soil organic matter (SOM) degradation to
mainly anaerobic processes such as fermentation [14] and stimulate respiration with alternative electron
acceptors, for instance sulfate (SO4

2−) reduction [15,16] or denitrification [17,18]. Although many
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types of heterotrophic bacteria are facultative anaerobes and thus able to utilize alternative electron
acceptors, the soil microbiome composition is expected to change drastically in response to the
flooding. Seawater will increase the salinity in the soils as well as provide SO4

2− that can give SO4
2−

reduction a competitive advantage over other anaerobic respiration pathways. Nevertheless, with the
high abundance of nitrate (NO3

−) in the flooded anoxic soils and the potential to perform full or
partial denitrification present in many prokaryotes, it can also be expected that denitrification will
become significant. The capability for denitrification is not confined to a specific group of Bacteria
or Archaea [19], making predictions about this anaerobic respiration pathway based on taxonomic
assignments using the 16S rRNA gene uncertain at best. Therefore, functional genes encoding enzymes
in the denitrification pathway are used instead, with the genes for both the cytochrome cd1- (nirS) and
the copper (nirK) nitrite (NO2

−) reductase being molecular markers for the key step in denitrification,
the reduction of NO2

− to nitric oxide [19].
The NO3

− used by the denitrifiers is often supplied by nitrifiers, which oxidize the ammonium
(NH4

+) released from organic nitrogen mineralization during biomass degradation. Classical bacterial
nitrifiers oxidize NH4

+ in two steps, with ammonia-oxidizing bacteria (AOB) comprised of species
of the Beta- and Gammaproteobacteria catalyzing the first step from NH4

+ to NO2
− [20]. Nitrobacter

and Nitrospira species, collectively nitrite-oxidizing bacteria (NOB), generally carry out the second
oxidation step from NO2

− to NO3
−. Recently, bacterial species of the genus Nitrospira that can

perform both steps of NH4
+ oxidation, termed complete NH4

+ oxidation (comammox), have been
discovered in wastewater treatment plants [21,22]. Nitrospira capable of comammox seem to be
widespread in many different ecosystems, including soils [23]. Besides Bacteria, Archaea of the
phylum Thaumarchaeota can also nitrify, as revealed by metagenomics [24]. Depending on soil type
and NH4

+ concentration, these ammonia-oxidizing archaea (AOA) can outnumber AOB by a factor of
up to 80 [25]. The commonly used functional marker gene for NH4

+ oxidation of both Bacteria and
Archaea is amoA, which encodes the ammonia monooxygenase subunit A.

Biogeochemical and microbial ecological studies on soils that are permanently flooded with
seawater are extremely rare. Although wetlands and marshlands experiencing salinization are
increasingly studied [26,27], microbial community dynamics in soil environments experiencing
saltwater intrusions are still highly understudied. In the few studies available, no general trend
of how the microbial communities respond was observed, instead the introduction of seawater or the
increase in salinity seems to have triggered different responses in various systems. Shifts in microbial
community composition were observed in agricultural soils that were flooded with seawater for two
weeks and two months by a tsunami event [28]. Acidobacteria were most abundant in non-flooded
soils (~35%), while in flooded soils Proteobacteria (30–67%) took over along with the appearance
of sulfate oxidizing bacteria [28]. In wetland sediments experiencing salinization, the bacterial
community showed only little responses while the methanogens (Archaea) changed significantly [29].
Freshwater lake sediment exposed to stepwise salinization, up to hypersalinity (90h), over 60 days
saw a significant shift in bacterial community composition with a succession of salt tolerant taxa [30].
To better understand the effects that the flooding with seawater has on soil ecosystems, more studies
are needed, especially with a focus on rapid and permanently flooded soils and soils experiencing
flooding with high frequency as result of sea level rise.

With the aim of studying the effects that permanent flooding with seawater has on soil microbiome
composition and testing how SOM degradation is affected, we conducted a microcosm experiment
in connection with a nature restoration project/managed coastal realignment at Gyldensteen
Strand (Fyn, Denmark). Soil organic carbon (SOC) degradation was monitored as described by
Sjøgaard et al. [31]. A peak of labile carbon degradation to carbon dioxide (CO2) occurred in the upper
soil horizons within the first month of flooding. However, this degradation of SOC was insignificant
compared to the available SOC pool, indicating the burial of the majority of terrestrial SOC and
a minimal effect on atmospheric CO2 concentrations.
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During the previous study [31] we also collected soil samples for molecular microbial
ecological analyses as well as for biogeochemical analyses of the nitrogen mineralization dynamics.
Here we present the observed changes of the bacterial community in response to the flooding as
analyzed by terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene.
Further, the changes in the potential for nitrogen mineralization were assessed by quantifying the
abundances of the bacterial and archaeal marker genes for NH4

+ oxidation (amoA) and the two marker
genes for NO2

− reduction (nirK and nirS). Together with rates of nitrogen mineralization, potential
ammonia oxidation and denitrification, this dataset gives insight into the changes in nitrogen cycling
in response to the flooding of soils with seawater.

2. Materials and Methods

2.1. Study Site

The study area at Gyldensteen (Fyn, Denmark) was a ~600 ha shallow intertidal habitat until
1871 when it was reclaimed for mainly agricultural use [32]. In March 2014, 211 ha of the area were
permanently flooded with seawater by managed coastal realignment creating a shallow marine lagoon
(for more details, see Sjøgaard et al. [31]). Sampling was conducted before the flooding at two stations
in the lagoon with different land management histories. Station UC was an uncultivated reed swamp
with moist soil and a high content of organic material. Station C had been cultivated, resulting in
a homogeneous soil with only little organic material in the top layer.

2.2. Experimental Design and Sampling

The experimental design and sampling has been described previously [31]. In brief, 24 soil cores
were collected in 30 cm long, 8 cm internal diameter stainless steel core liners from each station.
All core liners were pushed 25 cm down in the soil, dug up and closed at both ends with rubber
stoppers. In the laboratory, the headspaces of the soil cores were carefully flooded with seawater
and transferred to 70 L incubation tanks also filled with 22–26h salinity seawater collected from
the shoreline at Gyldensteen Strand at various time points during 2013–2014. During the whole
experiment, the flooded cores were maintained at 15 ◦C and kept in darkness to avoid growth of
phototrophs. The water in the tanks was rigorously aerated through air diffuser stones and 10–20 L of
the seawater in the tanks were exchanged with fresh seawater every 14 days.

The experiment ran for six months with flux experiments (n = 13 over the six months) being
conducted with three random soil cores from each station at various times (weekly in the first month,
biweekly for the next three months and monthly in the last two months). Core sectioning was
performed four times (one week, and two, four, and six months after the initial flooding) during
the experiment. Three random soil cores from each station were sectioned at each time point.
Soil from each core sectioning was used for biogeochemical- and molecular analyses as described below.
Soil characteristics, contents of Fe(II) and Fe(III), rates of anoxic TCO2 (=CO3

2− + HCO3
− + H2CO3)

and dissolved organic carbon (DOC) production, and SO4
2− reduction from this experiment have

been described previously by Sjøgaard et al. [31] and are included in analyses here.
Additionally, seawater samples for molecular analyses were taken every time fresh seawater was

collected at Gyldensteen Strand as well as from the incubation tank at every core sectioning time point.
The water was filtered through 0.2 µm Supor® 200 filters (Pall Corporation, New York, NY, USA)
to collect biomass. Filters were stored at −20 ◦C until use.

2.3. Flux Experiments

Fluxes of NH4
+ and NOx

− (=NO3
− + NO2

−) between soil and overlying water were measured on
three random cores from each station regularly during the experiment. The cores were each equipped
with a Teflon-coated magnet, closed with a rubber stopper, placed around a central magnet rotating
at 60 rpm and incubated for about 4 h in the dark. Water samples from the headspaces of the soil
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cores were taken at the beginning and at the end of incubations. Samples for analysis of nutrients
(NH4

+ and NOx
−) were transferred to 20 mL vials and stored at −20 ◦C until analysis. NH4

+ was
measured by the salicylate-hypochlorite method [33]. NOx

− was measured with the method described
by Grasshoff et al. [34] where NO3

− is reduced to NO2
– in a Cd column and the resulting NO2

–,
representing NOx

−, was measured by the sulfanilamide reagent using a Lachat Quickchem 8500 Flow
Injection Analyzer (Hach, Loveland, CO, USA).

2.4. Core Sectioning

Core sectioning was performed by slicing each soil core into 6 depth intervals (0–1, 1–2, 2–5, 5–10,
10–15 and 15–20 cm). Soil from each depth interval was homogenized and triplicate soil samples of ~2 g
were collected for molecular analysis. These subsamples were immediately frozen in liquid nitrogen
and stored at −80 ◦C. Porewater was extracted from soil from each depth interval by centrifugation
and GF/C filtration (Sigma-Aldrich, Darmstadt, Germany) in double centrifuge tubes at 500 g for
10 min. The porewater was stored at −20 ◦C until analysis for NH4

+, NOx
− and Cl−. NH4

+ and NOx
−

were measured as described above. Cl– was measured by ion chromatography on a Dionex ICS-2000
system (LabX, Midland, ON, Canada).

2.5. Anoxic Incubations (Jar Experiments)

Total microbial NH4
+ production was measured in anoxic jar experiments [35,36]. After each

core sectioning, remaining soil was pooled into four depth intervals (0–2, 2–5, 5–10 and 15–20 cm),
homogenized and tightly packed into 6–8 scintillation vials (20 mL), which were closed with screw
caps, buried and incubated in anoxic sediment at 15 ◦C to ensure an anoxic environment in the jars.
In the following four weeks two jars were used every week for porewater extraction. The screw caps
were changed to a perforated lid containing a GF/C filter and the jars were centrifuged upside-down
in a centrifuge tube (10 min at 500 g). The extracted porewater was stored at −20 ◦C until analysis for
NH4

+ as described above.

2.6. Calculations

NH4
+ production rates were calculated for the 0–2, 2–5, 5–10, 15–20 cm depths from the jar

experiments by fitting the time-dependent concentration when the slopes of linear regressions were
significant (p < 0.05). After correction for sediment porosity, the volume specific reaction rates in the
individual depth layers (nmol cm−3 d−1) were calculated from the regression slopes. NH4

+ production
rates per area were calculated by depth integration over 0–20 cm and converted to area-specific units
(mmol m−2 d−1). Linear data interpolation was used to estimate values for the depth interval 10–15 cm
where rates were not measured. DIN (dissolved inorganic nitrogen = NH4

+ + NOx
−) fluxes were

calculated as the sum of NH4
+ and NOx

− fluxes. Potential denitrification rates were estimated as the
difference between area-specific NH4

+ production obtained in jar experiments and area-specific DIN
efflux corrected for NH4

+ accumulation in the porewater over time. In this calculation, we assumed
the missing DIN was lost as gaseous nitrogen compounds (N2, N2O), which were not measured in
the experiment. At station C, the DIN efflux was similar to total NH4

+-production after four and six
months indicating that denitrification was negligible. The potential NH4

+ oxidation was estimated as
the potential denitrification plus the area specific NOx

− efflux.

2.7. DNA Extraction

DNA was extracted from 0.3–0.4 g soil using the MoBio PowerLyzer® PowerSoil® DNA Isolation
Kit (MoBio, Carlsbad, CA, USA) following the manufacturer’s instructions. DNA extractions of
seawater samples were performed with the MoBio PowerWater® DNA Isolation Kit following the
manufacturer’s instructions. The DNA quality and concentration of the extracts were measured
with a NanoDrop® Spectrophotometer ND-1000 (NanoDrop Technologies, Wilmington, DE, USA).
DNA was stored at −20 ◦C and the concentrations were adjusted to 5 ng/µL before further analyses.
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2.8. Quantitative PCR

Abundances of Bacteria (16S rRNA), nitrifiers (bacterial and archaeal amoA) and denitrifiers
(nirK and nirS) (Table S1) were estimated by quantitative polymerase chain reaction (qPCR). The qPCR
was performed with RealQ Plus 2× Master Mix Green Without ROXTM (Ampliqon, Odense, Denmark)
in duplicate 25 µL reactions with 5–10 ng template and 25 pmol of each of the specific primers
(Table S1). For thermal cycling a CFX Connect Real-Time System (BIO-RAD, Hercules, CA, USA)
was used with the following PCR conditions: denaturation at 95 ◦C for 15 min followed by 40 cycles
of denaturation at 95 ◦C for 20 s, annealing for 30 s with temperature depending on target gene
(see Table S1), and extension at 72 ◦C for 30 s. A melt curve analysis completed the program, where the
temperature was raised from 65 ◦C to 95 ◦C in 0.5 ◦C intervals at 5 s for each step. All reactions were
run with standards of the corresponding target gene ranging from 101 to 107 copies per µL. The starting
quantities of the genes were determined using the CFX Manager 3.0 software (BIO-RAD, Hercules,
CA, USA) and were then standardized directly to copies g−1 dry soil.

2.9. T-RFLP Analysis

To get a general overview over the development of the bacterial community, 16S rRNA genes
were analyzed by T-RFLP [37,38]. The genes were amplified using the fluorophore-labelled forward
primer B27F FAM and the reverse primer U519R (Table S1) yielding a 530–550 bp fragment. The PCR
was performed in 50 µL reactions with 10–20 ng template DNA, 20 pmol of each primer, 0.25 µL Taq
DNA polymerase (5 U/µL, Thermo Scientific, Life Technologies, Carlsbad, CA, USA), 1.25 µL BSA
(20 mg/mL, Thermo Scientific), 40 nmol deoxynucleotides and 25 mM MgCl2 in 10× Taq reaction
buffer (Thermo Scientific). The PCR program consisted of an initial denaturing temperature of
98 ◦C for 2 min followed by 32 cycles of: denaturing at 94 ◦C for 20 s, annealing at 54 ◦C for 45 s,
and extension at 72 ◦C for 45 s. A final extension step of 5 min at 72 ◦C completed the program. The PCR
products were hydrolyzed with BsuRI (10 U/µL, Thermo Scientific) using 30 µL PCR product in 70 µL
reactions at 37 ◦C for 8 h, followed by a heat inactivation step of 80 ◦C for 20 min. The restriction
fragments were purified with the GeneJET PCR Purification Kit (Thermo Scientific) and sent for
capillary electrophoresis at the Uppsala Genome Center.

The sizes of the resulting T-RFs were determined with the Peak Scanner® v1 software
(Applied Biosystems, Foster City, CA, USA) using the internal size standard MapMarker 1000
(BioVentures, Murfreesboro, TN, USA). T-RFs within a size range of 50–550 bp were used for further
analysis. Data were processed using T-RFLP analysis Expedited (T-REX) [39] by noise filtration at
a factor of 1.15 based on peak area and remaining peaks were aligned with a clustering threshold of
0.6. A table of operational taxonomic units (OTUs) was created with fluorescence intensity (peak area)
as a measure of abundance, which was standardized to relative abundance. Singleton OTUs and OTUs
with a total abundance lower than 1% were filtered out, followed by log transformation of the relative
abundances. Statistical analyses were performed in R [40] using the package vegan [41]. Bray Curtis
dissimilarities were calculated for both samples and OTUs, analyzed by hierarchical clustering
and nonmetric multidimensional scaling (NMDS) [42]. To test the significance of experimental
factors (sampling station, depth and time point), the nonparametric analysis of variances using
distance matrices (adonis) tests were performed. Furthermore, the explanatory power of the various
environmental variables measured after the flooding with seawater was also evaluated by adonis tests.

3. Results

3.1. Soil Characteristics and Seawater Intrusion

The differences in land management at the two stations were clearly reflected in the soil
characteristics. UC soil profiles showed steep depth gradients of water content, porosity and SOC,
while soil profiles from station C were more homogenous and had three times lower SOC content than
station UC. For further details regarding soil characteristics see Sjøgaard et al. [31].
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After flooding, a salinity gradient in the soil was observed from the porewater Cl− concentrations
(Figures 1a and 2), with around 360 mM in the top layer decreasing to ~30 mM at 10–20 cm depth
one week after flooding. Over time, the steepness of the Cl− gradients decreased at both stations as
seawater and associated solutes diffused down, with up to 157 ± 9 mM in UC soil after six months and
180 ± 38 mM in C soil after four months, at 15–20 cm depth. At both stations, full diffusion equilibrium
in the 20 cm soil core was not reached during the experiment.
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3.2. Nitrogen Mineralization

NH4
+ effluxes were highest within the first 31 days after flooding, up to 6.5 ± 1.5 mmol m−2 d−1

and 1.8 ± 0.8 mmol m−2 d−1 at station UC and C, respectively, contributing to 97–100% and 58–100%
of DIN fluxes (Figure 3) with remaining DIN consisting of NOx

−. After 31 days NOx
− generally

increased in importance and contributed 35–74% to DIN fluxes at station UC after 76 days and 57–100%
at station C after 31 days. Simultaneously, the DIN effluxes stabilized at 0.9–2.6 mmol m−2 d−1 towards
the end of the experiment at both stations.



Microorganisms 2018, 6, 12 8 of 18Microorganisms 2018, 6, x FOR PEER REVIEW  8 of 18 

 

 
Figure 3. DIN effluxes (NH4+ efflux + NOx− efflux) measured over 199 days on flooded cores from the 
uncultivated (UC) and cultivated (C) stations. Error bars indicate SEM (n = 3). 

Porewater concentrations of NH4+ (Figure 1b) showed similar time trends in both soils. NH4+ 
accumulated gradually from almost 0 mM at Week 1 to ~0.5 and ~1.6 mM at stations UC and C, 
respectively, with the highest concentrations being detected in the 5–15 cm depth horizon. NOx− 
porewater concentrations were highest in the upper centimeter and were close to zero below. 

The anoxic jar experiments showed that the NH4+ production mainly occurred at 0–2 cm depth 
(Figure 4) and decreased with depth at both stations (Figure 5). At station UC, area specific NH4+ 
production rates (Figure 5) increased between Week 1 and Month 4 after flooding and were up to 
12.7 mmol m−2 d−1. At C, the NH4+ production rate was highest in the beginning (3.4 mmol m−2 d−1) 
and decreased gradually over time and was 0.01 mmol m−2 d−1 by the end. Potential rates of 
denitrification and NH4+ oxidation suggested a great loss of nitrogen to the atmosphere ranging from 
65–89% of the produced NH4+ at the station UC and around 53% at the station C. The potential rates 
showed similar temporal trends as the NH4+ production (Figure 5), while the potential NH4+ 
oxidation increased relative to potential denitrification over time. 

 
Figure 4. Volume specific ammonium (NH4+) production rates in the uncultivated (UC) and 
cultivated (C) soils at the four sampling time points. Note the different scales on the x-axes. 

-1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 50 100 150 200 

D
IN

 f
lu

x 
(m

m
o

l m
-2

 d
-1

) 

Time (days) 

UC 

0 50 100 150 200 

Time (days) 

C DIN 

NH4
+ 

NOx
- 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 100 200 300 

D
e

p
th

 (
cm

) 

NH4
+ rate (nmol cm-3 d-1) 

UC 

0 50 

NH4
+ rate (nmol cm-3 d-1) 

C 

1 week 
2 months 
4 months 
6 months 

Figure 3. DIN effluxes (NH4
+ efflux + NOx
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uncultivated (UC) and cultivated (C) stations. Error bars indicate SEM (n = 3).

Porewater concentrations of NH4
+ (Figure 1b) showed similar time trends in both soils.

NH4
+ accumulated gradually from almost 0 mM at Week 1 to ~0.5 and ~1.6 mM at stations UC

and C, respectively, with the highest concentrations being detected in the 5–15 cm depth horizon.
NOx

− porewater concentrations were highest in the upper centimeter and were close to zero below.
The anoxic jar experiments showed that the NH4

+ production mainly occurred at 0–2 cm depth
(Figure 4) and decreased with depth at both stations (Figure 5). At station UC, area specific NH4

+

production rates (Figure 5) increased between Week 1 and Month 4 after flooding and were up to
12.7 mmol m−2 d−1. At C, the NH4

+ production rate was highest in the beginning (3.4 mmol m−2 d−1)
and decreased gradually over time and was 0.01 mmol m−2 d−1 by the end. Potential rates of
denitrification and NH4

+ oxidation suggested a great loss of nitrogen to the atmosphere ranging from
65–89% of the produced NH4

+ at the station UC and around 53% at the station C. The potential rates
showed similar temporal trends as the NH4

+ production (Figure 5), while the potential NH4
+ oxidation

increased relative to potential denitrification over time.
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Figure 5. Area specific ammonium (NH4
+) production rate, potential NH4

+ oxidation and potential
denitrification rates in uncultivated (UC) and cultivated (C) soil at the four sampling time points.

3.3. Abundances of the Bacterial 16S rRNA, nirS, nirK and amoA Genes

The copy numbers of bacterial 16S rRNA genes, used as a proxy for bacterial abundance, ranged
between 1.0 × 1010–6.4 × 1010 and 6.5 × 109–2.3 × 1010 copies/g dry soil at station UC and C,
respectively, which after four months had decreased to 8.2 × 108–7.1 × 109 and 7.8 × 108–1.6 × 109

copies/g dry soil (Figure 6a). The nirS gene showed the same trend over time as the bacterial 16S rRNA
gene, but occurred at lower abundances, except at station UC where the nirS gene abundances were
lower before flooding (Figure 6c). The amoA gene copy numbers at station C showed only a small
increase over time. On the contrary, at station UC the bacterial amoA gene copy numbers increased
significantly from zero to 5.7 × 105 copies/g dry soil at 0–1 cm depth after four months, and archaeal
amoA that increased from 6.7 × 104 to 3.2 × 105 copies/g dry soil after six months (Figure 6d,e).
Furthermore, copy numbers of the nirK gene increased in similar fashion, reaching up to 1.7 × 107 and
9.4 × 106 copies/g dry soil at station UC and C, respectively, after four months (Figure 6b).

Microorganisms 2018, 6, x FOR PEER REVIEW  9 of 18 

 

 
Figure 5. Area specific ammonium (NH4+) production rate, potential NH4+ oxidation and potential 
denitrification rates in uncultivated (UC) and cultivated (C) soil at the four sampling time points. 

3.3. Abundances of the Bacterial 16S rRNA, nirS, nirK and amoA Genes 

The copy numbers of bacterial 16S rRNA genes, used as a proxy for bacterial abundance, 
ranged between 1.0 × 1010–6.4 × 1010 and 6.5 × 109–2.3 × 1010 copies/g dry soil at station UC and C, 
respectively, which after four months had decreased to 8.2 × 108–7.1 × 109 and 7.8 × 108–1.6 × 109 
copies/g dry soil (Figure 6a). The nirS gene showed the same trend over time as the bacterial 16S 
rRNA gene, but occurred at lower abundances, except at station UC where the nirS gene abundances 
were lower before flooding (Figure 6c). The amoA gene copy numbers at station C showed only a 
small increase over time. On the contrary, at station UC the bacterial amoA gene copy numbers 
increased significantly from zero to 5.7 × 105 copies/g dry soil at 0–1 cm depth after four months, and 
archaeal amoA that increased from 6.7 × 104 to 3.2 × 105 copies/g dry soil after six months (Figure 
6d,e). Furthermore, copy numbers of the nirK gene increased in similar fashion, reaching up to  
1.7 × 107 and 9.4 × 106 copies/g dry soil at station UC and C, respectively, after four months (Figure 
6b).  

 
Figure 6. qPCR analysis illustrating abundance depth profiles of: (a) the bacterial 16S rRNA gene;  
(b) nirK gene; (c) nirS gene; (d) amoA gene of ammonia oxidizing bacteria (AOB); and (e) amoA gene 
of ammonia oxidizing archaea (AOA) at the uncultivated (UC) and cultivated (C) station from before 
flooding and the four sampling time points after flooding with seawater. The copy numbers were 
normalized directly to gram dry soil and bacterial 16S rRNA gene copy numbers were log 
transformed. Note different scales on the x-axes. Error indicated as standard error (n = 2). 

0 

2 

4 

6 

8 

10 

12 

14 

1 week 2 months 4 months 6 months 

m
m

o
l m

-2
 d

-1
 

UC 

1 week 2 months 4 months 6 months 

C NH4
+ production rate

Potential NH4
+ oxidation rate

Potential denitrification rate

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

5.E+08 5.E+09 5.E+10 

D
ep

th
 (

cm
) 

bac 16S rRNA 
(copies/g dry soil) 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

5.E+08 5.E+09 5.E+10 

D
ep

th
 (

cm
) 

0.E+00 1.E+07 2.E+07 

nirK 
(copies/g dry soil) 

before flooding 
1 week 
2 months 
4 months 
6 months 

0.E+00 5.E+06 1.E+07 

0.E+00 2.E+08 4.E+08 

nirS 
(copies/g dry soil) 

0.E+00 2.E+07 4.E+07 

0.E+00 5.E+05 1.E+06 

amoA (AOB) 
(copies/g dry soil) 

0.E+00 2.E+06 4.E+06 

0.E+00 2.E+05 4.E+05 

amoA (AOA) 
(copies/g dry soil) 

UC 

0.E+00 1.E+05 2.E+05 3.E+05 

C 

(a) (d) (e) (c) (b) 

Figure 6. qPCR analysis illustrating abundance depth profiles of: (a) the bacterial 16S rRNA gene;
(b) nirK gene; (c) nirS gene; (d) amoA gene of ammonia oxidizing bacteria (AOB); and (e) amoA gene
of ammonia oxidizing archaea (AOA) at the uncultivated (UC) and cultivated (C) station from before
flooding and the four sampling time points after flooding with seawater. The copy numbers were
normalized directly to gram dry soil and bacterial 16S rRNA gene copy numbers were log transformed.
Note different scales on the x-axes. Error indicated as standard error (n = 2).
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3.4. Bacterial Community Composition (T-RFLP Analysis)

To monitor changes in the bacterial community composition over time, we analyzed the diversity
of the 16S rRNA gene in the samples using T-RFLP. The estimated total richness amounted to 242 OTUs
distributed over 70 samples, including the soil samples from UC, C and the seawater control samples.
Analyzing the presence and absence of OTUs in these samples (Figure S1) showed that 111 OTUs
were shared between the three groups, with an additional 60 OTUs shared only between UC and C.
Only 7 and 13 OTUs were shared between the seawater samples, and UC and C, respectively.

Hierarchical clustering revealed overall differences between station UC and C (Figure S2).
The NMDS ordinations (Figure 7) showed a general separation of samples from 0–2 cm depth and
2–20 cm depth, as well as clustering of samples from before flooding. At station UC, strong clustering
was observed among all samples from before flooding, as well as for samples from 2–20 cm depth after
flooding, exhibiting no differentiation considering time after flooding. On the other hand, samples
from 0-2 cm depth did generally ordinate according to time after flooding at station UC (Figure 7).
The NMDS ordination for station C had weaker clustering of samples, however still a general separation
of samples from 0–2 and 2–20 cm was observed. Further, samples from before flooding at 2–20 cm
depth and of samples from one week and two months after flooding showed weak clustering.
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Figure 7. NMDS ordination of Bray–Curtis dissimilarities from T-RFLP analyses shown separately for:
(a) station uncultivated (UC); and (b) cultivated (C). The samples are from before flooding (BF) and
one week, two, four and six months after the soil cores were flooded with seawater. Colors correspond
to the sampling time points and symbols represent the different soil depths. Environmental data were
overlaid as vectors on the ordinations. Significantly correlating environmental data were soil depth
in centimeter (depth), number of days after flooding (days), copy numbers of bacterial 16S rRNA,
copy numbers of the nirK gene, percentage water content, ferrous iron content [Fe(II)], ferric iron
content [Fe(III)], loss on ignition (LOI) a measure of soil organic matter content, ammonium content
(NH4), nitrate+nitrite content (NOx).

Soils from the 0–2 cm depth horizons at both stations showed higher variability in OTU
composition over time (Figure 8a,b) relative to soils from 2–20 cm depth. The latter showed the
highest change from before flooding to the time points after flooding (Figure 8c,d). Nearly none
of the OTUs in UC soils from 0–2 cm depth persisted at high abundances from before flooding to
Month 6 (Figure 8a). At station C, OTUs 63, 226 and 293 remained at high abundances throughout
the experiment, though (Figure 8b). However, UC soil (0–2 cm) exhibited a rather clear gradual
development in OTUs, occurring at different time points during the experiment from module II to III,
then to the first part of IV and I. Similarly, at station C module IV was predominantly present around
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Week 1, while module I and II were mostly occurring around Month 4, but this development was less
pronounced than in UC soil. Furthermore, module I in both soils at 2–20 cm depth occurred one week
and two months after flooding, after which it disappeared (Figure 8c,d), while module IV at station C
(2–20 cm) was only present at four/six months after flooding.
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Figure 8. Heatmaps illustrating log transformed relative abundances of OTUs present at greater than
3% in: (a,b) soils at 0–2; and (c,d) 2–20 cm depth for the uncultivated (UC) and cultivated (C) stations at
each sampling time point. Major modules of OTUs with similar abundance patterns were emphasized
and numbered for each heatmap.

An adonis test (Table S2) indicated that most variability in OTU composition could be explained by
the time points (R2 = 0.19, p = 0.001) rather than sampling station (R2 = 0.14, p = 0.001). When analyzing
each station separately, the explanatory power of time points became even higher with R2 = 0.27
(p = 0.001) and R2 = 0.35 (p = 0.001) at station UC and C, respectively. Soil depth (0–2 and 2–20 cm)
also had increased effect with R2 = 0.17 (p = 0.001) and R2 = 0.12% (p = 0.007) at station UC and C,
respectively. Moreover, sampling time point in conjunction with depth showed some effect with
R2 = 0.18 (p = 0.001) and R2 = 0.13 (p = 0.028) at station UC and C, respectively.

3.5. Correlation of Bacterial Community Structure with Environmental Parameters

Not much of the variability in the bacterial community composition observed from Week 1 to
Month 6 after the soils were flooded with seawater could be explained by individual environmental
parameters (note that the samples from before flooding had to be excluded due to missing
environmental data). Instead, many small significant contributions were observed. The factor with
the highest explanatory power of the variability was depth (UC: R2 = 0.23; C: R2 = 0.12; Table S3a),
with time point of sampling explaining only little at either of the stations (UC: R2 = 0.06; C: R2 = 0.09).
Other soil characteristics varying with depth such as water content (R2 = 0.07 at both stations) and
Cl− concentrations (UC: R2 = 0.05, C: not significant) explained surprisingly little of the community
differences observed. Biogeochemical parameters reflecting microbial activity only partially explained
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the community compositions observed (Table S3b), with the highest values at station UC for the
production rates of TCO2 (R2 = 0.20), DOC (R2 = 0.12) and NH4

+ (R2 = 0.09) and at station C for the
production rates of TCO2 (R2 = 0.10), DOC (R2 = 0.05), NH4

+ (R2 = 0.05) and the SO4
2− reduction

rates (R2 = 0.08) being the highest. Furthermore, the interactions between TCO2 and DOC production
rates were also significant at both stations. Regarding how the qPCR data explain the bacterial
community composition (Table S3c), the highest contributions came from the abundances of the
bacterial 16S rRNA gene (UC: R2 = 0.17; C: R2 = 0.09). Furthermore, the nirK and amoA genes had
significant explanatory power.

Environmental parameters showed significant correlations to the NMDS ordination of the T-RFLP
dataset as seen in the overlaid vectors (Figure 7). The overlaid parameters that represent variation
with time and depth were only significant at station UC. Environmental variables correlated with
depth at station UC were water content, NH4

+ concentration, LOI and abundance of the nirK gene.
The abundance of bacterial 16S rRNA genes was positively correlated with surface samples and slightly
to the samples from Week 1. Vectors representing the Fe(II) content pointed toward surface samples
(Month 6), aligning with the number of days. Variation was highest at station C. Vectors for NOx

−,
Fe(III) and LOI generally pointed in the direction of samples from 0–2 cm depth, while NH4

+ pointed
in the opposite direction. These parameters roughly represent a distinction between soils from 0–2 and
2–20 cm depth.

4. Discussion

The flooding with seawater and its intrusion into the soil cores initiated some rapid changes in
the soils, both physical and biogeochemical. Already one week after flooding, the soil was mostly
anoxic and a salinity gradient was established with depth, as indicated by the Cl− concentrations.
Within one month after flooding, TCO2 and NH4

+ effluxes peaked in response to highly accelerated
microbial organic N mineralization activity. The long-term effects of the flooding were decreased
microbial activity compared to immediately after flooding, and increased NH4

+ oxidation relative to
NH4

+ production over time along with a concurrent shift in bacterial community composition.

4.1. Initially Accelerated Heterotrophic Activity and Its Later Decline

Station UC had accelerated carbon mineralization during the first month after flooding as
described previously [31]. Several factors that changed after the flooding with seawater can be made
responsible for this increase in microbial activity. Besides increased salinity, which has previously
been suggested to stimulate microbial and enzymatic activity [43], the seawater provided high
concentrations of SO4

2− in addition to the already high concentrations of reactive Fe(III) in the soil.
Both are important electron acceptors in anaerobic carbon oxidation in anoxic marine environments [44].
The combination of high availability of degradable SOM and favorable conditions for anaerobic
respiration resulted in an accelerated microbial activity within the first 30 days after flooding, a response
that has been observed previously [15,45,46]. After the initial degradation of the highly labile SOC,
the remaining SOC became more and more refractory over time since it mainly consisted of complex
terrestrial plant material (e.g., lignocellulose), which is almost non-degradable under anoxic conditions.

4.2. Stimulated Nitrogen Cycling after Flooding with Seawater

Similar to the response in carbon cycling described above, the flooding also accelerated the
microbial nitrogen cycling as reflected in the initially high NH4

+ efflux at both stations. Later, the DIN
effluxes shifted to a predominant contribution from NOx

−, indicating that a microbial community of
NH4

+ oxidizers had proliferated after flooding in response to the high NH4
+ levels, utilizing it for

dissimilatory redox reactions. This was confirmed by an increase in the abundance of the amoA gene
in the upper centimeter at station UC, especially at Month 4 and 6 after flooding. The abundance
of nirK also increased, indicating a higher potential for denitrification. However, both AOBs and



Microorganisms 2018, 6, 12 13 of 18

AOAs often contain both genes [24,47,48] and AOBs have been shown to perform coupled NH4
+

oxidation–denitrification [49], which could explain the large nitrogen removal observed at this station.
The lower O2 requirements for microbial respiration in soil from station C probably caused a larger

share of the produced NH4
+ to be oxidized and hence lost as NOx

−. This resulted in higher relative
content of NOx

− in DIN-effluxes at station C (57–100%) than at station UC (33–74%). Interestingly,
even though we observed increased NH4

+ oxidation at station C, both archaeal and bacterial amoA
gene abundances hardly changed over time. Considering that we observed a higher abundance
of the nirK gene after four and six months without associated higher denitrification rate estimates,
this indicates that at least some of the detected nirK genes originated from nitrifiers. While the primers
used for the community profiling could not detect Archaea, the high effluxes of NOx

− relatively to
NH4

+ observed for station C could potentially be a result of AOAs. Although we cannot support
this by an increasing copy number of the archaeal amoA gene over time because of potential primer
biases, the higher relative efflux of NOx

− could be an indication for this. It has been suggested that
AOAs are unable to perform coupled NH4

+ oxidation and denitrification [50], which would explain
the higher efflux.

We further observed that both the bacterial nirS and 16S rRNA genes decreased in copy numbers
between Months 2 and 4. The abundance patterns of nirS were significant for the microbial communities
at station UC (Table S3c). It is known that the capability to perform denitrification is ubiquitously
distributed among Bacteria and Archaea with no recognizable correlation to the phylogenetic origin of
the organisms [49]. As the same temporal trends in copy numbers were observed for both, the nirS and
16S rRNA genes, nirS possibly represented a wider spectrum of bacteria having a temporal community
shift. The decreases in copy numbers for both 16S rRNA and nirS genes also illustrate a decrease in
bacterial abundance in connection with the cessation of microbial activity. Furthermore, bacteria might
carry the nirS gene in their genomes, without being active in denitrification that mainly takes place in
the upper soil just below the oxic-anoxic interface where NOx

− is present [51,52].
A further indication that the microbial communities involved in nitrogen cycling are different at

the two stations was revealed by the anoxic NH4
+ production. Station UC showed increasing anoxic

NH4
+ production rates over time, reaching a maximum after four months, while at the station C the

NH4
+ production rates were highest initially and only decreased over time. This difference was likely

due to higher SOM and thus heterotrophic activity in UC soil causing escalating NH4
+ production [31].

This is in agreement with Santoro [53], who suggested increased nitrogen mineralization in interfaces
between saltwater and freshwater. However, she also suggested decreased NH4

+ oxidation and
coupled NH4

+ oxidation–denitrification [53], while we see a significantly increased potential for
it. The total anoxic NH4

+ production greatly exceeded the sum of DIN efflux and porewater
accumulation at station UC, suggesting a substantial loss of fixed nitrogen to the atmosphere through
coupled NH4

+ oxidation–denitrification corresponding to 65–89% of the anoxic NH4
+ production.

Nitrogen could have been removed as N2, the end product of denitrification and anammox [54],
but also as N2O, which is a potent greenhouse gas formed as a side product during NH4

+ oxidation
and denitrification [55–57]. Unfortunately, the gaseous nitrogen compound emissions were not
monitored, leaving these for future experimental studies, for example using the nitrogen isotope
pairing technique [58].

4.3. Composition of Microbiome Governed by Fluctuating Heterotrophic Activity

The event of flooding (difference from before flooding to one week after flooding) had the
strongest effect on the composition of the microbiome. Previous studies similarly detected shifts
in microbial community composition after introduction of seawater or increased salinity [28,59,60].
Asano et al. [28] studied bacterial communities in rice paddy soil one year after exposure to seawater
due to the 2011 Tohoku Tsunami. They found that bacterial communities in soils not flooded with
seawater clearly differed from those that were exposed to seawater, but soils flooded for two weeks
and two months showed no significant differences. Similarly, in our study, the time after flooding
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became less significant, instead the most significant grouping factor was the depth (0–2 and 2–20 cm),
alongside a significant relationship with the anoxic TCO2 and DOC production rates as a measure
for microbial heterotrophic activity. This was especially clear for station UC that had the largest
increase of microbial activity. Although some of the greatest changes occurred between before
and after the soils were flooded, only very few OTUs disappeared completely. Microorganisms
can be unable to cope with change in osmotic pressure [61] and/or be obligate aerobes, and these
would probably have died off due to increased salinity and anoxic conditions introduced to the soil
environment. Furthermore, because salinity is among the most important factors in determining
the global distributions of microbial communities [62,63], we expected to observe changes in the
microbiome that could be directly correlated to Cl− concentration. However, only a minimal to
no effect was detected, suggesting that salinity is only one of many factors shaping the microbial
community in our experiment. The persistence of many OTUs after flooding could have multiple
reasons. There is a good chance that some microbes entered dormancy, which is a common stress
response caused by changes in environmental conditions [64], and hence were still detectable in the
community. Further, newly introduced species and species previously present might have the same
terminal fragment length, making them indistinguishable with the T-RFLP method we used [38].
The observed increase in the diversity of OTUs was most likely caused by marine bacteria introduced
with the seawater intrusion, however, it is also possible that bacteria already present in the soil at very
low abundances before flooding were triggered to proliferate by the event.

We also observed a significant relationship between the variability in community composition
and bacterial 16S rRNA gene abundances showing increased cell numbers after flooding (Week 1 and
Month 2), thus suggesting initial bacterial growth followed by a crash. Together with the accelerated
heterotrophic activity, this indicates dynamics of opportunistic heterotrophic communities and
so-called boom and bust populations that are likely shown by the modules in Figure 8: (a) III; (b) IV;
(c) I; and (d) I. The OTUs of these modules almost exclusively occurred at Week 1 and Month
2 after flooding and were potentially opportunists. Generally, they were different, both among
stations and depth horizons, suggesting that the various environments here stimulated different
communities. For instance, the surface soils (0–2 cm) with their higher content of SOM seem to
accelerate heterotrophic microbial activity, but are also more susceptible to changes in the environment
due to immediate contact with the overlaying water as well as the steep redox gradients present.
With the changes in the microbial community structure, most likely also the activity of extracellular
enzymes involved in decomposition of SOM increased in parallel to the salinity, an effect that
Morrissey et al. [43] also observed in tidal wetlands.

Altogether this suggests that newly introduced or low abundant bacterial species proliferated
rather quickly in the soil, exhibiting opportunistic behavior reflecting the accelerated heterotrophic
activity observed, which was more pronounced for station UC, both in the community composition
and the carbon mineralization rates.

4.4. Implications and Future Studies

In our microcosms, we observed a major DIN release to the overlying water during the first 30 days
of flooding, which in real world scenarios might cause eutrophication events. Indeed, throughout
the first summer after flooding, massive algae blooms were observed in the lagoon at Gyldensteen
Strand [65], which only at times of strong winds were flushed out beyond the shore. In the second
summer, no indications of a similar event were observed [65], thus a release/leaching of soil nutrients
must have occurred as a short-term response (30 days), while remaining nutrients in SOM are retained
due to decreased microbial activity [31] and perhaps buffered within the system. Furthermore,
the large anoxic NH4

+ production and relatively minimal DIN efflux observed two and four months
after flooding (calculated potential denitrification) indicated latent DIN that could have been released.
However, it was heavily suppressed by denitrification and thereby a loss of fixed nitrogen (in this case
DIN), mitigating eutrophication.
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Another important aspect of nature restoration projects like the one at Gyldensteen Strand is
the potential emission of greenhouse gases. While we observed in our experiment an initial strong
microbial activity with potential for the production of greenhouse gases such as CO2, CH4 and
N2O [45,66], this activity quickly ceased. However, the indications for extremely high rates of NH4

+

oxidation and denitrification at station UC could suggest a high production of the side product of these
pathways, N2O, potentially jeopardizing the effect that the flooding of soils has on CO2 emissions.
Therefore, future studies need to elucidate the role of the nitrifier and denitrifier communities and
their activity in more detail in order to get a holistic picture of the impact that flooding of soils with
seawater has on the biogeochemical cycling of elements and the release of greenhouse gases.

Supplementary Materials: The following are available online at www.mdpi.com/2076-2607/6/1/12/s1.
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