
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 404 (2017) 84–101
http://d
0022-46

n Corr
E-m

a.pantel
journal homepage: www.elsevier.com/locate/jsvi
Random vibration of linear and nonlinear structural systems
with singular matrices: A frequency domain approach

I.A. Kougioumtzoglou a,n, V.C. Fragkoulis b, A.A. Pantelous b, A. Pirrotta b,c

a Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 S.W. Mudd Building, 500 W. 120th Str., New York,
NY 10027, USA
b Department of Mathematical Sciences, University of Liverpool, Peach Str., Liverpool L69 7ZL, UK
c Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università degli Studi di Palermo, 61 Piazza Marina, 90133
Palermo, Italy
a r t i c l e i n f o

Article history:
Received 19 December 2016
Received in revised form
11 May 2017
Accepted 19 May 2017
Handling Editor: W. Lacarbonara
Available online 25 May 2017

Keywords:
Random vibration
Stochastic dynamics
Frequency domain
Singular matrix
Moore-Penrose inverse
x.doi.org/10.1016/j.jsv.2017.05.038
0X/& 2017 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: ikougioum@columbia.edu (I.A.
ous@liverpool.ac.uk (A.A. Pantelous), antoni
a b s t r a c t

A frequency domain methodology is developed for stochastic response determination of
multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular
matrices. This system modeling can arise when a greater than the minimum number of
coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex
multibody systems where the explicit formulation of the equations of motion can be a
nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate
the formulation of the equations of motion in a less labor intensive manner. Specifically,
relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based frequency
response function (FRF) is determined for a linear structural system with singular ma-
trices. Next, relying on the M-P FRF a spectral input-output (excitation-response) re-
lationship is derived in the frequency domain for determining the linear system response
power spectrum. Further, the above methodology is extended via statistical linearization
to account for nonlinear systems. This leads to an iterative determination of the system
response mean vector and covariance matrix. Furthermore, to account for singular ma-
trices, the generalization of a widely utilized formula that facilitates the application of
statistical linearization is proved as well. The formula relates to the expectation of the
derivatives of the system nonlinear function and is based on a Gaussian response as-
sumption. Several linear and nonlinear MDOF structural systems with singular matrices
are considered as numerical examples for demonstrating the validity and applicability of
the developed frequency domain methodology.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic analysis of systems subjected to stochastic excitations has been extensively studied over the last decades;
see for instance Refs. [1,2] and [3] for some indicative books, as well as Refs. [4] and [5] for some recent techniques related to
the path integral concept. In general, in the field of random vibration of structural systems [6] modeling the system by
utilizing the minimum number of coordinates (generalized coordinates) yields not only non-singular, but also positive
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definite matrices. Note, however, that an alternative modeling of the system equations of motion that employs additional/
redundant degrees-of-freedom (DOFs)/coordinates may be preferable, particularly in the field of multi-body system dy-
namics, for a number of reasons. These may include decreased complexity and computational cost associated with the
formulation of the equations of motion. Thus, although formulating the equations of motion by employing redundant DOFs
yields singular system matrices, this alternative modeling scheme appears advantageous in many cases; see Refs. [7–15] for
a detailed discussion on the topic.

Clearly, determining the dynamic response of structural systems with singular matrices poses significant challenges as
standard solution techniques such as those based on a state-variable formulation cannot be utilized, at least in a
straightforward manner. In this regard, relying on the concept of the Moore-Penrose (M-P) generalized inverse Udwadia and
co-workers (e.g. [16]) determined the dynamic response of systems with singular matrices subject to deterministic ex-
citation. Subsequently, the authors developed in Refs. [17,18] generalized random vibration time-domain techniques for
determining the response of linear and nonlinear structural systems subject to stochastic excitations; see also Ref. [19] for an
alternative treatment based on polynomial matrix theory.

In this paper, standard frequency domain random vibration solution methodologies (e.g. [6]) are generalized to account
for systems with singular matrices. To this aim, based on the theory of generalized matrix inverses, an M-P based frequency
response function (FRF) is derived for a structural systemwith singular matrices. Next, relying on the M-P FRF the celebrated
standard input-output (excitation-response) relationship in the frequency domain is generalized for determining the system
response power spectrum. Finally, the above derived frequency domain relationship is utilized in conjunction with a re-
cently developed statistical linearization technique [18] for determining the response statistics of nonlinear systems with
singular matrices. The validity of the herein developed frequency domain random vibration techniques is demonstrated by
pertinent numerical examples including several linear and nonlinear systems with singular matrices.
2. Moore-Penrose theory elements

In this section, some elements of the generalized matrix inverse theory pertaining to the Moore-Penrose (M-P) matrix
inverse, are provided for completeness.

Definition 1. If ∈ ×A m n then +A is the unique matrix in  ×n m so that

= =
( )* = ( )* = ( )

+ + + +

+ + + +
AA A A A AA A
AA AA A A A A

, ,

, . 1

The matrix +A is known as the M-P inverse of A and Eq. (1) represents the so-called M-P equations. In general, the M-P

inverse of a square matrix exists for any arbitrary ∈ ×A n n, and if A is non-singular, +A coincides with −A 1. Further, the M-P
inverse of any m�n matrix A can be determined, for instance, via a number of recursive formulae (e.g., [20,21]), and
provides a tool for solving equations of the form

= ( )Ax b, 2

where A is a rectangular m�n matrix, x is an n vector and b is an m vector. For a singular square matrix A , i.e. =detA 0,
utilizing the M-P inverse, Eq. (2) yields

= + ( − ) ( )+ +x A b I A A y, 3

where y is an arbitrary n vector and I is the identity matrix. A more detailed presentation of the topic can be found in Refs.
[20] and [22].
3. Frequency domain stochastic response analysis of linear systems with singular matrices

In this section, the response of linear systems with singular matrices subject to stochastic excitation is determined via a
frequency domain approach. Note that the herein developed frequency domain response analysis methodology can be
construed as an alternative to a recently developed time domain technique [17].

3.1. Linear systems with standard non-singular matrices

Some elements of the frequency domain stochastic response analysis of systems with standard non-singular matrices are
provided in the following for completeness. In this regard, the statistics of the system response, ( )tq , to an external ex-
citation, ( )tQ , are determined in the frequency domain by utilizing input-output relationships, involving the FRF matrix α ω( )
[6]. Specifically, consider the equations of motion of an n-DOF linear system given by
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¨ + ̇ + = ( ) ( )tMq Cq Kq Q , 4

where M C, and K denote the n�n mass, damping and stiffness matrices of the system, respectively, and q corresponds to
the n (generalized) coordinates vector. The n vector Q denotes the excitation vector that is applied to the system. Note that
utilizing generalized coordinates for formulating the system equations of motion yields matrices M C, and K that are not
only non-singular, but also symmetric and positive definite. Next, to determine the system FRF matrix α ω( ), consider an
excitation of the form

ω( ) = ( ) ( )t i tQ Q exp , 50

where ω denotes the frequency and Q 0 is an amplitude vector. Considering next the response displacement vector to be of
the form

α ω( ) = ( ) ( ) ( )t tq Q , 6

where α ω( ) is the n�n FRF matrix and substituting Eqs. (5)–(6) into Eq. (4) yields

α ω( ) = ( )−R , 71

where

ω ω= − + + ( )iR M C K. 82

Further, a spectral excitation-response (input-output) relationship can be determined by utilizing the FRF matrix of Eq.
(7) in the form

α αω ω ω ω( ) = ( ) ( ) *( ) ( )S S , 9q Q
T

where ω( )Sq and ω( )SQ are the system response and excitation power spectrum matrices, respectively, ( )tQ represents an

arbitrary stationary stochastic vector process, and α ω*( )T denotes the conjugate transpose of α ω( ); see Ref. [6] for a more
detailed presentation. Furthermore, system response second-order statistics can be readily determined based on Eq. (9). For

instance, utilizing Eq. (9) the response displacement and velocity moments ⎡⎣ ⎤⎦( )q tE i
2 and ⎡⎣ ⎤⎦̇ ( )q tE i

2 are given, respectively, by

⎡⎣ ⎤⎦ ∫ ω ω( ) = ( ) ( )−∞

∞
q t SE d 10i q q

2
i i

and

⎡⎣ ⎤⎦ ∫ ω ω ω̇ ( ) = ( ) ( )−∞

∞
q t SE d . 11i q q

2 2
i i

3.2. Linear systems with singular matrices

It can be argued that there are cases where utilizing more than the minimum number (redundant) degrees-of-freedom
(DOFs) for formulating the equations of motion of a complex dynamical system can be advantageous, especially from a
computational efficiency perspective; see Refs. [17,13] for a detailed discussion. In this regard the −n DOF system of Eq. (4)
can be alternatively modeled as an −l DOF system ( ≥l n) of the form

¨ + ̇ + = ( ) ( )tM x C x K x Q . 12x x x x

In Eq. (12), Mx, Cx and Kx are the l� l mass, damping and stiffness matrices, respectively, x is the l coordinates vector and Q x
is the l vector of external forces. Note that due to the utilization of additional/redundant DOFs, Mx, Cx , and Kx are singular
matrices. Moreover, constraint equations

( ̇ ) ¨ = ( ̇ ) ( )t tA x x x b x x, , , , , 13

where A is an m� l matrix, need to be included as well [16]. Next, considering (for convenience and without loss of gen-
erality) the vector b to be of the form

= − ̇ − ( )b F Ex Lx, 14

the original system of Eq. (4) can be alternatively modeled, via employing the redundant coordinates vector x , as

¯ ¨ + ¯ ̇ + ¯ = ¯ ( ) ( )tM x C x K x Q , 15x x x x

where the ( + ) ×m l l matrices ¯ ¯M C,x x and K̄x denote the augmented mass, damping and stiffness matrices for the system,
defined as
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⎡
⎣⎢

⎤
⎦⎥

¯ = ( − )
( )

+
M

I A A M

A
,

16
x

x

⎡
⎣⎢

⎤
⎦⎥

¯ = ( − )
( )

+
C I A A C

E 17
x

x

and

⎡
⎣⎢

⎤
⎦⎥

¯ = ( − )
( )

+
K I A A K

L
,

18
x

x

respectively. Also, the ( + )m l augmented excitation vector is given by

⎡
⎣⎢

⎤
⎦⎥

¯ =
( − )

( )

+
Q

I A A Q

F
.

19x
x

A detailed presentation of the derivation of Eq. (15) can be found in Refs. [17,18], and is also outlined, for convenience, in
Appendix A.

Next, focusing on the frequency domain, the problem of determining the FRF matrix of a system with singular mass,
damping and stiffness matrices is considered. In this regard, the system of Eq. (15) is excited by a harmonic force of the form
defined in Eq. (5). The system response is given by

α ω( ) = ( ) ¯ ( ) ( )t tx Q , 20x x

where α ω( )x is the × ( + )l m l FRF matrix. Next, Eq. (20) is differentiated twice with respect to time and the obtained ex-
pressions, along with Eq. (20), are substituted in Eq. (15) yielding

α ω( ) = ( )R I. 21x x

In Eq. (21) the ( + ) ×m l l matrix Rx is given by

ω ω= − ¯ + ¯ + ¯ ( )iR M C K . 22x x x x
2

Further, the M-P inverse of the matrix Rx is employed for solving Eq. (21). Specifically, utilizing Eq. (3), the FRF matrix
takes the form

α ω( ) = + ( − ) ( )+ +R I R R Y, 23x x x x

where +Rx is the × ( + )l m l M-P inverse of Rx and Y is an arbitrary × ( + )l m l matrix.
It is noted that the presence of the arbitrary matrix Y on the right hand side of Eq. (23) yields a non-unique solution for

the FRF matrix. Nevertheless, depending on the rank of Rx, a uniquely defined FRF matrix can be derived. Specifically, any
m�n matrix E can be written as

= ( )E FG, 24

where the m� r matrix F has full column rank, i.e. =rank rF , and the r�n matrix G has full row rank, i.e. =rank rG ; the
expression given by Eq. (24) corresponds to the so-called full rank factorization of an arbitrary matrix [22,23]. Then, it can be
proved that the M-P inverse of E is given by

= *( * *) * ( )+ −E G F EG F , 251

where the symbol ‘*’ denotes the conjugation operator; a detailed proof of Eq. (25) can be found in Ref. [22]. Therefore, it is
readily seen that if Rx has full rank, its M-P inverse takes the form

= ( * ) * ( )+ −R R R R 26x x x x
1

and taking into account Eq. (26), the expression

− = ( )+I R R 0, 27x x

holds true. Combining Eq. (27) with Eq. (23), the FRF matrix is uniquely defined as

α ω( ) = ( )+R . 28x x

Next, following Ref. [6] the standard spectral excitation-response relationship of Eq. (9) is generalized and given in the
form

α αω ω ω ω( ) = ( ) ( ) *( ) ( )¯S S , 29x x Q x
T

x
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where ω( )Sx and ω( )¯SQ x
are the system response and excitation power spectrum matrices, respectively. Further, system

response second-order statistics can be readily determined based on Eq. (29). For instance, utilizing Eq. (29) the response
displacement and velocity moments ⎡⎣ ⎤⎦( )x tE i

2 and ⎡⎣ ⎤⎦̇ ( )x tE i
2 are given, respectively, as

⎡⎣ ⎤⎦ ∫ ω ω( ) = ( ) ( )−∞

∞
x t SE d 30i x x

2
i i

and

⎡⎣ ⎤⎦ ∫ ω ω ω̇ ( ) = ( ) ( )−∞

∞
x t SE d . 31i x x

2 2
i i

It is deemed appropriate to note at this point that the evaluation of the FRF matrix α ω( )x of Eq. (28) can be simplified in
many cases by circumventing the computation of the M-P inverse of Rx of Eq. (22). Specifically, in the context of generalizing
the classical modal analysis treatment to account for systems with singular matrices, it was shown recently in Ref. [24] that
the problem of determining the natural frequencies of the augmented system given in Eq. (15) is related to solving an

eigenvalue problem for the ×l l matrix ¯ ¯+M Kx x and determining the l� l modal matrix, Ψ̄. In this regard, considering the
transformation

Ψ= ¯ ( )x p, 32

the system governing equation of motion Eq. (15) becomes

¨ + ̇ + = ( )Lp Dp Np P. 33

In Eq. (33), L N, denote the l� l diagonal matrices given by

Ψ Ψ= ¯ ¯ ¯ ¯ ( )− +L M M 34x x
1

and

Ψ Ψ= ¯ ¯ ¯ ¯ ( )− +N M K , 35x x
1

respectively, whereas the l vector P has the form

Ψ= ¯ ¯ ¯ ( )
− +P M Q . 36x x

1

Further, the l� l matrix D is given by

Ψ Ψ= ¯ ¯ ¯ ¯ ( )− +D M C 37x x
1

and, in general, is not a diagonal matrix; see Ref. [24] for a more detailed presentation. Nevertheless, in many cases, and
based on a reasonable assumption of light damping (e.g. [6,25]), a satisfactory approximation can be obtained by neglecting
the off-diagonal elements of D; thus, yielding a diagonal D matrix. In this regard, clearly, the FRF matrix of the system of Eq.
(33) is given by

ωΛ( ) = ( )Λ
−R , 381

where

ω ω= − + + ( )Λ iR L D N. 392

Further, considering Eqs. (32) and (36), as well as the relation ωΛ= ( )P P, leads to

ωΨΛ Ψ= ¯ ( ) ¯ ¯ ¯ ( )− +x M Q , 40x
1

which, combined with Eq. (20), yields

α ω ωΨΛ Ψ( ) = ¯ ( ) ¯ ¯ ( )− +M . 41x x
1

Finally, the FRF matrix obtained in Eq. (41) can be further simplified if taken into account that the FRF matrix ωΛ( ) is
diagonal. In this regard, Eq. (41) yields

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∑α ω α ω( ) = ′ ( ) ¯
( )=

( ) ( ) +x y M ,
42k

l
k k

kx x
1

where = …( ) ( ) k lx y, , 1, 2, ,k k correspond to the −k th column of the modal matrix Ψ̄ and to the −k th row of Ψ̄−1, re-
spectively. Finally, α ω′ ( ) = …k l, 1, 2, ,k is the −k th diagonal element of the matrix ωΛ( ).

Note that Eq. (42) is a rather useful series expression for α ω( )x , which circumvents the potentially cumbersome numerical
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evaluation of the M-P inverse indicated in Eq. (28). Also, in many applications, the series may be truncated to only the first
few terms, with little loss of accuracy.
4. Frequency domain stochastic response analysis of nonlinear systems with singular matrices

Consider next a nonlinear version of the system of Eq. (4) given by

Φ¨ + ̇ + + ( ̇ ¨ ) = ( ) ( )tMq Cq Kq q q q Q, , , 43

where Φ is a nonlinear n vector depending on the coordinates vector q and its derivatives up to order two.
Further, taking into account Eqs. (12)–(15), the general form of the equations of motion for the augmented −l DOF

nonlinear system ( ≥l n) becomes

Φ¯ ¨ + ¯ ̇ + ¯ + ¯ ( ̇ ¨ ) = ¯ ( ) ( )tM x C x K x x x x Q, , , 44x x x x x

where the +m l augmented nonlinear vector of the system takes the form

⎡
⎣⎢

⎤
⎦⎥Φ Φ¯ = ( − )

( )

+I A A

0
.

45
x

x

A more detailed presentation on the construction of the equations of motion for a nonlinear system with singular matrices
can be found in Ref. [18].

4.1. Generalized statistical linearization of nonlinear systems – a frequency domain approach

The statistical linearization approximate methodology has been one of the most efficient and versatile approaches for
determining the stochastic response of nonlinear structural and mechanical systems [6,26]. The main objective of the
methodology relates to the replacement of the original nonlinear system with an equivalent linear one by appropriately
minimizing the error vector corresponding to the difference between the two systems. Thus, closed form analytical expres-
sions available for the response statistics of linear systems can be readily used. One of the reasons for the wide utilization of
the methodology in diverse engineering applications relates to the typically used Gaussian response assumption in con-
junction with the mean square error minimization criterion. The above elements facilitate the derivation of closed form
expressions for the equivalent linear elements (e.g., stiffness, damping coefficients, etc.) as functions of the response statistics.

Next, an equivalent to Eq. (44) linear system is sought in the form

( ¯ + ¯ ) ¨ + ( ¯ + ¯ ) ̇ + ( ¯ + ¯ ) = ¯ ( ) ( )tM M x C C x K K x Q , 46x e x e x e x

where ¯ ¯M C,e e and K̄e denote the ( + ) ×m l l equivalent linear mass, damping and stiffness matrices, respectively, to account
for the nonlinearity of the original system.

Comparing Eqs. (15) and (46), clearly, the FRF matrix of the equivalent linear system of Eq. (46) is given by

α ω( ) = ( )+R , 47e e

where

ω ω= − ( ¯ + ¯ ) + ( ¯ + ¯ ) + ( ¯ + ¯ ) ( )iR M M C C K K . 48e x e x e x e
2

Without loss of generality, it has been assumed in Eq. (47) that the Re matrix has full rank. In a different case, Eq. (23) should
be considered. Further, the response statistics are determined via applying Eqs. (30)–(31).

Following Ref. [18], the basic steps for determining the equivalent linear matrices are concisely reviewed next for
completeness. Further, to account for singular matrices, a generalization of a formula [6,27] based on a Gaussian response
assumption and related to the expectation of the derivatives of the nonlinear function Φ̄x is proved for the first time in the

literature. Specifically, minimizing the mean square error, ⎡⎣ ⎤⎦εE 2 , where the error vector, ε, is defined as

ε Φ= ¯ ( ̇ ¨ ) − ¯ ¨ − ¯ ̇ − ¯ ( )x x x M x C x K x, , 49x e e e

yields

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Φ̄ ^ = ^^
*

*

*

= … ( + )

( )

i m lx xx

K

C

M

E E , 1, 2, , .

50

i

i
e

i
e

i
e

x,
T

T

T

T

To simplify further Eq. (50) the following proposition is introduced, which can be construed as a generalization of the
theorem proved in [27].
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Proposition 1. Let the l3 vector x̂ be a zero mean jointly Gaussian random vector and  Φ̄ →: l l
x

3 3 be a smooth multivariate
function. Then, the expression

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Φ Φ^^ ¯ ^ = ∇ ¯ (^)

( )

+
xx x xE E E ,

51i x x
T

,

holds true. A proof of Eq. (51) is provided in the Appendix B.

Moreover, it is noticed that for the singular matrix
⎡
⎣⎢

⎤
⎦⎥^^xxE

T
, the M-P inverse matrix on the left hand side of Eq. (51) is also

singular, and thus, taking into account Eqs. (1), (3) and (51) yields

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭Φ Φ¯ ^ = ^^ ∇ ¯ (^) + − ^^ ^^
( )

+
x xx x I xx xx wE E E E E ,

52
i x x,

T T T

where w is an arbitrary l3 vector. Clearly, for =w 0 a particular solution for ⎡⎣ ⎤⎦Φ̄ x̂E i x, is obtained in the form

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦Φ Φ¯ ^ = ^^ ∇ ¯ (^)

( )
x xx xE E E .

53i x x,
T

Note that Eq. (53) was utilized in Ref. [18], and can be construed as a direct generalization of the standard relationship for

non-singular matrices [6,27]. Nevertheless, the step of arbitrarily choosing the solution of Eq. (53) for ⎡⎣ ⎤⎦Φ̄ x̂E i x, corre-

sponding to =w 0 can be circumvented by directly treating Eq. (51). In this regard, Eqs. (50) and (51) are pre-multiplied by
⎡
⎣⎢

⎤
⎦⎥^^

+
xxE

T
and

⎡
⎣⎢

⎤
⎦⎥^^xxE

T
, respectively, yielding

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Φ

Φ

Φ

^^
*

*

*

= ^^

∂ ¯

∂
∂ ¯

∂ ̇
∂ ¯

∂ ¨

= … ( + )

( )

i m lxx

k

c

m

xx

x

x

x

E E E , 1, 2, , ,

54

i
e

i
e

i
e

i

i

i

x

x

x

T

T

T

T

T

,

,

,

where * *m c,i
e

i
eT T and *ki

eT correspond to the ith row of ¯ ¯M C,e e and K̄e, respectively. Also, Φ̄i x, is the ith component of the

nonlinear vector Φ̄x and the l3 vector x̂ is defined as ^ = ( ̇ ¨ )x x x x, , T.
Apparently, the equivalent linear mass, damping and stiffness matrices can be determined by solving Eq. (54). However,

the ×l l3 3 matrix
⎡
⎣⎢

⎤
⎦⎥^^xxE

T
is a priori assumed to be singular as a result of the redundant coordinates modeling scheme [18].

Therefore, by employing its M-P inverse, [^^ ]+xxE
T

, and taking into account Eqs. (3) and (54) yields

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Φ

Φ

Φ

*

*

*

= ^^ ^^

∂ ¯

∂
∂ ¯

∂ ̇
∂ ¯

∂ ¨

+ ( ) = … ( + )

( )

+
i m l

k

c

m

xx xx

x

x

x

g yE E E , 1, 2, , ,

55

i
e

i
e

i
e

i

i

i

x

x

x

T

T

T

T T

,

,

,

where m c,ij
e

ij
e and kij

e
denote the elements of the equivalent linear augmented matrices; and

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟( ) = − ^^ ^^

+
g y I xx xx yE E

T T
,

denotes the arbitrary part of the solution. Although the existence of ( )g y implies a non-unique solution for the equivalent
linear matrices, it was recently proved in Ref. [18] that the solution obtained by setting the arbitrary vector equal to zero is at
least as good, in terms of minimizing the mean square error, as any other possible solution corresponding to a non-zero
arbitrary vector. In this regard, setting =y 0 in the arbitrary part of the solution and substituting in Eq. (55) yields

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Φ

Φ

Φ

*

*

*

= ^^ ^^

∂ ¯

∂
∂ ¯

∂ ̇
∂ ¯

∂ ¨

= … ( + )

( )

+
i m l

k

c

m

xx xx

x

x

x

E E E , 1, 2, , .
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i
e

i
e

i
e

i

i

i

x

x

x

T

T

T

T T

,

,

,

Clearly, in the case where the minimum number of coordinates is utilized,
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥^^ = ^^

+ −
xx xxE E

T T 1

, and thus, Eq. (56) takes
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the well-established form used in the standard implementation of statistical linearization [6,18].
Further, determining the equivalent linear matrices in Eq. (54) requires knowledge of the response covariance matrix

⎡
⎣⎢

⎤
⎦⎥^^xxE

T
. Thus, an additional set of equations relating the covariance matrix and the equivalent linear matrices is required. In

this regard, the herein derived frequency domain input-output Eq. (29) is utilized. Overall, the developed generalized
statistical linearization methodology can be construed as the frequency domain alternative to a recently proposed time-
domain methodology [18].
4.2. Mechanization of the generalized statistical linearization methodology

Regarding the numerical implementation of the method, Eqs. (30)–(31) and Eq. (56) comprise a coupled nonlinear

system of equations yielding the equivalent linear matrices M̄e, C̄e, and K̄e as well as the system response covariance matrix.
For the solution of the coupled nonlinear system, any standard numerical optimization scheme can be applied [28].
Nevertheless, the following iterative procedure can be utilized as an alternative straightforward approach.

The first step consists of selecting initial values for the equivalent linear matrices. In this regard, M̄e, C̄e, and K̄e are set
equal to null matrices. Next, following the selection of an appropriate convergence criterion, the following two steps are
repeated successively:

� A value for the system response covariance matrix is computed via Eqs. (30) and (31).
� Combining Eq. (56) with the system response covariance matrix obtained in the previous step, updated values for the

equivalent linear matrices are calculated.

The iterative method stops when convergence is attained.
5. Numerical examples

5.1. Linear systems with singular matrices

As a numerical example the 3-DOF linear system of rigid masses shown in Fig. 1, is considered. The first mass m1 is
attached to the foundation by a linear spring and a linear damper with coefficients k1 and c1, respectively. It is also con-
nected to the other two masses m2 and m3 by two linear springs with coefficients k2 and k4. Finally, the mass m2 is con-
nected to the third mass by a linear spring with coefficient k3 and a linear damper with damping coefficient c2. Further, the
system is excited by a stochastic force ( )Q t3 applied on mass m3 and modeled as a white-noise process with a correlation

function π δ( ) = ( )w t S t2Q 03
. The value S0 stands for the (constant) power spectrum value of ( )Q t3 . The generalized displace-

ments of the masses m m,1 2 and m3 due to the applied force, are denoted by q q,1 2 and q3, respectively.

Following a standard Newtonian, or Lagrangian approach [29], the linear system equations of motion have the form given
in Eq. (4), where the 3�3 mass, damping and stiffness matrices are given by

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= = −
− ( )

m

m

m

c

c c

c c

M C

0 0

0 0

0 0

,

0 0

0

0 57
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1

2 2

2 2

and
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
+ + − −

− + −
− − + ( )

k k k k k

k k k k

k k k k

K ,
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1 2 4 2 4

2 2 3 3

4 3 3 4

respectively. Further, the displacement vector is given as

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

=

( )

q
q
q

q ,

59

1

2

3

whereas the excitation vector ( )tq is given by

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

=
( )Q

Q
0
0 .

603

The parameters values in this example are = = = = =m m m c c2, 1, 0.11 3 2 1 2 and = = = =k k k k 11 2 3 4 , and = −S 100
3. Con-

sidering next Eqs. (9)–(10), the stationary covariance matrix of the system response displacement is given by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
V

0.0493 0.0623 0.0644
0.0623 0.0805 0.0846
0.0644 0.0846 0.0916

,
61

q

whereas the stationary covariance matrix of the system response velocity is

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
̇V

0.0106 0.0110 0.0086
0.0110 0.0142 0.0131
0.0086 0.0131 0.0170

.
62

q

Next, to demonstrate the herein developed frequency domain based methodology for systems with singular matrices,
the system shown in Fig. 1 is decomposed into several separate systems, which are treated independently. In particular, as it
is seen in Fig. 2, the number of modeling coordinates used for deriving the system equations of motion is increased by two.
In this regard, the coordinates vector of the redundant DOFs system becomes

⎡⎣ ⎤⎦= ¯ ¯ ¯ ( )x x x x xx , 63
T

1 2 3 4 5



I.A. Kougioumtzoglou et al. / Journal of Sound and Vibration 404 (2017) 84–101 93
where ¯ ¯x x,1 3 and x̄5 correspond to the displacements of the masses m m,1 2 andm3 and the coordinates x x,2 4 correspond to the
additional DOFs. Note, however, that the sub-systems are related via two constraint equations, namely

+ = ( )x d x 641 2

and

+ + = ( )x x d x , 652 3 4

where d is the physical length of the masses (same for m m,1 2 and m3). The constraint equations can also be written as

¯ + + = ( )x l d x 661 1,0 2

and

+ ¯ + + = ( )x x l d x , 672 3 3,0 4

where l1,0 is the unstretched length of the mass m1, and l3,0 is the unstretched length of m3.
To derive the system equations of motion, the total kinetic energy of the system is given by

= ¯ ̇ + ( ̇ + ¯ ̇ ) + ( ̇ + ¯ ̇ ) ( )T m x m x x m x x
1
2

1
2

1
2 681 1

2
2 2 3

2
3 4 5

2

and the total potential energy by

= ¯ + ¯ + ¯ + ( − + + ¯ ) ( )V k x k x k x k x x x
1
2

1
2

1
2

1
2

. 691 1
2

2 3
2

3 5
2

4 2 4 5
2

Next, the standard variational formulation [29] involving the Lagrangian function ( ̇) = −L T Vx x, leads to the Euler-Lagrange
equations, and thus, to the system equations of motion of the form of Eq. (15). In particular, the mass, damping and stiffness
matrices become

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡
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= =

( )
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m m

m m
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c

c

M C

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

,
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x x
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and

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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− −
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− + ( )
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k k k
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k k k k

K

0 0 0 0

0 0

0 0 0 0

0 0

0 0

,
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x

1

4 4 4

2

4 4 4

4 4 3 4

respectively. Also, differentiating twice with respect to time Eqs. (66)–(67), the 2�5 matrix A defined in Eq. (13) takes the
form

⎡
⎣⎢

⎤
⎦⎥= −

− ( )
A 1 1 0 0 0

0 1 1 1 0
,

72

whereas the 2�1 vector b becomes

⎡
⎣⎢

⎤
⎦⎥=

( )
b 0

0
.

73

Next, taking into account Eqs. (13)–(14) and (16)–(18), and substituting the parameters values, the 7�5 augmented mass,
damping and stiffness matrices of the system become

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

¯ =
−

−
−

¯ =
−

( )

M C

0.8 0.2 0.2 0.4 0.4
0.8 0.2 0.2 0.4 0.4
0.4 0.4 0.4 0.8 0.8

0.4 0.6 0.6 1.2 1.2
0 0 0 2 2
1 1 0 0 0
0 1 1 1 0

,

0.04 0 0 0 0
0.04 0 0 0 0
0.02 0 0 0 0

0.02 0 0 0 0
0 0 0 0 0.1
0 0 0 0 0
0 0 0 0 0 74

x x
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and

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

¯ =

− − −
− − −

− −
−
−

( )

K

0.4 0.2 0.2 0.2 0.2
0.4 0.2 0.2 0.2 0.2
0.2 0.6 0.6 0.6 0.6

0.2 0.4 0.4 0.4 0.4
0 1 0 1 2
0 0 0 0 0
0 0 0 0 0

.

75

x

Further, employing Eq. (19), the augmented excitation vector is given by

⎡

⎣

⎢
⎢
⎢
⎢
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⎤
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Q

Q

Q

Q

Q

Q
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0
0

.
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3

3

3

3

Next, to determine the system response statistics via the herein developed frequency domain methodology, the 7�5
matrix Rx is obtained via Eq. (22). Furthermore, utilizing Eq. (28) the FRF matrix α ω( )x is determined. It is noted that Eq. (28)

is utilized instead of Eq. (23) as the 7�5 matrix Rx has full rank, i.e. =rank R 5x , and thus, the FRF matrix is uniquely
defined. Next, combining Eq. (29) with Eq. (30), the covariance matrix of the system response displacement is given by

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

( )

¯V

0.0493 0.0493 0.0130 0.0623 0.0021
0.0493 0.0493 0.0130 0.0623 0.0021
0.0130 0.0130 0.0052 0.0182 0.0019
0.0623 0.0623 0.0182 0.0805 0.0040
0.0021 0.0021 0.0019 0.0040 0.0030 77

x

and combining Eq. (29) with Eq. (31), the covariance matrix of the system response velocity is determined to be

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−
−

−
− − − ( )

¯̇V

0.0106 0.0106 0.0004 0.0110 0.0024
0.0106 0.0106 0.0004 0.0110 0.0024
0.0004 0.0004 0.0028 0.0032 0.0013
0.0110 0.0110 0.0032 0.0142 0.0011
0.0024 0.0024 0.0013 0.0011 0.0050

.

78

x

For the comparison of the results obtained by the standard and the herein proposed methodology, the matrices given by

Eqs. (77)–(78) are compared to those given by Eqs. (61)–(62). Indicatively, it is seen that the variances ⎡⎣ ⎤⎦qE 1
2 and ⎡⎣ ⎤⎦̇qE 1

2

coincide with their counterparts, i.e. ⎡⎣ ⎤⎦x̄E 1
2 and ⎡⎣ ⎤⎦¯ ̇xE 1

2 . Further, considering the equations that connect the reference systems

depicted in Fig. 2, i.e. ¯ = −x q q3 2 1 and ¯ = −x q q5 3 2, yields

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦¯ = + − = ( )x q q q qE E E 2E 0.0052 793
2

1
2

2
2

1 2

and

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦¯ = + − [ ] = ( )x q q q qE E E 2E 0.0030. 805
2

2
2

3
2

2 3

Therefore, the variances computed in Eqs. (79)–(80) are equal to the corresponding ones in positions ( )3, 3 and ( )5, 5 of
matrix ¯Vx. The same agreement for the response velocity variances can be readily verified by comparing Eq. (62)
with Eq. (78).

Further, as noted in Section 3.2, the FRF matrix α ω( )x can be alternatively determined without computing the M-P inverse
of the matrix Rx in Eq. (22). Instead, a generalized modal analysis approach can be employed. In this regard, following
closely Ref. [24], the modal matrix for the system in Fig. 2 is computed as
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⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ψ̄ =

−
−

− −
− −

− ( )

0.1740 0.4880 0.5151 0.0000 0.0000
0.1740 0.4880 0.5151 0.1305 0.8116
0.6401 0.3004 0.1517 0.3601 0.1281
0.4661 0.1877 0.6668 0.8507 0.5554

0.5590 0.6310 0.0413 0.3601 0.1281

.

81

Next, utilizing the transformation of Eq. (32) and taking into account Eqs. (34)–(35) and (37), the system equation of motion
of Eq. (33) arises. Also, the 5�5 diagonal FRF matrix of Eq. (38) becomes

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
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⎥
⎥
⎥

ω

ω ω

ω ω

ω ω

ω

ω

Λ( ) =

− + +

− + +

− + +

−

− ( )

i

i

i

1
0.1162 2.5726

0 0 0 0

0
1

0.0703 1.7620
0 0 0

0 0
1

0.0135 0.1655
0 0

0 0 0
1

0

0 0 0 0
1

.
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2

2

2

2

2

Furthermore, combining Eq. (41), or Eq. (42), with Eqs. (81)–(82), the FRF matrix is determined, and thus, the covariance
matrix of the system response displacement is given by

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

( )

V

0.0492 0.0492 0.0132 0.0624 0.0020
0.0492 0.0492 0.0132 0.0624 0.0020
0.0132 0.0132 0.0050 0.0182 0.0019
0.0624 0.0624 0.0182 0.0806 0.0039
0.0020 0.0020 0.0019 0.0039 0.0032

,
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x

which is in agreement with Eq. (77) obtained via utilizing the MP inverse of Rx .
5.2. Nonlinear systems with singular matrices

5.2.1. 2-DOF nonlinear system with singular matrices
A − DOF2 nonlinear system of rigid masses m1 and m2 shown in Fig. 3 is considered as the first numerical example. The

mass m1 is connected to the foundation by a nonlinear spring of the linear-plus-cubic type and by a linear damper with
coefficient c1. Further, the mass m2 is connected to m1 by a linear spring and a linear damper with coefficients k2 and c2,
respectively. The system is excited by a random force ( )Q t2 which is modeled as a white-noise process with a correlation

function π δ( ) = ( )w t S t2Q 02
, where S0 is the (constant) power spectrum value of ( )Q t2 . Finally, the generalized displacements

are given by q1 and q2.
The system equations of motion are written in the matrix form of Eq. (4), where the matrices M C, and K are given by

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥= =

+ −
− =

+ −
− ( )

m

m

c c c
c c

k k k

k k
M C K

0

0
, , ;
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1

2

1 2 2

2 2

1 2 2

2 2

whereas the coordinate vector q and the excitation vector Q are defined as
Fig. 3. A two degree-of-freedom nonlinear structural system under stochastic excitation.
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⎡
⎣⎢

⎤
⎦⎥=

( )

q
qq

85
1

2

and

⎡
⎣⎢

⎤
⎦⎥=

( )Q
Q

0
,

862

respectively. Further, the nonlinear function Φ takes the form

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

εΦ( ̇ ¨ ) =
( )

k q
q q q, ,

0
.

87
1 1 1

3

Next, taking into account Eq. (87) and the fact that the minimum number of DOFs are used in modeling the system

equations of motion, i.e
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥^ ^ = ^ ^

+ −
qq qqE E

T T 1

, Eq. (56) yields

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ε σ
=

( )

k
K

3 0

0 0
.

88
q

e
1 1

2
1

Further, the standard statistical linearization procedure is applied. The parameters values used are

= = = = = = = = =m m m c c c k k k1, 0.1, 11 2 1 2 1 2 , and = −S 100
3. Also, the value of the power spectrum for the excitation is

= −S 100
3. Regarding the numerical implementation, convergence is attained after eight iterations, subject to the criterion

>− −
+

10K K

K

5
j j

j
e e

e

1
, where the j index denotes the −j th iteration and the initial value Ke

0 is set equal to zero. At the end of the

iterative solution procedure, the covariance matrix of the system response displacement is determined as

⎡
⎣⎢

⎤
⎦⎥=

( )
V 0.0386 0.0639

0.0639 0.1102
,

89q

whereas the covariance matrix of the system response velocity is

⎡
⎣⎢

⎤
⎦⎥=

( )̇V 0.0178 0.0252
0.0252 0.0458

.
90q

Next, utilizing a redundant coordinates modeling scheme, the three coordinates x̄ x,1 2 and x̄3 shown in Fig. 4 are con-
sidered, whereas the constraint equation

= + ( )x x d, 912 1

with d being the length of mass m1, serves to connect the two sub-systems of mass m1 and mass m2. Differentiating Eq. (91)
twice with respect to time, the constraint equation is written in the matrix form given by Eq. (13), where
Fig. 4. A two degree-of-freedom nonlinear structural system under stochastic excitation utilizing redundant coordinates.
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⎡⎣ ⎤⎦= − ( )A 1 1 0 92

and

= ( )b 0. 93

Thus, the augmented mass, damping and stiffness matrices, defined in Eqs. (16)–(18), become

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

¯ =

−

¯ = ¯ =

( )

M C K

0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 1 0

,

0.05 0 0
0.05 0 0

0 0 0.1
0 0 0

,

0.5 0 0
0.5 0 0
0 0 1
0 0 0

;
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x x x

while the augmented excitation vector and the nonlinear vector of the system which are defined in Eqs. (19) and (45),
respectively, are given by

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

¯ =

( )
( )

( )
( )

w t

w t
w t

Q

0.5
0.5

0 95

x

and

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

ε

εΦ̄ =

¯

¯

( )

k x

k x

0.5

0.5

0
0

.
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x

1 1 1
3

1 1 1
3

Note that the variable x̄1 in Eq. (96) corresponds to the displacement of the first mass and is defined as ¯ = −x x l1 1 1,0, where l1,0

is the unstretched length of the spring k1.
Applying next the generalized statistical linearization methodology, Eq. (56) is utilized for determining the equivalent

linear stiffness matrix, K̄E, yielding

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε σ¯ =

( ) ( ) ( )
( ) ( ) ( )

( )

¯k

r r r
r r rK

3
2

1, 1 2, 1 3, 1
1, 1 2, 1 3, 1
0 0 0
0 0 0

.

97

xe 1 1
2
1

In Eq. (97), ( )r i j, denotes the (i,j) element of the matrix
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= ^^ ^^

+
R xx xxE E

T T
; see Ref. [18] for more details. Note also that, due

to the presence of the non-unitary matrix r , the equivalent stiffness matrix in Eq. (97) has more non-zero elements than the
corresponding one in Eq. (88). Further, the same convergence criterion as the one employed in deriving Eqs. (89)–(90), is
used, whereas convergence is reached after eight iterations.

In particular, noticing that in this case the 4�3 matrix Re, has full rank, and thus, Eq. (28) is used for determining the FRF
matrix α ω( )x , the covariance matrix of the system response displacement is determined to be

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
¯V

0.0386 0.0386 0.0253
0.0386 0.0386 0.0253
0.0253 0.0253 0.0210

,
98

x

whereas the system response velocity covariance matrix is computed as

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
¯̇V

0.0178 0.0178 0.0074
0.0178 0.0178 0.0074
0.0074 0.0074 0.0132

.
99

x

Comparing the results, it is seen that the variance ⎡⎣ ⎤⎦qE 1
2 in Eq. (89) coincide with the variance ⎡⎣ ⎤⎦x̄E 1

2 in Eq. (98). Similarly,

the variances ⎡⎣ ⎤⎦̇qE 1
2 and ⎡⎣ ⎤⎦¯ ̇xE 1

2 in Eqs. (90) and (99), coincide with each other. Further, taking into account the expression

¯ = −x q q3 2 1 that relates the two reference systems yields

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦¯ = + − = ( )x q q q qE E E 2E 0.0210 1003
2

2
2

1
2

1 2

and
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⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦¯ ̇ = ̇ + ̇ − ̇ ̇ = ( )x q q q qE E E 2E 0.0132, 1013
2

2
2

1
2

1 2

which agree with the corresponding values in Eqs. (98)–(99).
At this point, it should be noted that the herein obtained results are in total agreement with the ones obtained when the

problem is solved by following an alternative time-domain methodology recently developed by the authors [18].
5.2.2. 3-DOF nonlinear system with singular matrices
In this example, nonlinearities are considered in the system studied in Section 5.1. Specifically, it is assumed that the

damping force connecting mass m1 with the foundation is given by ( )¯ ̇ + ϵ ¯ ̇c x x11 1 1 . In this regard, the system mass, damping

and stiffness matrices, as well as the system coordinates and the vector of the excitation force are given by Eqs. (57) and
(59)–(60), respectively. Finally, the nonlinear vector Φ of Eq. (43) takes the form

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Φ =
ϵ ̇ ̇

( )

c q q

0
0

.

102

1 1 1 1

Following next the standard statistical linearization approach [6], the equivalent linear damping matrix of the system be-
comes

⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥π

=
ϵ ̇

( )

c
qC

4
2

E
1 0 0
0 0 0
0 0 0

.
103

e
1 1

1
2

Regarding the numerical implementation of the iterative solution scheme, the convergence criterion is given by

>− −
+

10C C

C

5
j j

j
e e

e

1
, where j denotes the −j th iteration and Ce

0 is set equal to zero. After eight iterations, the covariance ma-

trices of the system response displacement and velocity are given by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
V

0.0379 0.0477 0.0491
0.0477 0.0616 0.0646
0.0491 0.0646 0.0702 104

q

and

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

( )
̇V

0.0084 0.0085 0.0063
0.0085 0.0110 0.0099
0.0063 0.0099 0.0133

,
105

q

respectively.
Next, utilizing the redundant coordinates modeling, the augmented nonlinear vector of Eq. (45) becomes

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Φ̄ =

ϵ ¯ ̇ ¯ ̇

ϵ ¯ ̇ ¯ ̇

− ϵ ¯ ̇ ¯ ̇

ϵ ¯ ̇ ¯ ̇

( )

c x x

c x x

c x x

c x x

0.4

0.4

0.2

0.2

0
0
0

.
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x

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Then, the equivalent damping matrix Ce is obtained by applying the generalized statistical linearization methodology;
that is, Eq. (56) yields

⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

π
¯ =

ϵ ¯ ̇

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

− ( ) − ( ) − ( ) − ( ) − ( )
( ) ( ) ( ) ( ) ( )

( )

c
x

r r r r r

r r r r r

r r r r r

r r r r rC
0.8

2
E

2 6, 6 2 7, 6 2 8, 6 2 9, 6 2 10, 6
2 6, 6 2 7, 6 2 8, 6 2 9, 6 2 10, 6

6, 6 7, 6 8, 6 9, 6 10, 6
6, 6 7, 6 8, 6 9, 6 10, 6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

107

e
1 1

1
2
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whereas the iterative solution procedure using the same convergence criterion as in Eqs. (89)–(90) yields the response
covariance matrices

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

( )

¯V

0.0379 0.0379 0.0098 0.0477 0.0014
0.0379 0.0379 0.0098 0.0477 0.0014
0.0098 0.0098 0.0041 0.0139 0.0016
0.0477 0.0477 0.0139 0.0616 0.0029
0.0014 0.0014 0.0016 0.0029 0.0027 108

x

and

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−
−

−
− − − ( )

¯̇V

0.0084 0.0084 0.0001 0.0085 0.0022
0.0084 0.0084 0.0001 0.0085 0.0022
0.0001 0.0001 0.0025 0.0026 0.0010
0.0085 0.0085 0.0026 0.0110 0.0012
0.0022 0.0022 0.0010 0.0012 0.0046

.

109

x

Taking into account the equations that connect the reference systems, i.e. ¯ = −x q q3 2 1 and ¯ = −x q q5 3 2, it can be readily

verified that the covariance matrices in Eqs. (104)–(105) are in total agreement with the respective ones in Eqs. (108)–(109).
6. Conclusions

In this paper, a frequency domain methodology has been developed for stochastic response determination of MDOF
linear and nonlinear structural systems with singular matrices. Specifically, relying on the generalized matrix inverse theory,
a M-P FRF has been determined for a linear structural system with singular matrices. In this regard, a rather useful series
expansion for the M-P FRF has been presented as well, which circumvents the potentially cumbersome numerical evaluation
of the M-P inverse. Next, relying on the M-P FRF a spectral input-output (excitation-response) relationship has been derived
in the frequency domain for determining the linear system response power spectrum. Further, the above methodology has
been extended via statistical linearization to account for nonlinear systems. This has led to an iterative determination of the
system response mean vector and covariance matrix. Furthermore, to account for singular matrices, the generalization of a
widely utilized formula that facilitates the application of statistical linearization has been proved as well. The formula
relates to the expectation of the derivatives of the system nonlinear function and is based on a Gaussian response as-
sumption. It is noted that the herein developed frequency domain response analysis methodology can be construed as an
alternative to a recently developed time domain technique [17,18]. Several linear and nonlinear MDOF structural systems
with singular matrices have been considered as numerical examples demonstrating the validity and applicability of the
developed frequency domain methodology.
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Appendix A

In this Appendix, a concise presentation of the formulation of Eq. (15), is provided for completeness. Further details can
be found in Refs. [30,17,18]. In this regard, following a redundant DOFs modeling scheme, the −n DOF system of Eq. (4) is
construed as a collection of sub-systems modeled separately, yielding an overall −l DOF system ( ≥l n) with governing
equations of motion given by Eq. (12). Further, additional constraint equations given by Eq. (13) arise that connect the
aforementioned subsystems [30,17]. Subsequently, the constraint equations imply a number of additional forces, ( )tQ x

c , and
thus, Eq. (12) is transformed into

¨ + ̇ + = ( ) + ( ) ( )t tM x C x K x Q Q . A.1x x x x x
c

Furthermore, virtual displacements that are denoted by the non-zero l vector wc, appear due to the additional forces ( )tQ x
c ;

these displacements satisfy the condition

= ( )Aw 0, A.2c

and at any instant of time t can be expressed as
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= ( )w Q w N. A.3c cx
T c c

The l vector N in Eq. (A.3) describes the nature of the non-ideal constraints and can be obtained by experimentation and/or
observation [16]. Exploiting at this point the concept of the M-P generalized matrix inverses, and particularly Eq. (3), the
solution to Eq. (A.2) becomes

= ˜ ( )w Ay, A.4c

where

˜ = − ( )+A I A A, A.5

and y is an arbitrary l vector. Substituting then Eq. (A.4) into Eq. (A.3) and manipulating, the expression

˜ = ˜ ( )AQ AN, A.6x
c

arises. Next, pre-multiplying Eq. (A.1) by Eq. (A.5) and taking into account Eq. (A.6) yields

{ }˜ ¨ + ̇ + = ˜ ( + ) ( )A M x C x K x A Q N . A.7x x x x

Further, assuming for simplicity that the m vector b in Eq. (13) is of the form given by Eq. (14), and considering Eq. (A.7)
yields

⎡
⎣⎢

⎤
⎦⎥

¯ ¨ + ¯ ̇ + ¯ =
˜ ( + )

( )
M x C x K x

A Q N

F
;

A.8
x x x

x

M̄x , C̄x and K̄x denote the augmented mass, damping and stiffness matrices defined by Eqs. (16)–(18), respectively. Finally,
considering ideal constraints, i.e. =N 0, Eq. (A.8) takes the form given by Eq. (15), where the augmented excitation vector Q̄ x
is defined by Eq. (19). A more detailed presentation of the topic can be found in Refs. [30,17,18].
Appendix B

In this Appendix, Eq. (51) is proved. In this regard, taking into account the definition of the expected value and assuming
that the joint Gaussian pdf of x̂ is denoted by (^)p x , the expression

⎡⎣ ⎤⎦ ∫ ∫Φ Φ∇ ¯ (^) = … ∇ ¯ (^) (^) ^
( )−∞

∞

−∞

∞
px x x xE d , B.1x x

T

holds true. However, as it is noted in Section 4.1, the matrix [^^ ]xxE
T
is singular. Therefore, considering a multivariate Gaussian

distribution with a singular covariance matrix [^^ ]xxE
T

[31–33], the pdf of x̂ is given by

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭( ) π^ = ( ) ^^ − ^ [^^ ] ^

( )

−
+expP x B xx B x xx x2 E

1
2

E .
B.2

k T T
1
2 T T

In Eq. (B.2), the M-P inverse of the matrix [^^ ]xxE
T

has the form

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠^^ = ^^

( )

+ −
xx B B xx B BE E ,

B.3
T T T 1

T

and B satisfies the relationship

⎡
⎣⎢

⎤
⎦⎥ λ λ λ^^ = …

( )ρB xx BE ,
B.4

T T
1 2

where λ ρ= …i, 1, 2, ,i denote the non-zero eigenvalues of the singular matrix [^^ ]xxE
T

[31].
Next, following closely Ref. [27], the right hand side of Eq. (B.1) is integrated by parts yielding

∫ ∫ ΦΦ[∇ ¯ (^)] = − … ¯ ∇ (^) ^
( )−∞

∞

−∞

∞
r px x xE d , B.5ix x,

T

where r is a l3 vector with

⎧⎨⎩
⎫⎬⎭∫ ∫ ∏Φ= … ¯ (^) = …

( )
−∞

∞

−∞

∞

=−∞

=+∞

=
≠

r p x i lx d , 1, 2, , 3 .

B.6
i i

x

x l

jx,

3

i

i

j
i j

1

Without loss of generality, the quantity in the brackets in Eq. (B.6) is assumed next to be zero at = ± ∞xi . This is further
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substantiated by the form of Φ̄x ordinarily met in practice; see also Ref. [27]. Thus, Eq. (B.5) becomes

∫ ∫ ΦΦ[∇ ¯ (^)] = − … ¯ ∇ (^) ^
( )−∞

∞

−∞

∞
px x xE d . B.7ix x,

T

Furthermore, note that applying the nabla operator to Eq. (B.2) yields

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟∇ (^) = − (^)∇ ^ ^^ ^

( )

+
p px x x xx x

1
2

E
B.8

T T

and noticing that
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥∇ ^ ^^ ^ = ^^ ^

+ +
x xx x xx xE 2E

T T T
, Eq. (B.8) becomes, equivalently,

⎡
⎣⎢

⎤
⎦⎥∇ (^) = − (^) ^^ ^

( )

+
p px x xx xE .

B.9
T

Finally, considering Eqs. (B.9) and (B.7) takes the form

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ∫ ∫ ΦΦ∇ ¯ (^) = ^^ … ¯ ^ (^) ^

( )

+

−∞

∞

−∞

∞
px xx x x xE E d

B.10ix x
T

,
T

or, equivalently,

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Φ Φ^^ ¯ ^ = ∇ ¯ (^)

( )

+
xx x xE E E ,

B.11i x x
T

,

which proves the Proposition in Section 4.1, and thus, Eq. (51) holds true.
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