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Abstract In the present paper the non-linear behaviour a solid body with em-
bedded cohesive interfaces is examined in a �nite displacements context. The
principal target is the formulation of a two dimensional interface �nite element
which is referred to a local reference frame, de�ned by normal and tangential
unit vectors to the interface middle surface. All the geometric operators, such
as the interface elongation and the reference frame, are computed as function
of the actual nodal displacements. The constitutive cohesive law is de�ned in
terms of Helmholtz free energy for unit of undeformed interface surface and,
in order to obtain the same nodal force vector and sti�ness matrix by the two
integration schemes, the cohesive law in the deformed con�guration is de�ned
in terms of Cauchy traction, as a function of separation displacement and of
interface elongation. Explicit expression of the nodal force vector is integrated
either over the reference con�guration or over the current con�guration, which
is shown to produce the same analytical �nite element operators. No di�er-
ences between the integration carried out in the reference and in the current
con�guration are shown, provided that elongation of the interface is taken in
to account.

Keywords �nite displacement � cohesive interface � integration � reference
con�guration�current con�guration

1 Introduction

Cohesive Zone Models (CZM) are nowadays one of the most powerful theoret-
ical and computational tools able to describe non-linear fracture processes in
solid mechanics. Structural failure for quasi-brittle materials is often charac-
terized by the formation, development and coalescence of micro-cracks, which
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produce a strain localization with a subsequent formation of a separation sur-
face where cohesive forces tend to progressively vanish up to creation of a
discontinuity or fracture surface. For classical fracture mechanics problems
the actual geometric position, as well as the direction of propagation of the
cohesive surface, are themselves part of the non-linear problem; however, there
is a large number of situations in which the location of the potential decohesion
surface can be established a priori. For this kind of problems it is su�cient to
introduce an interface surface embedded inside the continuum solid with the
intent to drive the potential fracture development.

In small strain theory interface constitutive relations usually employ co-
hesive fracture approach by means of damage mechanics theory. The �elds of
application are extremely wide, e.g.: interlaminar fracture for composite ma-
terials [1], failure modes of masonry structures [2,3], breaking mechanisms for
adhesive or welded joints [4], fragmentation processes [5,6] and many others.

Even if the most common interface formulations are developed under the
hypothesis of small strains and small displacements, their application to ge-
ometrically non-linear problems is of great interest. Few contributions on co-
hesive interface in large displacement are available in literature. Recently, in
[7�9] some possible limits and de�ciencies have been discussed for large dis-
placement interfaces. In [7] the state of the art of cohesive models for the
material separation such as cracks and delamination is presented, focusing on
thermodynamics and variational consistency, and showing that many proposed
models do not satisfy fundamental requirements, such as thermodynamic prin-
ciples, frame invariance or equilibrium conditions. Such problems are especially
encountered for anisotropic models in geometrically non-linear context.

One of the �rst contribution on the subject is presented in [1] where de-
lamination in composite structures is analysed in a �nite displacement set-
ting. A pioneering interface �nite element formulation for large displacement
three-dimensional problems is developed in [10], where the �rst Piola-Kircho�
traction vector is de�ned as a function of the normal and tangential separation
displacement components, with respect to the middle surface in the current
con�guration. A further quite e�ective approach is the corotational interface
formulation proposed in [11] for modelling buckling and delamination phenom-
ena in composite materials. The corotational approach properly predicts the
non-linear geometric e�ects due to the rotation of the interface, but the e�ect
due to the elongation of the interface is not taken into account.

In [12] the constitutive modelling of �brillation phenomenon, common of
soft polymer coating is proposed. Two di�erent formulation are developed,
respectively for the small deformation condition and for the large deformation
one, with a smooth transition from the former to the latter.

In [9] the lack of rotational equilibrium in the deformed con�guration is
analysed for some existing CZMs, showing that su�cient condition for rota-
tional equilibrium to be satis�ed is that traction vector and separation dis-
placement vector are co-axial, such as for isotropic interface models. Such a
condition is often not properly ful�lled by CZMs devoted to produce two dif-
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ferent fracture energies in mode I and in mode II fracture conditions, in �nite
strains and �nite displacements regime [13�15].

In [8] CZMs are analysed in large displacements and large strains condi-
tions. The interface models are also evaluated with respect to thermodynamic
consistency, balance of angular momentum and frame invariance. It is shown
that in elastic regime only isotropic models, with traction vector co-axial to
separation displacement vector, ful�ll all physical principles. The same condi-
tion is analysed for an elasto-plastic CZM developing an isotropic constitutive
model, which is de�ned as a set of elasto-plastic truss elements connecting
the two edges of the interface. Moreover, the authors proposed a second for-
mulation, assuming that the ends of the elasto-plastic truss elements can also
plastically slide on the crack surface. The traction vector results to be aligned
to the connected points, but not aligned to the separation displacement vector.
This approach represents a relaxed condition for the satisfaction of the bal-
ance of angular momentum, with respect to the original formulation of traction
vector aligned to the separation displacement vector, proposed in [9].

The paper [16] proposes an interface element formulation for geometrical
non-linearity and material non-linearity, developed in the reference con�gura-
tion. The constitutive model is de�ned on the local reference frame, de�ned
by normal axis and tangential axis with respect to the middle surface in the
current con�guration.

In [17] a four nodes interface element has been analysed and tested un-
der large displacement conditions. The interface constitutive model used for
the numerical simulations is the potential based model proposed in [18] and
the �nite element operators (sti�ness matrix and nodal force vector) have
been evaluated numerically by both the Gauss quadrature rule and by the
Newton-Cotes quadrature rule. Moreover, both the integration over the refer-
ence surface and the integration over the deformed middle surface have been
considered for the same constitutive model, showing signi�cant di�erence be-
tween the two integration schemes. The latter surprising result is due to some
kind of hidden numerical approximation when integration is performed over
the current con�guration, as supposed in [17] .

In the present paper the interface formulation is rigorously developed un-
der �nite displacement conditions, assuming as local reference frame for the
constitutive model, normal and tangential axes to the middle surface.

The geometric operators in the current con�guration, such as the normal
and tangential axes to the middle surface and elongation of the middle surface,
are de�ned as functions of nodal displacements. The formulation here proposed
regards 2D problems. The extension to 3D problems is, of course, possible but
it is not completely straightforward. The main di�culties for the extension
stand in the geometrical treatment of a moving interface surface embedded in
a 3D continuum space.

Nodal force vector and consistent sti�ness matrix are computed for a
two-dimensional interface element in either reference and current integration
schemes and the relation between the cohesive laws in the reference con�gura-
tion and in the current con�guration is de�ned. It is shown that the cohesive
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law can be de�ned in the current con�guration in terms of Cauchy traction
vector, which is de�ned as function of normal and tangential components of
separation displacement, and as function of the interface elongation.

The proposed interface formulation has been implemented in the open
source �nite element code FEAP [19] with reference to the cohesive-frictional
interface model proposed in [20,21]. The results of the numerical simulations
for an end-notched double cantilever beam test are proposed and compared
with analytical solutions.

2 Finite displacement mechanical problem with interface

2.1 Interface kinematics

Let a solid body be considered occupying the region Ω0 ⊂ IR3 in the reference
con�guration and let the body be characterized by an embedded surface Γ0

in which discontinuity of the deformed con�guration �eld may develop. The
surface Γ0 splits the solid in two parts Ω+

0 and Ω−0 with shared boundary Γ0.
The normal vector n0 to the surface Γ0 is positive if oriented from Ω−0 to
Ω+

0 . Each material point X ∈ Ω0 undergoes deformation following the non-
linear mapping x = x (X , t), which is smooth and continuous with one-to-one
relation for all material points in Ω0, with the exception of the material points
X ∈ Γ0 where a multiple mapping can exist (see Figure 1). The deformed
con�guration of a point lying on the surface Γ0 in the reference con�guration
can be de�ned by using the following notation

x+ = x+ (X , t) , with X ∈ Γ0 ⊂ ∂Ω+
0 , (1a)

x− = x− (X , t) , with X ∈ Γ0 ⊂ ∂Ω−0 , (1b)

which is represented in Fig. 1

In the current con�guration the two edges of the embedded surface are
separate in two distinct surfaces Γ+ and Γ−, with x+ ∈ Γ+ and x− ∈ Γ−.
Moreover, the middle surface Γm, after [10,16], is de�ned in the current con-
�guration as the set of points xm, which are de�ned by the following equation

xm (X , t) :=
1

2

[
x+ (X , t) + x− (X , t)

]
with X ∈ Γ0 (2)

and the axes n and t, which are respectively normal and tangential to the
middle surface Γm at point xm, are assumed as local reference frame of the
interface cohesive law. In the initial con�guration the middle surface coincides
with the embedded surface Γ0.

The displacement �eld, de�ned as

u (X , t) = x (X , t)−X (3)
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Fig. 1 Representation of the one-to-one mapping between current and reference con�gura-
tions

can be discontinuous on the surface Γ0, with two di�erent values on the domain
Ω+

0 and on the domain Ω−0 , that is

u+ = u+ (X , t) , with X ∈ Γ0 ⊂ ∂Ω+
0 , (4a)

u− = u− (X , t) , with X ∈ Γ0 ⊂ ∂Ω−0 . (4b)

The separation displacement at points X ∈ Γ0 between the two edges of the
embedded surface is

[[u (X , t)]] = x+ (X , t)− x− (X , t) = u+ (X , t)− u− (X , t) . (5)

The deformation gradient tensor F and the relevant jacobian determinant are
de�ned as

F (X , t) =
∂x (X , t)

∂X
, (6a)

J (X , t) = det (F (X , t)) . (6b)

The deformation gradient F , following the condition (1) is not continuous on
the embedded surface Γ0, moreover it does not a�ects the cohesive behaviour
of the connecting interface between the two bodies.

2.2 Balance laws

The internal surface Γ0 is locus of cohesive tractions, which can be de�ned
by a speci�c cohesive interface constitutive law as a non-linear function of the
separation displacement T := T ([[u]]).

In [8,9] the linear and angular balance momentum of the interface, with
a �nite thickness in the current con�guration, has been deeply analysed and,
as generally accepted in classical cohesive zone modelling, the membrane-like
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traction on the boundary surface Γb is neglected (see Figure 2). Under such
a condition, the balance of linear momentum can be written in the reference
con�guration in the following form

T+ = −T− = T (7)

where T+ and T− are the First Piola-Kirchho� (FPK) traction vectors and
are related to the Cauchy traction vectors S+ and S− through the relations

T+dΓ0 = S+dΓ+ and T−dΓ0 = S−dΓ−. (8a, b)

By neglecting the membrane-like tractions on the boundary surfaces Γb, the
balance of angular momentum can be written in the reference con�guration
by the following vector cross product:

[[u]]× T = 0, (9)

which means that su�cient condition for the enforcement of balance of angular
momentum is that traction vector T is aligned to the separation displacement
[[u]]. Balance of angular momentum requires isotropic cohesive relations (co-
axiality between displacement jump and traction vector) or, alternatively, one
of the two member in Eq. (9) remains small or vanishes. The displacement jump
[[u]] for relevant cohesive state can be assumed small enough to assure Eq. (9)
to hold, whereas traction T become negligible for large displacement jump up
to complete delamination condition. The latter condition naturally applies for
many material cohesive interface. Namely, the balance of angular momentum
can be satis�ed by assuming an isotropic elastic behaviour or by assuming the
hypothesis of small separation displacement before full debonding.

n

t

bΓ

bΓ

  Γm
d 

S−

S+

[u][ ]

  Γ

  Γ

d

d +

−

Current configuration

n0

t0  Γd
0

T +

T −

Reference configuration

Fig. 2 Representative Surface Element in the current con�guration and in the reference
one. Piola-kircho� traction T and Cauchy traction S are represented respectively in the
reference con�guration and in the current one.

The constitutive behaviour of the interface surface Γ0 in the elastic regime,
and in particular in the post-elastic one, is strongly a�ected by the delami-
nation mode, with di�erent responses in opening and sliding modes. As a
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consequence, the cohesive consitutive law has to be de�ned in a local reference
frame with normal and tangential axes, with respect to embedded surface Γ
in the current con�guration, which is not unique, due to the discontinuity of
displacement �eld. The solution generally assumed in literature, and initially
proposed in [10], is to consider as unique deformed con�guration of the sur-
face Γ0 the middle surface Γm de�ned in Eq. (2) and represented in Fig. 1 and
in Fig. 2 with the relevant local frame, de�ned by the tangential and normal
axes (t,n). The di�erence between middle surface Γm and actual deformed
surfaces Γ+ and Γ− is generally very small for not fully debonded interfaces.
In fact, excluding speci�c cases such as �brillation phenomenon, the separa-
tion displacement vector before full debonding is small compared to size of the
reference surface Γ0. When the interface is fully debonded the spatial posi-
tion of middle surface Γm can be signi�cantly di�erent from the two deformed
surfaces Γ+ and Γ−, but without any traction transmitted between them.

2.3 Principle of Virtual Work

The Principle of Virtual Work (PVW) for a domain with an internal embedded
surface Γ0 can be written in the reference con�guration in the following form∫

Ω0

P : δFdΩ0 +

∫
Γ0

T · [[δu]] dΓ0 = Pext (10)

whereP = JσF−T is the �rst Piola-Kirchho� stress tensor, with σ the Cauchy
stress tensor, δF is a virtual deformation gradient, [[δu]] is a virtual separation
displacement and Pext is the external virtual work.

The PVW can also be written in the current con�guration as∫
Ω

σ : δεdΩ +

∫
Γ+

S+ · δu+dΓ+ +

∫
Γ−
S− · δu−dΓ− = Pext (11)

where δε = 1
2

(
δF · F−1 + F−T · δF T

)
is the virtual variation of the defor-

mation tensor. Under the hypothesis of small separation displacement before
full debonding, the two surfaces (Γ+ and Γ−), in the deformed con�guration,
can be assumed to be su�ciently close to the middle surface Γm. On the con-
trary, at fully debonded points of the interface, the two surfaces are di�erent
one of each other, but with null tractions S+ and S− acting on such surfaces.
Therefore, the PVW in the current con�guration in Eq. (11) can be rewritten
in the following form∫

Ω

σ : δεdΩ +

∫
Γm

S · [[δu]] dΓm = Pext (12)

where interface tractions in the current con�guration are S = S+ = −S−,
with dΓm ∼= dΓ+ ∼= dΓ−. The relation between reference and current traction
vectors in Eq.(8a, b) can be simpli�ed in the following form

T dΓ0 = S dΓm. (13)
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In the following the hypothesis of small separation displacement before full
debonding is adopted.

The cohesive law is de�ned in terms of normal and tangential components
(Tn = T · n and Tt = T · t) of the FPK traction vector, with respect to
the middle surface Γm, and they are assumed as functions of the normal and
tangential components of the separation displacement un = [[u]] · n and ut =
[[u]]·t. The FPK traction vector, the Cauchy traction vector and the separation
displacement vector are de�ned in the local reference frame (t, n) by the
following relations

T̃ =

[
Tt
Tn

]
= G · T (14a)

S̃ =

[
St
Sn

]
= G · S (14b)

[[ũ]] =

[
ut
un

]
= G · [[u]] (14c)

where G = [t, n]
T
is the rotation matrix which relates the local coordinate

system to the global one. Because of the large displacement regime the rotation
matrix G has to be considered as function of the displacement �eld u. The
cohesive law is de�ned in the local frame as a function T̃ := T̃ ([[ũ]]) and it
can easily proved that the cohesive law satis�es the principle of material frame
indi�erence (see [10]).

The virtual work done by cohesive traction for a virtual body displacement
δu in Eq.(10) can be computed both in the local reference frame (t, n) and
in the global one (X, Y). A virtual body displacement �eld δu produces a
virtual separation displacement [[δu]] = δu+ − δu− in the global reference
frame (X, Y), whereas the virtual separation displacement produced in the
local reference frame (t, n) can be obtained by applying di�erentiation chain
rule to Eq.(14c), that is

[[δũ]] =
∂ [[ũ]]

∂u
· δu =

(
∂G

∂u
· δu

)
· [[u]] +G · [[δu]] . (15)

So the virtual work done by cohesive traction for a virtual displacement δu in
the local frame (t, n) and in the global one (X, Y) can be written as

T · [[δu]] = T̃ · ˜[[δu]] = T̃ ·
[(

∂G

∂u
· δu

)
· [[u]] +G · [[δu]]

]
(16)

and the substitution of Eq. (16) in Eq. (10) allows to rewrite the PVW in the
reference con�guration in the following form∫

Ω0

P : δFdΩ0 +

∫
Γ0

T̃ ·
[(

∂G

∂u
· δu

)
· [[u]] +G · [[δu]]

]
dΓ0 = Pext, (17)

and the PVW can be written in the current con�guration as∫
Ω

σ : δεdΩ +

∫
Γm

S̃ ·
[(

∂G

∂u
· δu

)
· [[u]] +G · [[δu]]

]
dΓm = Pext. (18)
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3 Interface constitutive model

Interface constitutive relations has to be derived on the basis of thermody-
namic restrictions, which require the de�nition of an Helmholtz free energy
density (per unit of undeformed surface Γ0) and ensuring the non negativ-
ity of the mechanical dissipation density for any possible loading path. In
the current con�guration, due to the variation of the deformed surface area
with respect to the undeformed one, the cohesive law has to be de�ned as
function of separation displacement and current surface area dΓm , that is
S̃ := S̃ ([[ũ]] , dΓm).

The elastic-damage constitutive model is based on the same cohesive formu-
lation proposed in [20], with bi-linear traction separation law. The Helmholtz
free energy density function for unit of undeformed surface Γ0 is introduced
as

ψ (ut, un, ω, η) =
1

2
(1− ω) [[ũ]] · k0

el · [[ũ]] + ψin (η) , (19)

where ω (with 0 ≤ ω ≤ 1) is the damage parameter, k0
el =

⌈
k0t , k

0
n

⌋
is a

diagonal sti�ness matrix, with k0t , k
0
n tangential and normal interface elastic

moduli, ψin (η) is the internal energy density governing the softening behaviour
in the damage evolution process and it is function of the internal variable η.

The traction separation law in the undeformed reference can be de�ned by
the following state equation

T̃ =
∂ψ

∂ [[ũ]]
= (1− ω)k0

el · [[ũ]] . (20)

The elastic behaviour is not assumed isotropic a priori, and k0t and k0n are
assumed to be two independent constitutive parameters. The balance of an-
gular momentum can be achieved by assuming the same value for the two
parameters k0t = k0n or, as pursued in the present paper, under the hypothesis
of small separation displacement before full decohesion.

The traction separation law can also be de�ned in the current reference,
by substitution of Eq.(20) in Eq.(13), that is

S̃ = (1− ω)kel · [[ũ]] = (1− ω) dΓ0

dΓm
k0
el · [[ũ]] . (21)

where kel = k0
el dΓ0/dΓm is the matrix of the elastic sti�ness parameters in

the deformed con�guration. Equation (21) shows that the interface elastic
parameters cannot be assumed as constant in the deformed con�guration but
they linearly depend on the ratio between the areas of undeformed surface and
deformed surface.

Damage evolution is governed by the following damage activation function

φd (Y, χ) = Y − χ (η)− Y0 ≤ 0 (22)
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where the driving activation damage variables respectively are Y := −∂ψ/∂ω
and χ := −∂ψ/∂η, being Y the energy release rate given by

Y =
1

2
[[ũ]] · k0

el · [[ũ]] , (23)

and χ (η) the static internal variable, which governs the cohesive softening
behaviour as function of the kinematic internal variable η. For linear softening
law the internal variable results

χ (η) =
1

2
k0nu

2
e

[(
uf

uf (1− η) + ueη

)2

− 1

]
(24)

where ue and uf are separation displacement limit values, respectively, at
the elastic threshold and at the unitary damage condition, in pure opening
condition. The constant term Y0 := 1

2k
0
nu

2
e is the energy threshold for the

initial damage activation. Evolution of damage and internal kinematic variable
η is governed by the following �ow rules and loading-unloading conditions

ω̇ =
∂φd
∂Y

λ̇d = λ̇d

η̇ = −∂φd
∂χ

λ̇d = λ̇d

λ̇d ≥ 0, φdλ̇d = 0, φ̇dλ̇d = 0

(25a, e)

with λ̇d a damage multiplier. Fracture energy produced by complete delami-
nation is independent of the delamination mode and is de�ned by GI = GII =
1
2k

0
nueuf . The evolution of such constitutive model with di�erent mode I and

mode II fracture energies has been proposed by the same authors in [21].

4 Interface �nite element formulation

The interface �nite element is developed in the classical isoparametric formu-
lation, depicted in Fig. 3 for a two-dimensional six nodes element with local
coordinate ξ.

The element domain Γ e0 is de�ned by isoparametric mapping

X (ξ) =
1

2

∑
I∈N

φI (ξ)X I with X ∈ Γ e0 , ξ ∈ (−1, 1) (26)

where N is the set of element nodes N = {1, 2, 3, 4, 5, 6}, as represented in Fig.
3. We can also de�ne the set of lower side nodes as N− = {1, 2, 3} and the set
of upper side nodes as N+ = {4, 5, 6}. The functions φI (ξ) with I ∈ N are the
nodal shape functions and X I with I ∈ N are the nodal coordinate vectors.
Moreover, nodes geometrically coincident in the reference con�guration have
the same shape function (φI (ξ) = φI+3 (ξ) with I = 1, 2, 3 in Fig. 3). The
current con�guration is identi�ed by position of positive and negative sides of
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the interface, and it can can be computed by the same isoparametric mapping
by the following relations

x+ (ξ,uI) =
∑
I∈N+

φI (ξ) (X I + uI) (27a)

x− (ξ,uI) =
∑
I∈N−

φI (ξ) (X I + uI) (27b)

where uI is the nodal displacement vector.
Displacement of positive and negative sides of the interface can be written

by the following compact notation

u± (ξ,uI) =
∑
I∈N±

φI (ξ)uI , (28)

and the separation displacement in Eq. (5), in �nite element formulation, is
given as

[[u (ξ,uI)]] = [[u]] =
∑
I∈N±

±φI (ξ)uI . (29)

The point at the middle surface in the current con�guration and its displace-
ment are de�ned as

xm (ξ,uI) =
1

2

∑
I∈N

φI (ξ) (X I + uI) (30a)

um (ξ,uI) =
1

2

∑
I∈N

φI (ξ)uI . (30b)

The increment vector dxm of the middle surface mapping in the current con-
�guration is related to the increment dξ by the relation

dxm (ξ) =
1

2

∑
I∈N

φI,ξ (ξ) (X I + uI) dξ, (31)

where φI,ξ (ξ) = dφI (ξ) /dξ is the derivative of the I-th shape function with
respect to ξ. Increment vector dxm is represented in the Figures 3 and 4, for
a two-dimensional problem, as an in�nitesimal surface element of area dΓm in
the current con�guration and of area dΓ0 in the reference one. Surface element
area dΓm is given as

dΓm = (dxm · dxm)
1
2 = Jm (ξ) dξ, (32)

where Jm (ξ) is the norm of the jacobian of isoparametric mapping of the
middle surface, de�ned as

Jm (ξ) =
1

2

∥∥∥∥∥∑
I∈N

φI,ξ (ξ) (X I + uI)

∥∥∥∥∥ . (33)
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With reference to Fig. 4, the tangent unit vector t(ξ) can be de�ned by the
following relation

t(ξ) =
dxm(ξ)

‖dxm(ξ)‖
=
dxm(ξ)

dΓm
=

1

2

1

Jm

∑
I∈N

φI,ξ (ξ) (X I + uI) . (34)

Details of the formulation of geometric operators Jm, t and n are analysed

ξ1 32

4 65
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Fig. 3 Representation of a six node isoparametric interface element in the natural reference,
in the initial con�guration and in the current con�guration.

in the Appendix.

dΓm

dy

dx
n(ξ) t(ξ)

dΓm

δum
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Fig. 4 Representation of the in�nitesimal surface element dΓm of the middle surface in the
current con�guration and its variation produced by a virtual displacement.

4.1 Di�erentials and derivatives with respect to nodal displacement

The �nite element formulation requires the evaluation of derivatives with re-
spect to vector displacement uI or, equivalently, the evaluation of the di�er-
entials of all the geometric operators, that are the jacobian norm of middle
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surface mapping, tangent and normal vectors. Considering Eq. (33) and Eq.
(34), the variation of norm of middle surface jacobian, due to the virtual nodal
displacement δuI with I ∈ N , can be de�ned by the following relation

δJm (ξ) =
∑
I∈N

∂Jm
∂uI

· δuI = t· δum,ξ (35)

with
∂Jm
∂uI

=
1

2
t φI,ξ and δum,ξ =

1

2

∑
I∈N

φI,ξδuI . (36a, b)

The e�ects of a virtual displacement on the surface element dΓm is shown in
Fig. 4, where the tangential component of δum,ξ produces an elongation of the
surface element dΓm and the normal one produces a rotation of the surface
element. Variations of tangential and normal unit vectors, due to a virtual
displacement, can be obtained by di�erentiation of Eq. (34), as following

δt (ξ) =
∑
I∈N

∂t

∂uI
· δuI =

1

Jm
n (n· δum,ξ) (37a)

δn (ξ) =
∑
I∈N

∂n

∂uI
· δuI = −

1

Jm
t (n· δum,ξ) , (37b)

with

∂t (ξ)

∂uI
=
φI,ξ
2Jm

n⊗ n (38a)

∂n (ξ)

∂uI
= − φI,ξ

2Jm
t⊗ n. (38b)

By considering that 1/Jmn · δum,ξ is a scalar value, the equations (37a, b)
show that the variations of the local axes, due to a virtual nodal displacement,
are two π/2 rotated (anticlockwise) vectors. Consequently, the variation of
rotation matrix G is de�ned as

δG (ξ) =
∑
I∈N

∂G

∂uI
· δuI =

1

Jm
Gr

∑
I∈N

ΦI,ξ n· δuI (39)

where Gr = [n, −t]T is a new rotational matrix.
Details of derivative of the geometric operators Jm, t and n are analysed

in the Appendix.

4.2 Weak form equilibrium condition (PVW)

The weak form equilibrium condition is mathematically de�ned in Eq. (17) in
the reference con�guration and in Eq. (18) in the current con�guration. The
contribution of a single interface �nite element can be written as∫

Γ e
0

T̃ · ˜[[δu]]dΓ0 =

∫
Γ e
m

S̃ · ˜[[δu]]dΓm =
∑
I∈N

qI · δuI (40)
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where the nodal force vector qI can be computed in the reference con�guration
by substitution of Eq. (39) and Eq. (29) in Eq. (17), that is

qI =

∫ 1

−1
T̃ ·
[
φI,ξ
2Jm

(Gr · [[u]])⊗ n± φIG
]
J0dξ with I ∈ N± (41)

where J0 = 1
2

∥∥∑
I∈N φI,ξ (ξ)X I

∥∥ is the jacobian norm of the isoparametric
mapping in the reference con�guration. Substitution of traction separation law
of Eq.(20) in Eq. (41) gives the nodal force vector as function of displacement
as

qI =

∫ 1

−1
(1− ω) [[ũ]] · k0

el ·
[
φI,ξ
2Jm

(Gr · [[u]])⊗ n± φIG
]
J0dξ with I ∈ N±

(42)
The nodal force vector qI can be also computed in the deformed con�gu-

ration by substitution of Eq. (39) and Eq. (29) in Eq. (18), that is

qI =

∫ 1

−1
S̃ ·
[
φI,ξ
2Jm

(Gr · [[u]])⊗ n± φIG
]
Jmdξ with I ∈ N±. (43)

In �nite element formulation area of in�nitesimal surface element is de�ned in
Eq.(33) and the traction separation law in the deformed con�guration, de�ned
in Eq. (21), can be written as

S̃ = (1− ω)kel · [[ũ]] = (1− ω) Jm
J0

k0
el · [[ũ]] , (44)

showing that the nodal forces vector de�ned in the deformed con�guration
in Eq.(43) coincides to the nodal forces vector integrated in the reference
con�guration in Eq.(42).

The Equations (43) and (44) show that the cohesive law can be de�ned in
the current con�guration in terms of Cauchy traction vector, which is de�ned
as function of normal and tangential components of separation displacement,
and as function of the interface elongation. On the contrary, the use of the
same cohesive law in order to de�ne the Piola-Kirchho� traction vector in
the reference con�guration and the Cauchy traction vector in the deformed
con�guration, would produces di�erent numerical solutions between the two
integration schemes. The same results has been pointed out in [17], where the
integration of the nodal force vector over the reference and over the current
con�gurations, by the use of the same cohesive law, produced di�erent numer-
ical solutions both for elastic interface problems and for delamination interface
problems.

4.3 Consistent sti�ness matrix

Consistent tangent sti�ness matrix, required in order to archive a fast asymp-
totic second order rate of convergence, is de�ned through derivative of nodal
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force vector in Eq. (41) with respect to nodal displacement, that is

K IJ =
∂qI
∂uJ

= Kmat
IJ +K

geo
IJ with I, J ∈ N (45)

whereKmat
IJ is the material sti�ness matrix andK geo

IJ is the geometric sti�ness
matrix.

The material sti�ness matrix is de�ned as

Kmat
IJ =

∫ 1

−1

∂T̃

∂uJ
·
[
φI,ξ
2Jm

(Gr · [[u]])⊗ n± φIG
]
J0dξ. (46)

where the cohesive law is de�ned in the local reference as T̃ ([[ũ ]]) and, by
considering Eq. (15), its derivative can be de�ned as

∂T̃

∂uJ
=

∂T̃

∂ [[ũ ]]
· ∂ [[ũ ]]
∂uJ

= k̃
cn ·

(
1

Jm
(Gr · [[u ]])⊗ n

1

2
φJ,ξ ±GφJ

)
(47)

where k̃
cn

= ∂T̃/∂ [[ũ ]] is the interface tangent constitutive matrix. Substitu-
tion of Eq. (47) in Eq. (46) allows to write the material sti�ness matrix, that
is

Kmat
IJ =

∫ 1

−1

(
1

Jm
n ⊗

(
[[u ]] ·GT

r

) 1

2
φI,ξ ±GTφI

)
· k̃ cn·

·
(

1

Jm
(Gr · [[u ]])⊗ n

1

2
φj,ξ ±GφJ

)
J0dξ with I, J ∈ N±,

(48)

whose symmetry condition depends on the tangent constitutive matrix k̃
cn
.

The term in square parenthesis in Eq. (41) is the sum of rotational matrix
G and of derivative of G with respect to u (see Eq. (16)) and its derivative
involves second order derivative of rotational matrix. In the present paper
the second order derivative of rotational matrix G is assumed negligible and
omitted and the geometric sti�ness matrix is de�ned as

K
geo
IJ =

∫ 1

−1
T̃ ·

[
Gr ⊗ n

1

Jm
(±φI)

1

2
φJ,ξ

]
J0 dξ with I, J ∈ N±, (49)

which is not a symmetric matrix.

5 Numerical simulation

The �nite displacement interface formulation developed in the present paper
and the assumed interface constitutive model have been implemented in the
open source �nite element code FEAP [19] for a two dimensional six-nodes
interface element and the numerical simulation of the the end-notched double
cantilever beam test (DCBT) has been performed.

Sizes and geometry of analysed specimen are depicted in Fig. 5. The lower
arm is constrained and the upper one is subjected to imposed displacement u
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in a �xed direction. For a vertical imposed displacement (γ = 0 in Fig. 5) the
classical DCB test is performed, whereas a non-vertical displacement produces
a rigid �nite rotation, over the classical crack opening. However, the mechanical
responses, in terms of applied load P and crack opening displacement d is
independent on any rigid rotation and, as a consequence, has to be independent
on the direction of the imposed displacement u.

The modi�ed DCBT, with non-vertical displacement, is proposed in the
present paper in order to have a signi�cant modi�ed current con�guration,
with respect to the reference one. The mechanical response of the modi�ed
DCBT can be correctly performed only under �nite displacement formulation.

The analytical response, with vertical displacement, is known under small
displacement bending beam theory and linear fracture mechanics theory (see
[22]), and it is given, in terms of crack opening displacement d and relevant
load P , as

d = 4a2
√

GI
3Eh3

P =
3EI

2a3
d

(50a, b)

with: I = bh3/12, a the crack length, E Young modulus and GI fracture
energy.

The numerical simulations have been performed using 2D nine nodes ele-
ments and six nodes interface elements. The bulk is modeled by �nite deforma-
tion neo-Hookean hyperelastic model with Young modulus E = 35300N/mm2

and Poisson ratio ν = 0.27 (standard parameters for E-glass/epoxy composite
material).

The interface model is de�ned by the following constitutive parameters:
kn = kt = 50KN/mm3, ue = 2 · 10−4mm and uf = 0.2mm. The fracture
energy is GI =

1
2knueuf = 1N/mm.

Results of numerical simulation are plotted in Fig. 6 in terms of maximum
principal Cauchy stress, in the current con�guration, for an horizontal imposed
displacement (γ = π/2 in Fig. 5), at �ves di�erent loading steps: a) ux = 5mm;
b) ux = 10mm; c) ux = 15mm; d) ux = 20mm; e) ux = 25mm. Results of
numerical simulations with three di�erent loading angles γ are compared in
Figure 7 with results of small displacement solution and analytical solution, in
terms of applied load P vs crack opening displacement d. The good agreement
between the di�erent solutions can be appreciated, excluding the initial elastic
branch for well known motivations induced by elastic beam theory [21].

The developed high order interface �nite element is considered for a large
displacement convergence test by analysing four di�erent meshes of the speci-
men subjected to a horizontal imposed displacement. The mesh a) is composed
of 480 nine-node quadrilateral elements, 76 six-node interface elements and
2254 nodes; the mesh b) is composed of 1600 nine-node quadrilateral elements,
150 six-node interface elements and 7062 nodes; the mesh c) is composed of
2400 nine-node quadrilateral elements, 230 six-node interface elements and
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2h = 10 mm

P

a0 = 50mm

γ

u 

d

Fig. 5 Sizes and geometry of specimen for the modi�ed double cantilever beam test, with
a horizontal imposed displacement.

10582 nodes; the mesh d) is composed of 960 six-node triangular elements, 76
six-node interface elements and 2254 nodes. The results of the four numerical
simulations are compared in Fig. 8 with the analytical solution in terms of
applied load P vs crack opening displacement d. Figure 8 shows that the nu-
merical results obtained with the four di�erent meshs are almost coincident.
Results of numerical simulations are plotted in Fig. 9 in terms of maximum
principal Cauchy stress at the cohesive process zone, in the current con�gura-
tion, for the four di�erent meshes.

6 Closing remarks

The paper propose a rigorous formulation of interface �nite element, developed
under �nite displacements hypothesis and assuming, as local reference frame
of the constitutive model, normal and tangential axes to the middle surface
between positive and negative edges of the interface in the deformed con�g-
uration. The paper discusses the problem of the correct integration of nodal
forces vector and sti�ness matrix over the reference con�guration and over
the deformed one. The relation between the cohesive laws in the reference
con�guration and in the current con�guration is analysed. The constitutive
model is based on the an Helmoltz free energy density function, per unit of
undeformed interface surface, which allows to de�ne the cohesive law in the ref-
erence con�guration in terms the Piola-Kirchho� traction vector, as function
of separation displacement and some internal variables.



18 Francesco Parrinello, Guido Borino

a)

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 [N/mm2]

b)

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 

Current View
Min = -5.2990E-01
X = 4.0579E+01
Y = 4.3493E+01

Max =  1.3045E+02
X = 3.3647E+01
Y = 4.3578E+01

Time = 3.00E+01Time = 4.00E+01

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 [N/mm2]

c)

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 

Current View
Min = -5.2990E-01
X = 4.0579E+01
Y = 4.3493E+01

Max =  1.3045E+02
X = 3.3647E+01
Y = 4.3578E+01

Time = 3.00E+01Time = 4.00E+01d)

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 

Current View
Min = -5.2770E-01
X = 3.2741E+01
Y = 1.0168E+02

Max =  1.3863E+02
X = 3.4566E+01
Y = 9.4009E+01

Time = 7.00E+01Time = 8.00E+01e)

 2.0000E+01

 4.0000E+01

 6.0000E+01

 8.0000E+01

 1.0000E+02

 1.2000E+02

 0.0000E+00

 1.4000E+02

 PRIN. STRESS  1 

Current View
Min = -6.8744E-01
X = 3.6342E+01
Y = 1.2489E+02

Max =  1.7283E+01
X = 3.5239E+01
Y = 1.2420E+02

Time = 9.00E+01Time = 1.00E+02

Fig. 6 Map of maximum principal stress in the current con�guration, obtained by the
numerical simulation of the double cantilever beam test, for an horizontal displacement, at
�ves di�erent loading steps: a) ux = 5mm; b) ux = 10mm; c) ux = 15mm; d) ux = 20mm;
e) ux = 25mm.
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Fig. 7 Response of double cantilever beam test, in terms of applied load vs crack opening
displacement. Analytical solution, large displacement numerical solutions for three di�erent
displacement directions and small displacement numerical solution with vertical displace-
ment.
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Fig. 8 Convergence test for the double cantilever beam test. Results of the numerical
simulations for the four analysed meshes to the horizontal imposed displacement. The results
are plotted in terms of applied load vs crack opening displacement and are compared to the
analytical solution.
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Fig. 9 Map of maximum principal stress in the current con�guration at the cohesive process
zone, obtained for four meshes by the numerical simulation of the double cantilever beam
test, for an horizontal displacement.

It has been shown that the cohesive law can be de�ned in the current con-
�guration in terms of Cauchy traction vector, which is de�ned as function of
normal and tangential components of separation displacement, and also de-
pends on the interface elongation. On the contrary, the use of the unmodi�ed
cohesive law in order to de�ne the Piola-Kirchho� traction vector in the refer-
ence con�guration, and the Cauchy traction vector in the deformed con�gura-
tion, would produces di�erent numerical results between the two integration
schemes. In [17] the inconsistency of the numerical integration has been raised,
but a speci�c analysis or explanation on the very nature of the problem has
not been provided; neither the related corrections have been pointed out.

The results of an end-notched double cantilever beam test with four dif-
ferent meshes are proposed showing a good agreement with the analytical
solution.
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A Derivative of geometric operators

In this appendix, the partial derivatives of geometric operators Jm, t and n, with respect
to nodal displacements, are analysed by use of index notation. The geometric operators are
referred to the Cartesian coordinate axes Xi, with (i = 1, 2) for a two-dimensional problem.
The norm of middle surface mapping in Eq.(33), with summation of repeated index i, can
be rewritten as

Jm (ξ) =
1

2

∑
I∈N

φI,ξ (XIi + uIi)
∑
J∈N

φJ,ξ (XJi + uJi)

 1
2

, (51)

where XIi and uIi are, respectively, the i-th coordinate in the reference con�guration and
the i-th displacement component of node I ∈ N . The partial derivative of Jm is

∂Jm

∂uIi
=

1

4

1

Jm

∑
J∈N

φJ,ξ (XJi + uJi)φI,ξ (52)

and by considering the tangent unit vector in Eq. (34) in the following index notation

ti =
1

2

1

Jm

∑
I∈N

φI,ξ (XIi + uIi) (53)

Eq. (52) can be written as
∂Jm

∂uIi
=

1

2
tiφI,ξ, (54)

which represent the index notation of Eq. (25a).
The partial derivative of the tangent unit vector t in Eq. (53), with respect to the nodal

displacement component, is

∂ti

∂uIj
=

1

2

φI,ξ

Jm
δij −

1

2

1

J2
m

∑
J∈N

φJ,ξ (XJi + uJi)
∂Jm

∂uIj
(55)

where δij is the Kronecker delta. Substitution of Eqs. (53) and (54) in Eq. (55) gives the
following equation

∂ti

∂uIj
=

1

2

φI,ξ

Jm
(δij − titj) =

1

2

φI,ξ

Jm
ninj , (56)

The latter equality in Eq. (56) is based on the relations between normal and tangent unit
vectors (n1 = t2 and n2 = −t1) and it is equivalent to Eq. (38a).

Derivative of normal unit vector can be obtained by the relations between normal and
tangent unit vectors and it gives

∂ni

∂uIj
= −

1

2

φI,ξ

Jm
tinj , (57)

which is equivalent to Eq. (38b).
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