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Abstract 

The theory of myofascial pain syndrome (MPS) caused by trigger points (TrPs) seeks to explain 

the phenomena of muscle pain and tenderness in the absence of evidence for local 

nociception.  Although it lacks external validity, many practitioners have uncritically accepted 

the diagnosis of MPS and its system of treatment. Furthermore, rheumatologists have implicated 

TrPs in the pathogenesis of chronic widespread pain (fibromyalgia syndrome). We have 

critically examined the evidence for the existence of myofascial TrPs as putative pathological 

entities and for the “vicious cycles that are said to maintain them. We find that both are 

inventions that have no scientific basis, whether from experimental approaches that interrogate 

the suspect tissue or empirical approaches that assess the outcome of treatments predicated on 

presumed pathology. Therefore the theory of MPS caused by TrPs has been refuted. This is not 

to deny the existence of the clinical phenomena themselves, for which scientifically sound and 

logically plausible explanations based on known neurophysiological phenomena can be 

advanced.  

 

Key messages:  

1. The theory of “myofascial pain” based on “trigger points” is conjecture that has been put 

forward as established knowledge. 

2.  The key phenomenon of muscle tenderness demands a robust plausible explanation based on 

neurobiology.. 

3.  The context in which treatment is carried out influences the outcome. 

 

Keywords: nerve; muscle; referred pain; pain mechanisms; philosophy of science 
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Introduction 

The phenomena of muscle pain and tenderness in the absence of obvious disease are well 

recognized but poorly understood.  Myofascial pain syndrome (MPS) is a popular explanatory 

model, which posits a local (muscle) origin of nociception called the trigger point (TrP) and 

advocates local treatment, primarily direct manipulation of TrPs using manual pressure or 

needles, the latter with and without injectate [1, 2]. These forms of treatment are being practised 

worldwide by physicians, physical therapists, chiropractors, and various unlicensed and 

unregulated practitioners [3]. 

 

But does the evidence support these concepts?  Are the hypotheses generated by MPS theory 

scientifically sound?  And are treatments based on this theoretical model beneficial?   

 

This article will show that the theory is flawed both in reasoning and in science.  In seeking a 

resolution two testable hypotheses are identified, which point the way to neuroscientific 

explanations for the observed clinical phenomena.   

 

Evolution of MPS Theory 

The belief that muscle pain might originate from focal lesions within connective tissues 

harbouring low-grade inflammation that activated sensory fibresinnervating muscle spindles and 

the interstitial tissues between muscle fibres has long been entertained [4,5]. The initial 

description put forward by Stockman was of “fibrositic” nodules, which were suggested to 

harbour low-grade inflammation that activated sensory fibres innervating muscle spindles and 
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the interstitial tissues between muscle fibres[6]. The initial claim that “the essential lesion is a 

chronic inflammatory hyperplasia of white fibrous tissue in patches” was never confirmed [6,7].  

 

An infective aetiology of such nodules was proposed but other conjectures included micro-

trauma, exposure to environmental extremes, nerve root irritation, and psychoneurosis [8-9]. 

 

Kraus (cited by Simons [3]) speculated that palpable muscle hardenings of unknown cause could 

set up a reflex increase in muscle tension resulting in a “pain-reflex-pain self-perpetuating cycle” 

that could be disrupted by ethyl chloride sprayed onto the overlying skin or by local injections of 

anaesthetic.  Pain theorists William Livingstone [10] and John Bonica [11] favoured this “vicious 

circle” hypothesis, as did others [12,13]. 

 

These speculations took a new turn when Travell and Rinzler [4] conceptualised that pain felt in 

voluntary muscles is “myofascial” in origin.  Their claim that “trigger areas in myofascial 

structures can maintain pain cycles indefinitely” was reminiscent of the  “vicious circle” 

hypothesis.  

 

Travell and Simons [14] formalised the construct of “myofascial pain arising from trigger 

points.”  Not only were TrPs described in exactly the same way as fibrositic nodules had been, 

but also it was asserted that they could potentially develop within every voluntary muscle and in 

multiple locations within a given muscle.  
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The theory of MPS comprised two essential components: (i) the TrP, a localised area of 

tenderness or hyperirritability deep within voluntary muscle; and (ii) a predictable discrete zone 

of deep aching pain, which could be located in the immediate region of or remote from the TrP, 

and which was worsened by palpation of the TrP [4, 14]. 

 

Travell and Simons [14] composed anatomical charts of trigger points, and their “characteristic” 

pain referral patterns.  However, it appears that their diagrams had “sometimes been chosen 

arbitrarily, there being no accepted standard” [15]. 

 

Located within palpable “taut bands,” TrPs were said to represent shortened (“contractured” 

[16]) muscle fibres.  On “snapping” palpation or insertion of a needle, a local twitch response 

could be elicited, which was accompanied by an “irritable” electromyographic response [14]. In 

contrast to a normal muscle, one containing a TrP was said to exhibit both antalgic inhibition 

when tested for its strength and intolerance to passive stretch.  

 

To explain the puzzling onset of pain in ostensibly lesion-free tissues, Travell and Simons [14] 

found it necessary to invent the “latent” TrP, a site of potential tenderness within a muscle 

unassociated with spontaneous pain but having the potential to be activated by a myriad of 

factors, within or outside the body.  In an attempt to extend the theory to explain more 

widespread pain, they claimed that TrPs could self-propagate to become “secondary” TrPs in 

other muscles and even to “metastasise” throughout the bodily musculature.   
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The recent conjecture that peripheral pain generators can reside within muscles (i.e. myofascial 

tissues), and be responsible not only for spontaneous pain but also for the initiation and 

maintenance of profound changes within the central nervous system (known as central 

sensitisation) rests upon these dubious premises [17, 18]. Similarly, prominent rheumatologists 

are amongst those who maintain that TrPs are responsible for the initiation and maintenance of 

the syndrome of chronic widespread pain (Fibromyalgia) [17-23]. 

 

Beliefs in TrP theory and the associated concept of MPS continue to be strongly held [24], 

despite the fact that such beliefs exemplify circular reasoning: TrPs cause myofascial pain 

because painful muscles contain them [25].  

 

Review of the evidence 

Clinical diagnosis 

An extensive review identified at least 19 different sets of diagnostic criteria used for the 

MPS/TrP syndrome, and concluded there was a lack of consistency and consensus on case 

definition [26]. The authors suggested that until reliable diagnostic criteria had been established, 

“there is a need for greater transparency in research papers on how a case of MTrP (sic) pain 

syndrome is defined, and claims for effective interventions in treating the condition should be 

viewed with caution.”  A similar study found that the diagnosis of MPS from putative TrPs was 

based on a clinical test of unknown reliability and validity with no accepted reference standard 

[27]. 
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In studies of inter-examiner reliability, examiners were given the muscle to palpate, with or 

without an accompanying diagnosis [28-31]. In one study, extensive training coupled with the 

use of an algometer resulted in examiner agreement that the phenomenon could be localized 

[29]. Another study reported that the assessments of an individual examiner were consistent from 

one test to another [31] and that more experience in assessment leads to better inter-examiner 

agreement [30]. These studies suggest that when shown where a problem may exist, examiners 

may agree. However, when blinded as to diagnosis, those who claimed expertise in the field were 

unable to detect putative TrPs in the majority of subjects with a MPS diagnosis [32].  In this 

study there was virtually no inter-examiner reliability for either putative TrPs or taut bands.  This 

finding questions the reliability of the diagnostic criteria used by these experts.  More recent 

studies [33, 34] have also reported poor inter-examiner diagnostic reliability and poor 

methodological quality [35].  

 

In summary, physical examination cannot be relied upon to diagnose a condition that is supposed 

to be defined by that physical examination.  That is, the pathognomonic criterion for making the 

diagnosis of MPS is unreliable.  

 

Pathology 

The first histological analysis of “fibrositic nodules” reported diffuse inflammatory changes [9]. 

These findings were not confirmed, although tender muscles contained increased extracellular 

fluid [36]. The authors suggested that the resulting turgor might explain the observed finding of 

mechanical tenderness.   
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The term “myogelosis” describes a change in muscle structure analogous to TrPs [37]. Samples 

taken from unfixed cadavers following detection of such areas showed altered histology, [37] but 

the clinical relevance to the findings on palpation is unknown. 

 

Tissue biochemistry 

Shah et al. [38, 39] employed micro-dialysis to sample tissue fluid within and near to a palpated 

“trigger” zone in trapezius muscles in patients with a diagnosis of TrPs and in normal pain-free 

subjects.  Samples were taken from the following regions: normal (no pain, no TrP), active (pain 

and TrP detected) and latent (no pain, TrP detected).  Samples were also taken from 

asymptomatic gastrocnemius muscles.  Elevated levels of CGRP, SP, norepinephrine, TNF- 

alpha, IL-1, IL-6 and low pH were reported in fluid from all sampled regions of symptomatic 

patients.   However, elevated levels were also found in uninvolved, control muscle areas. 

 

These reported alterations in biochemical milieu are consistent with inflammation due either to 

tissue damage or to altered peripheral nerve function, in contrast to pathology necessarily being 

in the tissue sampled [40, 41]. 

 

Electromyographic studies 

In one study, electromyographic examination (EMG) of TrPs failed to provide evidence of 

ongoing denervation or focal muscle spasm [42].  But another study did report spontaneous 

electrical activity (i.e. endplate noise and spikes) in regions considered to be TrPs in patients 

with chronic tension headache and pericranial muscle tenderness [43].  
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Simons et al. addressed the question whether endplate noise and spikes arise from “normal” 

endplates by performing EMG on 25 patients who met the American College of Rheumatology 

1990 criteria for fibromyalgia [44] and 8 pain-free subjects in whom “latent” TrPs had been 

identified by manual palpation of taut bands and characteristic referral of pain (sic) [45, 46].  

Unfortunately the researchers conflated the TrPs of MPS and the “tender points” of fibromyalgia, 

another issue yet to be resolved [47].  They concluded that endplate noise is characteristic of but 

not restricted to TrPs, and that the finding could not be considered a reliable diagnostic criterion 

[45, 46].   

 

An alternate interpretation of these EMG findings is that insertional and spontaneous activity 

(i.e. “end plate noise”) from single muscle  fibres generated by the activation of intramuscular 

nerve terminals irritated by the needle was being recorded [48]. Nonetheless, it is still asserted 

that spontaneous electrical activity is one of the characteristics of myofascial TrPs [49]. 

 

Imaging studies 

Seven patients with a 3-year history of “myofascial pain” associated with the presence of a taut 

band in the upper trapezius muscle were examined using magnetic resonance elastography [50].   

A “signature” chevron-like pattern was reported, with its leading edge coincident with the 

physician-identified taut band. The authors did not offer diagnostic criteria, nor make any 

comment on the relationship of a “taut band” to a TrP.   A subsequent study of 8 subjects, 4 of 

whom were said to have MPS and 4 who did not, is open to the same criticism [51].   
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Attempts were made to visualise TrPs using diagnostic ultrasound of the anterior abdominal wall 

of 10 patients [52]. The points in question appeared as a “mixed echoic area in the rectus 

abdominis muscle that became prominent on injection of local anesthetic solution” (italics by 

authors).  They conceded that the findings could have been coincidental. Also the image 

presented is consistent with the normal sonographic appearance of abdominal muscles [53]. 

 

In another study, 44 patients with acute cervical pain and at least one putative TrP identified by 

palpation in the upper trapezius were evaluated using sonoelastography and Doppler imaging 

[54]. The authors claimed to have measured trigger point size and to have distinguished normal 

muscle from active and latent TrPs.  Although the data on which these assertions were made 

were not presented, the authors found no correlation between claimed TrP area and pain 

pressure threshold. The absence of pain-free control subjects is yet another flaw.  These 

methodological concerns do not lend credibility to the findings.  

 

Animal models 

Animal models are often informative about pathophysiology in ways that are impossible to 

demonstrate in humans.   To be considered relevant, models must have symptomatic and/or 

pathological similarities to the condition being studied.  For TrP research, no such model exists. 

 

Simons and Stolov [55] biopsied ostensibly normal canine muscles, seeking to correlate palpated 

taut bands with morphological and histological changes. The findings were negative, given that 

there was no indication of pain or a pathological condition present prior to these studies.  The 

researchers observed: “rubbing palpation produced a transient contraction which could be 
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primarily responsible for the sensation of a hardness palpated in the dog muscles.”  This is the 

myotatic reflex, which correlates to the “twitch response” also evocable on palpation of normal 

human muscle [56].   

 

Based upon the conjecture that “… latent TrPs can be identified in almost all skeletal muscles of 

normal adults”[14], a rabbit model of TrPs was proposed [57, 58]. Rabbit leg muscles were 

palpated until they exhibited a myotatic reflex.  Such muscles were considered to contain taut 

bands and, by assumption, TrPs.  A number of papers have since been published using this 

“model” [58-65]., but have not offered evidence of clinical relevance. 

 

Delayed Onset Muscle Soreness 

Studies of delayed onset muscle soreness (DOMS) have been undertaken using eccentric 

exercise to cause symptoms, in both humans and animals.  Although DOMS has been related to 

TrPs in only one study [66], this model was proposed for MPS [67].  The relevant experiment 

was performed in humans, and used eccentric exercise of the extensor digitorum of the middle 

finger [66].  Following the development of DOMS, the muscle was palpated, revealing a tender 

band judged to be taut.  However, since the muscle itself is a band, relating the description to 

TrPs seems meaningless.  It should be noted that DOMS is self-limiting, whereas whatever 

phenomenon is occurring with chronic muscle-related pain is not. The relevance of DOMS to 

TrPs remains unclear.   

 

Integrated hypothesis 
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Dommerholt et al. [68,69] postulated that low-level isometric muscle contraction or eccentric or 

sub-maximal concentric contractions could result in muscle dysfunction or damage, and that the 

formation of TrPs would follow. According to Gerwin et al., [70] an excessive release of 

acetylcholine from dysfunctional neuromuscular endplates might be responsible for the “taut 

band” phenomenon (i.e. focal muscle contraction modulated by muscle spindle afferents) and 

that these bands could in turn produce muscle ischemia, apparently by compressing adjacent 

capillaries supplying the muscle. This physiological process could precipitate an “energy crisis” 

in the relevant working muscle, which would respond by releasing pro-inflammatory molecules, 

thereby activating nociceptive neurons.  Although there is no experimental evidence in support 

of this hypothesis, others [71,72] have accepted the “motor end plate” and the “energy crisis” 

theories of tonic muscle hyperactivity and TrP formation. 

 

Recent studies of induced muscle pain in humans did not provide evidence for a reflex increase 

in fusimotor drive and spindle discharge [73, 74]. In fact persistent musculoskeletal pain is 

associated with decreased agonist muscle tone [75]; in other words, digital pressure or other 

stimuli that evoke pain will decrease the tone of the muscle stimulated. The validity of the 

paradigm that correlates endplate activity or noise with pain arising from the TrP became further 

suspect when it was reported that injection of Botulinum toxin A in the region of a TrP had no 

effect on pain intensity or mechanical pain thresholds, but did significantly reduce motor 

endplate activity and EMG interference pattern [76]. Finally, the “vicious circle” hypothesis has 

now been laid to rest by microneurographic recordings in humans performed during sustained 

muscle pain [73, 74]. 

The integrated hypothesis remains conjecture in the face of conflicting data. 
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Treatment  

Non-invasive interventions that have been advocated include compression of the TrP, “spray and 

stretch”, transcutaneous electrical stimulation (TENS) and, more recently, high-intensity focused 

ultrasound [79]. Invasive treatments have included injection of local anaesthetic agents, injection 

of corticosteroids, injection of botulinum toxin, needle acupuncture, and dry needling [80]. 

 

In their systematic review Cummings and White [81] were unable to find evidence that needling 

therapies have any specific effect.. Their later review of 1517 studies found only 7 that were of 

high enough quality for meaningful analysis [82]. Rickards [83] also found limited strength of 

evidence for any treatment of TrPs.  

 

Another review remarked upon the heterogeneity of the populations being treated, and the lack 

of widely accepted standard diagnostic criteria for MPS [84]. This review also concluded that 

there was insufficient evidence to support the use of most interventions.   

 

A systematic review of botulinum toxin A for TrP treatment located 21 RCTs, with 12 eligible 

for consideration but only 5 suitable for inclusion, and concluded that the current evidence does 

not support any therapeutic value [85]. Again, these authors reported that the data were limited 

and that the patient populations were heterogeneous.   

 

These studies provide little evidence that dry needling of TrPs is associated with a treatment 

effect compared with standard care [3].  They are based on small sample sizes, uncertainty as to 
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whether TrPs were the sole cause of pain, as well as neglect of technical issues such as the 

variability in the location of TrPs and the depth of needle insertion.  

 

With these results in mind, why do many clinicians insist that their treatments “work?” One 

explanation is that the treatments are rarely performed in an isolated fashion; that is, treatment is 

accompanied by manual therapy, home exercises, and stretching.   

 

Contextual effects could explain the plethora of anecdotal responses to treatment [86, 87]. This is 

not unexpected when a medical treatment with high face validity is based solely on practical 

experience rather than reflecting a rational approach based on pathogenesis.  Apparent 

effectiveness of any treatment may be attributed to the natural history of the particular problem 

being treated, regression to the mean, and the expectation of something being done to the area in 

question.  This can lead to the fallacy known as post hoc ergo propter hoc (“after this therefore 

because of this”), when the treatment offered in fact had nothing to do with the pathogenesis of 

the condition towards which it was directed. A recent study comparing dry needling with manual 

compression, where there was no control group, exemplifies this critical methodological issue 

[88]. 

 

One common factor shared by most therapies is that they elicit pain at the site of their 

application; that is, they are noxious stimuli.  If they do “work,” this similarity suggests a 

common mechanism of action. One possible mechanism is counter-irritation, or application of a 

competing noxious stimulus [89]. It is not surprising that a noxious stimulus applied in the region 

where pain is experienced, whether or not there is local pathology present at that site, would 
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elicit a transient reduction in pain intensity by recruiting those higher order brain regions 

responsible for anti-nociception [90-92]. 

 

In conclusion, the vast majority of studies and meta-analyses do not support the prediction from 

MPS theory that focal treatment of TrPs is effective. 

 

An impasse 

In 1976 Simons [1] hoped that “It would now appear possible to resolve much of the conflicting 

data of the past by carefully distinguishing trigger from reference zones, and acute from chronic 

lesions using modern electrodiagnostic, biochemical, histochemical, and ultramicroscopic 

techniques.” Some three decades later, he conceded that acceptance of the concept of TrPs had 

been hampered by two outstanding considerations: the lack of a diagnostic gold standard and the 

lack of generally recognised pathogenesis [93].  

 

We propose that sufficient research has been performed to allow TrP theories to be discarded. 

The scientific literature shows not only that diagnosis of the pathognomonic feature of MPS (the 

TrP) is unreliable but also that treatment directed to the putative TrP elicits a response that is 

indistinguishable from the placebo effect.  As these conclusions refute MPS, formulating a 

plausible scientific explanation for pain perceived by patients as coming from their muscles 

remains a challenge. 

 

Towards explaining the clinical phenomena 



 

 

 

16 

In our opinion current neuroscientific hypotheses can form the basis for collaborative scientific 

investigation to explain the clinical phenomena. We offer two for consideration, neither of which 

relies on local pathophysiology.  

 

Neuritis Model 

Nerve inflammation as a source of pain was discussed in the 19th century [95-100], but focused 

research on nerve inflammation as a primary disease aetiology has been limited.   

 

Quintner and Cohen [25] hypothesised that the TrP was an area of what was then called 

secondary hyperalgesia occurring in muscles that are structurally and physiologically 

unimpaired. Noting the remarkable proximity of TrPs to known peripheral nerves, these authors 

argued that sensitization of the axons within the nerves, possibly by inflammation, may inform 

the underlying mechanism.  Subsequent research has emerged in support of this hypothesis.  

 

Focal inflammation of peripheral nerves leads to ectopic axonal mechanical sensitivity and 

spontaneous discharge of some but not all of the nociceptors within the inflamed nerve [101-

104]. These changes can be expected to lead to focal areas of neurogenic inflammation and 

possibly to sensitization in the muscle innervated. If confirmed, they can inform further 

investigation that might be highly relevant to explaining the phenomenon of chronic muscle pain. 

 

Referred pain and tenderness (allodynia) 

Kellgren [105-107] reported the critical observation that, in addition to referred pain, referred 

tenderness could be induced by targeted injections of hypertonic saline into tissues such as 
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interspinous ligaments, periosteum, cancellous bone, or voluntary muscle.   His studies and those 

of others [108, 109] showed that localised muscle pain and tenderness could originate from 

pathologies within other deep tissues that produce nociceptor activation. This relegates the TrP to 

being a site of secondary allodynia reflecting altered central nociceptive mechanisms [110].  

 

CONCLUSION 

The construct of MPS caused by TrPs remains conjecture. All working hypotheses derived from 

this conjectures have been refuted and therefore the theory can be discarded. By contrast, 

evolving insights into the neurobiology of nociception and pain suggest plausible hypotheses that 

form a basis for advancing knowledge and therapeutics in this challenging area. 
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