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ABSTRACT 

INVERTEBRATE ZOOID POLYMORPHISM: 

HYDRACTINIA POLYCLINA AND PAGURUS LONGICARPUS  

INTERACTIONS MEDIATED THROUGH SPIRALZOOIDS  

 

by 

 

Charlotte M. Regula-Whitefield  

University of New England, July 2011 
 

 Evaluating the net interaction between symbionts can be challenging when one 

participant is a colonial animal with polymorphic zooids, because each zooid type has 

unique functions. The colonial hydroid Hydractinia polyclina has three distinct zooid 

types, each of which contributes particular components to the interaction with host hermit 

crabs. Of these three zooid types, the function of spiralzooids is not well understood. 

Previously, spiralzooids have been proposed to contribute a strong negative interaction 

component by directly reducing their host hermit crab’s reproductive output. However, 

this hypothesis is not supported by past or current data. I propose that spiralzooids 

instead function to prevent hosts from foraging on the colonies on their own shells.  

I conducted a series of experiments and surveys that explored spiralzooid 

distribution, structure, and function. Spiralzooid distribution at the species level was 

quantified through an examination of the scientific literature, which documented that 

spiralzooids only form in colonies living on hermit crab occupied gastropod shells, 

regardless of crab species or geographic region. Within the local species H. polyclina, 

only colonies that were living on gastropod shells occupied by hermit crabs contained 

spiralzooids, regardless of collection site or colony gender.  
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Next, I assessed spiralzooid structure.  Spiralzooids had a mean length of 1.17 ± 

0.62mm and occurred at a mean density of 1.91 ± 1.03 per mm
2
 along the aperture edge. 

Spiralzooids contain microbasic eurytele nematocysts, organized into nematocyst 

batteries, and battery abundance at zooid tips can be categorized into four levels. These 

nematocyst batteries adhered to hermit crab bodies and appendages, and adherence did 

not vary significantly among body parts.  

Spiralzooid function was studied through several experiments. Increased hermit 

crab contact and the presence of a host stimulated spiralzooid formation throughout a 

shell, in parts of the colony that are normally devoid of spiralzooids.  Although hermit 

crabs are active scavengers, those that are symbiotic with H. polyclina have never been 

documented consuming their own epibiont colonies. Yet, hermit crabs are commonly 

observed feeding on polyps in colonies on other shells. If spiralzooids prevent crabs from 

foraging on the colonies on their own shells, then crabs should respond to contact with 

spiralzooids.  The act of spiralzooid lashing, as tested by probing hydroid covered shells 

(with a bare shell control), significantly altered hermit crab behavior. Six crab behaviors 

were in turn analyzed to determine their effects on initiating spiralzooid lashing. 

Foraging on H. polyclina stimulating spiralzooid lashing significantly more frequently 

than other hermit crab behaviors.  

Lastly, hermit crab prey caloric values compiled from the literature were 

compared to the empirically determined caloric value for H. polyclina (4,011.55 ± 65.47 

cal/g dry wt); hydroids ranked in the top 10% of potential hermit crab prey. In light of 
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these findings I suggest the data support my guiding hypothesis that spiralzooids prevent 

hosts from foraging on their own colonies. Under this proposed function, I suggest that 

gonozooids actually contribute a weak positive interaction with the host crab by 

potentially providing caloric value, and spiralzooids in turn contribute a weak negative 

interaction. Therefore, the resulting net interaction between H. polyclina and Pagurus 

longicarpus should be considered commensal, or weakly mutualistic. 

 

 

 

 

 

 

 

 

 



1 

INTRODUCTION 

 Hermit crab occupied gastropod shells are often utilized as attachment substrates 

for sessile invertebrates in marine communities, particularly in subtidal and some 

intertidal zones where competition for vacant hard substrate is high (McLean 1983, 

McDermott 2001, Reiss et al. 2003). Worldwide, approximately 200 species of encrusting 

epibionts representing four phyla live symbiotically with roughly 180 species of hermit 

crabs (Williams and McDermott 2004). Interactions between epibionts and hermit crabs 

include positive and negative components that can sum to a net parasitic, mutualistic, or 

commensal interaction. However, evaluating net interactions is difficult for epibionts with 

polymorphic zooids, because the multiple zooid types have unique morphologies and 

behaviors, each of which contributes a potentially different component to the interaction 

(Buss and Yund 1989, Harvell 1991, Taylor 1994, Dudgeon and Buss 1996, Harvell 1998, 

Seipp et al. 2007). Polymorphic colonies, such as bryozoans and several species of 

hydrozoans, generally have three distinct zooid types: feeding, reproductive, and 

defensive (Conover 1978, Harvell 1998, Damiani 2003). Each zooid type contributes 

unique positive and/or negative components to the interaction between the colony and the 

host (Dudgeon and Buss 1996, Peach and Hoegh-Guldberg 1999, Seipp et al. 2007). 

 Feeding zooids, also known as gastrozooids, consist of a mouth surrounded by 

tentacles in hydrozoans, or by a lophophore in bryozoans (Mills 1976, Conover 1978, 

Buss and Yund 1989, Harvell 1998). This zooid type is found in all epibiont colonial 

invertebrates and can participate in both positive and negative interactions with the host 
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(Conover 1978, Brooks and Mariscal 1985, Damiani 2003). Gastrozooids indirectly 

interact positively with their hosts by consuming other epibionts, both adults and larvae, 

which would ultimately add weight and can degrade gastropod shells over time (Conover 

1978). However, gastrozooids are not selective feeders and consume most available 

larvae, potentially including those of their female hosts, therefore interacting negatively 

with female hermit crabs (Conover 1978, Damiani 2003). Gonozooids, also known as 

reproductive zooids, contain gametes and lack tentacles in hydrozoans or a lophophore in 

bryozoans (Mills 1976, Conover 1978, Buss and Yund 1989, Harvell 1998). Gonozooids 

are distinct zooid types in hydrozoans and in some bryozoans (Mills 1976, Conover 1978, 

Buss and Yund 1989), and have no known effect on the nature of symbiosis between 

epibionts and their host. Lastly, defensive zooids, also known as dactylozooids, take 

several forms including avicularia, tentaculozooids, and spiralzooids (e.g. Mills 1976, 

Harvell 1998, Langmead and Chadwick-Furman 1999, Damiani 2003, Lapid and 

Chadwick 2006). Most defensive zooids have been relatively well studied and contribute 

positive and negative components to the interaction with their hosts. Hydroid spiralzooids 

are a notable exception.  

 Spiralzooids consist of a long coiled shaft tipped with nematocysts. This zooid 

type has only been observed within the family Hydractiniidae, a group of common sessile 

hydrozoans found worldwide (e.g. McFadden et al. 1984, Folino and Yund 1998, 

Williams and McDermott 2004, Bumann and Buss 2008, Miglietta et al. 2009). The 

genus Hydractinia, one of the most diverse genera within the Hydractiniidae, contains 

over 30 species (Miglietta et al. 2009, Williams and McDermott 2004) that vary little in 
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morphology and behavior (Conover 1978, Buss and Yund 1989). In species that are 

commonly symbiotic with hermit crabs, such as Hydractinia polyclina, past authors have 

noted that spiralzooids appear to be associated with the aperture of the host's gastropod 

shell (Mills 1976, Conover 1978, Buss and Yund 1989, Damiani 2003), suggesting some 

role in mediating interactions between the epibiont and host. Nevertheless, there is still 

much to learn about spiralzooids and how they contribute to the overall interaction 

between colony and host. 

 Previously, spiralzooids have been hypothesized to contribute three possible 

negative interaction components that directly reduce the reproductive output of host 

hermit crabs (Damiani 2003). First, spiralzooid nematocysts were proposed to restrict 

host copulation (Damiani 2003). However, the presence of Hydractinia 

symbiolongicarpus colonies only weakly affected host ovigery, which was used as an 

indirect indicator for copulation (Damiani 2003). Second, female hermit crabs brood eggs 

against their abdomen within a gastropod shell, potentially exposing them to spiralzooids 

when crabs extend out of the shell to aerate their eggs. However, crabs in shells with 

colonies with and without spiralzooids did not differ in the number of eggs hatched 

(Damiani 2003), suggesting that any colony effect on brooded eggs is mediated through 

another zooid type. Lastly, spiralzooids have been hypothesized to capture newly hatched 

larvae as they are released from female hosts. However, the numbers of zoea released by 

female hosts inhabiting shells with and without spiralzooids did not differ (Damiani 

2003). Consequently, no study to date has definitively demonstrated how spiralzooids 

affect the interaction between hydroid colonies and hermit crab hosts.  
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 I propose that spiralzooids function in mediating predation on colonies by their 

own host crabs. Hermit crabs, such as Pagurus spp., are omnivorous scavengers that 

consume a wide range of detrital plant and animal particulate material (Roberts 1968, 

Caine 1975). While benthic diatoms may form the majority of their diet by volume, these 

prey have comparatively low caloric values and require extensive foraging time (Roberts 

1968, Caine 1975). As a result, hermit crabs must consume large quantities in order to 

fulfill their metabolic requirements (Caine 1975). Although hermit crabs are active 

scavengers, those that are symbiotic with Hydractinia spp. have never been documented 

consuming their own epibiont colonies. Yet Hydractinia colonies could constitute a 

valuable prey source due to their potentially high caloric values from lipids stored in 

gonozooids and the minimal foraging time required for hermit crab access. I hypothesize 

that host Pagurus longicarpus crabs do not prey on their own Hydractinia polyclina 

epibionts because spiralzooids function to restrict host hermit crab foraging on colonies. 

If spiralzooids prevent hosts from foraging on hydroids, then the interaction component 

contributed by spiralzooids may be less negative than previously thought, and may shift 

the net interaction between colony and host towards a mutualism. 
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METHODS AND MATERIALS 

 I used a combination of experiments and surveys to investigate spiralzooid/host 

interaction components. The elements of my study can be grouped into three topics: 

distribution, structure, and function. Methods utilized in several sections are described in 

sections 1-3. Spiralzooid distribution experiments and surveys are described in sections 

4-6, while structure surveys are described in sections 7-9. Spiralzooid function 

experiments and surveys are described in sections 10-13. Supporting experiments, 

surveys, and methods are described in appendices I - III.  

(1) Specimen Collection Locations and Maintenance 

 Hydractinia polyclina colonies and Pagurus spp. hermit crabs were sampled at 

three sites within the Gulf of Maine (Johns Bay in Bristol, ME; Saco Bay in Saco, ME; 

and Portsmouth Harbor in Kittery, ME; Figure 1). These sites were chosen either because 

previous studies demonstrated that hydrozoan epibionts were exclusively H.  polyclina 

and that the conspecific H. symbiolongicarpus was absent (Buss and Yund 1989, Yund 

and Parker 1989, Folino and Yund 1998), or because that distribution appeared likely 

from patterns among neighboring sites. Colonies were collected regardless of host hermit 

crab species, with both P. longicarpus and P. acadianus present at Site C (Johns Bay), 

and only P. acadianus present at the other sites. Specimens were repeatedly hand-

collected at each sample site by SCUBA and/or snorkeling from August 2008-July 2010.  

All collected hydroid colonies were housed in a flowing seawater system and fed Artemia 

sp. nauplii every four days, while hermit crabs were fed herring pieces every six days. 
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(2) Image Analysis 

 To assess structure, spiralzooids were removed from colonies and flattened onto 

slides with cover slips then observed using a Nikon Eclipse E800 under total 

magnification of 1000X with oil emersion. This method allowed zooids to be viewed 

two-dimensionally and facilitated viewing of nematocysts and associated structures. 

Digital photos taken by a SPOT RTke camera were analyzed using Image-J software. 

(3) Gastropod Shell Zones 

 Shell zones were used as a means of classifying relative distances on the shell 

from the aperture and were designated as percent areas to ensure that comparisons among 

different sized shells were not affected by absolute size. Shell zones were primarily used 

for quantifying spiralzooid location within a colony, and only Littorina gastropod shells 

were utilized in these surveys. I defined three zones (A-C) on the shells (Figure 2). Zone 

A consisted of the interior and exterior area of the shell extending 2mm from the shell 

aperture. Zone B consisted of the exterior area from zone A to 
1
/3 the shell length on the 

exterior of the shell. Shell length was defined as the perpendicular distance from the outer 

aperture of a shell to its spire. Zone C consisted of the exterior area from zone B to the 

spire.  

(4) Spiralzooid Distribution: Comparison Among Species 

 The goal of this survey was to test if a predominately shell-living existence is 

associated with the production of spiralzooids across diverse Hydractiniid species.  A 
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literature review was utilized that covered all genera within the family Hydractiniidae. I 

analyzed published reports of the ability of colonies to form spiralzooids on varying 

substrates. In addition to the term spiralzooid, some past authors have used the term 

dactylozooid to refer to spiralzooids.  However, other authors use the “dactylozooid” to 

refer to all defensive zooids (i.e., both spiralzooids and tentacular zooids, which are an 

un-coiled defensive zooid). Consequently, I only included species for which the literature 

specifically stated the presence or absence of spiralzooids, showed a clear representation 

of a spiralzooid, or stated the presence or absence of coiling dactylozooids.  

(5) Spiralzooid Distribution: Crosses 

 Because the Gulf of Maine has two documented sibling species of Hydractinia (H 

symbiolongicarpus and H. polyclina), which are morphologically indistinguishable (Buss 

and Yund 1989), I conducted controlled crosses with colonies from the three sites to 

confirm hydroid species identification. The use of crosses for species identification, 

instead of genetic analysis, was considered sufficient because past studies found 

extremely low percentages of hybridization (in the range of 0-2.7% of eggs developing; 

Buss and Yund 1989, Folino and Yund 1998). Crosses within and among collecting sites 

were conducted following the methods of Buss and Yund (1989). Approximately 3-12 

mature gonophores were removed from each colony and placed in sterile seawater in 

petri dishes, then kept in the dark at 12ºC for 12 hours. Hydractinia spp. are dioecious 

and spawn 1h after exposure to light (Bunting 1894, Ballard 1942), following a 12 hour 

period in the dark. Then gonozooids were exposed to light, initiating the release of 

gametes. I checked for development of planula larvae three days post-fertilization, with 
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development used as a proxy for successful fertilization. Replicates were performed for 

each cross. Although data expressed as percentages tend to fail normality tests, my cross 

data were found not to violate normality assumptions, and so were analyzed without 

transformation using a one-way ANOVA in SigmaPlot. 

(6) Spiralzooid Distribution: Substrate Analysis 

 This survey documented the presence of spiralzooids in Hydractinia polyclina 

colonies occupying various substrates. Attachment substrata surveyed included: Littorina 

gastropod shells inhabited by either Pagurus longicarpus or P. acadianus, live L. littorea 

and Buccinum undatum, uninhabited Littorina gastropod shells, stones, and 

boulder/concrete. Stone substrates were defined as pieces of rock ≤30cm long, while 

boulder/concrete substrates were >30cm long. All colonies, except for those on 

boulder/concrete were analyzed in the lab for presence of spiralzooids as a function of 

substrate, collection site, colony gender, and substrate surface area. Boulder/concrete 

substrates were examined in situ by snorkel and/or SCUBA for the presence of 

spiralzooids with respect to collection site and approximate colony surface area. 

(7) Spiralzooid Structure: Spiralzooid Morphology 

 The intent of this survey was to gain insight into the ability of spiralzooids to 

physically interact with surrounding surfaces by measuring zooid length and density, and 

documenting the type and organization of nematocysts present. Due to the rapid 

movement of the uncoiling zooids, image analysis was used for zooid length and density 

measurements. Zooid length was defined as the distance from the base of the zooid to the 
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end of the tip while the zooid was fully extended. Spiralzooid density was measured as 

the number of zooids within a 5mm long by 2mm wide section along the shell aperture. 

Next, nematocysts were evaluated using image analysis and nematocyst type was 

identified via published guidelines (Östman 2000). Nematocyst capsules are the spherical 

base of the nematocyst that contains nematocyst shafts and threads. Nematocyst capsule 

length, capsule width, and shaft length were measured. Capsule length was defined as the 

longest distance along the capsule, while width was defined as the distance perpendicular 

to the length of the capsule. Shafts were identified by the presence of barbs. Length of 

shaft was determined as the distance between the capsule and the thread. Dense spherical 

clumps of nematocysts that attach to zooid tips were defined as spiralzooid batteries. 

Battery widths and length were measured and these linear measurements were used to 

estimate cross-sectional surface area. 

(8) Spiralzooid Structure: Spiralzooid Tip Condition 

 The objective of this survey was to investigate spiralzooid tip condition to gain 

insight into nematocyst dynamics. Zooid tips were defined as the end of a spiralzooid not 

attached to a colony’s mat tissue, and condition levels were assessed via the number and 

arrangement of nematocyst batteries on a spiralzooid tip, as quantified with image 

analysis. Spiralzooid condition was classified in four levels. Level 1, postulated to be the 

least functional level, contained spiralzooids that had no nematocyst batteries present on 

their zooid tip (Figure 3A,B). This level was considered morphologically non-functioning 

due to a lack of nematocysts, although the spiralzooids were physically able to lash. A 

lash was defined as the forward movement of a spiralzooid, where the zooid uncoils from 
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the base to the tip towards the center of the shell aperture. Spiralzooids that contained 

single layers of nematocyst batteries with few sections of the zooid tip lacking 

nematocyst batteries were classified as level 2 (Figure 3C,D). This level was judged to be 

limited in function due to incomplete layers of nematocyst batteries. The level 3 

classification included spiralzooids that had a uniform single layer of nematocyst 

batteries, with some sections containing a double layer (Figure 3E,F). This level was 

judged to be completely functional. Level 4, thought to be the highest functional level, 

contained spiralzooids with a uniform double layer of nematocyst batteries (Figure 

3G,H).  

(9) Spiralzooid Structure: Adhesion Properties of Nematocysts Batteries 

 This experiment investigated the capability of nematocyst batteries to adhere to 

different surfaces. Adhesion surfaces consisted of hermit crab abdomen, cephalothorax, 

Pagurus arcuatus cheliped, and P. longicarpus cheliped. The use of two species of hermit 

crab chelipeds allowed me to test the adhesion properties of nematocyst batteries to 

differing densities of decapod sensory hairs. Pagurus arcuatus do not occupy shells 

encrusted by any species of Hydractinia, but this species of hermit crab possesses more 

sensory hairs on their chelipeds than the two species occupied by hydroids. Colonies 

were mechanically stimulated in the mat tissue with forceps to initiate spiralzooid 

lashing. Each colony was stimulated twice and the number of adhered nematocyst 

batteries per zooid counted, and then analyzed in Sigma Plot with a one-way ANOVA. 
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(10) Spiralzooid Function: Spiralzooid Formation with Respect to Shell Zones and 

Host Density 

 Under in-situ conditions, hermit crab densities are relatively low and spiralzooid 

formation is assumed to be restricted to shell apertures (Yund and Parker 1989, Folino 

and Yund 1998). My objective was to determine if the distribution of spiralzooids on a 

shell is the result of low hermit crab densities, which largely limit contact to the host crab 

and zone A, or whether spiralzooid formation is morphologically constrained to zone A. 

This section consisted of two phases, a survey and an experiment. First, a population 

survey was conducted at Johns Bay, Bristol, ME (Site C), to establish spiralzooid 

densities within different shell zones under a natural hermit crab density. Randomly 

selected 1m
2
 quadrats were surveyed for Pagurus longicarpus abundance. From these 

quadrats, hermit crabs with 100% H. polyclina coverage on their gastropod shells were 

collected. Spiralzooid density was then quantified in each shell zone.  

 Second, an experimental approach was utilized to determine the effect of 

increased densities of hermit crabs on spiralzooid formation.  Four treatments were 

constructed that tested crab density effects via a combination of physical and chemical 

crab cues: direct contact/host present, no contact/host present, direct contact/host absent, 

and no contact/host absent. All treatments utilized gastropod shells with 100% H. 

polyclina coverage and spiralzooids initially present only in shell zone A. Host absent 

treatments had shell apertures blocked to prevent subsequent inhabitation. Crabs, shells, 

and colonies from treatments with direct contact (both with host present and host absent) 

were placed in containers (8cm length x 8cm width x 5cm high), in flow through 
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seawater tanks, and an additional forty hermit crabs (in shells) were added to each 

container so that they were in physical contact with the experimental shells. Gastropod 

shells from treatments with no contact (for hosts both present and absent) were also 

divided into containers of the same size. An additional forty hermit crabs were placed 

below a mesh divider to physically isolate them from the experimental group, although 

water was allowed to circulate through both sections of the tank. The isolated crabs 

within these two treatments received chemical cues from high densities of hermit crabs in 

the absence of physical cues. Crabs and colonies in all treatments were allowed to 

interact for five days. Experimental colonies were evaluated for spiralzooid formation 

within shell zones B and C, then spiralzooid density data were analyzed using a three-

way ANOVA in Sigma Plot with factors of shell zone (A, B, or C), nature of hermit crab 

cues (physical or chemical), and presence vs. absence of host crab. 

(11) Spiralzooid Function: Mechanical Stimuli 

 Mechanical stimuli were imposed on colonies to determine if the location and 

intensity of physical contact affected the lashing response of spiralzooids. I investigated 

spiralzooid response to two levels of mechanical stimuli, strong and weak, in shell zones 

A-C. Pressure on colony mat tissue was considered a strong stimulus, while pressure on 

zooids was considered a weak stimulus. Stimuli were applied to either mat tissue or 

zooids with forceps five times per shell zone for a total of 30 stimulus events per crab. 

Responses were assessed for the presence or absence of spiralzooid lashing. The five 

observations within a crab and zone were then used to calculate a frequency of lashing, 

based on a 0-1 scale, for each level of stimulus applied to each of the three zones per 



13 

crab. This single frequency value per crab was replicated across the 50 crabs, then 

analyzed using a two-way ANOVA in Sigma Plot with main effects of stimulus and shell 

zone. Because each crab contributed five responses from this experiment, with six 

possible response variable levels (0, 20, 40, 60, 80, or 100%), the dependent variable was 

considered an acceptable approximation of a continuous variable and hence suitable for 

analysis via a parametric test.  

(12) Spiralzooid Function: Effect of Spiralzooid Lashing on Crab Behavior 

 To test whether the lashing of spiralzooids modifies how hermit crabs behave, 

behavior was observed during induced lashing events and controls without hydroid 

colonies present. Two groups of hermit crabs (n=50 per group) were established. Group 1 

consisted of hosts with 100% H. polyclina coverage on their gastropod shells, and was 

used to test the effects of probing the shell and subsequent spiralzooid lashing on crab 

behavior. Group 2 consisted of hermit crabs with bare gastropod shells (0% H. polyclina 

coverage), and served as a control to test the effect of probing the shell alone. Host 

gastropod shells were probed with forceps in shell zone A in both treatment groups, three 

times per host. Crab behavior was assessed as either continuing or disrupted, and the 

three observations were then used to calculate a frequency of disrupted behavior, based 

on a 0-1 scale.  A single frequency value per crab was calculated for each crab in each 

group (n=50). Data from the replicate crabs were then analyzed using a two-way rank 

sum test. Because each crab contributed three responses from this experiment, with four 

possible response variable levels (0, 33.33%, 66.66%, 100%), the dependent variable was 

considered a discrete variable and thus best analyzed via a non-parametric test on ranks. 
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(13) Spiralzooid Function: Host Behavior Effects on Spiralzooid Lashing 

 Crab behaviors were investigated to determine whether spiralzooids lash 

defensively in response to particular host behaviors. Crab behaviors were classified into 

six categories: active foraging, foraging on colonies, feeding, fighting, zoea release, and 

shell swapping. Active foraging was defined as the constant forward movement of a host 

for at least 2 minutes. Foraging on colonies was defined as one hermit crab foraging on 

another crab’s H. polyclina colony. Feeding was defined as at least two successful 

consumptions of prey (herring pieces) by the host. Fighting was the direct interaction 

between two crabs, where the cheliped of one crab directly contacted the aperture of 

another crab’s gastropod shell. Zoea release was defined as the release of zoea from a 

female host. To initiate zoea release, female crabs with eggs were isolated until the eggs 

were fully matured, and then crabs were placed into an observation container with warm 

water (20ºC). Zoea release was directly observed. Shell swapping was defined as hosts 

exchanging their gastropod shell when provided with several unoccupied hydroid free 

shells. Hermit crabs were observed over a period of 30 minutes for each behavior type 

recorded. The lack of direct control over behavior type meant that there were 2-5 

observations for each behavioral category. Single observations were excluded from 

statistical calculations. As zoea release was infrequent, the single observations for this 

behavior category were included in Table 4 to illustrate that the data did not support 

previous hypotheses. Crab behaviors were categorized as either continuing or disturbed, 

and the multiple observations were then used to calculate a frequency, based on a 0-1 

scale.  A single frequency of disturbed behavior was then calculated for each crab in each 
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behavior group. Data from the replicate crabs were then analyzed using a two-way rank 

sum test. Each crab contributed between two and six observations, with three (0, 50, 

100%) to six (0, 20, 40, 60, 80, or 100%) possible response variable levels, and so the 

data was considered a discrete variable suitable for a non-parametric test on ranks. 

(14) Spiralzooid Function: Prey Calorie Values 

 To establish the potential appeal of H. polyclina as prey for P. longicarpus, colony 

caloric values were assessed via bomb calorimetry and then compared to the published 

caloric values of other prey. Hydractinia polyclina zooids were removed from their mat 

tissue and dried in an oven at 65ºC for 24 hours, then ground into a fine powder. Colony 

mat tissue was not included in the caloric value assay because hermit crabs are not 

expected to consume mat tissue.  Samples were compressed into 1g pellets and analyzed 

using a Parr 1672 Oxygen Bomb Calorimeter. Sample ash was not titrated for nitrogen 

and sulfur content due to the minimal caloric correction factor that this approach provides 

(plus 0 to 10 calories) and the broad nature of comparisons between prey values from the 

literature and H. polyclina values.     
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RESULTS 

Spiralzooid Distribution: (1) Comparison among Species 

 I examined the scientific literature to test whether spiralzooids are only present in 

hermit-crab living species of Hydractinia (Table 1). Of the approximately 30 species in 

this genus that occur worldwide, clear statements about the presence or absence of 

spiralzooids are only available for fourteen. These species occupy five different 

attachment substrates, including other hydroids, live gastropods, bivalves, hermit crab 

occupied gastropod shells, and nonliving debris. Spiralzooids were documented only in 

hydroid species that live on hermit crab occupied gastropod shells (Table 1). These 

hydroid species occur in the Atlantic, Pacific, and Antarctic Oceans, so no geographic 

pattern is evident. 

Spiralzooid Distribution: (2) Crosses 

 I conducted crosses to test whether all my experimental colonies belonged to a 

single species.  All crosses (n=44) both within and among the collection sites (Pemaquid 

Beach in Bristol, ME; Saco Bay in Saco, ME; and Portsmouth Harbor in Kittery, ME; 

Figure 1) produced viable planulae. Egg release per cross ranged from 10 to 49 (Table 2). 

Fertilization levels were normally distributed and did not differ significantly among the 

cross types (ANOVA, F=0.67, df=5, p=0.620), with mean fertilization ranging from 52 to 

69%.  
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Spiralzooid Distribution: (3) Substrate Analysis within a Species 

 Spiralzooid presence or absence was documented in relation to colony attachment 

substrate, collection site, colony gender, and substrate surface area for H. polyclina. 

Substrate type strongly affected spiralzooid presence. Colonies attached to stones, 

boulders/concrete, bivalve shells, live Littorina littorea and Buccinum undatum, and 

empty Littorina littorea shells all lacked spiralzooids, while 100% of colonies attached to 

L. littorea shells occupied by Pagurus longicarpus or P. acadianus possessed spiralzooids 

(Table 3). Collection site, colony gender, and substrate surface area appeared to have no 

effect on the presence of spiralzooids.   

Spiralzooid Structure: (4) Spiralzooid Morphology 

 Mean spiralzooids length was 1.17 ± 0.62mm (n=822) and density was 1.91 ± 

1.03 spiralzooids per mm
2
 along the aperture edge (n=30). Spiralzooids contained only a 

single type of nematocyst, microbasic euryteles, which were organized into nematocyst 

batteries at zooid tips.  Microbasic euryteles, which are considered a medium sized 

piercing nematocyst (Östman 2000), possessed mean dimensions of 10.48 ± 0.06µm 

capsule length, 4.48 ± 0.03µm capsule width, and a 9.15± 0.07µm  shaft length (n=55). 

Nematocyst batteries were spherical in shape with mean dimensions of 38.65± 0.07µm  

length, 38.91 ± 0.07µm width and a cross-sectional area of 1,193.08 ± 3.71µm
2 
(n=75).   
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Spiralzooid Structure: (5) Spiralzooid Tip Condition 

 Four levels of spiralzooid tip condition were identified in H. polyclina colonies 

(Figure 3). The most abundant levels in colonies were classes 2 and 3, with 38.2% of 

spiralzooids represented (Figure 4). The least common level was the nonfunctional level 

1, which accounted for only 7.7% of spiralzooids (Figure 4). 

Spiralzooid Structure: (6) Adhesion Properties of Nematocysts Batteries 

 Spiralzooid nematocyst batteries adhered to all tested substrate (Figure 5). Data 

were not  normally distributed and were analyzed using a nonparametric test. Mean 

adhesion ranged from 0.19 ± 0.16 nematocyst batteries per spiralzooid lash for P. 

longicarpus cephalothorax, to 0.11 ± 0.13 nematocyst batteries per spiralzooid lash for P. 

arcuatus cheliped.  However, the mean number of adhered nematocyst batteries per lash 

did not vary significantly among substrates (Kruskal-Wallis ANOVA on ranks, H = 5.32, 

df = 3, p= 0.150). 

Spiralzooid Function: (7) Spiralzooid Formation in Respect to Shell Zones and Host 

Densities 

 The natural density of P. longicarpus at Site C (Pemaquid Beach, Bristol, ME) 

was   10.88 crabs per m
2
. The manipulative experiment to test density effects on spiral 

zooid formation used P. longicarpus densities of approximately 200 crabs per m
2
, over 

100x greater than that of Site C. Four treatments tested crab density effects on the 

formation of spiralzooids via a combination of physical and chemical crab cues: direct 
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contact/host present, no contact/host present, direct contact/host absent, and no 

contact/host absent. Overall, mean spiralzooid densities in zones A and B were higher in 

treatments with hosts present than in the natural survey or host absent treatments (Figure 

6), with the highest densities observed with hosts present and direct physical contact with 

other hermit crabs.  Hermit crabs were commonly observed to feed on hydroid polyps in 

this treatment.  Spiralzooid density varied significantly between host crab presence and 

absence treatments, but did not vary significantly with any other factors or interaction 

among factors (Table 4). 

Spiralzooid Function: (8) Mechanical Stimuli 

 Mechanical stimuli generally elicited a lashing response in 60-90% of the events, 

regardless of the zone of stimulus application or the level of stimulus (Figure 7).  

However, the lashing response was reduced for zooid contact in zone A.  Lashing 

response varied significantly among shell zones (ANOVA, F=17.59, df=2, p<0.001) and 

among level of stimulus (ANOVA, F=15.542, df=1, p<0.001). The interaction between 

these two factors was also significant (ANOVA, F=58.49, df=2, p<0.001), suggesting that 

Hydractinia polyclina are habituated to the host hermit crab contacting the colony along 

the shell aperture.  

Spiralzooid Function: (9) Spiralzooid Lashing Effects on Crab Behavior 

 Probing both bare gastropod shells and hydroid covered shells (thus causing 

spiralzooids to lash) tended to cause host hermit crabs to halt their current behavior 

(n=50). However, probing of hydroid covered shells halted host crab behavior a 
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significantly greater portion of the time than probes of bare shells (Figure 8; Mann-

Whitney Rank Sum Test, T=3167.00, p≤0.001).  

Spiralzooid Function: (10) Host Behavior Effect on Spiralzooid Lashing 

 Six crab behaviors were analyzed: foraging on hydroid colonies (n= 25), active 

foraging (n=50), feeding (n=50), fighting (n=50), zoea release (n=3), and shell swapping 

(n=35). Foraging on hydroid colonies induced the most spiralzooid lashing events and 

fighting behaviors produced the second largest response (Table 5). Active foraging, 

feeding, and zoea release did not stimulate spiralzooid lashing events. Variation in lashing 

response among different hermit crab behaviors was statistically significant (Kruskal-

Wallis ANOVA on Ranks, H = 80.23, df= 4, p≤0.001).  Because I only obtained one 

observation per crab, I excluded the effect of zoea release on spiral zooid lashing from 

the statistical analysis.  Nevertheless, spiralzooids failed to lash during the three zoea 

releases that I observed (Table 5). 

Spiralzooid Function: (11) Prey Calorie Values 

 Prey caloric values compiled from the literature were compared to Hydractinia 

polyclina values obtained in this study (Table 6). Samples of H. polyclina (n=5) had a 

calculated caloric value of 4,011.55 ± 65.47 cal/g dry wt. This value ranks H. polyclina 

within the top 10% of potential hermit crab prey, with a caloric value approximately 50% 

higher than that of algae and comparable to that of other animal prey (Table 5).  
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DISCUSSION 

Spiralzooid Distribution: 

 In many colonial invertebrates with inducible polymorphism, the distribution of 

zooid types within a colony has long been used to infer their likely functions (Mills 1976, 

Harvell 1998, Langmead and Chadwick-Furman 1999, Damiani 2003, Lapid and 

Chadwick 2006). For example, tentaculozooids, although present throughout hydrozoan 

colonies, only form in high densities around other epibionts, suggesting a specialized 

defensive function against other encrusting invertebrates (Namikawa 1992, personal 

observation). Similarly, avicularia in bryozoans only form in heavily foraged areas of 

colonies, suggesting that they function defensively to reduce subsequent foraging 

(Harvell 1998). The distribution of spiralzooids can similarly be used to help infer 

function. 

 The genus Hydractinia contains a number of clades that are primarily associated 

with different geographic regions, and different species encrust a wide range of firm 

substrata including bivalves, other hydroids, and shells inhabited by hermit crabs (e.g. 

Cunningham et al. 1991, Folino and Yund 1998, Schuchert 2000, 2001). From a literature 

review, I was able to demonstrate that globally, only Hydractinia spp. that lives on 

gastropod shells occupied by hermit crabs have been documented to form spiralzooids 

(Table 2).  Although past work suggested that the association between hermit crab living 

and presence of spiralzooids holds true for the North American clade of Hydractinia (H. 

GM, H. symbiolongicarpus, H. polyclina, H. symbiopollicaris, H. milleri; Buss and Yund 
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1989, Folino and Yund 1990, Miglietta et al. 2009), this pattern has not previously been 

documented to span multiple clades.  The absence of a geographic or taxonomic pattern 

indicates that the presence or absence of spiralzooids does not reflect a phylogenetic 

constraint, and suggests that spiralzooids play a role in hermit crab/hydroid interactions. 

 Few Hydractinia spp. have been documented to encrust multiple substrates within 

the same geographical region. For instance, H. polyclina has previously been reported to 

encrust gastropod shells occupied by Pagurus acadianus or P. longicarpus, with 

spiralzooids distributed along shell apertures (Buss and Yund 1989, Folino and Yund 

1990). Yet within my three collections sites in the Gulf of Maine, I found that H. 

polyclina encrusted eight different substrate types, five of which have not previously been 

reported (live Buccinum undatum and Littorina littorea, rocks, concrete/bolder, and 

bivalve shells; Table 3). The absence of spiralzooids on these alternative substrates 

extends the association with hermit crabs documented at the species level, and suggests 

that spiralzooid formation is inducible, rather than a fixed property of the species. 

Spiralzooid Structure: 

 Nematocyst structure and organization can also shed light on polyp function. In 

Cnidarians, nematocysts are the primary organelles used for foraging and defense 

(Purcell and Mills 1988, Madin 1988, Östman 2000, Puce et al. 2010). Nematocysts are 

classified in two main groups; entangling, such as desmonemes, or piercing, such as 

microbasic euryteles, stenoteles, and mastigophores (Östman 2000). Entangling 

nematocysts tend to be used for foraging on fast moving, hard-bodied prey such as 
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copepods or crustacean larvae (Purcell and Mills 1988, Madin 1988). Piercing 

nematocysts tend to be used for both defense from predators, and foraging on soft bodied 

prey (Purcell and Mills 1988, Madin 1988). Previously, spiralzooids have been proposed 

to function as secondary gastrozooids to capture host zoea (Christensen 1967, Damiani 

2003). However, due to a lack of entangling nematocysts, it is highly unlikely that 

spiralzooids could capture, retain, or transfer zoea to a feeding polyp.  In contrast to 

spiralzooids, gastrozooids contain a combination of both entangling desmonemes and 

piercing microbasic euryteles (Mills 1976).  This combination is more indicative of use in 

foraging on soft bodied or crustacean prey, such as zoea.  The presence of only 

microbasic euryteles in spiralzooids is consistent with a defensive function for this zooid 

type. 

 Nematocyst organization also reflects how zooids interact with their surroundings 

(Puce et al. 2010). The arrangement of nematocysts into batteries tends to be associated 

with foraging on crustaceans (Puce et al. 2010).  Although spiralzooid tips have 

previously been described as possessing “stubby” tentacles (Mills 1976), I have 

documented that these are detachable nematocyst batteries that vary in concentration on 

zooid tips. This organization is not common in hydrozoan polyps (Puce et al. 2010), 

though it is widespread in medusae (Purcell and Mills 1988, Madin 1988, Östman 2000, 

Puce et al. 2010).  Even within the family Hydractiniidae, not all genera possess 

nematocyst batteries (Toth 1966, Mills 1976). For example, spiralzooids of Podocoryne 

carnea, a species that also predominantly forms on gastropod shells occupied by hermit 

crabs, do not contain nematocyst batteries (Toth 1966, Mills 1976). However, 



24 

Podocoryne also differs from Hydractinia in that colonies produce medusae instead of 

eggs (medusae subsequently develop gametes post-release), and hence colonies may be 

expected to have a lower caloric value.    

 Spiralzooids contain varying densities of nematocyst batteries on their tips, with 

all four tip levels occurring simultaneously within most colonies (Figure 3).  This pattern 

is consistent with a regular use and hence loss of spiralzooid batteries. Undeveloped 

gonozooids also contain nematocyst batteries in an approximately level 4 state (personal 

observation, Mills 1976), suggesting that spiralzooids may form from this polyp type.  

 Individual nematocysts are not likely to be terribly effective against hermit crab 

exoskeleton.  However, nematocyst batteries adhered at approximately the same rates to 

exoskeleton as to soft-bodied tissue. The porous nature of exoskeleton (Castro-Rosas and 

Escartin 2002) may permit nematocyst barbs to hook into pores. Batteries can continue to 

fire nematocysts after they detach from a spiralzooid; they also can potentially detach and 

roll back into the gastropod shell, where nematocysts might then contact the softer tissue 

of a crab abdomen. The combination of delivering multiple nematocysts in a small area 

and eventually reaching sites distant from the deployment location may make them a 

potent threat to hermit crabs.  

Spiralzooid Function: 

 Hermit crabs are active mobile hosts, with the potential to frequently contact 

epibiont colonies. Colonies responded to weak and strong stimuli designed to mimic 

different levels of hermit crab contact by lashing with their spiralzooids (Figure 7).  
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However, in zone A, a weak stimulus produced significantly fewer lashing events than a 

strong stimulus (Figure 7). This two level response to stimuli near the aperture could help 

spiralzooids mediate interactions with hosts and conserve nematocyst batteries, which are 

lost during lashing events. Hermit crabs will contact colonies more frequently in colony 

zone A than in zones B & C, and contact in zone A is less likely to represent a threat to 

the colony.   

 Even though host hermit crabs are protected by exoskeletons, their behavior 

altered significantly during spiralzooid lashing events (Figure 8). Change in host behavior 

could be due to two main factors. First, hermit crabs are visual scavengers, with 

sophisticated eyes compared to many other invertebrates (Shaw 1969).  Their visual 

acuity may permit detection of the uncoiling motion of spiralzooids and allow them to 

retreat into their shells.  Alternatively, nematocysts may adhere to exoskeleton and 

directly alter behavior.  Some combination of the two mechanisms is likely, with 

occasional nematocyst stings leading to learned avoidance. 

Potentially because of this learned avoidance, Pagurus longicarpus forage on 

Hydractinia polyclina present on other crabs’ shells, rather than their own. As a result of 

this behavior, foraging on other shells stimulated spiralzooid lashing 65% of the time. 

Other behaviors, such as feeding, foraging, and zoea release did not stimulate spiralzooid 

lashing (Table 5).  This lack of response for these behaviors is not surprising, because 

they result in little contact and pose little threat to the colony. 
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 Therefore, I suggest that spiralzooid formation is not mediated directly by 

position on the shell, but rather by the degree of direct contact with host hermit crabs, and 

may be less dependent on diffusible material produced by a host hermit crab than 

previously proposed (Braverman 1960). In the presence of high densities of hermit crabs, 

spiralzooids formed throughout the shell (Figure 6). All of the newly formed spiralzooids 

in this experiment were capable of lashing in co-ordination with the existing aperture 

spiralzooids, which suggests that these new zooids would function in a similar fashion. 

But their locations would render them ineffective for catching zoea and other previously 

hypothesized functions.  Protecting the colony from foraging hermit crabs is the only 

function consistent with the location of these newly induced polyps. 

 Pagurus longicarpus are primarily deposit-feeders, but also act as scavengers, 

browsing on algae and even colonial invertebrates by slicing or plucking pieces off with 

the cheliped (Schembri 1982, Gherardi 1994). Calorically, Hydractinia polyclina are 

comparable to other prey available to host hermit crabs, probably due to the concentration 

of lipids in their gonozooids (Table 6). Captive hermit crabs are routinely observed 

foraging on the hydroids, primarily gonozooids, of other crabs. In habitats where 

competition for food resources is high, such as in many intertidal and subtidal zones, P. 

longicarpus might be expected to attempt to supplement their diets with their own H. 

polyclina epibionts. Although P. longicarpus have never been documented consuming 

their own H. polyclina epibionts, the potential role of spiralzooids in successfully 

preventing such foraging events deserves further consideration. 
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 While this observation, and the effect of hermit crab density on spiralzooid 

formation, suggests an anti-foraging function for spiralzooids, I was not able to directly 

test hermit crabs foraging on their own epibiont. My expectation is that this behavior is 

limited by spiralzooids. Nevertheless, hermit crabs actively forage only on colonies on 

other shells. Since Pagurus longicarpus has never been documented foraging on colonies 

on their own shells, some aspect of hydroid morphology or behavior must prevent such 

actions.  

Net Interaction: 

 Previously, under the hypothesis that spiralzooids consume host zoea, the net 

interaction between Hydractinia polyclina and Pagurus longicarpus has been suggested 

to be parasitic to the crab (Mills 1976, Conover 1978, Damiani 2003). Under this 

hypothesis, gastrozooids contribute positive and negative interaction components, 

gonozooids do not affect the interaction, tentaculozooids provide a positive interaction 

component, and spiralzooids contribute a strong negative interaction component. 

However, this hypothesis has overlooked several key aspects of spiralzooid biology and 

ecology. First, H. polyclina spiralzooids do not contain the desmonemes needed to 

capture crustacean prey. Next, if spiralzooids function to capture, retain, and transfer zoea 

to gastrozooids, then why are nematocyst batteries detachable? Most conclusively, 

spiralzooids did not lash during the release of zoea from the three female hermit crab 

hosts that I was able to observe. Consequently, my findings do not support the previous 

hypothesis for spiralzooid function.   
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 I propose instead that spiralzooids function in Hydractinia polyclina to prevent 

host Pagurus longicarpus from foraging on epibiont colonies. This hypothesis is a better 

fit to my current data on spiralzooid ecology. Spiralzooids lashed 65% of the time in 

response to foraging on colonies (Table 5), and lashing terminated host behavior 43% of 

the time.  Additionally, removable nematocyst batteries would appear to allow colonies to 

reach the soft-bodied abdomen tissue of hermit crabs. Lastly, foraging on H. polyclina 

stimulated spiralzooid formation throughout the shell. If my hypothesis is correct, I 

suggest that gonozooids actually have a weak positive interaction with the crab by 

providing desired caloric value and spiralzooids now have a weak negative interaction 

with the crab. Therefore, the resulting net interaction between H. polyclina and P. 

longicarpus would be considered commensal or weakly mutualistic and directly 

influenced by spiralzooids. 
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Figure 1: Study location within the Gulf of Maine; (A) Portsmouth Harbor at Kittery, 

ME; (B) The mouth of the Saco River at Saco, ME; (C) Pemaquid Beach at Bristol, ME.  
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Figure 2:  Shell Zones; A – leading edge of shell by the aperture, B – one-third of shell 

closest to the aperture, C – two-thirds of shell furthest from the aperture.  
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Figure 3: The four levels of spiralzooid condition. Panels A, C, E, and G are macroscopic 

views of spiralzooids, while panels B, D, F, and H are microscopic views. (A, B) Level 1 

spiralzooid with no nematocyst batteries present. (C, D) Level 2 spiralzooid with some 

batteries, but bare sections of zooid tip. (E, F) Level 3 spiralzooid with complete single 

layer of nematocyst batteries on zooid tip. (G, H) Level 4 spiralzooid with complete 

double layer of nematocyst batteries on zooid tip.   
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Figure 4: Percent of spiralzooids in each condition level; n (colonies)=30.  
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Figure 5:  Mean number of spiralzooid batteries adhered per spiralzooid for different 

substrates; n=30 for each substrate. Error bars represent one standard error.  
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Figure 6: Mean spiralzooid density
 
in shell zones B and C as a function of crab access 

and density manipulations. Densities in nature are depicted on the left for comparison.  

Error bars represent one standard error. 
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Figure 7: Mean percent of spiralzooids lashing in response to mat tissue contact or zooid 

contact in shell zones A-C; n=50 for each shell zone and tissue type. Error bars represent 

one standard error; * denotes the single treatment significantly different from the others at 

p<0.05.  
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Figure 8: Mean percent of hermit crabs altering their behavior in response to probing, 

which caused spiralzooids on hydroid-covered shells to lash; n=50 in both treatments. 
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Table 1: Hydractinia spp. literature review of colony attachment substrate type and presence of spiralzooids; * represents colonies that 

are monomorphic; + represents the presence of spiralzooids; - represents the absence of spiralzooids. 

 

 

Hydractinia spp. Substrate Type(s) 
Presence of 

Spiralzooids 
Location(s) Reference(s) 

H. allmani Colus spp. Gastropod - 
Atlantic Ocean, Greenland 

Atlantic Ocean, Iceland 
Schuchert  2001 

H. antonii * Rock cobble and Shell debris - Gulf of Alaska, USA Miglietta et al. 2009 

H. angusta Adamussium colbecki Shell bivalve - Ross Sea, Antarctica Cerrano et al. 2001 

H. areolata Gastropod shells occupied by Hermit crabs + Mediterranean Sea Bouillon et al. 2004 

H. borealis 
Tubularia indivisa Hydroid 

Pagurus bernhardus Hermit crab 

- 

+ 

Atlantic Ocean, Greenland 

Atlantic Ocean, Iceland 

Schuchert  2000 

 

H. carica Buccinium groenlandicum Shell Gastropod - Arctic Ocean, Russia Schuchert  2001 

H. echinata 

Pagurus bernhardus Hermit crab 

Pagurus pollicaris Hermit crab 

Rock cobble and Shell debris 

+ 

+ 

- 

Gulf of Mexico, USA 

Cunningham et al. 1991 

Mills 1976 

Mills 1976 

H. milleri * Rock cobble and Shell debris - Pacific Ocean, USA Cunningham et al. 1991 

H. polyclina Pagurus longicarpus Hermit crab + Gulf of Maine, USA Folino and Yund 1998 

H. pruvoti Clibanarius erythropus Hermit crab + Atlantic Ocean Bavestrello et al. 2000 

H. sarsii * Rock cobble and Shell debris - 

Atlantic Ocean, Greenland 

Atlantic Ocean, Iceland 

Atlantic Ocean, Norway 

Schuchert 2001 

H. symbiolongicarpus Pagurus longicarpus Hermit crab + Gulf of Maine, USA Folino and Yund 1998 

H. symbiopollicaris Pagurus pollicaris Hermit crab + Gulf of Maine, USA Buss and Yund 1989 

H. uniformis * Rock cobble and Shell debris - Atlantic Ocean, Brazil Stampar et al. 2006 
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Table 2: Results of Hydractinia polyclina crosses from within and among the three 

collection sites: Saco River (SR), Portsmouth Harbor (KH) and Pemaquid Beach (PB). 

Hydroid Cross 
Number of 

Crosses 

Eggs Released 

per Cross 

Mean Percent Fertilization 

 ± Standard Error 

SR vs SR 14 3-36 61.15 ± 1.91% 

PB vs SR 7 7-18 69.29 ± 3.58% 

PB vs PB 13 3-31 53.14 ± 1.94% 

KH vs KH 6 3-21 51.95 ±  3.95% 

KH vs PB 4 3-49 67.99 ± 7.76% 
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Table 3: Percentage of Hydractinia polyclina colonies containing spiralzooids across different substrate types and sizes, collection 

sites, and colony gender (n=212). 

 
 

 

 

Substrate Type 

Number of Colonies  

within  

Substrate Type 

Percent  

Containing  

Spiralzooids 

Collection Site  Colony Sex Mean Surface Area (cm
2
)   

 

PB KH SR  ♀ ♂   NA 
± Standard Error  

Stones 58 0% 0 52 5  18 17 23 58.62 ±1.68 
 

Boulder/Concrete 5 0% 0 5 0  0 0 5 3251.61 ± 328.26  

Bivalve Shell 3 0% 2 1 0  1 0 2 120.04 ± 41.36 
 

Buccinum undatum Shell                         

with Gastropod 
2 0% 0 2 0  0 0 2 105.65 ± 10.32 

 

Littorina littorea Shell 23 0% 1 0 22  5 3 8 44.71 ± 0.53 
 

Littorina littorea Shell                             

with Gastropod 
11 0% 1 0 10  4 5 2 50.94 ± 2.16 

 

 

Littorina littorea Shell with                 

Pagurus longicarpus 

51 100% 51 0 0  29 21 1 11.75 ± 0.06 

 

 

Littorina littorea Shell with                 

Pagurus acadianus 

59 100% 51 8 0  22 14 21 13.89 ± 0.09 
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 Table 4: ANOVA results for spiralzooid formation with respect to shell zones and host 

density DF = degrees of freedom, SS = sum of squares, bold values are significant 

(p≤05).  

Source of Variation DF SS F P 

host crab 

(presence and absence) 
1 1.372 5.960 0.016 

shell zone 

(A, B, or C) 
2 4.881 0.0806 0.777 

hermit crab cues  

(physical or chemical) 
1 0.066 1.675 0.198 

hermit crab cues X host crab 1 1.256 1.534 0.217 

hermit crab cues X shell zone 1 0.001 0.0121 0.913 

host crab X shell zone 1 0.043 0.0520 0.820 

hermit crab cues X host crab X shell zone 1 0.022 0.0274 0.869 

Residual 151 123.655 0.819  



44 

Table 5: Mean percent of Hydractinia polyclina spiralzooids lashing during six Pagurus 

longicarpus behaviors. 

Pagurus Behavioral Event N crabs 

Range of 

N Behavior Events 

per Crab 

Mean Percent 

Spiralzooid Lashing 

Foraging on hydroids 27 2-5 60.23 ± 0.20% 

Active Foraging 50 2 0% 

Feeding 50 2 0% 

Zoea Release 3 1  0% 

Fighting 28 2-5 50.08 ± 0.18% 

Shell Swapping 8 2-3 16.63 ± 0.61% 
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Table 6: Calorific values (cal/g dry weight) of potential prey of Pagurus hermit crab.  

* represents cal/g dry weight of prey that were averaged over several genera and species.  

Organism(s) Cal/g dry wt Reference(s) 

Cnidaria    

           Snail Fur      Hydractinia polyclina 4003 Current Study 

Arthropoda    

    Amphipods   Multiple Species* 3761* Brawn et al. 1968 

           Barnacle Balanus balanoides 4746 Tyler 1973 

Mollusca    

  Whelk      Thais lapillus 4595 Brawn et al. 1968 

Moon Snail      Natica clausa 4392 Brawn et al. 1968 

        Crepidula      Crepidula convexa 2908 Tyler 1973 

       Crepidula      Crepidula fornicata 4066 Tyler 1973 

Chordata    

           Ascidian      Mogula manhatienis 3002 Tyler 1973 

Chlorophyta    

 Green Algae  Multiple Species* 2650* Lamare and Wing 2001 

Phaeophyta    

Brown Algae   Multiple Species* 2610* Lamare and Wing 2001 

Rhodophtya    

Red Algae   Multiple Species* 2460* Lamare and Wing 2001 
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APPENDICES 

 Appendices I-III report preliminary experiments and surveys that were performed 

as this thesis evolved. However, they represent directions that were ultimately abandoned 

and hence not integrated into the main methods and results sections of the thesis. 

Although the work reported in Appendices I and II resulted in significant outcomes, these 

results do not directly address the broader question of spiralzooid function within 

Hydractinia polyclina colonies. Additionally, the work reported in Appendix III provided 

only qualitative data. However, the data in these 3 sections do provide potentially useful 

information on the fundamental biology of spiralzooids. 
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APPENDIX I: HOST FIT AND SPIRALZOOID LENGTH/DENSITY 

Introduction 

Hydractinia polyclina have been documented encrusting shells of both Pagurus 

longicarpus and P. acadianus, although H. polyclina are predominantly found to encrust 

P. acadianus gastropod shells (Yund and Parker 1989, Folino and Yund 1998). 

Populations of hermit crabs naturally exhibit variation in shell fit due to differing body 

sizes and variation in shell sizes within a habitat (Conover 1978, McLean 1983). As a 

host’s fit to its gastropod shell becomes tighter, the distance between the hermit crab’s 

cephalothorax and the edge of the aperture of its shell decreases, resulting in the potential 

for increased contact between spiralzooids and hosts. Findings from this (Figure 6) and 

previous studies (Braverman 1960), show that contact from host hermit crabs, or any 

other hermit crab, induces spiralzooid growth at the location of contact. 

This appendix expanded upon the idea of hermit crab contact as a stimulus for 

spiralzooid growth by determining if the fit of a hermit crab to its shell dictates 

spiralzooid growth characteristics, such as length and/or density. Spiralzooid length and 

density are important characteristics of colonies that regulate to what extent the polyps 

are able to interact with their surrounding environments and hosts. In the work reported 

in this appendix, my goal was to determine if the fit of a Pagurus host, due to crab 

species and/or size relative to its shell, affected spiralzooid length and/or density.  
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Methods and Materials 

Host Fit:  

 Hermit crabs were measured according to Blackstone’s shell fit score (Blackstone 

1985) in order to remove potential biases created by comparing different absolute sized 

hosts. Crabs were probed until they retreated as far into their shell as physically possible. 

Crabs with the ability to retreat fully into their shells were scored as small relative to their 

shells. Crabs whose cheliped acted as a tight, but uniform, operculum in the aperture of 

their shell were scored as a medium fit. Crabs whose cheliped extended past the aperture 

of their shells were scored as large for their shells. 

 

Spiralzooid Length and Density:   

 Image analysis was used for zooid length and density measurements. Length data 

were collected to assess the ability of the spiralzooids to reach various surfaces. Density 

data were collected to assess how many zooids can contact surfaces. Length data and 

density data were analyzed separately using two two-way ANOVAs with main factors of 

host hermit crab species (Pagurus longicarpus or P. acadianus) and host fit (small, 

medium, or large) in Sigma Plot.  The interaction between the two main effects was also 

included in the models. 
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Results 

 Length and density data were analyzed separately (Figure A1).  Spiralzooid 

density did not vary significantly among fit categories (ANOVA, F=0.57, df=2, p=0.567), 

but did vary significantly between host species (ANOVA, F=10.55, df=1, p=0.001). The 

interaction between these two factors was not significant (ANOVA, F=0.34, df=2, 

p=0.713). Spiralzooid length varied significantly among both fit (ANOVA, F=4.69, df=2, 

p=0.009) and host species (ANOVA, F=10.66, df=1, p=0.001), and the interaction of 

these two factors was also significant (ANOVA, F=7.66, df=2, p≤0.001).  Spiralzooids 

were generally denser on shells occupied by P. longicarpus (Figure A1).  
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APPENDIX II: APERTURE POSITION AND SPIRALZOOID LENGTH/DENSITY 

Introduction 

 Variation in macrohabitat, or physical environment, can have drastic effects on the 

morphology of sessile invertebrates (Bravermann 1960, Harvell 1984, 1990). Zooid 

formation can be affected by several external factors including increases in dissolved 

carbon dioxide (Bravermann 1960), contact with competitors (Harvell 1990), waterborne 

cues (Harvell 1984, 1990), or attachment substrate (Bravermann 1960). Findings from 

this study (Tables 1 and 3) show variation in spiralzooid density can occur even within 

one macrohabitat. This variation suggests that spiralzooid formation is not only affected 

by the physical environment, but could also potentially be influenced by microhabitats 

created by the shape of the colony’s attachment substrate. Hydractinia polyclina that 

encrusts hermit crab (Pagurus longicarpus or P. acadianus) occupied gastropod shells 

appear to experience small-scale variation in microhabitat on different portions of the 

shell (personal observation).  

No previous study has assessed whether variation in microhabitat  (i.e., proximity 

to host or the benthos) affects spiralzooid structure. In the work reported in this appendix, 

my goal was to determine if the relative position of the host and benthos to the aperture, 

and the resulting differences in host and benthos contact, affected spiralzooid length 

and/or density. Spiralzooid length and density are important characteristics of colonies 

that regulate to what extent zooids are able to interact with their surrounding environment 

and hosts. 
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Methods and Materials 

Aperture positions: 

 All Littorina littorea shells were dextral (i.e., had right-hand apertures). Four 

aperture positions were defined with respect to the host hermit crab and benthos: top, 

right, bottom, and left. The segment of aperture edge that was furthest from the benthos 

and directly above the host’s carapace was classified as the top position. Right positions 

were defined as segments of the aperture edge that were opposite the spire and not in 

direct contact with the host’s cheliped. Bottom positions were defined as segments of the 

shell that were closest to, and generally rubbed against, the benthos. Left positions were 

defined as segments of the aperture edge that were adjacent to the spire and came into 

direct contact with the host’s cheliped. Aperture positions were classified on shells in 

order to help identify changes in spiralzooid length/density measurements that could be 

caused by varying contact with the host’s cheliped and/or the benthos (i.e., to address 

whether proximity to the benthos inhibits spiralzooid growth, or if spiralzooids on the top 

of the aperture are longer or occur at a higher density). 

 

Spiralzooid Length and Density:   

 Photographic analysis was used for both zooid length and density measurements. 

Length data were collected to assess whether position affects the ability of the 

spiralzooids to reach various surfaces. Density data were collected to assess whether 

position affects how many zooids contact surfaces. Length data and density data were 
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analyzed separately using two-way ANOVAs in Sigma Plot with main factors of host 

hermit crab species (Pagurus longicarpus or P. acadianus) and aperture positions 

(Bottom, Left, Right, Top). The interaction between the two main effects was also 

included in the models. 

 

Results 

 Spiralzooid density varied significantly among aperture positions (Figure A2; 

ANOVA, F=4.36, df=3, p=0.005) and between host species (ANOVA, F=10.07, df=1, 

p=0.002). However, the interaction between these two factors was not significant 

(ANOVA, F=0.16, df=3, p=0.922). Spiralzooid length varied significantly among 

aperture positions (ANOVA, F=22.13, df=3, p≤0.001) and between host species 

(ANOVA, F=12.15, df=1, p≤0.001). The interaction of these two factors was also 

significant (ANOVA, F=4.483, df=3, p=0.004). Spiralzooids were generally longer and 

denser on P. longicarpus than on P, acadianus crabs, while the length and density patterns 

among positions were more complex (Figure A2). 
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APPENDIX III: CHEMICAL/MECHANICAL STIMULI 

Introduction 

 Organisms rely on environmental stimuli in order to interpret and interact with 

their surroundings. Interacting species, such as prey, predators, and intra- and inter-

specific competitors (Madin 1988) provide one class of environmental stimuli. Stimuli 

from different species are distinguished from one another based upon specific 

combinations of chemical and mechanical signals. Chemical signals are formed from 

biochemical compounds such as bio-films or hormones that are presented on an 

organism’s outer surface. Mechanical stimuli are formed from the actual movement of the 

organism, and vary with intensity of the contact.  

Within natural environments, chemical and mechanical stimuli tend to elicit 

varying responses, depending upon the species providing the stimulus. Many 

scyphozoans and hydrozoans respond to these combined stimuli by discharging 

nematocysts and/or to altering zooid behavior (Madin 1988, Östman 2000, Puce et al. 

2010). These responses initiate foraging in response to prey stimuli and defensive actions 

in response to predator stimuli (Östman 2000). 

However, alteration of zooid behavior in response to different stimuli has never 

been tested specifically within H. polyclina. In this appendix, my goal was to determine if 

the type of stimulus and the intensity of mechanical stimuli affected the lashing response 

of spiralzooids. I tested the basic stimulus categories of prey, predators, and competitors. 

Since H. polyclina is a colonial epibiont, I also tested stimuli by polyps from the same 
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colony to determine zooid behavior in response its own colony, and stimuli from Pagurus 

hermit crabs, such as female egg clutches or the hosts’ exoskeleton to determine zooid 

behavior in response to hosts.  

 

Methods and Materials 

Stimuli: 

 Five categories of combined mechanical and chemical stimuli were tested: host, 

prey, predator, colony, and competing epibionts. Host cues included contact from 

exoskeleton and abdomen tissue, eggs, and zoea from Pagurus longicarpus. Prey cues 

included isopods, Artemia spp. and fish particulates. Predator cues were from naturally 

occurring predators of H. polyclina such as nudibranchs (Flabellina spp.). Colony cues 

included gastrozooids, gonozooids, spiralzooids, and mat tissue from other H. polyclina 

colonies. Competing epibiont cues were from naturally occurring epibiont competitors of 

H. polyclina including Crepidula plana and crustose algae. Stimuli from each class were 

presented to spiralzooids in zone A. I investigated spiralzooid response to two levels of 

mechanical/chemical stimuli, strong and weak. Pressure on colony mat tissue was 

considered a strong stimulus, while pressure on zooids was considered a weak stimulus. 

Stimuli from all classes were presented in a random order until each stimulus class had 

received three replicate treatments of approximately 30 seconds of contact. Spiralzooid 

responses were measured as percent of zooid lashing events per stimuli. 
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Results 

 Overall, there were no apparent trends in lashing response among the five classes 

of stimuli tested (Table A1). However, there were clear differences between mat tissue 

and zooid contact (corresponding to strong and weak stimuli, respectively) within many 

of the stimulus categories. Contact with mat tissue tended to provoke more lashing events 

then zooid contact. 
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Figure A1: (A) Mean spiralzooid length (cm) and (B) density (per cm
2
)
 
with respect to 

host species and host/shell fit. Error bars represent one standard error.  
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Figure A2: (A) Mean spiralzooid length (cm) and (B) density (per cm
2
) with respect to 

host species and aperture position. Error bars represent one standard error.  
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Table A1: Mechanical/chemical stimuli effect on Hydractinia polyclina spiralzooid lashing. 

 

Mechanical/Chemical Stimuli (N crabs) (N Behavior Events)              

Mean Percent 

   Lashing  With  

Zooid Contact 

Mean Percent        

   Lashing With        

Mat Tissue Contact 

Host Stimuli     
 

 Hermit Crab Exoskeleton 30 3 8.89% 65.52% 

 Hermit Crab Abdomen 30 3 3.33% 15.54% 

 Un-hatched Eggs 30 3 0.00% 3.33% 

 48 Hour Zoea 30 3 2.22% NA 

Prey  Stimuli      

 Artemia spp. 30 3 1.11% 8.88% 

 Decomposing Fish  30 3 8.89% 25.56% 

Predator  Stimuli      

 Nudibranch 30 3 1.11% 9.52% 

Colony  Stimuli      

 Gastrozooids 30 3 8.89% 40.00% 

 Gonozooids 30 3 6.24% 41.11% 

 Spiralzooids 30 3 5.55% 38.89% 

 Mat Tissue 30 3 6.24% 56.21% 

Epibiont  Stimuli      

 15 scale Worm 30 3 0.00% 1.11% 

 Crepidula  spp. 30 3 29.97% 77.44% 

 Crustose Algae 30 3 7.78% 27.78% 
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