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ABSTRACT 

Using an interdisciplinary approach, this study examined the population 

connectivity of the blue mussel Mytilus trossulus within Machias Bay, Maine, 

near its inshore southern boundary range. The Eastern Maine Coast Current 

(EMCC) flows southwestward along the northern Gulf of Maine coastline, just 

outside of Machias Bay and is a potential pathway for M. trossulus larvae. 

This study compared results to two historical studies that assayed M. 

trossulus and M. edulis species distributions to evaluate any temporal 

changes.  Both similarities and differences were found in species composition 

in Machias Bay. Historical data suggested that the lower Machias Bay was 

supplied by larvae via the EMCC, and that conclusion was consistent with this 

study due to similar species composition in the lower bay. However, in upper 

Machias Bay, this study found a complete shift in species composition.  Since 

earlier sampling, a M. trossulus population has become established in the 

upper bay and appears to be maintained by self-seeding via locally produced 

larvae. Additionally, hybrids between M. trossulus and M. edulis are now 

abundant in upper Machias Bay, likely due to a breakdown in conspecific 

sperm precedence at low densities of M. trossulus. The persistence of hybrids 

will probably be dependent upon the size of future M. trossulus populations. 
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INTRODUCTION 

Evaluating population connectivity is central to understanding the local and 

metapopulation dynamics of sessile and sedentary invertebrates (Hastings & 

Harrison, 1994; Cowen et al., 2007). Connectivity within these metapopulations is 

generally established early in ontogeny by the movement of pelagic larvae. 

Larval dispersal is dependent upon the interaction of physical transport 

mechanisms such as buoyancy-, tidally-, and wind-driven currents (Cowen et al., 

2006; Levin, 2006; Pineda et al., 2007) with biological mechanisms such as larval 

behavior (Cowen et al., 2007).   

Population connectivity can vary in both space and time, due to variability in 

currents and circulation patterns. In coastal systems, buoyancy-driven currents 

are controlled by freshwater fluxes that change salinity conditions (Hetland and 

Signell, 2005). Variation in freshwater flux due to changes in river discharge can 

result in the advection of buoyancy-driven currents further offshore (Pineda et al., 

2007). Such offshore movement can disrupt the alongshore currents that are a 

primary determinant of larval dispersal, thus affecting population connectivity. 

Also, tidally-driven currents are subject to increased mixing within coastal 

systems with increasing tidal amplitudes (Roegner 2000). Increased vertical and 

horizontal mixing within tidal currents can enable onshore transport of larvae 

during flood events (Tilburg et al., 2012). On the other hand, the amplitude of the 

tides and strength of the tidal velocities can also play a restrictive role in 

population connectivity. For example, increased vertical mixing associated with 

strong tidal velocities can result in minimal vertical stratification of alongshore 
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currents that may restrict alongshore currents to lines of constant depth and 

hence prevent onshore movement (e.g. Kelley and Chapman, 1988). Coastal 

geography can also play a role in directing or restricting flows since alongshore 

currents follow the general shape of coastlines. However, the presence of bays, 

rivers and capes can alter the flow patterns of alongshore currents, at times 

resulting in disconnections of larval transport alongshore. Topography of an area 

can also cause spatial variation in dispersal and retention of larvae in tidal-driven 

currents (Sponaugle et al., 2002; Shanks et al., 2003). Wind-driven currents can 

alter overall connectivity patterns. The directionality of a wind event can affect 

connectivity patterns by shifting alongshore currents either on- or offshore via 

upshelf or downshelf winds (Epifanio and Garvine, 2001). On the east coast, 

upshelf winds (i.e. winds blowing in the upshelf direction) create upwelling that 

pushes currents offshore, thus reducing onshore/offshore larval exchange. 

However, during downshelf winds, downwelling pushes currents onshore and 

increases larval exchange with near shore waters (Blanton et al., 1989; Tilburg et 

al., 2005). In addition to the directionality of a wind event, event duration affects 

larval transport pathways by increasing opportunities for secondary circulation 

patterns such as fronts and eddies to occur (Shanks et al., 2003). The secondary 

circulation patterns can cause currents (and the larvae within these currents) to 

temporarily flow in the opposite direction of the long term current, thus resulting 

in alterations in the direction of larval transport.  

Population connectivity can break down at species range boundaries due to 

abrupt changes in abiotic factors (i.e., temperature and circulation; Caughley et 
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al., 1988) or variation in biotic factors (i.e., competition, predation, or facilitation; 

Caley et al., 1996). Range boundaries are often created by a combination of both 

biotic and abiotic factors. Abiotic range boundaries are typically characterized by 

a strong spatial gradient creating a dispersal barrier that may result in 

subpopulations that are prevented from mixing. For example, distribution 

boundaries may encompass areas of drastic alongshore temperature change 

such as those associated with the offshore movement of the Gulf Stream along 

the North Carolina coastline (Cerame-Vivas and Gray, 1966; Pielou, 1979; Roy 

et al., 1994; Gaylord and Gaines, 2000; Stanford et al., 2006; Blanchette and 

Gaines, 2007). In contrast, biotic interactions may occur within the confines of the 

suitable abiotic range boundary of a species (Sexton et al., 2009). For example, 

competition with other invertebrates in an area of finite suitable habitat can result 

in a biotic range boundary (Case et al., 2005).  

Both abiotic and biotic factors can cause range boundaries to be dynamic. If 

abiotic and biotic conditions change, range boundaries may shift over time. For 

example, some abiotic factors such as the location of frontal boundaries may 

change within a season or with weather events (Possingham and Roughgarden, 

1990; Gaylord and Gaines, 2000). Variable physical conditions, such as tidal 

mixing, water temperature and density (Pettigrew et al., 2005), can cause range 

boundaries formed by frontal boundaries to break down. These breakdowns of 

flow can result in episodic population connections where none normally exist 

(Gaylord and Gaines, 2000). A biotic factor that could cause a shift in a range 

boundary is a predator-prey interaction (Sexton et al., 2009). For example, a 
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migratory predator consuming a non-migratory prey may result in the temporary 

expansion of the prey range boundary.  

In this study, I use the northern blue mussel, Mytilus trossulus, as a study 

system to explore larval transport processes at a range boundary via an 

interdisciplinary approach. My study site was Machias Bay, within the Gulf of 

Maine, which is a semi-enclosed continental shelf sea (Townsend et al., 1987) 

located in the northwest Atlantic Ocean. Machias Bay is the inshore southern 

boundary range for M. trossulus (Hayhurst & Rawson, 2009). Machias Bay is 

also occupied by M. edulis, a closely related congener of M. trossulus (Hayhurst 

and Rawson, 2009). Hybridization can occur among these congeners (Gosling, 

1992) and some hybrids have been documented within Machias Bay (Hayhurst 

and Rawson, 2009). Machias Bay is influenced by tidally-driven flow and the 

buoyancy-driven Eastern Maine Coastal Current (EMCC; Figure 1), which is a 

potential pathway for M. trossulus larval transport in the Gulf of Maine (Rawson 

et al., 2001; Limbeck, 2003). Mytilus populations in Machias Bay have been 

previously studied (Rawson et al., 2001; Hayhurst and Rawson, 2009), allowing a 

comparison of current and historical data to assess temporal changes in species 

distribution.   

This study sought to (1) identify the relative composition of individual Mytilus 

populations within Machias Bay, (2) evaluate temporal changes in population 

composition between 1999 and 2011, and (3) examine the influence of the 

EMCC on the distribution of larvae within Machias Bay. The population 

composition was determined by collecting adult Mytilus mussels at several sites 
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within Machias Bay and genotyping each mussel. Present and historical 

population compositions were compared to determine any temporal changes. 

Simultaneous temperature and salinity sampling at the collection sites 

determined physical conditions within Machias Bay and permitted evaluation of 

potential EMCC incursions. To assess the influence of the EMCC on the 

distribution of larvae within Machias Bay, plankton tows were conducted to 

quantify larval concentrations at the time of physical measurements. The results 

suggested that two larval sources are now supplying the Machias Bay Mytilus 

metapopulation.   

MATERIALS AND METHODS 

a. Study Area 

Machias Bay is a relatively shallow bay with heterogeneous bathymetry, 

located in the northern portion of the Gulf of Maine. The depth is <3m (MLW) in 

the upper bay, but increases to just over 30m at the mouth of the bay. Since 

Machias Bay has an approximately 4m tidal range, some areas in the upper bay 

are completely devoid of water at low tide, resulting in a strong exchange of 

water throughout the bay. The EMCC is a tidally-mixed alongshore current 

(Townsend et al., 1987; Pettigrew et al., 1998), whose waters originate on the 

Scotian Shelf, bolstered by the St. John and St. Croix Rivers (Hetland and 

Signell, 2005) and flows southwestward along the Gulf of Maine coast near the 

entrance of Machias Bay. 

Machias Bay was selected due to its location at the inshore southern 

boundary range of M. trossulus and the historical abundance pattern of M. 
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trossulus within the bay. Rawson et al. (2001) had previously reported 0% M. 

trossulus/100% M. edulis in the upper bay (Machiasport - Site 1 in this study), 

while Hayhurst and Rawson (2009) reported 30-35% M. trossulus/70-65% M. 

edulis (depending on genetic marker) at the mouth of Machias Bay (Starboard 

Island - Site 5 in this study; Figure 2). Our study sites were chosen to coincide 

with the two mussel populations sampled by Rawson et al. (2001) and Hayhurst 

and Rawson (2009), with the addition of three sites between their two original 

sites. Four sites were located on the western shore, and one site was located on 

the northeastern shore (Figure 2). The eastern shore of Machias Bay contains 

few mussel populations due to the prevalence of soft sediment. Security issues 

prevented access to a military base and thus lower bay sites on the rockier 

portions of the eastern shore. 

b. Study Species 

In the Western Atlantic, M. trossulus ranges from Labrador to Maine (Figure 

1) and M. edulis ranges from Newfoundland to North Carolina (Maloy, 2001). As 

is typical of benthic marine invertebrates in the northern temperate zones, the 

mussel reproductive cycle is seasonal (Maloy et al., 2003). Spawning of Mytilus 

species in the northwest Atlantic is triggered by an increase in water temperature 

in the spring (Maloy et al., 2003). After spawning, Mytilus larvae are then 

transported via currents.  Larval development lasts 30 days or more prior to 

settlement (Rawson et al., 2004). Developmental stages of Mytilus consist of the 

trochophore and the veliger stages (including prodissoconch I, prodissoconch II, 

eyed larvae and pediveliger). At around 300 µm, the planktonic stage ends for 
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the pediveliger larvae and settlement occurs (Widdows, 1991). Neither juvenile 

nor adult M. trossulus and M. edulis are morphologically distinguishable. Genetic 

markers, however, can be used to identify the two species (Heath et al., 1995; 

Rawson et al., 1996).   

c. Sampling and Laboratory Analysis  

Three different types of data were collected (physical data, larval 

concentrations and relative abundance of adult mussels) to evaluate distribution 

and hybridization patterns in Machias Bay. Water temperature, salinity, wind 

speed and direction, precipitation and air temperature measurements were 

performed to determine the physical environment and evaluate the episodic 

presence of the EMCC within Machias Bay. Larvae were sampled and 

abundance calculated to determine the potential for larval settlement to result in 

the establishment of populations at each site. The distribution of larvae would 

suggest whether adult populations were sustainable within Machias Bay. Finally, 

adult mussels were collected, counted and genotyped to assess any change in 

species composition from that documented by Rawson et al. (2001) and 

Hayhurst and Rawson (2009). 

i. Physical Data Collection. Temperature was recorded at 10 minute 

intervals using Pendant temperature loggers (Onset Instruments, Pocasset, 

Mass.) that were attached to concrete cinderblocks placed at 0.5m depth at all 

five sites (Figure 2). Additionally, a temperature logger that recorded at 10 minute 

intervals was placed at an offshore station in the Gulf of Maine (Figure 1) to 
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establish the temperature signal of the EMCC in this study (Figure 3a). Air 

temperature (Figure 3b) for the Machias Bay region was obtained from National 

Oceanic and Atmospheric Administration (NOAA) Tides Online website for the 

Cutler Ferris Wharf location (Figure 1). Precipitation levels (Figure 3c) were 

obtained from NOAA National Climate Data Center (NCDC) from the Milbridge 

location (located approximately 50km southwest of Machias Bay; Figure 1). Sea 

level (Figure 3d) was obtained from NOAA Tides Online for the Cutler Naval 

Base (Figures 1, 2). Wind speed and direction (Figure 3e) were obtained from 

NOAA Tides Online for the Cutler Ferris Wharf location (Figure 1). All data were 

collected for yeardays 165-250 (June 15-September 8, 2011). Sea surface 

temperature, air temperature, sea level and wind velocities were filtered using a 

Lanczos filter applied with a cut off frequency of 1/36 hr-1 to remove any short-

term variation like wind gusts or diel and tidal cycles (Tilburg et al., 2012). 

Correlations were calculated between air temperature and water temperature, 

wind velocity and sea level and finally wind velocity and sea temperature.  

ii. Larval Collection. To assess larval abundance at each site, plankton 

tows were performed from shore at approximately 2-week intervals from June-

August 2011. Tows were conducted with a 65 μm net that was 0.5 m in diameter 

at a depth of 0.5 m in water that was approximately 1 m deep for a tow distance 

of approximately 150m. The net was held in front and to the side of the human 

collector to reduce the amount of human disturbance. Each tow was completed 

in 2-3 minutes. To calculate the water volume sampled during each tow, a flow 

meter was attached to the net; each tow filtered approximately 120 m3 of water. 
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Plankton tows at each site were replicated 3 times on each sampling date. All 

tows occurred within two hours of high tide within the same tidal cycle to allow for 

a snapshot profile of larvae in Machias Bay. At the time of collection the tidal 

velocities would be at the lowest or non-existent due to slack tide which allowed 

larval concentrations to be sampled without large tidal influences. Sieved 

samples were preserved in Modified Saline Ethanol (MSE) solution (Miller and 

Scholin, 2000) until the bivalve larvae could be counted. Counting of the bivalve 

larvae occurred on a dissecting microscope with species identification according 

to the method outlined by Fuller and Lutz (1989). Larvae were only identified to 

the class level Bivalvia.  Bivalvia is the majority of the meroplankton composition 

within the Gulf of Maine (Tilburg et al., 2012). Sampling occurred during known 

spawning times for the Mytilus species in the northwest Atlantic (Maloy et al., 

2003) to increase the likeliness of mussel larvae collection. All samples were 

standardized to a larval density per 100 m3 for comparison. Variation in larval 

density was analyzed with a one-way ANOVA with site as factor and a Tukey’s 

multiple comparisons of means for post-hoc comparisons using the R package 

statistics (version 2.15; R Core Team, 2012).  

iii. Mussel Collection and Analysis. Adult mussels were collected at each 

site to evaluate spatial variation in the species composition of mussel populations 

within the bay. Samples (n=100) were collected from each site and measured 

using digital calipers to the nearest 0.01 mm. Mean lengths varied between 43 

and 58 mm and size classes were separated into non-mature (<50mm) and 

mature mussels (>50mm; Rodhouse et al., 1986). Mantle tissue samples from 
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each mussel were collected and stored in MSE for species identification using 

DNA (Henzler et al., 2010). QIAamp DNA Mini Kits (QIAGEN Valencia, CA) were 

used to isolate whole genomic DNA from the mantle tissue.  

A portion of the gene encoding the mussel polyphenolic adhesive protein 

(Glu-5) was amplified according to Rawson et al. (1996). PCR reactions 

consisted of 1X PCR buffer, 200μM dNTPs, 4 mM MgCl2, 0.2μM forward primer, 

0.1μM of each reverse primer, 400-600ng/μL of DNA template and 1 unit of Taq 

Polymerase (New England Biolabs, Inc., Massachusetts) for a total reaction 

volume of 26μl. Samples were amplified under the following conditions: one cycle 

at 94°C for 10 minutes, 36 cycles of 94°C for 30 seconds, 52°C for 30 seconds 

and 72°C for 2 minutes, with a final extension at 72°C for 5 minutes. The 

resultant PCR product was size fractioned on a 2% agarose-TBE gel and stained 

with ethidium bromide. Successful amplifications were expected to yield a 120-bp 

fragment in M. trossulus and a 180-bp fragment in M. edulis.  Putative hybrids 

yielded both 120-bp and 180-bp fragments. 

An Internal Transcribed Spacer (ITS) PCR-based restriction fragment length 

polymorphism (RFLP) protocol was used to differentiate species and hybrids 

(Heath et al., 1995). PCR reactions are the same as the Glu-5 except for the use 

of 0.2μM reverse primer and a total reaction volume of 20μl. Thermal cycling 

conditions consisted of one cycle at 94°C for 10 minutes, 36 cycles of 94°C for 

30 seconds, 50°C for 30 seconds and 72°C for 2 minutes, with a final extension 

at 72°C for 5 minutes.  
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ITS PCR products (10µl) were fragmented in 1mM NEB Buffer #4, 10mM 

100X BSA (New England Biolabs, Inc., Massachusetts), and 8 units of HhaI 

(New England Biolabs, Inc., Massachusetts), with overnight digestion at 37°C.  

The resulting products were size separated on a 2% agarose TBE gel stained 

with ethidium bromide. The expected digestion profiles for M. edulis were a 450-

bp and 180-bp fragment and for M. trossulus a 280-bp and 180-bp fragment. 

Hybrids were expected to yield three fragments at 450-bp, 280-bp and 180-bp. 

Variation in relative frequency of M. edulis, M. trossulus, and hybrids among sites 

at the Glu-5 and ITS loci was evaluated using G-tests and a correction was done 

for multiple comparisons (Sokal and Rohlf, 1981). A chi-square analysis was 

performed to determine if there was a change in species distribution (including 

hybrids) between size classes within a site. 

RESULTS 

a. Physical Dynamics 

Figure 3 provides a comprehensive physical profile of the bay that includes 

sea surface temperature, air temperature, precipitation, sea level, and wind 

velocities. Examination of the sea surface temperature (Figure 3a) revealed a 

persistent along-bay spatial gradient. Overall, Site 1 (located up-bay) was the 

warmest and the Sites 3 and 5 were the coolest. Site 3 was colder than the two 

adjacent sites and comparable in temperature to Site 5, which was the site 

closest to EMCC temperatures.  

An uncharacteristic seven-day warming period occurred throughout the whole 

bay during yeardays 203-210 (Figure 3a). There were 9 individual cooling events 
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(yeardays 183, 190, 194, 210, 215, 223, 227, 235 and 244) where cold water 

may have entered the bay and lowered the temperature of the upper bay water 

(Site 1 and 2). The warmest air temperature occurred during yeardays 198-199 

(Figure 3b), just prior to the warming of the bay waters. A negative correlation 

between air temperature and water temperature was found within each site in 

Machias Bay with the strongest negative correlation at Site 5 (r=-0.4168; 

P<0.001). The greatest precipitation occurred on yearday 219 (Figure 3c). Sea 

level varied with both precipitation and winds. Sea level during the warming 

period (Figure 3d) remained around the average sea level of 2.4 m found within 

the time frame of the study. The largest increases in sea level occurred on 

yeardays 175, 219, 221 and 240. The largest wind event was northeasterly (i.e. 

from the northeast) at yearday 241 (Figure 3e). During this wind event, one of the 

largest decreases in sea level occurred. Another large northerly wind event 

occurred at yeardays 200-204, just before and at the beginning of the seven-day 

warming period. Examination of the correlation between wind velocity and sea 

level (Figure 4) reveals the highest correlation (r=0.3503) occurred at 110° (0° is 

defined as true north), or a southeasterly wind. Wind velocity was also correlated 

with sea temperature. The highest negative correlations (Table 1) were found in 

the upper bay (Sites 1 and 2; r = -0.2463 and -0.5647, P<0.001) during easterly 

winds. Sea surface temperatures at the other sites were negatively correlated 

with westerly (Site 3 and 4; r= -0.1551 and -0.1676, P<0.001) and southwesterly 

winds (Site 5; r= -0.1865, P<0.001).  

b. Criteria for Classifying EMCC Intrusion Events 
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The EMCC is known to periodically bring cold, nutrient rich water into the 

shallow Machias Bay (Hayhurst and Rawson, 2009; Figure 1). Ekman transport 

and/or downwind frictional transport during easterly, southeasterly or southerly 

wind events could result in the transport of the EMCC into Machias Bay and be 

classified as an EMCC intrusion event which would also cause a rise in sea level 

within the bay. However, the physical criteria are not able to definitively 

determine the presence of the EMCC in Machias Bay. Consequently, I developed 

a set of criteria that are consistent with the observations and probable physical 

mechanisms of an EMCC incursion event within Machias Bay. The first criterion 

is based on historical temperature patterns with the EMCC. Pettigrew et al. 

(1998) found that the across-shelf temperature range of the EMCC was 

approximately 3°C near Machias Bay. There is no set temperature for the EMCC; 

however, temperatures are normally several degrees cooler than the surrounding 

Gulf of Maine waters thus creating a thermal gradient (Pettigrew et al., 1998; 

Pettigrew et al., 2005). Consequently, my criteria are (1) a difference in 

temperature from Site 1 to Site 5 that is less than or equal to 3°, (2) the presence 

of an easterly, southeasterly or southerly wind event, and (3) increased sea level 

within Machias Bay. Note that no EMCC events could be confirmed before 

yearday 180 because the temperature loggers in Machias Bay were deployed on 

yearday 180. 

Wind is the primary mechanism that can cause across-shelf transport of the 

EMCC in the Gulf of Maine (Xue et al., 2000). This onshore movement causes 

subsequent increases in sea level. The highest correlation between sea level and 
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wind occurred at a wind direction of 110°, or a southeasterly wind (Figure 4). 

Because of the overall shallow bathymetry in Machias Bay, the water is well 

mixed even during a flood tide. If an easterly, southeasterly, or southerly wind 

occurs during a flood tide, mixing would be possible throughout the whole bay. 

Due to the orientation of the entrance of Machias Bay along the coastline, a 

easterly, southeasterly or southerly wind directions are not necessarily intuitive. 

However, the shallow nature of this region results in transport of waters to be 

less than the predicted 90° due to a combination of Ekman and downwind 

transport allowing EMCC waters to be transported into Machias Bay. If the 

EMCC entered the bay due to a wind event, the sea level should increase.  

From the temperature data collected in this study, nine events in which the 

range of water temperature from Site 1 to 5 was ≤3° in Machias Bay were initially 

identified as possible EMCC intrusion events (Table 2). Days 183, 223, 235 and 

244 were ruled out as EMCC intrusion events because a decrease in sea level 

was recorded. Day 190 was eliminated as an EMCC event because the wind 

direction did not allow for the transport of the EMCC within Machias Bay. 

The remaining four putative EMCC events (yeardays 194, 210, 215 and 227) 

that occurred during the course of this 85 day study might influence the 

distribution of larvae within Machias Bay. There are two possible ways for the 

EMCC to enter Machias Bay: as a wind event or as a breakdown of a frontal 

boundary. Since the data collected in this study are not adequate to identify the 

breakdown of a frontal boundary, it is possible that more EMCC intrusions 

actually occurred. Both of these mechanisms of the EMCC moving into Machias 
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Bay are consistent with the patterns of sea surface temperatures. This could 

suggest that more than four of the nine identified events where the range of 

water temperature from Site 1 to 5 was ≤3° were EMCC incursions. Sea surface 

temperatures (Figure 3a) in Machias Bay showed thorough mixing throughout 

Sites 5-3 with episodic mixing occurring in Sites 2-1.  

c. Larval Distributions 

Overall, larval densities were higher (Figure 5) at the mouth of the bay (Figure 

2, Site 5) and tapered off to the lowest density toward the upper bay (Site 2) but 

were higher again at Site 1. All sites showed evidence of varying temporal 

patterns, with multiple peaks in larval density at different times. Larval densities 

during the first sample period (yeardays 165-166) were extremely low at all sites, 

although larval densities at Site 5 were significantly higher than at Sites 2-4 (one-

way ANOVA, P < 0.005, Tukey post-hoc Multiple Comparison Pairwise (MCP) 

test). During the second larval sampling period (yeardays 177-179), the highest 

larval density of this study was observed at Site 5 and this density was 

significantly higher than at Sites 1, 3 and 4 (one-way ANOVA, P < 0.00005, 

Tukey post-hoc MCP test); note Site 2 was not sampled during this interval. 

During the third larval sampling period (yeardays 192-194), the highest larval 

density relative to other sites occurred at Site 4 and was significantly greater than 

density at Sites 1-3 (one-way ANOVA, P < 0.0005, Tukey post-hoc MCP test). 

During the final sample interval (yeardays 206-207), larval density at Site 5 was 

again significantly higher than at Sites 1-4 (one-way ANOVA, P < 0.0001, Tukey 

post-hoc MCP test).  
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d. Mussel Distributions 

The genetic markers Glu-5 and ITS were used to determine the relative 

abundance of settled M. edulis, M. trossulus and hybrids. Across both size 

classes (juvenile and adult) and genetic markers, M. trossulus appeared to be 

more abundant in the upper (Site 1 and 2) and lower (Site 5) bay and less 

common in the mid-bay (Site 3 and 4; Figures 6 and 7). Hybrids were more 

abundant in the upper bay (Figures 4 and 5) for Glu-5, however, with the genetic 

marker ITS, hybrids appear to be relatively abundant throughout Sites 1-4 

(Figure 7). Very low hybrid relative abundance at the mouth of the bay was 

observed for both genetic markers. A G-test (Sokal and Rohlf, 1981) revealed 

that the frequency of the two pure species and hybrids (data from the two size 

classes combined) differed among sites (df=8, p<0.005). Based on the patterns 

established in the physical and larval sections, an additional G-test was 

performed comparing frequencies from the two upper bay (Sites 1 and 2, 

lumped) and the lower bay (Site 5) across both size classes and the genetic 

frequencies were significantly different (Glu-5 and ITS; df=2, p<0.005, in both 

cases). 

In order to assess any temporal changes in population composition in 

Machias Bay, G-tests were used to compare genotypic frequencies from this 

study to genotype frequencies derived from allele frequency data collected in 

2005 (Hayhurst and Rawson, 2009; personal communication from P. Rawson). 

There was no statistical difference between Site 5 in the present study and 

Starboard Island in 2005 (geographically the same location as Site 5; g-test, 
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df=2, p>0.05) for both Glu-5 and ITS (Hayhurst and Rawson, 2009). I also 

compared Site 5 to a site northeast of Machias Bay (South Trescott; Figure 1) in 

an area that is likely supplied by the EMCC (Rawson et al., 2001) and no 

statistical difference was found (g-test, df=2, p>0.10) for either genetic marker. 

The mussel distribution data were split into two separate size classes; <50mm 

(non-mature) and >50mm (mature) mussels. A series of chi-square analyses 

compared species composition between non-mature and mature mussels by site, 

with the null hypothesis that the distribution of pure species and hybrids did not 

differ between size classes. Site 2 was the only site that the species distribution 

between the two size classes was significantly difference (p<0.025 for both Glu-5 

and ITS, chi-square analysis; Figure 6 and 7).  

DISCUSSION 

a. Overview 

 Several interesting patterns emerged when comparing M. trossulus and 

M. edulis populations in Machias Bay to historical data. First, species 

composition in the lower bay was consistent with historical reports (Hayhurst and 

Rawson, 2009). However, species composition in the upper bay was found to 

have shifted from historical patterns (Rawson et al., 2001). I found a M. trossulus 

population established in the upper bay, possibly due to a regional temperature 

shift, and evidence that mussel populations in the bay are supplied by two 

different sources of larvae. The formation of hybrids in the upper bay occurred as 
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well, likely due to the breakdown of conspecific sperm precedence.  Each of 

these results is addressed in greater detail below. 

b. Similarities to Historical Data 

The general hydrodynamics of Machias Bay suggest explanations for the 

similarities and differences between current and historical species composition 

(Rawson et al., 2001; Hayhurst and Rawson, 2009). Similarities to historical data 

were found in the lower Machias Bay. Hayhurst and Rawson (2009) reported a 

species composition of 30-35% M. trossulus/70-65% M. edulis and a low 

frequency of hybrids in lower Machias Bay, specifically at Starboard Island (Site 

5 for this study). Although M. trossulus frequencies were not as high as in 2009, 

the current study found M. trossulus frequencies at 13%/10% (Glu-5 and ITS) 

and a low frequency of hybrids (0%/1%; Glu-5 and ITS), suggesting that the 

larval source has not differed greatly since 2001. Hayhurst and Rawson (2009) 

suggested that sites directly in the path of the EMCC can be supplied by M. 

trossulus larvae due to the flow path of the EMCC. I found no significant 

difference in the lower Machias Bay adult population composition between 2011 

and 2009 (Hayhurst and Rawson, 2009) providing support that Site 5 is directly 

supplied by the EMCC. 

c. Differences from Historical Data 

i. Establishment of M. trossulus. To understand the increase in the 

abundance of M. trossulus in upper Machias Bay, the establishment of this 

northern species needs to be explained. Establishment of M. trossulus in the 

upper bay likely occurred due to the thorough mixing between Sites 5, 4 and 3 
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combined with episodic mixing between Sites 2 and 1. The observed mixing 

among Sites 5, 4, and 3 suggests that whatever larval source is supplying Site 5 

could potentially and frequently supply larvae to Sites 4 and 3. In addition, any 

larvae present in the bay during an episodic mixing event could also reach Sites 

1 and 2. The potential for larval transport via episodic movement of the EMCC 

into the upper bay probably led to the initial establishment of M. trossulus 

populations in the upper bay. 

Similar to the larval density patterns, water temperatures collected for this 

study (Figure 3a) suggest that thorough mixing routinely occurs from Site 5 at the 

mouth of the bay to Site 3 located in the mid-bay, but Sites 1 and 2 are 

consistently warmer. Sites 1 and 2 are in a portion of the bay that is shallow 

enough to be almost completely devoid of water during low tide (only a narrow 

channel remains submerged; Figure 2). There was a negative correlation 

between air temperature and water temperature within Machias Bay, so 

atmospheric heat flux is unlikely to be responsible for the variation in water 

temperature. This means that any warming found in the upper bay is not due to 

increasing air temperatures. 

M. trossulus establishment in the upper Machias Bay is likely due to an 

EMCC intrusion event. Four episodic EMCC intrusion events occurred 

throughout the whole bay (including sites 1 and 2; Table 2). Assuming that this 

mixing pattern has been consistent over time, it is likely that a past intrusion 

event may have occurred when M. trossulus larvae were present in EMCC water. 
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The warming waters of the Gulf of Maine provide a possible explanation for 

the establishment of a M. trossulus population in the upper Machias Bay 

following a larval transport event. While changes in circulation can probably be 

dismissed due to the historical documentation of the EMCC (Brooks, 1985; 

Pettigrew et al., 1998; Pettigrew et al., 2005), larval adaptation could explain a 

shift in populations found in an area. Bayne and colleagues (Bayne, 1972; Bayne 

et al., 1975; Bayne et al., 1978) studied the relationship between average 

thermal exposure of parent M. edulis and the physiological tolerances of larval 

offspring. Results showed that M. edulis larvae whose parents were acclimated 

to low temperature had reduced growth rates at 16°C and above. However, 

parents acclimated to temperatures around 20°C produced larvae that did not 

exhibit reduced growth at 16°C and above. Historically, offspring larvae 

originating from the colder Gulf of Maine waters northeast of Machias Bay likely 

could not tolerate the warmer temperatures in the upper Machias Bay when 

transported via the EMCC, and settlement did not occur prior to 1999. Pershing 

et al. (2015) recently determined that the Gulf of Maine on average is warming at 

0.03°C per year, higher than the global mean rate of 0.01°C per year. I suggest 

that M. trossulus has now been able to establish a population in the upper 

Machias Bay due to the increased mean Gulf of Maine temperature. Adult M. 

trossulus that supply larvae in the EMCC have now acclimated to warmer 

temperature, approaching those found in the upper Machias Bay. Their 

offspring’s larvae can now successfully withstand the average upper Machias 

Bay temperatures due to the decrease in temperature range between the 
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northern Gulf of Maine and the upper Machias Bay. It is likely that on average the 

upper Machias Bay is not warming at the same rate as the Gulf of Maine due to 

decreased mixing between the upper Machias Bay and the rest of Machias Bay. 

The upper Machias Bay is likely warming at the same rate as the atmosphere, 

which is slower than the Gulf of Maine (Pershing et al., 2015). 

ii. Maintenance of M. trossulus. The adult distribution data (Figures 6 and 

7) suggest different larval sources for the populations within Machias Bay. 

Species composition, as assessed by both genetic makers, was found to be 

different in the upper bay (Site 1 and 2) compared to the lower bay (Site 5). 

Physical support for this difference comes from the water temperature data, 

which showed decreased mixing occurring between Sites 1-2 and Sites 3-5 

(Figure 3a). Larvae were present at each of the sites (Figure 5) in this study, 

suggesting that each adult population within Machias Bay had a fairly continuous 

larval source during the 2011 sampling season. Additionally, the density of larvae 

at Site 1 was consistently higher than at site 2, which represents the end of a 

declining gradient from Site 5 (Figure 5). Likely, the decrease in larval abundance 

from Site 5-2 could represent the dilution of larvae arriving from the EMCC. The 

higher abundance at Site 1 could suggest evidence of a small larvae source in 

the upper Machias Bay, such as a self-seeding population.  

This study suggests that both M. trossulus and M. edulis were able to achieve 

maturity and maintain self-sustaining, reproducing populations in upper Machias 

Bay. Both M. edulis and M. trossulus were present in each size class, suggesting 

that both species were able to reach maturity, reproduce successfully and supply 



22 
 

larvae to seed the next generation. No ontogenetic shift in species composition 

was detected except at Site 2, where the pattern suggested a loss of hybrids (not 

M. trossulus) through ontogeny and was consistent with the selective pressures 

of reinforcement.  

The maintenance of the established M. trossulus population in the upper 

Machias Bay is supported by both physical and larval evidence. The decreased 

mixing occurring between Sites 2 and 3 would cause any larvae produced in the 

upper bay to stay within the upper bay, resulting in self-seeding for M. trossulus 

populations. The higher larval densities at Site 1 compared to the decreasing 

trend of larval densities from Sites 5-2 (Figure 5) also suggest the possible 

presence of a self-seeding population in upper Machias Bay. I suggest that at 

some time within the past ten years the upper bay did receive larvae from the 

same source as Site 5 and that M. trossulus settlers were deposited in the upper 

bay, where they formed a self-sustaining population. 

iii. Formation and Possible Maintenance of Hybrids. This study detected 

numerous hybrids in the upper Machias Bay, which were absent in the data set 

of Rawson et al. (2001). The formation and replenishment of hybrids within the 

upper Machias Bay involves two different processes. The establishment of M. 

trossulus population within the upper bay provided an opportunity for 

hybridization. M. trossulus has measurable abundances at each size class 

indicating that a reproducing and self-seeding population has been present for 

multiple generations. The bimodal northwest Atlantic hybrid zone exhibits a 

hybridization rate anywhere from <2% - 26% (Mallet and Carver 1995; 
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Comesana et al., 1999; Rawson et al., 2001), and a similar range was found 

within Machias Bay (Figures 6 and 7). 

The process of conspecific sperm precedence reduces the chance of 

hybridization in mixed species communities. In conspecific sperm precedence, 

eggs favor conspecific sperm over heterospecific sperm (Howard 1999). 

Klibansky and McCartney (2014) documented both conspecific sperm 

precedence occurring in this hybrid zone (  ̴50 km from this study) and a 

breakdown of this process as well. A breakdown of conspecific sperm 

precedence in upper Machais Bay probably increased resulting in hybridization. 

The efficacy of conspecific sperm precedence depends on the relative 

abundance of the two species. In upper Machias Bay, where M. trossulus are 

relatively rare, a limited number of M. trossulus sperm would be available to 

fertilize M. trossulus eggs and a high level of hybridization would be expected to 

result. By contrast, in the populations in and upshelf of the EMCC that supply 

larvae to Site 5, the two species are approximately equally abundant and 

hybridization is rare. If this explanation is correct, the replenishment of hybrids 

within the upper Machias Bay is dependent upon the maintenance of the now 

established M. trossulus population. If the M. trossulus population continues to 

thrive, reproduce and increase in abundance in the upper Machias Bay, 

hybridization will likely decline. With more M. trossulus eggs and sperm in the 

upper Machias Bay, conspecific sperm precedence will be less likely to 

breakdown causing limited to no hybridization. 
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In this study the ITS genetic marker revealed more pure M. trossulus and 

hybrids than the Glu-5 marker. Toro et al. (2004) examined the northwest Atlantic 

hybrid zone with the same two genetic markers and reported a similar locus-

specific pattern (Toro et al., 2004), which may be attributed to greater 

introgression of ITS (Comesana et al., 1999; Rawson et al., 2001). Any time 

backcrossing occurs, the F2 and greater hybrids are genetically biased in the 

direction of the backcross. The backcrossing within M. trossulus and M. edulis is 

likely why there is variation in abundances between the Glu-5 and ITS genetic 

markers. Comesana et al., (1999) also found that the hybrids consisted of 

backcrosses that were M. trossulus-biased for small mussels and M. edulis-

biased for large mussels. The size affinity in backcrossing could explain this 

differences found between the non-mature and mature mussels at Site 2 (Figures 

6 and 7) and the overall differences found between the two genetic markers.          

d. Implications 

There are a few caveats to consider with this study. Larvae could only be 

identified to the class level (Bivalvia), not species level. This lack of taxonomic 

resolution did not allow for a determination of the species present within different 

portions of Machias Bay. Also, this study did not follow a cohort of M. edulis, M. 

trossulus and their hybrids to maturity. Hence apparent differences or similarities 

in species composition between size classes could have been confounded by 

different initial recruitment densities. Finally, the generation of the hybrids found 

in this study could not be identified. If the degree of introgression could be 
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determined, then a better understanding of hybridization patterns would be 

possible. 

There are a few next steps that can be considered for further exploring the 

population connectivity within Machias Bay. Maintaining sampling of adult 

mussels, larval concentrations and physical dynamics within Machias Bay would 

be critical to determine if the species composition is shifting at other sites. To 

improve this study, it would be helpful to further explore the caveats. First, 

genotyping larvae from sample sites throughout Machias Bay. Second, following 

a cohort to determine which species are supplying each site and which species 

are surviving to reproduce at each site.  Thirdly, other genetic markers could be 

used to determine hybrid generations and therefore the introgression patterns 

across the bay. Finally, further research should be considered in bays 

surrounding Machias Bay if similar physical dynamics occur to determine if the 

results of this study can be duplicated.  

In conclusion, the physical data suggest that the EMCC is episodically 

present throughout the entirety of Machias Bay. Combining all physical factors 

(i.e. temperature, wind, sea level) enables a better understanding of the study 

area and the effects that physical processes have on biological systems. The 

physical, larval and genetic measurements are consistent with all populations 

originating from larvae that entered via the EMCC, but now some populations 

appear to be self-seeding, or exchange larvae only within portions of the bay. 

The self-seeding populations in the upper bay have developed due to the lack of 

physical mixing between the upper bay and the rest of Machias Bay and the 
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spatial variation in larval distribution and species composition. The similar 

species composition of different size classes suggests recruitment is occurring 

and the populations are reaching reproductive maturity and are self-sustaining. 

Range boundaries have likely caused the formation of hybrids in the upper 

Machias Bay due to the breakdown of conspecific sperm precedence. However, 

the establishment of the M. trossulus populations within the upper Machias Bay 

will determine if the hybrids get replenished or if conspecific sperm precedence is 

reestablished in the upper Machias Bay. Overall, the conclusions made in this 

study would not have been able to been made without both larval and adult 

mussel data.  An interdisciplinary approach with physical dynamics, biological 

factors and genetic components were essential to allow for a complete analysis 

of the population connectivity for the area of Machias Bay.
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FIGURES 

Figure 1: Location of the Gulf of Maine in reference to the eastern coast of the 
United States of America and the location of the Eastern Maine Coastal Current 
(EMCC) in reference to Machias Bay. 



33 
 

Figure 2: Site Map.  Black diamonds indicate current study’s locations.  Black 
and white pie diagrams represent the relative species composition in historical 
samples from Hayhurst and Rawson (2009).  Note Site 1 is Machiasport and Site 
5 is Starboard Island mentioned in text. Contour lines are displayed in meters.
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Figure 3: (a) Filtered sea surface temperature for Machias Bay, Maine.  Site 1 is 
located in the upper bay and sites increase moving toward the mouth of the bay 
at Site 5.  The EMCC is located at the bottom of the Figure for reference. Four 
black boxes are present indicating days that larval sampling occurred.  (b) Air 
temperature filtered (°C), (c) precipitation (m), (d) sea level (m), (e) wind speed 
and direction for Machias Bay (m s-1). 
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Figure 4: Correlation between Wind Direction and Sea Level
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Figure 5: Mean Larval Densities for (a) Site 1, (b) Site 2, (c) Site 3, (d) Site 4, and 
(e) Site 5. Densities with different letters are significantly different from one 
another. 
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Figure 6: Glu-5 (genetic marker) Mytilus distribution throughout Machias Bay.  
Black diamonds indicate site location.  The black diamond at the top of the figure 
is Site 1 (upper bay) and sites increase moving to the bottom of the figure, the 
black diamond at the bottom of the figure is Site 5 (mouth of the bay).  Pie graphs 
are colored by species: White = M. edulis, Black = M. trossulus, Grey = Hybrid. S 
and L indicate size, S = < 50mm and L = > 50mm. 
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Figure 7: ITS (genetic marker) Mytilus distribution throughout Machias Bay.  
Black diamonds indicate site location.  The black diamond at the top of the figure 
is Site 1 (upper bay) and sites increase moving to the bottom of the figure, the 
black diamond at the bottom of the figure is Site 5 (mouth of the bay).  Pie graphs 
are colored by species: white = M. edulis, Black = M. trossulus, Grey = Hybrid. S 
and L indicate size, S = < 50mm and L = > 50mm. 
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TABLES 
 

Site Negative 
Correlation

Lag Time 
(hr) 

Degree Wind 
Direction 

P Value 

Site 1  -0.24625 16 100° E < 0.001 
Site 2  -0.56471 25 80° E < 0.001 
Site 3  -0.1551 0 270° W < 0.001 
Site 4  -0.16758 0 260° W < 0.001 
Site 5  -0.18647 21 240° SW < 0.001 

Table 1: List of correlations of wind velocity and water temperature 
 

Day 
(Yearday) 

∆ Temp 
(°C) 

Air 
Temp  

Precipitation 
Sea 

Level  
Wind 

Velocity  

EMCC 
Event 
(Y/N) 

Control: 
EMCC 

3     
 

183 3  -  SW N 

190 3  +  N N 

194 1  -  NE Y 

210 2  +  SW Y 

215 2  -  E Y 

223 2  -  N N 

227 2  +  NE Y 

235 1  -  NW N 

244 1  -  N N 

 
Table 2:  9 cooling events with the possibility of being EMCC events.  Pettigrew 
et al. (2005) found a 3°C range in which the EMCC could be defined; this was 
used as a control to determine EMCC events in this study.  ∆ Temperature (°C) is 
the range of temperature found within Machias Bay for the respective yearday.  
Air Temperature (°C), Sea Level (m) and Wind Velocity (m/s; directions indicate 
where wind is coming from) are reported as increased or decreased as 
compared to non-cooling events.  Precipitation is reported as presence/absence 
event. Blue shading indicates decreasing trends and red shading indicates 
increasing trends. 
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