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We construct asymptotically safe extensions of the standardmodel by adding gauged vectorlike fermions.
Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and,
under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

DOI: 10.1103/PhysRevLett.119.261802

Although the standard model (SM) of particle inter-
actions is an extremely successful theory of nature, it is an
effective theory but not a fundamental one. Following
Wilson [1,2], a theory is fundamental if it features an
ultraviolet fixed point. The latter can be either noninteracting
(asymptotic freedom) [3–12] or interacting (asymptotically
safe) [13–15] or mixed [9,15–17]. Except for the non-
Abelian gauge couplings none of the remaining SM cou-
plings features an ultraviolet fixed point.
Here we extend the idea of a safe QCD scenario in

Ref. [18] to the entire SM. We argue that an asymptotically
safe completion of the SM can be realized via new
vectorlike fermions. Recently an interesting complemen-
tary approach appeared [20] in which new fermions in
higher dimensional representations of the SM gauge groups
were added, hoping for a (quasi) perturbative UV fixed
point. However these models were unable to lead to a safe
hypercharge and Higgs self-coupling. Our work relies on
the limit of a large number of fermion matter fields, which
allows us to perform a 1=NF expansion [21,22]. Here the
relevant class of diagrams can be summed up to arbitrary
loop order, leading to an UV interacting fixed point for the
(non) Abelian interactions of the SM. Thus, we go beyond
the cornerstone work of Ref. [13] where UV safety is
realized in the Veneziano-Witten limit by requiring both Nc
and NF to go to infinity with their ratio fixed, and adjusting
it close to the value for which asymptotic freedom is lost.
Depending on how these new vectorlike fermions

obtain their masses, we can either introduce new scalars
that generate fermionmasses through newYukawa operators
or simply introduce explicit vectorlike mass operators.

In the following, we focus on the latter most
economical case and explore the following three distinct
SMSUð3Þ × SULð2Þ × Uð1Þ charge assignments andmulti-
plicity: (i)NFð3; 2; 1=6Þ; (ii)NF3ð3; 1; 0Þ ⊕ NF2ð1; 2; 1=2Þ;
(iii) NF3ð3; 1; 0Þ ⊕ NF2ð1; 3; 0Þ ⊕ NF1ð1; 1; 1Þ. To the
above, one needs to add, for each model, the associated
right charge-conjugated fermions. The above models are to
be viewed as templates that allow us to exemplify our novel
approach in the search of an asymptotically safe extension of
the SM. The basic criterion is that different fermions should
have the same charge if it is nonzero; otherwise the
summation technique fails [seeEq. (4) and the corresponding
discussion]. In fact, we have checked that other models [e.g.,
NF3ð3; 1; 2=3Þ ⊕ NF2ð1; 3; 0Þ featuring new top primes]
lead to similar results as the ones used here. We note that,
following our innovative approach, a recent follow-up paper
appeared [33], inwhich the setNF3 is abandoned. HereQCD
remains asymptotically free while the rest of the SM gauge
couplings are still safe. Finally, we neglect [in model (i)]
possible mixing among the new vectorlike fermions and
SM quarks.
We start by considering the RG equations describing the

gauge-Yukawa-quartic to two loop order including vector-
like fermions. We have checked that our results agree for
the SM case with the ones in Refs. [23,24]. We used
Refs. [25,26] for the vectorlike fermion contributions to
gauge couplings and [27,28] for the contributions to the
Higgs quartic. The associated beta functions read

β1 ¼
dα1
dt

¼
�
b1 þ c1α1 þ d1α3 þ e1α2 −

17

3
αyt

�
α21;

β2 ¼
dα2
dt

¼ ð−b2 þ c2α2 þ d2α3 þ e2α1 − 3αytÞα22;

β3 ¼
dα3
dt

¼ ð−b3 þ c3α3 þ d3α2 þ e3α1 − 4αytÞα23;

βyt ¼
dαyt
dt

¼
�
9αyt −

9

2
α2 − 16α3 −

17

6
α1
�
αyt þ β2loopyt ;
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β1loopαh ¼ dαh
dt

¼ 3

8
ðα21 þ 3α22 þ 2α1ðα2 − 4αhÞ

þ 64α2h − 24α2αh þ 32αhαyt − 16α2ytÞ;

β2loopαh ¼ 1

6
½−4DR3

S2ðR2Þα22NF2ð2α1 þ 6α2 − 15αhÞ
− 4DR3

DR2
α21Y

2NF1ð2α1 þ 2α2 − 5αhÞ� þ βSMαh 2loop
;

βSMαh 2loop
¼ 1

48
ð−379α31 − 559α2α

2
1 − 289α22α1 þ 915α32Þ

þ 1

48
ð1258α21 þ 468α2α1 − 438α22Þαh − 312α3h

þ 1

48
ð1728α1 þ 5184α2Þα2h; ð1Þ

where t ¼ ln ðμ=MZÞ and α1, α2, α3, αyt , αh are the U(1),
SU(2), SU(3), top-Yukawa, and Higgs self-couplings,
respectively, and we have used the normalization

αi ¼
g2i

ð4πÞ2 ; αyt ¼
y2t

ð4πÞ2 ; αh ¼
λh

ð4πÞ2 : ð2Þ

βSMαh 2loop
and β2loopyt represent two loop SM contributions to

the RG functions of αh and αyt , which are not shown
explicitly. DR2

, DR3
represent the dimensions of the

representations (R2, R3) under SUð2Þ and SUð3Þ, while
S2ðR2Þ represents the Dynkin index of the representation
R2. The contributions of the SM chiral fermions are
encoded in b1, b2, b3, c1, c2, c3, d1, d2, e2, e3 in
Eq. (3) and can be distinguished from the new vectorlike
contributions that are all proportionals to a “DR” coefficient

b1 ¼
41

3
þ 8

3
Y2NFDR2

DR3
; c1 ¼

199

9
þ 8

3
Y4NFDR2

DR3
;

b2 ¼
19

3
−
4NF

3
DR3

; c2 ¼
35

3
þ49NF

3
DR3

;

b3 ¼ 14−
4NF

3
DR2

; c3 ¼ −52þ76NF

3
DR2

;

d1 ¼
88

3
þ 32

3
Y2NFDR2

DR3
; e1 ¼ 9þ 6Y2NFDR2

DR3
;

d2 ¼ 24þ 16

3
NFDR3

; e2 ¼ 3þ 4Y2NFDR3
;

d3 ¼ 9þ 3NFDR2
; e3 ¼

11

3
þ 4NFY2DR2

; ð3Þ

where for simplicity, the above explicit coefficients only
apply to fundamental representations [models (i) and (ii)];
for higher dimension representations the corresponding
Casimir invariants and the Dynkin index should be
incorporated.
The following diagrams (see Fig. 1) encode the infinite

tower of higher order contributions to the self-energies
related to the gauge couplings. These diagrams can be

summed up analytically (the Abelian and non-Abelian
cases were first computed, respectively, in Refs. [29,30]).
To the leading 1=NF order, the higher order (ho)

contributions to the RG functions of β2 and β3 are given
by Ref. [21] and have been generalized to the case with any
hypercharge Y and semi-simple group (F1 first appeared in
Ref. [29]):

βho1 ¼
2A1α1
3

F1ðA1Þ
NF

; βhoi ¼
2Aiαi
3

H1iðAiÞ
NF

ði¼ 2;3Þ;

ð4Þ
where

A1 ≡ 4α1NFY2DR2
DR3

; A2 ≡ 2α2NFDR3
;

A3 ≡ 2α3NFDR2
; F1 ¼

Z
A=3

0

I1ðxÞdx;

H1i ¼
−11
2

Nci þ
Z

A=3

0

I1ðxÞI2ðxÞdx ðNci ¼ 2; 3Þ;

I1ðxÞ ¼
ð1þ xÞð2x − 1Þ2ð2x − 3Þ2 sin ðπxÞ3

ðx − 2Þπ3
× ðΓðx − 1Þ2Γð−2xÞÞ;

I2ðxÞ ¼
N2

ci − 1

Nci
þ ð20 − 43xþ 32x2 − 14x3 þ 4x4Þ

2ð2x − 1Þð2x − 3Þð1 − x2Þ Nci:

We recall that the validity of the summation depends on our
first criterion which implies that for each gauge group we
have only a single Ai, constraining the possible vectorlike
models.F1 has poles at A ¼ 15=2þ 3nwhileH1i has poles
at A ¼ 3; 15=2;…; 3nþ 9=2. In this Letter we concentrate
on the first UV pole branch (A ¼ 15=2 for F1 and A ¼ 3 for
H1i). Note that the pole structure of H1i is the same for all
the non-Abelian groups, implying that when NF is fixed,
the non-Abelian gauge coupling values will be very close to
each other if DR2

¼ DR3
. The presence of the UV poles at

F1 and H1i guarantees the existence of an UV safe fixed
point for the gauge couplings. Note that the functions F1

and H1i are scheme independent according to [31]. We
therefore expect the pole structure and the related UV fixed
points to be scheme independent. Physical quantities, such
as scaling exponents, were computed in [13]. The 1=N2

F
terms are negligible for NF sufficiently large. Specifically,
as pointed out in Ref. [21], for SU(3) one finds that NF
needs to be larger than 32 while for U(1) one finds
NF ≥ 16.

FIG. 1. Higher order self-energy diagram.
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Thus the total RG functions for the gauge-Yukawa
subsystem can be written as

β1tot ¼ β1ðα1tot; α2tot; α3tot; αyttotÞ þ βho1ðα1totÞ;
β3tot ¼ β3ðα1tot; α2tot; α3tot; αyttotÞ þ βho3ðα3totÞ;
β2tot ¼ β2ðα1tot; α2tot; α3tot; αyttotÞ þ βho2ðα2totÞ;

βyttot ¼
�
9αyttot −

9

2
α2tot − 16α3tot

�
αyttot þ β2loopyttot ; ð5Þ

where αitot corresponds to the gauge couplings including
the leading 1=NF contribution to the self-energy diagrams,
and αyttot is the accordingly modified Yukawa coupling.
We also avoided the double counting problem due to the
simultaneous presence of the ci ði ¼ 1; 2; 3Þ terms in
Eq. (1) and the leading terms of βho2, βho3 in Eq. (4).
We employ the MS scheme, which is a mass independent
RG scheme allowing us to investigate the running of the
couplings independently of the running vectorlike masses,
except for threshold corrections that can be shown to be
controllably small.
Solving Eq. (5), we obtain the running coupling sol-

utions depicted in Fig. 2 by the blue, green, red, and purple
curves, corresponding, respectively, to the U(1), SU(2),
SU(3) gauge couplings, and top Yukawa coupling; the
orange curve corresponding to the Higgs coupling (dis-
cussed below) has not yet been included. It is clear that all
the gauge couplings are UV asymptotically safe while the
top Yukawa coupling is asymptotically free. Note that the
sub-system encounters an interacting UV fixed point at
3.2 × 1013 GeV which is safely below the Planck scale and
so gravity contributions can be safely ignored. For the UV

fixed point to exist, the choice of the initial value of the
gauge coupling is not crucial since the only requirement is
αiðt0Þ < αiðt�Þ, ði ¼ 1; 2; 3Þ where t0 ¼ ln ðμ0=MZÞ is an
arbitrary initial scale and t� is the scale for the UV fixed
point. For simplicity, instead of sequentially introducing
new vectorlike fermions, we assume they are introduced all
at once at a particular scale near their MS-scheme mass
mðmÞ ¼ m (m ≈ μ ¼ 2 TeV (or t ¼ 3) in Fig. 2). We have
checked that our results change very little if we employ
different vector-like fermion masses corresponding to a
larger matching scale, e.g., m ≈ μ ¼ 100 TeV; the UV
fixed point transition scale increases accordingly to around
1016 GeV. Note that a too small NF will fail the 1=NF
expansion. To produce Fig. 2, we have used model (ii) with
NF3 ¼ 40, NF2 ¼ 24 with the initial values of the gauge
and Yukawa couplings chosen to be the SM coupling
values at 2 TeV corresponding to t0 ¼ 3:

α3ðt0Þ ¼ 0.00661; α2ðt0Þ ¼ 0.00256;

α1ðt0Þ ¼ 0.00084; αyðt0Þ ¼ 0.00403: ð6Þ
We emphasize that the basic features of the gauge and
Yukawa curves in Fig. 2 are generic and not limited only to
model (ii). Figures similar to Fig. 2 result for all three
vectorlike fermion models (i), (ii), and (iii).
We next consider the Higgs quartic coupling whose beta

function to two loop order is given in Eq. (1). We first plot
βαh as a function of αh for model (ii) with the values of the
gauge and Yukawa couplings at the fixed point and
NF3 ¼ 40, NF2 ¼ 24. Figure 3 shows that there exist four
different regions denoted as I, II, III, IV. Depending on the
choice of the initial value of αh, the Higgs self-coupling can
be in any of these distinct phases. Because we are searching
for asymptotic safety we are only interested in phase III. To
guide the reader we mark with a red dot in Fig. 3 the

FIG. 2. Running of the gauge-Yukawa couplings as a
function of the RG time with log10 base using model
(ii) [NF3ð3; 1; 0Þ ⊕ NF2ð1; 2; 1=2Þ]. The blue, green, red, and
purple curves correspond, respectively, to the U(1), SU(2), SU(3)
gauge, and top Yukawa couplings. The top Yukawa coupling αy
and Uð1Þ gauge coupling α1 have been rescaled by a factor of 10
and 1=2, respectively, to fit all couplings on one figure. The
orange curve depicts the two loop level Higgs quartic coupling αh
in the same model. Here NF3 ¼ 40, NF2 ¼ 24, and the initial
values of the gauge and Yukawa couplings are chosen to be the
SM coupling values at 2 TeV, while the Higgs quartic coupling is
chosen to be 0.0034.

FIG. 3. This figure shows βαh with αh with the values of the
gauge and Yukawa couplings at the fixed point and NF3 ¼ 40,
NF2 ¼ 24. There exist four different kinds of phases denoted as
I, II, III, IV dependent on the initial value of αh. The red point
denotes the ultraviolet critical value of αh which determines
whether we could have a UV safe fixed point with positive or
negative αh value.
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ultraviolet critical value of αh. We distinguish the ultra-
violet critical value with the initial critical value of αh,
discussed later. The former quantity is scale dependent;
thus, the ultraviolet critical αh is at a scale close to the UV
fixed point. The latter quantity is an IR quantity, above
which the Higgs self-coupling flows to an UV fixed point;
we shall take this initial critical αh to be at 2 TeV. The plot
shows that for the Higgs self-coupling to be asymptotically
safe it must run towards the ultraviolet to values within
region III, where the other couplings have already reached
their fixed point values. If, however, the dynamics is such
that it will run towards ultraviolet values immediately
below the critical one the ultimate fate, dictated by
phase II, is vacuum instability.
Figure 3 also provides a few insights for constraining

viable vectorlike fermion models. The expression of β2loopαh
in Eq. (1) shows the new vectorlike fermions will only
provide negative contributions to β2loopαh when NF2 is order
of 10. In conjunction with Fig. 3, we expect that the smaller
the negative contribution of these new vectorlike fermions,
the smaller will be the critical value of αh, and the easier to
enter phase III. Actually, we find that the pure SM RG
function of αh (without new vectorlike fermion contribu-
tions to βαh only) provides the smallest critical value of αh,
commensurate with the above expectation. Alternatively, if
these negative contributions are too large, the cubic curve
of βαh will never intersect the αh axis and we will never
achieve an asymptotically safe solution (only two phases
remain in this limiting case). We learn that the smaller the
hypercharge and dimension of the representation, the
smaller the critical value of αh will be (making it easier
to realize asymptotic safety for the Higgs quartic).
Following this criterion, model (ii) should have the smallest
critical value of αh.
We obtain the same results for the gauge and Yukawa

couplings as before, taking their initial values to be the SM
ones at 2 TeV as in Eq. (6). We find that to obtain an
asymptotically safe solution for αh we must choose its
initial value to be (at least) αhðt ¼ 3Þ ¼ 0.0034, about 6
times the SM value at that scale. For the SM initial value
αhðt0Þ ¼ 0.00054 the theory achieves the negative value
αh ¼ −0.06 at the UV fixed point, yielding an unstable
vacuum. The results for model (ii) (again using NF3 ¼ 40,
NF2 ¼ 24) are shown in Fig. 2, with the Higgs quartic
coupling in orange.
We thus attain UV completion for the whole gauge-

Yukawa-Higgs system with gauge and Higgs quartic
couplings (α1, α2, α3, αh) asymptotically safe and top
Yukawa coupling αt asymptotically free. The UV fixed
point occurs at 3.6 × 1014 GeV—well below the Planck
scale and so gravity contributions can be safely ignored.
The unique feature in Fig. 2 occurs because when α2
reaches its fixed point value βαh almost vanishes. However,
when α1 increases to its final value the almost fixed point in
the scalar coupling settles to its true fixed point value. In

addition this feature, for fixed NF3 ¼ 40, disappears
gradually when increasing NF2 from 18 to 25. This is
because the larger NF2, the smaller α2 is; consequently, the
self-coupling is more sensitive to the change in α1.
We have further explored which regions of parameter

space ðαh; NF3; NF2Þ can yield asymptotic safety. We find
that αh reaches its lowest critical value of 0.0027 when
NF2 ¼ 18 and 32 ≤ NF3 ≤ 220 (insensitive to NF3 and the
bounds of NF3 are discussed below). This critical αh value
can be further decreased by considering large NF of order a
few hundred. Interestingly, there exists an upper value of
NF abovewhich A in Eq. (4) goes beyond the first UV pole,
moving therefore to the second branch of F1 and H1.
Within the first branch, the smallest critical αh with large
NF occurs for αh ¼ 0.002with NF2 near and slightly below
the boundary (say NF2 ¼ 590) above which one needs to
move to the second branch. The result is insensitive to NF3
as well and 32 ≤ NF3 ≤ 220 where the upper bound NF3 ¼
220 is due to the second branch of α3 while the lower bound
NF3 ¼ 32 is to satisfy leading 1=NF expansion. The UV
fixed point occurs below but near the Planck scale. An
initial investigation of these other branches suggests that a
SM Higgs self-coupling value might be reached, but we
leave in-depth investigations for future studies.
Comparing models (i) and (ii), we find that the critical

value of αh is overall a much higher for model (i). However,
similar to model (ii), at very large NF one can decrease αh
below αhðt0Þ ¼ 0.0049, corresponding to the lowest critical
value one can achieve for small NF. For example, for an
initial value of αh ¼ 0.0035 one encounters a UV fixed
point provided NF ≥ 105. It is possible to further decrease
αh with increasing NF.
For model (iii), we have a similar trend as the previous

models. For simplicity, we consider the case where NF1 ¼
NF2 and note that to achieve αh ¼ 0.0035 (still quite large
compared to the SM), one needs NF3 ¼ 40 and NF1 ¼
NF2 ≥ 131. Here we find the smallest critical Higgs self-
coupling occurs for αh ¼ 0.00176 with NF1 ¼ 2200,
NF2 ¼ 147, NF3 ¼ 138. These values correspond to the
uppermost values allowed by the first branches of the
corresponding F1 and H1 functions. This Higgs quartic
value is, however, still three times its SM one at 2 TeV,
which is roughly two times the value at the electroweak
scale. We expect that the critical αh further decreases in the
second branch when considering even larger NF. We have
checked that our results are stable against the introduction
of known higher order terms in 1=NF proportional to the
F2–4 and H2–4 functions.
Summarizing, for all three vector-like-fermion models,

with SM gauge and top Yukawa couplings values as initial
conditions at IR, we are able to realize UV completion of
the gauge-Yukawa subsystem (gauge couplings asymptoti-
cally safe and Top Yukawa coupling asymptotically free).
Upon including the Higgs quartic coupling, we find that its
initial low energy value must attain a certain threshold for a
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given choice of the number of vectorlike fermions. Above
this critical value, we attain a UV asymptotically safe
completion, whereas below this value the system is UV
unstable. For the three vector-like-fermion models we
studied, model (ii) possesses the lowest critical value of
αh ¼ 0.0027 for a relatively small number of flavors NF.
This value is still larger than the (as yet unmeasured) SM
Higgs quartic coupling. If at future colliders the Higgs
quartic coupling is found to be 5–6 times larger (predicted
in some studies without altering the SM RG functions, e.g.,
Ref. [32]), model (ii) could realize asymptotic safety for the
whole gauge-Yukawa-Higgs system. Intriguingly, an αh
close to the SM value, say around 2 times at the electro-
weak scale, can be achieved for very large values of NF1 in
model (iii) within the first branch of the F1 and H1

functions. This allows complete asymptotic safety at
energies below but near the Planck scale.
Our results pave the way to new approaches for making

the SM fully asymptotically safe. Indeed, building on the
present approach in Ref. [33] it has been shown that one
can construct related asymptotically safe SM extensions in
which the Higgs quartic coupling matches the SM value.
In Ref. [34] instead, asymptotic safety is achieved via
dynamical symmetry breaking of a calculable UV fixed
point.
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