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Abstract 35 

We have previously shown that nerve inflammation (neuritis) and transient vinblastine 36 

application lead to axonal mechanical sensitivity in nociceptors innervating deep structures.  We 37 

have also shown that these treatments reduce axonal transport, and proposed that this leads to 38 

functional accumulation of mechanically sensitive channels in the affected part of the axons.  39 

While informing the etiology of mechanically induced pain, axonal mechanical sensitivity does 40 

not address the common report of ongoing radiating pain during neuritis, which could be 41 

secondary to the provocation of axonal chemical sensitivity.  We proposed that neuritis and 42 

vinblastine application would induce sensitivities to noxious chemicals, and that the number of 43 

chemo-sensitive channels would be increased at the affected site.  In adult female rats, nerves 44 

were either untreated, or treated with complete Freund’s adjuvant (to induce neuritis) or 45 

vinblastine.  After 3-7 days, dorsal root teased fiber recordings were taken from Group IV 46 

neurons with axons within the sciatic nerve.  Sciatic nerves were injected intraneurally with a 47 

combination of noxious inflammatory chemicals.  While no normal sciatic axons responded to 48 

this stimulus, 80% and 38% of axons responded in the neuritis and vinblastine groups, 49 

respectively.  In separate experiments, sciatic nerves were partially ligated and treated with 50 

complete Freund’s adjuvant or vinblastine (with controls), and after 3-5 days were 51 

immunolabeled for the histamine 3 receptor.  The results supported that both neuritis and 52 

vinblastine treatment reduce transport of the histamine 3 receptor.  The finding that nociceptor 53 

axons can develop ectopic chemical sensitivity is consistent with ongoing radiating pain due to 54 

nerve inflammation. 55 

  56 
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New & Noteworthy  57 

Many patients suffer ongoing pain with no local pathology or apparent nerve injury.  In this 58 

manuscript, we show that nerve inflammation and transient application of vinblastine induce 59 

sensitivity of Group IV nociceptor axons to a mixture of endogenous inflammatory chemicals.  60 

We also show that the same conditions reduce the axonal transport of the histamine 3 receptor.  61 

The results provide a mechanism for ongoing nociception from focal nerve inflammation or 62 

pressure without overt nerve damage.  63 

  64 
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Introduction 75 

Many patients with limb pain have no detectable pathology associated with their painful 76 

area, and no overt nerve pathology.  Typical presentations include pain at rest and pain evoked 77 

by movements, especially movements that also move the nerves that innervate their painful area, 78 

implying altered neuronal function.  These symptoms accompany a broad spectrum of disorders, 79 

such as back pain and lower limb pain with radiculopathy (Bove et al. 2005; Waddell 1987), 80 

upper limb pain with neck injuries, thoracic outlet syndrome, and radiation plexopathy (Christo 81 

and McGreevy 2011; Greening et al. 2005; Olsen et al. 1993), and endometriosis (Dhote et al. 82 

1996; Missmer and Bove 2011).   83 

Normal sensory neurons transmit information from their target organ to the central 84 

nervous system, but previous work from our laboratory has demonstrated that nerve 85 

inflammation, or neuritis, leads to axonal mechanical sensitivity of Group IV nociceptor axons, 86 

which are not normally mechanically sensitive (Bove et al. 2003; Dilley and Bove 2008b; Dilley 87 

et al. 2013).  This is consistent with movement-induced radiating pain.  However, this sensitivity 88 

does not address ongoing pain without movement arising from fully intact nerves, which 89 

suggests ectopic chemical sensitivity.  Normal axons were reported to be insensitive to 90 

inflammatory mediators (Zimmermann and Sanders 1982), but sensitive to tumor necrosis factor-91 

α in untreated rats (Leem and Bove 2002; Sorkin et al. 1997).  There are no published data on 92 

chemical sensitivities of axons exposed to a pathological environment.   93 

The present study expands on previous work from our laboratory that has examined 94 

inflammation- and vinblastine-induced axonal mechanical sensitivity (Bove et al. 2003; Dilley 95 

and Bove 2008a; Dilley et al. 2013), by investigating the possibility that these conditions induce 96 

axonal chemical sensitivity.  We tested this hypothesis by applying endogenous noxious 97 
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chemicals to normal axons and to axons previously treated with complete Freund’s adjuvant 98 

(CFA) or vinblastine.  We also tested the hypothesis that CFA and vinblastine alter the amount 99 

of receptors for histamine, which was included in the noxious chemical combination.  Our results 100 

demonstrate that C-fibers of Group IV nociceptors can develop ectopic chemical sensitivity, 101 

which is likely associated with ongoing deep radiating pain, and that the same treatments affect 102 

the amount of the histamine H3 receptor. 103 

 104 

Methods 105 

Experiments were carried out in strict accordance with the Animal Care and Use 106 

Committee of the University of New England.  A total of 40 adult female Sprague Dawley rats 107 

(175-250g, Charles River Laboratories, Wilmington, MA) were used in this study.  Female rats 108 

were for consistency with previous reports, because of the subjective perception that there is less 109 

connective tissue within the dorsal roots, and because there has been no difference found 110 

between sexes in our studies in similar parameters (Bove et al. 2003; Dilley and Bove 2008a; 111 

Dilley et al. 2013).   112 

Dorsal Root Recordings  113 

Surgery.  Neuritis induction and vinblastine treatment were the same as previously 114 

published (Bove et al. 2003; Dilley and Bove 2008a).  Rats were anesthetized with isoflurane in 115 

pure oxygen.  The fur over the left posterior thigh was clipped, the skin cleaned with surgical 116 

scrub, and the area draped with sterile plastic.  A small incision was made posterior to the femur, 117 

and the muscles separated to expose the sciatic nerve, which was then cleared of connective 118 

tissue for ~10 mm using only epineurial fascia to mobilize the nerve.  In some animals, a 4 X 4 X 119 
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10 mm piece of GelFoam saturated with ~150 µl CFA (Sigma, emulsified 1:1 with sterile buffer) 120 

was gently wrapped to surround the nerve.  In other animals, a cone was formed with Parafilm 121 

and placed around the nerve prior to placing cotton wool soaked in 0.1 mM vinblastine in sterile 122 

buffer around the nerve (Dilley and Bove 2008a; Fitzgerald et al. 1984).  After 15 minutes, the 123 

vinblastine was removed and copiously rinsed with sterile buffer.  The incision was closed in 124 

layers with 4-0 nylon sutures, and the rats moved to a clean cage for recovery.  Because we have 125 

not seen differences between surgical sham and unoperated groups using these methods (Bove et 126 

al. 2003; Dilley and Bove 2008b), and because we have two distinct procedures, we used 127 

unoperated rats as controls.  Because vinblastine is anti-inflammatory (Norris et al. 1977), it can 128 

be considered a control group for the inflammation caused by the application of CFA. 129 

  Electrophysiology and experimental protocol.  Rats were anesthetized to areflexia with 130 

isoflurane and prepared for electrophysiology 3-4 days following vinblastine treatment or 6-7 131 

days following the induction of neuritis.  These endpoints were chosen because they are when 132 

the agents show their greatest effects and to be consistent with our previous reports (Dilley and 133 

Bove 2008a; b; Dilley et al. 2013).  Body temperature was maintained at 37°C using a feedback 134 

controlled thermal pad with a rectal probe (FCH-Inc.) and a circulating warm water flexible pad 135 

(Gaymar) folded over the upper body.  Electrophysiological methods and neuronal isolation were 136 

performed as previously described (Fig. 1; also see Bove et al. 2003).  A laminectomy was 137 

performed from L2 - L5 to expose the spinal cord.  The skin was glued to a metal ring and the 138 

pool filled with 37°C mineral oil.  The dura mater was incised and the L5 and L4 dorsal roots 139 

were cut at the dorsal root entry zone.  Dorsal roots were draped over a bipolar stimulating 140 

electrode and placed on a small glass plate.  Fine filaments (~6-12 µm) were separated from the 141 

dorsal roots using honed forceps, and draped over a bipolar recording electrode made with fine 142 
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gold wires.  The distance between the stimulating and recording electrodes ranged from 11-14 143 

mm.  Electric stimuli were delivered to the dorsal root at intensity suprathreshold for C-fiber 144 

activation (0.05-0.1 ms, 20-30V) using an isolated constant-voltage stimulator (Grass, USA) to 145 

identify neurons and determine conduction latencies.  Action potentials were amplified, band-146 

pass filtered (50–5,000 Hz), and monitored with an oscilloscope.  Neuronal activity was digitized 147 

and recorded with Spike 2 software (Cambridge Electronic Designs, Cambridge, United 148 

Kingdom) for off-line analysis.  Conduction velocities were determined by dividing the 149 

conduction distance by the latency of individual units.  When clear single-neuron waveforms 150 

were obtained, receptive fields (RFs) in deep structures (Group IV) were searched for distal to 151 

the knee using noxious stimuli applied with the fingers and/or forceps.  Cutaneous RFs were 152 

distinguished from deep RFs by using forceps to carefully maneuver and pinch the skin only, as 153 

previously described (Bove and Light 1995).  If the responsiveness moved with the skin, it was 154 

concluded that the RF was within the skin.  Only Group IV neurons with high threshold RFs 155 

were recorded further (Figs. 2A - B).  Group III neurons are far less common when recording 156 

from the dorsal roots (Bove et al. 2003) and were not encountered.  Neurons with cutaneous RFs 157 

were not characterized, as they have shown to not develop axonal mechanical sensitivity. 158 

In early experiments, we determined that the latency in response to topical application of 159 

“inflammatory soup” [IS; bradykinin, serotonin, histamine, and prostaglandin, all at 10
-5 

M in 160 

observation medium (OM; Light et al. 2008)] was 30-60 minutes.  We attributed this to the 161 

diffusion barrier and positive intrafascicular pressure that the perineurium presents (Peltonen et 162 

al. 2013).  We attempted to disrupt this barrier using sodium deoxycholate (Todd et al. 2000a; b), 163 

but this did not reduce the response latency.  Because these recordings are often time-limited, we 164 

chose to inject substances subperineurally using a 30 ga bent needle.   165 
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Once peripheral RFs were identified, the following protocol was followed: 166 

1) Recording of ongoing activity for 5+ minutes; 167 

2) Mechanical stimulation of the RF; 168 

3) Exposure and mechanical stimulation of the nerve, accomplished by pressing the nerve 169 

between a silastic probe and a hooked spatula; 170 

4) Subperineural injection of 100-150 µl of OM into the nerve with 5+ minutes recording; 171 

5) Subperineural injection of 100-150 µl of IS into the nerve with 5+ minutes recording; 172 

6) Injection of IS into the distal mechanically sensitive RF with 5+ minutes recording. 173 

The mechanical stimulation of the nerves was previously described in detail (Bove et al. 174 

2003).  In brief, forces of 4 N can be applied with this probe; in these experiments as in previous 175 

experiments the forces used on the nerve were limited to 2 N or less (measured earlier on an 176 

electronic scale), on a footprint of 6–8 mm.  As in our previous studies, using the probes in this 177 

manner does not interrupt conduction of action potentials from axons in passage, confirmed by 178 

mechanically activating the natural RF following nerve stimulation.  When the ectopic 179 

mechanically sensitive RF responds, it does so similarly to the natural RF.  These observations 180 

confirm that the responses are not injury discharge. 181 

Because it is unknown whether previous exposure to noxious chemicals would induce 182 

sensitivity changes, we limited our data collection to the first Group IV neurons that were 183 

appropriately identified.  This primarily resulted in 1 neuron per experiment; however in 3 184 

experiments, 2 neurons with distinctively identifiable waveforms were recorded from the same 185 

filament. 186 



10 
 

Immunohistochemistry 187 

Model and Surgery.   We hypothesize that slowing the flow of channels and receptors 188 

will facilitate functional expression on the axons.  We previously reported that partial tight 189 

ligation of the sciatic nerve led to kinesin accumulation, and that this accumulation was 190 

attenuated during neuritis and by vinblastine application (Dilley et al. 2013).  These observations 191 

supported the prediction that these treatments reduce fast axoplasmic flow.  We repeated this 192 

approach to evaluate kinetics of the histamine H3 receptor (H3R).  Sixteen rats were operated on 193 

as above, using 4 rats per group (CFA and control, vinblastine and control).  During each 194 

surgery, we added a partial (~50%) tight ligation of the sciatic nerve, using 7-0 nylon suture.  195 

Non-ligated axons were present in all nerves, and served as a control, though not used as a 196 

comparison group.   197 

CFA and vinblastine rats had the agent applied as described above to cover 8 - 10 mm of 198 

the nerve proximal to and including the ligation.  Control rats had their sciatic nerve partially 199 

ligated with no other procedure performed.  200 

After 3 days (vinblastine) and 6 days (CFA), treated and control rats were terminally 201 

anesthetized with sodium pentobarbital (200 mg/kg, intraperitoneally) and perfused 202 

transcardially with heparinized 0.1 M phosphate-buffered saline.  The affected segments of their 203 

sciatic nerves were removed and immersion-fixed in 4% paraformaldehyde for 4 hours while 204 

pinned straight, and then placed in 30% sucrose for cryoprotection.  Nerves were sectioned 205 

longitudinally at 10 µm using a cryostat and processed for H3R immunoreactivity using standard 206 

methods.  Histamine 3R was chosen because histamine is known to be involved in nociceptor 207 

activation and sensitization (Mense and Schmidt 1974; Pongratz et al. 2002; Zhang et al. 2007) 208 

and a well-characterized antibody was available.  Sections were incubated in rabbit anti-H3R 209 
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antibodies [Sigma Aldrich H7038, 30 μg/ml (Cannon et al. 2007; Chen et al. 2015)] overnight at 210 

4°C, rinsed, and incubated with donkey anti-rabbit IgG DyLight 488 (Jackson Immunoresearch, 211 

711-485-152, 1:200) for 60 min at room temperature.  The pancreas was used as a positive 212 

control for the anti-H3R (Nakamura et al. 2014); sections incubated without the primary 213 

antibody displayed no positive signal. 214 

Imaging.  Sections were photographed and montaged at 20X using a Nikon upright 215 

microscope fitted with Prior motorized stage and a Ds-Qi1 MC camera, both controlled by NIS 216 

Elements (Nikon).  A background correction image was taken using the appropriate fluorescent 217 

slide (Chroma USA) and was applied to all images.  218 

Image Analysis.  Montaged images were renamed using random numbers (by GMB) and 219 

analyzed in one session by the same person (by RMG), using NIS Elements.  A region of interest 220 

(ROI) was defined as the part of the ligated nerve starting 20-30 µm proximal to the ligation and 221 

extending another 500 µm proximally (Fig. 3xx).  ROIs were analyzed from 4-6 sections per 222 

nerve.  The positive signal within the ROI was subjectively determined using the thresholding 223 

tool within NIS Elements (Fig. 3A), used to select pixels of light intensities that matched those 224 

chosen by the experimenter as “positive.”  We measured the fraction of the total ROI area that 225 

was above threshold for each section, and refer to it as the “H3R signal.”   226 

Data Analysis 227 

Data were analyzed using GraphPad Prism 7 and expressed as Mean ± SEM unless 228 

otherwise noted, with statistical significance set at ≤ 0.05.  Conduction velocities were analyzed 229 

using a one-way ANOVA.  Proportions of axonal mechanical and chemical sensitivities, and 230 

ongoing activity, were analyzed using Chi-square (Χ
2
) tests.  The H3R signal in treatment and 231 

control groups were compared using un-paired t-tests.  232 
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 233 

Results  234 

Dorsal root recordings were obtained from a total of 27 neurons in 24 rats (9 naive rats, 9 235 

CFA treated rats, and 6 vinblastine treated rats).  There was no difference in conduction 236 

velocities by group (F3, 24 = 0.77, p = 0.8).  The mean conduction velocity for all recorded 237 

neurons was 0.83 m/sec ± 0.20 (SD; Table 1).  All neurons had a non-cutaneous mechanically 238 

responsive RF in the lower limb or foot (Fig. 2B). 239 

Receptive field responses to IS.   Sixty-six percent of normal neurons responded to 240 

injection of IS directly into their mechanically sensitive RFs (Table 1 and Fig. 2D).  Following 241 

treatment with CFA or vinblastine, 29% and 50% responded to IS injection into their RFs, 242 

respectively. There was no statistical difference between these proportions.  These results are 243 

consistent with previous reports of cutaneous C-fibers (Kessler et al. 1992) and muscle 244 

nociceptors (reviewed by Mense 2009).  The discharge patterns were similar among the groups, 245 

consisting of a mechanical artifact or response of the axon due to the needle insertion and 246 

pressure of the fluid, followed by a true response (Fig. 2D). The response latencies and durations 247 

were highly variable among groups, ranging from 0.5 – 171 sec and 16 – 143 sec, respectively. 248 

Axonal chemical sensitivity during neuritis and following transient application of 249 

vinblastine.  Following treatment with CFA or vinblastine, 80% and 38% of axons, respectively, 250 

responded to injection of IS (Table 1 and Figs. 2E and G).  No normal axons or treated axons 251 

responded to intraneural OM, and no normal axons responded to intraneural IS (Fig. 2B).  The 252 

proportions of responsive axons differed significantly by group [Χ
2
 (2, n = 26) =11.51, p = 253 

0.005].  The discharge pattern to IS varied, with latencies ranging from 6 to 88 seconds.  The 254 

duration of the responses to IS also varied, lasting from 16 to 148 sec. 255 
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Axonal mechanical sensitivity.  Axonal mechanical sensitivity was not present in any 256 

normal axons, but was present in 33% and 50% of axons treated with CFA or vinblastine, 257 

respectively (Table 1 and Fig. 1D).  While the contingency test with these data was not 258 

statistically significant [Χ
2
 (2, n = 25) =5.16, p = 0.08], there was a statistically significant trend 259 

towards more axonal mechanical sensitivity in treated axons  [Χ
2
 (1, n = 25) = 11.51, p = 0.03], 260 

and the proportions are consistent with our previous reports (Bove et al. 2003; Dilley and Bove 261 

2008a; b).  The normal RFs of all these neurons were responsive to noxious mechanical 262 

stimulation (Fig. 2C).  There was no sustained discharge after the mechanical stimuli were 263 

removed (Figs. 2C and D).  264 

Ongoing activity.  Few neurons in this series of experiments had ongoing activity (1 of 9 265 

control, 2 of 10 during neuritis, and 0 of 8 after vinblastine treatment).  There were no statistical 266 

differences between the proportions, which is consistent with our previous reports (Bove and 267 

Dilley 2010; Dilley and Bove 2008a). 268 

Neuritis and vinblastine reduce H3R transport.  In sections of sciatic nerve that 269 

underwent partial ligation with no treatment, there was a robust accumulation of the H3R 270 

proximal to the ligation (Fig. 3B).  In sections of sciatic nerve that underwent partial ligation and 271 

treatment with either CFA or vinblastine, a reduction in the accumulation of H3R was clearly 272 

visible (Figs. 3C - E).  When quantified, the differences were statistically significant for the 273 

vinblastine experiment (p <0.05; Fig 3E).  This reduction of accumulation is indicative of 274 

reduced axoplasmic flow induced by the treatments.   275 

 276 

 277 
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Discussion 278 

Using single neuronal recordings, we have demonstrated that while normal Group IV 279 

nociceptor axons are chemically insensitive, CFA-induced neuritis and treatment with 280 

vinblastine induce ectopic axonal sensitivity to chemicals normally found in the inflammatory 281 

milieu (bradykinin, histamine, serotonin, and prostaglandin).  We have also shown that these 282 

same conditions impair the axonal transport of H3R.  283 

We chose the combination and concentration of chemicals for our IS because many 284 

studies have been published using this combination (Becerra et al. 2017; Kessler et al. 1992; 285 

Lang et al. 1990).  The initial descriptions of this combination (Steen et al. 1995) were based on 286 

concentrations found in various tissues, and the chemicals were applied to skin nociceptors.  We 287 

do not know the concentrations and proportions of these chemicals that are present in the CFA 288 

model.  Our observations of little to no ongoing activity in the CFA model but consistent 289 

responses to intraneural application of IS suggests that the concentrations of these chemicals 290 

inside the nerve are too low to evoke activity.  Our combined observations remain consistent 291 

with the concept that inflammatory mediators are not required to lead to ectopic sensitivities, but 292 

that reduced axonal transport, such as induced by vinblastine, is sufficient.  293 

While others and we have shown that CFA-induced neuritis reduces axonal transport 294 

(Armstrong et al. 2004; Dilley et al. 2013), there remains limited insight on the mechanism of 295 

this phenomenon.  Our previous studies (Bove et al. 2003; Dilley and Bove 2008a) and the 296 

current report show a parallel between axonal transport and ectopic sensitivities, but are 297 

methodologically unable to directly correlate the phenomena.  Our reports of similar effects of 298 

neuritis and vinblastine on kinesin transport suggest a common mechanism of reduced axonal 299 

transport, independent of the effects of inflammation, especially since vinblastine is anti-300 
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inflammatory (Norris et al. 1977).  While we hypothesize that reduced axonal transport 301 

facilitates the insertion of functional receptors into the axonal membrane, such as H3R, we 302 

cannot test this prediction using the methods presented here.   303 

 Clinical Implications.  We have shown that neuritis and transient vinblastine application 304 

lead to ectopic axonal sensitivity to a mixture of endogenous chemicals.  This finding has 305 

possible clinical diagnostic relevance for cases presenting with ongoing radiating pain, especially 306 

when combined with our previous reports of ectopic axonal mechanical sensitivity induced by 307 

the same means (Bove et al. 2003; Dilley and Bove 2008a).  Inflammation and mechanical 308 

pressure are interrelated (Schmid et al. 2013), reduce axonal transport (Armstrong et al. 2004; 309 

Dahlin et al. 1984; Dilley et al. 2013; Gallant 1992), and can result in ectopic mechanical and, as 310 

we have shown here, chemical sensitivity.  This could manifest as movement-induced and 311 

ongoing nociception, respectively.  The site of mechanical pressure can often be appreciated with 312 

current diagnostic imaging methods, but similar methods are limited in terms of revealing 313 

neuritis.  Clinicians can use “neurodynamic tests” that have been designed to specifically move 314 

and tension the major nerves of the limbs (Butler 2000; Shacklock 2005), and have shown 315 

moderate reliability in identifying the involved nerve by reproducing the presenting symptoms 316 

(Greening et al. 2005; Schmid et al. 2009).  Palpation of an involved nerve is relatively 317 

straightforward and can lead to the identification of the site of pathophysiology, again by 318 

reproducing the symptoms (Greening et al. 2005; Schmid et al. 2009).  In cases of deep radiating 319 

pain, clinicians are advised to search for areas along the entire path of the involved nerve for 320 

tenderness, which could identify a site of inflammation and lead to an accurate diagnosis.  321 
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Figure 1. Experimental schematic and nociceptor isolation.  A. Recording methods 434 

schematic.  The sciatic nerves were treated with complete Freund’s adjuvant (CFA) or 435 

vinblastine (shaded portion of nerve) and recordings were later performed through the dorsal root 436 

from singularly identifiable Group IV nociceptors.  The key characterization in this experiment 437 

was to inject the nerve with a combination of inflammatory mediators and evaluate ectopic 438 

sensitivities.  Injections and mechanical stimuli were delivered within the treated zone.  B. To 439 

identify that a receptive field is from a specific neuron, the dorsal root was electrically stimulated 440 

(A) while the receptive field (RF) was mechanically stimulated.  When the electrical stimulus 441 

occurs during the refractory period of the axon, it fails to evoke an action potential (arrow).  C. 442 

Noxious mechanical stimulation of a Group IV neuron’s RF, applied using the fingers 443 

(arrowheads are application and removal of the stimulus).  D. Mechanical stimulation of the 444 

sciatic nerve using a soft silicone probe during neuritis, at the treated site, evoking a response 445 

from the axon of the neuron being recorded.   446 

 447 

Figure 2. Responses of Group IV nociceptors to chemical stimuli.  Representative responses 448 

of Group IV nociceptors to chemical stimuli of their natural RFs (A, C, and F) and of their axons 449 

passing through the sciatic nerve (B, E, and G).  A and C show a robust response to 450 

inflammatory mediators injected into the RF, but not when applied to the axon of the same 451 

neuron.  C and E (CFA), and F and G (vinblastine), show responses to injections to both RFs and 452 

their axons.  D. Response to vehicle injection into the nerve of a mechanically sensitive axon.  453 

Note immediate response rather than the delay in E.  There were no responses in C-F due to the 454 

injections after the time frames of the graphs. 455 

 456 
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Figure 3.  Immunohistochemical quantification method and results.  A. Regions of interest 457 

consisted of the area of nerve between 20-30 μm (small arrow) and 500 μm proximal (large 458 

arrow) to the sutures (*).  B. Same image as A, showing histamine 3 receptor (H3R) receptor 459 

signal 5 days after ligation surgery.  C and D. Representative samples from inflamed and 460 

vinblastine-treated nerves, respectively showing little H3R signal.  ** = unligated axons exposed 461 

to vinblastine, showing a relative lack of signal.  Scale bar (for all panels) =  100 μm.  E. Nerves 462 

treated with either CFA or vinblastine showed less H3R signal than non-treated nerves. CON = 463 

control nerves (ligated but not treated), n = 4 per group.   464 

  465 
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Table 1. Axonal Chemical Sensitivity develops following induction of Neuritis.  CV = 466 

conduction velocity (m/sec). AMS = axonal mechanical sensitivity. IS in RF = injection of 467 

inflammatory soup into the identified peripheral receptive field.  ACS = axonal chemical 468 

sensitivity.  OA = ongoing activity. * = neuron stopped responding prior to stimulus. 469 

 470 Control CV  IS in RF ACS AMS OA 

C1 0.65 + - - - 

C2 1.04 + - n/a + 

C3 0.83 + - - - 

C4 0.85 + - - - 

C5 0.71 + - - - 

C6 0.92 + - - - 

C7 0.81 - - - - 

C8 0.67 - - - - 

C9 1.3 - - - + 

 Total 6 / 9 0 / 9 0 / 8 2/9 

Neuritis      

N1 0.83 + + n/a + 

N2 0.86 + + + - 

N3 0.82 - + + - 

N4 0.98 * + + + 

N5 0.64 * + - - 

N6 1.01 * + - - 

N7 0.56 - + - + 

N8 0.65 - + - - 

N9 0.88 - - - - 

N10 0.80 - - - - 

 Total 2 / 7 8 / 10 3/9 3/9 

Vinblastine      

V1 0.82 + + + - 

V2 0.57 + + - - 

V3 1.16 + + - - 

V4 1.03 + - + - 

V5 0.79 - - + - 

V6 0.95 - - - - 

V7 0.31 - - + - 

V8 0.88 - - - - 

 Total 4 / 8 3 / 8 4 / 8 0/8 
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